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RATIONAL PARKING FUNCTIONS AND LLT POLYNOMIALS
EUGENE GORSKY AND MIKHAIL MAZIN

ABSTRACT. We prove that the combinatorial side of the “Rational Skeuffbnjecture” provides

a Schur-positive symmetric polynomial. Furthermore, wavprthat the contribution of a given
rational Dyck path can be computed as a certain skew LLT motyal, thus generalizing the
result of Haglund, Haiman, Loehr, Remmel and Ulyanov. Theesponding skew diagram is
described explicitly in terms of a certajm, n)—core.

1. INTRODUCTION

The space of diagonal coinvarianisf,, is defined as the quotient of the polynomial ring
Clx1, ..., Tn, 41, - - -, yn) With respect to the ideal generated by the positive degnesriants
of the diagonal action of the symmetric groip. This space is naturally bigraded by degrees
in z- and iny-variables, and carries a degree presenr#heaction. In the series of papers
[11,/12,/13/14] Haiman proved that the dimensioridf,, equals(n + 1)"~! and its bigraded
Frobenius character equaig:,,, whereV is a certain operator on symmetric functions which
diagonalizes in the basis of modified Macdonald polynomials

Finding an explicit basis i H,, remains an important open problem in algebraic com-
binatorics. Recall that parking functionon n cars is a magpf : {1,...,n} — Zs, such
that4f~'([0,i — 1)) > 4 for all i. Let PF, denote the set of parking functions. It is well
known that its cardinality equalsP.F,, = (n + 1)"~! = dim DH,. Moreover,S,, acts on
‘P F, by permuting the values, and this action preserves a naiatdtic on parking functions:
area(f) := @ — > f(4). It follows from the work of Garsia and Haiman ([4]) that if one
forgets one of the gradings dnH,,, then D H,, is isomorphic to the spacé P.F,,, tensored
by the sign representation, as a gradgemodule. In[10], Haiman, Haglund, Loehr, Remmel
and Ulyanov proposed a conjectural formula for the bigraeletenius characteristic & H,,,
which became known &huffle Conjecture:

Conjecture 1.1. ([10]) The following equation holds:

(l) ch DHn _ ven _ Z qarea(f)tdinv(f) . Qias(f)(z)a

FEPFy
wheredinv is a certain statistic on parking functionias( f) is the set of ascents of the inverse
of the diagonal word of , andQ;.s(5)(2) is the Gessel fundamental quasisymmetric function in
variables{zi, 2o, ...} (see[d]).

Remark 1.2. In the original formulas in[[10] one has the set of descenth@idiagonal word
ides(f) instead of the ascentss(f). This is due to a difference in notations for parking func-
tions (see Figurel1 for an example).

Tensoring by the sign representation corresponds to tlodution 2 on the space of symmet-
ric functions defined b¥2(s,) = sy, where)\’ is obtained from\ by transposition. Involution
(2 can also be extended to the space of quasisymmetric fuschiprsettingQ(Qs) = Qg
whereS = {1,...,n— 1} \ S. In particular,Q(Qias5)) = Qides(f)-

In [9], a rational analogue of the Shuffle Conjecture has lpgeposed.
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Conjecture 1.3. The following equation holds:

(2) Pm7n . 1 — Z qarea(f)tdinv(f) . Qldes(f) (Z),
fepfm/n

where P, ,, is a certain degree: operator acting on symmetric functioriB,7,,, ,, is a ratio-
nal analog of the parking functions (see definition belowid area and dinv generalize the
corresponding statistics to rational parking functions.

It is also conjectured (see [9] for a detailed expositioa) {B) is equal to the bigraded Frobe-
nius character of the unique finite-dimensional represiemtd.,, ,, of the rational Cherednik
algebra. In particular, both sides of this equation are etgaeto have nonnegative coefficients
in the Schur expansion.

In this article we prove that the right hand side [df (2) is idlé&chur—positive. More pre-
cisely, letPF,,/,(D) denote the set afi/n—parking functions with the underlying Dyck path
D. Note that thewrea statistic is constant oR 7, /,, (D).

Theorem 1.4.For all m/n—Dyck pathsD the polynomial
I(D, t) — Z tdinv(f) . Qides(f)(z)
fE'P./Tm/"(D)
is a symmetric Schur positive polynomial.

Corollary 1.5. The combinatorial side of the “rational Shuffle Conjectuegjuals

Fogn(a.t) =Y ¢ PV F(D;t)
D

and hence is symmetric and Schur positive.

Theorenm 1.4 was first proved in [16, Corollary 4.16] usinggeemetry of affine Springer
fibers. Our proof of Theorein_1.4 follows the ideas|of/ [10]: weye that the coefficients of
F(D;t)inthe Schur expansion (up to a monomial shift) can be ideutifiith certain parabolic
affine Kazhdan—Lusztig polynomials labeled by a certairtifpan ;. and itsm-core \. We use
a bijection of J. Anderson to give a simple constructiorh @ndy which seems to clarify the
subtle combinatorial considerations of [10].
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2. DEFINITIONS AND NOTATIONS

All Young diagrams are in "French notation”. A skf C Z is calledn—invariant if for each
x € M one hast +n € M.

2.1. Rational parking functions. For a functionf : {1,....n} — Zx(, let D; denote the
Young diagram with the row lengths equal to the valueg ptit in decreasing order.

Definition 2.1. A function f is called anmn/n—parking functionif the diagramD fits under
the diagonal in am x m rectangle. The set of./n—parking function is denote®F,, ,, .
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FIGURE 1. Consider the functiorf : {1,2,3,4,5} — Zx( given by f(1) =
1, f(2) =2, f(3) =0, f(4) =2, f(5) = 0. The underlying diagrand; =
{2,2, 1} fits under the diagonal in@x 7 rectangle, s¢f € PF7/5. The figure
shows the corresponding standard Young tableau of shape (1)" \ Dy.

Equivalently,f € PF,,,, ifand only if for all 1 < i < m the following inequality holds:

SN0, i — 1)) >

m

Definition 2.2. The Young diagranD; will be called them/n—Dyck path underlyingf. For
any m/n-Dyck pathD, let PF,,,,(D) C PF,,, denote the set of:/n-parking functions
with the underlying Dyck patib.

Remark 2.3. Note that a Young diagram fits under the diagonal iman (n + 1) rectangle if
and only if it fits under the diagonal in anx n square. Thus, the case = n + 1 corresponds
to classical parking functiorBF .1y, = PF, .

Another way to think about parking functions is to identifetsetP F,, (D) with the set
of standard Young tableaux of the skew shépe- (1)" \ D denoted5YT(D + (1)*\ D). To
recover the function from such a tableau one gétsequal to the length of the row containing
the labeli. The monotonicity condition for columns insures that we actdor each parking
function exactly once. It will be convenient for us to assuhre the labels decrease in columns
from bottom to top (see Figuté 1 for an example).

2.2. Affine permutations. We will need a bijection between rational parking functians! a
subset in the affine symmetric groSp, constructed in [8].

Definition 2.4. A bijectionw : Z — Z is called an affineS,,—permutation, ifw(z + n) =
w(z) +nforall z, and} "  w(i) = @ The set of affineS,—permutations form a group
with respect to composition. The group is called &fitne symmetric grougand denoted,,.

Definition 2.5. An affine permutationv € S, is calledm-stableif for all = the inequality
w(z +m) > w(z) holds, i.e.w has no inversions of height. The set of allm-stable affine

permutations is denotet];".

Let us briefly recall the construction of the bijectigh: 5”;? — PFpm (seel8] for more

details). Take a permutation € S™. Consider the seh, := {i € Z : w(i) > 0} C Z and let

M, be its minimal element. Note that the &}, is invariant under addition af: andn. Let

us label the boxes in the x m rectangleR,, ,, so that the boxXz, j) is labeled by the weight
l(i,7) = mn—m—n+ M, —mi—nj (@assuming that the bottom-left corner box has coordinates
(0,0)). We also extend this labeling to the wh@&when needed. The functid(y, ;j) is chosen

in such a way that a box is labeled By, if and only if its top-right corner touches the line
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containing the top-left to bottom-right diagonal of theteewgle, sd (i, j) > M,, if and only if
the box(z, 7) is below this line. The Young diagram,, is defined by

Dw = {(27]) € Rm,n | l(Z,j) € Aw}

The diagramD,, will be the underlyingm /n—Dyck path of the parking functiond,,
A(w), so that the set of values of,, equals the set of row lengths 6f,. What remains to do
is to assign the arguments to the values. This is done byitaitles*™® row of the diagram by
w(a;), whereq; is the weight of the rightmost box of th& row of D,, (if a row has lengtt)
we take the weight of the bax-1,7 — 1), just outside the rectangle in the same row).

Note that the weight$ay, . . ., a,,} of the rightmost boxes of the diagralh, are the smallest
elements of the sek,, C Z in their corresponding congruence classes moduice. a;, — n ¢
A, for all 7). They are called the—generators of\,,. It follows that

{w(ay),...,w(a,)} ={1,...,n}.
Lemma 2.6([8]). The mapA : §,T — PFm/m is abijection.

Let f € PF,/n andw € S™ be such thatd, = f. Let A, = {i € Z : w(i) > 0} C Z and
M, = min A, as above.

Definition 2.7. Following [8], we define two statistics on parking functians

area(w) = area(f) := (m (n—1) Zf =t ([My,,+00)\ A,) =1— M,,

and
dinv(w) :=dinv(f) :={(i,j) € Z* |1 <i<n, i <j <i+m,w(i)>w(j)}.

Remark 2.8. The equivalence of the formulas farea(f) = area(w) can be shown as follows.
By the first formula we get thatrea(f) is the number of boxes that fit under the diagonal
in the rectangleR,,,,, but don't fit in the diagramD,,. The set of weights of these boxes
is exactly[M,,, +00) \ A,, each occurring once, which proves equivalence of the first tw
formulas. Furthermore, observe that the Agtis always “balanced”: there are as many non-
positive elements i\, as there are positive elements of the complement. This pritwethird
formula. Note thatrea( f) is constant orPF,, . (D) for anym /n—Dyck pathD.

Remark 2.9. The statistialinv(w) basically counts the inversions ofof height less tham..
Describingdinv( f) directly in terms of the parking functiofi is somewhat complicated (see
[16]).

Note that the diagramv,, depends only on the sét,, and, vice versa, for any two permuta-
tionswy, wy € A’l(P}"m/n(D)) one hasA,, = A_,. We will use the following notations:

Definition 2.10. Let Ap C Z denote the subset given by, = A, for anyw € §TT such that
A(w) € PFm(D). Letalso

STA) = {we S| A, = A} = AY(PFp/m(Dy)).

Let us also reinterpret the quasi-symmetric functign.s ) in terms of the affine permuta-
tionw. The diagonal wordw( f) of the parking functiory is the word obtained by reading the
labels of the corresponding standard tableau in the ordendiy the weights of the boxes, or,
equivalently, the distance from the diagonal of the m rectangle to the left-top corner of the
box. Since each number frofii, ... n} appears inlw(f) exactly once, one getw(f) € S,,.
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FIGURE 2. The weight labeling corresponding to the parking functjo
PFq5 given by (1,2,3,4,5) — (1,2,0,2,0). We put the row labeling from
the corresponding standard Young tableau (see Figure 1heteft to avoid
confusion.

It follows immediately from the construction, that the dests of the inverse of the diagonal
word dw( f) are exactly the same as the descents of the Wword(1)w=1(2)...w *(n)). For
simplicity, we denote this set of descerts(w!) (see Example2.11).

Example 2.11. Continuing the example in Figuté 1, one gets the diagonatiwlar(f) =
(35124), with the inverselw(f)~! = (34152). Therefore, the descent setiiks(f) = {2,4}.

To recover the corresponding affine permutatios Sﬁf, one should first recover the weight
labeling on the rectangle. According to the formulas fordhe statistic, one gets

1—MMZW—Zf(a):12—5:7,

somin(A,) = M, = 1 — 7 = —6. The weight labelind(:, j) = 17 — 7i — 55 is shown on

Figure[2. We conclude that the-generators of\, are(—6, 1, 3,5,12), andw is defined by

w(—6) =3, w(l) =5, w(3) =1, w(5) = 2, andw(12) = 4. One gets:
(w(1),w(2),w (3),w ™ (4),w ™ (5)) = (3,5, 6,12, 1).

Note that the descents are the same as for the inverse ofaperdil worddes(w™?) = {2,4}.

By definition of the Gessel's fundamental quasi-symmetriecfion (see [5]):

Qides(f) = Qdes(w‘l) = E Ziy Rig RigRiy Rig — E Ziy Rig Rig Ziy Zig -

11<i2<...<is, 11 <i2<ig<iq<is
ik:ik+1:>k¢des(w_l)

From Figure R it is clear thatrea(w) = 7. To computedinv(w), it is convenient to present
in the following form:

z 1 2 3 45 6 7 8 9 10 11 12
wz) 5 —6 1 13 2 10 -1 6 18 7 15 4

One gets
dinv(w) = 12 — #{(1,2), (1,3), (1,5), (1,7),(3,7), (4,5), (4,6), (4,7), (4,8), (4,10), (5,7)}
=12—-11=1.
Combining the above, we get the following identity:

(3) f(D, t) == Z tdinv(f) . Q-ldes(f)(z) == Z tdinv(w)QdeS(w—l)(z).

fep}—m/n(D) wEgL’L(AD)

One can also reformulate the rational Shuffle conjecture:
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Conjecture 2.12. The following equation holds:

Pm,n 1= Z qarea(w)tdinv(w) i Qdes(w*l)(z)a

wesm

2.3. Ribbon tableaux. Given a Young diagramu, let us go along its boundary from the
bottom-right to the top-left, and write O if we go left and 1wk go up. We get a sequence
of O’'s and 1's which stabilizes to 0 atoc and to 1 at+-oo. Such a sequence is sometimes
referred to as “Maya diagram” [1[7, 22], and can be intergtetethe characteristic function of

a subsetV/(x) in Z. The subsef/ (1) is defined up to a shift. The standard way to choose a
representative is as follows.

Definition 2.13. Given a box(i, j) € Z* we say that its content equals- i. The setM (u) is
defined as the set of contents of all boxes to the left of thiecadisteps in the boundary of

In particular, in this normalization the empty diagram esponds to the subsét . Let us
recall some standard definitions.

Definition 2.14. A set of boxess C Z? is called askew Young diagrarif there exist Young
diagramsp O A such thatr = p\\. A ribbon of lengthm (or simply anm-ribbon) is a
connected skew Young diagranof arearn with no2 x 2 squares inside. The conterit’) of

anm-ribbonv is the maximum of contents of its boxes. A skew Young diagriéed by several
m-ribbons is called akewm-ribbon diagram

Suppose that for Young diagramscC p the skew shape = p \ A is anm~—ribbon. It is
easy to see thalt/ () is obtained from\/(\) as follows: an element € M () is replaced by
x —m (SO it “jumps” bym units to the left) and all other elements stay unchangede Hisb
thatx = ¢(v) + 1. The following statement is clear from the construction.

Proposition 2.15. Suppose thak, x, v and x are as above. Then the height of the ribbon
equals:

ht(v)=1+t{ye M(A\) 1z —m <y < x}.

Note that{y € M()\) : z —m < y < z} are exactly the elements 6f(\) thatx “jumped
over” as it moved tac — m.

Definition 2.16. The spin of arm-ribbonv = p\\ is defined aspin(v) = ht(v) — 1. The spin
of anm-ribbon diagram is the sum of spins of the ribbons of the diagr

Example 2.17. Suppose thah = ), andp = (m). ThenM(\) = [1,4+00) and M (p) =

{1 =m} U[2,40), sol jumpedm positions to the left. The height i\ \ = p equalsl,

andspin(p) = 0. Suppose now that = (1™). ThenM (u) = [0,m — 1] U [m + 1, +00), SO
m jumpedm positions to the left. The height t&, andspin(x) = m — 1. More generally, if
p=(m-—i+1,1"H 0<i<m,thenM(u) ={i —m}U[l,i —1JU[i + 1,400), SOI

jumpedm positions to the left, the heightisandspin(u) =1 — 1.

Definition 2.18. Given a skew Young diagram= /\ \, a standardn-ribbon tableau is a skew
m-ribbon diagram of shapetogether with an order on the ribbons, say r; Urs U ... L1y,
r1 < ... < r,, such that for any the partial union\ LI r; LI ... L 7, is @ Young diagram
(see Figuréla for an example). L&RT (v, m) denote the set of standawdribbon tableaux of
shapev. Thespin statistics form-ribbon tableau is defined to be equal to #pén statistic of
the underlyingn—ribbon diagram.
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Remark 2.19. The definitions of thepin statistic differ from source to source. Here we follow
the notations from{[20]. I [21] the authors used a fagtoso theirspin is twice less then ours
(and possibly half-integer), in [10] the authors also satted the minimal possible value of
spin on the set ofn-diagrams of a given shape.

Note that choosing a standardribbon tableau of shapeis equivalent to choosing a par-
ticular way to obtainV/ () from M ()\) by a sequence ofi—jumps, i.e. choosing a particular
order of jumps.

Definition 2.20. Let T = {v = r Ury U ... U1, <} € SRT(r,m) be a standareh-ribbon
tableau. Thecontent sequencgT’) is the sequence of contents of the ribbongofead in
order< .

We will also need the notion of semistandardn-ribbon tableauand the standardization
map. Letr = p\\ be a skew Young diagram. Considerarribbon diagramv = r U ry U
...Ur,, and a functionr : {ry,...,r,} — Z-o. The functionr defines a partial order on
the set of ribbons. One can refine this order by using the @&song order on contents of the
ribbons. More precisely, one says that< r; if either 7(r;) < 7(r;), or 7(r;) = 7(r;) and
c(ri) < c(r;).

Definition 2.21. An m-ribbon diagranv = r Uy LI ... U r,, together with a function :
{ry,...,mn} = Z+ is called asemistandardn-ribbon tableauwf shapev if

(1) The refinemenk constructed above is a total order on ribbons,
(2) < defines a standara-ribbon tableau of shape

Let SSRT (v, m) denote the set of semistandandribbon tableaux of shape

The resulting mapt : SSRT (v, m) — SRT (v, m) is called thestandardization mapAn-
other way to understand semistandard tableaux is to lookeafibers of the mapt. The
following lemma is merely a reformulation of the definitions

Lemma 2.22.LetT = {v =r, U...Ur,, <} € SYT(r,m) be a standardn-ribbon tableau
andr : {ry,...,m,} — Zo be afunction. Thedv =r, U...Ur,, 7} € st71(T) iff

(1) 7 is weakly increasing with respect to,

(2) if 7(r;) = 7(r;) andr; < r;, thenc(r;) < c(r;).
Remark 2.23. Equivalently, one can say thét = L. ..Ur,, 7} is a semistandarek-ribbon
tableau if the function : {ry,...,r,} — Z-( is weakly increasing in rows and columns, and
for anyk € Z., the preimage-—'(k) C v is tiled in such a way that the increasing content
order defines a standard-ribbon tableau on—!(k). Equivalently, every ribbon of (k)
starts from the leftmost box of a row af (k). Such shapes and tilings are callegttical
m-ribbon stripsandofficial tilings correspondingly (see Figuré 3).

Remark 2.24. Note that our definitions differ from those in [10] by transpimn. This is due
to the fact that the classical Shuffle conjecture differaftbe rational version by the involution
Q (twist by the sing representation).

One gets the following corollary for quasisymmetric funats:
Corollary 2.25. LetT € SYT (v, m), and¢(T') be the content sequenceafThen
Ques(e(1)) (2) = Z 2,
Sest=1(T)

wherez® = Zr(r)%r(rs) - - - Zr(r,) TOr @ semistandard tableal = {v = ry U ... Ur,, 7} €
SSYT (v, m).
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3

T2

1

FIGURE 3. A vertical7-ribbon strip with the official tiling. Note that the con-
tents of the ribbons satisfy(r1) < c(r2) < ¢(r3) (the content increases as
we move up and/or left). Note also, that ordering the ribbiartee increasing
content order; < r, < r3 makes a valid standard ribbon tableau.

2.4. The m-cores and quotients. A Young diagramny. is called ann-core if neither of hook-
lengths of its boxes is equal ta. It is clear thatM (n) is m-invariant if and only ify is
anm—core. More generally, let/;(1) denote the set of elements &f (1) with remainderi
modulom, defineM;(u) = (M;(n) — i)/m. Them-quotient ofu is defined as the:-tuple of
Young diagram€yuot?) (1) corresponding td7; (11).

Given an arbitrary Young diagram one can construct the-core ofu by consecutively re-
movingm-strips from it. This is best seen in terms of the subldé¢f:) : we move elements to
the right bym-jumps as much as possible. Clearly, the resultingvariant subset is indepen-
dent on the choice of an order of jumps. K&tre,, (1) denote then-core ofu. By construction,
itis clear that the map

> ((Coren (1), Quot(y (). ..., Quotly (1))

is a bijection between the set of Young diagrams and the setaires times the set af-tuples
of Young diagrams.

Let D be anm/n-Dyck path,A, C Z be the correspondin@n, n)-invariant subset (see
Sectior 2.R), ang be the simultaneousn, n)-core such thad/(u) = Ap. The mapD —
provides a bijection between the setmafn-Dyck paths and the set of simultanedqus, n)-
cores. This bijection was first described by J. AndersonjindBhough in somewhat different
terms. See als0[7], Section 2.4.

3. MAIN CONSTRUCTION

Letw € S™ be anm-stable affine permutation, defink := {i € Z : w(i) > 0} as before
(see Section 212). Sinek is (m, n)-invariant, it follows that the corresponding Young diagra
A ;= M~'(A) is a simultaneoug$m, n)-core. As before, le{ay,as,...,a,} be the set of
n-generators oA\ :

A\ (A+n)={w(1),...,w ' n)} ={a1,...,a,}.

Consider the subsétl = {a; —m,...,a, —m} U (A +n) C Z. Itis notm-invariant, hence

it corresponds to a Young diagramwhich is not anm-core. By construction, we have
Core,, () = A,

and the subset/ is obtained fromA by n jumpsa, — a; —m, ..., a, — a, —m. One can do

the jumps in different orders, howeverqgif = a; +m, thena; has to jump before;. The affine
permutationu prescribes the following order of jumps: we first mave!(1) — w=1(1) — m,
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thenw=1(2) — w™1(2) — m, and so on up ta~!(n) — w!(n) — m. The above condition on
the order of the jumps is equivalentdobeingm-stable. Recall that choosing a valid order of
jumps is equivalent to choosing a standardibbon tableau of shape := ;\A. We conclude
that there is a bijection

(4) T : S™(A) = SRT(v, m).

Moreover, the contents of the ribbonsBfw) are exactly one less then the generatora\of
More precisely, one has

o(T(w) = (w™ (1) = 1,...,w ' (n) = 1),
in particular
5) des(w™) = des(c(T(w))).
Example 3.1. Consider ther-stable permutationy from Exampld 2.11. We hawe(—6) =
3, w(l) =5, w3) =1, w(5) =2,andw(12) = 4, or
rx -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

wx) 3 -8 0 —-11 -4 8 -3 5 —6 1 13 2 10 -1
ThereforeA = {i € Z : w(i) > 0} ={—6,—-1,1,3,4,5,6} LI Z>s. The process of obtaining
the subsefl/ from A is best described in terms of the characteristic functions:

-6 1 3 5 12
000000013 0000101, 01, 1 1, 1 01111 14
00000O0O013 0100101, 0 0 1 12101111 14
000000013 0101101, 0 0 1 0 101111 14
10000O0O0OO0OO0O1TO01101,0 0 1 0 101111 14
1 0000O0O0OO0OO0O1T01101,0 0 1 11011110
100000011 0101T10O0O0O01 1T 1011110

Here the bold’s correspond to thé-generators ofA and the subscripts are the corresponding
values ofw, prescribing the order of jumps. Note that on the first step“pmaps over”2 ele-
ments, on the second — oveelements, thefi, 5, and3 elements correspondingly. Therefore,
the total jump isl3. See the corresponding standardbbon tableau in Figurie 4.

Letw, € S™(A) be the unique element &f*(A) satisfying
wo (1) <wpt(2) < ... < wyt(n).

It follows that the ribbon tableaii(wy) is the tableau corresponding to the increasing order on
the jumps. In other words; is always a verticain-ribbon strip, and the underlying tiling of
T'(w) is the official tiling of v. It turns out that thelinv andspin statistics are closely related:

Lemma 3.2. On has the following formula:
1
§ —dinv(w) = 5 (spin T'(w) + spin T'(wy)) -

. (m=D(m-1
wheref := —

Proof. Let us count how many elements we “jump over” as we consthtiiétom A according
to the order prescribed hy. As we movev—!(a) tow~!(a) — m it jumps over the elements of
the following three types:

(1) w () —mfor1 <b<asuchthad < w (b)) —wt(a) <m

(2) wi(b) fora < b < nsuchthabt < w=(a) —w () <m
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4
3

2

spin(T(w)) = 13

spin(7T'(wp)) =9
FIGURE 4. Standard ribbon tableaux fé+stable permutations (left) andw (right).

(3) ke A+n,suchthat < w™(a) —k <m

Let V;(w), N»(w) and N3(w) denote the number of paifs, b) satisfying (1)—(3), respectively.
Note thatV,(w) = N»(w) and

dinv(w) =6 — Na(w) — N3(w).
Note also thatV; (wy) = Na(wo) = 0 andNs(w) = N (wp) for allw € S™(A). So, we get
spin(7T'(w)) = N1 (w) + Na(w) + N3(w) = 2Ny(w) + N3(w),

and
spin(T'(wo)) = N3(wo) = N3(w).
We conclude that

d — dinv(w) = No(w) + N3(w) = % (spin T'(w) + spin T'(wyp)) -

Corollary 3.3. One has the following equations:

spin T'(wo) = § — dinv(wy), spin T'(w) = § + dinv(wp) — 2 dinv(w),

dinv(w) = %(5 + dinv(wg) — spin T'(w)).

Example 3.4. We illustrate the standar@ribbon tableau corresponding to Examplel 3.1 in
Figure[4 on the left. On the right we have theibbon tableau of the same shape with the
ribbons ordered with respect to contents. It correspondbdancreasing order of jumps.
Observe that = 12, dinv(wy) = 12 — spin T'(wp) = 3, and

1
12 — dinv(w) = §(spin T(wo) + spinT'(w)) = 11,

sodinv(w) = 1, which matches the answer in Example 2.11.
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Proof of Theorerh_1]4We follow the logic of [10]. Combining equationk] (3.1 (4).) (&nd
Corollary[3.3, we get:

F<D7 t) = Z tdinV(f) : Qides(f) (’Z) = Z tdinV(W)Qdes(w_l)(Z)

fep}—m/n(D) wegﬁl(AD)
= te(D) Z tié spin(T) Qdes(c(T)) (’Z)u
TeSRT (v,m)
wheree(D) = £(8 + dinv(wy)). Applying Corollary(2.25 we get
(D) Z 3 Spin(T)Qdes(c(T))(Z) — ¢e(D) Z 43 spin(T) T
TeSRT (v,m) TeSSRT(v,m)

Finally, by [10, Proposition 5.3.1] one has

(t_E(D)‘F(Dv t)? SH(Z)) = P,u_er,)\erner(t)a

whereP . .. .. (t) denotes the parabolic affine Kazhdan-Lusztig polynomitiiésense of
[19,/20]. This polynomial is known to have nonnegative caedfits by the work of Kashiwara-
Tanisaki and Shan [18, 23]. U

4, EXAMPLE: m =2,n =15

56
5
4y 1
39 32
29 2,
1, 1,

o(T) =(=2,0,2,4,6), des(T) =0  ¢(T) = (—1,1,2,3,5), des(T) = 0

FIGURE 5. On the left: tableau withrea(w) = 2, spin(7") = spin(7'(wo)) =

2, anddinv(w) = 0. On the right: tableau withwea(w) = 1, spin(T) =
spin(7T'(wg)) = 1, anddinv(w) = 1. Subscripts indicate the contents of the
ribbons.

In [8] all 2—stable affine permutations ﬁ?g were listed together with theitinv andarea
statistics. In this section, we show the correspondingbbem (domino) tableaux. Th&in
statistic of a domino tableau just equals the number of se@rdominoes, so it is particularly
easy to visualize. We have= 2. Figured 5[ 617, and 8 show alé possible ribbon tableaux.
The subscripts indicate the contents of the ribbons.

There is a unique/5—parking function with are&, the corresponding Dyck path; is
empty. The corresponding domino tableau is shown on théndftgure[% and hadinv = 0
anddes = ). Therefore,

F(Dyit)=Qu(z) = Y. zizin2iy2i2is = hs = s5.

11 <i9<i3<iq<is
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55 45

33 42 33 52

21 21
14 14

oT) = (—1,1,3,2,5), des(T) = {3}  ¢(T) =(—1,1,3,5,2), des(T) = {4}

2131 Ly | 34

oT) = (=1,2,1,3,5), des(T) = {2}  ¢o(T) = (2,-1,1,3,5), des(T) = {1}

FIGURE 6. Tableaux witharea(w) = 1, spin(7") = 3, spin(7'(wp)) = 1, and
dinv(w) = 0. Subscripts indicate the contents of the ribbons.

There are five2/5—parking functions with area. One of them haslinv = 1 anddes =
() (see Figurél5), and the rest hatimv = 0 and the descent sefd }, {2}, {3}, and {4}
correspondingly (see Figuré 6). Therefore, we have:

F(Dist) = tQo(2) + Quuy(2) + Q2 (2) + Qs (2) + Qay (2)
= 1S5+ S41
Finally, there are ter2/5—parking functions with are@ : one of them haslinv = 2 and
des = (), four hasdinv = 1 and descent setfl}, {2}, {3}, and {4} correspondingly (see
FigurelT), and the remaining five hatimv = 0 and descent setd, 3}, {1,4},{2,4}, {2} and
{3} correspondingly (see Figuré 8). Therefore,

F(Do;t) = ?Qp + t(Quy + Qqz2y + Qpzy + Q) + Quuzy + Quuay + Quoay + Qpoy + Quay

= t285 + t81,4 + 53,2.
Finally, we get
Fors(q,t) = (¢ + qt +1%)s5 + (g +t)s41 +
2/5\4, q q S5 q S4,1 T S3,2-
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5 5
4 4| 5 4
43
33 | 4o
32 32
29 29 29
Lo Lo Lo
oT)=1(0,1,2,3,4) c(T)=(0,1,2,4,3) ¢(T)=(0,1,3,2,4)
des(T) =0 des(T) = {4} des(T) = {3}
D4 D4
43 43
32
29 | 31
1,2
I 1|20
oT)=1(0,2,1,3,4) ¢(T)=(1,0,2,3,4)
des(T) = {2} des(T) = {1}

FIGURE 7. On the left: tableau withrea(w) = 0, spin(7") = spin(7'(wo)) =

0, anddinv(w) = 2. The rest: 4 tableaux witharea(w) = 0, spin(7) =

2, spin(7T'(w)) = 0, anddinv(w) = 1. Subscripts indicate the contents of the
ribbons.

44| 53 34|93 44| 53

3

29 |31 2 |4

112

1o 1o

co(T)=1(0,2,1,4,3) ¢(T)=(0
des(T) ={2,4} des(T)

1,3)  oT)=(1,0,2,4,3)
} des(T) = {1,4}

33 42 23 42

11 20 11 30

o(T) = (1,0,3,2,4)  «T) = (1,3,0,2,4)

(1,3,0,2,
des(T) = {1,3} des(T) = {2}
FIGURE 8. Tableaux witharea(w) = 0,spin(7") = 4, spin(7(wp)) = 0, and
dinv(w) = 0. Subscripts indicate the contents of the ribbons.
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