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Abstract

Three Essays in Behavioral and Experimental Economics
by

Jing Zhou

This dissertation consists of three chapters that explore why individuals make seem-
ingly suboptimal decisions in risk management, why they fail to use information in a
Bayesian manner when updating their beliefs, and how novel methodological tools can
be developed to advance modelling and inference about subjective beliefs or perceptions,
considering cognitive limitations.

Chapter 1 studies the underlying mechanisms behind a classical behavioral puzzle in
risk management, called Probability Matching. Probability matching refers to people’s
tendency to randomize between different risky options, or even match their choice fre-
quency to the outcome probability, when choosing over binary lotteries that differ only in
their probabilities. Why? I present an experiment designed to distinguish between three
broad classes of explanations: models of Correlation-Invariant Stochastic Choice (mixing
due to factors orthogonal to how outcomes are jointly determined, such as non-standard
preferences or errors), models of Correlation-Sensitive Stochastic Choice (e.g., deliber-
ately mixing due to misperceived hedging opportunity), and Framing Effects (indecisive-
ness due to frame-sensitive heuristics e.g., similarity heuristic: attending to dissimilar
but irrelevant attributes (outcomes), while ignoring relevant attributes (probabilities)).
My experimental design uses a diagnostic approach, differentiating between their testable
predictions over a series of treatments. The results suggest that a substantial proportion
of mixing behavior aligns with models of Correlation-Sensitive Stochastic Choice, while

the other classes have limited explanatory power.
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In Chapter 2, a joint work with Menglong Guan, ChienHsun Lin, and Ravi Vora, we
experimentally investigate how people value and utilize different statistical characteristics
of a set of realized binary signals, referred to as sample features, to understand why
individuals deviation from the Bayesian benchmark when updating beliefs. We find that,
subjects systematically under-infer the information contained in each sample feature.
Furthermore, the magnitude of under-inference significantly varies across sample features.
Specifically, under-inference is least severe with Sample Proportion (the relative frequency
of different outcomes in the realized signals), compared to more informative features such
as Sample Count (the absolute number of different outcomes in the realized signals). We
also find that the standard measure of informativeness used in information theory does
not fully explain subjects’ preferences for sample features. Subjects demonstrate a strict
preference for the information contained in the Sample Proportion over those without it
and undervalue the usefulness of sample size. Combining preference and belief updating
behaviors, we find that subjects deviate less from the Bayesian benchmark when provided
with a more-preferred feature than a less-preferred one. These results suggest that some
biases in signal usage is more likely an intentional deviation rather than a result of
inattentive heuristics.

In Chapter 3, a joint work with Xin Jiang, we introduce a novel elicitation method,
called the Dynamic Binary Method (DBM), designed to address the common challenge
individuals face in pinpointing the best point estimate of their beliefs, particularly when
their beliefs are imprecise. Unlike Classical Methods (CM), which require respondents
to make absolute judgments and form a point estimate of their true beliefs, DBM guides
them through a series of binary relative judgments, enabling them to express interval
beliefs by exiting the process at any step. To assess the empirical validity of DBM, we
conduct both within-subject and between-subject experiments using a diverse range of

perception tasks drawn from previous literature and CM as a benchmark of performances

x1



in each task. We find that DBM does not perform significantly differently from CM at the
aggregate level, regardless of whether the perception questions use artificial/laboratory
settings or real-life settings, and irrespective of the measurement used. Notably, DBM
outperforms CM when the objective truth is extreme. Furthermore, we find a negative
correlation between the length of stated beliefs in tasks using DBM and their accuracy.
Additionally, we find that the length stated in DBM can predict respondents’ performance
in CM tasks at the aggregate level, albeit not strictly in a monotonic manner. Finally, we
explore methods to use DBM-collected data for predicting stated point beliefs in DBM,
offering insights into potential applications of the method beyond its immediate imple-

mentation.

JEL Classification: D81, D91, C91
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Chapter 1

What Drives Probability Matching?

1.1 Introduction

Probability matching (PM), as a classical behavioral puzzle in risk management,
refers to people’s tendency to randomize between different risky options, or even match
their choice frequency to the outcome probability, when choosing over binary lotteries
that differ only in their probabilities. For example, suppose a project manager needs
to decide which candidate project to implement, Project A or Project B, and can use
a probabilistic choice strategy. Project A and Project B will succeed 75% and 25% of
the time, respectively. The manager will receive a fixed bonus ($M) if the implemented
project is successful; otherwise, nothing. To maximize the likelihood of success, it is
optimal to choose Project A with certainty, since A first-order stochastically dominates
BE] However, there is significant empirical evidence demonstrating that the majority of
people tend to mix by choosing each alternative with a positive chance, or even match

their choice distributions to the outcome probabilities by choosing A 75% and B 25%

!Definition of first-order stochastic dominance (FOSD): Option A is first-order stochastically domi-
nant over Option B if Vo € R, Pr(A > z) > Pr(B > z), and 3z € R, Pr(A > z) > Pr(B > x).



What Drives Probability Matching? Chapter 1

of the time. Such behavior lowers their chance of success than the maximum (75%).E|
This distributional behavior is not only documented in many laboratory environments,
including those with no value for exploration (e.g., when there is no feedback), and
those with no portfolio effects (e.g., when only one choice is paid), but also observed in
important life decisions such as university admissions (Dwenger, Kiibler and Weizsécker,
2018), stock price predictions (Kallir and Sonsino, 2009), adherence to the long-term
therapy for chronic disease (AlHewiti, 2014), etcﬂ

Given its prevalence, this finding has long puzzled economists and psychologists and
led to the development of many theoretical explanations aiming to account for this be-
havior. However, the empirical evidence remains limited, as few explanations are tested
in isolated studies with mixed results (Literature are discussed below). Understanding
the sources of this mixing behavior is fundamental to improving our understanding on
how individuals make decisions and developing informed risk management strategies and
consumer protection policies.

In this paper, I use a series of diagnostic laboratory experiments to study the origin of
this mixing behavior, and, more specifically, to distinguish between three broad classes of
explanations. To illustrate, let’s revisit the previous example of project management us-
ing the commonly-used payoff structure, which I will call as the Classical Payoft Structure

(CPS), as shown in Table . Each project’s outcome is determined by one of the four

2Tt is supported by the empirical evidence that when repeatedly facing the same binary choice mul-
tiple times, individuals tend to choose each alternative in a way that replicates their preferred choice
distribution over them (Feldman and Rehbeck, 2022]).

3For laboratory evidence, see [Martinez-Marquina, Niederle and Vespal (2019)); [Rubinstein| (2002);
Vulkan| (2000). For empirical evidence, |[Dwenger, Kiibler and Weizsacker| (2018) analyze data from
the centralized clearinghouse for university admissions in Germany, which requires students to submit
multiple rankings of universities; these rankings are submitted at the same time, and only a randomly
chosen one matters. They find that many students report inconsistent rankings, which reduces their
probabilities of getting into a more desirable university, even when there are no strategic reasons to do
so. |[Kallir and Sonsino| (2009) find most financial analysts fail to maximize their prediction accuracy
due to this distributional behavioral pattern. Similarly, |AlHewiti| (2014) find that patients with higher
education report lower adherence rate as they are concerned about the sided effects of medications which
occurs with small chance.
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equally likely states of the world, w;, where ¢ € {1,2,3,4}. Correlation between options
is determined by the joint distribution of the outcomes across states. Payoff framing
represents the way outcomes and probabilities of alternatives are presented in the payoff
table/matrix. In the CPS, the options are perfectly negatively correlated, meaning that
when one option yields a good outcome, the other yields a bad one, and vice versa, and
the correlation structure is explicitly represented in the payoff table/matrix, as shown in
Table [I.1} The way outcomes and alternatives are presented in the CPS are referred to
as the Classical Frame.

The first class of explanation described in the literature, which encompasses most
preference-based and some heuristics-based models, argue that people mix due to non-
Expected Utility preferences such as gaining extra utility from mixing itself (Allen and
Rehbeck| 2023 Fudenberg, lijima and Strzalecki, 2015)), inattentive heuristics such as
trembling hand (Ratcliff, |[1978), inherent biases such as misperceived probability (Agra-
nov, Healy and Nielsen|, 2023), etc. One common feature shared by these explanations is
that the sources of mixing are orthogonal to both the correlation structure and the way
outcomes and alternatives are presented in the payoff framing. These models I refer to
as models of Correlation-Invariant Stochastic Choicefl

The second class of explanation suggests that individuals deliberately mix due to
heuristics that are sensitive to how outcomes are jointly determined. For instance, in-
dividuals might mistakenly consider that mixing between options can hedge against the
risk of Project A failing when w, gets realized, as Project B outperforms Project A in
wys. One potential reason could be that individuals may hold incorrect belief that it is a
portfolio choice in which the decision maker is making multiple bets and gets paid for all

of them, instead of a probabilistic choice strategy in which they choose the likelihood of

4As most payoff tables/matrices explicitly present the correlation structure, when the correlation
structure changes, both the underlying correlation between options and the way outcomes and alterna-
tives are presented in the payoff tables/matrices vary.

3
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each option and get paid for the single realized option (false diversification, Rubinstein
(2002))). Alternatively, this misperception may stem from an aversion to making big ex
post mistakes if choosing A with certainty and w, gets realized (min-max regret with
convex cost of mistakes, Agranov, Healy and Nielsen| (2023)). These models are referred
to as models of Correlation-Sensitive Stochastic Choice.

The third class of explanations suggests that individuals mix as they do not know
which option is optimal due to the frame-sensitive heuristics they use to simplify the
comparison between marginal distributions. For instance, individuals may compare op-
tions based on the similarities between options: when facing the payoff framing as shown
in Table [I.1], individuals attend to the dissimilar but irrelevant attributes — outcome
differences, while neglecting the relevant attributes for EU maximization — probability
differences. They may naively make column-wise comparisons: ignore columns with
similar outcomes and use columns with dissimilar outcomes to find the optimal choice,
irrespective of whether the outcomes in each column are indeed correlated. As such com-
parisons in Table[I.1] disagree on which option is optimal, individuals resolve it by mixing
between the options (Leland, [1998; Rubinstein, 1988).E] I call this class of explanation
Framing Elffects.

To distinguish between the three classes of explanations, I conduct an experiment with
three between-subject treatments: Baseline, Independence, and Unknown. Block 1 of
each treatment captures the main treatment variations and Block 2 is a repetition of Block
1 enabling study of learning effect. The basic decision problem is the ticket-allocation
task in Martinez-Marquina, Niederle and Vespal (2019). To elicit choice distribution,
subjects are asked to predict which of the two payoff-relevant outcomes will be realized

by allocating some tickets; one randomly selected ticket gets paid.

5Similarity heuristic has been established as a competing explanation against the sensitivity to corre-
lation structure, for violations of FOSD in one-shot binary decision (Dertwinkel-Kalt and Koster) [2015;
Leland, [1998; [Leland, Schneider and Wilcox, [2019; [Tversky and Kahneman), [1986)).

4
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25% 25% 25% 25%
State w1 Wo w3 Wy
Project A | S S S F
Project B | F F F S

Table 1.1: Classical Payoff Structure(CPS): Perfectly Negative Correlation + Classical Frame

Table 1.2: Alternative Payoff Structure(APS): Positive Correlation + Alternative Frame

25% 25% 25% 25%
State w1 Wo ws Wy
Project A | S S S F
Project B | S F F F
Table 1.3: Classical Frame + Zero Correlation
25% 25% 25% 25%
Partition 1 Partition 2 Partition 3 Partition 4
Project A S S S F
Project B F F F S
Table 1.4: Alternative Frame + Zero Correlation
25% 25% 25% 25%
Partition 1 Partition 2 Partition 3 Partition 4
Project A S S S F
Project B S F F F

Notes: In each payoff table, Project A and Project B have 75% and 25% of chance to succeed, respectively. The project
manager in question forms a choice distribution over them to implement and will receive a fixed monetary award ($M)
if success — otherwise, nothing. The underlined entries denote the main distinctions — different locations of outcomes —
among the four payoff tables. In Tables @ and each column represents one state of the world, and outcomes within
the same column will be jointly realized. That is, the correlation structure is explicitly presented in the payoff framing.
Table is widely used in previous literature. In this structure, outcomes are perfectly negatively correlated: either one
project succeeds in each state. In Table the two projects’ outcomes are positively correlated: jointly succeed or fail
in most of the states. In Tables E and @ two projects’ outcomes are independently determined and the correlation
structure is not presented in the payoff framing: they are presented in a similar way as Tables E and @ respectively.
In these structures, the columns, denoted as partitions, do not necessarily represent the states of the world. Thus, the

outcomes in the same column will not necessarily co-occur.
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Firstly, to distinguish the models of Correlation-Invariant Stochastic Choice from the
other two, in the Baseline treatment, I start with the task using the CPS, as shown in
Table [1.1], and then construct a decision problem using the Alternative Payoff Structure
(APS), as shown in Table In the APS, the two options exhibit positive correlation
— two options jointly have good or bad outcomes in most states, which is presented in
the payoff table/matrix. The way outcomes and alternatives are presented in the APS
is denoted as the Alternative Frame. I construct a series of decision problems to vary
the correlation structure between the two payoff structures in a comprehensive manner.
Models of Correlation-Invariant Stochastic Choice predict identical choices across all
tasks in the Baseline, while the other two classes predict that subjects will mix between
options whenever the task does not have the APS, and will choose the dominant option
with certainty in the tasks APS. This is either because there is no way to “hedge” against
the risk of Project A failing, or because the Alternative Frame in the APS highlights
differences in the relevant attributes — probability, while downplaying differences in the
irrelevant attributes — outcome. That is, even with similarity heuristic, individuals would
find Project A optimal and choose it with certainty.

To further distinguish between models of Correlation-Sensitive Stochastic Choice and
Framing Effects, in the Independence treatment, I fix the correlation between options at
zero by letting the outcome of each option be independently determined. Meanwhile, I
comprehensively vary the payoff framing across tasks in the same way as in the Base-
line, from the Classical Frame as in Table to the Alternative Frame as in Table [1.4]
Models of Correlation-Sensitive Stochastic Choice predict that subjects will mix between
options in all the tasks in the Independence treatment, since it is still likely that Project
B outperforms Project A. However, Framing Effects predicts that subjects in the Inde-
pendence treatment will behave the same way as the Baseline — they will mix between

options when not presented with the Alternative Frame, and will choose the dominant

6
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option with certainty in the Alternative Frame. To benchmark the magnitude of Fram-
ing Effects, 1 employ the Unknown treatment, in which the correlation information is
not provided but all the tasks are presented with the Alternative Frame. Models of
Correlation-Sensitive Stochastic Choice predict that subjects will mix between options
in all the tasks, if they believe that each possible joint distribution is equally likely to
occur, while Framing Effects predict no mixing here.

The results demonstrate that subjects deliberately consider the correlation between
options when making decisions, which accounts for a substantial proportion of mixing
behavior. First, the findings reject expected-utility maximization and many behavioral
theories that predict no mixing in this environment, as 65% of choices mix between
options in tasks using the CPSf| Second, aggregate results across the three treatments
show that subjects’ choices respond to changes in the correlation between options in a
manner consistent with models of Correlation-Sensitive Stochastic Choice. With framing
effects controlled, subjects are, on average, 16.5% less likely to mix between options, and
10.8% less likely to match exactly to the outcome probability when the correlation be-
tween options increases. Moreover, results from the Independence treatment show that
subjects deliberately take zero correlation between options into account: once the cor-
relation between options is fixed, subjects’ choices do not vary with the payoff framing.
Combining the Independence and Unknown treatments, then, the estimated magnitude
of framing effects is not significantly different from zero. In the Independence treatment,
subjects are slightly more likely to mix compared to the Baseline, even with the correla-
tion structure and payoff framing controlled. It suggests that subjects may misinterpret

zero correlation when it is described in words in the Independence, in contrast to the

6For example, prospect theory (Kahneman, 1979), cumulative prospect theory (Tversky and Kah-
neman, (1992), rank-dependent expected utility (Quigginl [1982), quadratic utility (Chew, Epstein and
Segal, [1991)), cautious expected utility (Cerreia-Vioglio, Dillenberger and Ortolevay, [2015), random util-
ity (Gul and Pesendorfer}, |2006), deliberate randomization (Cerreia-Vioglio et all 2019)), and recursive
expected utility (Kreps and Porteus, |1978)).
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Baseline, where the joint distribution of zero correlation is presented in reduced form.
More discussions can be found in Section [I.5] Exploring whether this result is due to
misinterpretation or other confounds would be a fruitful direction for future research.
Lastly, although learning has limited impacts on reducing mixing in the CPS, as they
gain experience, subjects tend to be much less likely to mix or match exactly to the
likelihood of occurrence when the correlation increases.

Classifying subjects based on their choices gives similar results: the vast majority of
subjects (65%) mix between options in some tasks, while choosing the dominant option
with certainty (allocate all tickets on the dominant option) in others in the Baseline, as
most of them (73%) respond to changes in the correlation between options. There is
some heterogeneity in the Baseline: a small proportion of subjects are consistent with
the expected utility benchmark (17.5%), while an equal fraction align with the models
of Correlation-Invariant Stochastic Choice. Overall, I find that the majority of subjects
make decisions consistent with models of Correlation-Sensitive Stochastic Choice — they
mix to hedge against (misperceived) risk — and the other two classes of explanations
have limited powers in explaining mixing behaviors.

These findings have important theoretical and empirical implications. From a the-
oretical perspective, it is essential to develop frameworks that incorporate individuals’
consideration of the correlation between options in stochastic settings. Neoclassical theo-
ries and most stochastic choice theories fall short in explaining the primary finding of this
paper: the vast majority of subjects make different choices in response to changes in the
correlation between the options featured in this study. On the one hand, most of these
theories approach stochastic choice from the perspective of the analyst or econometrician,
assuming that the decision-maker does not see their choice as random. In such models,
randomness stems from exogenous and random shocks on preferences, attentions, and so

forth. Recently, a small but growing subset of theoretical studies has started to consider

8
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the possibility that individuals opt for stochastic choice due to non-standard preferences
or trembling hand. These factors are also orthogonal to how options are correlated.
In Section [I.5] T also investigate every heuristics in the models of Correlation-Sensitive
Stochastic Choice in details and find that each of them has their own limitations and
none of them can accommodate all the results.

Empirically, my findings also shed light on why individuals often deviate from utility
maximizing choices especially in repeated economic decisions such as buying insurance,
making medication decisions, to name a few. Given that individuals deliberately take
into account the correlation between options, even though neoclassical theories suggest
otherwise, it is crucial for policymakers to carefully explain how different options such
as insurance contracts, or saving plans, are correlated in each circumstance. This is
especially important for options whose risks are not perfectly negatively correlated in
between. It helps individuals to always opt for the better option in the repeated choice
environment. Educating on why the correlation does not matter might also be a good
way to improve decision making.

Relation to the Literature and Contributions This paper contributes to the ex-
isting literature in several important ways. Firstly, to the best of my knowledge, this
study is the first to directly test the predictions of three broad classes of theories that
can explain stochastic choice over binary lotteries that differ only in their probabili-
ties: models of Correlation-Invariant Stochastic Choice, models of Correlation-Sensitive
Stochastic Choice, and Framing Effects, and provides direct evidence supporting mod-
els of Correlation-Sensitive Stochastic Choice — people deliberately mix to hedge against
(misperceived) risk. Existing studies investigate few explanations in separated works and
find inconclusive results. Most psychology literature focuses on investigating the effec-
tiveness of different interventions in supporting one of the two arguments embedded in

the dual-process theory — whether PM is an inattentive mistake as the outcome of the

9
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fast and intuitive process, or a sophisticated strategy as the consequence of the slow and
deliberate process, and are inconclusive on which one dominates (See Koehler and James
(2014) for a review). Some economic studies, on the other hand, explain PM from the
perspective of failure in contingent reasoning. For example, Martinez-Marquina, Niederle
and Vespa| (2019) find that the role of uncertainty can explain 8.7% of mixing between
options, whose magnitude is smaller than what I observe. |Agranov, Healy and Nielsen
(2023)) also examine the role of the failure in contingent reasoning in explaining PM with
several interventions and find mixed results. [ As most studies are conducted within the
CPS, my finding suggests a potential reason behind why these interventions have incon-
clusive or limited results: subjects’ responsiveness to the correlation structure could be
strong enough to mitigate the effectiveness of interventions.

Second, I contribute to empirical studies on stochastic choice in several ways. In terms
of theoretical discussions, |Agranov, Healy and Nielsen| (2023)) extensively explore various
stochastic choice models to assess their abilities to explain the prevalence of mixing
behavior across different domains observed in their study, with a particular emphasis on
explanations of PM. Continuing this line of inquiry, I further categorize existing models,
including those discussed in their study, into three distinct groups, and directly examine
the validity of each class based on different testable predictions. From an empirical
perspective, I provide direct evidence that the consideration of correlation structure,
e.g., misperceived hedging opportunity, is a source of deliberate randomization. The
results are empirically consistent with the model of min-max regret with convex costs
of mistakes proposed by |Agranov, Healy and Nielsen (2023), and false diversification

(Rubinstein, 2002), while casting doubts on other stochastic choice theories.

"The intervention — changing the way questions are repeatedly asked and adding feedback on whether
choice in last round is selected for payment, from subjects being asked to make binary choice that is
repeated simultaneously on the same page without feedback, to subjects being asked to make binary
choice that is repeated sequentially with feedback — works, while changing the way outcomes are realized,
from one realization to multiple i.i.d. draws, does not.

10
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Furthermore, my study contributes to the emerging literature on how individuals take
into account correlations when making economic decisions by extending this investiga-
tion into this simple stochastic choice environment. Existing literature investigates this
in the environments such as portfolio choices (Eyster and Weizsacker, 2011)), information
structure (Hossain and Okui, |2020), where the correlation plays an essential role for opti-
mal decision making, and find that individuals neglect the correlation structure, treating
them as if there is no correlation in between when making decisions. Recent studies on
how individuals choose between risky lotteries in one-shot binary choice environment,
find that subjects are sensitive to the correlation structure, which is consistent with
correlation-sensitive preference with salience theory and regret theory nested (Frydman
and Mormann, [2018; Loewenfeld and Zheng, [2021)). In the decision-making environment
I consider, where most decision theories including correlation-sensitive preference posit
that the correlation does not matter for optimal decision making, I find that individuals
are sensitive to how outcomes are correlated. In addition, the finding that the decision
to mix and the decision to match exactly with the probability reflect varying degrees of
sensitivity to marginal changes in correlation suggests that responsiveness to correlation
may differ across decision-making contexts.

Finally, I contribute to existing studies on why individuals violate FOSD by grounding
this inquiry in a stochastic choice environment and examining the validity of a particular
Framing Effects — the similarity heuristic (Rubinstein, [1988). It has been well established
in the previous literature that certain ways that the alternatives and outcomes are pre-
sented mask the dominance relation, which leads to violations of FOSD (Dertwinkel-Kalt
and Koster, 2015; Tversky and Kahneman) |1986)). Thus, altering the frame to emphasize
the dominance relation is effective in reducing violation of FOSD in the one-shot binary
choice environment (See Kourouxous and Bauer| (2019)) for a review). However, the ob-

servations in the Independence treatment suggest that the effectiveness of the Framing
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Effects is limited in its ability to reduce mixing behavior. My findings suggest that the
effectiveness of changing the framing as an intervention to reduce the violation of FOSD
may not be robust to choice environments.

The rest of the paper is organized as follows: Section discusses the theoretical
foundations. Section presents the experimental design. Section analyzes the

results, followed by discussions and conclusions in Sections [L.5] and respectively.

1.2 Theoretical Foundations

In this section, I first describe the basic setup and conceptual framework. Then, I
explore three classes of models and show their distinguishable predictions of whether
mixing behavior varies with changes in correlation between the options and payoff fram-

ing. For a more comprehensive discussion of all the example models mentioned, please

refer to Appendix

1.2.1 Basic Setup

Consider a generalized version of the example discussed earlier: a decision problem
involving two lotteries that differ only in their probabilities, namely Option A and Option
B. Each option gives either a fixed monetary reward of $M, or $0. I denote the option pair
as (A : p; B:1—p), where p (or 1—p) is the likelihood of Option A (or Option B) yielding
$M. The key distinction between these two options is the likelihood of receiving $M. For
the sake of simplicity, assume that p > % I refer to the option with a higher likelihood of
receiving $M, henceforth Option A, as the dominant option. Conversely, the option with
the lower chance of obtaining $M, i.e., Option B, is called the dominated option, given
that the Option A FOSD Option B. Each option’s outcome is determined by one of the

four states of the world, denoted as w; € {1,2,3,4}, wherein each state is equally likely to
12
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be realized. Consequently, there are four possible joint outcome realizations, represented
as (z,y) € {(A:$M,B : $M),(A: $M,B :%0),(A:$0,B:$M),(A:$0,B:3$0)}.

[ am interested in the choice distribution formed by the decision maker: a map that
associates a probability measure over the option pair (A : p; B : 1 — p). This map
represents the frequency at which the decision maker chooses each option, either shown
as the choice pattern when repeatedly asked to choose between them multiple times or the
probabilistic distribution formed from a linear convex lottery budget with one randomly
selected choice getting paidﬁ Let a and 1 — « be the probabilities of the decision maker
opting for Option A and Option B, respectively. I define a choice distribution as mized
if it assigns a positive probability to both options (i.e., & € (0,1)). On the other hand, a
choice distribution is referred to as exact PM if it perfectly aligns with (A : p; B : 1—p),
i.e., @ = p. The use of the term ”"mixing behavior” encompasses both mized choices and

exact PM choices.

1.2.2 Conceptual Framework

As the primary differentiating features of my experimental design, I manipulate the
correlation between options and frame in the payoff structure separately, to distinguish
three classes of explanations. To be more specific, I group the decision problems based
on whether the correlation structure and the payoff framing in these problems are varied
separately into three scenarios to explain how the theoretical mechanisms differﬂ Each
scenario has the same number of decision questions. Questions in all the scenarios share

the same marginal distributions, (A : p; B : 1 — p), but are distinct from one another

8Feldman and Rehbeck| (2022) find empirical evidence that individuals’ preference to choose a non-
degenerate mixture of two different risky options from a linear convex lottery budget is positively related
to their choice pattern in repeated discrete choices.

9To vary payoff framing, I separate the marginal distributions into the same number of equally
probabilistic partitions, and then rank the payoff outcomes from the highest to the lowest. I prove in
Appendix that any pair of FOSD options can be presented in the Alternative Frame, referred to as
the ”Transparency Frame” in [Leland, Schneider and Wilcox] (2019)).

13
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in terms of whether the correlation structure and payoff frames vary across the decision
problems within each scenario:
Baseline Scenario: Varied Correlations + Varied Frames For the decision prob-
lems in this scenario, the correlation between options varies comprehensively, and so does
the frame, as the frame demonstrates the underlying correlation. Decision questions with
the CPS and those with the APS, as shown in Table and Table [I.2] respectively, are
example questions typifying this scenario.
Independence Scenario: Fixed Correlation + Varied Frames For the decision
questions in this scenario, the correlation between options is fixed at zero, yet the frame
varies. Decision problems with the Classical Frame + Zero Correlation and the Alterna-
tive Frame + Zero Correlation, as shown in Table and in Table respectively, are
example questions adopted in this scenario.
Unknown Scenario: Fixed Correlation + Fixed Frame In this scenario, the
decision maker faces various decision questions where the correlation between options is
unknown to them. The frame is fixed as the Alternative Frame. If the decision-maker
believes that each possible correlation structure is equally likely to occur, they would
believe that the ex ante correlation between options is zero[|

The main interest of this study is how existing models differ in predicting the decision
on whether to mix, i.e., whether & = 100% or not, in decision problems across the three
scenarios [[]
Expected Utility Benchmark Any models that respect FOSD and compound lottery

reduction predict that the optimal choice is to choose the dominant option with o =

10Tn the context of the prevailing example, this means that the decision maker believes that there is
a 25% chance that the correlation between options is -1, and a 75% chance that it is 1/3. As a result,
the expected correlation is 0.

UThis is because each theory’s prediction of o € (0%, 100%) varies with the functional forms such
as the cost function in the min-max regret with convex cost of mistakes (Agranov, Healy and Nielsen,
2023)), behavioral parameters such as risk preference in the false diversification (Rubinstein) 2002)), and
the parameters used in the experimental design.
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100%, in all the decision problems across the three scenarios. Mixing between Options
A and B generates a two-stage lottery, which can be reduced to a simple lottery in the

simplex, denoted as L:

L =ao Option A® (1 —«a)o Option B 1)
1.1
fasp+(1—a) s (1—p)]oSM @ [ax(1—p)+(1—a)+p %0

where the first equation denotes the lottery in the first stage, and the second equation
represents the reduced lottery over $M and $0 with a corresponding probability of [« *
p+ (1 —a)* (1l —p)]on$M and [ * (1 — p) + (1 — «) x p| on $0, respectively. In
each decision problem, Option A FOSD Option B. Moreover, in decision problems with
the APS, Option A also state-wise dominates Option B. That is, Option A is not only
distribution-wise, but also state-wise, more likely to yield the better outcome $M, than
Option B. Given that Option A FOSD Option B in each payoff structure, if Option A
is strictly preferred to Option B, it is also strictly preferred to any mixture between
the two. Examples of models satisfying these two include the expected utility, prospect
theory (Kahneman| (1979), cumulative prospect theory (Tversky and Kahneman, |1992),
rank-dependent expected utility (Quiggin, 1982)), quadratic utility (Chew, Epstein and
Segal, |1991)), cautious expected utility (Cerreia-Vioglio, Dillenberger and Ortoleval, 2015)),
random utility (Gul and Pesendorfer] |2006), deliberate randomization (Cerreia-Vioglio

et al.| 2019), and recursive expected utility (Kreps and Porteus, [1978)).

Hypothesis 1. Individuals who follow FOSD and compound lottery reduction will choose

the dominant option with o = 100% in all the decision problems across three scenarios.
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1.2.3 Models of Stochastic Choice

In this subsection, I focus on the preference-based and heuristics-based models that
allow for violation of FOSD or violation of compound lottery reduction. Existing models
can be divided into three categories: models of Correlation-Invariant Stochastic Choice,
models of Correlation-Sensitive Stochastic Choice, and Framing Effects[)] While each
category includes many models, they have many features in common. Within each cat-
egory /subcategory, I select one prominent model, describe it in detail, and discuss its

implications for the behavior of interest[]

1.2.3.1 Models of Correlation-Invariant Stochastic Choice

The first class of explanations, which encompasses most preference-based, as well as
some heuristics-based models, posit that individuals form a mixture between options due
to factors such as non-Expected Utility preferences, random utility shocks, indifference
between getting the bonus or not, inherent misperception of probability, inattentive and
random mistakes, etc. One thing they share in common is that the sources of mixing
are orthogonal to how outcomes are correlated, or the way outcomes and alternatives
are presented in the frame. As most payoff framing coincides with the correlation struc-
ture in experiments, when the correlation between options varies, both the underlying
correlation and the payoff framing change. Thus, these theories predict identical mixing
behavior regardless of how the correlation between options presented in the payoff fram-

ing varies. For simplicity, these theories are referred to as models of Correlation-Invariant

12Tn the context of this study, when the correlation between options varies, the frame changes accord-
ingly as it explicitly reveals the correlation structure. So, when stating that the correlation between
options changes, I am referring to a simultaneous variation in both the interdependence of outcomes
between options and the choice frame that explicitly illustrates this relationship.

13Please refer to Appendix for a more comprehensive discussions of these models.
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Stochastic ChoiceE This category includes preference-based models, such as the proba-
bility weighting, perturbed utility (Fudenberg, Iijima and Strzalecki, 2015; Siegel, [1961)),
correlation-sensitive preferences (Lanzani, 2020) and the pairwise normalization model
(Landry and Webb, 2021, as well as the heuristics-based models such as drift-diffusion
models (Ratcliff, [1978)) and expectation matching (Kogler and Kiihberger, 2007).@

For instance, the perturbed utility model exemplifies the preferences over two-stage
lotteries that allow violation of compound lottery reduction. It posits that decision maker
provides different answers because they can gain extra utility from mixing itself, which
does not change with the correlation structure presented in the payoff framing. Formally,
the decision maker chooses a mixture (o, 1 — «) with 0 < o < 1 to maximize expected
utility plus a utility value from mixing (Fudenberg, lijima and Strzalecki, 2015; Siegel,
1961)) as follows:

max Z a(z)u(z) + V(w)

=(axp+(1—a)*(1—p))*xuSM)+ (ax(1—p)+ (1 —a)=*p)*u($0) + V(a)

(1.2)

where wu(+) is the utility function and V'(-) is the utility from mixing which is a function

MMost models in this category fail to consider the possibility that individuals evaluate each option
not only based on its own outcomes but also in comparison to the outcomes of the alternative in each
state.While some theories do account for state-wise comparisons of outcomes between options such
as correlation-sensitive preferences (Lanzani, |2020) and the pairwise normalization model (Landry and
Webb), [2021)), they still fail to predict varied mixing behavior in response to different correlations between
options. I refer interested readers to Appendix for more detailed discussions.

15The generalized perturbed utility models proposed by |Allen and Rehbeck| (2023), which makes no
assumption on the utility function of the reduced lottery £, predict identical mixing behavior in response
to the correlation change for two reasons. On the one hand, I show in the Appendix that existing
preferences that account for state-wise comparisons cannot predict varied mixing behavior. This is either
due to their inherent features, or because they do not additionally assume convex preferences. Thus, it
predicts identical choices, even if we apply these preference-based models here. On the other, this model
posits that the source of mixing —gaining extra utility from mixing — is orthogonal to the evaluations of
options.
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of o and orthogonal to the correlation between options. It implies that once the marginal
distributions are fixed, this condition does not vary with changes in the correlation be-
tween options or in the corresponding frame. So does the mixing behavior predicted by

this model.

Hypothesis 2. Most preference-based and some heuristics-based models, which posits
that individuals miz due to factors such as non-standard preferences or errors, predict
that the decision maker will make identical choice regardless of correlation or framing —
either choosing the dominant option with o = 100% or mizing between the two in all the

decision problems across the three scenarios.

1.2.3.2 Models of Correlation-Sensitive Stochastic Choice

Several heuristics propose that individuals are sensitive to how options are correlated
for reasons such as deliberately using mixing as a tool to hedge against the (misperceived)
risk ') Examples in this category of models include the model of minmax regret with
a convex cost of “mistakes” (Agranov, Healy and Nielsen, 2023)); irrational diversifica-
tion models (Baltussen and Post, 2011 |Rubinstein, 2002)); and the evolutionary model
developed by Brennan and Lo (2012).

To illustrate this concept, let us apply |/Agranov, Healy and Nielsen| (2023))’s model to
the running example. The decision maker needs to find the optimal o to maximize the

following utility function:

max « x u(Option A) + (1 — a) *x u(Option B)

- )\}L Z (w(a) max{B(w;) — A(w;),0} + w(l — ) max{A(w;) — B(w;),0})

w; €N

16Tt is a “misperceived” risk, because it is a probabilistic choice distribution and implemented once to
determine the payoff. Risk preferences play no role.
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where the state space Q = {ws,...,ws}, u(-) represents the expected utility of each op-
tion, A > 0 denotes an individual-specific scale parameter, B(w;) (A(w;)) represents the
outcome of Option B (Option A) in state w;, and w(+) is an increasing and weakly convex
function satisfying w(0) = 0. The summation term counts, for each state, the fraction
of times the decision maker might make a “mistake” in that state. In each state, choos-
ing one option is considered as a “mistake” if it could have yielded better outcome by
switching to the alternative. This count is then weighted by the convex function w(-)
and multiplied by the payoff magnitude of the mistake. Convexity captures the idea that
the decision maker finds it particularly undesirable to have states where most choices
they have made turn out to be mistakes. Thus, the decision maker may tolerate a lower
occurrence of mistakes in certain states in order to reduce mistakes in states where they
have many.

Different correlations between options affect the extent to which choosing the dom-
inant option with certainty is deemed as “mistakes” from an ex post perspective. To

illustrate, suppose w(x) = x°.

Thus, in decision problems with the CPS, choosing the
dominant option (Option A) with 100% would turn out to be a severe “mistake” when
State wy is realized. Maximizing the cost term with respect to « gives the exact PM. A
captures the level of tension between choosing the more likely option to maximize the
expected utility, and matching with the probability to reduce the cost of mistakes. The
decision maker who places a higher value on A will lean more toward ezact PM. When
A = 0, though, the decision maker will choose the dominant option with o = 100%.

On the contrary, when facing decision problems in the APS as shown in Table [I.2]
choosing Option A with 100% will never be treated as a “mistake” regardless of which
state will get realized. Therefore, in decision problems with the APS, choosing the

dominant option with 100% both maximizes the expected utility and minimizes the cost

of mistakes. Moreover, once the correlation is fixed at zero, the decision maker will mix
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as it is still likely that Project B outperforms Project A, which does not vary with the
framing in the Independence Scenario.

For the decision problems in the Unknown Scenario, if the decision maker believes that
each possible joint distribution of options is equally likely to occur when the correlation
between options is unknown, they will have a weighted average of the cost term in the
CPS (with 25% of probability) and the one in the APS (with 25% of probability) /] It
gives the same predictions as in the decision problems from the Independence Scenario.
Note that it has an implicit assumption that there is no friction in perceiving the joint
distribution of the two options (A : p; B : 1 — p) with zero correlation. The theoretical

predictions of this class of explanations are summarized as the following:

Hypothesis 3. Several heuristics and biases, arquing that the decision maker deliberately

mix to, for example, hedge against (misperceived) risk, predict the following:

e In the Baseline Scenario, the decision maker miz between options whenever the
payoff structure is not APS, while choosing the dominant option with o = 100%

when it 1s;

e Once the correlation between option is fized at zero, the decision maker will mix

across decision problems in the Independence Scenario;

e [f the decision maker believes each potential joint distribution of options is equally
likely to occur when the correlation is unknown in the Unknown Scenario, and there
is no friction in perceiving zero correlation, they will mixz in the Unknown Scenario,
in the Independence Scenario, and in the tasks with zero-correlation options in the

Baseline Scenario.

ITThis is because, with this belief, the success of Project B can occur in each of the four states
with equal probability. Thus, there is 75% of chance the joint distribution between Projects A and B
has positive correlation as the APS, and 25% of chance the joint distribution has perfectly negative
correlation as the CPS.
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1.2.4 Framing Effects

Framing Effects posit that, instead of deliberately taking into account the interdepen-
dence between options in each state, the decision maker employs heuristics to simplify
the comparison between marginal distributions, which is sensitive to the payoff framing
rather than the actual correlation structure. With certain payoff framing, they attend to
the irrelevant attributes — outcome differences, while ignoring the relevant attributes for
decision making — probability differences. Similarity heuristic (Leland}, |1998; Rubinstein),
1988)) is an example in this class.

When using the similarity heuristic to compare between marginal distributions, indi-
viduals tend to naively compare outcomes in each column /partition regardless of whether
they are actually correlated: cancelling out same outcomes in each column, while using
the columns with dissimilar outcomes to decide. If the comparisons in the columns/partitions
with dissimilar outcomes agree on which option is optimal, the decision maker will choose
it with 100%. Otherwise, they will resolve by mixing between them (Dertwinkel-Kalt and
Koster} [2015; Leland, 1998; [Rubinstein, [1988). The Classical Frame as in Table or

Table [L.3] emphasizes the difference in outcomes:

Table 1.5: Classical Frame

25% 25% 25% 25%
Partition 1 Partition 2 Partition 3 Partition 4
Project A S S S F
Project B F F F S

Favor A Favor A Favor A Favor B

As the comparison in each column with dissimilar outcomes does not agree on which
option is optimal, the decision maker will resolve it at random. On the contrary, the
Alternative Frame (either Table[I.2Jor Table highlights the difference in probabilities,

whereas downplaying the difference in outcomes:
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Table 1.6: Alternative Frame

25% 25% 25% 25%
Partition 1 Partition 2 Partition 3 Partition 4
Project A S S S F
Project B S F F F
Cancelled out Favor A Favor A Cancelled out

As the comparison in each column with dissimilar outcomes agrees that choosing Project
A is optimal, the decision maker will choose Project A with 100%. The theoretical

predictions of this class of explanation are summarized below:

Hypothesis 4. Frame-sensitive heuristics, e.q., similarity heuristic, which posit that the
decision maker are indecisive on which option is optimal as they attend to dissimilar but
irrelevant attributes (outcome differences), while neglecting relevant attributes (probability

differences) when facing certain framing, predict the following:

e In the Baseline and Independence Scenarios, the decision maker will miz when
facing the decision problems using the Classical Frame, while choosing the dominant

option with o = 100% when facing those using the Alternative Frame, regardless of

the actual correlation;

e In the Unknown Scenario, where each decision problem is presented with the Alter-

native Frame, the decision maker will choose the dominant option with o = 100%.

Table below summarizes the predictions from the three classes of theories.

Table 1.7: Theoretical Predictions: Summary
Models of Correlation-Invariant Stochastic Choice predict:

Baseline Scenario = Independence Scenario = Unknown Scenario

Framing Effects

models of Varied Frames | Fixed Frame
Correlation-Sensitive | Varied Correlations Baseline -
Stochastic Choice Fixed Correlation | Independence Unknown
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1.3 Experimental Design

To test these hypotheses, I design an experiment with three treatments corresponding
to the three scenarios: Baseline, Independence, and Unknown. Each comprises of three
blocks. The main parts of the experiment are Blocks 1 and 2. In each treatment, I use
Block 1 to capture the main characteristics across questions in each scenario. Block 1
consists of 30 tasks, which cover six different probability categories: four tasks with (A :
67%, B :33%), four tasks with (A : 33%, B :67%), five tasks with (A : 75%, B :25%),
five tasks with (A : 25%, B : 75%), six tasks with (A : 80%, B : 20%), and six tasks
with (A : 20%, B :80%), where the latter three categories are identical to the first three
except that Option B is the dominant option. Each of these 30 tasks is presented on a
different screen and in a random order. Block 2 is a repetition of Block 1, with a random
order to measure the learning effect. Subjects are informed that the computer randomly
selects one block and then one choice in that block to determine their final payoffs. The
instructions for each block are presented to subjects at the beginning of that block. The
complete instructions and screenshots can be found in Appendix

In the experiment, subjects face a series of tasks similar to the example provided ear-
lier. In each task, to elicit subjects’ choice distributions, I follow the Martinez-Marquina,
Niederle and Vespa (2019))’s design by asking subjects to allocate tickets to predict which
of the two payoff-relevant outcomes, Option A or Option B, will be realized[" Only
one ticket is randomly selected for payment. If subjects’ choices on that selected ticket
predicts correctly, they will receive the award $7. Otherwise, they receive $0.

Section begins by describing Blocks 1 and 2 of the Baseline treatment in detail,

and then proceeds to demonstrate how the Independence and Unknown treatments differ

18In the actual experiment, subjects are asked to choose over two options associated with blue color
and orange color separately.
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from the Baseline in Section[1.3.2[™] Then, Section presents implementation details.

1.3.1 Baseline

The ticket-allocation tasks in the first two blocks of the Baseline treatment are de-
signed to capture the features of Varied Correlations + Varied Frames. To achieve this
goal, in each probability category, I fix each option’s marginal distribution while vary-
ing the correlation between options across tasks in a comprehensive way and letting the
frame explicitly present the correlation structure. In each task, subjects are told that
there is a roll of coins and the computer will randomly draw one coin out of them. Each
coin in the roll is labeled with a number to represent one state of the world and has two
sides. The front side of each coin is either blue or has no color. The back side of each
coin is either orange or has no color. Subjects are asked to predict which color, between
blue and orange, is on the randomly drawn coin by allocating some tickets. That is,
they need to decide how many tickets to designate for Option A — “Bet on Blue: the
randomly drawn coin contains a blue side” and how many tickets to designate for Option
B — “Bet on Orange: the randomly drawn coin contains an orange side.” Then, the
computer will randomly select a ticket for payment. If the bet on that ticket matches
the color of the side on the randomly drawn coin, the subject will get $7; otherwise, they
will receive $0. After verifying and submitting their choices, subjects receive complete
feedback, including which coin was drawn, which ticket was picked, the payoff they will
receive, and what they could have received by choosing the alternative option for that
ticket.

To fix the marginal distributions of options, the number of coins in the roll, the

19Tn each treatment, I also use the same Block 3 to explore the extent to which what subjects learned
in the previous blocks can be transferred to a new setting. After Block 3, each subject completes an
exit survey so as to record their demographic information. As the results in Block 3 are similar to the
main findings in Blocks 1 and 2, I refer readers who are interested in them to Appendix for detailed
design and results.
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number of blue sides, and the number of orange sides are identical across tasks from
the same probability category (A : p, B : 1 —p). In order to comprehensively vary the
correlation between options from a perfectly negative correlation (CORR(A, B) = —1)
to a positive one (CORR(A, B) > 0), the locations of colors of the dominant option are
fixed, while the locations of colors of the dominated option vary across the tasks from
the same probability category. On each coin, the blue and orange sides are not mutually
exclusive from each other. Tasks with CORR(A, B) = —1 correspond to the CPS, and
the tasks with CORR(A, B) > 0 map to the APS.

Take the five tasks in Category (A : 75%, B : 25%) as an example. Table
demonstrates the correlations and interfaces of the coin rolls that subjects can see in each
of the five tasks. Subjects can see a roll of sixteen double-sided coins in each task. Twelve
coins are blue on the front sides, and the rest have no color on the this side. Four coins
are orange on the back sides, while the rest have no color on this side. The correlation
among five tasks marginally increases from a perfectly negative one (CORR(A, B) = —1)
to a positive one (CORR(A, B) = 1), as explicitly presented in the interface

-3

1.3.2 Treatment Variations

I use the Independence and Unknown treatments to capture the main features of Fixed
Correlation + Varied Frames and Fixed Correlation + Fixed Frame, respectively. In the
Independence treatment, I fix the correlation between options to remove the models of
Correlation-Sensitive Stochastic Choices as a potential candidate for explaining varied
mixing behavior if it is observed in the Baseline treatment. However, the Framing Effects
could still play a role in driving varied mixing behaviors across tasks. In the Unknown

treatment, I fix both the correlation between options and payoff framing to benchmark

20Gee Appendixfor the payoff structures in Categories (A : 67%, B : 33%) and (A : 80%, B : 20%).
The other three categories are identical except that Option B is the dominant option.
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Table 1.8: Baseline: Five Tasks under Category (A : 75%, B : 25%)

Task | CORR(A, B) Interface

1 1 Front: @@@@®OO©@OOB®O@® (14199
3 Back: @@@®@®6©®®® W11

5 0 Front: @@@@®OO©@OO©B®O®@® (141909
Back: O@0OGOOO®O®@®® 04009

3 1 Front: @@@@®O©O®@O®O®®® 1191309

3 Back: OOOOEHOOE®OWA@@® )0

4 9 Front: @@@@®O©O®@O®O®®® 19191309

3 Back: OOOO®EHOOE®OWL@@@® 0o

5 1 Front: @@@@®O©O®@O®O©®®® 1919109

Back: O@OOOEOOEOWLEOB®®

Note: Each task has a roll of 16 double-sided coins denoted by a number 1 - 16. 12 out of the 16 coins are blue on the

front side, and 4 out of the 16 coins are orange on the back side. Tasks 1 and 5 correspond to the APS and the CPS,

respectively.

Table 1.9: Independence: Five Tasks under Category (A : 75%, B :25%)

Task | CORR(A, B) Interface
1 0 Roll Blue: CTT T T T T Tt
Roll Orange: @@@@ )@ @)(®)@aa)adasedess
5 0 Roll Blue: POPOPPOOODO® 0ty
Roll Orange: @@@@@®@@@@@ e
Roll Blue: CTT T T T T Tl
¥ 0 Roll Orange:  @@EE@@OEEHOSOODD
4 0 Roll Blue: POPOPPOOODB® 0ty
Roll Orange:  ©@)(2)()(o)(e)(e6)(07)(o8) (09) @101 68 6 @ @ 19
Roll Blue: CTT T T T T Tl
° 0 Roll Orange:  @@EEEEHE@EDHHOO

Note: Each task has two rolls of 16 coins, Roll Blue and Roll Orange. bl-b16 represent the 16 coins in Roll Blue, and
0l-016 denote the 16 coins in Roll Orange. The computer will randomly select two coins: one from each coin roll. The

locations of colors are identical to the Baseline.

Table 1.10: Unknown: Five Tasks under Category (A : 75%, B : 25%)

Task | Expected CORR(A, B) Interface
Front: 0000000000 O O O OO
! 0 Back: @@@@OOOOOOOOOOOO
Front: 0000000000 O OO OO
’ 0 Back: ©@@@000000000000
Front: 00000000000 O O O OO
¥ 0 Back: @@@@0OOOOOOOOOOOO
Front: 00000000000 O O O O
! 0 Back: @@@@0OOOOOOOOOOOO
Front: 00000000000 O O O OO
b 0 Back: @@@@OOOOOOOOOOOO

Note: Each task uses a unified frame to present the colors of the two-sided coins. Subjects are not informed about how
2
colored sides are correlated in each coin. If they believe that egch possible joint distribution is equally likely, their expected

correlation between options is zero.
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subjects’ behavior when the Framing Effects does not come into play.

Independence Treatment Tasks in the Independence treatment are identical to the
Baseline in most aspects, except that, in each task of the first two blocks, the outcomes of
the two options are independently determined. To accomplish this, in each task, subjects
can see two rolls of coins: Roll Blue and Roll Orange. Each coin in Roll Blue is either
blue or has no color. Similarly, each coin in Roll Orange is either orange or has no color.
The computer randomly selects two coins, one from each roll. To maintain the same
variation of the frame as the Baseline treatment, under each probability category, I let
the locations of colored coins vary across tasks in the same way as in the Baseline. On
each ticket, subjects are asked to predict which roll the coin is drawn from has color by
choosing between Option A — ”Bet on Blue: the coin drawn from Roll Blue has color”
and Option B — ”Bet on Orange: the coin drawn from Roll Orange has color.” Subjects
receive feedback only on which ticket is picked and the payoff they receive. Table
demonstrates the correlation and interfaces that subjects can see across the five tasks in
Category (A : 75%, B :25%) within the Independence treatment.

Unknown Treatment For each task in Blocks 1 and 2 of the Unknown treatment, I fix
both the correlation and the framing, as shown in Table [I.10] All the other components
are identical to the Baseline treatment. To fix the correlation, subjects are not informed
about how colored sides are correlated on each coin, as the information regarding cor-
relation is irrelevant for expected utility maximization. To control the framing, I use a
unified frame, the Alternative Frame, to present the possible outcomes of the two-sided
coins Y] Subjects receive feedback only on: which ticket was picked and the payoff in

that round only to prevent learning the ex post correlation from feedback.

21Tn the instruction, subjects are explicitly told that the framing is a visualization of the marginal
probability that each outcome occurs.
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1.3.3 Implementation Details

The experiment was conducted via online Zoom sessions from May to July 2021.
I recruited 157 subjects through the EBEL laboratory at the University of California,
Santa Barbara, using Online Recruitment System for Economic Experiments (ORSEE)
recruiting software (Greiner} 2015). The experiment interface was programmed in oTree
by the author. There were 11 sessions in total, each lasting 45-55 minutes on average.
All the treatments were balanced and randomly assigned to subjects in each session, and

the average payoff per subject was $10 (including a $5 for the participation fee).

1.4 Results

This section is organized as follows: Section discusses the preliminary results.
Section reports the main results across the three treatments. In Section [1.4.3]
I discuss how the decisions to mix differs from the decisions to match exactly to the
probability. In Section [[.4.4] T explore individual heterogeneity by classifying subjects
into different types, based on the choices they made.

The primary focus lies with how subjects’ mixing behavior varies across the tasks in
Blocks 1 and 2 of each treatment. This requires a definition of mixing behavior. I adopt
the strictest definition used in the previous literature (Martinez-Marquina, Niederle and
Vespay, 2019)), in that an allocation choice is referred to as mized if it allocates at least
one ticket to the dominated option — betting on the color in the minority. An allocation
choice is defined as exact PM if it allocates an exact fraction p of tickets to the dominant
option and the remaining fraction (1—p) to the dominated option in the decision problem
with (A :p, B : 1 —p). Thus, the fraction of allocation choices that are mized and those
that are exact PM are denoted the likelihood of mixing and the likelihood of exact PM,

respectively.
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Another approach to defining mixing behavior is to calculate the fraction of tickets
allocated by subjects to the dominated option. Since the qualitative findings are identical
between these two definitions, and the quantitative results primarily stem from the change
in the fraction of choices that allocate at least one ticket on the dominated option, I
direct the reader to Appendix for the parallel results obtained using this alternative
definition.

In each regression analysis, I pool decision problems with symmetric probability dis-
tributions, namely, (A : p, B : 1 —p) and (A : 1 —p, B : p), together into a single
category, and represent tasks from Categories (A:p, B:1—p)and (A:1—p, B:p) as
Category (p,1 —p). I use the variable “correlation parameter” to denote different things
in different treatments: (1) in the Baseline treatment, it captures both the correlation
and the corresponding frame in the payoff structure between options; (2) in the Indepen-
dence treatment, it is the corresponding frame only; and (3) in the Unknown treatment,
it denotes the ex post correlation, which is unknown from subjects’ perspective by design.
Standard errors are clustered at the subject level in all regression analyses. Additionally,
all regression models include categorical variables for the probability category (p, 1 — p),
gender, and school year, as well as indicator variables for the dominant option and STEM,

serving as controls. Each bar graph is shown with 95% confidence intervals.

1.4.1 Preliminaries

Figures and [1.2] plot the likelihood of mizing and likelihood of exact PM against
the correlation parameters with the first two blocks combined, separated by probability

categories for each treatment, respectively@ The horizontal axis varies the correlation

22As T pooled the tasks from (A : p, B :1—p) and those from (A : 1—p, B : p) together, each subject
has two allocation choices added when calculating the fraction of mized choices given the probability
category and correlation parameter. This is also true for the calculation of fraction of exact PM choices.
Thus, the fractions of mized choices and exact PM choices are different from the fractions of subjects who
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parameter, representing different features in different treatments. As tasks in the Un-
known treatment use a fixed correlation and identical frame, I use horizontal lines to
represent the average likelihood of mizing and likelihood of exact PM in each probability
category.

Note that models of Correlation-Invariant Stochastic Choice predict identical like-
lihood of mizing in all the tasks across the three treatments. Models of Correlation-
Sensitive Stochastic Choice predict identical likelihood of mizing in all the tasks across
the three treatments, except in cases where the two options are positively correlated, as
in the APS, and in the APS, the [likelthood of mizing shall decrease to zero. Moreover,
the Framing Effects predict equal likelihood of mizing in all the tasks across the three
treatments, except in cases where the two options are presented in the Alternative Frame
regardless of the correlation, and in the Alternative Frame, the likelihood of mizing shall
decrease to zero.

Firstly, I replicate the findings observed in the existing literature, wherein the vast
majority of individuals tend to mix two options in allocation choice or even match ex-
actly to the probability of occurrence when facing the CPS. As depicted in Figures [I.1
and [1.2] in the CPS, approximately 65% of allocation choices mix between the two op-
tions, whereas 35% of the choices match exactly to the occurrence probability in each
probability category. @

More importantly, as depicted in Figures and [1.2] within each probability cat-
egory, the average fractions of mized choices and of exact PM choices decrease when
the correlation between options increases or when the frame varies in the Baseline treat-
ment. However, the likelihood of mixing and the likelihood of exact PM are not zero in

the APS. About 30% - 40% of choices are mized and 10% - 20% of choices are exact PM

made mized choices and exact PM choices. I discuss the distribution of mixing types in Section
23Martinez-Marquina, Niederle and Vespal (2019) find that about 67.8% of choices are mized, while
20.8% are exact PM choices.
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Figure 1.1: Impacts of correlation/frame on likelihood of mixing with two blocks combined
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Note: The horizontal axis denotes different features in different treatments. In the Baseline, it represents varied correlations
and varied frames. In the Independence, it represents varied frames. As the Unknown uses the fixed correlation and frame,
green lines represent the average fractions of mized allocation choices for each probability category in this treatment. Each
panel represents one probability category. The error bars depict 95% confidence intervals.

in the APS where the two options are positively correlated. In contrast to Baseline, the
average fractions of mized choices and of exact PM choices do not vary with changes in
the corresponding frame in the Independence treatment. Furthermore, in the Unknown
treatment, the magnitude of the average fraction of mized choices is nearly identical to
that in the Independence treatment. In the tasks featuring the “zero-correlation frame”
in the Independence treatment, the likelihood of mixing and the likelihood of exact PM
are slightly larger compared to the zero-correlation tasks in the Baseline. It suggests that
subjects in the former tasks might misinterpret the zero correlation, as described in words
in the Independence treatment, compared to the latter tasks where the joint distribution
of zero-correlation options is presented in reduced form in the Baseline. More discussions
can be found in Section [1.5| Exploring whether this is a result of misinterpretation or

other confounds would be a fruitful direction for future research.
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Figure 1.2: Impacts of correlation/frame on likelihood of Exact PM with two blocks

combined
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Note: The horizontal axis denotes different features in different treatments. In the Baseline, it represents varied correlations
and varied frames. In the Independence, it represents varied frames. As the Unknown uses the fixed correlation and frame,
green lines represent the average fractions of exact PM choices for each probability category in this treatment. Each panel

represents one probability category. The error bars depict 95% confidence intervals.
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1.4.2 Treatment Level Results

In order to investigate the empirical validity of each class of models, I estimate the
impacts of correlation change and frame change on mixing behavior by making pairwise
comparisons across the three treatments.

More specifically, to estimate the impact of correlation change on mixing behavior, I
regress each of the dependent variables — indicators of whether the allocation choice is
mized, and whether the allocation choice is ezact PM — on: (1) the indicator variable of
treatments: Independence vs Baseline; (2) correlation parameter; and (3) the interaction
term between the first two variables. The dependent variables capture the likelithood of
mizing and likelihood of exact PM, respectively. The coefficient for the interaction term
estimates the impact of correlation changes in the Baseline by cancelling out the impact
of frame changes in the Baseline with those in the Independence treatment.

Table makes the comparison between the Baseline and Independence treatments.
As illustrated in Table after controlling for the framing effects, subjects are 15.8%
(OLS, p = 0.000) less likely to make mized choices and 12.5% (OLS, p = 0.000) less likely
to make exact PM choices when the correlation increases in the Baseline with the two
blocks combined. More significantly, the estimated correlation effects are more substan-
tial in Block 2 than in Block 1. The estimated impact of correlation on the likelihood of
mazing changes from —9.8% in Block 1 to —21.8% in Block 2. Similarly, the estimated
impact of correlation on the likelihood of exact PM changes from —10.8% in Block 1
to —14.2% in Block 2. This suggests that learning amplifies subjects’ responsiveness to
changes in the correlation between options. Such a finding thus indicates that subjects,
on average, are responsive to changes in the correlation between options when mak-
ing decisions, which cannot be fully accommodated by models of Correlation-Invariant

Stochastic Choices, which contains most preference-based models and some heuristics.
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Table 1.11: Baseline VS Independence: Impacts of Correlation/Frame on Mixing Behavior
Blocks 1 & 2 Block 1 Block 2 Blocks 1 & 2  Block 1 Block 2

mized mized mized exact PM exact PM  exact PM

IvsB X Correlation/Frame -0.158*** -0.0977*  -0.218*** -0.125** -0.108***  -0.142***
(0.0366) (0.0334)  (0.0452)  (0.0286) (0.0311)  (0.0380)

Correlation/Frame -0.00586 -0.00990  -0.00182 0.0121 0.0199 0.00439
(0.0114) (0.0106)  (0.0161) (0.0114) (0.0183)  (0.0128)
IvsB(Baseline=1) -0.175% -0.144*  -0.205* -0.0877* -0.0564 -0.119*
(0.0661) (0.0663)  (0.0721) (0.0518) (0.0515)  (0.0565)
Constant 0.241 0.261 0.221 0.165* 0.159* 0.170
(0.224) (0.214) (0.252) (0.0868) (0.0839) (0.104)
Observations 6840 3420 3420 6840 3420 3420

Note: Results from OLS regression. The dependent variable takes the value of 1 if the allocation choice in a task is
classified as mized, or as exact PM, respectively. CORR/Frame represents the variable of correlation parameters in the
Baseline and Independence treatments. In the Baseline, it captures either the correlation change or the associated frame
change. In the Independence, it denotes the frame change only. IvsB is the dummy variable for whether the task comes
from the Baseline or Independence. It takes the value of 1 if the task comes from the Baseline. Each regression model also
includes the categorical variables of probability categories, gender, and school year, as well as the indicator variables of
dominant color, and STEM, as controls. Standard errors are clustered at the subject level and listed in parentheses. Full
regression results can be found in Appendix * p < 0.10, ¥* p < 0.05, ¥** p < 0.01.

Result 1. On average, subjects are sensitive to changes in the correlation between op-
tions: they are less likely to mix between options or even match precisely to the probability
of occurrence when the correlation between options increases. And learning amplifies the

responsiveness to the correlation change: with some experience, the mixing behavior de-

creases further when the correlation increases.

Along these same lines, I compare the Independence and Unknown treatments to
estimate the impact of frame change on mixing behavior. As subjects are not informed
about the ex post correlation between options, the mixing behavior does not vary across
problems in the Unknown treatment by design. The coefficient on the interaction term
between the indicator variable of Independence VS Unknown and the variable of corre-
lation parameter estimates the impact of frame change on mixing behavior.

As shown in Table [1.12] the estimated impact of frame change on the likelihood of
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mizing is not significantly different from zero (p = 0.777). Moreover, for the likelihood of
exact PM, the impact is limited and is altogether absent in Block 2. Regression results
show that, when combining Blocks 1 and 2 together, subjects are 3% less likely to make
exact PM choices in the Independence treatment when the frame changes. The impact
is significant in Block 1 (—=6.5%, p = 0.000). However, as subjects gain experience in
Block 2, this impact disappears. Therefore, our result indicates that subjects are not
responsive to the change in frame, which rules out the Framing Effects — mixing due to
some frame-sensitive heuristics employed to simplify the comparison between marginal
distributions — as the leading explanation behind mixing behavior in decision problems

using the CPS.

Result 2. Subjects, on average, are not responsive to variations in the framing when

making decisions and learning mitigates this impact even further.

Combined with the previous findings between the Baseline and Independence treat-
ments, the aggregate results are more consistent with models of Correlation-Sensitive
Stochastic Choices than with models of Correlation-Invariant Stochastic Choices or Fram-
ing Effects. These results suggest that subjects deliberately take into account how out-
comes of options are correlated with one another in each state of the world when making
decisions. The observed mixing behavior in decision problems using the CPS therefore
tends to be subjects’ responses to the perfectly negative correlation between options for

reasons such as mix to hedge against the (misperceived) risk.

1.4.3 Decision to Mix VS Decision to Exact PM

By zooming in on the results for the Baseline, as shown in Figure [[.3] I find that
subjects’ decisions to mix between the dominant and dominated options are different from

their decisions to match precisely to the outcome probability in two ways: (1) different
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Table 1.12: Independence VS Unknown: Framing Effects on Mixing Behavior
Block 1&2 Block 1  Block 2 Block 1&2  Block 1 Block 2
mized mized mized exact PM  exact PM  exact PM
IvsU X Frame/Ex post CORR  0.00387 0.00964 -0.00190  -0.0318**  -0.0648**  0.00122
(0.0136)  (0.0148) (0.0192)  (0.0157)  (0.0244)  (0.0190)

Frame/Ex post CORR -0.00509  -0.00947 -0.000710  0.00962 0.0177 0.00159
(0.0114)  (0.0106) (0.0161)  (0.0114) (0.0183)  (0.0129)
IvsU(Independence=1) 0.0469 0.0664 0.0274 0.0566 0.0920 0.0211
(0.0700)  (0.0710)  (0.0763)  (0.0567) (0.0572)  (0.0612)
Constant 0.422 0.373 0.471 0.140 0.167 0.112
(0.289) (0.275)  (0.314) (0.143) (0.160) (0.136)
Observations 6780 3390 3390 6780 3390 3390

Note: Results from OLS regression. The dependent variable takes the value of 1 if the allocation choice in a task is
classified as (1) a mized choice, or (2) a ezact PM choice. Frame/Ex post CORR is the variable of correlation parameters
in the Independence and Unknown treatments. In the Independence, it captures the frame change only. In the Unknown,
it denotes no impact by design. IvsU is the dummy variable on whether the task is in the Unknown VS Independence. It
takes the value of 1 if the task is in the Independence. The regression also includes probability categories, dominant color,
gender, school year and STEM as controls. Standard errors are clustered at the subject level and listed in parentheses.
Full regression results can be found in Appendix * p <0.10, ** p < 0.05, *** p < 0.01.

levels of responsiveness to the marginal changes in the correlation between options; and
(2) different levels of responsiveness to changes in the probability of the dominant option
paying off.

First of all, although variation in the correlation between options, on average, ex-
erts negative impacts on both the likelihood of mizring and the likelihood of exact PM,
such variation are attributed to different marginal changes in the correlation between
options. As demonstrated in Figure [I.3] there is a considerable decline in the likelihood
of mixing when the correlation marginally increases from weakly negative, to zero or

even to positive. However, a significant drop in the [ikelihood of exact PM occurs when

the correlation marginally increases from perfectly negative to moderately negative.
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Figure 1.3: Baseline: Impacts of Correlation on Decision to Mix Versus Decision to Exact PM
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Notes: The error bars depict 95% confidence intervals.

To formally measure these differences, I estimate the impacts of marginal correlation
change at CORR = —1, at CORR = 0, and at CORR > 0, respectively. For the impact
of marginal correlation change at CORR = —1, I compare allocation choices between
tasks featuring CORR = —1 and tasks with moderately negative correlations in the
two blocks.@ For the impacts of marginal correlation change at CORR = 0, I compare
allocation choices between tasks with CORR = 0 and tasks featuring weakly negative
correlations.ﬁ For the impacts of marginal correlation change at CORR > 0, I combine
the tasks with non-negative correlations, and compare the allocation choices noted there
with those in the tasks with weakly negative correlations@

According to the regression results presented in Table subjects are 34.7% (OLS,

p = 0.000) less likely to make ezact PM choices when the correlation marginally increases

24Moderately negative correlations refer to the negative correlations that are closest to the perfectly
negative one. To be more specific, tasks with moderately negative correlations include those with
CORR = —0.5 in Category (67%, 33%), those with CORR = —0.67 in Category (75%, 25%), and those
with CORR = —0.75 in Category (80%,20%).

25Weakly negative correlations refer to the negative correlations that are closest to zero. Specifically,
tasks with weakly negative correlations include those with CORR = —0.5 in Category (67%, 33%), those
with CORR = —0.33 in Category (75%, 25%), and those with CORR = —0.25 in Category (80%, 20%).

26Tasks with positive correlations are those with CORR = 0.5 in Category (67%, 33%), those with
CORR = 0.33 in Category (75%, 25%), and those with CORR = 0.25 in Category (80%, 20%).
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from CORR = —1. However, the same marginal correlation change does not have
significant impacts on the fraction of mized choices. Moreover, when the correlation
marginally increases to CORR = 0, subjects are 12.6% (OLS, p = 0.000) less likely to
make mized choices. In contrast, the same marginal change does not have a significant
impact on the fraction of exact PM choices. Subjects are 30.4% (OLS, p = 0.000)
less likely to mix when the correlation increases from weakly negative to non-negative
correlations. However, the same change does not significantly affect the fraction of ezact
PM choices.

Table 1.13: Baseline: Marginal Impacts of Correlation on Mixing Behavior

(1) (2) (3) (4) (5) (6)
mized  exact PM  mized  exact PM  mized  exact PM
Marginal Change at CORR = —1 -0.00702 -0.347***
(0.0352)  (0.0795)

Marginal Change at CORR =0 -0.126*  -0.0316
(0.0599)  (0.0616)
Marginal Change at CORR > 0 -0.461***  -0.0367
(0.100) (0.0544)
Constant 0.133 -0.122 0.0870 0.0243 0.903"*** 0.260*
(0.308) (0.154) (0.322)  (0.0840) (0.256) (0.141)
Observations 1140 1140 1140 1140 1368 1368

Note: Results from OLS regression. The dependent variables take the value of 1 if the allocation choice in a task is
classified as a mized choice, or as a exact PM choice. The variable of marginal correlation change at CORR = —1 takes
the value of 1 if the correlation parameter is -0.5 for Category (67%, 33%), -0.67 for Category (75%, 25%), or -0.75 for
Category (80%, 20%), and takes the value of 0 if CORR = —1. The variable of marginal correlation change at CORR = 0
takes the value of 1 if CORR(B,O) = 0, and takes the value of 0 if the correlation parameter is -0.5 for Category (67%,
33%), -0.33 for Category (75%, 25%), or -0.25 for Category (80%, 20%). The variable of marginal correlation change at
CORR > 0 takes the value of 1 if CORR(B, O) > 0 which includes the correlation parameter that is 0 for all categories, 0.5
for Category (67%, 33%), 0.33 for Category (75%, 25%), or 0.25 for Category (80%, 20%), and takes the value of 0 if the
correlation parameter is -0.5 for Category (67%, 33%), -0.33 for Category (75%, 25%), or -0.25 for Category (80%, 20%).
The regression also includes probability categories, dominant color, gender, school year and STEM as controls. Standard
errors are clustered at the subject level and listed in parentheses. Full regression results can be found in Appendix
* p <0.10, ¥* p < 0.05, *** p < 0.01.

These results demonstrate a substantial distinction between the decision to mix be-

tween two options and the decision to precisely match to the probability of occurrence in
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terms of responsiveness to different marginal changes in the correlation between options.
The former decision is more heavily influenced by whether the two options subjects must
choose between are positively correlated (i.e., the APS). Note that, when the two options
are positively correlated, one option not only exhibits first-order stochastic dominance
but also state-wise dominance over the other. Hence, the decision to mix is more likely
to stem from an evaluation of whether one option dominates the other in a state-by-state
manner. In line with the explanation of needs to hedge against (misperceived) risk, it
could be the case that when one option dominates the other in each state, there is no
way to hedge against the result of getting nothing with choosing the dominant option
when State w4 occur. It is also possible that when the dominant option outperforms the
alternative in each state, subjects tend to feel more certain that the option is the better
one, and thus become less likely to make mized choices/|

On the contrary, the decision to match exactly to the outcome probability largely
depends on whether the two options that subjects must consider are perfectly negatively
correlated (i.e., the CPS). Put otherwise, ezact PM tends to be a response towards the
particular “perfect complementary” relationship between options — whenever one option
yields a good outcome, the alternative yields a bad one, and vice versa. This finding
suggests that matching precisely to the outcome probability is more likely to be a form
of context-specific bias, which is triggered by the "perfect complementary relations” of

the outcomes between options: either Project A succeeds or Project B succeeds, but not

both.

27This interpretation aligns with the notion of incomplete preference or indecisiveness, which posits
that decision makers may choose to mix when they are unsure of which option to choose, and they use
mixing between options as a way to resolve such uncertainty. Formalizing this requires assuming specific
functional forms of preference, and thus it would revert back to the complete but non-EU preference.
That is why I do not discuss this branch separately in Section Existing theories that can formalize
this fail to take into account the possibility that the decision maker cares about how options are jointly
determined in each state, and thus are classified in the models of Correlation-Invariant Stochastic Choice.
Cautious Expected Utility proposed by (Cerreia-Vioglio, Dillenberger and Ortoleval (2015) is an example
of this.

39



What Drives Probability Matching? Chapter 1

The findings are summarized as follows:

Result 3. The average negative impacts of correlation on the likelihood of mizing and

on the likelithood of exact PM are driven by different marginal correlation changes:

e Subjects are significantly less likely to make mized choices when the correlation
between options marginally varies from weakly negative to non-negative correlations.

However, the same marginal change does not impact the likelihood of exact PM.

e Subjects are significantly less likely to make exact PM choices when the correlation
marginally varies from perfectly negative to moderately negative correlations. In

contrast, the same change does not significantly affect the likelithood of mixing.

Secondly, the decision to mix differs from the decision to match exactly to the outcome
probability in whether it responds to changes in the probability of the dominant option
paying off. Note that the probability of the dominant option yielding $M ranges from
67% to 80% across probability categories. |Agranov, Healy and Nielsen| (2023)) observe a
monotone response among subjects to this change in probability: they are significantly
less likely to make mized choices when the dominant option becomes more likely to
yield $M (-0.064 with p < 0.01). In contrast to their findings, though, subjects in this
experiment exhibit varying levels of responsiveness to this change depending on which
decisions they make. As shown in Figure [1.3] when the dominant option is more likely
to yield $M, subjects’ likelihood of mizing does not alter, whereas they are less likely
to match precisely to the probability. Furthermore, for both decisions, the magnitude of
responsiveness decreases when moving from Block 1 to Block 2.

For the purposes of statistical inference, I regress the indicators of whether the al-
location choice is mizred and whether it is exact PM on the correlation parameters in

the Baseline and the categorical variable of probability category separately, as shown in
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Table 1.14: Baseline: Impacts of Increasing p of Category (p,1 — p) on Mixing Behavior
Blocks 1 & 2 Block 1 Block2 Blocks1 & 2  Block 1 Block 2

mized mized mized exact PM exact PM  exact PM
Correlation -0.165*** -0.108***  -0.221*** -0.108*** -0.0843***  -0.133***
(0.0346) (0.0318)  (0.0420) (0.0270) (0.0261) (0.0369)
(75%, 25%) -0.0168* -0.0248* -0.00880 -0.0915*** -0.109***  -0.0738**
(0.00846) (0.0134)  (0.0103) (0.0233) (0.0273) (0.0294)
(80%, 20%) -0.0272 -0.0238  -0.0306 -0.128*** -0.152***  -0.105***
(0.0185) (0.0195)  (0.0225) (0.0246) (0.0321) (0.0254)
Constant 0.0266 0.0753 -0.0221 0.0562 0.0470 0.0654
(0.276) (0.272) (0.293) (0.0908) (0.0757) (0.117)
Observations 3420 1710 1710 3420 1710 1710

Note: Results from OLS regression. The dependent variables take the value of one if the allocation choice in a task is
classified as mized or exact PM, respectively. Correlation captures the correlation parameters, which takes values of -1,
-0.5, 0, 0.5 for Category (67%, 33%); -1, -0.67, -0.33, 0, 0.33 for Category (75%, 25%); and -1, -0.75, -0.5, -0.25, 0, 0.25
for Category (80%, 20%). Each regression also includes categorical variables of probability categories, gender, and school
year, as well as indicator variables of dominant color and STEM, as controls. Standard errors are clustered at the subject
level and are listed in parentheses. Full regression results can be found in Appendix m * p < 0.10, ¥* p < 0.05, ***
p < 0.01.

Table The likelihood of mizing decreases when moving from the tasks in Category
(67%, 33%) to tasks in Category (75%, 25%) with Blocks 1 and 2 combined or considering
Block 1 alone, and the coefficients are significantly different from zero at a 90% confidence
level. However, the difference becomes insignificant as subjects gain experience in Block
2 or when they face tasks in Category (80%, 20%). Notably, for the likelihood of mizing,
both the estimated coefficients and confidence levels are much lower than the findings
presented in |Agranov, Healy and Nielsen| (2023)’s study. On the contrary, the likelihood
of exact PM reacts to this change in probability: as the dominant option is more likely to
yield $M, subjects become less likely to match exactly to the probability when combin-
ing both blocks. When the two blocks are combined, subjects are 9.2% (p > 0.001) less
likely to make exact PM choices when moving from Category (67%,33%) to Category

(75%, 25%), and 12.8% (p > 0.001) less likely to match precisely to the probability when

41



What Drives Probability Matching? Chapter 1

moving from Category (67%, 33%) to Category (80%,20%). However, the magnitude of
these impacts decreases in Block 2 as compared to Block 1. In line with my previous
findings, this result also suggests that subjects’ decisions regarding whether to mix or
not relate more to whether one option dominates the other in a state-wise manner rather
than in a distribution-wise manner. In addition to that, subjects’ responsiveness to this

change in both decisions is not robust to learning.

Result 4. The decision to mix and decision to exact PM respond differently to the in-
crease in the probability of the dominant option paying off: as the dominant option be-
comes more likely to yield $M, subjects are less likely to match exactly to the probability
but their likelihood of mizring remains unchanged. Additionally, learning mitigates this
responsiveness: with some experience, both the likelihood of mixing and the likelihood of

exact PM are less responsive to this change.

1.4.4 Mixing Types

To explore individual heterogeneity, I begin by classifying subjects into three mutually
exclusive types based on their behavior in Blocks 1 and 2: subjects who always allocate all
the available tickets to the dominant option in all the tasks are called Never Miz, subjects
who always allocate at least one ticket to the dominated option in all the tasks are called
Always Mix, and subjects who are in between are called Sometimes Mix. Figure [1.4]
demonstrates the distributions of subjects across these types based on their choices in
Blocks 1 and 2, as well as their choices in Block 1 only and in Block 2 only, across the
three treatments.

As shown in Figure [l.4] in the Baseline treatment, approximately 17.5% (10/57)
of subjects Never Miz; another 17.5% (10/57) of subjects Always Miz. Notably, the

proportion of subjects who are Never Miz increases from 17.5% (10/57) in Block 1 to
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28.1% (16/57) in Block 2, the difference of which is significant at a 90% confidence level
(OLS, p = 0.058). In contrast, the proportion of subjects who are Always Miz decreases
from 24.6% (14/57) in Block 1 to 21.1% (12/57) in Block 2, although this difference is
insignificantly different from zero. These results suggest that with some experience, some
subjects learn to make the expected utility maximization choice — choose the dominant
option with 100% — in the Baseline treatment.

The most prominent type of subjects is Sometimes Miz, which constitutes 64.9%
(37/57) of subjects. In fact, Sometimes Miz is the most prominent type, not only when
considering choices made with the two blocks combined, but also within each individual
block of the Baseline. Unlike what is observed in the Baseline, the two most prominent
types in the Independence treatment are subjects who Always Mixz (43.9%) and those who
Sometimes Miz (42.1%), with both blocks combined. However, within each individual
block of the Independence treatment, there is a significantly larger proportion of subjects
who Always Miz (52.6% in Block 1 and 49.1% in Block 2) compared to those who
Sometimes Miz (29.8% in Block 1 and 28.1% in Block 2). The distribution of mixing
types in the Unknown treatment is similar to that of the Independence treatment. Our
results therefore indicate that the Sometimes Miz type in the Baseline is quite different

from those in the Independence and Unknown treatments.
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Figure 1.4: Mixing Types
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To further investigate whether the prevalence of the Sometimes Miz type in the
Baseline treatment primarily results from subjects’ responsiveness to changes in the cor-
relation between options, I examine the choices made by the Sometimes Mix type in
greater detail. In essence, I seek to determine whether subjects who Sometimes Miz in
the Baseline do so because they take the correlation between options into account and
are therefore more likely to allocate all the tickets on the dominant option when the two
options are positively correlated (i.e., APS), as opposed to the CPS. To achieve this goal,

I calculate, for each subject classified as Sometimes Mix, how many out of their choices
in the 12 tasks with the APS and in the 12 tasks adopting the CPS, are mz’xed@ And
then, I plot the distribution of subjects who Sometimes Miz based on the numbers of
mixed choices they make in tasks with these two payoff structures, and separated them

by treatment, as shown in Figure [1.5]

28With Blocks 1 and 2 combined, there are 12 tasks featuring the APS and 12 tasks featuring the
CPS. In each block, there are six tasks associated with each payoff structure.
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Figure 1.5: Choice Distribution among Sometimes Miz type between CPS/Frames
and APS/Frames
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Notes: Each circle is weighted by the number of subjects who made the same number of mized choices out of the 12 tasks
with the CPS/Classical Frame and of the 12 tasks with the APS/Alternative Frame. For the Baseline treatment, the x-axis
and y-axis represent the number of mized choices in tasks with the CPS and those with the APS, respectively. For the
Independence treatment, they denote the number of mized choices in tasks with the Classical Frame and those with the

Alternative Frame, respectively.

As illustrated in Figure subjects who Sometimes Mix in the Baseline treatment
behave differently from those in the Independence treatment. Among the 64.9% (37/57)
of subjects who Sometimes Miz in the 60 tasks in the Baseline treatment, 73% (27/37)
of them have strictly fewer tasks featuring the APS than tasks employing the CPS, in
which they mix between options. In addition, as shown in Figure [1.5, most subjects
who Sometimes Miz in the Baseline treatment are clustered at “mix in all the 12 tasks
with the CPS while allocating all tickets to the dominant options in some tasks using
the APS.” On the contrary, in the Independence treatment, among the 42.1% (24/57) of
subjects who Sometimes Miz in the 60 tasks, 50% (12/24) of them make mized choices in
strictly fewer tasks featuring the Alternative Frame than those with the Classical Frame.

As shown in Figure [1.5] subjects who Sometimes Mix in the Independence treatment
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are more likely to be clustered on the 45 degree line, thus indicating that the numbers
of mized choices they made are not significantly different in tasks with the Classical
Frame, compared to those with the Alternative Frame. These findings indicate that, for
subjects who Sometimes Miz in the Baseline treatment, their decisions to allocate all the
tickets to the dominant option in some tasks is not accidental. Instead, it is a result of
their deliberate consideration of the correlations between options and their corresponding
responses.

In sum, subject-level analysis also indicates that most subjects tend to respond to
variations in the correlation between options in the Baseline, which is in line with the
models of Correlation-Sensitive Stochastic Choice. It is important to note that a small
fraction of subjects who Never Mixz (17.5%) is consistent with expected utility benchmark
and models that respect FOSD and compound lottery reduction. The same fraction of
subjects who Always Mixz (17.5%) likewise aligns with existing models of Correlation-
Invariant Stochastic Choice.@ This suggests that the vast majority is not very responsive
to frame changes once the correlation between options is fixed, and that given the zero
correlation between options, most subjects tend to mix in every task.

I summarize the findings as follows:

Result 5. In the Baseline treatment, the most prominent type in the population are those
who Sometimes Mix (65%), which mainly results from the fact that the vast majority
of subjects are less likely to make mized choices when the correlation between options
increases. However, once the correlation between options is fixed, most subjects tend to

Always Mix in the Independence and Unknown treatments.

29Tt is possible that subjects who Always Miz tend to allocate fewer tickets, though not necessarily
zero, to the dominated option when the correlation between options increases. However, by regressing
the fraction of dominated options in each task on the correlation parameter in the Baseline, I reject this
hypothesis by finding the opposite pattern: subjects who Always Mixz on average allocate 2% of tickets
(less than one ticket) more to the dominated options when the correlation increases.
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1.5 Discussion

In this paper, I experimentally study the origin of probability matching behavior. I
unearth the underlying mechanisms behind probability matching and classify them into
three categories of theories: (1) models of Correlation-Invariant Stochastic Choice: mix-
ing due to factors orthogonal to the correlation between options such as non-Expected
Utility intrinsic preferences, inherent biases, inattentive and random mistakes, indif-
ference between receiving the bonus or not, etc.; (2) models of Correlation-Sensitive
Stochastic Choice: deliberately mixing to hedge against misperceived risk; and (3) Fram-
ing Effects: mixing due to some frame-sensitive heuristics (e.g., similarity heuristic), used
to simplify comparisons between marginal distributions. Three classes of models have
distinctive testable predictions on how the mixing behavior responds to variations in the
correlation between options and to different framing separately. Using a novel between-
subject design, I demonstrate that subjects deliberately take the correlation between
options into account, which can therefore account for a substantial amount of mixing
between dominant and dominated options or even matching precisely to the probability
of occurrence. In this section, I discuss the implications with respect to the existing
models of probability matching.

Expected utility benchmark, models of Correlation-Invariant Stochastic Choice, and
models of Correlation-Sensitive Stochastic Choice can accommodate some parts of the
findings, but none of them can fully explicate all of them. First of all, a minority of sub-
jects behave consistently with the expected utility benchmark and models of Correlation-
Invariant Stochastic Choices, which includes most preference-based models and some
heuristics. To be more specific, the observation that a sizable proportion (17.5%) of
subjects Never Mix in any of the 60 tasks is in line with expected utility benchmark:

respecting FOSD and compound lottery reduction. Similarly, the finding that an equal
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proportion (17.5%) of subjects Always Mix in each of the 60 tasks is consistent with mod-
els of Correlation-Invariant Stochastic Choice. That is, their mixing behavior is due to
factors orthogonal to how options are correlation in between such as non-Expected Util-
ity preference, inherent biases, random and inattentive mistakes, indifference between
getting the bonus or not, etc. Secondly, although the main finding is consistent with
which is argued by models of Correlation-Sensitive Stochastic Choice, it is worth not-
ing that none of the existing models in this category, as discussed in Section [1.2] could
be concluded to be the main mechanism behind all of these observations for two main
reasons.

On the one hand, these models cannot accommodate all the findings, for example, the
observation that subjects make different choices in the zero-correlation tasks between the
Baseline and Independence treatments, even when the framing is controlled. I compare
subjects’ choices in tasks where the two options have zero correlation in the Baseline
(e.g., Task 2 in Table , with tasks that employ identical frames in the Independence
treatment (e.g., Task 2 in Table . As depicted in Figure subjects are less likely to
make mized and exact PM choices in the tasks in the Baseline than those in the Indepen-
dence treatment, despite both sets of tasks featuring the zero correlation between options
and employing identical frames. I validate this finding by focusing on the zero-correlation
tasks in the Baseline and Independence treatments, i.e., Task 2 in each category, and re-
gressing the indicators of mized choices and exact PM choices on the dummy variable of
the treatments. As shown in Table subjects are 14.1% (p = 0.04) less likely to make
mized choices and 9.9% (p = 0.07) less likely to make exzact PM choices in the Baseline,
compared to the Independence treatment.

One plausible explanation for this discrepancy is that when the zero correlation is
described in words in the Independence treatment, subjects tend to interpret it differently

from the actual joint distribution that is presented in the Baseline. It could be due to
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Figure 1.6: Baseline VS Independence: Mixing Behavior in Zero-Correlation Tasks

Likelihood of Mixing Likelihood of exact PM

’_ Baseline [ | Independence

Notes: This figure is based on the choice allocations in Task 2 of each treatment with two blocks combined. Task 2 in the
Baseline treatment demonstrates the joint distribution of two options with zero correlation, and Task 2 in the Independence

treatment employs corresponding frame as Task 2 in the Baseline. The error bars depict 95% confidence intervals.

Table 1.15: Baseline VS Independence: Mixing Behavior in Zero-correlation Tasks
O )
mized  exact PM
IvsB(Baseline=1) -0.141**  -0.0990*
(0.0676)  (0.0541)

Constant 0.331 0.208**
(0.237)  (0.101)
Observations 1368 1368

Note: Results from OLS regression with observations in Task 2 and pooling Block 1 and Block 2 together. The dependent
variable takes the value of 1 if the allocation choice in a task is classified as (1) mized, or as (2) ezxact PM. IvsB is the
dummy variable on whether the task is in the Baseline VS Independence treatment. It takes the value of 1 if the task
is in the Baseline. The regression also includes categorical variables of probability categories, gender, and school year, as
well as indicator variables of dominant color and STEM as controls. Standard errors are clustered at the subject level and

listed in parentheses. Full regression results can be found in Appendix * p <0.10, ¥* p < 0.05, *** p < 0.01.
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the computational difficulty in thinking through all possible joint outcomes and correctly
calculating the associated probabilities. That is, given (A : p, B : 1 — p), subjects might
have different weights assigned on each joint outcomes:

o(p?) o (A:$M, B:30) @ o((1—p)?)o(A:$0, B:$M)&a(p(l—p))o(A:$M, B:
SM) @ o(p(1 —p))o(A:80, B:$0)

with the subjective weight o(-) where o(x) # x. This observation cannot be explained
by any existing models of Correlation-Sensitive Stochastic Choice, because none of them
account for the possibility that subjects might use misperceived correlation to make de-
cision. In other world, subjects take into account the correlation structure when making
decisions, but their perception of the joint distribution between options with zero correla-
tion differs from the actual one. Existing literature defines correlation neglect as individ-
uals’ tendency to ignore the correlation between options by treating them as if there is no
correlation between them (Enke and Zimmermann), 2019; Eyster and Weizsacker, 2011]).
This evidence suggests that subjects might also have imprecise perception on the zero
correlation, as one of the correlation structures. Investigating whether the difference is in
fact due to the misperceived zero correlation or because of other confounds, theoretically
and empirically, would be a promising direction for future research.

Moreover, each theory in the models of Correlation-Sensitive Stochastic Choice comes
with their own set of concerns when considered as the underlying mechanism behind
observed behavior. For instance, the irrational diversification model (Baltussen and
Post|, 2011} Rubinstein), 2002)), which assumes that subjects incorrectly believe they will
be paid for all the tickets instead of one randomly selected ticket, is somewhat unsatisfying
as an explanation for the observation given the fact that substantial efforts are made in
designing the instructions and interfaces to ensure that subjects correctly understand that
only one ticket would get paid. In the experiment, the instruction explicitly emphasizes

that only one ticket gets paid, tests subjects’ understanding regarding this matter via
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comprehension checks, and underscores this stipulation in the feedback provided after
each decision. Thus, it is reasonable to assume that the irrational diversification model
exerts a limited impact on subject’s mixing behavior.

There are some concerns raised when considering the evolutionary foundation pro-
posed by Brennan and Lo (2012) as the primary explanatory mechanism behind these
findings. Evolutionary explanations posit that with a sufficient number of trials with
feedback, which allow individuals to learn the joint distribution, their decisions will even-
tually converge to matching with the probability of occurrence, thereby rendering their
mixing behavior sensitive to the correlation between options. A few questions arise in
this regard. Firstly, the decision problem with unique features (same probability cate-
gory, same dominant color, and same correlation parameter) only repeats twice during
the entire experiment. Would this repetition be sufficient for meaningful learning to
occur? Secondly, the observed responsiveness to the correlation change in Block 1 of
the Baseline treatment cannot be justified by the evolutionary model, as each decision
problem in Block 1 is distinct from the others and subjects only receive repeated trials
in Block 2. Hence, suggesting new theoretical frameworks, especially those capable of
comprehensively explaining and accommodating these observations, or conducting tests
to determine which existing model in the class of Correlation-Sensitive Stochastic Choices
better explain these results, would be a fruitful direction for future research.

Last but not least, these results could serve as a potential explanation for why some
interventions aimed at reducing PM are effective while others are not. Numerous inter-
ventions have been proposed and studied across various contexts, while the evidence on
their effectiveness remains inconclusive. For example, |Schulze et al.| (2019)) fail to repli-
cate previous findings by Wolford et al.| (2004 that PM decreases when subjects have
extra cognitive load. On a related note, Martinez-Marquina, Niederle and Vespa| (2019)

find that eliminating uncertainty about which state would occur lets subjects be 8.7%
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less likely to make mized choices and 5.4% less likely to make exact PM choices, which
is smaller than the estimated impacts of correlation (16% - 22%) in this paper. One
common feature shared by previous studies is that: the two options under consideration
are perfectly negatively correlated (Agranov and Ortoleval, 2017; Martinez-Marquina,
Niederle and Vespa, 2019; Vulkan) |2000)). My findings could provide a more fundamental
explanation for these phenomena: the correlation between options might interact with
these interventions, potentially contributing to mixed evidence regarding their effective-
ness. For example, even when uncertainty is removed, subjects in Martinez-Marquina,
Niederle and Vespa (2019)’s study may still consider the relation between options and
mistakenly believe that there is an opportunity to hedge, which might reduce the effec-
tiveness of uncertainty reduction. Further theoretical and empirical studies along these

lines could be a promising avenue for future investigations.

1.6 Conclusion

Individuals tend to switch between options or even match precisely to the probability
of occurrence when predicting which of two payoff-relevant outcomes that differ only
in their probabilities of occurrence, which is a phenomenon referred to as “probability
matching.” In this paper, I experimentally study the origin of probability matching
by unpacking existing theories and reclassifying them according to three categories: (1)
models of Correlation-Invariant Stochastic Choice, which includes most preference-based
and some heuristics-based models, argue that people mix due to factors orthogonal to the
correlation between options and to the framing of those options such as non-Expected
Utility preferences or errors, etc.; (2) models of Correlation-Sensitive Stochastic Choice,
containing several heuristics and biases, posit that people mix due to some heuristics

that are sensitive to how options are jointly determined in each state, for instance, people
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deliberately use mixing as a tool to hedge against misperceived risk; and (3) Framing
Effects, assumes that individuals mix because they use some framing-sensitive heuristics
to simplify the comparison of marginal distribution between options, and with certain
frames, they attend to dissimilar but irrelevant attributes (outcome differences), while
neglecting relevant attributes (probability differences).

I find that the vast majority of subjects take into account the interdependence be-
tween options in each state of the world when making decisions. In response to the
perfectly negative correlation between options in the CPS due to the misperceived hedg-
ing opportunity, subjects mix between options or even matching precisely to the outcome
probabilities. Furthermore, I observe that although mixing behavior is robust to learn-
ing, learning amplifies subjects’ responsiveness to the correlation change: with some
experience, subjects are more responsive to changes in the correlation between options. I
also discover that the decision to mix between the dominant and dominated options are
significantly different from the decision to match exactly to the probability of occurrence.

My results highlight a number of areas for further research. First, it would be intrigu-
ing to explore the role of (misperceived) correlation between options in other domains
that likewise observe seemingly “suboptimal” stochastic choice. As previously mentioned,
existing models, such as correlation-sensitive preference (Lanzani, [2020)), have limited
predictive capabilities when it comes to stochastic choice. This holds true not only in
the specific context of this paper but also in other domains where no dominance rela-
tion exists, as correlation-sensitive preference pertains to preference over reduced lottery.
Without additional assumptions, this theory posits that, if one option is preferred over
the other, it is always optimal to always choose the preferred one than to randomize
between them, and people mix between options only when they are indifferent. Inves-
tigating how stochastic choice varies with changes in the correlation between options,

especially in domains without dominance relations, could provide greater insights into
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Correlation-Sensitive Stochastic Choice. Second, it would be interesting to expand the
scope of this study to investigate the general distinction between state-wise dominance
and first-order stochastic dominance in different choice environments such as one-shot
binary choice, convex budget set, or repeated choice environment. This could shed light
on the foundations of FOSD violation. Additionally, it would be worthwhile to explore
when the Framing Effects works to reduce FOSD violation and why it is not robust across
choice environments. Such an investigation could help us gain a better understanding
of how the choice environment prompts individuals’ violation of FOSD when making

decisions.
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Chapter 2

Preference for Sample Features and

Belief Updating

Joint work with Menglong Guan, ChienHsun Lin, and Ravi Vora

2.1 Introduction

Different sources, such as the media, government reports, and scientific studies, often
emphasize distinct statistical characteristics of the raw data about the same event, which
we call sample features, to inform and influence public opinions. This requires people
to interpret and incorporate the information conveyed by certain sample features for
decision-making. For example, individuals who subscribe to different newspapers adjust
their beliefs about a politician’s favorability based on the specific statistical characteristics
of the same poll results emphasized by their respective newspapers. Similarly, investors
receiving financial reports from different analysts need to modify their beliefs according
to the specific sample features of the same stock outcomes emphasized by the analyst

whose report they receive. During the 2020 United States presidential election, some
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media emphasized that Biden won Georgia by a narrow margin of 0.23% (49.47% versus
49.24% between Biden and Trump), while others highlighted the significant difference in
the number of votes (12,284)]]

An important question is how people employ and perceive the usefulness of different
sample features embedded in the realized signals (raw data) for belief updating, which
we know surprisingly little about.ﬂ While there could be various reasons from the supply
side as to why different sample features are adopted, it is essential to understand the
demand side: Are people better at using certain features than others? Do they perceive
some features as more useful than others? Are they sophisticated about their biased use,
if present?

On the one hand, highlighting different sample features might not matter if people
are equally good at processing each sample feature. As presumed by standard rational
models, people make statistically optimal use of the information conveyed by each sample
feature through Bayesian updating. On the other hand, behavioral factors can influence
how effectively people use information in sample features to update their beliefs. For
instance, when predicting the election winner based on a poll result, individuals could
have benefited from more informative sample features, such as observing all the votes in
a poll, but struggling to do so when presented with less informative alternatives, such
as only knowing the relative frequency of the votes received by the poll Winnerﬁ For
instance, if individuals know that there are 10,000 votes in total and the winner got 7000

votes, they learn that this is strong evidence indicating a high likelihood of the winner

1Sources: (2020, August 6). ‘Biden has edge in North Carolina and race is tight in
Georgia — CBS News Battleground Tracker poll’ and [Staff, A. 11Alive.com| (2020, November 9). ‘Blog:
Joe Biden’s Georgia lead widens to more than 12,000’.

2While there is a large literature studying belief updating, it focuses on how people update beliefs
when receiving information about the realized signals with most sample features presented (Benjamin,
2019)).

3The informativeness of a sample feature is defined as how much more uncertainty about the payoff-
relevant state is reduced by using the sample feature to update beliefs, compared to the no-information
case. See Section [2.3|for details.
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Figure 2.1: “Balls-and-Boxes” Task and Five Sample Features

BOX O ) | ? BOX G

Majority Proportion | | Difference Count Sequence
Less :33% 1 more 01
More 1 67% than 2

Note: Existing literature studies belief updating by employing the “Balls-and-Boxes” task with Count
or Sequence provided. We use a novel design by separating the sample features in Count into Majority,
Proportion, and Difference.

winning the election as well. However, if they only know that the winner received 70%
of the votes in the poll, without knowing the size of the poll, it becomes challenging to
determine whether this is strong or weak evidence. Individuals must additionally account
for this uncertainty when making inferences. This additional step of consideration could
be cognitively taxing and affect how effectively they utilize the information.

In this paper, we use a laboratory experiment to study these questions. Start
with the widely used “balls-and-boxes” task by existing literature for studying infer-
ence from symmetric binary signals about a binary state (Benjamin, 2019), as shown in
Figure 2.1} One of the two boxes is randomly selected with equal chance. Each box has
ten balls, seven of which match the color of the corresponding box, while the remaining
three match the color of the alternative box. That is, Pr(One green ball|Box G) =
Pr(One orange ball|Box O) = 70%. The subjects’ objective is to assess the probability
that the picked box is Box G versus Box O, and gets paid by Binarized Scoring Rule
(Hossain and Okui, [2013). As a clue, a sequence of balls is drawn out of the chosen box
with replacement. Existing studies on belief updating either use Count or Sequence ( as
illustrated in Figure to inform subjects about drawn balls.
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To answer the questions of our interest, instead of directly showing the sequence of
drawn balls, we propose a novel experimental design where we use five reports to separate
representative sample features extracted from the information about drawn balls. The
five reports are (1) Majority: indicates whether the set of drawn balls has more green or
more orange balls; (2) Proportion: displays the relative frequencies of green and orange
balls among the drawn balls, respectively; (3) Difference: demonstrates the difference
in the absolute frequency of green and orange balls among the drawn balls; (4) Count:
illustrates the absolute frequencies of green and orange balls among the drawn balls,
respectively; (5) Sequence: depicts the original sequence in which the balls were drawn.

Among these reports, we employ Sequence and Count to replicate the findings doc-
umented in the existing literature. Sequence contains all the sample features of the
realized signals. From Sequence to Count, the information on the order of realized sig-
nals is excluded, which is not useful for Bayesian inferenceﬁ We use Difference, which
is the sufficient statistics of information about realized signals for Bayesian inferences
in (symmetric) inference problems (Benjamin, 2019). From Count to Difference, the
information on the sample size is not provided, which is not instrumental for Bayesian
inference in (symmetric) inference problems. By comparing across Difference, Count and
Sequence, we can examine the extent to which non-instrumental features matter and how
agents perceive their usefulness. We use Proportion to isolate the “Strength” (sample
proportion) from the “Weight” (sample size), as defined in the “Strength-Weight bias” by

Kahneman and Tversky (1972)E Without the information about “Weight,” Proportion

4Instrumental value of a report is defined as the expected payoff that a Bayesian agent can receive by
using it to update beliefs in “balls-and-boxes” task, compared with the case with no information. In our
setting, informativeness and instrumental value give the same prediction of the ordinal rankings among
the five reports. Thus, we use informativeness (informative) and instrumental value (instrumental)
interchangeably. See Section for more details.

5«Strength-Weight bias” describes the bias that individuals tend to over-weight sample proportion
(“Strength”) while under-weighting sample size (“Weight”) when using Sequence or Count to update
beliefs in “balls-and-boxes” tasks. These studies exogenously manipulate sample proportion and sample
size embedded in Sequence or Count, and structurally estimate the coefficients on sample size and on
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is less informative than Difference, Count, and Sequence. Majority is the least informa-
tive feature among the five. Comparing across Sequence/Count/Difference, Proportion,
and Magjority allows us to study how the updating behaviors respond to the change in
the informativeness of sample features.

The experiment consists of two parts. Part 1 uses a ranking-cards method inspired by
Dustan, Koutout and Leo (2022)) to elicit subjects’ willingness-to-pay of receiving each
of the five reports in the “balls-and-boxes” task. It allows us to measure the perceived
usefulness of each feature. In Part 2, we employ the strategy method with 33 pre-
selected scenarios of the “balls-and-boxes” task. These scenarios are designed to capture
how subjects respond and adjust their beliefs based on various signal realizations and
different information conveyed by different reports.

We have two main findings regarding how well subjects use different reports when
updating beliefs. These observations are robust to different measures of performance:
average absolute deviation from the Bayesian benchmark and estimated responsiveness
to information change using the |Grether| (1980) model. Firstly, subjects’ belief updating
deviates from the Bayesian benchmark under each report. However, it is least severe un-
der Proportion, despite Proportion being less informative compared to Difference, Count,
and Sequence. It suggests that subjects are better at using the “Strength” (sample propor-
tion) when used alone, rather than when combined with “Weight” (sample size). Secondly,
among the reports that are equally informative, i.e., Difference, Count, and Sequence,
subjects’ belief updating is closer to the Bayesian benchmark when using Count and
Sequence, compared to Difference. Our findings indicate that subjects are not equally
good at processing each sample feature, contrasting to what the Bayesian benchmark sug-

gests. Moreover, the biased use does not monotonically improve with the informativeness

sample proportion, respectively. By testing whether the two coefficients are identical and equal to one,
the common finding is that the coefficient on sample proportion is significantly larger than that on
sample size, and both are less than one (Benjamin| |2019)).
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of sample features.

In terms of perceived usefulness, we find that, on average, the perceived usefulness of
the features deviates from the predictions of instrumental value in two ways. First, there
is no significant difference in the average WTP among Proportion, Count, and Sequence,
despite the latter two features being more instrumentally useful than Proportion. Second,
on average, subjects assign a significantly higher value to Proportion/Count/Sequence
by a margin of $0.68, compared to Difference or Magjority, even though the former three
features have the maximum instrumental value. These results suggest that subjects fail
to fully recognize the usefulness of other features, such as Difference and sample size,
even though incorporating either of them with Proportion increases the instrumental
value of information.

These findings suggest that subjects, on average, have a strong preference for sample
features that contain Proportion compared to those that do not. Features that contain
Proportion, i.e., Count and Sequence, require subjects to conduct some calculations to
get the proportion information. Features that do not contain Proportion, i.e., Difference
and Majority, require additional inference about all the potential sample proportions
that could lead to the same Difference or Majority information, along with more difficult
calculations. The increased difficulties of inference and calculation required to get the
proportion information might lead to the distaste for Difference and Majority.

Examining the association between subjects’ perceived usefulness and the actual use
of the five sample features, we observe that, on average, subjects are self-consistent
between their preferences and performances, making better use of the sample feature they
prefer. This finding suggests that the biased use of sample features in belief updating is
more likely to be an intentional deviation rather than a result of inattentive heuristics.
However, there is also non-negligible inconsistency between preferences and performances,

and the most prominent pattern is that some subjects prefer a report that contains more
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or more informative features than another but perform relatively worse under it. In
each possible pairwise comparison of reports, among subjects whose preference for and
performance with the two reports, a non-negligible inconsistency between preferences and
performances, and the most prominent pattern is that some subjects prefer a report that
contains more or more informative features than others are ordinally inconsistent, over
60% of them follow this pattern. It indicates that a significant portion of subjects tend
to prioritize quantity (as many features as possible) over relevance (how useful they are
in the actual task) while failing to take into account the cost of processing more features
than necessary.

Our study is related to several strands of literature. First of all, our findings contribute
to the existing literature on belief updating and learning. We are the first to show direct
evidence of how subjects use and perceive the usefulness of sample features for belief
updating. Most previous studies demonstrate the biased use of sample features based
on indirect evidence and structural estimation. They identify “Strength-Weight bias”
or “Sample Size Neglect,” by asking subjects to update beliefs with either Count or
Sequence adopted to convey the information about realized signals (Griffin and Tversky,
1992).

By estimating the coefficients on sample size and sample proportion, respectively,
they find that the weight on sample size is smaller than that on sample proportion [
Kraemer and Weber (2004) studies how the presentation mode of the signals affects
belief updating by comparing realized signals and Proportion plus sample size. They
find that subjects’ focus on sample proportion is pronounced when they receive explicit
information regarding sample proportion plus sample size compared to when receiving
realized signals. When most sample features are available, it is challenging to discern

whether the biased weights result from the different abilities in utilizing each feature or

6See [Benjamin| (2019)) for the meta analysis.
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from the inclusion of too many sample features.

We add to this literature by presenting direct evidence that individuals are not equally
good at processing each sample feature embedded in the realized signals, and they value
the usefulness of sample features differently from instrumental value. Specifically, we
find that subjects are better at processing sample proportion alone, compared to more
informative features or those with other features combined. Furthermore, we demonstrate
that these biases are more likely to be intentional deviations rather than the result of
inattentive heuristics.

Second, our study contributes to the existing literature that examines the impacts of
coarse versus precise information. [Ravaioli| (2021)) investigates how the coarsening of food
labels affects the number of calories consumed in food choices. He proposes a bounded
rationality model with precision overload to explain his main finding: coarse-categorical
labels reduce the number of calories consumed in food choices. As a complement to his
study, we provide direct evidence that, even in an abstract learning environment, individ-
uals are worse at processing detailed information when all sample features are included,
compared to coarse information with certain features excluded. We also show that not all
forms of simplification work. Both Difference and Proportion contain a reduced number
of sample features, yet subjects perform worse with Difference compared to Proportion,
despite the former having a higher instrumental value. Our results suggest that the per-
ceived usefulness may play a role in determining the effectiveness of coarse information:
if the coarse information emphasizes a sample feature that individuals consider useful,
they are more likely to make better use of it when updating their beliefs.

Third, our study is related to the demand for information literature. There is a

growing literature on how people choose and evaluate information with instrumental value

(Ambuehl and Li, 2018} Charness, Oprea and Yuksel, 2021; |Guan, Oprea and Yuksel,
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2023; |[Liang), 2023)ﬂ Among them, the most closely related to our study is|Ambuehl and
Li (2018)), which connects the under-responsiveness to instrumental value in information
evaluation with the non-Bayesian use of information. We also find people’s evaluation
of information broadly aligns with how well they use the information from the Bayesian
perspective. In addition, our finding of people performing better with Proportion and
overvaluing Proportion suggests that the non-Bayesian use of information could lead to
more severe deviations from instrumental value than under-responsiveness in the demand
for information.

The remainder of the paper is organized as follows. Section describes the ex-
periment design. Section lists theoretical predictions. Section presents results.

Section concludes by discussing the implications of our main findings.

2.2 Experimental Design

We design the experiment to investigate how subjects use and perceive the usefulness
of various sample features of realized signals in belief updating. To accomplish this, the
experiment consists of two parts: (1) ex-ante preference elicitation; (2) belief-updating
scenarios. Figure demonstrates the experimental procedure. It starts with an in-
troduction to the “balls-and-boxes” belief updating task, namely Assessment Task, and
the five reports subjects may receive. This is followed by two practice rounds without
feedback. Then, in Part 1, we elicit the subjects’ preference regarding the five reports.
In Part 2, we use the strategy method to gauge how subjects employ the information

provided for belief updating across 33 pre-selected scenarios of the Assessment Task.

"There is also a large literature focusing on non-instrumental information and showing people’s de-
mand for information could be driven by timing preference of uncertainty resolution (Nielsen, [2020)),
preference for positive skewness (Masatlioglu, Orhun and Raymond} |2017)), curiosity or motivated at-
tention (Golman and Loewenstein, 2018} |Golman et al.l |2022), anticipatory feelings (Caplin and Leahyl,
2001)), etc.
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Subjects face the Assessment Task after finishing Part 2. One of the two parts is ran-
domly selected for payment, and subjects’ decisions in the chosen part determine their

final payments in the Assessment Task.

Figure 2.2: Timeline of the Experiment
Payment Determination

Part 1: Part 2:

. . TAILS
Practice |:> Preference |:> Belief |:> HEADS OR
Elicitation Updating
Scenarios Path 1: Path 2:
Assessment Task Assessment Task
based on Part 1 based on Part 2

The rest of this section describes the components of the experimental design in detail.
First, we outline the basic setups of the belief updating task, Assessment Task, and the
five reports of the realized signals. Then, we demonstrate how we elicit preferences
regarding the five reports and performances in the belief updating scenarios. Lastly, we

discuss the choices of experimental design.

2.2.1 The “Assessment Task”

To measure how subjects use information to update beliefs, we use the stylized balls-
and-boxes setting. This setting involves two boxes, each containing ten balls. Boz G
consists of seven green balls and three orange balls, while Box O consists of three green
balls and seven orange balls. The computer randomly selects a box with equal probability.
Thus, the state of the world w is either O or G. Then, the computer independently draws
balls out of the chosen box with replacementﬁ Subjects do know which box is selected,

and are asked to assess the likelihood of the selected box being Box O or Box G. This

8Therefore, the diagnostic rate — the likelihood of drawing a ball from the box that matches the color
of the box itself — is symmetric: P(one green ball| Box G) = P(one orange ball|Box O) = 0.7.
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Figure 2.3: Screenshot of Assessment Task: Practice Round

This is the information you see from the report.

71% are There are 3 more There are more “ than . . 5 are
29% are @ than @ @& 123 4567 2ae @

What is the percentage chance that the picked box is Box G vs Box 0?7

Click on the slider bar then drag to assess.
Box G Box O

...:: ' 000

There is 81% chance that Box O was picked.
19% There is 19% chance that Box G was picked. 81%

process of forming posterior belief is referred to as the Assessment Task and serves as the
basis for determining the subject’s likelihood of receiving the $10 bonus after completing
Parts 1 and 2.

The computer randomly draws N balls from the chosen box with replacement, where
N is a random number selected from {3,5,9,15} with equal probabilities. We use S =
(s1,...,8n), where for each ball, s,, € {0, g} withn € {1,2,..., N}, to denote the sequence
of drawn balls. Instead of directly observing the exact sequence of drawn balls S, subjects
receive a summary of the sequence through one of the five reports, denoted as vg. The
report, g, maps the sequence of drawn balls (S) to a statistical feature of S represented
by report R, denoted as y(5) := S,,,. Different reports capture different features of the
drawn balls: (1) Sample Majority, denoted as Majority yp—“Are there more green or
orange balls in the sample?”; (2) Sample Proportion, denoted as Proportion vp—“What
is the fraction of green balls in the sample?”; (3) Sample Difference, denoted as Difference
vp— “How many more green (orange) balls are there in the sample?”; (4) Sample Count,
denoted as Count yo—“What are the total numbers of orange and green balls in the
sample, respectively?”; (5) Sample Sequence, denoted as Sequence ys—“What is the
sequence of drawn balls?”. Figure [2.3| shows the interface of Assessment Task that

subjects see during the practice round. Each hypothetical scenario task in Part 2, as well
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as the final Assessment Task, employs a similar interface. However, it should be noted
that subjects are presented with a maximum of one report at a time.

To ensure incentive compatibility of posterior elicitation in the Assessment Task, we
use the Paired-Uniform Scoring Method introduced in [Wilson and Vespa (2018)) as it
elegantly sidesteps the need for detailed technical explanationsﬂ Although we explain
the payment determination logic to the subjects, we explicitly emphasize that it is in

their best interest to report their true beliefs.

2.2.2 Part 1: Preference Elicitation

Our design aims to identify both the cardinal and ordinal rankings of subjects’ pref-
erences regarding the set of reports. To achieve this, we employ a ranking-cards method
whereby each subject is required to place five Report cards, one for each report, within
an ordered list of 20 No Report + Money cards[[|

For the No Report + Money cards, the dollar value ranges from $5 to $0, descending
in increments of $0.25. To incentivize subjects to rank the cards according to their
true preferences, subjects are told that, if Part 1 is randomly chosen for payments,
the computer would randomly select two cards from the set of 25. The higher-ranked
card would then be designated as the report that they would receive to summarize the

information about the drawn balls in the Assessment Task[™

9The Paired-Uniform Scoring Method is equivalent to the commonly exploited (incentive compatible)
belief elicitation method, Binary Scoring Rule (BSR). In the binary scoring rule, the subjects are paid
according to the squared distance to the actual belief. Specifically, let p be the subject’s actual belief
that the true state w = O (and 1 — p be the belief that w = G), and a be the stated belief. Then the
subject will be informed of the realized state: when the realized state is w = O, the payoff if 1 — (1 —a)?;
when when the realized state is w = G, the payoff if 1 — a?. Hence the expected payoff given the stated
belief a is p(1 — (1 — a)?) + (1 — p)(1 — a?). One can show that the expected payoff is maximized when
a=p.

10This method is incentive compatible for expected utility maximizers. See Appendix for details.

HFor additional details about the ranking-card method and its incentive compatibility, please refer to
Appendix The method is inspired by |[Dustan, Koutout and Leo| (2022)) but is different from theirs to
some extent. In ours, subjects rank multiple object cards simultaneously, then two cards are randomly
drawn and the one ranked higher is implemented. In Dustan, Koutout and Leo| (2022)), subjects insert
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Figure 2.4: Screenshot of Ranking-Card Preference Elicitation Over Reports
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1234567
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We use the same payoff method explained previously to determine subjects’ final
payments based on their stated beliefs in the Assessment Task. If the higher-ranked card
is a Report card, denoted as g, subjects will complete the Assessment Task with the
information about the drawn balls summarized by the corresponding report, S,,. On
the other hand, if the higher-ranked card is a No Report + Money card, subjects will
finish the Assessment Task without any information about the drawn balls. In addition
to the payment received from the task, they will also receive the monetary compensation
specified on the card. Figure depicts an example of the Assessment Task when Part

1 is selected for payment and the No Report + Money card is ranked higher.

2.2.3 Part 2: Belief Updating Scenarios

We employ the strategy method to measure subjects’ performances across 33 pre-

selected scenarios of the Assessment Task. To be more specific, after subjects state their

an object card into a list of lottery cards, then a lottery card is randomly drawn. The object card
will be implemented if it is ranked higher than the drawn lottery card; otherwise, the lottery card is
implemented.
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Figure 2.5: Screenshot of the Assessment Task when Part 1 is Selected for Payment

The Assessment Task

Part 1 is selected.

The cards and Report5 are drawn,
where was ranked higher.

Because is ranked higher, you do not receive any report.

What is the percentage chance that the picked box is Box G vs Box 0?

Click on the slider bar then drag to assess.
Box G Box O

...:: 000

There is 51% chance that Box O was picked.
49% There is 49% chance that Box G was picked. 51%

preferences for the five reports, they proceed to complete the hypothetical Assessment
Task for the set of 33 predetermined scenarios. Figure [2.6is an example of it.

In each scenario, subjects are presented with one report and are asked to state their
posterior beliefs. If Part 2 is selected for payments, in the Assessment Task, the computer
will check whether the information about the drawn balls, as summarized by report R
(S,,), matches one of the pre-selected scenarios. If a match is found, the computer will
utilize the subjects’ stated beliefs from that specific scenario as their posteriors in the
Assessment Task, to determine their final payments. If there is no match with any pre-
selected scenario, subjects need to manually complete the Assessment Task by reporting
their beliefs via the slider bar. Consequently, subjects have no incentive to provide false

posteriors beliefs during Part 2.
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Figure 2.6: Example of a Scenario in Part 2

Suppose the following is the information you see from the report.

12345678 9101112131415

What is the percentage chance that the picked box is Box G vs Box 0?

Click on the slider bar then drag to assess.
Box G Box O

...:: 000

There is 8% chance that Box O was picked.
92% There is 92% chance that Box G was picked. 8%

2.2.4 Understanding the Design

We design the experiment to answer two questions: (1) how subjects use different
sample features embedded in the realized signals when updating beliefs; and (2) how
they perceive the usefulness of the sample features in helping belief updating. Here we
highlight the design choices made to facilitate these goals.

First, to cleanly identify how subjects use the sample features embedded in the real-
ized signals, we employ the simple and classical “balls-and-boxes” setting with symmetric
prior (Pr(Box G) = Pr(Box O) = 50%) and symmetric diagnostic rate (Pr(1 green ball| Box G) =
Pr(1 orange ball|Box O) = 70%). The use of symmetric prior and symmetric diagnostic
rate serves two purposes in our study. Firstly, it reduces the burden of understanding the
belief updating environment, making it easier for participants to comprehend and engage
with the task. Secondly, it helps mitigate any potential bias that could arise from sub-
optimal utilization of prior information or an asymmetric perception of diagnostic rates.
By employing symmetric priors and diagnostic rates, we aim to minimize any distortions
in our objective of identifying how subjects utilize the sample features, ensuring a more

accurate analysis[1]

12WWe acknowledge that subjects may exhibit biases in aggregating prior information and the infor-
mation of realized signals, and their use of sample features may also impact how they aggregate the
information in general. Our study focuses on cleanly identifying the use of different sample features as
the first step. We leave room for future extensions to explore variations such as asymmetric priors and
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Second, we carefully choose five reports to capture representative sample features.
Firstly, we use Count and Sequence as benchmarks to replicate findings from existing lit-
erature on belief updating (Benjamin| 2019). Secondly, we employ Proportion, which indi-
cates the “Strength” (representativeness of the signals) in the “Strength-Weight bias” or
“Sample Size Neglect” described by |[Kahneman and Tversky| (1972)), to isolate “Strength”
(sample proportion) from “Weight” (sample size). Furthermore, we include Difference,
which serves as the sufficient statistics of the information about realized signals S for
Bayesian inferences in (symmetric) inference problems (Benjamin, 2019).@ By directly
measuring subjects’ belief updating when presented with one feature at a time, we can
explore whether subjects are equally good at processing each feature but struggle when
processing the information with multiple features combined. Or alternatively, their abili-
ties to process each feature fundamentally differ and so does their perceived usefulness of
each feature. This exploration may shed light on the underlying mechanisms behind bi-
ases in belief updating, such as the “Strength-Weight bias” Lastly, we employ Majority to
maximize variations in sample features with different instrumental values. This enables
us to examine the extent to which the informativeness of sample features predicts how
subjects use and perceive their usefulness. For a more detailed discussion on theoretical
benchmarks, please refer to Section [2.3]

Next, we intentionally select a set of 33 scenarios to achieve two goals: (1) to expose
subjects to a representative range of sample outcomes for each of the five reports; and
(2) to intentionally obscure the exact number of balls drawn in certain reports. Some
reports require additional effort to accurately deduce the complete information about all
possible realizations of drawn balls. This deliberate obscurity prompts subjects to invest

thoughtful analysis in interpreting the available information, which allows us to assess

asymmetric diagnostic rates, which could provide further insights into these phenomena.
13With asymmetric diagnostic rates, Pr(green ball|Box G) # Pr(orange ball| Box O), Difference is
still more informative than Proportion.
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the impact of inferential effort on belief updating.

Furthermore, we deliberately choose the set of numbers: {3,5,9,15}, from which
we sample the sample size N, for three reasons. Firstly, we aim to ensure that the
Bayesian posteriors, as the benchmark, are uniformly distributed between 0% and 100%.
To achieve this, we restrict the maximum number of balls to prevent clustering at the
extreme values (0% or 100%). Large sample sizes could otherwise lead to near-certainty
Bayesian posteriors, while very small sample sizes would result in minimal variation across
reports.E Secondly, by selecting odd numbers as the sample size, we avoid situations
where the Bayesian posterior equals the prior (50%). This enhances the statistical power
of the experiment, as reports that yield 50% posteriors are interchangeableﬁ Thirdly,
we select sample sizes with common factors only, with the intention of adding the needs
to consider certain information can either be strong or weak evidence. This is because
multiple realizations of the balls, whether it is strong or weak evidence, can map to
the same information conveyed by certain report S, ,. Less informative sample features
require additional steps to deal with this uncertainty which could be cognitively taxing.
It allows us to investigate the extent to which this additional inferential effort predicts
subjects’ performance across the five reports.ﬂ

Finally, we have set the preference elicitation before the belief updating scenarios

in order to understand how subjects evaluate the values of each report and predict the

1For instance, if a subject receives a report stating “67% of balls are orange balls,” having large
sample sizes would lead to a near-certainty Bayesian posterior that the selected box is Box O (e.g.
a Bayesian posterior of 99.97% for N = 30, 98.58% for N = 15, and 70% for N = 3). With N =
1, the Bayesian posterior would be equal to the diagnostic rate: Pr(Boxz G|1 green ball) = 70% =
Pr(Box O|1 orange ball), resulting in minimal variation across reports.

15For example, Proportion “50% of balls are orange”’— Count “same number of balls of different
colors”— Difference “no difference in the number of balls of different colors” give identical Bayesian
posteriors.

16For instance, consider the report stating “67% of drawn balls are orange.” In this case, there are
three equally likely scenarios with different levels of information strength: (1) a sample of two orange
balls out of three draws, which would be relatively weak evidence; (2) a sample of six orange balls out
of nine draws, which would be the evidence of intermediate strength; or (3) a sample of ten orange balls
out of fifteen draws, which would be relatively strong evidence.
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usefulness before experiencing the different reports in the belief update tasks. This
ordering minimizes the impact of relative frequency on the evaluation, as subjects will

be exposed to reports with varying frequencies during the belief updating scenarios/"]

2.3 Theoretical Predictions

In this paper, we focus on two main aspects of the belief elicitation problem: the
performance in the updating tasks and the preference over the reports. The following

sections will describe the primary predictions of each aspect.

2.3.1 Performances in the Updating Task with Reports
2.3.1.1 Setup and Bayesian Inference

We first discuss the Bayesian benchmark in the updating tasks with reports. We use
w € {O,G} to denote the state of the world (which box is selected), and the objective

prior belief is P(w = G) = 1. Given the realized state w € {O,G} (selected box),

|

N € {3,5,9,15} and is randomly determined with equal probability and a sequence of N
balls are drawn independently with replacement. The drawn sequence of balls is denoted
as S = (s1,...,8y), where for each ball, s,, € {0,g} withn € {1,2,..., N}. The diagnostic
rates, probabilities that a ball o is drawn from Box O and a ball ¢ is drawn from Box G,

are symmetric,

p(sp =0lw=0)=p(s, =glw=G)=0=0.7

The Report, g, maps the sequence of drawn balls (S) to some statistical feature of

the sample S summarized by report R. We denote vz(S) := SVRF_g] A Bayesian agent

"By the nature of our design, there is one scenario question under Majority and 15 questions under
Sequence.
18For example, let S = (0,0,0,9,9). As in our design, with Majority, i.e. ~ar, then vp(S) =
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forms the posterior belief conditional on the feature of the drawn balls (S) summarized

by report R, S, ,:
p(G|Sy)  p(Sy, | G)p(G) .

where 29 ig the ratio of prior beliefs, 2 $1819) 45 the ratio of conditional likelihood of
p(G) p(SyR|G)
receiving 5., given state, and i Eg:z’*; is the ratio of posterior beliefs. With symmetric
R

prior belief of states O and G, the Bayesian posterior can be reduced to

- (2.2)

When a Bayesian agent observes the features of S summarized by reports Sequence,
Count, or Difference, it is sufficient to use the information about the difference between
the numbers of o and ¢ balls in the sequence of drawn balls S to find the Bayesian

posterior as shown below:ﬂ

N, + N,
T oY1 — )N
PO[S) _p(Syl0)  \ Mo _ ( i )NO_NQ (2.3)
p(G ‘ S’YR) p(S'YR | G) N, + N, 1-90
(1 — 0)NogNy
Ng

where N, and Ny, are the numbers of 0 and g in the sequence of drawn balls S, respectively.
The Bayesian posterior is a function of the difference in the numbers of 0 and ¢ balls in
the drawn balls S, N, — Ny, and the diagnostic rate, 6.

For reports Proportion and Majority, however, the drawn balls with different sample
size N can map to the same S,,. Thus, a Bayesian agent needs to take into account the

fact that, given the realized state w, the likelihood of receiving S.,,, Pr(S,,|Box w, N),

TR

“More o than g;” with Proportion, i.e. vp , vp(S) =“60% o and 40% g.”
9By sufficient, we mean no additional inference is needed before applying the Bayes’ rule.
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varies with the number of drawn balls, N. For instance, when S.,,. says “33% o and 67%
g”, the actual drawn sequence S can be under one of the following equally-likely cases:
() N=3:1oand2g, (2) N=9: 30and 6 g, or (3) N =15: 5 0 and 10 g. Then, she
needs to form expected likelihood of 5., given the realized state w, over all possible V.

Thus, we further extend Equation (2.2) into

p(O | S’m) p(‘SvR | O) - ZNE{3,5,9,15} p(N)p<S'YR ‘ OvN)

p(G | Syp) B p(Se | G) a ZN€{3,5,9,15} p(N)p(Sys | G, N)

(2.4)

where P(N) = ;. Note that each p(S,, | O, N) can be found with the same method as

in Equation ([2.3)).

2.3.1.2 Empirical Strategies and Hypotheses

We use two ways to evaluate how well agents use sample features when updating
beliefs. On the one hand, we measure the absolute distance between agents’ stated
posteriors and Bayesian posteriors. For a Bayesian agent, it maximizes her expected
payoff by reporting the Bayesian posteriors, and there is no difference across sample
features. That is, a Bayesian agent always makes the best of each sample feature. If the
stated posterior deviates less from the Bayesian posterior under one report compared to
another, we say that the agent performs better under the former than the latter one.

On the other hand, we follow Grether| (1980)’s framework of the balls-and-boxes
paradigm to measure how responsive agents are towards the change in the likelihood
ratio of receiving S,, given state wm Grether| (1980)’s framework distinguishes the

biases in using realized information from those in incorporating the prior belief by adding

p(S+510)

207t refers to the ratio of the likelihood of receiving S, conditional on the state, PICATER
YR
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parameters ¢ and d to Equation (2.1 respectively

reren = Giszra) (o)

where 7(- | S,,) represents the subjective posterior conditional on receiving S,,. As
p(O) = p(G) in our setting, the last term becomes 1, and therefore the subjective poste-
rior becomes a function of the likelihood ratio of the signal realizations with parameter

c. By taking logarithm, we have

where the coefficient ¢ measures how responsive agents are towards the change in the
likelihood ratio of S,,. A Bayesian agent has ¢ = 1 in each report. ¢ < 1 corresponds to
updating as if S, ,, provided less information about the state than it actually does (under-
inference). The lower the ¢, the less sensitive agents are to the change, and thus the more
severe under-inference. ¢ > 1 means updating as if S,, was more informative than it
actually is (over-inference). The last equality follows from Equation . Specifically,

we estimate the following regression model:

b (ZQL5)) o (HO15) .

where X is the vector of demographic variables added as controls; « is the constant term
and € is the residual. If the estimated c¢ from stated beliefs under some report is closer
to 1 than the others, we would say that subjects perform better with the former report

than the latter one.
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2.3.2 Preference over Reports
2.3.2.1 Instrumental Value of Reports

We use two ways to measure the instrumental value of the reports. On the one hand,
we evaluate the instrumental value of the reports by how much the report can improve the
expected payoff in the belief updating task. Let S(r) be the set of possible realizations
under yg. As we employ the binary scoring rule (BSR) for payment, a Bayesian agent
maximizes the expected payoff by reporting the Bayesian posterior given realized S,,.

Thus, the expected payoft of vg is

EP(yr)=B- ) [p(O1S,,)(1 = (1= p(0]8,,))*) + (1 = p(O]5,,)) (L = p(O15,))] p(S;)

SWRGS('YR)

where B = $10 is the size of the bonus, and p(S,,) is the likelihood of receiving S,
given vg. Note that without any information, the agent knows the prior only. Thus, the
instrumental value is defined as the difference in the expected payoff between receiving

vr and receiving no information:

V(vr) = EP(vr) — EP(R)

where EP(Fy) denotes the expected payo