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Machine learning represents a promising frontier in epidemiological research on spine sur-
gery. It consists of a series of algorithms that determines relationships between data. Ma-
chine learning maintains numerous advantages over conventional regression techniques, 
such as a reduced requirement for a priori knowledge on predictors and better ability to 
manage large datasets. Current studies have made extensive strides in employing machine 
learning to a greater capacity in spinal cord injury (SCI). Analyses using machine learning 
algorithms have been done on both traumatic SCI and nontraumatic SCI, the latter of which 
typically represents degenerative spine disease resulting in spinal cord compression, such as 
degenerative cervical myelopathy. This article is a literature review of current studies pub-
lished in traumatic and nontraumatic SCI that employ machine learning for the prediction 
of a host of outcomes. The studies described utilize machine learning in a variety of capaci-
ties, including imaging analysis and prediction in large epidemiological data sets. We dis-
cuss the performance of these machine learning-based clinical prognostic models relative to 
conventional statistical prediction models. Finally, we detail the future steps needed for 
machine learning to become a more common modality for statistical analysis in SCI.

Keywords: Machine learning, Spinal cord injury, Outcomes, Degenerative cervical my-
elopathy, Magnetic resonance imaging

INTRODUCTION

The prediction of outcomes in spinal cord injury (SCI) is a 
challenging task requiring robust statistical techniques and the 
development of powerful clinical prognostic models (CPMs).1 
CPMs are statistical rules relating a desired outcome to one or 
more predictor variables. Clinicians frequently employ CPMs 
to make treatment decisions, manage patient expectations, and 
predict the course of an illness. In both the traumatic and non-
traumatic forms of SCI, the underlying pathophysiological chan-
ges result in secondary glial scarring and cystic cavity formation, 

which impair the regeneration and healing of neurons.2 Clini-
cally, this manifests as significant and occasionally irreversible 
functional deterioration, which results in a considerable burden 
on patients, families, and society at large.3

Because of the substantial impact of SCI, accurate CPMs are 
immensely useful for both the clinician and patient as tools to 
navigate the challenging landscape and sequelae of SCI. The 
development of these CPMs is now increasingly being done 
with machine learning (ML), a series of computational algo-
rithms that can determine relationships within datasets.4 Com-
pared to traditional prognostic models, which employ some 
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variant of logistic regression, ML has numerous advantages. 
First, ML requires little a priori knowledge of important predic-
tors, as it often automatically determines the important predic-
tors based on the dataset.5,6 Second, ML is generally less restric-
tive than logistic regression about the number of predictors that 
can be used for a given dataset.7 This makes ML useful for large 
datasets (e.g., oncology and pharmacogenomics) where large 
numbers of predictors may be present and relationships between 
predictors may not be immediately obvious. Third, ML can find 
complex, nonlinear relationships within datasets which are less 
amenable to being developed and analysed via logistic regres-
sion.8 

Given these advantages, ML is often found to be more accu-
rate and powerful than logistic regression techniques on the 
same dataset.9,10 This relative benefit has caused ML to become 
increasingly used in predictive modeling for SCI, to the extent 

that many research groups have recently begun to develop ML-
based CPMs for SCI. This review discusses recent works in which 
ML-based prognostic models were created for the prediction of 
outcomes in SCI. It is organized as follows: Section 2 presents 
the methods used to arrive at the body of literature reviewed in 
this article, while section 3 presents an overview of the method-
ology behind ML. Sections 4 and 5 describe the current prog-
ress with ML in developing prediction models for traumatic 
and nontraumatic SCI, respectively. Section 6 describes poten-
tial future directions with the use of ML in SCI with a case il-
lustration, while section 7 concludes the paper.

METHODS

This article is a narrative review with the goal of providing 
the reader with an overview of ML applied to SCI. The body of 

Table 1. Summary of literature review of machine learning in outcome prediction after SCI

Study Description

A ML approach for specification of spinal cord injuries  
using fractional anisotropy values obtained from diffu-
sion tensor images.27

Developed KNN and SVM models to predict the presence of spinal cord injury 
in individual axial slices of the spinal cord collected from DTI, specifically the 
fractional anisotropy parameter.

Convolutional neural network-based automated segmenta-
tion of the spinal cord and contusion injury: deep learn-
ing biomarker correlates of motor impairment in acute 
spinal cord injury.29

Developed a convolutional neural network to perform segmentation of the spi-
nal cord in tSCI. Segmentation helped authors conclude that contusion injury 
volume was significantly correlated with motor scores at admission and dis-
charge.

Development of an unsupervised ML algorithm for the  
prognostication of walking ability in spinal cord injury  
patients.31

Constructed unsupervised ML algorithm predicting independent ambulation 
ability post-SCI at discharge or at the 1-year follow-up. Compared ML algo-
rithm to logistic regression model – no significant difference found in perfor-
mance.

Use of multivariate linear regression and support vector  
regression to predict functional outcome after surgery for 
cervical spondylotic myelopathy.

Compared a support vector regression model with a multivariate logistic regres-
sion model in the prediction of functional outcome after surgery for DCM. 
Support vector regression model was found to be superior.

Using a ML approach to predict outcome after surgery for 
degenerative cervical myelopathy.15

Formulated random forest predicting quality-of-life and functional outcomes 
after decompression surgery for DCM (AUC = 0.70).

ML for prediction of sustained opioid prescription after  
anterior cervical discectomy and fusion (ACDF).

Developed stochastic gradient boosting model (AUC = 0.81) to predict sustained 
opioid prescription after ACDF. Major predictors of lengthened opioid pre-
scription included preoperative opioid prescription, antidepressant use, tobac-
co use, and Medicaid insurance status.

Prognosis of cervical myelopathy based on diffusion tensor 
imaging with artificial intelligence methods.

Utilized multiple supervised learning models (e.g., SVM) that used DTI features 
to predict the mJOA recovery rate at the 1-year postsurgery follow-up.

Development of ML algorithms for prediction of prolonged 
opioid prescription after surgery for lumbar disc hernia-
tion

Created an elastic-net penalized logistic regression model (AUC = 0.81) to pre-
dict sustained opioid prescription after lumbar disc herniation surgery. Major 
predictors of lengthened opioid prescription included instrumentation, preop-
erative opioid duration, and comorbid depression.

Development of ML algorithms for prediction of discharge 
disposition after elective inpatient surgery for lumbar  
degenerative disc disorders

Created a neural network (AUC = 0.82) to predict nonroutine (i.e., not home) 
discharge for patients undergoing surgery for lumbar degenerative disc disease 
based on age, comorbid status, etc.

SCI, spinal cord injury; KNN, k-nearest neighbor; SVM, support vector machine; DTI, diffusion tensor imaging; tSCI, traumatic SCI; ML, ma-
chine learning; DCM, degenerative cervical myelopathy; AUC, area under the curve; mJOA, modified Japanese Orthopaedic Association.  
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literature for this review was collected by searching the PubMed 
database using the keywords ‘machine learning’ and ‘spinal 
cord injury’ or ‘machine learning’ and ‘cervical myelopathy’ or 
‘machine learning’ and ‘lumbar spine.’ The combinations of 
these keywords produced 9 articles which used ML as a tool to 
predict either functional, health-related quality-of-life, or other 
outcomes (e.g., opioid use after surgery) pertinent to spine sur-
gical practice. Three of these articles apply ML to the prediction 
of outcomes after traumatic SCI, while 6 of the articles use ML 
in the context of outcome prediction after nontraumatic SCI. 
Table 1 summarizes the articles found, including the ML algo-
rithms used and the specific outcomes predicted.

OVERVIEW OF MACHINE LEARNING

As datasets continue to burgeon in size and complexity, the 
need for powerful software tools for data analysis has dramati-
cally increased over the last few decades. At the same time, as 
computational capacity and technological sophistication con-
tinue to rise with time, the implementation of these tools has 
become increasingly feasible. One such software tool is ML, a 
series of complex mathematical algorithms frequently used for 
the development of mathematical models describing relation-
ships between data.11 Broadly, ML is divided into 3 categories: 
supervised ML, unsupervised ML,12 and reinforcement learn-
ing.13

In supervised ML, the model is built using data which has its 
inputs and outputs labeled by the user.12 That is, the user ‘super-
vises’ the algorithm by labelling the data beforehand, after which 
the ML algorithm creates the model relating the inputs and out-
puts. In unsupervised ML, the data is not given input and out-
put labels.12 Instead, the algorithm determines features within 
the data that allow it to group different data points. In reinforce-
ment learning, the algorithm works within an environment to 
determine a policy that maximizes reward.13 For instance, a ro-
bot playing tennis works in an environment (i.e., tennis court) 
and is trained to determine a policy (i.e., make moves) that maxi-
mizes reward (i.e., number of points) while minimizing penalty 
(i.e., the opponent’s points). Reinforcement learning is not as 
amenable to epidemiological datasets in SCI as unsupervised or 
supervised learning. In fact, the majority of ML models devel-
oped in SCI are supervised learning models, which include clas-
sification and regression algorithms.14

Supervised ML algorithms are developed using a set of train-
ing data, on which the ML model is developed and optimized, 
and a separate set of testing data. Fig. 1 illustrates a schematic of 

such a train-test split carried out by Merali et al.15 Maintaining 
a training-testing split is crucial for the successful design of a 
ML model, as it prevents overfitting and provides a good pre-
liminary check of the external validity of the model.16 It is im-
portant to note that ML does not comprise a singular, mono-
lithic entity; rather, there is a wide variety of algorithms that can 
be used to create ML models. These supervised algorithms in-
clude support vector machines (SVMs),17 classification trees,18 
k-nearest neighbor (KNN),19 and naïve Bayes.20

In addition, ML models can be further modified by using en-
semble techniques, such as bagging and boosting.21,22 For ex-
ample, multiple classification trees can be trained using differ-
ent subsets of the training data. Then, the overall outcome of 
bagging the classification trees can be set equal to the majority 
outcome of the individual classification trees, resulting in a ran-
dom forest model.23 Stacking can also be employed by combin-
ing the outputs of entirely different ML models in a similar man-
ner.24 The variety and computational power provided by these 
techniques make ML the tool of choice when developing high-
performance predictive models. Further, the nature of these 
models allows them to determine nonlinear relationships, which 
would otherwise be very difficult to incorporate in simple lo-
gistic regression. Table 2 compares machine learning to con-
ventional logistic regression, while Table 3 compares the 3 mo-
dalities of machine learning with respect to multiple character-
istics.

MACHINE LEARNING ALGORITHMS IN 
TRAUMATIC SPINAL CORD INJURY

Traumatic SCI (tSCI) has a significant impact on both pa-
tients and the healthcare system. In Western countries, it affects 
between 15 and 53 people per million every year.25 What makes 
tSCI especially troublesome is that affected patients frequently 

Fig. 1. Schematic of the train-test split performed in Merali et 
al.15 DCM, degenerative cervical myelopathy.
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Table 3. Attributes of the 3 major categories of machine learning

Attribute Supervised learning Unsupervised learning Reinforcement learning

Labelling Data outcomes are labeled beforehand Data outcomes are not labeled Data outcomes are not labeled

Description Algorithm makes prediction of outcomes based on 
predictors using labeled data as a reference

Algorithm is used to separate data 
into clusters

Algorithm is used to build a policy 
that maximizes a cumulative reward

Evaluation 
Metrics

Algorithms are evaluated based on area under the 
curve and accuracy relative to the ‘ground truth’  
(i.e. the true values of the outcomes)

Difficult to evaluate algorithm 
performance in the absence of 
‘ground truth’ data

Algorithms are evaluated based on 
cumulative reward

Examples Examples include classification algorithms (e.g.,  
support vector machine) and regression algorithms  
(e.g., regression tree)

Examples include k-means clus-
tering and principal component 
analysis

Examples include Q-learning

Table 2. Key characteristics of machine learning, organized by feature

Feature Machine learning characteristics Logistic regression characteristics

Knowledge of predic-
tors

Little a priori knowledge of predictors needed Requires knowledge of predictors for elimination of 
unimportant variables from model

No. of predictors Fewer restrictions on number of predictors in machine learning Number of predictors is restricted based on number 
of data points available

Nonlinear relation-
ships

Capable of capturing complex, nonlinear relationships Has difficulty with modelling nonlinear relationships

Algorithm variety A host of machine learning algorithms exist, each with its own 
separate advantages and disadvantages. In addition, additional 
variations to enhance performance (e.g., bagging, boosting, 
stacking) may also be used in machine learning.

Multiple types of logistic regression models exist, but 
models generally have a similar foundation

experience sequelae of persistent neurological dysfunction in 
multiple functional domains.3,26 These complications result in 
lifelong disability and a significant burden on the healthcare 
system. The devastating consequences of tSCI, as well as many 
unanswered issues concerning its management and prognosis, 
have created many questions for ML to answer. However, the 
current literature on the application of ML to prediction of out-
comes in tSCI is fairly limited, possibly due to the relative nov-
elty of ML and the tendency to pursue a more familiar regres-
sion modality instead.

Despite this paucity of literature, a number of important arti-
cles applying ML to tSCI have been published in multiple areas 
of SCI. For instance, Tay et al.27 developed ML tools to predict 
the presence of SCI in individual axial slices of the spinal cord 
collected from diffusion tensor imaging (DTI). The authors 
used a specific DTI metric known as the fractional anisotropy,28 
a descriptor of the degree of directional water diffusion and tis-
sue orientation in an image, which is used as a surrogate mea-
sure for the structural integrity of the imaged tissue. To perform 
their analysis, the authors first built tools to isolate the spinal 
cord in the image. Next, using the fractional anisotropy of dif-
ferent sections of the isolated spinal cord, the authors trained 

and tested ML algorithms (specifically KNN and SVM with a 
radial kernel) to predict whether the spinal cord in a particular 
image slice was ‘injured’ or ‘normal.’ The ML algorithms per-
formed well in predicting the presence of SCI from DTI images, 
yielding a specificity of 0.952 and a sensitivity of 0.912.

Like Tay et al.,27 McCoy et al.29 recently applied a ML appro-
ach to spinal cord imaging in tSCI. They developed a convolu-
tional neural network (CNN) to perform segmentation of the 
spinal cord in tSCI. The model was trained using a training set 
of axial spinal magnetic resonance (MR) images annotated by 
board-certified radiologists, and it was then validated and test-
ed using separate sets of axial MR images. The Dice coefficient,30 
a metric used to quantify the performance of an image segmen-
tation algorithm, was 0.93 for the developed CNN, indicating 
excellent predictive performance above that of previous models. 
Based on this segmentation, the authors determined that the 
contusion injury volume (i.e., the volume of the spinal cord 
which was deemed injured by the CNN) was significantly cor-
related with motor scores at admission and discharge.

In addition to prediction of tSCI from imaging, the latest stud-
ies applying ML to tSCI have made important strides in the prog-
nostication of functional outcomes after cord injury. DeVries et 
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al.31 recently used tSCI data from the RHSCIR (Rick Hansen 
Spinal Cord Injury Registry) database to construct an unsuper-
vised ML algorithm predicting independent ambulation ability 
post-tSCI at discharge or at 1-year follow-up. This algorithm 
was then compared to previously established logistic regression 
models predicting the same outcome, and the authors found no 
significant difference between the performance of the logistic 
regression models and the unsupervised ML algorithm. While 
this equivalence is not immediately encouraging, DeVries et 
al.31 set a valuable foundation for future comparisons involving 
ML and established statistical models.

MACHINE LEARNING ALGORITHMS IN 
NONTRAUMATIC SPINAL CORD INJURY

Nontraumatic SCI is defined as a series of pathological chang-
es resulting in damage to the spinal cord that do not arise di-
rectly from trauma. In the cervical region, nontraumatic SCI is 
often termed degenerative cervical myelopathy (DCM), the most 
common cause of spinal cord dysfunction worldwide.32 DCM 
results from age-related degenerative changes to the cervical 
spine that result in spinal cord compression, such as ossification 
of the posterior longitudinal ligament, hypertrophy of the liga-
mentum flavum, and osteophyte formation in the cervical ver-
tebrae.33 In the lumbar region, another area commonly affected 
by nontraumatic SCI, degenerative disc disease and lumbar ste-
nosis can cause damage to the spinal cord.34 Taken together, 
both DCM and nontraumatic lumbar SCI are caused by age-re-
lated degenerative changes, whose incidence is expected to rise 
with the growth in the elderly population.

As these population trends have begun, the need for ML has 
risen in order to meet the increasing requirement for powerful 
predictive tools guiding clinical management of degenerative 
cervical and lumbar cord compression. To this end, multiple 
groups have recently published articles on the use of ML in pre-
dictive modelling related to both DCM and nontraumatic lum-
bar SCI. One of the early articles on applying ML to DCM was 
published by Hoffman and colleagues,35 who compared a sup-
port vector regression model (SVR - a regression variant of SVM) 
with a multivariate logistic regression model in the prediction 
of functional outcome (specifically, the Oswetry Disability In-
dex or ODI) after surgery for DCM. The authors found that the 
SVR model outperformed its logistic regression counterpart. 
This was possibly due to the SVR model’s relatively improved 
capability of capturing complex nonlinear relationships between 
the prognostic variables and the outcome. Additionally, the au-

thors identified a number of important variables affecting the 
final ODI score, such as preoperative ODI and symptom dura-
tion.

Merali et al.15 built upon this work and formulated ML mod-
els predicting quality-of-life and functional outcomes after de-
compression surgery for DCM. The authors trained and tested 
multiple classification models to predict improvement in SF-6D 
(a quality-of-life measure) and modified Japanese Orthopaedic 
Association (mJOA; a functional outcome measure) at 3 follow-
up time points: 6-month postsurgery, 1-year postsurgery, and 
2-year postsurgery. Overall, the random forest model was found 
to have the best performance, with an average area under the 
curve (AUC) of 0.70, a sensitivity of 78%, and an accuracy of 
77% on the testing cohort. From a clinical relevance standpoint, 
the models developed identified many important features con-
tributing to poor surgical outcomes in DCM. These included 
longer duration of myelopathy symptoms, worse preoperative 
disease severity, increased age, increased weight, and current 
smoking status. These findings have the potential to guide fu-
ture surgical practice by potentially serving as a foundation on 
which to counsel patients.

Beyond prediction of functional outcomes, ML has also been 
used as a predictor of opioid use after surgery for DCM and 
lumbar disc disease. Anterior cervical discectomy and fusion 
(ACDF) is a surgical procedure for DCM that involves removal 
of a diseased intervertebral disc and fusion of 2 adjacent verte-
bral bodies.36 Karhade et al.37 developed 5 ML models to predict 
sustained opioid use after ACDF and found stochastic gradient 
boosting to be the highest-performing algorithm (AUC = 0.81 
with good calibration). The authors determined that prolonged 
opioid use after ACDF was driven by preoperative opioid pre-
scription, antidepressant use, tobacco use, and Medicaid insur-
ance status. To apply the model created in the article, Karhade 
et al.38 developed a webpage, making their ML algorithms more 
accessible to clinical practice. Karhade et al.38 also extended this 
work to the lumbar spine domain, by developing ML algorithms 
predicting extended opioid use after surgery for lumbar disc her-
niation. Here, the authors found that an elastic-net penalized 
logistic regression model had the best performance (AUC= 0.81 
with good calibration) and that instrumentation, preoperative 
opioid duration, and comorbid depression were the major pre-
dictors of prolonged opioid use.

From a health economics perspective, discharge disposition 
is one of the most important considerations for physicians work-
ing in an inpatient setting. Patients discharged to a setting other 
than home (i.e., nonroutine discharges) often experience a great-
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er length-of-stay and are associated with a greater economic 
burden than those who are discharged directly home. In the 
context of lumbar spine disease, Karhade et al.39 created a neu-
ral network predicting nonroutine discharge for patients un-
dergoing surgery for lumbar degenerative disc disease. The neu-
ral network used a sample of over 26,000 patients from the Na-
tional Surgical Quality Improvement Program database and 
extracted 8 key variables (e.g., age, body mass, comorbid dis-
ease status) to classify patients as either routine discharge or 
nonroutine discharge. The algorithm achieved an AUC of 0.82 
with good calibration on the testing set, potentially guiding fu-
ture practice by providing spine surgeons with tools to prepare 
in advance for nonroutine discharge and decrease hospital stays.

With respect to imaging interpretation, Jin et al.40 have used 
DTI to determine prognosis based on the mJOA recovery ratio, 
defined as the ratio of postoperative improvement in mJOA to 
the ideal improvement in mJOA (i.e., recovery from preopera-
tive baseline to maximum mJOA score). Patients were dichoto-
mized at the 1-year follow-up according to whether their recov-
ery ratio was ‘good’ or ‘poor,’ which facilitated the development 
of classification algorithms. In their analysis, the authors em-
ployed both supervised ML approaches (SVM, KNN) and mul-
tivariate logistic regression. These approaches used DTI features 
such as fractional anisotropy, axial diffusivity, radial diffusivity, 
and mean diffusivity (where diffusivity is defined as the rate of 
molecular diffusion in different directions) to make predictions 
about the recovery rate. The deep learning model showed poor 
accuracy in the prediction of recovery rate (59.2%); however, the 
SVM model showed excellent accuracy in its prediction (89.7%), 
exceeding the performance of the logistic regression model.

FUTURE DIRECTIONS AND 
RECOMMENDATIONS

With the increasing complexity of modern epidemiological 
data, ML is a prime candidate as the tool of choice for analysis. 
Because of its novelty and computational power in the area of 
SCI, ML possesses tremendous future potential and applicabili-
ty in multiple clinically important domains (e.g., diagnosis, im-
age processing, and prognosis). However, as discussed in sec-
tions 3 and 4, much of the work done so far in applying ML to 
SCI has been foundational and in a limited set of areas. To make 
ML a more mainstream tool in spine practice, we believe that 3 
conditions need to be met. First, ML models need to be made 
more accessible to potential end-users in publications. Owing 
to their architecture, ML models can necessarily be more com-

plex and difficult to decipher on initial examination. Specifical-
ly, the models are not as intuitive and the relationships between 
outcome and predictors is often difficult to ascertain in a ML 
algorithm. In addition, they may involve more features than 
their logistic regression counterparts, making hand calculations 
of prognostic probabilities more difficult. To overcome this is-
sue, applications such as Shiny can be used to create web-based 
tools that incorporate ML models. The development of these 
web-based tools (e.g., as seen in the study of Karhade et al.37-39) 
is a necessary step in allowing ML models to be more easily ap-
plicable in the clinical setting.

Second, ML models need to have a robust evidence base sup-
porting them. While current studies frequently show superiori-
ty of ML over conventional techniques and generally employ a 
sound methodology, the mainstream appeal of ML may benefit 
from a consistent, evidence-based approach to developing algo-
rithms. Conventional prediction models benefit from the TRI-
POD (Transparent Reporting of a multivariable prediction mod-
el for Individual Prognosis Or Diagnosis) checklist,41 which guides 
model development. For ML, guidelines to aid in ML algorithm 
creation were published in 2016 by Luo et al.7 These guidelines 
provide a step-by-step overview of the key tasks to be accom-
plished when creating a robust ML model for an epidemiologi-
cal study. Future works employing ML models would benefit 
greatly from having a similar systematic approach, which would 
undoubtedly increase the appeal of ML especially as studies con-
tinue to demonstrate its superiority over conventional tools.

Finally, for ML to become a more mainstream tool in SCI, it 
needs to be used more widely to develop CPMs. Significant re-
search needs to be performed to expand the scope of ML by 
applying it to other areas. For instance, ML may be used to pre-
dict functional outcomes after SCI in larger datasets, such as 
the European Multicenter SCI dataset (ClinicalTrials.gov Iden-
tifier: NCT01571531) and the North American Clinical Trials 
Network registry (ClinicalTrials.gov Identifier: NCT00178724). 
For cervical myelopathy, ML can be expanded to include imag-
ing data as explanatory variables or to evaluate different out-
come measures. In the basic science world, the close relation-
ship of ML with so-called ‘big data’ can be leveraged to propose 
biomarkers of SCI or to analyse and develop advanced imaging 
techniques. The foundation currently established with ML and 
clinical imaging in SCI can also be further expanded, with ML 
eventually serving a crucial role in determining imaging char-
acteristics that could be potential prognostic tools in SCI. The 
abundance of possible routes for ML makes these future areas 
of study ideal for future exploration.
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CASE ILLUSTRATION

To better define the potential role of ML in SCI, we present a 
case of SCI in which ML can serve a substantial clinical role 
beneficial to both the spine clinician and the patient. Consider 
a 26-year-old male who presents to the Emergency Department 
with a SCI after a motor vehicle accident. After initial stabiliza-
tion, the patient undergoes a complete neurological exam to as-
sess the degree of his SCI. He is found to have decreased lower 
extremity neurological function (i.e., decreased motor scores 
and sensation) but near normal upper extremity neurological 
function. Based on a ML algorithm predicting independence in 
various activities of daily living, it is determined that the patient 
has a low probability of independently performing activities re-
quiring the lower extremities (e.g., walking, climbing stairs, and 
bladder function) at 1 year. The patient is given early counsel-
ling to prepare him for this eventuality, and early intervention 
(e.g., urological studies, targeted physiotherapy) is started to 
maximize the patient’s lower extremity function. With the early 
prediction from the ML algorithm, the patient’s psychosocial 
status is improved thanks to early counseling, and the patient’s 
lower extremity function is improved with the early interven-
tion. The potential role for ML in improving lives with early 
prediction is immense, which is why it is a promising tool for 
spine specialists going forward.

CONCLUSIONS

Current clinical practice and everyday decision-making still 
rely on established CPMs based on logistic regression, since re-
gression models are easier to utilize, have a greater body of re-
search applying them, and are better understood compared to 
ML. Nevertheless, as ML begins to occupy a greater role in the 
research setting, and as studies begin to show the relative supe-
riority of ML over conventional tools, we expect the reliance on 
the latter to decrease in favor of ML. Achieving these goals is no 
simple task; deeper, more impactful work needs to be done in 
order to build on the current foundation and expand the scope 
of ML in SCI. However, with the strides made by current litera-
ture in the realm of ML, we anticipate that ML-based predic-
tion will soon become an essential tool in the armament of the 
spine physician.
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