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RATIONAL PARKING FUNCTIONS AND LLT POLYNOMIALS

EUGENE GORSKY AND MIKHAIL MAZIN

ABSTRACT. We prove that the combinatorial side of the “Rational Shuffle Conjecture” provides
a Schur-positive symmetric polynomial. Furthermore, we prove that the contribution of a given
rational Dyck path can be computed as a certain skew LLT polynomial, thus generalizing the
result of Haglund, Haiman, Loehr, Remmel and Ulyanov. The corresponding skew diagram is
described explicitly in terms of a certain(m,n)–core.

1. INTRODUCTION

The space of diagonal coinvariantsDHn is defined as the quotient of the polynomial ring
C[x1, . . . , xn, y1, . . . , yn] with respect to the ideal generated by the positive degree invariants
of the diagonal action of the symmetric groupSn. This space is naturally bigraded by degrees
in x- and iny-variables, and carries a degree preservingSn-action. In the series of papers
[11, 12, 13, 14] Haiman proved that the dimension ofDHn equals(n+ 1)n−1 and its bigraded
Frobenius character equals∇en, where∇ is a certain operator on symmetric functions which
diagonalizes in the basis of modified Macdonald polynomials.

Finding an explicit basis inDHn remains an important open problem in algebraic com-
binatorics. Recall that aparking functionon n cars is a mapf : {1, . . . , n} → Z≥0 such
that ♯f−1([0, i − 1]) ≥ i for all i. Let PFn denote the set of parking functions. It is well
known that its cardinality equals♯PFn = (n + 1)n−1 = dimDHn. Moreover,Sn acts on
PFn by permuting the values, and this action preserves a naturalstatistic on parking functions:
area(f) := n(n−1)

2
−

∑
f(i). It follows from the work of Garsia and Haiman ([4]) that if one

forgets one of the gradings onDHn, thenDHn is isomorphic to the spaceCPFn, tensored
by the sign representation, as a gradedSn-module. In [10], Haiman, Haglund, Loehr, Remmel
and Ulyanov proposed a conjectural formula for the bigradedFrobenius characteristic ofDHn,
which became known asShuffle Conjecture:

Conjecture 1.1. ([10]) The following equation holds:

(1) chDHn = ∇en =
∑

f∈PFn

qarea(f)tdinv(f) ·Qias(f)(z),

wheredinv is a certain statistic on parking functions,ias(f) is the set of ascents of the inverse
of the diagonal word off, andQias(f)(z) is the Gessel fundamental quasisymmetric function in
variables{z1, z2, . . .} (see[5]).

Remark 1.2. In the original formulas in [10] one has the set of descents ofthe diagonal word
ides(f) instead of the ascentsias(f). This is due to a difference in notations for parking func-
tions (see Figure 1 for an example).

Tensoring by the sign representation corresponds to the involutionΩ on the space of symmet-
ric functions defined byΩ(sλ) = sλ′, whereλ′ is obtained fromλ by transposition. Involution
Ω can also be extended to the space of quasisymmetric functions by settingΩ(QS) = QS ,
whereS = {1, . . . , n− 1} \ S. In particular,Ω(Qias(f)) = Qides(f).

In [9], a rational analogue of the Shuffle Conjecture has beenproposed.
1
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Conjecture 1.3. The following equation holds:

(2) Pm,n · 1 =
∑

f∈PFm/n

qarea(f)tdinv(f) ·Qides(f)(z),

wherePm,n is a certain degreen operator acting on symmetric functions,PFm/n is a ratio-
nal analog of the parking functions (see definition below), and area anddinv generalize the
corresponding statistics to rational parking functions.

It is also conjectured (see [9] for a detailed exposition) that (2) is equal to the bigraded Frobe-
nius character of the unique finite-dimensional representation Lm/n of the rational Cherednik
algebra. In particular, both sides of this equation are expected to have nonnegative coefficients
in the Schur expansion.

In this article we prove that the right hand side of (2) is indeed Schur–positive. More pre-
cisely, letPFm/n(D) denote the set ofm/n–parking functions with the underlying Dyck path
D. Note that thearea statistic is constant onPFm/n(D).

Theorem 1.4.For all m/n–Dyck pathsD the polynomial

F(D; t) :=
∑

f∈PFm/n(D)

tdinv(f) ·Qides(f)(z)

is a symmetric Schur positive polynomial.

Corollary 1.5. The combinatorial side of the “rational Shuffle Conjecture”equals

Fm/n(q, t) =
∑

D

qarea(D)F(D; t)

and hence is symmetric and Schur positive.

Theorem 1.4 was first proved in [16, Corollary 4.16] using thegeometry of affine Springer
fibers. Our proof of Theorem 1.4 follows the ideas of [10]: we prove that the coefficients of
F(D; t) in the Schur expansion (up to a monomial shift) can be identified with certain parabolic
affine Kazhdan–Lusztig polynomials labeled by a certain partition µ and itsm-coreλ. We use
a bijection of J. Anderson to give a simple construction ofλ andµ which seems to clarify the
subtle combinatorial considerations of [10].
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2. DEFINITIONS AND NOTATIONS

All Young diagrams are in ”French notation”. A setM ⊂ Z is calledn–invariant if for each
x ∈ M one hasx+ n ∈ M .

2.1. Rational parking functions. For a functionf : {1, . . . , n} → Z≥0, let Df denote the
Young diagram with the row lengths equal to the values off put in decreasing order.

Definition 2.1. A function f is called anm/n–parking functionif the diagramDf fits under
the diagonal in ann×m rectangle. The set ofm/n–parking function is denotedPFm/n .
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FIGURE 1. Consider the functionf : {1, 2, 3, 4, 5} → Z≥0 given byf(1) =
1, f(2) = 2, f(3) = 0, f(4) = 2, f(5) = 0. The underlying diagramDf =
{2, 2, 1} fits under the diagonal in a5 × 7 rectangle, sof ∈ PF7/5. The figure
shows the corresponding standard Young tableau of shapeDf + (1)n \Df .

Equivalently,f ∈ PFm/n if and only if for all 1 ≤ i ≤ m the following inequality holds:

♯f−1({0, . . . , i− 1}) ≥
n

m
i.

Definition 2.2. The Young diagramDf will be called them/n–Dyck path underlyingf . For
anym/n–Dyck pathD, let PFm/n(D) ⊂ PFm/n denote the set ofm/n-parking functions
with the underlying Dyck pathD.

Remark 2.3. Note that a Young diagram fits under the diagonal in ann× (n+ 1) rectangle if
and only if it fits under the diagonal in ann× n square. Thus, the casem = n+1 corresponds
to classical parking functionsPF (n+1)/n = PFn .

Another way to think about parking functions is to identify the setPFm/n(D) with the set
of standard Young tableaux of the skew shapeD + (1)n \D denotedSYT(D + (1)n \D). To
recover the function from such a tableau one setsf(i) equal to the length of the row containing
the labeli. The monotonicity condition for columns insures that we account for each parking
function exactly once. It will be convenient for us to assumethat the labels decrease in columns
from bottom to top (see Figure 1 for an example).

2.2. Affine permutations. We will need a bijection between rational parking functionsand a
subset in the affine symmetric group̃Sn, constructed in [8].

Definition 2.4. A bijection ω : Z → Z is called an affineSn–permutation, ifω(x + n) =

ω(x) + n for all x, and
∑n

i=1 ω(i) =
n(n+1)

2
. The set of affineSn–permutations form a group

with respect to composition. The group is called theaffine symmetric groupand denoted̃Sn.

Definition 2.5. An affine permutationω ∈ S̃n is calledm-stable if for all x the inequality
ω(x + m) > ω(x) holds, i.e.ω has no inversions of heightm. The set of allm-stable affine
permutations is denoted̃Sm

n .

Let us briefly recall the construction of the bijectionA : S̃m
n → PFm/n (see [8] for more

details). Take a permutationω ∈ S̃m
n . Consider the set∆ω := {i ∈ Z : ω(i) > 0} ⊂ Z and let

Mω be its minimal element. Note that the set∆ω is invariant under addition ofm andn. Let
us label the boxes in then × m rectangleRm,n so that the box(i, j) is labeled by the weight
l(i, j) = mn−m−n+Mω−mi−nj (assuming that the bottom-left corner box has coordinates
(0, 0)). We also extend this labeling to the wholeZ2 when needed. The functionl(i, j) is chosen
in such a way that a box is labeled byMω if and only if its top-right corner touches the line
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containing the top-left to bottom-right diagonal of the rectangle, sol(i, j) ≥ Mω if and only if
the box(i, j) is below this line. The Young diagramDω is defined by

Dω := {(i, j) ∈ Rm,n | l(i, j) ∈ ∆ω}.

The diagramDω will be the underlyingm/n–Dyck path of the parking functionAω :=
A(ω), so that the set of values ofAω equals the set of row lengths ofDω. What remains to do
is to assign the arguments to the values. This is done by labeling theith row of the diagram by
ω(ai), whereai is the weight of the rightmost box of theith row of Dω (if a row has length0
we take the weight of the box(−1, i− 1), just outside the rectangle in the same row).

Note that the weights{a1, . . . , an} of the rightmost boxes of the diagramDω are the smallest
elements of the set∆ω ⊂ Z in their corresponding congruence classes modulon (i.e. ai − n /∈
∆ω for all i). They are called then–generators of∆ω. It follows that

{ω(a1), . . . , ω(an)} = {1, . . . , n}.

Lemma 2.6([8]). The mapA : S̃m
n → PFm/n is a bijection.

Let f ∈ PFm/n andω ∈ S̃m
n be such thatAω = f. Let ∆ω := {i ∈ Z : ω(i) > 0} ⊂ Z and

Mω = min∆ω as above.

Definition 2.7. Following [8], we define two statistics on parking functions:

area(ω) = area(f) :=
(m− 1)(n− 1)

2
−

n∑

a=1

f(a) = ♯ ([Mω,+∞) \∆ω) = 1−Mω,

and

dinv(ω) := dinv(f) := {(i, j) ∈ Z
2 | 1 ≤ i ≤ n, i < j < i+m,ω(i) > ω(j)}.

Remark 2.8. The equivalence of the formulas forarea(f) = area(ω) can be shown as follows.
By the first formula we get thatarea(f) is the number of boxes that fit under the diagonal
in the rectangleRm/n, but don’t fit in the diagramDω. The set of weights of these boxes
is exactly [Mω,+∞) \ ∆ω, each occurring once, which proves equivalence of the first two
formulas. Furthermore, observe that the set∆ω is always “balanced”: there are as many non-
positive elements in∆ω as there are positive elements of the complement. This proves the third
formula. Note thatarea(f) is constant onPFm/n(D) for anym/n–Dyck pathD.

Remark 2.9. The statisticdinv(ω) basically counts the inversions ofω of height less thanm.
Describingdinv(f) directly in terms of the parking functionf is somewhat complicated (see
[16]).

Note that the diagramDω depends only on the set∆ω, and, vice versa, for any two permuta-
tionsω1, ω2 ∈ A−1(PFm/n(D)) one has∆ω1

= ∆ω2
. We will use the following notations:

Definition 2.10. Let ∆D ⊂ Z denote the subset given by∆D = ∆ω for anyω ∈ S̃m
n such that

A(ω) ∈ PFm/n(D). Let also

S̃m
n (∆) := {ω ∈ S̃m

n | ∆ω = ∆} = A−1(PFm/n(Dω)).

Let us also reinterpret the quasi-symmetric functionQides(f) in terms of the affine permuta-
tionω. The diagonal worddw(f) of the parking functionf is the word obtained by reading the
labels of the corresponding standard tableau in the order given by the weights of the boxes, or,
equivalently, the distance from the diagonal of then×m rectangle to the left-top corner of the
box. Since each number from{1, . . . , n} appears indw(f) exactly once, one getdw(f) ∈ Sn.
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FIGURE 2. The weight labeling corresponding to the parking function f ∈
PF7/5 given by (1, 2, 3, 4, 5) 7→ (1, 2, 0, 2, 0). We put the row labeling from
the corresponding standard Young tableau (see Figure 1) on the left to avoid
confusion.

It follows immediately from the construction, that the descents of the inverse of the diagonal
word dw(f) are exactly the same as the descents of the word(ω−1(1)ω−1(2) . . . ω−1(n)). For
simplicity, we denote this set of descentsdes(ω−1) (see Example 2.11).

Example 2.11. Continuing the example in Figure 1, one gets the diagonal word dw(f) =
(35124), with the inversedw(f)−1 = (34152). Therefore, the descent set isides(f) = {2, 4}.

To recover the corresponding affine permutationω ∈ S̃m
n , one should first recover the weight

labeling on the rectangle. According to the formulas for thearea statistic, one gets

1−Mω =
(5− 1)(7− 1)

2
−
∑

f(a) = 12− 5 = 7,

somin(∆ω) = Mω = 1 − 7 = −6. The weight labelingl(i, j) = 17 − 7i − 5j is shown on
Figure 2. We conclude that the5–generators of∆ω are(−6, 1, 3, 5, 12), andω is defined by
ω(−6) = 3, ω(1) = 5, ω(3) = 1, ω(5) = 2, andω(12) = 4. One gets:

(ω−1(1), ω−1(2), ω−1(3), ω−1(4), ω−1(5)) = (3, 5,−6, 12, 1).

Note that the descents are the same as for the inverse of the diagonal word:des(ω−1) = {2, 4}.
By definition of the Gessel’s fundamental quasi-symmetric function (see [5]):

Qides(f) = Qdes(ω−1) =
∑

i1≤i2≤...≤i5,
ik=ik+1⇒k/∈des(ω−1)

zi1zi2zi3zi4zi5 =
∑

i1≤i2<i3≤i4<i5

zi1zi2zi3zi4zi5 .

From Figure 2 it is clear thatarea(ω) = 7. To computedinv(ω), it is convenient to presentω
in the following form:

x 1 2 3 4 5 6 7 8 9 10 11 12
ω(x) 5 −6 1 13 2 10 −1 6 18 7 15 4

.

One gets

dinv(ω) = 12− ♯{(1, 2), (1, 3), (1, 5), (1, 7), (3, 7), (4, 5), (4, 6), (4, 7), (4, 8), (4, 10), (5, 7)}

= 12− 11 = 1.

Combining the above, we get the following identity:

(3) F(D; t) =
∑

f∈PFm/n(D)

tdinv(f) ·Qides(f)(z) =
∑

ω∈S̃m
n (∆D)

tdinv(ω)Qdes(ω−1)(z).

One can also reformulate the rational Shuffle conjecture:
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Conjecture 2.12.The following equation holds:

Pm,n · 1 =
∑

ω∈S̃m
n

qarea(ω)tdinv(ω) ·Qdes(ω−1)(z),

2.3. Ribbon tableaux. Given a Young diagramµ, let us go along its boundary from the
bottom-right to the top-left, and write 0 if we go left and 1 ifwe go up. We get a sequence
of 0’s and 1’s which stabilizes to 0 at−∞ and to 1 at+∞. Such a sequence is sometimes
referred to as “Maya diagram” [17, 22], and can be interpreted as the characteristic function of
a subsetM(µ) in Z. The subsetM(µ) is defined up to a shift. The standard way to choose a
representative is as follows.

Definition 2.13. Given a box(i, j) ∈ Z2 we say that its content equalsj − i. The setM(µ) is
defined as the set of contents of all boxes to the left of the vertical steps in the boundary ofµ.

In particular, in this normalization the empty diagram corresponds to the subsetZ>0. Let us
recall some standard definitions.

Definition 2.14. A set of boxesν ⊂ Z2 is called askew Young diagramif there exist Young
diagramsµ ⊃ λ such thatν = µ\λ. A ribbon of lengthm (or simply anm-ribbon) is a
connected skew Young diagramν of aream with no 2× 2 squares inside. The contentc(ν) of
anm-ribbonν is the maximum of contents of its boxes. A skew Young diagram tiled by several
m-ribbons is called askewm-ribbon diagram.

Suppose that for Young diagramsλ ⊂ µ the skew shapeν = µ \ λ is anm–ribbon. It is
easy to see thatM(µ) is obtained fromM(λ) as follows: an elementx ∈ M(λ) is replaced by
x −m (so it “jumps” bym units to the left) and all other elements stay unchanged. Note also
thatx = c(ν) + 1. The following statement is clear from the construction.

Proposition 2.15. Suppose thatλ, µ, ν andx are as above. Then the height of the ribbonν
equals:

ht(ν) = 1 + ♯{y ∈ M(λ) : x−m < y < x}.

Note that{y ∈ M(λ) : x −m < y < x} are exactly the elements ofM(λ) thatx “jumped
over” as it moved tox−m.

Definition 2.16. The spin of anm-ribbonν = µ\λ is defined asspin(ν) = ht(ν)−1. The spin
of anm-ribbon diagram is the sum of spins of the ribbons of the diagram.

Example 2.17.Suppose thatλ = ∅, andµ = (m). ThenM(λ) = [1,+∞) andM(µ) =
{1 − m} ∪ [2,+∞), so 1 jumpedm positions to the left. The height ofµ\λ = µ equals1,
andspin(µ) = 0. Suppose now thatµ = (1m). ThenM(µ) = [0, m − 1] ∪ [m + 1,+∞), so
m jumpedm positions to the left. The height ism, andspin(µ) = m − 1. More generally, if
µ = (m − i + 1, 1i−1), 0 < i ≤ m, thenM(µ) = {i − m} ∪ [1, i − 1] ∪ [i + 1,+∞), so i
jumpedm positions to the left, the height isi, andspin(µ) = i− 1.

Definition 2.18. Given a skew Young diagramν = µ\λ, a standardm-ribbon tableau is a skew
m-ribbon diagram of shapeν together with an order on the ribbons, sayν = r1 ⊔ r2 ⊔ . . .⊔ rn,
r1 ≺ . . . ≺ rn, such that for anyk the partial unionλ ⊔ r1 ⊔ . . . ⊔ rk is a Young diagram
(see Figure 4 for an example). LetSRT(ν,m) denote the set of standardm-ribbon tableaux of
shapeν. The spin statistics form-ribbon tableau is defined to be equal to thespin statistic of
the underlyingm–ribbon diagram.
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Remark 2.19. The definitions of thespin statistic differ from source to source. Here we follow
the notations from [20]. In [21] the authors used a factor1

2
, so theirspin is twice less then ours

(and possibly half-integer), in [10] the authors also subtracted the minimal possible value of
spin on the set ofm-diagrams of a given shape.

Note that choosing a standardm-ribbon tableau of shapeν is equivalent to choosing a par-
ticular way to obtainM(µ) from M(λ) by a sequence ofm–jumps, i.e. choosing a particular
order of jumps.

Definition 2.20. Let T = {ν = r1 ⊔ r2 ⊔ . . . ⊔ rn,≺} ∈ SRT(ν,m) be a standardm-ribbon
tableau. Thecontent sequencec(T ) is the sequence of contents of the ribbons ofT read in
order≺ .

We will also need the notion of asemistandardm-ribbon tableauand the standardization
map. Letν = µ\λ be a skew Young diagram. Consider anm-ribbon diagramν = r1 ⊔ r2 ⊔
. . . ⊔ rn, and a functionτ : {r1, . . . , rn} → Z>0. The functionτ defines a partial order on
the set of ribbons. One can refine this order by using the increasing order on contents of the
ribbons. More precisely, one says thatri ≺ rj if either τ(ri) < τ(rj), or τ(ri) = τ(rj) and
c(ri) < c(rj).

Definition 2.21. An m-ribbon diagramν = r1 ⊔ r2 ⊔ . . . ⊔ rn, together with a functionτ :
{r1, . . . , rn} → Z>0 is called asemistandardm-ribbon tableauof shapeν if

(1) The refinement≺ constructed above is a total order on ribbons,
(2) ≺ defines a standardm-ribbon tableau of shapeν.

Let SSRT(ν,m) denote the set of semistandardm-ribbon tableaux of shapeν.

The resulting mapst : SSRT(ν,m) → SRT(ν,m) is called thestandardization map.An-
other way to understand semistandard tableaux is to look at the fibers of the mapst . The
following lemma is merely a reformulation of the definitions:

Lemma 2.22. LetT = {ν = r1 ⊔ . . . ⊔ rn,≺} ∈ SYT(ν,m) be a standardm-ribbon tableau
andτ : {r1, . . . , rn} → Z>0 be a function. Then{ν = r1 ⊔ . . . ⊔ rn, τ} ∈ st−1(T ) iff

(1) τ is weakly increasing with respect to≺,
(2) if τ(ri) = τ(rj) andri ≺ rj , thenc(ri) < c(rj).

Remark 2.23. Equivalently, one can say that{ν = r1⊔ . . .⊔rn, τ} is a semistandardm-ribbon
tableau if the functionτ : {r1, . . . , rn} → Z>0 is weakly increasing in rows and columns, and
for anyk ∈ Z>0 the preimageτ−1(k) ⊂ ν is tiled in such a way that the increasing content
order defines a standardm-ribbon tableau onτ−1(k). Equivalently, every ribbon ofτ−1(k)
starts from the leftmost box of a row ofτ−1(k). Such shapes and tilings are calledvertical
m-ribbon stripsandofficial tilingscorrespondingly (see Figure 3).

Remark 2.24. Note that our definitions differ from those in [10] by transposition. This is due
to the fact that the classical Shuffle conjecture differs from the rational version by the involution
Ω (twist by the sing representation).

One gets the following corollary for quasisymmetric functions:

Corollary 2.25. LetT ∈ SYT(ν,m), andc(T ) be the content sequence ofT. Then

Qdes(c(T ))(z) =
∑

S∈st−1(T )

zS ,

wherezS = zτ(r1)zτ(r2) . . . zτ(rn) for a semistandard tableauS = {ν = r1 ⊔ . . . ⊔ rn, τ} ∈
SSYT(ν,m).
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r1

r2

r3

FIGURE 3. A vertical7-ribbon strip with the official tiling. Note that the con-
tents of the ribbons satisfyc(r1) < c(r2) < c(r3) (the content increases as
we move up and/or left). Note also, that ordering the ribbonsin the increasing
content orderr1 ≺ r2 ≺ r3 makes a valid standard ribbon tableau.

2.4. The m-cores and quotients.A Young diagramµ is called anm-core if neither of hook-
lengths of its boxes is equal tom. It is clear thatM(µ) is m-invariant if and only ifµ is
anm–core. More generally, letMi(µ) denote the set of elements ofM(µ) with remainderi
modulom, defineM̃i(µ) = (Mi(µ)− i)/m. Them-quotient ofµ is defined as them-tuple of
Young diagramsQuot(i)m (µ) corresponding tõMi(µ).

Given an arbitrary Young diagramµ, one can construct them-core ofµ by consecutively re-
movingm-strips from it. This is best seen in terms of the subsetM(µ) : we move elements to
the right bym-jumps as much as possible. Clearly, the resultingm-invariant subset is indepen-
dent on the choice of an order of jumps. LetCorem(µ) denote them-core ofµ. By construction,
it is clear that the map

µ 7→
(
Corem(µ),Quot(1)m (µ), . . . ,Quot(m)

m (µ)
)

is a bijection between the set of Young diagrams and the set ofm-cores times the set ofm-tuples
of Young diagrams.

Let D be anm/n-Dyck path,∆D ⊂ Z be the corresponding(m,n)-invariant subset (see
Section 2.2), andµ be the simultaneous(m,n)-core such thatM(µ) = ∆D. The mapD 7→ µ
provides a bijection between the set ofm/n-Dyck paths and the set of simultaneous(m,n)-
cores. This bijection was first described by J. Anderson in [3], although in somewhat different
terms. See also [7], Section 2.4.

3. MAIN CONSTRUCTION

Let ω ∈ S̃m
n be anm-stable affine permutation, define∆ := {i ∈ Z : ω(i) > 0} as before

(see Section 2.2). Since∆ is (m,n)-invariant, it follows that the corresponding Young diagram
λ := M−1(∆) is a simultaneous(m,n)-core. As before, let{a1, a2, . . . , an} be the set of
n-generators of∆ :

∆ \ (∆ + n) = {ω−1(1), . . . , ω−1(n)} = {a1, . . . , an}.

Consider the subsetM = {a1 −m, . . . , an −m} ∪ (∆ + n) ⊂ Z. It is notm-invariant, hence
it corresponds to a Young diagramµ which is not anm-core. By construction, we have

Corem(µ) = λ,

and the subsetM is obtained from∆ by n jumpsa1 7→ a1−m, . . . , an 7→ an−m. One can do
the jumps in different orders, however, ifai = aj+m, thenai has to jump beforeaj. The affine
permutationω prescribes the following order of jumps: we first moveω−1(1) 7→ ω−1(1)−m,
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thenω−1(2) 7→ ω−1(2)−m, and so on up toω−1(n) 7→ ω−1(n)−m. The above condition on
the order of the jumps is equivalent toω beingm-stable. Recall that choosing a valid order of
jumps is equivalent to choosing a standardm-ribbon tableau of shapeν := µ\λ. We conclude
that there is a bijection

(4) T : S̃m
n (∆) → SRT(ν,m).

Moreover, the contents of the ribbons ofT (ω) are exactly one less then the generators of∆.
More precisely, one has

c(T (ω)) = (ω−1(1)− 1, . . . , ω−1(n)− 1),

in particular

(5) des(ω−1) = des(c(T (ω))).

Example 3.1. Consider the7-stable permutationω from Example 2.11. We haveω(−6) =
3, ω(1) = 5, ω(3) = 1, ω(5) = 2, andω(12) = 4, or

x −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
ω(x) 3 −8 0 −11 −4 8 −3 5 −6 1 13 2 10 −1

Therefore∆ = {i ∈ Z : ω(i) > 0} = {−6,−1, 1, 3, 4, 5, 6} ⊔ Z≥8. The process of obtaining
the subsetM from ∆ is best described in terms of the characteristic functions:

−6 1 3 5 12

0 0 0 0 0 0 0 13 0 0 0 0 1 0 15 0 11 1 12 1 0 1 1 1 1 14

0 0 0 0 0 0 0 13 0 1 0 0 1 0 15 0 0 1 12 1 0 1 1 1 1 14

0 0 0 0 0 0 0 13 0 1 0 1 1 0 15 0 0 1 0 1 0 1 1 1 1 14

1 0 0 0 0 0 0 0 0 1 0 1 1 0 15 0 0 1 0 1 0 1 1 1 1 14

1 0 0 0 0 0 0 0 0 1 0 1 1 0 15 0 0 1 1 1 0 1 1 1 1 0
1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0

Here the bold1’s correspond to the5-generators of∆ and the subscripts are the corresponding
values ofω, prescribing the order of jumps. Note that on the first step one“jumps over”2 ele-
ments, on the second – over3 elements, then0, 5, and3 elements correspondingly. Therefore,
the total jump is13. See the corresponding standard7-ribbon tableau in Figure 4.

Let ω0 ∈ S̃m
n (∆) be the unique element of̃Sm

n (∆) satisfying

ω−1
0 (1) < ω−1

0 (2) < . . . < ω−1
0 (n).

It follows that the ribbon tableauT (ω0) is the tableau corresponding to the increasing order on
the jumps. In other words,ν is always a verticalm-ribbon strip, and the underlying tiling of
T (ω) is the official tiling ofν. It turns out that thedinv andspin statistics are closely related:

Lemma 3.2. On has the following formula:

δ − dinv(ω) =
1

2
(spin T (ω) + spin T (ω0)) .

whereδ := (m−1)(n−1)
2

.

Proof. Let us count how many elements we “jump over” as we constructM from∆ according
to the order prescribed byω. As we moveω−1(a) to ω−1(a)−m it jumps over the elements of
the following three types:

(1) ω−1(b)−m for 1 ≤ b < a such that0 < ω−1(b)− ω−1(a) < m
(2) ω−1(b) for a < b ≤ n such that0 < ω−1(a)− ω−1(b) < m
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1

2

3

4

5

spin(T (ω)) = 13
1

2

3
4

5

spin(T (ω0)) = 9

FIGURE 4. Standard ribbon tableaux for7–stable permutationsω (left) andω0 (right).

(3) k ∈ ∆+ n, such that0 < ω−1(a)− k < m

LetN1(ω), N2(ω) andN3(ω) denote the number of pairs(a, b) satisfying (1)–(3), respectively.
Note thatN1(ω) = N2(ω) and

dinv(ω) = δ −N2(ω)−N3(ω).

Note also thatN1(ω0) = N2(ω0) = 0 andN3(ω) = N3(ω0) for all ω ∈ S̃m
n (∆). So, we get

spin(T (ω)) = N1(ω) +N2(ω) +N3(ω) = 2N2(ω) +N3(ω),

and

spin(T (ω0)) = N3(ω0) = N3(ω).

We conclude that

δ − dinv(ω) = N2(ω) +N3(ω) =
1

2
(spinT (ω) + spinT (ω0)) .

�

Corollary 3.3. One has the following equations:

spinT (ω0) = δ − dinv(ω0), spin T (ω) = δ + dinv(ω0)− 2 dinv(ω),

dinv(ω) =
1

2
(δ + dinv(ω0)− spin T (ω)).

Example 3.4. We illustrate the standard7-ribbon tableau corresponding to Example 3.1 in
Figure 4 on the left. On the right we have the7-ribbon tableau of the same shape with the
ribbons ordered with respect to contents. It corresponds tothe increasing order of jumps.
Observe thatδ = 12, dinv(ω0) = 12− spin T (ω0) = 3, and

12− dinv(ω) =
1

2
(spin T (ω0) + spinT (ω)) = 11,

sodinv(ω) = 1, which matches the answer in Example 2.11.
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Proof of Theorem 1.4.We follow the logic of [10]. Combining equations (3), (4), (5) and
Corollary 3.3, we get:

F(D; t) =
∑

f∈PFm/n(D)

tdinv(f) ·Qides(f)(z) =
∑

ω∈S̃m
n (∆D)

tdinv(ω)Qdes(ω−1)(z)

= te(D)
∑

T∈SRT(ν,m)

t−
1

2
spin(T )Qdes(c(T ))(z),

wheree(D) = 1
2
(δ + dinv(ω0)). Applying Corollary 2.25 we get

te(D)
∑

T∈SRT(ν,m)

t−
1

2
spin(T )Qdes(c(T ))(z) = te(D)

∑

T∈SSRT(ν,m)

t−
1

2
spin(T )zT .

Finally, by [10, Proposition 5.3.1] one has

(t−e(D)F(D, t), sκ(z)) = P−
µ+ρ,λ+mκ+ρ(t),

whereP−
µ+ρ,λ+mκ+ρ(t) denotes the parabolic affine Kazhdan-Lusztig polynomial inthe sense of

[19, 20]. This polynomial is known to have nonnegative coefficients by the work of Kashiwara-
Tanisaki and Shan [18, 23]. �

4. EXAMPLE : m = 2, n = 5

1−2

20

32

44

56

c(T ) = (−2, 0, 2, 4, 6), des(T ) = ∅

1−1

21

32

43

55

c(T ) = (−1, 1, 2, 3, 5), des(T ) = ∅

FIGURE 5. On the left: tableau witharea(ω) = 2, spin(T ) = spin(T (ω0)) =
2, and dinv(ω) = 0. On the right: tableau witharea(ω) = 1, spin(T ) =
spin(T (ω0)) = 1, anddinv(ω) = 1. Subscripts indicate the contents of the
ribbons.

In [8] all 2–stable affine permutations iñS2
5 were listed together with theirdinv andarea

statistics. In this section, we show the corresponding 2–ribbon (domino) tableaux. Thespin
statistic of a domino tableau just equals the number of vertical dominoes, so it is particularly
easy to visualize. We haveδ = 2. Figures 5, 6, 7, and 8 show all16 possible ribbon tableaux.
The subscripts indicate the contents of the ribbons.

There is a unique2/5–parking function with area2, the corresponding Dyck pathD2 is
empty. The corresponding domino tableau is shown on the leftin Figure 5 and hasdinv = 0
anddes = ∅. Therefore,

F(D2; t) = Q∅(z) =
∑

i1≤i2≤i3≤i4≤i5

zi1zi2zi3zi4zi5 = h5 = s5.
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1−1

21

33 42

55

c(T ) = (−1, 1, 3, 2, 5), des(T ) = {3}

1−1

21

33 52

45

c(T ) = (−1, 1, 3, 5, 2), des(T ) = {4}

1−1

22 31

43

55

c(T ) = (−1, 2, 1, 3, 5), des(T ) = {2}

2−1

12 31

43

55

c(T ) = (2,−1, 1, 3, 5), des(T ) = {1}

FIGURE 6. Tableaux witharea(ω) = 1, spin(T ) = 3, spin(T (ω0)) = 1, and
dinv(ω) = 0. Subscripts indicate the contents of the ribbons.

There are five2/5–parking functions with area1. One of them hasdinv = 1 and des =
∅ (see Figure 5), and the rest havedinv = 0 and the descent sets{1}, {2}, {3}, and {4}
correspondingly (see Figure 6). Therefore, we have:

F(D1; t) = tQ∅(z) +Q{1}(z) +Q{2}(z) +Q{3}(z) +Q{4}(z)

= ts5 + s4,1

Finally, there are ten2/5–parking functions with area0 : one of them hasdinv = 2 and
des = ∅, four hasdinv = 1 and descent sets{1}, {2}, {3}, and{4} correspondingly (see
Figure 7), and the remaining five havedinv = 0 and descent sets{1, 3}, {1, 4}, {2, 4}, {2} and
{3} correspondingly (see Figure 8). Therefore,

F(D0; t) = t2Q∅ + t(Q{1} +Q{2} +Q{3} +Q{4}) +Q{1,3} +Q{1,4} +Q{2,4} +Q{2} +Q{3}

= t2s5 + ts1,4 + s3,2.

Finally, we get
F2/5(q, t) = (q2 + qt+ t2)s5 + (q + t)s4,1 + s3,2.
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10

21

32

43

54

c(T ) = (0, 1, 2, 3, 4)
des(T ) = ∅

10

21

32

44 53

c(T ) = (0, 1, 2, 4, 3)
des(T ) = {4}

10

21

33 42

54

c(T ) = (0, 1, 3, 2, 4)
des(T ) = {3}

10

22 31

43

54

c(T ) = (0, 2, 1, 3, 4)
des(T ) = {2}

11 20

32

43

54

c(T ) = (1, 0, 2, 3, 4)
des(T ) = {1}

FIGURE 7. On the left: tableau witharea(ω) = 0, spin(T ) = spin(T (ω0)) =
0, and dinv(ω) = 2. The rest: 4 tableaux witharea(ω) = 0, spin(T ) =
2, spin(T (ω)) = 0, anddinv(ω) = 1. Subscripts indicate the contents of the
ribbons.

10

22 31

44 53

c(T ) = (0, 2, 1, 4, 3)
des(T ) = {2, 4}

10

22 41

34 53

c(T ) = (0, 2, 4, 1, 3)
des(T ) = {3}

11 20

32

44 53

c(T ) = (1, 0, 2, 4, 3)
des(T ) = {1, 4}

11 20

33 42

54

c(T ) = (1, 0, 3, 2, 4)
des(T ) = {1, 3}

11 30

23 42

54

c(T ) = (1, 3, 0, 2, 4)
des(T ) = {2}

FIGURE 8. Tableaux witharea(ω) = 0, spin(T ) = 4, spin(T (ω0)) = 0, and
dinv(ω) = 0. Subscripts indicate the contents of the ribbons.
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