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Abstract

Three Essays in Behavioral and Experimental Economics

by

Jing Zhou

This dissertation consists of three chapters that explore why individuals make seem-

ingly suboptimal decisions in risk management, why they fail to use information in a

Bayesian manner when updating their beliefs, and how novel methodological tools can

be developed to advance modelling and inference about subjective beliefs or perceptions,

considering cognitive limitations.

Chapter 1 studies the underlying mechanisms behind a classical behavioral puzzle in

risk management, called Probability Matching. Probability matching refers to people’s

tendency to randomize between different risky options, or even match their choice fre-

quency to the outcome probability, when choosing over binary lotteries that differ only in

their probabilities. Why? I present an experiment designed to distinguish between three

broad classes of explanations: models of Correlation-Invariant Stochastic Choice (mixing

due to factors orthogonal to how outcomes are jointly determined, such as non-standard

preferences or errors), models of Correlation-Sensitive Stochastic Choice (e.g., deliber-

ately mixing due to misperceived hedging opportunity), and Framing Effects (indecisive-

ness due to frame-sensitive heuristics e.g., similarity heuristic: attending to dissimilar

but irrelevant attributes (outcomes), while ignoring relevant attributes (probabilities)).

My experimental design uses a diagnostic approach, differentiating between their testable

predictions over a series of treatments. The results suggest that a substantial proportion

of mixing behavior aligns with models of Correlation-Sensitive Stochastic Choice, while

the other classes have limited explanatory power.
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In Chapter 2, a joint work with Menglong Guan, ChienHsun Lin, and Ravi Vora, we

experimentally investigate how people value and utilize different statistical characteristics

of a set of realized binary signals, referred to as sample features, to understand why

individuals deviation from the Bayesian benchmark when updating beliefs. We find that,

subjects systematically under-infer the information contained in each sample feature.

Furthermore, the magnitude of under-inference significantly varies across sample features.

Specifically, under-inference is least severe with Sample Proportion (the relative frequency

of different outcomes in the realized signals), compared to more informative features such

as Sample Count (the absolute number of different outcomes in the realized signals). We

also find that the standard measure of informativeness used in information theory does

not fully explain subjects’ preferences for sample features. Subjects demonstrate a strict

preference for the information contained in the Sample Proportion over those without it

and undervalue the usefulness of sample size. Combining preference and belief updating

behaviors, we find that subjects deviate less from the Bayesian benchmark when provided

with a more-preferred feature than a less-preferred one. These results suggest that some

biases in signal usage is more likely an intentional deviation rather than a result of

inattentive heuristics.

In Chapter 3, a joint work with Xin Jiang, we introduce a novel elicitation method,

called the Dynamic Binary Method (DBM), designed to address the common challenge

individuals face in pinpointing the best point estimate of their beliefs, particularly when

their beliefs are imprecise. Unlike Classical Methods (CM), which require respondents

to make absolute judgments and form a point estimate of their true beliefs, DBM guides

them through a series of binary relative judgments, enabling them to express interval

beliefs by exiting the process at any step. To assess the empirical validity of DBM, we

conduct both within-subject and between-subject experiments using a diverse range of

perception tasks drawn from previous literature and CM as a benchmark of performances
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in each task. We find that DBM does not perform significantly differently from CM at the

aggregate level, regardless of whether the perception questions use artificial/laboratory

settings or real-life settings, and irrespective of the measurement used. Notably, DBM

outperforms CM when the objective truth is extreme. Furthermore, we find a negative

correlation between the length of stated beliefs in tasks using DBM and their accuracy.

Additionally, we find that the length stated in DBM can predict respondents’ performance

in CM tasks at the aggregate level, albeit not strictly in a monotonic manner. Finally, we

explore methods to use DBM-collected data for predicting stated point beliefs in DBM,

offering insights into potential applications of the method beyond its immediate imple-

mentation.

JEL Classification: D81, D91, C91
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Chapter 1

What Drives Probability Matching?

1.1 Introduction

Probability matching (PM), as a classical behavioral puzzle in risk management,

refers to people’s tendency to randomize between different risky options, or even match

their choice frequency to the outcome probability, when choosing over binary lotteries

that differ only in their probabilities. For example, suppose a project manager needs

to decide which candidate project to implement, Project A or Project B, and can use

a probabilistic choice strategy. Project A and Project B will succeed 75% and 25% of

the time, respectively. The manager will receive a fixed bonus ($M) if the implemented

project is successful; otherwise, nothing. To maximize the likelihood of success, it is

optimal to choose Project A with certainty, since A first-order stochastically dominates

B.1 However, there is significant empirical evidence demonstrating that the majority of

people tend to mix by choosing each alternative with a positive chance, or even match

their choice distributions to the outcome probabilities by choosing A 75% and B 25%

1Definition of first-order stochastic dominance (FOSD): Option A is first-order stochastically domi-
nant over Option B if ∀x ∈ R, Pr(A ≥ x) ≥ Pr(B ≥ x), and ∃x ∈ R, Pr(A ≥ x) > Pr(B ≥ x).
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What Drives Probability Matching? Chapter 1

of the time. Such behavior lowers their chance of success than the maximum (75%).2

This distributional behavior is not only documented in many laboratory environments,

including those with no value for exploration (e.g., when there is no feedback), and

those with no portfolio effects (e.g., when only one choice is paid), but also observed in

important life decisions such as university admissions (Dwenger, Kübler and Weizsäcker,

2018), stock price predictions (Kallir and Sonsino, 2009), adherence to the long-term

therapy for chronic disease (AlHewiti, 2014), etc.3

Given its prevalence, this finding has long puzzled economists and psychologists and

led to the development of many theoretical explanations aiming to account for this be-

havior. However, the empirical evidence remains limited, as few explanations are tested

in isolated studies with mixed results (Literature are discussed below). Understanding

the sources of this mixing behavior is fundamental to improving our understanding on

how individuals make decisions and developing informed risk management strategies and

consumer protection policies.

In this paper, I use a series of diagnostic laboratory experiments to study the origin of

this mixing behavior, and, more specifically, to distinguish between three broad classes of

explanations. To illustrate, let’s revisit the previous example of project management us-

ing the commonly-used payoff structure, which I will call as the Classical Payoff Structure

(CPS), as shown in Table 1.1. Each project’s outcome is determined by one of the four

2It is supported by the empirical evidence that when repeatedly facing the same binary choice mul-
tiple times, individuals tend to choose each alternative in a way that replicates their preferred choice
distribution over them (Feldman and Rehbeck, 2022).

3For laboratory evidence, see Mart́ınez-Marquina, Niederle and Vespa (2019); Rubinstein (2002);
Vulkan (2000). For empirical evidence, Dwenger, Kübler and Weizsäcker (2018) analyze data from
the centralized clearinghouse for university admissions in Germany, which requires students to submit
multiple rankings of universities; these rankings are submitted at the same time, and only a randomly
chosen one matters. They find that many students report inconsistent rankings, which reduces their
probabilities of getting into a more desirable university, even when there are no strategic reasons to do
so. Kallir and Sonsino (2009) find most financial analysts fail to maximize their prediction accuracy
due to this distributional behavioral pattern. Similarly, AlHewiti (2014) find that patients with higher
education report lower adherence rate as they are concerned about the sided effects of medications which
occurs with small chance.
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What Drives Probability Matching? Chapter 1

equally likely states of the world, ωi, where i ∈ {1, 2, 3, 4}. Correlation between options

is determined by the joint distribution of the outcomes across states. Payoff framing

represents the way outcomes and probabilities of alternatives are presented in the payoff

table/matrix. In the CPS, the options are perfectly negatively correlated, meaning that

when one option yields a good outcome, the other yields a bad one, and vice versa, and

the correlation structure is explicitly represented in the payoff table/matrix, as shown in

Table 1.1. The way outcomes and alternatives are presented in the CPS are referred to

as the Classical Frame.

The first class of explanation described in the literature, which encompasses most

preference-based and some heuristics-based models, argue that people mix due to non-

Expected Utility preferences such as gaining extra utility from mixing itself (Allen and

Rehbeck, 2023; Fudenberg, Iijima and Strzalecki, 2015), inattentive heuristics such as

trembling hand (Ratcliff, 1978), inherent biases such as misperceived probability (Agra-

nov, Healy and Nielsen, 2023), etc. One common feature shared by these explanations is

that the sources of mixing are orthogonal to both the correlation structure and the way

outcomes and alternatives are presented in the payoff framing. These models I refer to

as models of Correlation-Invariant Stochastic Choice.4

The second class of explanation suggests that individuals deliberately mix due to

heuristics that are sensitive to how outcomes are jointly determined. For instance, in-

dividuals might mistakenly consider that mixing between options can hedge against the

risk of Project A failing when ω4 gets realized, as Project B outperforms Project A in

ω4. One potential reason could be that individuals may hold incorrect belief that it is a

portfolio choice in which the decision maker is making multiple bets and gets paid for all

of them, instead of a probabilistic choice strategy in which they choose the likelihood of

4As most payoff tables/matrices explicitly present the correlation structure, when the correlation
structure changes, both the underlying correlation between options and the way outcomes and alterna-
tives are presented in the payoff tables/matrices vary.
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What Drives Probability Matching? Chapter 1

each option and get paid for the single realized option (false diversification, Rubinstein

(2002)). Alternatively, this misperception may stem from an aversion to making big ex

post mistakes if choosing A with certainty and ω4 gets realized (min-max regret with

convex cost of mistakes, Agranov, Healy and Nielsen (2023)). These models are referred

to as models of Correlation-Sensitive Stochastic Choice.

The third class of explanations suggests that individuals mix as they do not know

which option is optimal due to the frame-sensitive heuristics they use to simplify the

comparison between marginal distributions. For instance, individuals may compare op-

tions based on the similarities between options: when facing the payoff framing as shown

in Table 1.1, individuals attend to the dissimilar but irrelevant attributes – outcome

differences, while neglecting the relevant attributes for EU maximization – probability

differences. They may naively make column-wise comparisons: ignore columns with

similar outcomes and use columns with dissimilar outcomes to find the optimal choice,

irrespective of whether the outcomes in each column are indeed correlated. As such com-

parisons in Table 1.1 disagree on which option is optimal, individuals resolve it by mixing

between the options (Leland, 1998; Rubinstein, 1988).5 I call this class of explanation

Framing Effects.

To distinguish between the three classes of explanations, I conduct an experiment with

three between-subject treatments: Baseline, Independence, and Unknown. Block 1 of

each treatment captures the main treatment variations and Block 2 is a repetition of Block

1 enabling study of learning effect. The basic decision problem is the ticket-allocation

task in Mart́ınez-Marquina, Niederle and Vespa (2019). To elicit choice distribution,

subjects are asked to predict which of the two payoff-relevant outcomes will be realized

by allocating some tickets; one randomly selected ticket gets paid.

5Similarity heuristic has been established as a competing explanation against the sensitivity to corre-
lation structure, for violations of FOSD in one-shot binary decision (Dertwinkel-Kalt and Köster, 2015;
Leland, 1998; Leland, Schneider and Wilcox, 2019; Tversky and Kahneman, 1986).
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What Drives Probability Matching? Chapter 1

Table 1.1: Classical Payoff Structure(CPS): Perfectly Negative Correlation + Classical Frame

25% 25% 25% 25%
State ω1 ω2 ω3 ω4

Project A S S S F
Project B F F F S

Table 1.2: Alternative Payoff Structure(APS): Positive Correlation + Alternative Frame

25% 25% 25% 25%
State ω1 ω2 ω3 ω4

Project A S S S F
Project B S F F F

Table 1.3: Classical Frame + Zero Correlation
25% 25% 25% 25%

Partition 1 Partition 2 Partition 3 Partition 4
Project A S S S F
Project B F F F S

Table 1.4: Alternative Frame + Zero Correlation
25% 25% 25% 25%

Partition 1 Partition 2 Partition 3 Partition 4
Project A S S S F
Project B S F F F

Notes: In each payoff table, Project A and Project B have 75% and 25% of chance to succeed, respectively. The project

manager in question forms a choice distribution over them to implement and will receive a fixed monetary award ($M)

if success – otherwise, nothing. The underlined entries denote the main distinctions – different locations of outcomes –

among the four payoff tables. In Tables 1.1 and 1.2, each column represents one state of the world, and outcomes within

the same column will be jointly realized. That is, the correlation structure is explicitly presented in the payoff framing.

Table 1.1 is widely used in previous literature. In this structure, outcomes are perfectly negatively correlated: either one

project succeeds in each state. In Table 1.2, the two projects’ outcomes are positively correlated: jointly succeed or fail

in most of the states. In Tables 1.3 and 1.4, two projects’ outcomes are independently determined and the correlation

structure is not presented in the payoff framing: they are presented in a similar way as Tables 1.1 and 1.2, respectively.

In these structures, the columns, denoted as partitions, do not necessarily represent the states of the world. Thus, the

outcomes in the same column will not necessarily co-occur.

5



What Drives Probability Matching? Chapter 1

Firstly, to distinguish the models of Correlation-Invariant Stochastic Choice from the

other two, in the Baseline treatment, I start with the task using the CPS, as shown in

Table 1.1, and then construct a decision problem using the Alternative Payoff Structure

(APS), as shown in Table 1.2. In the APS, the two options exhibit positive correlation

— two options jointly have good or bad outcomes in most states, which is presented in

the payoff table/matrix. The way outcomes and alternatives are presented in the APS

is denoted as the Alternative Frame. I construct a series of decision problems to vary

the correlation structure between the two payoff structures in a comprehensive manner.

Models of Correlation-Invariant Stochastic Choice predict identical choices across all

tasks in the Baseline, while the other two classes predict that subjects will mix between

options whenever the task does not have the APS, and will choose the dominant option

with certainty in the tasks APS. This is either because there is no way to “hedge” against

the risk of Project A failing, or because the Alternative Frame in the APS highlights

differences in the relevant attributes – probability, while downplaying differences in the

irrelevant attributes – outcome. That is, even with similarity heuristic, individuals would

find Project A optimal and choose it with certainty.

To further distinguish between models of Correlation-Sensitive Stochastic Choice and

Framing Effects, in the Independence treatment, I fix the correlation between options at

zero by letting the outcome of each option be independently determined. Meanwhile, I

comprehensively vary the payoff framing across tasks in the same way as in the Base-

line, from the Classical Frame as in Table 1.3 to the Alternative Frame as in Table 1.4.

Models of Correlation-Sensitive Stochastic Choice predict that subjects will mix between

options in all the tasks in the Independence treatment, since it is still likely that Project

B outperforms Project A. However, Framing Effects predicts that subjects in the Inde-

pendence treatment will behave the same way as the Baseline — they will mix between

options when not presented with the Alternative Frame, and will choose the dominant

6



What Drives Probability Matching? Chapter 1

option with certainty in the Alternative Frame. To benchmark the magnitude of Fram-

ing Effects, I employ the Unknown treatment, in which the correlation information is

not provided but all the tasks are presented with the Alternative Frame. Models of

Correlation-Sensitive Stochastic Choice predict that subjects will mix between options

in all the tasks, if they believe that each possible joint distribution is equally likely to

occur, while Framing Effects predict no mixing here.

The results demonstrate that subjects deliberately consider the correlation between

options when making decisions, which accounts for a substantial proportion of mixing

behavior. First, the findings reject expected-utility maximization and many behavioral

theories that predict no mixing in this environment, as 65% of choices mix between

options in tasks using the CPS.6 Second, aggregate results across the three treatments

show that subjects’ choices respond to changes in the correlation between options in a

manner consistent with models of Correlation-Sensitive Stochastic Choice. With framing

effects controlled, subjects are, on average, 16.5% less likely to mix between options, and

10.8% less likely to match exactly to the outcome probability when the correlation be-

tween options increases. Moreover, results from the Independence treatment show that

subjects deliberately take zero correlation between options into account: once the cor-

relation between options is fixed, subjects’ choices do not vary with the payoff framing.

Combining the Independence and Unknown treatments, then, the estimated magnitude

of framing effects is not significantly different from zero. In the Independence treatment,

subjects are slightly more likely to mix compared to the Baseline, even with the correla-

tion structure and payoff framing controlled. It suggests that subjects may misinterpret

zero correlation when it is described in words in the Independence, in contrast to the

6For example, prospect theory (Kahneman, 1979), cumulative prospect theory (Tversky and Kah-
neman, 1992), rank-dependent expected utility (Quiggin, 1982), quadratic utility (Chew, Epstein and
Segal, 1991), cautious expected utility (Cerreia-Vioglio, Dillenberger and Ortoleva, 2015), random util-
ity (Gul and Pesendorfer, 2006), deliberate randomization (Cerreia-Vioglio et al., 2019), and recursive
expected utility (Kreps and Porteus, 1978).

7



What Drives Probability Matching? Chapter 1

Baseline, where the joint distribution of zero correlation is presented in reduced form.

More discussions can be found in Section 1.5. Exploring whether this result is due to

misinterpretation or other confounds would be a fruitful direction for future research.

Lastly, although learning has limited impacts on reducing mixing in the CPS, as they

gain experience, subjects tend to be much less likely to mix or match exactly to the

likelihood of occurrence when the correlation increases.

Classifying subjects based on their choices gives similar results: the vast majority of

subjects (65%) mix between options in some tasks, while choosing the dominant option

with certainty (allocate all tickets on the dominant option) in others in the Baseline, as

most of them (73%) respond to changes in the correlation between options. There is

some heterogeneity in the Baseline: a small proportion of subjects are consistent with

the expected utility benchmark (17.5%), while an equal fraction align with the models

of Correlation-Invariant Stochastic Choice. Overall, I find that the majority of subjects

make decisions consistent with models of Correlation-Sensitive Stochastic Choice — they

mix to hedge against (misperceived) risk — and the other two classes of explanations

have limited powers in explaining mixing behaviors.

These findings have important theoretical and empirical implications. From a the-

oretical perspective, it is essential to develop frameworks that incorporate individuals’

consideration of the correlation between options in stochastic settings. Neoclassical theo-

ries and most stochastic choice theories fall short in explaining the primary finding of this

paper: the vast majority of subjects make different choices in response to changes in the

correlation between the options featured in this study. On the one hand, most of these

theories approach stochastic choice from the perspective of the analyst or econometrician,

assuming that the decision-maker does not see their choice as random. In such models,

randomness stems from exogenous and random shocks on preferences, attentions, and so

forth. Recently, a small but growing subset of theoretical studies has started to consider

8



What Drives Probability Matching? Chapter 1

the possibility that individuals opt for stochastic choice due to non-standard preferences

or trembling hand. These factors are also orthogonal to how options are correlated.

In Section 1.5, I also investigate every heuristics in the models of Correlation-Sensitive

Stochastic Choice in details and find that each of them has their own limitations and

none of them can accommodate all the results.

Empirically, my findings also shed light on why individuals often deviate from utility

maximizing choices especially in repeated economic decisions such as buying insurance,

making medication decisions, to name a few. Given that individuals deliberately take

into account the correlation between options, even though neoclassical theories suggest

otherwise, it is crucial for policymakers to carefully explain how different options such

as insurance contracts, or saving plans, are correlated in each circumstance. This is

especially important for options whose risks are not perfectly negatively correlated in

between. It helps individuals to always opt for the better option in the repeated choice

environment. Educating on why the correlation does not matter might also be a good

way to improve decision making.

Relation to the Literature and Contributions This paper contributes to the ex-

isting literature in several important ways. Firstly, to the best of my knowledge, this

study is the first to directly test the predictions of three broad classes of theories that

can explain stochastic choice over binary lotteries that differ only in their probabili-

ties: models of Correlation-Invariant Stochastic Choice, models of Correlation-Sensitive

Stochastic Choice, and Framing Effects, and provides direct evidence supporting mod-

els of Correlation-Sensitive Stochastic Choice – people deliberately mix to hedge against

(misperceived) risk. Existing studies investigate few explanations in separated works and

find inconclusive results. Most psychology literature focuses on investigating the effec-

tiveness of different interventions in supporting one of the two arguments embedded in

the dual-process theory – whether PM is an inattentive mistake as the outcome of the
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fast and intuitive process, or a sophisticated strategy as the consequence of the slow and

deliberate process, and are inconclusive on which one dominates (See Koehler and James

(2014) for a review). Some economic studies, on the other hand, explain PM from the

perspective of failure in contingent reasoning. For example, Mart́ınez-Marquina, Niederle

and Vespa (2019) find that the role of uncertainty can explain 8.7% of mixing between

options, whose magnitude is smaller than what I observe. Agranov, Healy and Nielsen

(2023) also examine the role of the failure in contingent reasoning in explaining PM with

several interventions and find mixed results. 7 As most studies are conducted within the

CPS, my finding suggests a potential reason behind why these interventions have incon-

clusive or limited results: subjects’ responsiveness to the correlation structure could be

strong enough to mitigate the effectiveness of interventions.

Second, I contribute to empirical studies on stochastic choice in several ways. In terms

of theoretical discussions, Agranov, Healy and Nielsen (2023) extensively explore various

stochastic choice models to assess their abilities to explain the prevalence of mixing

behavior across different domains observed in their study, with a particular emphasis on

explanations of PM. Continuing this line of inquiry, I further categorize existing models,

including those discussed in their study, into three distinct groups, and directly examine

the validity of each class based on different testable predictions. From an empirical

perspective, I provide direct evidence that the consideration of correlation structure,

e.g., misperceived hedging opportunity, is a source of deliberate randomization. The

results are empirically consistent with the model of min-max regret with convex costs

of mistakes proposed by Agranov, Healy and Nielsen (2023), and false diversification

(Rubinstein, 2002), while casting doubts on other stochastic choice theories.

7The intervention — changing the way questions are repeatedly asked and adding feedback on whether
choice in last round is selected for payment, from subjects being asked to make binary choice that is
repeated simultaneously on the same page without feedback, to subjects being asked to make binary
choice that is repeated sequentially with feedback — works, while changing the way outcomes are realized,
from one realization to multiple i.i.d. draws, does not.
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Furthermore, my study contributes to the emerging literature on how individuals take

into account correlations when making economic decisions by extending this investiga-

tion into this simple stochastic choice environment. Existing literature investigates this

in the environments such as portfolio choices (Eyster and Weizsäcker, 2011), information

structure (Hossain and Okui, 2020), where the correlation plays an essential role for opti-

mal decision making, and find that individuals neglect the correlation structure, treating

them as if there is no correlation in between when making decisions. Recent studies on

how individuals choose between risky lotteries in one-shot binary choice environment,

find that subjects are sensitive to the correlation structure, which is consistent with

correlation-sensitive preference with salience theory and regret theory nested (Frydman

and Mormann, 2018; Loewenfeld and Zheng, 2021). In the decision-making environment

I consider, where most decision theories including correlation-sensitive preference posit

that the correlation does not matter for optimal decision making, I find that individuals

are sensitive to how outcomes are correlated. In addition, the finding that the decision

to mix and the decision to match exactly with the probability reflect varying degrees of

sensitivity to marginal changes in correlation suggests that responsiveness to correlation

may differ across decision-making contexts.

Finally, I contribute to existing studies on why individuals violate FOSD by grounding

this inquiry in a stochastic choice environment and examining the validity of a particular

Framing Effects – the similarity heuristic (Rubinstein, 1988). It has been well established

in the previous literature that certain ways that the alternatives and outcomes are pre-

sented mask the dominance relation, which leads to violations of FOSD (Dertwinkel-Kalt

and Köster, 2015; Tversky and Kahneman, 1986). Thus, altering the frame to emphasize

the dominance relation is effective in reducing violation of FOSD in the one-shot binary

choice environment (See Kourouxous and Bauer (2019) for a review). However, the ob-

servations in the Independence treatment suggest that the effectiveness of the Framing
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Effects is limited in its ability to reduce mixing behavior. My findings suggest that the

effectiveness of changing the framing as an intervention to reduce the violation of FOSD

may not be robust to choice environments.

The rest of the paper is organized as follows: Section 1.2 discusses the theoretical

foundations. Section 1.3 presents the experimental design. Section 1.4 analyzes the

results, followed by discussions and conclusions in Sections 1.5 and 1.6, respectively.

1.2 Theoretical Foundations

In this section, I first describe the basic setup and conceptual framework. Then, I

explore three classes of models and show their distinguishable predictions of whether

mixing behavior varies with changes in correlation between the options and payoff fram-

ing. For a more comprehensive discussion of all the example models mentioned, please

refer to Appendix A.1.

1.2.1 Basic Setup

Consider a generalized version of the example discussed earlier: a decision problem

involving two lotteries that differ only in their probabilities, namely Option A and Option

B. Each option gives either a fixed monetary reward of $M , or $0. I denote the option pair

as (A : p; B : 1−p), where p (or 1−p) is the likelihood of Option A (or Option B) yielding

$M . The key distinction between these two options is the likelihood of receiving $M . For

the sake of simplicity, assume that p > 1
2
. I refer to the option with a higher likelihood of

receiving $M , henceforth Option A, as the dominant option. Conversely, the option with

the lower chance of obtaining $M , i.e., Option B, is called the dominated option, given

that the Option A FOSD Option B. Each option’s outcome is determined by one of the

four states of the world, denoted as ωi ∈ {1, 2, 3, 4}, wherein each state is equally likely to

12
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be realized. Consequently, there are four possible joint outcome realizations, represented

as (x, y) ∈ {(A : $M,B : $M), (A : $M,B : $0), (A : $0, B : $M), (A : $0, B : $0)}.

I am interested in the choice distribution formed by the decision maker: a map that

associates a probability measure over the option pair (A : p; B : 1 − p). This map

represents the frequency at which the decision maker chooses each option, either shown

as the choice pattern when repeatedly asked to choose between them multiple times or the

probabilistic distribution formed from a linear convex lottery budget with one randomly

selected choice getting paid.8 Let α and 1− α be the probabilities of the decision maker

opting for Option A and Option B, respectively. I define a choice distribution as mixed

if it assigns a positive probability to both options (i.e., α ∈ (0, 1)). On the other hand, a

choice distribution is referred to as exact PM if it perfectly aligns with (A : p; B : 1−p),

i.e., α = p. The use of the term ”mixing behavior” encompasses both mixed choices and

exact PM choices.

1.2.2 Conceptual Framework

As the primary differentiating features of my experimental design, I manipulate the

correlation between options and frame in the payoff structure separately, to distinguish

three classes of explanations. To be more specific, I group the decision problems based

on whether the correlation structure and the payoff framing in these problems are varied

separately into three scenarios to explain how the theoretical mechanisms differ.9 Each

scenario has the same number of decision questions. Questions in all the scenarios share

the same marginal distributions, (A : p; B : 1 − p), but are distinct from one another

8Feldman and Rehbeck (2022) find empirical evidence that individuals’ preference to choose a non-
degenerate mixture of two different risky options from a linear convex lottery budget is positively related
to their choice pattern in repeated discrete choices.

9To vary payoff framing, I separate the marginal distributions into the same number of equally
probabilistic partitions, and then rank the payoff outcomes from the highest to the lowest. I prove in
Appendix A.2 that any pair of FOSD options can be presented in the Alternative Frame, referred to as
the ”Transparency Frame” in Leland, Schneider and Wilcox (2019).
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in terms of whether the correlation structure and payoff frames vary across the decision

problems within each scenario:

Baseline Scenario: Varied Correlations + Varied Frames For the decision prob-

lems in this scenario, the correlation between options varies comprehensively, and so does

the frame, as the frame demonstrates the underlying correlation. Decision questions with

the CPS and those with the APS, as shown in Table 1.1 and Table 1.2, respectively, are

example questions typifying this scenario.

Independence Scenario: Fixed Correlation + Varied Frames For the decision

questions in this scenario, the correlation between options is fixed at zero, yet the frame

varies. Decision problems with the Classical Frame + Zero Correlation and the Alterna-

tive Frame + Zero Correlation, as shown in Table 1.3 and in Table 1.4, respectively, are

example questions adopted in this scenario.

Unknown Scenario: Fixed Correlation + Fixed Frame In this scenario, the

decision maker faces various decision questions where the correlation between options is

unknown to them. The frame is fixed as the Alternative Frame. If the decision-maker

believes that each possible correlation structure is equally likely to occur, they would

believe that the ex ante correlation between options is zero.10

The main interest of this study is how existing models differ in predicting the decision

on whether to mix, i.e., whether α = 100% or not, in decision problems across the three

scenarios.11

Expected Utility Benchmark Any models that respect FOSD and compound lottery

reduction predict that the optimal choice is to choose the dominant option with α =

10In the context of the prevailing example, this means that the decision maker believes that there is
a 25% chance that the correlation between options is -1, and a 75% chance that it is 1/3. As a result,
the expected correlation is 0.

11This is because each theory’s prediction of α ∈ (0%, 100%) varies with the functional forms such
as the cost function in the min-max regret with convex cost of mistakes (Agranov, Healy and Nielsen,
2023), behavioral parameters such as risk preference in the false diversification (Rubinstein, 2002), and
the parameters used in the experimental design.
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100%, in all the decision problems across the three scenarios. Mixing between Options

A and B generates a two-stage lottery, which can be reduced to a simple lottery in the

simplex, denoted as L:

L = α ◦ Option A⊕ (1− α) ◦ Option B

= [α ∗ p+ (1− α) ∗ (1− p)] ◦ $M ⊕ [α ∗ (1− p) + (1− α) ∗ p] ◦ $0
(1.1)

where the first equation denotes the lottery in the first stage, and the second equation

represents the reduced lottery over $M and $0 with a corresponding probability of [α ∗

p + (1 − α) ∗ (1 − p)] on $M and [α ∗ (1 − p) + (1 − α) ∗ p] on $0, respectively. In

each decision problem, Option A FOSD Option B. Moreover, in decision problems with

the APS, Option A also state-wise dominates Option B. That is, Option A is not only

distribution-wise, but also state-wise, more likely to yield the better outcome $M , than

Option B. Given that Option A FOSD Option B in each payoff structure, if Option A

is strictly preferred to Option B, it is also strictly preferred to any mixture between

the two. Examples of models satisfying these two include the expected utility, prospect

theory (Kahneman, 1979), cumulative prospect theory (Tversky and Kahneman, 1992),

rank-dependent expected utility (Quiggin, 1982), quadratic utility (Chew, Epstein and

Segal, 1991), cautious expected utility (Cerreia-Vioglio, Dillenberger and Ortoleva, 2015),

random utility (Gul and Pesendorfer, 2006), deliberate randomization (Cerreia-Vioglio

et al., 2019), and recursive expected utility (Kreps and Porteus, 1978).

Hypothesis 1. Individuals who follow FOSD and compound lottery reduction will choose

the dominant option with α = 100% in all the decision problems across three scenarios.
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1.2.3 Models of Stochastic Choice

In this subsection, I focus on the preference-based and heuristics-based models that

allow for violation of FOSD or violation of compound lottery reduction. Existing models

can be divided into three categories: models of Correlation-Invariant Stochastic Choice,

models of Correlation-Sensitive Stochastic Choice, and Framing Effects.12 While each

category includes many models, they have many features in common. Within each cat-

egory/subcategory, I select one prominent model, describe it in detail, and discuss its

implications for the behavior of interest.13

1.2.3.1 Models of Correlation-Invariant Stochastic Choice

The first class of explanations, which encompasses most preference-based, as well as

some heuristics-based models, posit that individuals form a mixture between options due

to factors such as non-Expected Utility preferences, random utility shocks, indifference

between getting the bonus or not, inherent misperception of probability, inattentive and

random mistakes, etc. One thing they share in common is that the sources of mixing

are orthogonal to how outcomes are correlated, or the way outcomes and alternatives

are presented in the frame. As most payoff framing coincides with the correlation struc-

ture in experiments, when the correlation between options varies, both the underlying

correlation and the payoff framing change. Thus, these theories predict identical mixing

behavior regardless of how the correlation between options presented in the payoff fram-

ing varies. For simplicity, these theories are referred to as models of Correlation-Invariant

12In the context of this study, when the correlation between options varies, the frame changes accord-
ingly as it explicitly reveals the correlation structure. So, when stating that the correlation between
options changes, I am referring to a simultaneous variation in both the interdependence of outcomes
between options and the choice frame that explicitly illustrates this relationship.

13Please refer to Appendix A.1 for a more comprehensive discussions of these models.
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Stochastic Choice.14 This category includes preference-based models, such as the proba-

bility weighting, perturbed utility (Fudenberg, Iijima and Strzalecki, 2015; Siegel, 1961),

correlation-sensitive preferences (Lanzani, 2020) and the pairwise normalization model

(Landry and Webb, 2021), as well as the heuristics-based models such as drift-diffusion

models (Ratcliff, 1978) and expectation matching (Kogler and Kühberger, 2007).15

For instance, the perturbed utility model exemplifies the preferences over two-stage

lotteries that allow violation of compound lottery reduction. It posits that decision maker

provides different answers because they can gain extra utility from mixing itself, which

does not change with the correlation structure presented in the payoff framing. Formally,

the decision maker chooses a mixture (α, 1 − α) with 0 < α < 1 to maximize expected

utility plus a utility value from mixing (Fudenberg, Iijima and Strzalecki, 2015; Siegel,

1961) as follows:

max
α

∑
x

α(x)u(x) + V (α)

= (α ∗ p+ (1− α) ∗ (1− p)) ∗ u($M) + (α ∗ (1− p) + (1− α) ∗ p) ∗ u($0) + V (α)

(1.2)

where u(·) is the utility function and V (·) is the utility from mixing which is a function

14Most models in this category fail to consider the possibility that individuals evaluate each option
not only based on its own outcomes but also in comparison to the outcomes of the alternative in each
state.While some theories do account for state-wise comparisons of outcomes between options such
as correlation-sensitive preferences (Lanzani, 2020) and the pairwise normalization model (Landry and
Webb, 2021), they still fail to predict varied mixing behavior in response to different correlations between
options. I refer interested readers to Appendix A.1 for more detailed discussions.

15The generalized perturbed utility models proposed by Allen and Rehbeck (2023), which makes no
assumption on the utility function of the reduced lottery L, predict identical mixing behavior in response
to the correlation change for two reasons. On the one hand, I show in the Appendix A.1 that existing
preferences that account for state-wise comparisons cannot predict varied mixing behavior. This is either
due to their inherent features, or because they do not additionally assume convex preferences. Thus, it
predicts identical choices, even if we apply these preference-based models here. On the other, this model
posits that the source of mixing –gaining extra utility from mixing – is orthogonal to the evaluations of
options.
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of α and orthogonal to the correlation between options. It implies that once the marginal

distributions are fixed, this condition does not vary with changes in the correlation be-

tween options or in the corresponding frame. So does the mixing behavior predicted by

this model.

Hypothesis 2. Most preference-based and some heuristics-based models, which posits

that individuals mix due to factors such as non-standard preferences or errors, predict

that the decision maker will make identical choice regardless of correlation or framing —

either choosing the dominant option with α = 100% or mixing between the two in all the

decision problems across the three scenarios.

1.2.3.2 Models of Correlation-Sensitive Stochastic Choice

Several heuristics propose that individuals are sensitive to how options are correlated

for reasons such as deliberately using mixing as a tool to hedge against the (misperceived)

risk.16 Examples in this category of models include the model of minmax regret with

a convex cost of “mistakes” (Agranov, Healy and Nielsen, 2023); irrational diversifica-

tion models (Baltussen and Post, 2011; Rubinstein, 2002); and the evolutionary model

developed by Brennan and Lo (2012).

To illustrate this concept, let us apply Agranov, Healy and Nielsen (2023)’s model to

the running example. The decision maker needs to find the optimal α to maximize the

following utility function:

max
α

α ∗ u(Option A) + (1− α) ∗ u(Option B)

− λ
1

4

∑
ωi∈Ω

(w(α)max{B(ωi)− A(ωi), 0}+ w(1− α)max{A(ωi)−B(ωi), 0})

16It is a “misperceived” risk, because it is a probabilistic choice distribution and implemented once to
determine the payoff. Risk preferences play no role.
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where the state space Ω = {ω1, ..., ω4}, u(·) represents the expected utility of each op-

tion, λ ≥ 0 denotes an individual-specific scale parameter, B(ωi) (A(ωi)) represents the

outcome of Option B (Option A) in state ωi, and w(·) is an increasing and weakly convex

function satisfying w(0) = 0. The summation term counts, for each state, the fraction

of times the decision maker might make a “mistake” in that state. In each state, choos-

ing one option is considered as a “mistake” if it could have yielded better outcome by

switching to the alternative. This count is then weighted by the convex function w(·)

and multiplied by the payoff magnitude of the mistake. Convexity captures the idea that

the decision maker finds it particularly undesirable to have states where most choices

they have made turn out to be mistakes. Thus, the decision maker may tolerate a lower

occurrence of mistakes in certain states in order to reduce mistakes in states where they

have many.

Different correlations between options affect the extent to which choosing the dom-

inant option with certainty is deemed as “mistakes” from an ex post perspective. To

illustrate, suppose w(x) = x2. Thus, in decision problems with the CPS, choosing the

dominant option (Option A) with 100% would turn out to be a severe “mistake” when

State ω4 is realized. Maximizing the cost term with respect to α gives the exact PM. λ

captures the level of tension between choosing the more likely option to maximize the

expected utility, and matching with the probability to reduce the cost of mistakes. The

decision maker who places a higher value on λ will lean more toward exact PM. When

λ = 0, though, the decision maker will choose the dominant option with α = 100%.

On the contrary, when facing decision problems in the APS as shown in Table 1.2,

choosing Option A with 100% will never be treated as a “mistake” regardless of which

state will get realized. Therefore, in decision problems with the APS, choosing the

dominant option with 100% both maximizes the expected utility and minimizes the cost

of mistakes. Moreover, once the correlation is fixed at zero, the decision maker will mix
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as it is still likely that Project B outperforms Project A, which does not vary with the

framing in the Independence Scenario.

For the decision problems in the Unknown Scenario, if the decision maker believes that

each possible joint distribution of options is equally likely to occur when the correlation

between options is unknown, they will have a weighted average of the cost term in the

CPS (with 25% of probability) and the one in the APS (with 25% of probability).17 It

gives the same predictions as in the decision problems from the Independence Scenario.

Note that it has an implicit assumption that there is no friction in perceiving the joint

distribution of the two options (A : p; B : 1 − p) with zero correlation. The theoretical

predictions of this class of explanations are summarized as the following:

Hypothesis 3. Several heuristics and biases, arguing that the decision maker deliberately

mix to, for example, hedge against (misperceived) risk, predict the following:

• In the Baseline Scenario, the decision maker mix between options whenever the

payoff structure is not APS, while choosing the dominant option with α = 100%

when it is;

• Once the correlation between option is fixed at zero, the decision maker will mix

across decision problems in the Independence Scenario;

• If the decision maker believes each potential joint distribution of options is equally

likely to occur when the correlation is unknown in the Unknown Scenario, and there

is no friction in perceiving zero correlation, they will mix in the Unknown Scenario,

in the Independence Scenario, and in the tasks with zero-correlation options in the

Baseline Scenario.

17This is because, with this belief, the success of Project B can occur in each of the four states
with equal probability. Thus, there is 75% of chance the joint distribution between Projects A and B
has positive correlation as the APS, and 25% of chance the joint distribution has perfectly negative
correlation as the CPS.
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1.2.4 Framing Effects

Framing Effects posit that, instead of deliberately taking into account the interdepen-

dence between options in each state, the decision maker employs heuristics to simplify

the comparison between marginal distributions, which is sensitive to the payoff framing

rather than the actual correlation structure. With certain payoff framing, they attend to

the irrelevant attributes – outcome differences, while ignoring the relevant attributes for

decision making – probability differences. Similarity heuristic (Leland, 1998; Rubinstein,

1988) is an example in this class.

When using the similarity heuristic to compare between marginal distributions, indi-

viduals tend to naively compare outcomes in each column/partition regardless of whether

they are actually correlated: cancelling out same outcomes in each column, while using

the columns with dissimilar outcomes to decide. If the comparisons in the columns/partitions

with dissimilar outcomes agree on which option is optimal, the decision maker will choose

it with 100%. Otherwise, they will resolve by mixing between them (Dertwinkel-Kalt and

Köster, 2015; Leland, 1998; Rubinstein, 1988). The Classical Frame as in Table 1.1 or

Table 1.3 emphasizes the difference in outcomes:

Table 1.5: Classical Frame
25% 25% 25% 25%

Partition 1 Partition 2 Partition 3 Partition 4
Project A S S S F
Project B F F F S

Favor A Favor A Favor A Favor B

As the comparison in each column with dissimilar outcomes does not agree on which

option is optimal, the decision maker will resolve it at random. On the contrary, the

Alternative Frame (either Table 1.2 or Table 1.4) highlights the difference in probabilities,

whereas downplaying the difference in outcomes:

21



What Drives Probability Matching? Chapter 1

Table 1.6: Alternative Frame
25% 25% 25% 25%

Partition 1 Partition 2 Partition 3 Partition 4
Project A S S S F
Project B S F F F

Cancelled out Favor A Favor A Cancelled out

As the comparison in each column with dissimilar outcomes agrees that choosing Project

A is optimal, the decision maker will choose Project A with 100%. The theoretical

predictions of this class of explanation are summarized below:

Hypothesis 4. Frame-sensitive heuristics, e.g., similarity heuristic, which posit that the

decision maker are indecisive on which option is optimal as they attend to dissimilar but

irrelevant attributes (outcome differences), while neglecting relevant attributes (probability

differences) when facing certain framing, predict the following:

• In the Baseline and Independence Scenarios, the decision maker will mix when

facing the decision problems using the Classical Frame, while choosing the dominant

option with α = 100% when facing those using the Alternative Frame, regardless of

the actual correlation;

• In the Unknown Scenario, where each decision problem is presented with the Alter-

native Frame, the decision maker will choose the dominant option with α = 100%.

Table 1.7 below summarizes the predictions from the three classes of theories.

Table 1.7: Theoretical Predictions: Summary
Models of Correlation-Invariant Stochastic Choice predict:

Baseline Scenario = Independence Scenario = Unknown Scenario

Framing Effects
models of

Correlation-Sensitive
Stochastic Choice

Varied Frames Fixed Frame
Varied Correlations Baseline –
Fixed Correlation Independence Unknown
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1.3 Experimental Design

To test these hypotheses, I design an experiment with three treatments corresponding

to the three scenarios: Baseline, Independence, and Unknown. Each comprises of three

blocks. The main parts of the experiment are Blocks 1 and 2. In each treatment, I use

Block 1 to capture the main characteristics across questions in each scenario. Block 1

consists of 30 tasks, which cover six different probability categories: four tasks with (A :

67%, B : 33%), four tasks with (A : 33%, B : 67%), five tasks with (A : 75%, B : 25%),

five tasks with (A : 25%, B : 75%), six tasks with (A : 80%, B : 20%), and six tasks

with (A : 20%, B : 80%), where the latter three categories are identical to the first three

except that Option B is the dominant option. Each of these 30 tasks is presented on a

different screen and in a random order. Block 2 is a repetition of Block 1, with a random

order to measure the learning effect. Subjects are informed that the computer randomly

selects one block and then one choice in that block to determine their final payoffs. The

instructions for each block are presented to subjects at the beginning of that block. The

complete instructions and screenshots can be found in Appendix A.7.

In the experiment, subjects face a series of tasks similar to the example provided ear-

lier. In each task, to elicit subjects’ choice distributions, I follow the Mart́ınez-Marquina,

Niederle and Vespa (2019)’s design by asking subjects to allocate tickets to predict which

of the two payoff-relevant outcomes, Option A or Option B, will be realized.18 Only

one ticket is randomly selected for payment. If subjects’ choices on that selected ticket

predicts correctly, they will receive the award $7. Otherwise, they receive $0.

Section 1.3.1 begins by describing Blocks 1 and 2 of the Baseline treatment in detail,

and then proceeds to demonstrate how the Independence and Unknown treatments differ

18In the actual experiment, subjects are asked to choose over two options associated with blue color
and orange color separately.
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from the Baseline in Section 1.3.2.19 Then, Section 1.3.3 presents implementation details.

1.3.1 Baseline

The ticket-allocation tasks in the first two blocks of the Baseline treatment are de-

signed to capture the features of Varied Correlations + Varied Frames. To achieve this

goal, in each probability category, I fix each option’s marginal distribution while vary-

ing the correlation between options across tasks in a comprehensive way and letting the

frame explicitly present the correlation structure. In each task, subjects are told that

there is a roll of coins and the computer will randomly draw one coin out of them. Each

coin in the roll is labeled with a number to represent one state of the world and has two

sides. The front side of each coin is either blue or has no color. The back side of each

coin is either orange or has no color. Subjects are asked to predict which color, between

blue and orange, is on the randomly drawn coin by allocating some tickets. That is,

they need to decide how many tickets to designate for Option A – “Bet on Blue: the

randomly drawn coin contains a blue side” and how many tickets to designate for Option

B – “Bet on Orange: the randomly drawn coin contains an orange side.” Then, the

computer will randomly select a ticket for payment. If the bet on that ticket matches

the color of the side on the randomly drawn coin, the subject will get $7; otherwise, they

will receive $0. After verifying and submitting their choices, subjects receive complete

feedback, including which coin was drawn, which ticket was picked, the payoff they will

receive, and what they could have received by choosing the alternative option for that

ticket.

To fix the marginal distributions of options, the number of coins in the roll, the

19In each treatment, I also use the same Block 3 to explore the extent to which what subjects learned
in the previous blocks can be transferred to a new setting. After Block 3, each subject completes an
exit survey so as to record their demographic information. As the results in Block 3 are similar to the
main findings in Blocks 1 and 2, I refer readers who are interested in them to Appendix A.5 for detailed
design and results.
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number of blue sides, and the number of orange sides are identical across tasks from

the same probability category (A : p, B : 1 − p). In order to comprehensively vary the

correlation between options from a perfectly negative correlation (CORR(A,B) = −1)

to a positive one (CORR(A,B) > 0), the locations of colors of the dominant option are

fixed, while the locations of colors of the dominated option vary across the tasks from

the same probability category. On each coin, the blue and orange sides are not mutually

exclusive from each other. Tasks with CORR(A,B) = −1 correspond to the CPS, and

the tasks with CORR(A,B) > 0 map to the APS.

Take the five tasks in Category (A : 75%, B : 25%) as an example. Table 1.8

demonstrates the correlations and interfaces of the coin rolls that subjects can see in each

of the five tasks. Subjects can see a roll of sixteen double-sided coins in each task. Twelve

coins are blue on the front sides, and the rest have no color on the this side. Four coins

are orange on the back sides, while the rest have no color on this side. The correlation

among five tasks marginally increases from a perfectly negative one (CORR(A,B) = −1)

to a positive one (CORR(A,B) = 1
3
), as explicitly presented in the interface.20

1.3.2 Treatment Variations

I use the Independence and Unknown treatments to capture the main features of Fixed

Correlation + Varied Frames and Fixed Correlation + Fixed Frame, respectively. In the

Independence treatment, I fix the correlation between options to remove the models of

Correlation-Sensitive Stochastic Choices as a potential candidate for explaining varied

mixing behavior if it is observed in the Baseline treatment. However, the Framing Effects

could still play a role in driving varied mixing behaviors across tasks. In the Unknown

treatment, I fix both the correlation between options and payoff framing to benchmark

20See Appendix A.3 for the payoff structures in Categories (A : 67%, B : 33%) and (A : 80%, B : 20%).
The other three categories are identical except that Option B is the dominant option.
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Table 1.8: Baseline: Five Tasks under Category (A : 75%, B : 25%)
Task CORR(A,B) Interface

1 1
3

Front:

Back:

2 0
Front:

Back:

3 −1
3

Front:

Back:

4 −2
3

Front:
Back:

5 -1
Front:
Back:

Note: Each task has a roll of 16 double-sided coins denoted by a number 1 - 16. 12 out of the 16 coins are blue on the

front side, and 4 out of the 16 coins are orange on the back side. Tasks 1 and 5 correspond to the APS and the CPS,

respectively.

Table 1.9: Independence: Five Tasks under Category (A : 75%, B : 25%)
Task CORR(A,B) Interface

1 0
Roll Blue:

Roll Orange:

2 0
Roll Blue:

Roll Orange:

3 0
Roll Blue:

Roll Orange:

4 0
Roll Blue:

Roll Orange:

5 0
Roll Blue:

Roll Orange:

Note: Each task has two rolls of 16 coins, Roll Blue and Roll Orange. b1-b16 represent the 16 coins in Roll Blue, and

o1-o16 denote the 16 coins in Roll Orange. The computer will randomly select two coins: one from each coin roll. The

locations of colors are identical to the Baseline.

Table 1.10: Unknown: Five Tasks under Category (A : 75%, B : 25%)
Task Expected CORR(A,B) Interface

1 0
Front:
Back:

2 0
Front:
Back:

3 0
Front:
Back:

4 0
Front:
Back:

5 0
Front:
Back:

Note: Each task uses a unified frame to present the colors of the two-sided coins. Subjects are not informed about how

colored sides are correlated in each coin. If they believe that each possible joint distribution is equally likely, their expected

correlation between options is zero.
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subjects’ behavior when the Framing Effects does not come into play.

Independence Treatment Tasks in the Independence treatment are identical to the

Baseline in most aspects, except that, in each task of the first two blocks, the outcomes of

the two options are independently determined. To accomplish this, in each task, subjects

can see two rolls of coins: Roll Blue and Roll Orange. Each coin in Roll Blue is either

blue or has no color. Similarly, each coin in Roll Orange is either orange or has no color.

The computer randomly selects two coins, one from each roll. To maintain the same

variation of the frame as the Baseline treatment, under each probability category, I let

the locations of colored coins vary across tasks in the same way as in the Baseline. On

each ticket, subjects are asked to predict which roll the coin is drawn from has color by

choosing between Option A – ”Bet on Blue: the coin drawn from Roll Blue has color”

and Option B – ”Bet on Orange: the coin drawn from Roll Orange has color.” Subjects

receive feedback only on which ticket is picked and the payoff they receive. Table 1.9

demonstrates the correlation and interfaces that subjects can see across the five tasks in

Category (A : 75%, B : 25%) within the Independence treatment.

Unknown Treatment For each task in Blocks 1 and 2 of the Unknown treatment, I fix

both the correlation and the framing, as shown in Table 1.10. All the other components

are identical to the Baseline treatment. To fix the correlation, subjects are not informed

about how colored sides are correlated on each coin, as the information regarding cor-

relation is irrelevant for expected utility maximization. To control the framing, I use a

unified frame, the Alternative Frame, to present the possible outcomes of the two-sided

coins.21 Subjects receive feedback only on: which ticket was picked and the payoff in

that round only to prevent learning the ex post correlation from feedback.

21In the instruction, subjects are explicitly told that the framing is a visualization of the marginal
probability that each outcome occurs.
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1.3.3 Implementation Details

The experiment was conducted via online Zoom sessions from May to July 2021.

I recruited 157 subjects through the EBEL laboratory at the University of California,

Santa Barbara, using Online Recruitment System for Economic Experiments (ORSEE)

recruiting software (Greiner, 2015). The experiment interface was programmed in oTree

by the author. There were 11 sessions in total, each lasting 45–55 minutes on average.

All the treatments were balanced and randomly assigned to subjects in each session, and

the average payoff per subject was $10 (including a $5 for the participation fee).

1.4 Results

This section is organized as follows: Section 1.4.1 discusses the preliminary results.

Section 1.4.2 reports the main results across the three treatments. In Section 1.4.3,

I discuss how the decisions to mix differs from the decisions to match exactly to the

probability. In Section 1.4.4, I explore individual heterogeneity by classifying subjects

into different types, based on the choices they made.

The primary focus lies with how subjects’ mixing behavior varies across the tasks in

Blocks 1 and 2 of each treatment. This requires a definition of mixing behavior. I adopt

the strictest definition used in the previous literature (Mart́ınez-Marquina, Niederle and

Vespa, 2019), in that an allocation choice is referred to as mixed if it allocates at least

one ticket to the dominated option – betting on the color in the minority. An allocation

choice is defined as exact PM if it allocates an exact fraction p of tickets to the dominant

option and the remaining fraction (1−p) to the dominated option in the decision problem

with (A : p,B : 1− p). Thus, the fraction of allocation choices that are mixed and those

that are exact PM are denoted the likelihood of mixing and the likelihood of exact PM,

respectively.
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Another approach to defining mixing behavior is to calculate the fraction of tickets

allocated by subjects to the dominated option. Since the qualitative findings are identical

between these two definitions, and the quantitative results primarily stem from the change

in the fraction of choices that allocate at least one ticket on the dominated option, I

direct the reader to Appendix A.4 for the parallel results obtained using this alternative

definition.

In each regression analysis, I pool decision problems with symmetric probability dis-

tributions, namely, (A : p, B : 1 − p) and (A : 1 − p, B : p), together into a single

category, and represent tasks from Categories (A : p, B : 1− p) and (A : 1− p, B : p) as

Category (p, 1− p). I use the variable “correlation parameter” to denote different things

in different treatments: (1) in the Baseline treatment, it captures both the correlation

and the corresponding frame in the payoff structure between options; (2) in the Indepen-

dence treatment, it is the corresponding frame only; and (3) in the Unknown treatment,

it denotes the ex post correlation, which is unknown from subjects’ perspective by design.

Standard errors are clustered at the subject level in all regression analyses. Additionally,

all regression models include categorical variables for the probability category (p, 1− p),

gender, and school year, as well as indicator variables for the dominant option and STEM,

serving as controls. Each bar graph is shown with 95% confidence intervals.

1.4.1 Preliminaries

Figures 1.1 and 1.2 plot the likelihood of mixing and likelihood of exact PM against

the correlation parameters with the first two blocks combined, separated by probability

categories for each treatment, respectively.22 The horizontal axis varies the correlation

22As I pooled the tasks from (A : p, B : 1−p) and those from (A : 1−p, B : p) together, each subject
has two allocation choices added when calculating the fraction of mixed choices given the probability
category and correlation parameter. This is also true for the calculation of fraction of exact PM choices.
Thus, the fractions of mixed choices and exact PM choices are different from the fractions of subjects who
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parameter, representing different features in different treatments. As tasks in the Un-

known treatment use a fixed correlation and identical frame, I use horizontal lines to

represent the average likelihood of mixing and likelihood of exact PM in each probability

category.

Note that models of Correlation-Invariant Stochastic Choice predict identical like-

lihood of mixing in all the tasks across the three treatments. Models of Correlation-

Sensitive Stochastic Choice predict identical likelihood of mixing in all the tasks across

the three treatments, except in cases where the two options are positively correlated, as

in the APS, and in the APS, the likelihood of mixing shall decrease to zero. Moreover,

the Framing Effects predict equal likelihood of mixing in all the tasks across the three

treatments, except in cases where the two options are presented in the Alternative Frame

regardless of the correlation, and in the Alternative Frame, the likelihood of mixing shall

decrease to zero.

Firstly, I replicate the findings observed in the existing literature, wherein the vast

majority of individuals tend to mix two options in allocation choice or even match ex-

actly to the probability of occurrence when facing the CPS. As depicted in Figures 1.1

and 1.2, in the CPS, approximately 65% of allocation choices mix between the two op-

tions, whereas 35% of the choices match exactly to the occurrence probability in each

probability category. 23

More importantly, as depicted in Figures 1.1 and 1.2, within each probability cat-

egory, the average fractions of mixed choices and of exact PM choices decrease when

the correlation between options increases or when the frame varies in the Baseline treat-

ment. However, the likelihood of mixing and the likelihood of exact PM are not zero in

the APS. About 30% - 40% of choices are mixed and 10% - 20% of choices are exact PM

made mixed choices and exact PM choices. I discuss the distribution of mixing types in Section 1.4.4.
23Mart́ınez-Marquina, Niederle and Vespa (2019) find that about 67.8% of choices are mixed, while

20.8% are exact PM choices.
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Figure 1.1: Impacts of correlation/frame on likelihood of mixing with two blocks combined

Note: The horizontal axis denotes different features in different treatments. In the Baseline, it represents varied correlations

and varied frames. In the Independence, it represents varied frames. As the Unknown uses the fixed correlation and frame,

green lines represent the average fractions of mixed allocation choices for each probability category in this treatment. Each

panel represents one probability category. The error bars depict 95% confidence intervals.

in the APS where the two options are positively correlated. In contrast to Baseline, the

average fractions of mixed choices and of exact PM choices do not vary with changes in

the corresponding frame in the Independence treatment. Furthermore, in the Unknown

treatment, the magnitude of the average fraction of mixed choices is nearly identical to

that in the Independence treatment. In the tasks featuring the “zero-correlation frame”

in the Independence treatment, the likelihood of mixing and the likelihood of exact PM

are slightly larger compared to the zero-correlation tasks in the Baseline. It suggests that

subjects in the former tasks might misinterpret the zero correlation, as described in words

in the Independence treatment, compared to the latter tasks where the joint distribution

of zero-correlation options is presented in reduced form in the Baseline. More discussions

can be found in Section 1.5. Exploring whether this is a result of misinterpretation or

other confounds would be a fruitful direction for future research.
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Figure 1.2: Impacts of correlation/frame on likelihood of Exact PM with two blocks
combined

Note: The horizontal axis denotes different features in different treatments. In the Baseline, it represents varied correlations

and varied frames. In the Independence, it represents varied frames. As the Unknown uses the fixed correlation and frame,

green lines represent the average fractions of exact PM choices for each probability category in this treatment. Each panel

represents one probability category. The error bars depict 95% confidence intervals.
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1.4.2 Treatment Level Results

In order to investigate the empirical validity of each class of models, I estimate the

impacts of correlation change and frame change on mixing behavior by making pairwise

comparisons across the three treatments.

More specifically, to estimate the impact of correlation change on mixing behavior, I

regress each of the dependent variables – indicators of whether the allocation choice is

mixed, and whether the allocation choice is exact PM – on: (1) the indicator variable of

treatments: Independence vs Baseline; (2) correlation parameter; and (3) the interaction

term between the first two variables. The dependent variables capture the likelihood of

mixing and likelihood of exact PM, respectively. The coefficient for the interaction term

estimates the impact of correlation changes in the Baseline by cancelling out the impact

of frame changes in the Baseline with those in the Independence treatment.

Table 1.11 makes the comparison between the Baseline and Independence treatments.

As illustrated in Table 1.11, after controlling for the framing effects, subjects are 15.8%

(OLS, p = 0.000) less likely to make mixed choices and 12.5% (OLS, p = 0.000) less likely

to make exact PM choices when the correlation increases in the Baseline with the two

blocks combined. More significantly, the estimated correlation effects are more substan-

tial in Block 2 than in Block 1. The estimated impact of correlation on the likelihood of

mixing changes from −9.8% in Block 1 to −21.8% in Block 2. Similarly, the estimated

impact of correlation on the likelihood of exact PM changes from −10.8% in Block 1

to −14.2% in Block 2. This suggests that learning amplifies subjects’ responsiveness to

changes in the correlation between options. Such a finding thus indicates that subjects,

on average, are responsive to changes in the correlation between options when mak-

ing decisions, which cannot be fully accommodated by models of Correlation-Invariant

Stochastic Choices, which contains most preference-based models and some heuristics.
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Table 1.11: Baseline VS Independence: Impacts of Correlation/Frame on Mixing Behavior

Blocks 1 & 2 Block 1 Block 2 Blocks 1 & 2 Block 1 Block 2
mixed mixed mixed exact PM exact PM exact PM

IvsB X Correlation/Frame -0.158∗∗∗ -0.0977∗∗∗ -0.218∗∗∗ -0.125∗∗∗ -0.108∗∗∗ -0.142∗∗∗

(0.0366) (0.0334) (0.0452) (0.0286) (0.0311) (0.0380)

Correlation/Frame -0.00586 -0.00990 -0.00182 0.0121 0.0199 0.00439
(0.0114) (0.0106) (0.0161) (0.0114) (0.0183) (0.0128)

IvsB(Baseline=1) -0.175∗∗∗ -0.144∗∗ -0.205∗∗∗ -0.0877∗ -0.0564 -0.119∗∗

(0.0661) (0.0663) (0.0721) (0.0518) (0.0515) (0.0565)

Constant 0.241 0.261 0.221 0.165∗ 0.159∗ 0.170
(0.224) (0.214) (0.252) (0.0868) (0.0839) (0.104)

Observations 6840 3420 3420 6840 3420 3420

Note: Results from OLS regression. The dependent variable takes the value of 1 if the allocation choice in a task is

classified as mixed, or as exact PM, respectively. CORR/Frame represents the variable of correlation parameters in the

Baseline and Independence treatments. In the Baseline, it captures either the correlation change or the associated frame

change. In the Independence, it denotes the frame change only. IvsB is the dummy variable for whether the task comes

from the Baseline or Independence. It takes the value of 1 if the task comes from the Baseline. Each regression model also

includes the categorical variables of probability categories, gender, and school year, as well as the indicator variables of

dominant color, and STEM, as controls. Standard errors are clustered at the subject level and listed in parentheses. Full

regression results can be found in Appendix A.6.1. * p < 0.10, ** p < 0.05, *** p < 0.01.

Result 1. On average, subjects are sensitive to changes in the correlation between op-

tions: they are less likely to mix between options or even match precisely to the probability

of occurrence when the correlation between options increases. And learning amplifies the

responsiveness to the correlation change: with some experience, the mixing behavior de-

creases further when the correlation increases.

Along these same lines, I compare the Independence and Unknown treatments to

estimate the impact of frame change on mixing behavior. As subjects are not informed

about the ex post correlation between options, the mixing behavior does not vary across

problems in the Unknown treatment by design. The coefficient on the interaction term

between the indicator variable of Independence VS Unknown and the variable of corre-

lation parameter estimates the impact of frame change on mixing behavior.

As shown in Table 1.12, the estimated impact of frame change on the likelihood of
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mixing is not significantly different from zero (p = 0.777). Moreover, for the likelihood of

exact PM, the impact is limited and is altogether absent in Block 2. Regression results

show that, when combining Blocks 1 and 2 together, subjects are 3% less likely to make

exact PM choices in the Independence treatment when the frame changes. The impact

is significant in Block 1 (−6.5%, p = 0.000). However, as subjects gain experience in

Block 2, this impact disappears. Therefore, our result indicates that subjects are not

responsive to the change in frame, which rules out the Framing Effects — mixing due to

some frame-sensitive heuristics employed to simplify the comparison between marginal

distributions — as the leading explanation behind mixing behavior in decision problems

using the CPS.

Result 2. Subjects, on average, are not responsive to variations in the framing when

making decisions and learning mitigates this impact even further.

Combined with the previous findings between the Baseline and Independence treat-

ments, the aggregate results are more consistent with models of Correlation-Sensitive

Stochastic Choices than with models of Correlation-Invariant Stochastic Choices or Fram-

ing Effects. These results suggest that subjects deliberately take into account how out-

comes of options are correlated with one another in each state of the world when making

decisions. The observed mixing behavior in decision problems using the CPS therefore

tends to be subjects’ responses to the perfectly negative correlation between options for

reasons such as mix to hedge against the (misperceived) risk.

1.4.3 Decision to Mix VS Decision to Exact PM

By zooming in on the results for the Baseline, as shown in Figure 1.3, I find that

subjects’ decisions to mix between the dominant and dominated options are different from

their decisions to match precisely to the outcome probability in two ways: (1) different
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Table 1.12: Independence VS Unknown: Framing Effects on Mixing Behavior
Block 1&2 Block 1 Block 2 Block 1&2 Block 1 Block 2
mixed mixed mixed exact PM exact PM exact PM

IvsU X Frame/Ex post CORR 0.00387 0.00964 -0.00190 -0.0318∗∗ -0.0648∗∗∗ 0.00122
(0.0136) (0.0148) (0.0192) (0.0157) (0.0244) (0.0190)

Frame/Ex post CORR -0.00509 -0.00947 -0.000710 0.00962 0.0177 0.00159
(0.0114) (0.0106) (0.0161) (0.0114) (0.0183) (0.0129)

IvsU(Independence=1) 0.0469 0.0664 0.0274 0.0566 0.0920 0.0211
(0.0700) (0.0710) (0.0763) (0.0567) (0.0572) (0.0612)

Constant 0.422 0.373 0.471 0.140 0.167 0.112
(0.289) (0.275) (0.314) (0.143) (0.160) (0.136)

Observations 6780 3390 3390 6780 3390 3390

Note: Results from OLS regression. The dependent variable takes the value of 1 if the allocation choice in a task is

classified as (1) a mixed choice, or (2) a exact PM choice. Frame/Ex post CORR is the variable of correlation parameters

in the Independence and Unknown treatments. In the Independence, it captures the frame change only. In the Unknown,

it denotes no impact by design. IvsU is the dummy variable on whether the task is in the Unknown VS Independence. It

takes the value of 1 if the task is in the Independence. The regression also includes probability categories, dominant color,

gender, school year and STEM as controls. Standard errors are clustered at the subject level and listed in parentheses.

Full regression results can be found in Appendix A.6.1. * p < 0.10, ** p < 0.05, *** p < 0.01.

levels of responsiveness to the marginal changes in the correlation between options; and

(2) different levels of responsiveness to changes in the probability of the dominant option

paying off.

First of all, although variation in the correlation between options, on average, ex-

erts negative impacts on both the likelihood of mixing and the likelihood of exact PM,

such variation are attributed to different marginal changes in the correlation between

options. As demonstrated in Figure 1.3, there is a considerable decline in the likelihood

of mixing when the correlation marginally increases from weakly negative, to zero or

even to positive. However, a significant drop in the likelihood of exact PM occurs when

the correlation marginally increases from perfectly negative to moderately negative.
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Figure 1.3: Baseline: Impacts of Correlation on Decision to Mix Versus Decision to Exact PM

Notes: The error bars depict 95% confidence intervals.

To formally measure these differences, I estimate the impacts of marginal correlation

change at CORR = −1, at CORR = 0, and at CORR ≥ 0, respectively. For the impact

of marginal correlation change at CORR = −1, I compare allocation choices between

tasks featuring CORR = −1 and tasks with moderately negative correlations in the

two blocks.24 For the impacts of marginal correlation change at CORR = 0, I compare

allocation choices between tasks with CORR = 0 and tasks featuring weakly negative

correlations.25 For the impacts of marginal correlation change at CORR ≥ 0, I combine

the tasks with non-negative correlations, and compare the allocation choices noted there

with those in the tasks with weakly negative correlations.26

According to the regression results presented in Table 1.13, subjects are 34.7% (OLS,

p = 0.000) less likely to make exact PM choices when the correlation marginally increases

24Moderately negative correlations refer to the negative correlations that are closest to the perfectly
negative one. To be more specific, tasks with moderately negative correlations include those with
CORR = −0.5 in Category (67%, 33%), those with CORR = −0.67 in Category (75%, 25%), and those
with CORR = −0.75 in Category (80%, 20%).

25Weakly negative correlations refer to the negative correlations that are closest to zero. Specifically,
tasks with weakly negative correlations include those with CORR = −0.5 in Category (67%, 33%), those
with CORR = −0.33 in Category (75%, 25%), and those with CORR = −0.25 in Category (80%, 20%).

26Tasks with positive correlations are those with CORR = 0.5 in Category (67%, 33%), those with
CORR = 0.33 in Category (75%, 25%), and those with CORR = 0.25 in Category (80%, 20%).
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from CORR = −1. However, the same marginal correlation change does not have

significant impacts on the fraction of mixed choices. Moreover, when the correlation

marginally increases to CORR = 0, subjects are 12.6% (OLS, p = 0.000) less likely to

make mixed choices. In contrast, the same marginal change does not have a significant

impact on the fraction of exact PM choices. Subjects are 30.4% (OLS, p = 0.000)

less likely to mix when the correlation increases from weakly negative to non-negative

correlations. However, the same change does not significantly affect the fraction of exact

PM choices.

Table 1.13: Baseline: Marginal Impacts of Correlation on Mixing Behavior
(1) (2) (3) (4) (5) (6)

mixed exact PM mixed exact PM mixed exact PM
Marginal Change at CORR = −1 -0.00702 -0.347∗∗∗

(0.0352) (0.0795)

Marginal Change at CORR = 0 -0.126∗∗ -0.0316
(0.0599) (0.0616)

Marginal Change at CORR > 0 -0.461∗∗∗ -0.0367
(0.100) (0.0544)

Constant 0.133 -0.122 0.0870 0.0243 0.903∗∗∗ 0.260∗

(0.308) (0.154) (0.322) (0.0840) (0.256) (0.141)
Observations 1140 1140 1140 1140 1368 1368

Note: Results from OLS regression. The dependent variables take the value of 1 if the allocation choice in a task is

classified as a mixed choice, or as a exact PM choice. The variable of marginal correlation change at CORR = −1 takes

the value of 1 if the correlation parameter is -0.5 for Category (67%, 33%), -0.67 for Category (75%, 25%), or -0.75 for

Category (80%, 20%), and takes the value of 0 if CORR = −1. The variable of marginal correlation change at CORR = 0

takes the value of 1 if CORR(B,O) = 0, and takes the value of 0 if the correlation parameter is -0.5 for Category (67%,

33%), -0.33 for Category (75%, 25%), or -0.25 for Category (80%, 20%). The variable of marginal correlation change at

CORR ≥ 0 takes the value of 1 if CORR(B,O) ≥ 0 which includes the correlation parameter that is 0 for all categories, 0.5

for Category (67%, 33%), 0.33 for Category (75%, 25%), or 0.25 for Category (80%, 20%), and takes the value of 0 if the

correlation parameter is -0.5 for Category (67%, 33%), -0.33 for Category (75%, 25%), or -0.25 for Category (80%, 20%).

The regression also includes probability categories, dominant color, gender, school year and STEM as controls. Standard

errors are clustered at the subject level and listed in parentheses. Full regression results can be found in Appendix A.6.1.

* p < 0.10, ** p < 0.05, *** p < 0.01.

These results demonstrate a substantial distinction between the decision to mix be-

tween two options and the decision to precisely match to the probability of occurrence in
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terms of responsiveness to different marginal changes in the correlation between options.

The former decision is more heavily influenced by whether the two options subjects must

choose between are positively correlated (i.e., the APS). Note that, when the two options

are positively correlated, one option not only exhibits first-order stochastic dominance

but also state-wise dominance over the other. Hence, the decision to mix is more likely

to stem from an evaluation of whether one option dominates the other in a state-by-state

manner. In line with the explanation of needs to hedge against (misperceived) risk, it

could be the case that when one option dominates the other in each state, there is no

way to hedge against the result of getting nothing with choosing the dominant option

when State ω4 occur. It is also possible that when the dominant option outperforms the

alternative in each state, subjects tend to feel more certain that the option is the better

one, and thus become less likely to make mixed choices.27

On the contrary, the decision to match exactly to the outcome probability largely

depends on whether the two options that subjects must consider are perfectly negatively

correlated (i.e., the CPS). Put otherwise, exact PM tends to be a response towards the

particular “perfect complementary” relationship between options – whenever one option

yields a good outcome, the alternative yields a bad one, and vice versa. This finding

suggests that matching precisely to the outcome probability is more likely to be a form

of context-specific bias, which is triggered by the ”perfect complementary relations” of

the outcomes between options: either Project A succeeds or Project B succeeds, but not

both.

27This interpretation aligns with the notion of incomplete preference or indecisiveness, which posits
that decision makers may choose to mix when they are unsure of which option to choose, and they use
mixing between options as a way to resolve such uncertainty. Formalizing this requires assuming specific
functional forms of preference, and thus it would revert back to the complete but non-EU preference.
That is why I do not discuss this branch separately in Section 1.2. Existing theories that can formalize
this fail to take into account the possibility that the decision maker cares about how options are jointly
determined in each state, and thus are classified in the models of Correlation-Invariant Stochastic Choice.
Cautious Expected Utility proposed by Cerreia-Vioglio, Dillenberger and Ortoleva (2015) is an example
of this.

39



What Drives Probability Matching? Chapter 1

The findings are summarized as follows:

Result 3. The average negative impacts of correlation on the likelihood of mixing and

on the likelihood of exact PM are driven by different marginal correlation changes:

• Subjects are significantly less likely to make mixed choices when the correlation

between options marginally varies from weakly negative to non-negative correlations.

However, the same marginal change does not impact the likelihood of exact PM.

• Subjects are significantly less likely to make exact PM choices when the correlation

marginally varies from perfectly negative to moderately negative correlations. In

contrast, the same change does not significantly affect the likelihood of mixing.

Secondly, the decision to mix differs from the decision to match exactly to the outcome

probability in whether it responds to changes in the probability of the dominant option

paying off. Note that the probability of the dominant option yielding $M ranges from

67% to 80% across probability categories. Agranov, Healy and Nielsen (2023) observe a

monotone response among subjects to this change in probability: they are significantly

less likely to make mixed choices when the dominant option becomes more likely to

yield $M (-0.064 with p < 0.01). In contrast to their findings, though, subjects in this

experiment exhibit varying levels of responsiveness to this change depending on which

decisions they make. As shown in Figure 1.3, when the dominant option is more likely

to yield $M , subjects’ likelihood of mixing does not alter, whereas they are less likely

to match precisely to the probability. Furthermore, for both decisions, the magnitude of

responsiveness decreases when moving from Block 1 to Block 2.

For the purposes of statistical inference, I regress the indicators of whether the al-

location choice is mixed and whether it is exact PM on the correlation parameters in

the Baseline and the categorical variable of probability category separately, as shown in
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Table 1.14: Baseline: Impacts of Increasing p of Category (p, 1− p) on Mixing Behavior

Blocks 1 & 2 Block 1 Block 2 Blocks 1 & 2 Block 1 Block 2
mixed mixed mixed exact PM exact PM exact PM

Correlation -0.165∗∗∗ -0.108∗∗∗ -0.221∗∗∗ -0.108∗∗∗ -0.0843∗∗∗ -0.133∗∗∗

(0.0346) (0.0318) (0.0420) (0.0270) (0.0261) (0.0369)

(75%, 25%) -0.0168∗ -0.0248∗ -0.00880 -0.0915∗∗∗ -0.109∗∗∗ -0.0738∗∗

(0.00846) (0.0134) (0.0103) (0.0233) (0.0273) (0.0294)

(80%, 20%) -0.0272 -0.0238 -0.0306 -0.128∗∗∗ -0.152∗∗∗ -0.105∗∗∗

(0.0185) (0.0195) (0.0225) (0.0246) (0.0321) (0.0254)

Constant 0.0266 0.0753 -0.0221 0.0562 0.0470 0.0654
(0.276) (0.272) (0.293) (0.0908) (0.0757) (0.117)

Observations 3420 1710 1710 3420 1710 1710

Note: Results from OLS regression. The dependent variables take the value of one if the allocation choice in a task is

classified as mixed or exact PM, respectively. Correlation captures the correlation parameters, which takes values of -1,

-0.5, 0, 0.5 for Category (67%, 33%); -1, -0.67, -0.33, 0, 0.33 for Category (75%, 25%); and -1, -0.75, -0.5, -0.25, 0, 0.25

for Category (80%, 20%). Each regression also includes categorical variables of probability categories, gender, and school

year, as well as indicator variables of dominant color and STEM, as controls. Standard errors are clustered at the subject

level and are listed in parentheses. Full regression results can be found in Appendix A.6.1. * p < 0.10, ** p < 0.05, ***

p < 0.01.

Table 1.14. The likelihood of mixing decreases when moving from the tasks in Category

(67%, 33%) to tasks in Category (75%, 25%) with Blocks 1 and 2 combined or considering

Block 1 alone, and the coefficients are significantly different from zero at a 90% confidence

level. However, the difference becomes insignificant as subjects gain experience in Block

2 or when they face tasks in Category (80%, 20%). Notably, for the likelihood of mixing,

both the estimated coefficients and confidence levels are much lower than the findings

presented in Agranov, Healy and Nielsen (2023)’s study. On the contrary, the likelihood

of exact PM reacts to this change in probability: as the dominant option is more likely to

yield $M , subjects become less likely to match exactly to the probability when combin-

ing both blocks. When the two blocks are combined, subjects are 9.2% (p > 0.001) less

likely to make exact PM choices when moving from Category (67%, 33%) to Category

(75%, 25%), and 12.8% (p > 0.001) less likely to match precisely to the probability when
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moving from Category (67%, 33%) to Category (80%, 20%). However, the magnitude of

these impacts decreases in Block 2 as compared to Block 1. In line with my previous

findings, this result also suggests that subjects’ decisions regarding whether to mix or

not relate more to whether one option dominates the other in a state-wise manner rather

than in a distribution-wise manner. In addition to that, subjects’ responsiveness to this

change in both decisions is not robust to learning.

Result 4. The decision to mix and decision to exact PM respond differently to the in-

crease in the probability of the dominant option paying off: as the dominant option be-

comes more likely to yield $M , subjects are less likely to match exactly to the probability

but their likelihood of mixing remains unchanged. Additionally, learning mitigates this

responsiveness: with some experience, both the likelihood of mixing and the likelihood of

exact PM are less responsive to this change.

1.4.4 Mixing Types

To explore individual heterogeneity, I begin by classifying subjects into three mutually

exclusive types based on their behavior in Blocks 1 and 2: subjects who always allocate all

the available tickets to the dominant option in all the tasks are called Never Mix, subjects

who always allocate at least one ticket to the dominated option in all the tasks are called

Always Mix, and subjects who are in between are called Sometimes Mix. Figure 1.4

demonstrates the distributions of subjects across these types based on their choices in

Blocks 1 and 2, as well as their choices in Block 1 only and in Block 2 only, across the

three treatments.

As shown in Figure 1.4, in the Baseline treatment, approximately 17.5% (10/57)

of subjects Never Mix ; another 17.5% (10/57) of subjects Always Mix. Notably, the

proportion of subjects who are Never Mix increases from 17.5% (10/57) in Block 1 to
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28.1% (16/57) in Block 2, the difference of which is significant at a 90% confidence level

(OLS, p = 0.058). In contrast, the proportion of subjects who are Always Mix decreases

from 24.6% (14/57) in Block 1 to 21.1% (12/57) in Block 2, although this difference is

insignificantly different from zero. These results suggest that with some experience, some

subjects learn to make the expected utility maximization choice — choose the dominant

option with 100% — in the Baseline treatment.

The most prominent type of subjects is Sometimes Mix, which constitutes 64.9%

(37/57) of subjects. In fact, Sometimes Mix is the most prominent type, not only when

considering choices made with the two blocks combined, but also within each individual

block of the Baseline. Unlike what is observed in the Baseline, the two most prominent

types in the Independence treatment are subjects who Always Mix (43.9%) and those who

Sometimes Mix (42.1%), with both blocks combined. However, within each individual

block of the Independence treatment, there is a significantly larger proportion of subjects

who Always Mix (52.6% in Block 1 and 49.1% in Block 2) compared to those who

Sometimes Mix (29.8% in Block 1 and 28.1% in Block 2). The distribution of mixing

types in the Unknown treatment is similar to that of the Independence treatment. Our

results therefore indicate that the Sometimes Mix type in the Baseline is quite different

from those in the Independence and Unknown treatments.
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Figure 1.4: Mixing Types

Notes: The error bars depict 95% confidence intervals.

To further investigate whether the prevalence of the Sometimes Mix type in the

Baseline treatment primarily results from subjects’ responsiveness to changes in the cor-

relation between options, I examine the choices made by the Sometimes Mix type in

greater detail. In essence, I seek to determine whether subjects who Sometimes Mix in

the Baseline do so because they take the correlation between options into account and

are therefore more likely to allocate all the tickets on the dominant option when the two

options are positively correlated (i.e., APS), as opposed to the CPS. To achieve this goal,

I calculate, for each subject classified as Sometimes Mix, how many out of their choices

in the 12 tasks with the APS and in the 12 tasks adopting the CPS, are mixed.28 And

then, I plot the distribution of subjects who Sometimes Mix based on the numbers of

mixed choices they make in tasks with these two payoff structures, and separated them

by treatment, as shown in Figure 1.5.

28With Blocks 1 and 2 combined, there are 12 tasks featuring the APS and 12 tasks featuring the
CPS. In each block, there are six tasks associated with each payoff structure.
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Figure 1.5: Choice Distribution among Sometimes Mix type between CPS/Frames
and APS/Frames

Notes: Each circle is weighted by the number of subjects who made the same number of mixed choices out of the 12 tasks

with the CPS/Classical Frame and of the 12 tasks with the APS/Alternative Frame. For the Baseline treatment, the x-axis

and y-axis represent the number of mixed choices in tasks with the CPS and those with the APS, respectively. For the

Independence treatment, they denote the number of mixed choices in tasks with the Classical Frame and those with the

Alternative Frame, respectively.

As illustrated in Figure 1.5, subjects who Sometimes Mix in the Baseline treatment

behave differently from those in the Independence treatment. Among the 64.9% (37/57)

of subjects who Sometimes Mix in the 60 tasks in the Baseline treatment, 73% (27/37)

of them have strictly fewer tasks featuring the APS than tasks employing the CPS, in

which they mix between options. In addition, as shown in Figure 1.5, most subjects

who Sometimes Mix in the Baseline treatment are clustered at “mix in all the 12 tasks

with the CPS while allocating all tickets to the dominant options in some tasks using

the APS.” On the contrary, in the Independence treatment, among the 42.1% (24/57) of

subjects who Sometimes Mix in the 60 tasks, 50% (12/24) of them make mixed choices in

strictly fewer tasks featuring the Alternative Frame than those with the Classical Frame.

As shown in Figure 1.5, subjects who Sometimes Mix in the Independence treatment
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are more likely to be clustered on the 45 degree line, thus indicating that the numbers

of mixed choices they made are not significantly different in tasks with the Classical

Frame, compared to those with the Alternative Frame. These findings indicate that, for

subjects who Sometimes Mix in the Baseline treatment, their decisions to allocate all the

tickets to the dominant option in some tasks is not accidental. Instead, it is a result of

their deliberate consideration of the correlations between options and their corresponding

responses.

In sum, subject-level analysis also indicates that most subjects tend to respond to

variations in the correlation between options in the Baseline, which is in line with the

models of Correlation-Sensitive Stochastic Choice. It is important to note that a small

fraction of subjects who Never Mix (17.5%) is consistent with expected utility benchmark

and models that respect FOSD and compound lottery reduction. The same fraction of

subjects who Always Mix (17.5%) likewise aligns with existing models of Correlation-

Invariant Stochastic Choice.29 This suggests that the vast majority is not very responsive

to frame changes once the correlation between options is fixed, and that given the zero

correlation between options, most subjects tend to mix in every task.

I summarize the findings as follows:

Result 5. In the Baseline treatment, the most prominent type in the population are those

who Sometimes Mix (65%), which mainly results from the fact that the vast majority

of subjects are less likely to make mixed choices when the correlation between options

increases. However, once the correlation between options is fixed, most subjects tend to

Always Mix in the Independence and Unknown treatments.

29It is possible that subjects who Always Mix tend to allocate fewer tickets, though not necessarily
zero, to the dominated option when the correlation between options increases. However, by regressing
the fraction of dominated options in each task on the correlation parameter in the Baseline, I reject this
hypothesis by finding the opposite pattern: subjects who Always Mix on average allocate 2% of tickets
(less than one ticket) more to the dominated options when the correlation increases.
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1.5 Discussion

In this paper, I experimentally study the origin of probability matching behavior. I

unearth the underlying mechanisms behind probability matching and classify them into

three categories of theories: (1) models of Correlation-Invariant Stochastic Choice: mix-

ing due to factors orthogonal to the correlation between options such as non-Expected

Utility intrinsic preferences, inherent biases, inattentive and random mistakes, indif-

ference between receiving the bonus or not, etc.; (2) models of Correlation-Sensitive

Stochastic Choice: deliberately mixing to hedge against misperceived risk; and (3) Fram-

ing Effects : mixing due to some frame-sensitive heuristics (e.g., similarity heuristic), used

to simplify comparisons between marginal distributions. Three classes of models have

distinctive testable predictions on how the mixing behavior responds to variations in the

correlation between options and to different framing separately. Using a novel between-

subject design, I demonstrate that subjects deliberately take the correlation between

options into account, which can therefore account for a substantial amount of mixing

between dominant and dominated options or even matching precisely to the probability

of occurrence. In this section, I discuss the implications with respect to the existing

models of probability matching.

Expected utility benchmark, models of Correlation-Invariant Stochastic Choice, and

models of Correlation-Sensitive Stochastic Choice can accommodate some parts of the

findings, but none of them can fully explicate all of them. First of all, a minority of sub-

jects behave consistently with the expected utility benchmark and models of Correlation-

Invariant Stochastic Choices, which includes most preference-based models and some

heuristics. To be more specific, the observation that a sizable proportion (17.5%) of

subjects Never Mix in any of the 60 tasks is in line with expected utility benchmark:

respecting FOSD and compound lottery reduction. Similarly, the finding that an equal
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proportion (17.5%) of subjects Always Mix in each of the 60 tasks is consistent with mod-

els of Correlation-Invariant Stochastic Choice. That is, their mixing behavior is due to

factors orthogonal to how options are correlation in between such as non-Expected Util-

ity preference, inherent biases, random and inattentive mistakes, indifference between

getting the bonus or not, etc. Secondly, although the main finding is consistent with

which is argued by models of Correlation-Sensitive Stochastic Choice, it is worth not-

ing that none of the existing models in this category, as discussed in Section 1.2, could

be concluded to be the main mechanism behind all of these observations for two main

reasons.

On the one hand, these models cannot accommodate all the findings, for example, the

observation that subjects make different choices in the zero-correlation tasks between the

Baseline and Independence treatments, even when the framing is controlled. I compare

subjects’ choices in tasks where the two options have zero correlation in the Baseline

(e.g., Task 2 in Table 1.8), with tasks that employ identical frames in the Independence

treatment (e.g., Task 2 in Table 1.9). As depicted in Figure 1.6, subjects are less likely to

make mixed and exact PM choices in the tasks in the Baseline than those in the Indepen-

dence treatment, despite both sets of tasks featuring the zero correlation between options

and employing identical frames. I validate this finding by focusing on the zero-correlation

tasks in the Baseline and Independence treatments, i.e., Task 2 in each category, and re-

gressing the indicators of mixed choices and exact PM choices on the dummy variable of

the treatments. As shown in Table 1.15, subjects are 14.1% (p = 0.04) less likely to make

mixed choices and 9.9% (p = 0.07) less likely to make exact PM choices in the Baseline,

compared to the Independence treatment.

One plausible explanation for this discrepancy is that when the zero correlation is

described in words in the Independence treatment, subjects tend to interpret it differently

from the actual joint distribution that is presented in the Baseline. It could be due to
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Figure 1.6: Baseline VS Independence: Mixing Behavior in Zero-Correlation Tasks

Notes: This figure is based on the choice allocations in Task 2 of each treatment with two blocks combined. Task 2 in the

Baseline treatment demonstrates the joint distribution of two options with zero correlation, and Task 2 in the Independence

treatment employs corresponding frame as Task 2 in the Baseline. The error bars depict 95% confidence intervals.

Table 1.15: Baseline VS Independence: Mixing Behavior in Zero-correlation Tasks

(1) (2)
mixed exact PM

IvsB(Baseline=1) -0.141∗∗ -0.0990∗

(0.0676) (0.0541)

Constant 0.331 0.208∗∗

(0.237) (0.101)
Observations 1368 1368

Note: Results from OLS regression with observations in Task 2 and pooling Block 1 and Block 2 together. The dependent

variable takes the value of 1 if the allocation choice in a task is classified as (1) mixed, or as (2) exact PM. IvsB is the

dummy variable on whether the task is in the Baseline VS Independence treatment. It takes the value of 1 if the task

is in the Baseline. The regression also includes categorical variables of probability categories, gender, and school year, as

well as indicator variables of dominant color and STEM as controls. Standard errors are clustered at the subject level and

listed in parentheses. Full regression results can be found in Appendix A.6.1. * p < 0.10, ** p < 0.05, *** p < 0.01.
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the computational difficulty in thinking through all possible joint outcomes and correctly

calculating the associated probabilities. That is, given (A : p, B : 1− p), subjects might

have different weights assigned on each joint outcomes:

σ(p2) ◦ (A : $M, B : $0) ⊕ σ((1 − p)2) ◦ (A : $0, B : $M) ⊕ σ(p(1 − p)) ◦ (A : $M, B :

$M)⊕ σ(p(1− p)) ◦ (A : $0, B : $0)

with the subjective weight σ(·) where σ(x) ̸= x. This observation cannot be explained

by any existing models of Correlation-Sensitive Stochastic Choice, because none of them

account for the possibility that subjects might use misperceived correlation to make de-

cision. In other world, subjects take into account the correlation structure when making

decisions, but their perception of the joint distribution between options with zero correla-

tion differs from the actual one. Existing literature defines correlation neglect as individ-

uals’ tendency to ignore the correlation between options by treating them as if there is no

correlation between them (Enke and Zimmermann, 2019; Eyster and Weizsäcker, 2011).

This evidence suggests that subjects might also have imprecise perception on the zero

correlation, as one of the correlation structures. Investigating whether the difference is in

fact due to the misperceived zero correlation or because of other confounds, theoretically

and empirically, would be a promising direction for future research.

Moreover, each theory in the models of Correlation-Sensitive Stochastic Choice comes

with their own set of concerns when considered as the underlying mechanism behind

observed behavior. For instance, the irrational diversification model (Baltussen and

Post, 2011; Rubinstein, 2002), which assumes that subjects incorrectly believe they will

be paid for all the tickets instead of one randomly selected ticket, is somewhat unsatisfying

as an explanation for the observation given the fact that substantial efforts are made in

designing the instructions and interfaces to ensure that subjects correctly understand that

only one ticket would get paid. In the experiment, the instruction explicitly emphasizes

that only one ticket gets paid, tests subjects’ understanding regarding this matter via
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comprehension checks, and underscores this stipulation in the feedback provided after

each decision. Thus, it is reasonable to assume that the irrational diversification model

exerts a limited impact on subject’s mixing behavior.

There are some concerns raised when considering the evolutionary foundation pro-

posed by Brennan and Lo (2012) as the primary explanatory mechanism behind these

findings. Evolutionary explanations posit that with a sufficient number of trials with

feedback, which allow individuals to learn the joint distribution, their decisions will even-

tually converge to matching with the probability of occurrence, thereby rendering their

mixing behavior sensitive to the correlation between options. A few questions arise in

this regard. Firstly, the decision problem with unique features (same probability cate-

gory, same dominant color, and same correlation parameter) only repeats twice during

the entire experiment. Would this repetition be sufficient for meaningful learning to

occur? Secondly, the observed responsiveness to the correlation change in Block 1 of

the Baseline treatment cannot be justified by the evolutionary model, as each decision

problem in Block 1 is distinct from the others and subjects only receive repeated trials

in Block 2. Hence, suggesting new theoretical frameworks, especially those capable of

comprehensively explaining and accommodating these observations, or conducting tests

to determine which existing model in the class of Correlation-Sensitive Stochastic Choices

better explain these results, would be a fruitful direction for future research.

Last but not least, these results could serve as a potential explanation for why some

interventions aimed at reducing PM are effective while others are not. Numerous inter-

ventions have been proposed and studied across various contexts, while the evidence on

their effectiveness remains inconclusive. For example, Schulze et al. (2019) fail to repli-

cate previous findings by Wolford et al. (2004) that PM decreases when subjects have

extra cognitive load. On a related note, Mart́ınez-Marquina, Niederle and Vespa (2019)

find that eliminating uncertainty about which state would occur lets subjects be 8.7%
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less likely to make mixed choices and 5.4% less likely to make exact PM choices, which

is smaller than the estimated impacts of correlation (16% - 22%) in this paper. One

common feature shared by previous studies is that: the two options under consideration

are perfectly negatively correlated (Agranov and Ortoleva, 2017; Mart́ınez-Marquina,

Niederle and Vespa, 2019; Vulkan, 2000). My findings could provide a more fundamental

explanation for these phenomena: the correlation between options might interact with

these interventions, potentially contributing to mixed evidence regarding their effective-

ness. For example, even when uncertainty is removed, subjects in Mart́ınez-Marquina,

Niederle and Vespa (2019)’s study may still consider the relation between options and

mistakenly believe that there is an opportunity to hedge, which might reduce the effec-

tiveness of uncertainty reduction. Further theoretical and empirical studies along these

lines could be a promising avenue for future investigations.

1.6 Conclusion

Individuals tend to switch between options or even match precisely to the probability

of occurrence when predicting which of two payoff-relevant outcomes that differ only

in their probabilities of occurrence, which is a phenomenon referred to as “probability

matching.” In this paper, I experimentally study the origin of probability matching

by unpacking existing theories and reclassifying them according to three categories: (1)

models of Correlation-Invariant Stochastic Choice, which includes most preference-based

and some heuristics-based models, argue that people mix due to factors orthogonal to the

correlation between options and to the framing of those options such as non-Expected

Utility preferences or errors, etc.; (2) models of Correlation-Sensitive Stochastic Choice,

containing several heuristics and biases, posit that people mix due to some heuristics

that are sensitive to how options are jointly determined in each state, for instance, people
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deliberately use mixing as a tool to hedge against misperceived risk; and (3) Framing

Effects, assumes that individuals mix because they use some framing-sensitive heuristics

to simplify the comparison of marginal distribution between options, and with certain

frames, they attend to dissimilar but irrelevant attributes (outcome differences), while

neglecting relevant attributes (probability differences).

I find that the vast majority of subjects take into account the interdependence be-

tween options in each state of the world when making decisions. In response to the

perfectly negative correlation between options in the CPS due to the misperceived hedg-

ing opportunity, subjects mix between options or even matching precisely to the outcome

probabilities. Furthermore, I observe that although mixing behavior is robust to learn-

ing, learning amplifies subjects’ responsiveness to the correlation change: with some

experience, subjects are more responsive to changes in the correlation between options. I

also discover that the decision to mix between the dominant and dominated options are

significantly different from the decision to match exactly to the probability of occurrence.

My results highlight a number of areas for further research. First, it would be intrigu-

ing to explore the role of (misperceived) correlation between options in other domains

that likewise observe seemingly “suboptimal” stochastic choice. As previously mentioned,

existing models, such as correlation-sensitive preference (Lanzani, 2020), have limited

predictive capabilities when it comes to stochastic choice. This holds true not only in

the specific context of this paper but also in other domains where no dominance rela-

tion exists, as correlation-sensitive preference pertains to preference over reduced lottery.

Without additional assumptions, this theory posits that, if one option is preferred over

the other, it is always optimal to always choose the preferred one than to randomize

between them, and people mix between options only when they are indifferent. Inves-

tigating how stochastic choice varies with changes in the correlation between options,

especially in domains without dominance relations, could provide greater insights into
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Correlation-Sensitive Stochastic Choice. Second, it would be interesting to expand the

scope of this study to investigate the general distinction between state-wise dominance

and first-order stochastic dominance in different choice environments such as one-shot

binary choice, convex budget set, or repeated choice environment. This could shed light

on the foundations of FOSD violation. Additionally, it would be worthwhile to explore

when the Framing Effects works to reduce FOSD violation and why it is not robust across

choice environments. Such an investigation could help us gain a better understanding

of how the choice environment prompts individuals’ violation of FOSD when making

decisions.
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Chapter 2

Preference for Sample Features and

Belief Updating

Joint work with Menglong Guan, ChienHsun Lin, and Ravi Vora

2.1 Introduction

Different sources, such as the media, government reports, and scientific studies, often

emphasize distinct statistical characteristics of the raw data about the same event, which

we call sample features, to inform and influence public opinions. This requires people

to interpret and incorporate the information conveyed by certain sample features for

decision-making. For example, individuals who subscribe to different newspapers adjust

their beliefs about a politician’s favorability based on the specific statistical characteristics

of the same poll results emphasized by their respective newspapers. Similarly, investors

receiving financial reports from different analysts need to modify their beliefs according

to the specific sample features of the same stock outcomes emphasized by the analyst

whose report they receive. During the 2020 United States presidential election, some
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media emphasized that Biden won Georgia by a narrow margin of 0.23% (49.47% versus

49.24% between Biden and Trump), while others highlighted the significant difference in

the number of votes (12,284).1

An important question is how people employ and perceive the usefulness of different

sample features embedded in the realized signals (raw data) for belief updating, which

we know surprisingly little about.2 While there could be various reasons from the supply

side as to why different sample features are adopted, it is essential to understand the

demand side: Are people better at using certain features than others? Do they perceive

some features as more useful than others? Are they sophisticated about their biased use,

if present?

On the one hand, highlighting different sample features might not matter if people

are equally good at processing each sample feature. As presumed by standard rational

models, people make statistically optimal use of the information conveyed by each sample

feature through Bayesian updating. On the other hand, behavioral factors can influence

how effectively people use information in sample features to update their beliefs. For

instance, when predicting the election winner based on a poll result, individuals could

have benefited from more informative sample features, such as observing all the votes in

a poll, but struggling to do so when presented with less informative alternatives, such

as only knowing the relative frequency of the votes received by the poll winner.3 For

instance, if individuals know that there are 10,000 votes in total and the winner got 7000

votes, they learn that this is strong evidence indicating a high likelihood of the winner

1Sources: CBS News. (2020, August 6). ‘Biden has edge in North Carolina and race is tight in
Georgia — CBS News Battleground Tracker poll’ and Staff, A. 11Alive.com (2020, November 9). ‘Blog:
Joe Biden’s Georgia lead widens to more than 12,000’.

2While there is a large literature studying belief updating, it focuses on how people update beliefs
when receiving information about the realized signals with most sample features presented (Benjamin,
2019).

3The informativeness of a sample feature is defined as how much more uncertainty about the payoff-
relevant state is reduced by using the sample feature to update beliefs, compared to the no-information
case. See Section 2.3 for details.
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Figure 2.1: “Balls-and-Boxes” Task and Five Sample Features

Note: Existing literature studies belief updating by employing the “Balls-and-Boxes” task with Count

or Sequence provided. We use a novel design by separating the sample features in Count into Majority,

Proportion, and Difference.

winning the election as well. However, if they only know that the winner received 70%

of the votes in the poll, without knowing the size of the poll, it becomes challenging to

determine whether this is strong or weak evidence. Individuals must additionally account

for this uncertainty when making inferences. This additional step of consideration could

be cognitively taxing and affect how effectively they utilize the information.

In this paper, we use a laboratory experiment to study these questions. Start

with the widely used “balls-and-boxes” task by existing literature for studying infer-

ence from symmetric binary signals about a binary state (Benjamin, 2019), as shown in

Figure 2.1. One of the two boxes is randomly selected with equal chance. Each box has

ten balls, seven of which match the color of the corresponding box, while the remaining

three match the color of the alternative box. That is, Pr(One green ball|Box G) =

Pr(One orange ball|Box O) = 70%. The subjects’ objective is to assess the probability

that the picked box is Box G versus Box O, and gets paid by Binarized Scoring Rule

(Hossain and Okui, 2013). As a clue, a sequence of balls is drawn out of the chosen box

with replacement. Existing studies on belief updating either use Count or Sequence ( as

illustrated in Figure 2.1) to inform subjects about drawn balls.
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To answer the questions of our interest, instead of directly showing the sequence of

drawn balls, we propose a novel experimental design where we use five reports to separate

representative sample features extracted from the information about drawn balls. The

five reports are (1) Majority : indicates whether the set of drawn balls has more green or

more orange balls; (2) Proportion: displays the relative frequencies of green and orange

balls among the drawn balls, respectively; (3) Difference: demonstrates the difference

in the absolute frequency of green and orange balls among the drawn balls; (4) Count :

illustrates the absolute frequencies of green and orange balls among the drawn balls,

respectively; (5) Sequence: depicts the original sequence in which the balls were drawn.

Among these reports, we employ Sequence and Count to replicate the findings doc-

umented in the existing literature. Sequence contains all the sample features of the

realized signals. From Sequence to Count, the information on the order of realized sig-

nals is excluded, which is not useful for Bayesian inference.4 We use Difference, which

is the sufficient statistics of information about realized signals for Bayesian inferences

in (symmetric) inference problems (Benjamin, 2019). From Count to Difference, the

information on the sample size is not provided, which is not instrumental for Bayesian

inference in (symmetric) inference problems. By comparing across Difference, Count and

Sequence, we can examine the extent to which non-instrumental features matter and how

agents perceive their usefulness. We use Proportion to isolate the “Strength” (sample

proportion) from the “Weight” (sample size), as defined in the “Strength-Weight bias” by

Kahneman and Tversky (1972).5 Without the information about “Weight,” Proportion

4Instrumental value of a report is defined as the expected payoff that a Bayesian agent can receive by
using it to update beliefs in “balls-and-boxes” task, compared with the case with no information. In our
setting, informativeness and instrumental value give the same prediction of the ordinal rankings among
the five reports. Thus, we use informativeness (informative) and instrumental value (instrumental)
interchangeably. See Section 2.3 for more details.

5“Strength-Weight bias” describes the bias that individuals tend to over-weight sample proportion
(“Strength”) while under-weighting sample size (“Weight”) when using Sequence or Count to update
beliefs in “balls-and-boxes” tasks. These studies exogenously manipulate sample proportion and sample
size embedded in Sequence or Count, and structurally estimate the coefficients on sample size and on
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is less informative than Difference, Count, and Sequence. Majority is the least informa-

tive feature among the five. Comparing across Sequence/Count/Difference, Proportion,

and Majority allows us to study how the updating behaviors respond to the change in

the informativeness of sample features.

The experiment consists of two parts. Part 1 uses a ranking-cards method inspired by

Dustan, Koutout and Leo (2022) to elicit subjects’ willingness-to-pay of receiving each

of the five reports in the “balls-and-boxes” task. It allows us to measure the perceived

usefulness of each feature. In Part 2, we employ the strategy method with 33 pre-

selected scenarios of the “balls-and-boxes” task. These scenarios are designed to capture

how subjects respond and adjust their beliefs based on various signal realizations and

different information conveyed by different reports.

We have two main findings regarding how well subjects use different reports when

updating beliefs. These observations are robust to different measures of performance:

average absolute deviation from the Bayesian benchmark and estimated responsiveness

to information change using the Grether (1980) model. Firstly, subjects’ belief updating

deviates from the Bayesian benchmark under each report. However, it is least severe un-

der Proportion, despite Proportion being less informative compared to Difference, Count,

and Sequence. It suggests that subjects are better at using the “Strength”(sample propor-

tion) when used alone, rather than when combined with “Weight”(sample size). Secondly,

among the reports that are equally informative, i.e., Difference, Count, and Sequence,

subjects’ belief updating is closer to the Bayesian benchmark when using Count and

Sequence, compared to Difference. Our findings indicate that subjects are not equally

good at processing each sample feature, contrasting to what the Bayesian benchmark sug-

gests. Moreover, the biased use does not monotonically improve with the informativeness

sample proportion, respectively. By testing whether the two coefficients are identical and equal to one,
the common finding is that the coefficient on sample proportion is significantly larger than that on
sample size, and both are less than one (Benjamin, 2019).
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of sample features.

In terms of perceived usefulness, we find that, on average, the perceived usefulness of

the features deviates from the predictions of instrumental value in two ways. First, there

is no significant difference in the average WTP among Proportion, Count, and Sequence,

despite the latter two features being more instrumentally useful than Proportion. Second,

on average, subjects assign a significantly higher value to Proportion/Count/Sequence

by a margin of $0.68, compared to Difference or Majority, even though the former three

features have the maximum instrumental value. These results suggest that subjects fail

to fully recognize the usefulness of other features, such as Difference and sample size,

even though incorporating either of them with Proportion increases the instrumental

value of information.

These findings suggest that subjects, on average, have a strong preference for sample

features that contain Proportion compared to those that do not. Features that contain

Proportion, i.e., Count and Sequence, require subjects to conduct some calculations to

get the proportion information. Features that do not contain Proportion, i.e., Difference

and Majority, require additional inference about all the potential sample proportions

that could lead to the same Difference or Majority information, along with more difficult

calculations. The increased difficulties of inference and calculation required to get the

proportion information might lead to the distaste for Difference and Majority.

Examining the association between subjects’ perceived usefulness and the actual use

of the five sample features, we observe that, on average, subjects are self-consistent

between their preferences and performances, making better use of the sample feature they

prefer. This finding suggests that the biased use of sample features in belief updating is

more likely to be an intentional deviation rather than a result of inattentive heuristics.

However, there is also non-negligible inconsistency between preferences and performances,

and the most prominent pattern is that some subjects prefer a report that contains more
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or more informative features than another but perform relatively worse under it. In

each possible pairwise comparison of reports, among subjects whose preference for and

performance with the two reports, a non-negligible inconsistency between preferences and

performances, and the most prominent pattern is that some subjects prefer a report that

contains more or more informative features than others are ordinally inconsistent, over

60% of them follow this pattern. It indicates that a significant portion of subjects tend

to prioritize quantity (as many features as possible) over relevance (how useful they are

in the actual task) while failing to take into account the cost of processing more features

than necessary.

Our study is related to several strands of literature. First of all, our findings contribute

to the existing literature on belief updating and learning. We are the first to show direct

evidence of how subjects use and perceive the usefulness of sample features for belief

updating. Most previous studies demonstrate the biased use of sample features based

on indirect evidence and structural estimation. They identify “Strength-Weight bias”

or “Sample Size Neglect,” by asking subjects to update beliefs with either Count or

Sequence adopted to convey the information about realized signals (Griffin and Tversky,

1992).

By estimating the coefficients on sample size and sample proportion, respectively,

they find that the weight on sample size is smaller than that on sample proportion.6

Kraemer and Weber (2004) studies how the presentation mode of the signals affects

belief updating by comparing realized signals and Proportion plus sample size. They

find that subjects’ focus on sample proportion is pronounced when they receive explicit

information regarding sample proportion plus sample size compared to when receiving

realized signals. When most sample features are available, it is challenging to discern

whether the biased weights result from the different abilities in utilizing each feature or

6See Benjamin (2019) for the meta analysis.
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from the inclusion of too many sample features.

We add to this literature by presenting direct evidence that individuals are not equally

good at processing each sample feature embedded in the realized signals, and they value

the usefulness of sample features differently from instrumental value. Specifically, we

find that subjects are better at processing sample proportion alone, compared to more

informative features or those with other features combined. Furthermore, we demonstrate

that these biases are more likely to be intentional deviations rather than the result of

inattentive heuristics.

Second, our study contributes to the existing literature that examines the impacts of

coarse versus precise information. Ravaioli (2021) investigates how the coarsening of food

labels affects the number of calories consumed in food choices. He proposes a bounded

rationality model with precision overload to explain his main finding: coarse-categorical

labels reduce the number of calories consumed in food choices. As a complement to his

study, we provide direct evidence that, even in an abstract learning environment, individ-

uals are worse at processing detailed information when all sample features are included,

compared to coarse information with certain features excluded. We also show that not all

forms of simplification work. Both Difference and Proportion contain a reduced number

of sample features, yet subjects perform worse with Difference compared to Proportion,

despite the former having a higher instrumental value. Our results suggest that the per-

ceived usefulness may play a role in determining the effectiveness of coarse information:

if the coarse information emphasizes a sample feature that individuals consider useful,

they are more likely to make better use of it when updating their beliefs.

Third, our study is related to the demand for information literature. There is a

growing literature on how people choose and evaluate information with instrumental value

(Ambuehl and Li, 2018; Charness, Oprea and Yuksel, 2021; Guan, Oprea and Yuksel,
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2023; Liang, 2023).7 Among them, the most closely related to our study is Ambuehl and

Li (2018), which connects the under-responsiveness to instrumental value in information

evaluation with the non-Bayesian use of information. We also find people’s evaluation

of information broadly aligns with how well they use the information from the Bayesian

perspective. In addition, our finding of people performing better with Proportion and

overvaluing Proportion suggests that the non-Bayesian use of information could lead to

more severe deviations from instrumental value than under-responsiveness in the demand

for information.

The remainder of the paper is organized as follows. Section 2.2 describes the ex-

periment design. Section 2.3 lists theoretical predictions. Section 2.4 presents results.

Section 2.5 concludes by discussing the implications of our main findings.

2.2 Experimental Design

We design the experiment to investigate how subjects use and perceive the usefulness

of various sample features of realized signals in belief updating. To accomplish this, the

experiment consists of two parts: (1) ex-ante preference elicitation; (2) belief-updating

scenarios. Figure 2.2 demonstrates the experimental procedure. It starts with an in-

troduction to the “balls-and-boxes” belief updating task, namely Assessment Task, and

the five reports subjects may receive. This is followed by two practice rounds without

feedback. Then, in Part 1, we elicit the subjects’ preference regarding the five reports.

In Part 2, we use the strategy method to gauge how subjects employ the information

provided for belief updating across 33 pre-selected scenarios of the Assessment Task.

7There is also a large literature focusing on non-instrumental information and showing people’s de-
mand for information could be driven by timing preference of uncertainty resolution (Nielsen, 2020),
preference for positive skewness (Masatlioglu, Orhun and Raymond, 2017), curiosity or motivated at-
tention (Golman and Loewenstein, 2018; Golman et al., 2022), anticipatory feelings (Caplin and Leahy,
2001), etc.
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Subjects face the Assessment Task after finishing Part 2. One of the two parts is ran-

domly selected for payment, and subjects’ decisions in the chosen part determine their

final payments in the Assessment Task.

Figure 2.2: Timeline of the Experiment

The rest of this section describes the components of the experimental design in detail.

First, we outline the basic setups of the belief updating task, Assessment Task, and the

five reports of the realized signals. Then, we demonstrate how we elicit preferences

regarding the five reports and performances in the belief updating scenarios. Lastly, we

discuss the choices of experimental design.

2.2.1 The “Assessment Task”

To measure how subjects use information to update beliefs, we use the stylized balls-

and-boxes setting. This setting involves two boxes, each containing ten balls. Box G

consists of seven green balls and three orange balls, while Box O consists of three green

balls and seven orange balls. The computer randomly selects a box with equal probability.

Thus, the state of the world ω is either O or G. Then, the computer independently draws

balls out of the chosen box with replacement.8 Subjects do know which box is selected,

and are asked to assess the likelihood of the selected box being Box O or Box G. This

8Therefore, the diagnostic rate – the likelihood of drawing a ball from the box that matches the color
of the box itself – is symmetric: P (one green ball|Box G) = P (one orange ball|Box O) = 0.7.
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Figure 2.3: Screenshot of Assessment Task: Practice Round

process of forming posterior belief is referred to as the Assessment Task and serves as the

basis for determining the subject’s likelihood of receiving the $10 bonus after completing

Parts 1 and 2.

The computer randomly draws N balls from the chosen box with replacement, where

N is a random number selected from {3, 5, 9, 15} with equal probabilities. We use S =

(s1, . . . , sN), where for each ball, sn ∈ {o, g} with n ∈ {1, 2, ..., N}, to denote the sequence

of drawn balls. Instead of directly observing the exact sequence of drawn balls S, subjects

receive a summary of the sequence through one of the five reports, denoted as γR. The

report, γR, maps the sequence of drawn balls (S) to a statistical feature of S represented

by report R, denoted as γR(S) := SγR . Different reports capture different features of the

drawn balls: (1) Sample Majority, denoted as Majority γM—“Are there more green or

orange balls in the sample?”; (2) Sample Proportion, denoted as Proportion γP—“What

is the fraction of green balls in the sample?”; (3) Sample Difference, denoted as Difference

γD—“How many more green (orange) balls are there in the sample?”; (4) Sample Count,

denoted as Count γC—“What are the total numbers of orange and green balls in the

sample, respectively?”; (5) Sample Sequence, denoted as Sequence γS—“What is the

sequence of drawn balls?”. Figure 2.3 shows the interface of Assessment Task that

subjects see during the practice round. Each hypothetical scenario task in Part 2, as well
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as the final Assessment Task, employs a similar interface. However, it should be noted

that subjects are presented with a maximum of one report at a time.

To ensure incentive compatibility of posterior elicitation in the Assessment Task, we

use the Paired-Uniform Scoring Method introduced in Wilson and Vespa (2018) as it

elegantly sidesteps the need for detailed technical explanations.9 Although we explain

the payment determination logic to the subjects, we explicitly emphasize that it is in

their best interest to report their true beliefs.

2.2.2 Part 1: Preference Elicitation

Our design aims to identify both the cardinal and ordinal rankings of subjects’ pref-

erences regarding the set of reports. To achieve this, we employ a ranking-cards method

whereby each subject is required to place five Report cards, one for each report, within

an ordered list of 20 No Report+Money cards.10

For the No Report+Money cards, the dollar value ranges from $5 to $0, descending

in increments of $0.25. To incentivize subjects to rank the cards according to their

true preferences, subjects are told that, if Part 1 is randomly chosen for payments,

the computer would randomly select two cards from the set of 25. The higher-ranked

card would then be designated as the report that they would receive to summarize the

information about the drawn balls in the Assessment Task.11

9The Paired-Uniform Scoring Method is equivalent to the commonly exploited (incentive compatible)
belief elicitation method, Binary Scoring Rule (BSR). In the binary scoring rule, the subjects are paid
according to the squared distance to the actual belief. Specifically, let p be the subject’s actual belief
that the true state ω = O (and 1 − p be the belief that ω = G), and a be the stated belief. Then the
subject will be informed of the realized state: when the realized state is ω = O, the payoff if 1− (1−a)2;
when when the realized state is ω = G, the payoff if 1− a2. Hence the expected payoff given the stated
belief a is p(1− (1− a)2) + (1− p)(1− a2). One can show that the expected payoff is maximized when
a = p.

10This method is incentive compatible for expected utility maximizers. See Appendix B.1 for details.
11For additional details about the ranking-card method and its incentive compatibility, please refer to

Appendix B.1. The method is inspired by Dustan, Koutout and Leo (2022) but is different from theirs to
some extent. In ours, subjects rank multiple object cards simultaneously, then two cards are randomly
drawn and the one ranked higher is implemented. In Dustan, Koutout and Leo (2022), subjects insert
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Figure 2.4: Screenshot of Ranking-Card Preference Elicitation Over Reports

We use the same payoff method explained previously to determine subjects’ final

payments based on their stated beliefs in the Assessment Task. If the higher-ranked card

is a Report card, denoted as γR, subjects will complete the Assessment Task with the

information about the drawn balls summarized by the corresponding report, SγR . On

the other hand, if the higher-ranked card is a No Report + Money card, subjects will

finish the Assessment Task without any information about the drawn balls. In addition

to the payment received from the task, they will also receive the monetary compensation

specified on the card. Figure 2.5 depicts an example of the Assessment Task when Part

1 is selected for payment and the No Report+Money card is ranked higher.

2.2.3 Part 2: Belief Updating Scenarios

We employ the strategy method to measure subjects’ performances across 33 pre-

selected scenarios of the Assessment Task. To be more specific, after subjects state their

an object card into a list of lottery cards, then a lottery card is randomly drawn. The object card
will be implemented if it is ranked higher than the drawn lottery card; otherwise, the lottery card is
implemented.
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Figure 2.5: Screenshot of the Assessment Task when Part 1 is Selected for Payment

preferences for the five reports, they proceed to complete the hypothetical Assessment

Task for the set of 33 predetermined scenarios. Figure 2.6 is an example of it.

In each scenario, subjects are presented with one report and are asked to state their

posterior beliefs. If Part 2 is selected for payments, in the Assessment Task, the computer

will check whether the information about the drawn balls, as summarized by report R

(SγR), matches one of the pre-selected scenarios. If a match is found, the computer will

utilize the subjects’ stated beliefs from that specific scenario as their posteriors in the

Assessment Task, to determine their final payments. If there is no match with any pre-

selected scenario, subjects need to manually complete the Assessment Task by reporting

their beliefs via the slider bar. Consequently, subjects have no incentive to provide false

posteriors beliefs during Part 2.
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Figure 2.6: Example of a Scenario in Part 2

2.2.4 Understanding the Design

We design the experiment to answer two questions: (1) how subjects use different

sample features embedded in the realized signals when updating beliefs; and (2) how

they perceive the usefulness of the sample features in helping belief updating. Here we

highlight the design choices made to facilitate these goals.

First, to cleanly identify how subjects use the sample features embedded in the real-

ized signals, we employ the simple and classical “balls-and-boxes” setting with symmetric

prior (Pr(Box G) = Pr(Box O) = 50%) and symmetric diagnostic rate (Pr(1 green ball|Box G) =

Pr(1 orange ball|Box O) = 70%). The use of symmetric prior and symmetric diagnostic

rate serves two purposes in our study. Firstly, it reduces the burden of understanding the

belief updating environment, making it easier for participants to comprehend and engage

with the task. Secondly, it helps mitigate any potential bias that could arise from sub-

optimal utilization of prior information or an asymmetric perception of diagnostic rates.

By employing symmetric priors and diagnostic rates, we aim to minimize any distortions

in our objective of identifying how subjects utilize the sample features, ensuring a more

accurate analysis.12

12We acknowledge that subjects may exhibit biases in aggregating prior information and the infor-
mation of realized signals, and their use of sample features may also impact how they aggregate the
information in general. Our study focuses on cleanly identifying the use of different sample features as
the first step. We leave room for future extensions to explore variations such as asymmetric priors and
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Second, we carefully choose five reports to capture representative sample features.

Firstly, we use Count and Sequence as benchmarks to replicate findings from existing lit-

erature on belief updating (Benjamin, 2019). Secondly, we employ Proportion, which indi-

cates the “Strength” (representativeness of the signals) in the “Strength-Weight bias” or

“Sample Size Neglect” described by Kahneman and Tversky (1972), to isolate “Strength”

(sample proportion) from “Weight” (sample size). Furthermore, we include Difference,

which serves as the sufficient statistics of the information about realized signals S for

Bayesian inferences in (symmetric) inference problems (Benjamin, 2019).13 By directly

measuring subjects’ belief updating when presented with one feature at a time, we can

explore whether subjects are equally good at processing each feature but struggle when

processing the information with multiple features combined. Or alternatively, their abili-

ties to process each feature fundamentally differ and so does their perceived usefulness of

each feature. This exploration may shed light on the underlying mechanisms behind bi-

ases in belief updating, such as the “Strength-Weight bias” Lastly, we employMajority to

maximize variations in sample features with different instrumental values. This enables

us to examine the extent to which the informativeness of sample features predicts how

subjects use and perceive their usefulness. For a more detailed discussion on theoretical

benchmarks, please refer to Section 2.3.

Next, we intentionally select a set of 33 scenarios to achieve two goals: (1) to expose

subjects to a representative range of sample outcomes for each of the five reports; and

(2) to intentionally obscure the exact number of balls drawn in certain reports. Some

reports require additional effort to accurately deduce the complete information about all

possible realizations of drawn balls. This deliberate obscurity prompts subjects to invest

thoughtful analysis in interpreting the available information, which allows us to assess

asymmetric diagnostic rates, which could provide further insights into these phenomena.
13With asymmetric diagnostic rates, Pr(green ball|Box G) ̸= Pr(orange ball|Box O), Difference is

still more informative than Proportion.
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the impact of inferential effort on belief updating.

Furthermore, we deliberately choose the set of numbers: {3, 5, 9, 15}, from which

we sample the sample size N , for three reasons. Firstly, we aim to ensure that the

Bayesian posteriors, as the benchmark, are uniformly distributed between 0% and 100%.

To achieve this, we restrict the maximum number of balls to prevent clustering at the

extreme values (0% or 100%). Large sample sizes could otherwise lead to near-certainty

Bayesian posteriors, while very small sample sizes would result in minimal variation across

reports.14 Secondly, by selecting odd numbers as the sample size, we avoid situations

where the Bayesian posterior equals the prior (50%). This enhances the statistical power

of the experiment, as reports that yield 50% posteriors are interchangeable.15 Thirdly,

we select sample sizes with common factors only, with the intention of adding the needs

to consider certain information can either be strong or weak evidence. This is because

multiple realizations of the balls, whether it is strong or weak evidence, can map to

the same information conveyed by certain report SγR . Less informative sample features

require additional steps to deal with this uncertainty which could be cognitively taxing.

It allows us to investigate the extent to which this additional inferential effort predicts

subjects’ performance across the five reports.16

Finally, we have set the preference elicitation before the belief updating scenarios

in order to understand how subjects evaluate the values of each report and predict the

14For instance, if a subject receives a report stating “67% of balls are orange balls,” having large
sample sizes would lead to a near-certainty Bayesian posterior that the selected box is Box O (e.g.
a Bayesian posterior of 99.97% for N = 30, 98.58% for N = 15, and 70% for N = 3). With N =
1, the Bayesian posterior would be equal to the diagnostic rate: Pr(Box G|1 green ball) = 70% =
Pr(Box O|1 orange ball), resulting in minimal variation across reports.

15For example, Proportion “50% of balls are orange”— Count “same number of balls of different
colors”— Difference “no difference in the number of balls of different colors” give identical Bayesian
posteriors.

16For instance, consider the report stating “67% of drawn balls are orange.” In this case, there are
three equally likely scenarios with different levels of information strength: (1) a sample of two orange
balls out of three draws, which would be relatively weak evidence; (2) a sample of six orange balls out
of nine draws, which would be the evidence of intermediate strength; or (3) a sample of ten orange balls
out of fifteen draws, which would be relatively strong evidence.
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usefulness before experiencing the different reports in the belief update tasks. This

ordering minimizes the impact of relative frequency on the evaluation, as subjects will

be exposed to reports with varying frequencies during the belief updating scenarios.17

2.3 Theoretical Predictions

In this paper, we focus on two main aspects of the belief elicitation problem: the

performance in the updating tasks and the preference over the reports. The following

sections will describe the primary predictions of each aspect.

2.3.1 Performances in the Updating Task with Reports

2.3.1.1 Setup and Bayesian Inference

We first discuss the Bayesian benchmark in the updating tasks with reports. We use

ω ∈ {O,G} to denote the state of the world (which box is selected), and the objective

prior belief is P (ω = G) = 1
2
. Given the realized state ω ∈ {O,G} (selected box),

N ∈ {3, 5, 9, 15} and is randomly determined with equal probability and a sequence of N

balls are drawn independently with replacement. The drawn sequence of balls is denoted

as S = (s1, . . . , sN), where for each ball, sn ∈ {o, g} with n ∈ {1, 2, ..., N}. The diagnostic

rates, probabilities that a ball o is drawn from Box O and a ball g is drawn from Box G,

are symmetric,

p(sn = o|ω = O) = p(sn = g|ω = G) = θ = 0.7

The Report, γR, maps the sequence of drawn balls (S) to some statistical feature of

the sample S summarized by report R. We denote γR(S) := SγR .
18 A Bayesian agent

17By the nature of our design, there is one scenario question under Majority and 15 questions under
Sequence.

18For example, let S = (o, o, o, g, g). As in our design, with Majority, i.e. γM , then γM (S) =
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forms the posterior belief conditional on the feature of the drawn balls (S) summarized

by report R, SγR :

p(O | SγR)

p(G | SγR)
=

p(SγR | O)

p(SγR | G)

p(O)

p(G)
(2.1)

where p(O)
p(G)

is the ratio of prior beliefs,
p(SγR

|O)

p(SγR
|G)

is the ratio of conditional likelihood of

receiving SγR given state, and
p(O|SγR

)

p(G|SγR
)
is the ratio of posterior beliefs. With symmetric

prior belief of states O and G, the Bayesian posterior can be reduced to

p(O | SγR)

p(G | SγR)
=

p(SγR | O)

p(SγR | G)
(2.2)

When a Bayesian agent observes the features of S summarized by reports Sequence,

Count, or Difference, it is sufficient to use the information about the difference between

the numbers of o and g balls in the sequence of drawn balls S to find the Bayesian

posterior as shown below:19

p(O | SγR)

p(G | SγR)
=

p(SγR | O)

p(SγR | G)
=

 No +Ng

No

 θNo(1− θ)Ng

 No +Ng

Ng

 (1− θ)NoθNg

=

(
θ

1− θ

)No−Ng

(2.3)

whereNo andNg are the numbers of o and g in the sequence of drawn balls S, respectively.

The Bayesian posterior is a function of the difference in the numbers of o and g balls in

the drawn balls S, No −Ng, and the diagnostic rate, θ.

For reports Proportion and Majority, however, the drawn balls with different sample

size N can map to the same SγR . Thus, a Bayesian agent needs to take into account the

fact that, given the realized state ω, the likelihood of receiving SγR , Pr(SγR |Box ω,N),

“More o than g;” with Proportion, i.e. γP , γP (S) =“60% o and 40% g.”
19By sufficient, we mean no additional inference is needed before applying the Bayes’ rule.
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varies with the number of drawn balls, N . For instance, when SγR says “33% o and 67%

g”, the actual drawn sequence S can be under one of the following equally-likely cases:

(1) N = 3: 1 o and 2 g, (2) N = 9: 3 o and 6 g, or (3) N = 15: 5 o and 10 g. Then, she

needs to form expected likelihood of SγR , given the realized state ω, over all possible N .

Thus, we further extend Equation (2.2) into

p(O | SγR)

p(G | SγR)
=

p(SγR | O)

p(SγR | G)
=

∑
N∈{3,5,9,15} p(N)p(SγR | O,N)∑
N∈{3,5,9,15} p(N)p(SγR | G,N)

(2.4)

where P (N) = 1
4
. Note that each p(SγR | O,N) can be found with the same method as

in Equation (2.3).

2.3.1.2 Empirical Strategies and Hypotheses

We use two ways to evaluate how well agents use sample features when updating

beliefs. On the one hand, we measure the absolute distance between agents’ stated

posteriors and Bayesian posteriors. For a Bayesian agent, it maximizes her expected

payoff by reporting the Bayesian posteriors, and there is no difference across sample

features. That is, a Bayesian agent always makes the best of each sample feature. If the

stated posterior deviates less from the Bayesian posterior under one report compared to

another, we say that the agent performs better under the former than the latter one.

On the other hand, we follow Grether (1980)’s framework of the balls-and-boxes

paradigm to measure how responsive agents are towards the change in the likelihood

ratio of receiving SγR given state ω.20 Grether (1980)’s framework distinguishes the

biases in using realized information from those in incorporating the prior belief by adding

20It refers to the ratio of the likelihood of receiving SγR
conditional on the state,

p(SγR
|O)

p(SγR
|G) .
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parameters c and d to Equation (2.1) respectively

π(O | SγR)

π(G | SγR)
=

(
p(SγR | O)

p(SγR | G)

)c (
p(O)

p(G)

)d

(2.5)

where π(· | SγR) represents the subjective posterior conditional on receiving SγR . As

p(O) = p(G) in our setting, the last term becomes 1, and therefore the subjective poste-

rior becomes a function of the likelihood ratio of the signal realizations with parameter

c. By taking logarithm, we have

ln

(
π(O | SγR)

π(G | SγR)

)
= c ln

(
p(SγR | O)

p(SγR | G)

)
= c ln

(
p(O | SγR)

p(G | SγR)

)
(2.6)

where the coefficient c measures how responsive agents are towards the change in the

likelihood ratio of SγR . A Bayesian agent has c = 1 in each report. c < 1 corresponds to

updating as if SγR provided less information about the state than it actually does (under-

inference). The lower the c, the less sensitive agents are to the change, and thus the more

severe under-inference. c > 1 means updating as if SγR was more informative than it

actually is (over-inference). The last equality follows from Equation (2.2). Specifically,

we estimate the following regression model:

ln

(
π(O | SγR)

π(G | SγR)

)
= a+ c ln

(
p(O | SγR)

p(G | SγR)

)
+ γX+ ε (2.7)

where X is the vector of demographic variables added as controls; α is the constant term

and ϵ is the residual. If the estimated c from stated beliefs under some report is closer

to 1 than the others, we would say that subjects perform better with the former report

than the latter one.
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2.3.2 Preference over Reports

2.3.2.1 Instrumental Value of Reports

We use two ways to measure the instrumental value of the reports. On the one hand,

we evaluate the instrumental value of the reports by how much the report can improve the

expected payoff in the belief updating task. Let S(γR) be the set of possible realizations

under γR. As we employ the binary scoring rule (BSR) for payment, a Bayesian agent

maximizes the expected payoff by reporting the Bayesian posterior given realized SγR .

Thus, the expected payoff of γR is

EP (γR) = B·
∑

SγR
∈S(γR)

[
p(O|SγR)(1− (1− p(O|SγR))

2) + (1− p(O|SγR))(1− p(O|SγR)
2)
]
p(SγR)

where B = $10 is the size of the bonus, and p(SγR) is the likelihood of receiving SγR

given γR. Note that without any information, the agent knows the prior only. Thus, the

instrumental value is defined as the difference in the expected payoff between receiving

γR and receiving no information:

V (γR) = EP (γR)− EP (P0)

where EP (P0) denotes the expected payoff without the information. In our setting, for

example, the prior is P0 = 50%. So the optimal guess (50%) yields the expected payoff

$7.5:

EP (P0) = 10× [0.5(1− (1− 0.5)2) + (1− 0.5)(1− 0.52)] = 10× 0.75.

If the agent receives report Majority, the information will increase the expected payoff

to $8.85. Thus the (expected) instrumental value of Majority is $8.85− $7.5 = $1.35.
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Moreover, another widely-used measure of the usefulness of information is the re-

duction of the Shannon entropy (Shannon, 1948), or informativeness (Cabrales, Gossner

and Serrano, 2013). That is, compared to the no-information case, how much more un-

certainty is reduced by receiving the information about the drawn balls summarized by

γR. Specifically, given ω ∈ Ω = {O,G} and the probability measure p : Ω → [0, 1], the

Shannon entropy is

H(p) = −
∑
ω∈Ω

p(ω) log2 p(ω).

Let q(Sγ) be the probability that the realized SγR is generated under report γR. Then

informativeness is defined as the Shannon mutual information between prior and posterior

beliefs

I(γR) = H(p0)−
∑

SγR
∈S(γR)

q(SγR)H(pSγR
).

Table 2.1 demonstrates the informativeness of each report. Note that when there is no

report, the informativeness is 0.

2.3.2.2 Hypotheses

Table 2.1 summarizes the instrumental value of the five reports measured by two

definitions discussed above. Note that reports Difference, Count, and Sequence yield the

same instrumental value, which are higher than that of Proportion, and Majority has the

lowest instrumental value. In addition to that, the ordinal ranking is identical between

the two evaluation approaches.21

Hypothesis 5. If the agent evaluates sample features according to their instrumental

value, she will rank Difference/Count/Sequence as the most preferred features, Majority

21Thus, given our theoretical benchmark, we use the terms informativeness (informative) and instru-
mental value (instrumentally valuable) interchangeably, which captures the level of uncertainty on the
information accuracy.
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as the least preferred features, and Proportion as somewhere in between.

Table 2.1: Two Measures of the Value of Reports

No Report Majority Proportion Difference/Count/Sequence
Instrumental Value V (γR) $0 $1.35 $1.46 $1.52
Informativeness I(γR) 0 0.44 0.51 0.55

Note: The instrumental value of each report is the difference in the expected payoff between between

each report and no report. The informativeness of each report is the reduction of the Shannon entropy

compared to the no-report case.

Based on the discussion above, we can identify two categories of comparisons among

reports. The first category focuses on reports that have maximum instrumental value

and yield identical Bayesian posteriors, namely Difference, Count, and Sequence. Each of

them aggregates the information of the drawn balls, S, in a lossless way. When facing any

of them, a Bayesian agent uses the information on the difference in counts of different-

colored balls to derive Bayesian posterior. Count, in addition to providing difference

information, also conveys the sample size of S. Sequence, on top of counts, provides

the information about the order in which the balls in S were drawn.22 However, neither

sample size nor order is necessary for Bayesian inference. The theoretical benchmark

suggests that, given the drawn balls S, the Bayesian posteriors should be identical across

Difference, Count, and Sequence. Any deviation in performance or evaluation implies

that the agent might use or perceive the usefulness of the non-instrumental feature(s) in

a non-standard manner.

The second category focuses on reports that differ in their informativeness, with the

three reports mentioned in the first category being more informative than Proportion,

while Proportion is more informative than Majority. Less informative reports require

22Given symmetric diagnostic rates, reports Difference, Count, or Sequence of the drawn balls S
give the same Bayesian posterior. With asymmetric diagnostic rates, Difference is no longer a sufficient
statistics of the drawn balls S but still has a larger instrumental value than those processed by Proportion
and Majority. See more details in ?? about the predictions under asymmetric diagnostic rates.
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agents to additionally take into account that the information can be either strong evidence

or weak evidence. For example, when receiving “two orange balls and 1 green ball are

drawn out of the selected box”, agents can learn this is a relatively weak evidence. On

the contrary, consider the previous example of the report stating “67% of drawn balls

are orange.” Agents need to take into account that three equally likely scenarios with

different levels of information strength could give the same information: (1) a sample

of two orange balls out of three draws, which would be relatively weak evidence; (2) a

sample of six orange balls out of nine draws, which would be the evidence of intermediate

strength; or (3) a sample of ten orange balls out of fifteen draws, which would be relatively

strong evidence. The additional inference required by less informative reports might be

cognitively demanding, which could result in larger deviation.23 By comparing whether

the performance ranking is in line with the ranking of instrumental value, we can test

whether this additional inferential effort predicts how well subjects use the sample feature

for belief updating.

Lastly, if agents are sophisticated about how well they will use the sample features

to update beliefs, their preference would be consistent with performance.

Hypothesis 6. If the agent is sophisticated about how she would use each sample feature

for belief updating, her perceived usefulness would be consistent with how she actual uses

sample features.

23Studies on uncertainty in signal interpretation find that individuals tend to be more conservative or
insensitive to information change when they are uncertain whether the signal is strong or weak evidence
(compound diagnostic rate) (Epstein, Halevy et al., 2019; Liang, 2021).
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2.4 Results

We organize our main results as follows: Section 2.4.1 documents how subjects update

their beliefs using the information provided by the five reports.24 In Section 2.4.2, we

compare the average willingness to pay to assess how subjects perceive the usefulness of

each report. Section 2.4.3 explores the relationship between the actual use and perceived

usefulness of the five reports.

2.4.1 Performances across Sample Features

We apply two measures to assess the effectiveness of subjects in utilizing the infor-

mation provided by each of the five reports when updating their beliefs.

First of all, we calculate the average absolute deviation from the Bayesian benchmark

using subjects’ stated beliefs, and compare them across the five reports. Figure 2.7 de-

picts the average absolute deviation for each report. We observe that subjects exhibit

the least deviation under Proportion. It is significantly smaller than the deviations un-

der Count and Sequence (t-test for each pairwise comparison, p < 0.01), even though

the latter two are more informative than Proportion. The deviation under Difference is

significantly larger than those observed in Count and Sequence (t-test for each pairwise

comparison, p < 0.01), despite the three of them being equally informative. The largest

deviation occurs under Majority, which are significantly larger than the deviations ob-

served in the other reports (t-test for each pairwise comparison, p < 0.01). This finding

provides evidence against the hypothesis that the extent to which subjects deviate from

the Bayesian benchmark is identical across reports. Moreover, the observed difference

in performance cannot be fully explained by variations in the informativeness of the five

sample features.

24We employ the terms “report” and “sample feature” interchangeably in this paper to refer to the
same concept.
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Figure 2.7: Average Deviation from Bayesian Benchmark by Report
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Note: The figure depicts the mean deviation of the subjects’ beliefs from the Bayesian posterior (in

percentage term). For instance, if a subject assesses a belief of 80% against a scenario with the Bayesian

posterior of 85%, the deviation is 5. 95% confidence intervals are included.

In addition, we use the Grether model as an alternative measure to assess perfor-

mance. This model allows us to estimate the responsiveness of subjects to changes in

the likelihood ratio based on the information presented in each of the five reports. Fig-

ure B.1 plots the average stated beliefs against the corresponding Bayesian posteriors for

each report.25 A Bayesian agent would consistently state their subjective beliefs as the

Bayesian posteriors, resulting in a 45-degree line.

Remarkably, Figure B.1 demonstrates that the widely-established inverse S-shaped

relationship between average stated beliefs and Bayesian posteriors, commonly observed

in canonical “ball-and-box” belief updating tasks, is present across all five reports. The

stated beliefs tend to be compressed closer to the 50:50 rather than aligning with the

25The stated beliefs of 0% and 100% are excluded from Figure B.1 and Table 2.2 due to the logarithmic
property used in the calculations. For the complete data, including these extreme beliefs, please refer
to Appendix B.3, where we apply a linear approximation to accommodate the stated beliefs of 0% and
100%.
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Figure 2.8: Underinference of Information by Report

Note: The stated posteriors are plotted against Bayesian posteriors and separated by reports. On each

point, we plot the 95% confidence interval. The blue lines represent the 45-degree line, which denotes

the Bayesian benchmark. The fitted posterior is derived from Equation (2.7) with the coefficients from

Table 2.2. On the fitted lines, the stated beliefs of 0% and 100% are excluded due to the property of

taking logarithm.

45-degree line. This suggests that under-inference, under-reaction to changes in the

likelihood ratio, exists across all five reports. More importantly, the stated beliefs are

closest to the 45-degree line under Proportion, indicating that subjects are the most

responsive to changes in the likelihood ratio under Proportion compared to other sample

features.

To formalize this, we estimate the coefficient of the reduced-form model proposed by

Grether (1980), as shown in Equation (2.7), for each of the five sample features. Table 2.2

presents the estimated c for each sample feature. Firstly, our results replicate previous
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findings where subjects receive Count or Sequence as signals. Specifically, in line with

Benjamin (2019), we find that the estimated coefficients under Count and Sequence are

0.356 and 0.364, respectively.26

Notably, as shown in Table 2.2, our study is the first to estimate c specifically for

Proportion and Difference, and find them to be 0.679 and 0.311 separately. With a pooled

analysis that combines all the observations and includes interaction terms for each sample

feature, we find that the estimated c under Proportion is closer to 1 and significantly larger

than any other sample feature (t-test for each pairwise comparison, p < 0.01). It indicates

that subjects are more responsive to changes in the information conveyed by Proportion

compared to the other features.27 The estimated c for Difference is significantly smaller

than that for Count and Sequence separately (t-test for each pairwise comparison, p <

0.01). This implies that subjects are less sensitive to changes in the likelihood ratio when

using Difference, despite it being equally informative as Count and Sequence.28 29 By

measuring subjects’ responsiveness to changes in the likelihood ratio, we observe similar

patterns as with the average absolute deviation from the Bayesian benchmark: subjects

are not equally responsive to the information change across the five reports, and this

26In his meta-analysis, Benjamin uses the data from previous literature, where participants receive
Count or Sequence as signals and elicit their beliefs to study belief updating. He finds that the estimated
coefficient of c is 0.383 with a standard error of 0.028.

27See Appendix B.3 for more details.
28Due to the limited number of observations available for Majority, we are cautious in drawing conclu-

sions about subjects’ responsiveness to information changes under Majority. Each subject only receives
one information under Majority, either indicating more orange or more green balls. Therefore, we ac-
knowledge the need for further investigation and caution in interpreting the results regarding subjects’
responsiveness to information changes under Majority.

29One potential explanation for the subjects’ improved performance under Proportion is that subjects
may naively report the observed proportion information as their stated beliefs, resulting in a higher
estimated c. To test this hypothesis, we categorize the stated beliefs into two groups: beliefs within a
5% range of the sample proportion and beliefs outside of this range. We find that 67% of the stated
beliefs fall outside of the 5% range of the sample proportion. Moreover, when we plot the stated beliefs
against the corresponding Bayesian posteriors, separating them by the two groups, the stated beliefs
outside of the 5% range of the sample proportion are closer to the Bayesian benchmark than to the
50:50. This suggests that the improved performance under Proportion is not solely driven by a naive
reporting of the observed proportion information. Please see Appendix B.4 for more details.
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variation does not respond to increasing the informativeness of the five reports.

Table 2.2: Effect of Information Strength on Under-inference by Report

(1) (2) (3) (4) (5) (6)
Majority Proportion Difference Count Sequence All

ln
(

p(O|SγR
)

p(G|SγR
)

)
0.535∗∗∗ 0.679∗∗∗ 0.311∗∗∗ 0.356∗∗∗ 0.364∗∗∗ 0.367∗∗∗

(0.0565) (0.0325) (0.0183) (0.0169) (0.0158) (0.0159)

Constant 0.0967 -0.228∗ -0.174∗ -0.186∗∗ -0.0339 -0.0934
(0.194) (0.124) (0.104) (0.0841) (0.0707) (0.0706)

Observations 97 390 387 856 1475 3205

Note: We calculate the ratio of stated posteriors and then take the natural log to form the explained

variable, ln
(

π(O|SγR
)

π(G|SγR
)

)
. For the explanatory variable, we calculate the ratio of Bayesian posteriors and

then take the natural log, ln
(

p(O|SγR
)

p(G|SγR
)

)
. The observations with π(G|SγR

) = 0 or 1 are dropped. Columns

(1) - (5) represent the regression estimations under each of the five reports, respectively. Column (6)

indicates the regression results with all the data pooled together. Two categorical variables, gender and

grades, are added as controls in all the regressions. Standard errors are clustered at the subject level

and presented in parentheses. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

We summarize these results as follows:

Result 6. Subjects’ belief updating is the closest to Bayesian benchmark when using

Proportion, despite Proportion being less informative compared to Difference, Count, and

Sequence. Moreover, among the sample features that are equally informative (Difference,

Count, and Sequence), subjects’ belief updating is closer to the Bayesian benchmark under

Count and Sequence than under Difference.

Our findings suggest that, different from the Bayesian benchmark, subjects do not

exhibit equal proficiency in utilizing the various sample features in the realized signals

for belief updating. Additionally, the performances do not respond to the informative-

ness of sample features in two ways: (1) subjects’ performances do not monotonically

improve with the informativeness of the features provided in the reports: they are better

at using Proportion compared to other features with higher instrumental value, namely
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Count/Sequence/Difference. (2) some non-instrumental feature helps: when comparing

Difference, Count, and Sequence, subjects are better at using Count and Sequence, even

though these additional features do not add more instrumental value for Bayesian infer-

ence compared to Difference. Our results also shed light on the “Strength-Weigh bias” by

suggesting that subjects exhibit better performance in utilizing the “Strength” (sample

proportion) when used independently, rather than when combined with “Weigh” (sample

size).

Furthermore, the varying difficulties associated with retrieving proportion information

from the received reports could explain the differences in belief updating performances

across the reports. On the one hand, when facing Count and Sequence, subjects may

need to conduct additional mental calculation to extract the proportion information.

This computational burden could tax subjects’ belief updating behaviors, resulting in

a compression towards 50:50 and reduced sensitivity to changes in the likelihood ratio.

On the other hand, retrieving the proportion information under Majority and Difference

requires additional inference about all possible proportions that could yield the same

information. This additional step of inference may result in less effective utilization of

the information when updating beliefs.

Last but not least, the observation that the deviations under Count and Sequence are

smaller compared to those under Difference and Majority suggests that the complexity

associated with making inferences may be greater than that of performing calculations.

However, it is important to note that these arguments assume that subjects perceive

Proportion as the most useful feature for belief updating and would like to extract it from

received reports. We provide further support for this assumption in the next section.
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2.4.2 Preferences across Sample Features

In this section, we explore subjects’ perceived usefulness of the five reports by assess-

ing their elicited willingness to pay (WTP ), and compare it with theoretical predictions

of instrumental value.

Panel (a) of Figure 2.9 depicts the distribution of WTP for each report. The dis-

tributions of Proportion, Count or Sequence first order stochastically dominate those of

Majority or Difference. Panel (b) of Figure 2.9 shows the average WTP for each re-

port. There is no significant difference in the average WTP among Proportion, Count

and Sequence. The average willingness to pay for Difference is also lower than that for

Proportion by $0.68. Between Proportion and Difference, approximately 65% of subjects

express a preference for the former over the latter. Our results indicate that subjects

prefer Proportion, Count and Sequence the most, while preferring Majority the least, and

Difference is somewhere in between.30

30Pairwise Wilcoxon rank test on ranking with multiple testing correction (Benjamini-Hochberg adjust-
ment) suggests that the gap of WTP between Proportion/Count/Sequence and Difference is significant
at 99% confidence level, and the difference between Difference and Majority is significant at 90% of the
confidence level.
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Figure 2.9: Preference over Reports
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(c) Prefer the Most
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(d) Prefer the Least

Note: Panel (a) plots the cumulative density function of the reported willingness-to-pay, which is sep-

arated by reports. Panel (b) plots the average willingness-to-pay of each report. In Panel (b), 95%

confidence intervals are included. Panel (c) plots the fraction of subjects who rank the report as the

most preferred and separated by reports, and Panel (d) plots the fraction of subjects who rank the report

as the least preferred (tied results are included).

To test the extent to which the gap in WTP is driven by different monetary scales

subjects use for evaluation, Panels (c) and (d) of Figure 2.9 plot the fraction of subjects

who consider each report as the most preferred and the least preferred, respectively. We

find that the gap observed in average WTP is not solely due to different scales that

subjects use to rank reports. The ordinal ranking demonstrates a consistent pattern: the

majority of subjects rank Proportion, Count, and Sequence as the most preferred reports,
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while ranking Majority and Difference as the least preferred reports.

In addition, there exists notable heterogeneity in the perceived usefulness of reports

containing information about sample proportion, namely Proportion, Count and Se-

quence. Some subjects prioritize receiving the sample proportion only, while others rec-

ognize the value of incorporating additional features. Among the subjects, 39% rank

Proportion as the most preferred report, while 37% and 49% rank Count and Sequence

as the most preferred, respectively. Subjects who rank Proportion highest are willing

to pay an average of $1.17 more to avoid receiving additional features beyond sample

proportion. On the other hand, those who rank Count or Sequence as the most preferred

report appreciate the values of the extra features alongside sample proportion, as indi-

cated by their willingness to pay an average of $0.66 more to receive Count or Sequence,

compared to Proportion.

In sum,

Result 7. The preference for sample features deviates from instrumental value in two

ways:

1. On average, subjects consider Proportion, Count and Sequence as equally useful,

despite the features in the latter two being more informative than Proportion;

2. Subjects, on average, value Count and Sequence more than Difference, even though

all three are equally informative for Bayesian inference.

Our findings suggest that subjects’ perceived usefulness of sample features does not

align with their instrumental value. On average, the subjects have a strong preference

for reports that contain the feature of sample proportion compared to those that do

not. However, they fail to fully recognize the usefulness of other features such as sample

difference and sample size, even though incorporating the latter two with Proportion

makes the information more useful for Bayesian inference.
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These findings suggest that subjects, on average, have a stronger preference for sample

features that contain Proportion compared to those that do not. Features that contain

Proportion (Count and Sequence), require subjects to conduct some calculations to get

the proportion information. Features that do not contain Proportion (Difference and

Majority), require additional inference about all the potential sample proportions that

could lead to the same difference or majority information. It is noteworthy that there

are differences in the degree of aversions towards these two types of additional efforts.

Subjects demonstrate a stronger aversion (higher WTP ) to avoid the need to make

additional inferences compared to the need to perform additional calculations. This

suggests that subjects may perceive the former as more difficult than the latter.

The observed heterogeneity in the perceived usefulness of reports containing the sam-

ple proportion indicates a potential variation in the relationship between individual pref-

erences and performances. Some subjects exhibit a “Strength-Weight preference” by

preferring Proportion the most, while others prioritize reports that have sample size

along with Proportion. These findings suggest that there might be some heterogeneity

in the association between preferences and performances, which we will discuss in detail

in the next section.

2.4.3 Association between Preferences and Performances

In this section, we aim to examine the association between subjects’ perceived use-

fulness and their actual use of the five reports. We investigate whether subjects who

underestimate the usefulness of certain features also tend to use them suboptimally. By

analyzing this association, we can gain valuable insights into the nature of deviations

from the Bayesian benchmark, distinguishing between intentional deviation and inatten-
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tive heuristics.

On the one hand, if subjects’ preferences align with their performance, it would

suggest that subjects have a sophisticated understanding of the usefulness of each report

for belief updating. Consequently, the observed non-standard belief updating would likely

be an intentional deviation from the Bayesian approach. On the other hand, if subjects’

preferences are inconsistent with their performance, it would indicate that subjects fail

to accurately predict their performance. Other behavioral traits might affect how they

value information as well. In such cases, the non-standard belief updating is more likely

to be a result of inattentive heuristics.

To achieve this goal, we measure each subject’s performance across the five reports by

calculating their average absolute deviation for each report. We use each subject’s WTP

values for the five reports to measure subject-level preference, and use the ten pairwise

comparisons to calibrate the complete relationship among the five reports. We employ

regression estimation to formalize the relation between preference and performance. The

dependent variable is the difference in the average absolute deviation between Report X

and Report Y , for each pair of reports. We construct a categorical variable to capture

the relative comparison between WTPX and WTPY , which serves as the explanatory

variable. We also use the indicator variable on whether the average absolute deviation

under ReportX is smaller than that under Report Y as an alternative dependent variable.

It helps determine whether subjects are more likely to perform better (indicated by a

smaller deviation) under one report compared to the other.

Table 2.3 demonstrates the main regression results. Compared to the case of indiffer-

ence (WTPX = WTPY ), subjects deviate 3.28 less under the more-preferred report than

under the less-preferred one. Going by one category of the pairwise comparison outcomes

between X and Y (e.g., from indifference to preferring X over Y ) is associated with an

increase of 66% (e0.508− 1 ≈ 0.66), in the likelihood of deviating less in X compared to
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Y . Both results are statistically significant at the 95% confidence level. These findings

indicate that, on average, subjects are consistent between preferences and performances:

they perform better under the report they prefer.

Table 2.3: Association between Preference and Performance
(1) (2)

ADX − ADY 1{Perform Better in X}
WTPX > WTPY -3.279 ** 0.508 **

(1.506) (0.221)
WTPY > WTPX -0.496 -0.225

(1.467) (0.218)
(Intercept) 2.348 * -0.145

(1.405) (0.182)
N 1090 1090
(Pseudo) R2 0.024 0.034

Note: In Column (1), the dependent variable is the difference in the average absolute deviation from
Bayesian posterior between Reports X and Y in a given pair. We construct a categorical variable that
takes the value of 1, 0, or -1 if WTPX > WTPY , WTPX = WTPY , or WTPX < WTPY , respectively,
to be the independent variable. In Column (2), we use Logit model and the indicator variable on whether
the average absolute deviation under Report X is smaller than Report Y as an alternative dependent
variable to capture whether subjects are more likely to perform better (smaller deviation) under one
report versus the other. Standard errors are clustered at the subject level and presented in parentheses.
∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

We use the ordinal rankings of both preference and performance to explore the het-

erogeneity of the preference-performance relationship. To be more specific, we rank the

five reports based on the number of sample features they contain or the level of informa-

tiveness of those features. According to this criterion, the ranking of reports is as follows:

1st Sequence, 2nd Count, 3rd Difference, 4th Proportion, and 5th Majority.

For each pair of reports, we refer to the one ranked lower on this list as Report X

and the alternative as Report Y . Within each pair of reports, we define a preference-

performance relation as “Perform better under Preferred” if a subject exhibits a smaller

average absolute deviation (AAD) and states a larger WTP for one report compared to

the alternative in that pair. In addition, we consider a preference-performance relation
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type as “Prefer more but better with less” if a subject has a smaller AAD but states

a lower WTP on Report Y compared to Report X. On the other hand, a preference-

performance relation is categorized as “Prefer less but better with more” if a subject has

a larger AAD but states a larger WTP on Report Y compared to Report X. Table 2.4

illustrates the definition of association types.

Table 2.4: Definition of Association Type
Association Type Reports X and Y : AAD and WTP

Perform Better under Preferred AADY (X) < AADX(Y ) and WTPY (X) > WTPX(Y )

Prefer Less but Better with More AADY < AADX and WTPY < WTPX

Prefer More but Better with Less AADY > AADX and WTPY > WTPX

Note: The ten pairwise comparisons calibrate the association between preference and performance across

the five reports. For each pair of reports, denoted as Report X and Report Y , we refer to Report X as

the one with fewer features (regardless of informativeness), or less informative features, while Report Y is

the one with more features (regardless of informativeness), or more informative features. The notations,

Y (X) and X(Y ), mean that the same relationship holds when replacing all the Y with X and all the X

with Y .
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Figure 2.10: Distribution of Association Types in 10 Report Pairs

Note: The fractions of subjects classified by the preference-performance types are plotted against the

ten pairs of reports. In each pair, X − Y , the former name in short is Report X, the latter name in

short is Report Y . X either contains fewer features (regardless of informativeness) or less informative

sample features than Y . In each pair of reports, a preference-performance association is defined as

“Perform Better under Preferred” if a subject has a smaller average absolute deviation (AAD) and

states a larger WTP on one report than the alternative. A preference-performance association type is

defined as “Prefer More but Better with Less” if a subject has a smaller AAD but states a lower WTP

on Report Y than Report X. A preference-performance relation is defined as “Prefer Less but Better

with More” if a subject has a larger AAD but states a larger WTP on Report Y than Report X. The

dashed line represents 50% of subjects as the reference. Tied results are excluded.

Figure 2.10 demonstrates the distribution of the three types across the ten pairs.

Consistent with our aggregate results, the majority of subjects fall into the “Perform

better under Preferred” type, representing approximately 50% of subjects in each pair.

This indicates that a significant portion of subjects demonstrate consistency between

their preferences and performances.

Furthermore, there is notable heterogeneity among the inconsistent types, where sub-

jects’ preference and performance do not align. The second largest type is the ”Prefer
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More but Better with Less” type, which comprises, on average, 22% of subjects. These

individuals express a preference for the report with more or more informative features

but actually perform better under the one with fewer or less informative features. Ad-

ditionally, 13% of the subjects belong to the ”Prefer Less but Better with More” type,

indicating that they prefer the report with fewer or less informative features but achieve

better performance under the one with more or more informative features. This diver-

sity in the inconsistent types highlights the complex interplay between preferences and

performances among the subjects.

To summarize,

Result 8. On average, subjects are self-consistent between their preferences and perfor-

mances, performing better under the sample feature they prefer. However, there is also

non-negligible heterogeneity in the inconsistent association of ordinal rankings between

preference and performance:

• Substantial inconsistencies are observed among subjects;

• The most prominent type of inconsistency is “Prefer More but Better with Less”:

subjects prefer the report that contains more features or more informative ones but

actually perform better under the report that contains only the necessary features

for their belief updating.

Our results suggest that the non-standard use of sample features in belief updating

is more likely to be intentional deviations rather than inattentive heuristics. In other

words, subjects underestimate the usefulness of certain sample features, and fail to make

optimal use of them when updating beliefs, despite these features being instrumentally

more valuable for Bayesian inference compared to other features. For instance, our

results shed light on biases such as the “Strength-Weight bias” or the “Sample-Size
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neglect” documented in previous literature (Kahneman and Tversky, 1972). These biases

involve the evaluation of the sample proportion (referred to as “Strength”) and sample

size (referred to as “Weight”), respectively. Our findings indicate that these biases are

primarily associated with subjects’ over-valuing the importance of “Strength”, while

under-appreciating the importance of “Weight” when it comes to belief updating.

The majority type among subjects whose preferences are inconsistent with their per-

formances is “Prefer More but Better with Less.” This finding suggests that these sub-

jects might fail to consider the cost-benefit trade-offs associated with processing addi-

tional sample features that do not matter for their belief updating. Despite the fact that

the theoretically defined informativeness increases with more information, these subjects

tend to prioritize quantity over relevance. In doing so, they may fail to recognize that

the additional information does not necessarily improve the accuracy of their belief up-

dating. Furthermore, this preference for more or more informative features may come at

a cost. The additional effort or cognitive resources required to process these features can

pose a challenge, potentially hindering subjects from making optimal use of the available

information when updating their beliefs.

There is also a non-negligible fraction of subjects who demonstrate a lesser sophisti-

cation in understanding how additional sample features can aid in belief updating. This

suggests that these individuals may not fully recognize the value of incorporating sup-

plementary information for accurate belief revision. Furthermore, it is worth considering

that non-standard preferences for information, such as a preference for simplicity, could

potentially influence how they evaluate the usefulness of information.
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2.5 Conclusion

In this paper, we use a controlled laboratory experiment to study how individuals

use and perceive the usefulness of different statistical characteristics of realized signals,

namely sample features when updating beliefs. In terms of performance, a Bayesian

agent would be equally good at processing each sample feature, as they use the Bayes’

rule to do so. However, what we find is that subjects are not equally good at processing

each sample feature. First of all, subjects under-use the information contained in each

of the five sample features, while the magnitudes differ across sample features. We find

that subjects are better at using Proportion than the other features: subjects’ stated

posteriors are closest to the Bayesian benchmark under Proportion, even though it is less

informative compared to Difference, Count, and Sequence. Subjects deviate the most

from the Bayesian benchmark under the least informative sample feature – Majority.

These results provide direct evidence of “Strength-Weight Bias” – better at using sample

proportion but worse at using sample size for belief updating.

In terms of preference, subjects’ perceived usefulness of sample features also deviates

from what instrumental value/informativeness would predict. Subjects value Proportion

as equally useful as Count and Sequence, even though the latter two have higher in-

strumental value or more informative than the former one. Overall, subjects prefer the

features that can back out Proportion with some computational operations over those

that require additional inference or contingent reasoning on all the possible Proportion

information. These results suggest that subjects have “Strength-Weight Preference” of

the information – prefer using sample proportion rather than using sample size for belief

updating.

Combining preference and performance, we show that, on average, subjects make

better use of the sample features they prefer, while there exists notable heterogeneity in
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the inconsistency between preference and performance. This indicates that the biased

use of sample features in belief updating is more likely to be an intentional deviation

rather than inattentive heuristics. Overall, our results indicate that the suboptimal use

of some informative sample features can account for a substantial amount of deviation

from Bayesian benchmark in belief updating, which is positively correlated with how

individuals perceive the usefulness of different sample features.

Our results open interesting questions for further research. One natural next step is to

explore the generality of our current finding with other information on sample features.

In our experiment, under less informative sample features, we deliberately choose the

information that maps to different information under more informative ones. This allows

us to see how the instrumental value of information would interact with the way subjects

use the information in each sample feature. Thus, the information provided by different

sample features maps to different Bayesian benchmarks, even if they have some sample

features in common. For example, the Bayesian posterior under Report Proportion saying

that 80% of balls are green is different from those under the Report Count either saying

four green balls and one orange ball, 12 green balls and three orange balls, or 20 green

balls and five orange balls, separately. As there is no one-to-one mapping between the

information of sample features with different instrumental values, our results could be

driven by the difference in Bayesian posteriors rather than the difference in subjective

belief updating processes. Thus, it would be interesting for future work to explore to

what extent our findings are due to the different updating behaviors.

Secondly, it would be interesting to directly ask whether subjects process the infor-

mation to get certain sample features and use those to make inferences when receiving

certain information and what behavioral traits drive their valuation of sample features.

A contemporary paper by Bordalo et al. (2023) demonstrates that the similarity between

information and hypothesis is one of the reasons behind this. However, as shown in
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Appendix B.4, our finding is not purely driven by reporting whatever they received. It

would be a fruitful direction for future research.
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Chapter 3

Dynamic Binary Method

Joint work with Xin Jiang

3.1 Introduction

Information on individual beliefs is central for researchers to better understand eco-

nomic behavior (Manski, 2004). Without data on what people think and expect, it is

challenging to differentiate between alternative choice models, understand the boundaries

of rationality, or examine new equilibrium concepts. However, eliciting individual beliefs

poses its own set of challenges. Existing methods primarily rely on individuals selecting

a number from 0% to 100% to represent their probabilistic beliefs (Charness, Gneezy and

Rasocha, 2021), which introduces numerous issues. For instance, individuals may possess

imprecise rather than precise probabilistic beliefs about a particular event (Giustinelli,

Manski and Molinari, 2022). They might have a general notion but struggle to provide

the best point estimate. When asked to state a point belief, cognitive difficulties may

arise, leading to conservative responses and systematic deviations from truthful reporting

(Charness, Gneezy and Rasocha, 2021).
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In this paper, we introduce a new elicitation method called the Dynamic Binary

Method (DBM). Unlike Classical Methods (CM), which directly ask respondents to se-

lect a number from 0 to 100 as their probabilistic beliefs, and use proper scoring rules

such as the Binary Scoring Rule (BSR) to incentivize truthful reporting, DBM differs

in how beliefs are stated and whether they must be a single value. Inspired by the bi-

section process – the iterated partition of a choice set into two equally large subsets,

with perceptions elicited through a series of binary choices (Baillon, 2008) – DBM allows

respondents to exit at any step and state interval beliefs if they prefer. This method is

designed to achieve two primary goals: (1) alleviate the challenge of forming a precise

point estimate of beliefs or perceptions, and (2) quantify the self-perceived precision of

those beliefs.

To elaborate further, starting with the full belief space, in each step s, DBM divides

the belief space [Isl , I
s
u] into two equally sized intervals: [Isl ,

Isl +Isu
2

] and (
Isl +Isu

2
, Isu], where

Isl and Isu denote the lower and upper bounds of the presented interval, respectively. The

decision maker (DM) must then select either [Isl ,
Isl +Isu

2
] or (

Isl +Isu
2

, Isu], or they can opt to

exit with the interval [Isl , I
s
u]. If the DM chooses to exit, the computer randomly selects

a number aR from the stated belief range a = [al, au], following a uniform distribution.

The selected number aR is then applied in a proper scoring rule, such as the BSR, to

determine the DM’s payoff.

For an expected utility maximizer, choosing the mean of their true belief, no matter

whether their true belief is precise or distributed, is optimal in both DBM and CM.

However, an expected utility maximizer who does not perfectly foresee the optimal choice

but instead considers randomization over [Isl ,
Isl +Isu

2
], (

Isl +Isu
2

, Isu], or [I
s
l , I

s
u], may opt to exit

early with an interval whose midpoint equals the mean of their true belief. Thus, the

decision to exit early indicates whether the DM is myopic or not. DBM also facilitates

relative judgment by asking which range is more likely, thereby sidestepping the challenge

100



Dynamic Binary Method Chapter 3

of finding the best point estimate. If it is main driving force behind biases in perception,

for example, the compressed relationship between respondents’ probabilistic estimates

and “true” probabilities, it would have the potential to mitigate the difficulty of forming

precise point estimates.

To assess the empirical validity of DBM, we conduct both within-subject and between-

subject experiments using a diverse range of perception tasks from previous literature.

Specifically, for the between-subject design, we utilize four task categories from controlled

laboratory experiments: simple prior tasks (Danz, Vesterlund and Wilson, 2022), com-

pound prior tasks (Liang, 2022), belief updating tasks (Danz, Vesterlund and Wilson,

2022), and estimation tasks (Dewan and Neligh, 2020; Falk and Zimmermann, 2018) with

artificial settings such as balls and urns, counting peas in a bowl, or dots in a graph. Ad-

ditionally, we incorporate four task categories from field or lab-in-the-field experiments:

perception on economic or financial variables (Enke and Graeber, 2023), the labor market

(Wiswall and Zafar, 2015a), and education (Wiswall and Zafar, 2015b), all of which have

real-life settings.

To address the challenge of not knowing participants’ true beliefs, we carefully design

the questions to ensure that each task has an objective truth. Furthermore, we inten-

tionally select parameters for each question to ensure that the objective truths span the

entire belief space, including centered, extreme, and intermediate values. For the within-

subject design, we allow each participant to complete a set of perception tasks using both

DBM and CM in a randomly determined order. This approach aims to assess the extent

to which the elicited beliefs in tasks using DBM can predict stated point beliefs in tasks

using CM at the subject level.

First of all, we find that DBM does not perform significantly differently from CM at

the aggregate level, regardless of whether the perception questions use artificial/laboratory

settings or real-life settings. This finding is robust across different measures, including
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the absolute deviation of the midpoint of elicited beliefs from the objective truth or the

expected absolute deviation of elicited beliefs from the objective truth. This suggests

that the challenge of forming a point estimate of beliefs/perceptions may not be the

primary driver of biased perception elicited using CM. But DBM outperforms CM when

the task has extreme values as the objective truth. This implies that some perception

biases, such as central tendency, could result from the narrowed consideration set that

respondents use to choose beliefs or perceptions from.

Furthermore, we find, from both between-subject and within-subject perspectives,

that the length of stated beliefs in tasks using DBM is negatively correlated with their

accuracy and can predict how well respondents perform in tasks using CM at the aggre-

gate level: the longer the interval, the less accurate the stated belief in DBM and the

less accurate the stated belief in CM. Moreover, within-subject results highlight partic-

ipants’ sophistication regarding the precision of their beliefs/perceptions: participants

who stated point beliefs in DBM in more tasks demonstrate less deviation from the ob-

jective truth in their stated beliefs in CM. This pattern is particularly significant among

participants who completed tasks with DBM first and subsequently used CM.1

Note that this relationship is not strictly monotonic: stated beliefs reaching the point

are not the most accurate and do not predict the most accurate beliefs stated in CM.

Participants who always choose until reaching the point in all tasks using DBM are not

the most accurate in tasks using CM. Moreover, our findings reject the hypothesis that

participants have precise beliefs/perceptions but do not bother to choose until reaching

the points for reasons such as complexity. If this were the case, we would expect no cor-

relation between the length of their stated beliefs in DBM and the absolute deviation of

their stated point beliefs from the objective truth in CM. This finding suggests that par-

1We interpret this difference as a fatigue effect as in our Experiment 1, subjects are underpaid given
the time they took to finish the experiment and the standard payment suggested by Prolific.
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ticipants possess some level of awareness regarding how accurate their beliefs/perceptions

would be when using DBM.

Lastly, we compare three methods of using the stated beliefs elicited with DBM to

predict point beliefs elicited with CM. We find that predictions using a weighted average

between subjective truth (the midpoint of stated beliefs in DBM) and the cognitive de-

fault (e.g., midpoint of the slider bar), with the relative weight on the default determined

by the length of stated beliefs in DBM, are closest to the average stated beliefs in CM.

This approach outperforms both using the midpoint of stated beliefs in DBM alone and

using objective truth instead of subjective truth in the weighted average method. Our

findings underscore the significance of incorporating the precision of stated beliefs and

perceived truth to enhance predictions of economic behavior.

Relations to the existing literature. This paper makes several contributions to the

existing literature. Firstly, our study aligns closely with previous research on percep-

tion/evaluation imprecision and the notion of cognitive uncertainty introduced by Enke

and Graeber (2023). Most studies in this domain focus on capturing preference incom-

pleteness, cognitive noise, or cognitive uncertainty using non-incentivized techniques. For

instance, Enke and Graeber (2023) measure “cognitive uncertainty” by having partici-

pants first choose from a slider bar to state their beliefs/perceptions and then report a

probabilistic value indicating the extent to which they are “certain” about their previous

choice is the best on a second screen without incentivizing truth-telling. Similar tech-

nique is used in Giustinelli, Manski and Molinari (2022); Nielsen and Rigotti (2023) for

the identification of belief imprecision by asking participants to report probability inter-

vals after the question using a precise percent-chance format, with the question about

belief range being unincentivized. Recently, Agranov and Ortoleva (2020) proposes an

incentivized method to measure the extent to which people choose to randomize between
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two risky options,focusing on eliciting the ranges of preference for randomization in the

domain of choice under risk.

Our study contributes to the literature by proposing a new incentivized method for

eliciting participants’ imprecise beliefs in the domains of perception and inference.

Secondly, our study is situated within the growing empirical literature on prefer-

ences from randomization. Existing studies have documented randomization in various

contexts, including objective lotteries (Agranov and Ortoleva, 2017; Dwenger, Kübler

and Weizsäcker, 2018; Feldman and Rehbeck, 2022), ambiguity preferences (Cettolin and

Riedl, 2019), time preferences (Agranov and Ortoleva, 2017), social preferences (Agra-

nov and Ortoleva, 2017; Miao and Zhong, 2018), and even choices involving dominated

options (Agranov, Healy and Nielsen, 2023; Rubinstein, 2002). The survey paper by

Agranov and Ortoleva (2022) demonstrates high rates of preferences for randomization

across these domains and shows their persistence even after explicit training.

Similar to these studies, we capture the prevalence of randomization using incentivized

measures. Moreover, we extend this line of inquiry into the domain of belief formation

and inference and document the prevalence of randomization over beliefs, thereby com-

plementing existing literature in this area.

The rest of this paper is organized as follows. Section 3.2 delves into the theoretical

benchmark of DBM and CM with BSR. Section 3.3 outlines the experimental design.

Section 3.4 presents the results, and Section 3.5 concludes.

3.2 Theoretical Framework

Consider a decision maker (DM) with a probabilistic belief over a verifiable binary

outcome s ∈ {A, B}, assuming they possess a true belief p = Pr{s = A}. Binarized

scoring rule (BSR) uses two monetary prizes Mh and Ml for payment (where Mh > Ml ≥
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0), and two i.i.d. draws X1, X2 ∼ U [0, 1] to determine the outcome (Hossain and Okui,

2013; Wilson and Vespa, 2018). Specifically, if s = A is true, the DM gets the prize Mh

so long as their stated belief a is greater than at least one of the two uniform draws X1

and X2. If s = B is false, the DM gets the prize Mh so long as their stated belief a is

less than at least one of the two uniform draws X1 and X2. Otherwise, the DM gets the

prize Ml. Given the true belief p, the probability of winning the better prize Mh is

π(p, a) = p ∗ (1− (1− a)2) + (1− p) ∗ (1− a2) (3.1)

Thus, BSR generates a reduced lottery:

L(a|p) = π(p, a) ◦Mh ⊕ (1− π(p, a)) ◦Ml (3.2)

Without loss of generality, assume Ml = 0. Given the true belief p, finding the optimal

stated belief a ∈ [0, 1] that maximizes the expected utility in the BSR is equivalent to

maximizing the likelihood of receiving the prize Mh.

Classical Methods (CM) refer to implementation methods that elicit the DM’s stated

point belief a by directly asking the DM to report any value within the full choice space,

such as any real number between 0 and 1. As this approach is widely used in existing

literature, we refer to them as Classical Methods (CM). The stated belief a is then used

in Equation (3.1) to determine the lottery for their rewards, i.e., Equation (3.2), and the

outcome is realized accordingly.

Dynamic Binary Method (DBM) is based on the bisection method. The choice

interval is repeatedly partitioned into two equally lengthy sub-intervals, for which the
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DM’s beliefs are elicited through a series of binary choices. Starting with the full choice

space, for example, [0, 1], at each step, the method divides the choice interval [Il, Iu],

where Il and Iu denote the lower and upper bounds separately, in two halves at the

midpoint Il+Iu
2

: [Il,
Il+Iu

2
] and ( Il+Iu

2
, Iu]. Unlike the standard bisection method, which

requires the DM to continue until a specific point is reached, DBM allows the DM to

exit at any step and choose the current interval [Il, Iu] as their belief. Upon exiting

the process, a computer aR is randomly selected within the last range [Il, Iu], following a

uniform distribution. This aR is then used as the stated belief in the BSR to determine the

lottery for their rewards, i.e., Equation (3.2), and the outcome is realized accordingly.

Therefore, the DM can either choose until the point where a = Il = Iu, or select an

interval [Il, Iu] as their stated belief, with aR uniformly distributed within this interval.

3.2.1 Incentive Compatibility with CM for EU Maximizer

When the true belief p is precise, i.e., a singleton, and the CM is employed to elicit

the stated belief, with BSR, the best response is to choose the point where a∗(p) = p be-

cause L(a∗(p)|p) stochastically dominates any other available lottery L(a|p). Conversely,

when the true belief p follows a non-degenerate distribution f(p) with µp = E(p) and

σ2
p = V ar(p) > 0, and the CM is used to elicit the stated belief, the objective becomes

maximizing the expected likelihood of receiving the prize Mh:

max
a

Ep[p ∗ (1− (1− a)2) + (1− p) ∗ (1− a2)] (3.3)

The distribution over p reflects the idea that the perception of Pr{s = A} can be noisy,

uncertain, or imprecise (Enke and Graeber, 2023; Frydman and Jin, 2022; Giustinelli,

Manski and Molinari, 2022). The best response in this situation is to select the point

a∗(p) where a∗(p) = E(p) = µp.
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Proposition 1. Given the true belief p, regardless of whether the true belief is a singleton

or a distribution, when the CM is used to elicit belief as a singleton and BSR is used to

determine payoff, an expected utility maximizer will choose the point a∗(p) where a∗(p) =

E(p) = µp.

3.2.2 Incentive Compatibility with DBM for EU Maximizer

Since the DBM allows the DM to either continue until reaching a single point or exit

early with a random variable uniformly distributed over the last range they chose, i.e.,

a ∼ Uniform[al, au], the optimization problem becomes:

max
a

Ep{p ∗ Ea[(1− (1− a)2)|p] + (1− p) ∗ Ea[(1− a2)|p]} (3.4)

which is equivalent to

max
a

{−V ar(a)− [E(a)− E(p)]2 + E(1− p) + [E(p)]2} (3.5)

where V ar(a) and E(a) denote the variance and the mean of stated belief a, respectively.

To maximize the expected utility, it is optimal to choose until the point a∗ where a∗ =

E(p) and V ar(a) = 0.

In sum, given the true belief p, to maximize expected utility, it is optimal to continue

until reaching the point a∗(p) = E(p) = µp. This holds true regardless of whether the

true belief follows a non-degenerate distribution or whether the DM is forced to choose

a single point as their belief.

Proposition 2. Given the true belief p, when the DBM is used to elicit belief without

forcing the DM to choose a single point as their belief and BSR is used to determine payoff,

an expected utility maximizer will choose until reaching the point a∗(p) = E(p) = µp.
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3.2.3 Incentive Compatibility with DBM for Myopic EU Max-

imizer

If the DM is myopic – fails to perfectly foresee that the optimal choice is to choose

until the point a∗ where a∗ = E(p) = µp and V ar(a) = 0 in the DBM, they may

compare among the three options in each step instead: choosing Uniform(Il,
Il+Iu

2
),

choosing Uniform( Il+Iu
2

, Iu), or choosing Uniform(Il, Iu). Whenever E(p) < Iu+Il
2

,

choosing Uniform[Il,
Il+Iu

2
] yields a higher likelihood of receiving Mh than choosing

Uniform( Il+Iu
2

, Iu] or exiting with Uniform[Il, Iu]. Similarly, whenever E(p) > Iu+Il
2

,

choosing Uniform( Il+Iu
2

, Iu] yields a higher likelihood of receiving Mh than the other two

options. Whenever E(p) = Iu+Il
2

, all three options yield the same likelihood of receiving

Mh. Thus, the DM would be indifferent in choosing any of the three options.2 Detailed

proof can be found in Appendix C.2. In other words, whenever E(p) is strictly within

one of the two narrowed intervals, it is optimal to choose the one that contains E(p).

Otherwise, the myopic DM is indifferent between choosing Uniform[Il,
Il+Iu

2
], choosing

Uniform( Il+Iu
2

, Iu], or exiting with Uniform[Il, Iu].

Proposition 3. If the DM is myopic – fails to perfectly foresee that choosing until a∗ =

E(p) is optimal in the DBM, then, in each step, they will be indifferent among [Il,
Il+Iu

2
],

( Il+Iu
2

, Iu], or exiting with [Il, Iu], whenever E(p) = Il+Iu
2

. Otherwise, it is optimal to

always choose the interval which strictly contains E(p).

In sum, the midpoint of the DM’s stated belief, whether it is an interval or not, reveals

the mean of their true belief for an expected utility maximizer. Additionally, without

further behavioral assumptions, early exit in the DBM indicates whether the expected

utility maximizer is myopic – fails to perfectly foresee that choosing until a∗ = E(p)

2For continuous uniform distribution, whether E(p) = Il+Iu
2 is contained in the left interval or right

interval does not matter. For discrete uniform distribution, the myopic DM will be indifferent among
[Il,

Il+Iu
2 ], [ Il+Iu

2 + 1, Iu], or exiting with [Il, Iu], whenever E(p) = Il+Iu
2 + 1

2 .
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is optimal. This is orthogonal to whether their true belief is a precise singleton or an

imprecise interval.

3.3 Experimental Design

In order to explore the empirical validity of DBM, we design the experiment with a

collection of perception tasks that are used in the existing literature, and use the slider

bar version of the CM as the benchmark, which allows both within-subject and between-

subject investigations.

3.3.1 DBM and CM

We employ DBM to probe subjects’ beliefs in a step-by-step manner. Initially, partic-

ipants are queried about their assessment of probability relative to 50%. Subsequently,

based on their response, they are prompted to determine whether the likelihood is below

or above 25%, and this process continues iteratively. At each step, subjects are presented

with two exclusive interval choices and the option to ”Exit.” Upon reaching the final step,

participants must provide a point belief. Figure 3.1 shows the experimental interface of

the DBM.
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Figure 3.1: DBM: Experimental Interface

In instances where a subject provides a point belief, compensation is awarded based

on the Binary Scoring Rule (BSR). Conversely, if an interval belief is reported, a random

number within the specified interval is drawn from a uniform distribution. Subsequently,

compensation is determined according to the BSR using the generated number.

We use the slider bar version of the CM to elicit subjects’ probabilistic beliefs or

perceptions, as it is widely used in many experimental studies.3 To ensure accuracy and

relevance to the task’s objective truth, we offer three distinct scales: the 100 scale, 4000

scale, and 250 scale. Notably, we deliberately avoid providing a default position on the

slider bar to mitigate any potential anchoring effects. Additionally, above the slider bar,

3In the rest of the paper, we always refer CM as to the slider bar version of CM.
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we include a ruler for subjects’ reference, aiding in their precise assessment. Figure 3.2

shows the experimental interface of the CM.

Figure 3.2: CM: Experimental Interface

3.3.2 Experiment 1: Within-subject Design

In Experiment 1, we use a within-subject design, allowing each subject to experi-

ence both the CM and DBM in a random order. To be more specific, the experiment

consists of two blocks, with each block employing either CM or DBM to elicit subjects’

beliefs or perceptions. Within each block, we use five different task categories regarding

probabilistic beliefs or perceptions that are commonly used in existing literature. This

design choice allows us to assess the generalizability of aggregate performances in the

DBM compared to those in the CM.

Within each block, four of the five task categories use artificial settings such as balls

and urns, peas, or dots, which are common in the laboratory experiments. These task

categories include reporting prior belief (Danz, Vesterlund and Wilson, 2022), belief

updating (Danz, Vesterlund and Wilson, 2022), forming compound prior belief (Liang,

2022), and estimating number of peas in a bowl (Falk and Zimmermann, 2018) or dots in

a graph (Dewan and Neligh, 2020). The fifth task category involves subjects’ perceptions

or probabilistic beliefs about real economic variables, specifically the inflation rate and

the S&P500 (Enke and Graeber, 2023). That is, there are two tasks within each task

category: one from each block.
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Each task has one objective truth, allowing us to measure the accuracy of subjects’

beliefs or perceptions objectively. Detailed questions used in the experiment can be

found in Appendix C.4. To prevent anchoring, we carefully choose parameters so that the

objective truths in all tasks are spread across the entire range between 0 and 1.4 To ensure

comparability within the same task category, we deliberately choose parameters for tasks

under the same category in the two blocks so that their objective truths are symmetric

around 50%.5 Table 3.1 demonstrates the five task categories and the corresponding

objective truths used in the two blocks.

Table 3.1: Task Categories and Objective Truths in Experiment 1

Task Category Block 1 Block 2

Laboratory/Artificial Settings

Prior Belief 20% 80%
Belief Updating 33% 67%
Compound Prior 60% 40%

Estimation (peas) 3000/4000 (dots) 120/250
Real-life Settings Econ Variable (inflation rate) 92% (S&P 500) 8%

Note: Within each block, the tasks and parameters are fixed, but the order of tasks is randomly deter-

mined.

Within each block, the tasks and parameters are fixed, but the order of tasks is ran-

domly determined. We implement two treatments, Treatment DBM-CM and Treatment

CN-DBM, by alternating the order of CM and DBM used to elicit beliefs or percep-

tions in the tasks of each block. That is, in Treatment DBM-CM, DBM is used to elicit

subjects’ beliefs or perceptions in Block 1, followed by CM in Block 2. Conversely, in

Treatment CM-DBM, CM is used in Block 1, followed by DBM in Block 2. This design

choice allows us to investigate the interaction between DBM, learning, and experience.

4For the estimation tasks involving counting peas in a bowl or dots in a graph, where the scales are
0− 4000 and 0− 250 respectively, we transform these into a 0− 100 scale to avoid duplicated objective
truths with other probabilistic tasks.

5The objective truths in the estimation tasks involving counting peas in a bowl or dots in a graph do
not have this property as the scales are different.
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3.3.3 Experiment 2: Between-subject Design

The design of Experiment 1 could make differences across task categories difficult

to interpret, as both the tasks and their objective truths vary. Subjects might differ

in their expertise across task categories, and the measured accuracy may be influenced

by different objective truths used. Empirical evidence demonstrates that individuals’

subjective beliefs tend to be center-biased (Danz, Vesterlund and Wilson, 2022) or com-

pressed towards an “intermediate” value, such as midpoint of a slider bar (Enke and

Graeber, 2023). Thus, even with the same subjective beliefs, performance may appear

better when tasks have more centered objective truths (40% - 60%) compared to those

with more extreme values (0% - 10%, or 90% - 100%) and those with intermediate values

(10% - 40%, or 60% - 90%).

To address this concern, we design Experiment 2 with two main features: (1) within

the same task category, we employ more objective truths that span the entire range

between 0 and 1; and (2) we include three additional task categories with real-life settings

alongside the existing belief updating tasks and perception tasks on inflation rate.

To be more specific, in Experiment 2, each subject needs to finish five tasks: two

replicated from Experiment 1 (belief updating tasks and perception tasks about inflation

rates) and three new perception tasks about real economic variables (income (Wiswall

and Zafar, 2015b), unemployment rate, and education level).6 By replicating tasks from

Experiment 1, we can test the robustness of the results. Combining Block 1 of Experiment

1 and Experiment 2 provides a balanced set of tasks between laboratory/artificial settings

and real-life settings and mitigates the learning effects. Each subject see the five tasks

in a random order.

Within each task category, every subject randomly receives one of three parameters

6We generate questions about the unemployment rate and education level with objective truths using
a method similar to the tasks on inflation rates in Enke and Graeber (2023).
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corresponding to one of three types of objective truths: centered truths (40% - 60%),

extreme truths (0% - 10% or 90% - 100%), and intermediate truths (10% - 40% or 60% -

90%), each of which is equally likely to occur. Table 3.2 depicts the task categories and

objective truths used in Experiment 2. This design choice allows us to to distinguish the

role of truth types from the impact of varied expertise across different task categories.

We implement two treatments, Treatment CM and Treatment DBM, by using different

methods to elicit beliefs or perceptions.

Table 3.2: Task Categories and Objective Truths in Experiment 2
Task Category Centered Truth Intermediate Truth Extreme Truth

Real-life Settings

Inflation Rate 56% 77% 92%
Income 45% 30% 7%

Unemployment Rate 56% 84% 98%
Education Level 49 12 3

Laboratory/Artificial Settings Belief Updating 47% 33% 6%

Note: The order of tasks is randomly determined.

3.3.4 Implementation and Recruitment Details

We recruited all subjects on Prolific, an online platform frequently used for research

studies. To qualify for our study, subjects were required to have a minimum of 100

prior submissions on Prolific, with an approval rate of at least 98%. We implemented

the experiment using the oTree platform (Chen, Schonger and Wickens, 2016). For

Experiment 1, we recruited 102 subjects, with 51 subjects assigned to each order of

methods. For Experiment 2, we recruited 149 subjects, with 72 subjects using CM and

77 subjects using DBM to elicit beliefs in the five tasks. Each participant also received

a $3 completion payment and took around 20 minutes to complete the study. In each

experiment, subjects receive detailed instructions and are required to correctly answer

comprehension questions before proceeding to the main parts of our study.
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3.4 Results

We start by comparing the aggregate performance between DBM and CM using

pooled data from Block 1 of Experiment 1 and Experiment 2, as shown in in Section 3.4.1.

We find that DBM does not perform significantly different from CM at the aggregate

level. Next, we investigate circumstances where DBM might outperform CM in Sec-

tion 3.4.2. This includes examining whether the objective truth has extreme, centered

or intermediate values, and whether the task context involves laboratory/artificial or

real-life settings. We use pooled data from Block 1 of Experiment 1 and Experiment 2

to study these factors. We find that DBM outperforms CM when the objective truth

is extreme, while CM outperforms DBM with intermediate objective truths. However,

with centered truths and across task types, DBM does not perform differently from CM.

Then we analyze to what extent the length of stated beliefs in DBM informs the accu-

racy of subjects’ beliefs in Section 3.4.3. Using pooled data from Block 1 of Experiment

1 and Experiment 2, we document that for stated interval beliefs in DBM (al ̸= au),

the shorter the interval, the more accurate the stated belief. However, stated point be-

liefs in DBM, which constitute a significant fraction of all stated beliefs, are not the

most accurate. We find similar results using data from both blocks of Experiment 1 for

within-subject analysis. Finally, we compare multiple methods for using stated beliefs in

DBM to predict stated point beliefs in CM in Section 3.4.4 and discuss how to effectively

utilize the data collected with DBM.

3.4.1 DBM vs. CM: Aggregate Performance

To test the empirical performance of DBM, we compare the accuracy of beliefs or

perceptions elicited in DBM with those in CM. This requires a measure of accuracy. We

mainly focus on two measures, given their stated belief a = [al, au] and the objective
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truth q:

1. Absolute difference between the midpoint of their stated beliefs and the objective

truth (ADM): |al+au
2

− q|: ;

2. Expected absolute difference between their stated beliefs and the objective truth

(EAD): Ea[|a− q|].

Note that the use of midpoint in the first measure is justified by the theoretical framework

that, for an expected utility maximizer, whether myopic or not, the midpoint of their

stated belief reveals the mean of their true belief. Moreover, if the stated belief is a

singleton, that is, al = au, the two measures are equivalent to |a − q| – the absolute

difference between stated belief and the objective truth.

Figure 3.3 demonstrates the median and mean accuracy of stated beliefs elicited

with DBM versus CM using the two measures mentioned above. The median accuracy

of stated beliefs elicited with DBM is not significantly different from those with CM,

and this finding is robust across the measures used. Specifically, we conduct quantile

regression of the measured accuracy on the dummy variable indicating which elicitation

method is used (DBM or CM), controlling for gender and self-reported familiarity with

statistics. The estimated coefficient on the elicitation method dummy variable is not

significantly different from zero even at the 90% level (p = 0.240 for ADM and p = 0.148

for EAD).
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Figure 3.3: Aggregate Accuracy of Stated Beliefs in DBM vs. CM

Note: Each graph uses pooled data from Block 1 of Experiment 1 and Experiment 2. For the bottom

two graphs of average accuracy, we plot the 95% confidence intervals.

The mean accuracy of stated beliefs elicited using DBM is slightly lower than those

using CM. We use OLS regression of the measured accuracy on the dummy variable

indicating which elicitation method is used (DBM or CM), controlling for gender and

self-reported familiarity with statistics.7 The estimated coefficient on the elicitation

method dummy variable is significantly different from zero at the 90% level: the average

ADM using DBM is 2.88 larger than that using CM (p = 0.098), and the average EAD

with DBM is 3.27 larger than that with CM (p = 0.061). This finding indicates that the

7All the regression models have gender and self-reported familiarity with statistics controlled.
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aggregate performance of DBM is not significantly different from CM, although DBM

exhibits slightly larger variance.8

Result 9. At the aggregate level, DBM does not perform significantly different from CM:

the accuracy of stated beliefs elicited by the two methods are not significantly different.

3.4.2 When does DBM Outperform CM?

Objective Truth Type. The null result at the aggregate level could be because DBM

draws subjects’ attention to non-centered values, thereby reducing subjects’ tendency to

choose numbers centered at the midpoint of the slider bar as their stated beliefs in each

task. Figure 3.4 presents the median accuracy of beliefs elicited with DBM and CM using

two measures, separated by the three types of objective truth: centered truths (40% -

60%), extreme truths (0% - 10% or 90% - 100%), and intermediate truths (10% - 40%

or 60% - 90%).

8Similar to Enke and Graeber (2023)’s study and given that the directional results using average
accuracy as the outcome variable are consistent with those using median accuracy but exhibit much
larger variance, we primarily focus on median accuracy in the rest of the analysis to demonstrate the
aggregate results of interest in the main draft.
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Figure 3.4: Median Accuracy of Stated Beliefs in DBM vs. CM by Objective Truth Type

Note: Each graph uses pooled data from Block 1 of Experiment 1 and Experiment 2. Centered truths

denote tasks with objective truths between 40% and 60%, extreme truths denote tasks with objective

truths between 0% and 10% or between 90% and 100%, and intermediate truths denote tasks with

objective truths between 10% and 40% or between 60% and 90%.

Consistent with Figure 3.4, the median accuracy of stated beliefs in DBM is signif-

icantly higher than in CM at the 95% confidence level when the objective truths are

extreme (quantile regression, p = 0.033 for ADM and p = 0.032 for EAD). However, the

median accuracy of stated beliefs in DBM is significantly lower than that in CM when the

objective truths are intermediate (quantile regression, p = 0.032 for ADM and p = 0.023

for EAD). There are no significant differences for centered objective truths (quantile re-

gression, p = 0.134 for ADM and EAD). This finding suggests that some deviations from

the objective truths in CM could be attributed to the narrowed consideration set that

subjects use to state beliefs or perceptions. Our new method, DBM, aids subjects by

expanding the range of available numbers they consider.

Result 10. DBM outperforms CM when the objective truth is extreme, while CM out-

performs DBM with intermediate objective truths. However, there is no significant per-

formance difference between DBM and CM when the objective truth is centered.

Task Type. In addition to that, DBM may guide subjects to think through each task in
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a step-by-step manner, which could help retrieve information and past experiences from

memory, especially for tasks with real-life settings that do not provide all the information

needed for answering the task question correctly. Figure 3.5 demonstrates the median

accuracy of beliefs elicited with DBM and CM using two measures, separated by the

two types of tasks: tasks with real-life settings which involves subjects’ perceptions of

inflation rates, unemployment rates, income distribution, and education levels by state;

and tasks with laboratory/artificial settings which includes those on prior beliefs, belief

updating, counting, and compound priors.

Figure 3.5: Median Accuracy of Stated Beliefs in DBM vs. CM by Task Type

Note: Each graph uses pooled data from Block 1 of Experiment 1 and Experiment 2. Tasks with

laboratory/artificial settings include those on prior beliefs, belief updating, counting, and compound

priors. Tasks with real-life settings involve subjects’ perceptions of inflation rates, unemployment rates,

income distribution, and education levels by state.

As shown in Figure 3.5, the median accuracy of beliefs elicited using DBM is not

significantly different from CM in tasks with real-life settings (quantile regression, p =

0.489 for ADM and p = 0.484 for EAD).9 In tasks with laboratory/artificial settings,

the median accuracy using DBM is slightly lower than CM, but the significance of this

result depends on the measure of accuracy (quantile regression, p = 0.126 for ADM and

9As the results with ADM are similar to those with EAD, we primarily use EAD as the measure of
accuracy in the remainder of the analysis.
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p = 0.038 for EAD). This indicates that DBM does not perform differently from CM

across task types.

Result 11. DBM does not perform differently from CM regardless of whether the task

utilizes a laboratory/artificial setting or a real-life setting.

3.4.3 Is the Interval Length Informative About Accuracy?

This section explores the relationship between the length and the accuracy of stated

beliefs in the tasks using DBM. To ensure the lengths of stated beliefs are comparable

across tasks, for all the analysis in this subsection, we use only tasks with a choice scale

of 100, which rules out tasks with counting peas in a bowl and counting dots in a graph in

Experiment 1. To achieve this goal, we start with pooled data from Block 1 of Experiment

1 and Experiment 2 to conduct a between-subject analysis, investigating how the median

accuracy of stated beliefs in tasks using DBM varies with the number of steps taken.

Additionally, we use the data from Blocks 1 and 2 in Experiment 1 to explore, from a

within-subject perspective, to what extent the length of a subject’s stated belief in tasks

using DBM can predict how well they perform in tasks using CM.

Our theoretical framework shows that an exit early before reaching the point indicates

that the expected utility maximizer is myopic — failing to perfectly foresee that choosing

until a∗ = E(p) is optimal, regardless of the precision of their true beliefs. Conversely,

choosing until the end suggests that the expected utility maximizer is not. If this is the

case, we would expect no correlation between the length of stated beliefs (number of

steps taken) and their accuracy.

Figure 3.6 plots the median EAD of stated beliefs using DBM against the number

of steps taken. Generally, the median EAD of stated beliefs decreases as the number of

steps increases, with the correlation being significantly different from zero at the 95%
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confidence level (quantile regression, p = 0.018). However, for the stated point beliefs in

DBM, which constitute 51% of all the stated beliefs, the median EAD is slightly higher

than those exiting right before the last step (i.e., Step 5). Similar patterns are observed

when separated by task types and by objective truth types, as shown in Figure 3.7. This

finding could result from overconfidence – where individuals overestimate the precision

of their perceptions – or from risk aversion – where individuals dislike uncertainty in

their reported beliefs. Distinguishing between potential mechanisms could be a fruitful

direction for future research.

Result 12. The length of stated beliefs in DBM is negatively correlated with their own

accuracy at the aggregate level: the longer the interval, the less accurate the stated belief.

However, this relationship is not strictly monotonic: stated beliefs reaching the point are

not the most accurate ones.

Figure 3.6: DBM: Median Accuracy of Stated Beliefs and Number of Steps Taken
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Note: The number labeled inside each bar is the number of stated beliefs that exit in each step. The

black horizontal line is located at the median expected absolute deviation with all the stated beliefs

using CM pooled.
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Figure 3.7: DBM: Accuracy and Number of Steps Taken by Objective Truth Type
and Task Type
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Note: The number at the bottom of the bar is the number of observations. The black horizontal line is

the median absolute deviation in CM.
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Moreover, we use data from Blocks 1 and 2 in Experiment 1 to study this question

from a within-subject perspective. Specifically, since tasks from the same category be-

tween blocks have symmetric objective truths, we pair tasks from the same task category

– one using DBM to elicit beliefs and the other using CM. Within each pair, we investi-

gate the extent to which the length of stated belief in the task using DBM can predict

the accuracy of stated belief in the the task using CM.

Figure 3.8 plot the median absolute deviation in tasks using CM against the number of

steps taken in the paired tasks using DBM. When pooling Treatments DBM-CM and CM-

DBM, there is no significant correlation between the median absolute deviation of stated

beliefs with CM and the number of steps taken in their paired tasks with DBM. This

mainly results from the null effect in Treatment CM-DBM.10 When separating the data

by treatment, we find that in Treatment DBM-CM – using DBM in Block 1 and CM in

Block 2 – the median absolute deviation of stated beliefs with CM significantly decreases

as the length of stated beliefs increases (quantile regression, p > 0.001). Similar to

the between-subject analysis discussed earlier, the relationship is not strictly monotonic:

point or close-to-point beliefs in tasks using DBM do not predict the lowest median

absolute deviation in paired tasks using CM.

10One reason the data in Treatment DBM-CM are much noisier is that subjects took longer than
expected to complete Experiment 1, resulting in a base payment that was considered as lower than the
recommended hourly rate by Prolific. Since DBM requires more time for subjects to think through and
submit their beliefs, the quality of choices decreases due to fatigue when DBM is used in Block 2.
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Figure 3.8: Median Accuracy of Stated Beliefs in CM and Number of Steps Taken in DBM

Note: X-axis denotes the number of steps taken by the stated beliefs in DBM. Each graph uses pooled

data from Experiment 1. The left panel pooled data from Treatments DBM-CM and CM-DBM together,

while the right panel separates results by treatment.

A similar pattern is observed in Figure 3.9, where we calculate, for each subject, the

median accuracy of stated beliefs among the four paired tasks using CM, separated by the

number of point beliefs they stated among the four tasks using DBM. Using pooled data,

among those who state interval beliefs in at least one of the four tasks using DBM, the

median subject who is more likely to state point beliefs in tasks using DBM is also more

accurate in tasks using CM (quantile regression, p = 0.015). However, for subjects who

state point beliefs in all the four tasks using DBM, the median subject is not the most

accurate one in tasks using CM. This pattern is even stronger in Treatment DBM-CM

(quantile regression, p = 0.03).

Result 13. The length of stated beliefs in tasks using DBM is negatively correlated with

the accuracy of stated beliefs in tasks using CM: the longer the interval in DBM, the less

accurate the stated belief in CM. However, this relationship is not strictly monotonic, as

stated beliefs reaching the point in DBM do not predict the most accurate beliefs stated

in CM.
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Figure 3.9: Within Subject: Median Accuracy in CM and Fraction of Point Beliefs in DBM

Note: X-axis denotes the fraction of point beliefs in DBM. Each graph uses pooled data from Experiment

1. The left panel pooled data from Treatments DBM-CM and CM-DBM together, while the right panel

separates results by treatment.

3.4.4 Predicting Point Beliefs Elicited with CM

In this section, we explore multiple methods for using the stated beliefs elicited with

DBM to predict point beliefs elicited with CM. To achieve this, we primarily focus on

data from Experiment 1 with a scale of 100. We use the paired stated beliefs in tasks

using DBM to predict the corresponding beliefs in tasks using CM. To ensure compa-

rability, we symmetrize the stated belief and objective truth for one task in each pair.

There are several methods to utilize the data elicited with DBM:

1. Midpoint Prediction: according to our theoretical framework, the midpoint of

stated beliefs using DBM serves as a natural predictor for stated point beliefs in CM:

â1 =
al + au

2

where al and au denote the lower and upper bound of stated beliefs in DBM. For an

expected utility maximizer, they will select the mean of their true belief as stated belief
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in CM and will choose the belief whose midpoint is equal to the mean of their true belief

in DBM.

2. Cognitive Default, Cognitive Noise, and Objective Truth: Existing studies

indicate that individuals’ stated beliefs in CM often compress towards a cognitive de-

fault (e.g., the center of the slider bar) (Danz, Vesterlund and Wilson, 2022; Enke and

Graeber, 2023). This phenomenon can be modeled as a weighted average between the

utility-maximizing decision a∗(p) and the cognitive default d. The relative weight on d

is determined by the cognitive noise or uncertainty λ (Enke and Graeber, 2023):

â2 = (1− λ) ∗ a∗(p) + λ ∗ d

The greater the cognitive noise, the stronger the tendency to state the default d (e.g.,

center of the slider bar) in CM. To construct the predicted beliefs in CM, we use a

straightforward method to determine λ: λ = au−al
100

, where λ is the length of stated beliefs

in the paired tasks using DBM relative to the scale. Using the objective truth p = a∗(p)

and the default d = 50%, we can generate the predicted point beliefs in CM.

3. Cognitive Default, Cognitive Noise, and Subjective Truth: We propose a

revised version of Method 2 by replacing the objective truth, which could be equally

difficult for subjects with bounded rationality to perceive, with the subjective truth –

the midpoint of stated beliefs in DBM:

â3 = (1− λ) ∗ al + au
2

+ λ ∗ d

where λ = au−al
100

and the default d = 50%.
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Table 3.3 show the average predicted point beliefs using stated beliefs in DBM via the

three methods mentioned above, separated by task category. Using t-tests to contrast

with the average stated beliefs in CM, we find that the predicted beliefs using Method

3 – weighted average between cognitive default and subjective truth – are closest to the

stated beliefs in CM. Specifically, using Method 3, the predicted beliefs in tasks with

economic variables are not significantly different from the average stated beliefs in CM.

Additionally, using Method 3, the predicted beliefs in tasks about Simple Prior and

Compound Prior differ from those in CM at a 95% confidence level, which is a much

smaller difference compared to the other two methods.

Table 3.3: Predicted Point Beliefs using Data in DBM and Stated Point Beliefs in CM

Task Category Stated Beliefs in CM Method 1 Method 2 Method 3

Simple Prior 30.3% ** 35.1% *** 22.2% ** 36.1%
Compound Prior 54.9% *** 61.9% *** 59.3% ** 61%

Posterior 43.1% *** 51.1% *** 35.2% *** 51%
Econ Variables 67.3% 70.8% *** 87.1% 69.9%

Note: Reported significance stars are based on a two-way t-test to determine whether the difference between the average

stated beliefs in CM and the average predicted beliefs using each of the three methods is significantly different from zero.

* p < 0.10, ** p < 0.05, *** p < 0.01

Conversely, the predicted point beliefs using Method 2 – weighted average between

cognitive default and subjective truth – are significantly different from those in CM

at the 99% confidence level in each of the task categories. Method 1, which uses the

midpoint, performs somewhere in between the other two methods. One plausible reason

for the worst performance of Method 2 is that its predictions are constrained between the

objective truth and the default, failing to capture stated beliefs in CM that fall outside

this range.
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3.5 Conclusion

In this paper, we propose a novel method, the Dynamic Binary Method (DBM), to

elicit people’s beliefs or perceptions. Beliefs and perceptions are central to studying eco-

nomic behavior, yet accurately eliciting them presents significant challenges. Existing

elicitation methods that involve soliciting respondents’ best point estimates are suscep-

tible to various biases, such as the cognitive difficulty of pinpointing imprecise beliefs.

Unlike Classical Methods (CM), which require absolute judgments on the best point es-

timates of beliefs, DBM, inspired by the bisection method, prompts respondents to make

a series of binary relative judgments. This approach allows respondents to state interval

beliefs by exiting the process at any step before reaching a final point estimate.

To assess the empirical validity of DBM, we use a collection of perception tasks from

existing literature, construct both between-subject and within-subject experiments, and

use the slider bar version of CM to benchmark how well respondents would perform in

each task.

The main finding is that, at the aggregate level, DBM does not perform signifi-

cantly differently from CM, regardless of whether the perception question uses artifi-

cial/laboratory settings or real-life settings. This finding is robust to different measures

we use, including the absolute deviation of the midpoint of elicited beliefs from the objec-

tive truth or the expected absolute deviation of elicited beliefs from the objective truth.

However, DBM outperforms CM when the task has extreme values as the objective truth.

This suggests that some biases in perception questions could result from the narrowed

consideration set that respondents use to choose beliefs or perceptions from.

Furthermore, we find, from both between-subject and within-subject perspectives,

that the length of stated beliefs in tasks using DBM is negatively correlated with their

own accuracy and can predict how well respondents perform in tasks using CM at the
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aggregate level: the longer the interval, the less accurate the stated belief in DBM and the

less accurate the stated belief in CM. However, this relationship is not strictly monotonic:

stated beliefs reaching the point are not the most accurate ones and do not predict the

most accurate beliefs stated in CM.

Lastly, we compare three methods of using the stated beliefs elicited with DBM to

predict point beliefs elicited with CM. We find that predictions using a weighted average

between subjective truth (the midpoint of stated beliefs in DBM) and the cognitive de-

fault (e.g., midpoint of the slider bar), with the relative weight on the default determined

by the length of stated beliefs in DBM, are closest to the average stated beliefs in CM.

This approach outperforms both using the midpoint of stated beliefs in DBM alone and

using objective truth instead of subjective truth in the weighted average method. Our

findings underscore the significance of incorporating the precision of stated beliefs and

perceived truth to enhance predictions of economic behavior.

Our results also raise several intriguing questions for future research. As explored

in the literature review, there are non-incentivized methods for identifying preference

incompleteness, taste imprecision, or the distribution of beliefs. It would be valuable

to compare these methodologies to understand the degree to which they capture the

same uncertainty in beliefs or perceptions and how this may differ between preference

incompleteness and belief imprecision.

Additionally, it would be beneficial to gain a deeper understanding of the circum-

stances under which individuals possess precise versus imprecise beliefs. Such insights

could aid in interpreting standard belief data and potentially enable the identification of

imprecision even when individuals are unable to directly report it. Furthermore, it would

be fascinating to explore any neurological or biological indicators of imprecision, which

could provide a new dimension to understanding how individuals form and report their

beliefs or perceptions.
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Appendix A

Appendix for “What Drives

Probability Matching?”

A.1 Theories of Mixing

As discussed in the paper, based on whether a model predicts that the mixing behavior

varies with the correlation change and frame change in my environment, I can divide

these models into three categories: models of Correlation-Invariant Stochastic Choices,

models of Correlation-Sensitive Stochastic Choices, and Framing Effects. Here I describe

in further detail other example theories in the first two classes.

A.1.1 Models of Correlation-Invariant Stochastic Choices

Models in this class share two features: (1) do not incorporate the state-wise outcome

comparisons between options into the decision making process, which, by nature, has no

room for mixing behavior to vary with different correlations between options; (2) fail to

combine the evaluation of each option with the choice distribution (α, 1 − α) in a non-

linear way, which does not provide a channel for different correlations to interact with
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individuals’ choice distributions differently.

A.1.1.1 Correlation-Orthogonal Preferences/Heuristics

Most preference-based and some heuristics- based stochastic choice models do not

incorporate the state-by-state comparisons of outcomes between options in the decision

making process. Thus, these preferences or heuristics are orthogonal to the correlation

between options. So does the mixing behavior predicted by them. Here I describe two

models in detail.

Probability Weighting The probability weighting model is an example of the prefer-

ences over reduced lotteries which allow for dominance violations. It assumes that the

reduced lottery L in Equation (1.1) is evaluated according to

∑
x

ω(P (x))u(x) = ω(α ∗ p+ (1− α) ∗ (1− p))u($M) + ω(α ∗ (1− p) + (1− α) ∗ p)u($0)

for some onto and increasing weighting function ω(·) : [0, 1] → [0, 1]. With certain ω(·),

it can predict mixing in decision problems with the CPS. However, as the marginal dis-

tributions are fixed, the mixing behavior neither varies with the change in correlation

between options in the Baseline Scenario, nor with the corresponding frame change in

the Independence Scenario.

Expectation Matching Kogler and Kühberger (2007) propose that probability match-

ing is the result of System 1 processing with the dual process theories. According to this

perspective, the decision maker unconsciously states the expected outcomes as her pre-

dictions of which one is more likely to occur. For example, if Project A has a 75% chance

to succeed and Project A has a 25% chance to succeed, the decision maker employs the
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frequencies that Project A succeeds three out of four times and Project B succeeds once

out of four times to allocate their tickets. Importantly, the interdependence of outcomes

between options plays no role during this process. As a result, this theory predicts that

mixing behavior does not vary with changes in the correlation between options.

A.1.1.2 Correlation-Dependent Preferences

While some theories do account for state-wise comparisons of outcomes between op-

tions, denoted as Correlation-Dependent Preferences, they still fail to predict varied mix-

ing behavior in response to different correlations between options for various reasons.

The common implication shared by these models is that once the marginal distributions

(A : p,B : 1− p) are fixed, the optimal choice distributions are determined.

Correlation-Orthogonal Preferences/Heuristics Most preference-based and some

heuristics-based stochastic choice models posit that individuals evaluate each option

based on its marginal distribution rather than considering how options are jointly deter-

mined. Thus, these preferences or heuristics are, by nature, orthogonal to the correlation

between options, as is the mixing behavior predicted by them. Intuitively, for individuals

who evaluate each option based on all of its absolute attributes and then choose the one

with the higher evaluation (or mix if they are indifferent), their decision-making process

is not influenced by the relative outcomes of each option compared to the alternative in

each state. As a result, the sources of mixing are unrelated to how options are jointly

determined. These theories predict that once the marginal distributions of options are

fixed, mixing behavior does not vary.

Correlation-Dependent Preferences Some preference-based theories account for

state-wise comparisons between options by proposing that the decision maker assigns

weights to different states of the world based on the outcome differences between the
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alternatives in each state. However, due to their inherent characteristics or without fur-

ther assumption on the convexity of preference, the sources of mixing proposed by these

theories are also orthogonal to how options are correlated in between, which yields iden-

tical predictions in decision problems across the three scenarios. Correlation-sensitive

preferences (Lanzani, 2020) and the pairwise normalization model (Landry and Webb,

2021) are examples in this category.1

To illustrate this, consider the correlation-sensitive preference (Lanzani, 2020), which

nest regret-averse preference (Loomes and Sugden, 1982) and salience theory (Bordalo,

Gennaioli and Shleifer, 2012). In these models, the decision maker follows several steps

to evaluate the risky options: (1) for each possible joint realization of outcomes (x, y) ∈

{(A : $M,B : $M), (A : $M,B : $0), (A : $0, B : $M), (A : $0, B : $0)}, compares the

two outcomes and gives a score, denoted as ϕ(x, y). This score reflects a combination of

the preference for x over y and the level of attention allocated to that joint realization,

with ϕ(x, x) = 0; and then (2) aggregates all these individual comparisons according to

the joint distribution π over possible realizations and the choice distribution (α, 1− α),

yielding

max
α

α ∗
∑
xA,yB

π(xA, yB)ϕ(xA, yB) + (1− α) ∗
∑
xB ,yA

π(xB, yA)ϕ(xB, yA) (A.1)

where π(·, ·) denotes the probability of possible joint outcomes. However, because the

outcome evaluation π(·, ·) is skew symmetric (i.e., π(x, y) = −π(y, x)) — the distinct fea-

ture characterizing correlation-sensitive preference (Lanzani, 2020), and the two options

1By letting each state of the world denote one attribute, the pairwise normalization model (Landry
and Webb, 2021) assigns different weights, x

x+y , where the joint outcomes (x, y) ∈ {(A : $M,B :

$M), (A : $M,B : $0), (A : $0, B : $M), (A : $0, B : $0)}, to different states of the world based on the
comparisons of outcomes between options in each state. It predicts identical behaviors since it doesn’t
assume convex preference – allowing mixture to be strictly preferred in some circumstances other than
indifference between two options. Please refer to Appendix A.1 for details.
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have identical support of outcomes, either receiving $M or $0, the decision maker faces

identical decision problems across all the scenarios. Intuitively, in this context, given the

same absolute distance between outcomes, the decision maker assigns identical weights

but with different signs. Thus, the evaluation of each option does not change with vari-

ations in the correlation between options, as the score on State ω4 cancels out with one

of the scores on States ω1, ω2, and ω3 in Table 1.1. Therefore, in the Baseline Scenario,

the decision maker faces the same decision problem:

max
α

α ∗ ϕ($M, $0) + 50%ϕ($0, $M) (A.2)

Thus, these models predict identical behaviors when moving from the decision problems

with the CPS to those with the APS in the Baseline Scenario: either choosing Project A

with α = 100% whenever ϕ($M, $0) > 0, or mixing at a constant rate when ϕ($M, $0) =

0. Once the correlation between options is fixed, the decision maker’s objective utility

function does not change across choice frames.

Similarly, regardless of how the decision maker would perceive the distribution of the

correlation between options, they face the same problem as in Equation (A.2) in the

Unknown Scenario:

max
α

q ∗ {α ∗ [50%ϕ($M, $0)− 50%ϕ($0, $M)] + 50%ϕ($0, $M)}

+ (1− q) ∗ {α ∗ [50%ϕ($M, $0)− 50%ϕ($0, $M)] + [75%ϕ($0, $M) + 25%ϕ($M, $0)]}

= α ∗ ϕ($M, $0) + 50%ϕ($0, $M)

(A.3)

where q and 1 − q represent that the decision maker believes there is q percent chance

that the two options are positively correlated and q chance that they are negatively cor-
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related, respectively. In sum, these models predict that mixing behavior does not vary

across problems in each scenario. Moreover, the magnitudes of mixing are identical across

all three scenarios.

Landry and Webb (2021) propose a model of choice-set dependence in which the

decision maker evaluates an option through a series of pairwise attribute comparisons.

The value attached to each attribute comparison is normalized by the magnitude of the

attributes under consideration. By letting each state of the world denote an attribute,

the utility index on Option A from the choice set {A,B} is

V (A, {A,B}) =
∑
si∈S

xA
si

xA
si
+ xB

si

where xA
si
(xB

si
) denotes the outcome of Option A (Option B) in state si. Without addi-

tional assumption, the decision problem becomes:

max
α

α∗V (A, {A,B})+(1−α)∗V (B, {A,B}) = α∗
∑
si∈S

xA
si

xA
si
+ xB

si

+(1−α)∗
∑
si∈S

xB
si

xA
si
+ xB

si

With the CPS as in Table 1.1, it turns out to be:

max
α

α ∗ 3 + (1− α) = 2α + 1 (A.4)

which implies that it is optimal to choose Option A with 100%. Moreover, with the APS

as in Table 1.2, it becomes:

max
α

α ∗ (0.5 + 2) + (1− α) ∗ 0.5 = 2α + 0.5 (A.5)

Which is maximized at α = 100%. More importantly, the maximization problem in
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Equation (A.5) is a monotonic transformation of the problem in Equation (A.4). Thus,

without additionally assuming convex preferences – mixing between options can be bet-

ter in some circumstances, this model also predicts that mixing behavior is identical

regardless of changes in the correlation between options.

A.1.2 Models of Correlation-Sensitive Stochastic Choices

For the models that predict varied mixing behavior depending on the correlation be-

tween options, I describe irrational diversification (Baltussen and Post, 2011; Rubinstein,

2002) and the evolutionary models proposed by Brennan and Lo (2012) in detail.

Irrational Diversification This theory assumes that the decision maker maximizes

expected utility but incorrectly believes that she will be paid for all tickets, rather than

one randomly-selected choice. With some concave utility function, i.e., risk aversion, the

decision maker would mistakenly believe that mixing could allow them to hedge against

the risk when facing the CPS. However, when facing the APS, such opportunity does not

exist and thus, the decision maker tends to choose the dominant option with 100%.

To illustrate this, let’s revisit the prevailing example in Tables 1.1 and 1.2. Suppose

the decision maker’s utility function is u(x) =
√
x. With the incorrect belief that they

will get paid with all the tickets rather than a randomly selected one, the expected utility

in the CPS as in Table 1.1 becomes:

max
α

75% ∗
√
α ∗ $M + 25% ∗

√
(1− α) ∗ $M

To maximize expected utility, it is optimal to choose α = 9
10
. On the contrary, when

facing the APS as in Table 1.2, the decision problem becomes:
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max
α

25% ∗
√
$M + 50%

√
α ∗ $M

To maximize expected utility, it is optimal to choose α = 100%. Therefore, this model

predicts that mixing behavior varies with the correlation change between options: the

decision maker is more likely to choose the dominant option with 100% when facing the

APS, compared to the CPS.

Evolutionary Foundation The evolutionary model proposed by Brennan and Lo

(2012) considers probability matching as an evolutionarily stable strategy. That is, the

decision maker makes a binary decision between the two options, and then receive feed-

back from it. With the feedback received, the decision maker updates their belief on the

joint distribution of outcomes between options and thus their choice distribution, i.e.,

α on Option A and (1 − α) on Option B. Thus, different correlations between options,

which implies different joint distributions of outcomes between options, would lead to

different choice distribution being updated. As a result, this model also predict that the

mixing behavior is responsive to changes in the correlation between options.
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A.2 First-Order Stochastic Dominance

I demonstrate some properties of first-order stochastic dominance, which are inde-

pendent of the parameters I choose for the experimental design. First-order stochastic

dominance (FOSD) is defined as the following: Option A FOSD Option B if ∀x ∈

R, P rB(X ≤ x) ≥ PrA(X ≤ x), and ∃x ∈ R, P rB(X ≤ x) > PrA(X ≤ x). State-wise

dominance (SWD) is a special case of FOSD, which is defined as the following: Option

A state-wise dominates Option B, if ∀s ∈ S, xA
s ≥ xB

s , and ∃s ∈ S, xA
s > xB

s , where s

represents each possible state of the world (Quiggin, 1990). All the option pairs I use are

FOSD pairs. The pairs with the APS also satisfy SWD. There is a particular relationship

between FOSD and SWD. For any pair of FOSD options, there exists an option pair with

identical marginal distributions satisfying not only FOSD but also SWD. By varying the

correlation between options while keeping the marginal distributions the same, I can

transfer any FOSD pair into an SWD pair.

Proposition 4. For any FOSD option pair: Options A and B, the following statements

hold:

a. If A FOSD B, there exists a permuted partition ρ such that for each state of the

world j ∈ {1, . . . N}, xAj ≥ xBρ(j).

b. If ∀j ∈ {1, . . . N}, ρ(j) = j and xAj ≥ xBρ(j), then Option A both FOSD and SWD

Option B.

Proof: [Proof of Proposition 1(a)]

For any FOSD option pair: Option A and B, I subdivide the marginal distributions

of two options into a set of N equiprobable partitions where N is the least common

multiple of the actual states of the world used to define the two options. Each of N

states occurs with probability 1/N . Then, I rank the payoff associated with each of the
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N states from the lowest to the highest, i.e., xA1 ≤ xA2 · · · ≤ xAN . Next define ρ such

that xBρ(1) ≤ xBρ(2) · · · ≤ xBρ(N).

Now for any j, first order stochastic dominance implies

Pr{xB ≤ xAj} ≥ Pr{xA ≤ xAj} =
j

N

By the ordering of xBρ(j), this implies

xAj ≥ xBρ(j)

Proof: [Proof of Proposition 1(b)]

By the definition of state-wise dominance, A is state-wise dominant B. Therefore, A

FOSD B.

The proposition indicates that every FOSD pair can be partitioned into the Alterna-

tive Frame. If all the partitions coincide with the actual states of the world, the FOSD

pair will also be an SWD one, i.e., the APS. I can transfer any FOSD pair into an

SWD pair by varying the correlation between options without changing the marginal

distributions. These properties guide my choices of experimental design.
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A.3 Parameters used in Experiments

Table A.1 and Table A.2 demonstrate the correlations and interfaces used in the tasks

under Category (A : 67%;B : 33%) and Category (A : 80%;B : 20%) in the Baseline

treatment separately:

Table A.1: Baseline: Correlations and Interfaces in Tasks under Category (A : 67%;B : 33%)

Task CORR(A,B) Interface

1 0.5
Front:
Back:

2 0
Front:
Back:

3 -0.5
Front:
Back:

4 -1
Front:
Back:

Note: Each number denotes a two-sided coin. Task 1 and Task 4 correspond to the APS and CPS, respectively.

Table A.2: Baseline: Correlations and Interfaces under Category (A : 80%;B : 20%)

Task CORR(A,B) Interface

1 0.25
Front:
Back:

2 0
Front:
Back:

3 -0.25
Front:
Back:

4 -0.5
Front:
Back:

5 -0.75
Front:
Back:

6 -1
Front:
Back:

Note: Each number denotes a two-sided coin. Task 1 and Task 6 correspond to the APS and CPS, respectively.

Tasks in the Independence treatment share the same interfaces as those in the Baseline

but the correlation between options is fixed at zero.
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A.4 The Magnitude of Mixing

In Figure A.1, I show histograms of the fraction of tickets allocated on the dominant

options by subjects in the tasks where the two options are perfectly negatively correlated,

zero correlated, and positively correlated across the three probability categories in the

Baseline treatment. The black dash line denotes the fraction of tickets on dominant

options that matches exactly with the probability of occurrence.

Figure A.1: Baseline: Histograms of frequency of choices in the tasks with CORR =
-1, 0, or ¿ 0.

Notes: The black dash line denotes the fraction of tickets on dominant options that matches exactly with the probability

of occurrence. The error bars depict 95% confidence intervals.
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A.5 Block 3: Transfer of Learning

Design. I use Block 3 to explore the extent to which subjects learned in previous

blocks can be transferred to a new setting, in which I use the same unified framework

as the Unknown treatment. In Block 3, subjects face six distinct ticket-allocation tasks:

(A : 80%; B : 20%), (A : 20%; B : 80%), (A : 70%; B : 30%), (A : 30%; B : 70%),

(A : 60%; B : 40%), and (A : 40%; B : 60%). In each task, subjects can see a roll of ten

two-sided coins, and the computer randomly selects a coin. Subjects need to predict the

color on the randomly drawn coin by allocating ten tickets. All the other implementations

and protocols are identical to the tasks in Blocks 1 and 2.

Results. I compare Block 3 across three treatments to study the extent to which learning

in one environment is transferable to another. Figure A.2 plots the likelihood of mixing

and likelihood of exact PM across the three treatments and separated by probability

categories. In Table A.3, I regress the dependent variables of interest on the dummies of

treatments, Baseline VS Independence and Independence VS Unknown, respectively. As

shown in Figure A.2 and Table A.3, subjects are 28.3% (OLS, p = 0.000) less likely to

make mixed choices and 22.4% (OLS, p = 0.000) less likely to make exact PM choices in

the Baseline than in the Independence. However, the difference in Block 3 between the

Independence and Unknown is not significant. These results emphasize the importance

of correlation in decision-making from the prospect of learning: as subjects perceive the

correlation in the Independence and Unknown treatments with frictions, the learning

process is slow and limited.
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Figure A.2: Mixing Behavior in Block 3 across the Three Treatments

Note: I plot the average mixing behavior in Block 3 across the tree treatments and separated by probability categories.

The error bars depict 95% confidence intervals.

Table A.3: Mixing Behavior in Block 3 across the Three Treatments

(1) (2) (3) (4)
mixed exact PM mixed exact PM

IvsB(Baseline = 1) -0.283∗∗∗ -0.224∗∗∗

(0.0756) (0.0675)

IvsU (Independence = 1) -0.000489 -0.0465
(0.0718) (0.0706)

Constant 0.293 0.147 0.407 -0.0388
(0.242) (0.113) (0.287) (0.116)

Observations 684 684 678 678

Note: Results from OLS regression. The dependent variable takes the value of 1 if the allocation choice in a task is classified

as (1) mixed choice, or (2) exact PM, separately. IvsB is the dummy variable on whether the task is in the Baseline VS

Independence. It takes the value of 1 if the task is in the Baseline. IvsU is the dummy variable on whether the task is in

the Unknown VS Independence. It takes the value of 1 if the task is in the Independence. The regression also includes

probability categories, dominant color, gender, school year and STEM as controls. Standard errors are clustered at the

subject level and listed in parentheses. Full regression results can be found in Appendix A.6.1. * p < 0.10, ** p < 0.05,

*** p < 0.01.
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A.6 Additional Results

A.6.1 Full Regression Results

Table A.4, Table A.5, Table A.6, Table A.7, Table A.8, and Table A.9 illustrate the

full regression results summarized on Table 1.14, Table 1.13, Table 1.11, Table 1.12,

Table 1.15 , and Table A.3 of the main manuscript, respectively.
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Table A.4: Baseline: Impacts of Correlation/Frame on Mixing Behavior

Block 1&2 Block 1 Block 2 Block 1&2 Block 1 Block 2
mixed mixed mixed exact PM exact PM exact PM

Correlation/Frame -0.165*** -0.108*** -0.221*** -0.108*** -0.0843*** -0.133***
(0.0346) (0.0318) (0.0420) (0.0270) (0.0261) (0.0369)

(75%, 25%) -0.0168* -0.0248* -0.00880 -0.0915*** -0.109*** -0.0738**
(0.00846) (0.0134) (0.0103) (0.0233) (0.0273) (0.0294)

(80%, 20%) -0.0272 -0.0238 -0.0306 -0.128*** -0.152*** -0.105***
(0.0185) (0.0195) (0.0225) (0.0246) (0.0321) (0.0254)

Blue -0.0152** -0.0140 -0.0164** -0.0164 -0.0304* -0.00234
(0.00729) (0.0106) (0.00735) (0.0118) (0.0164) (0.0139)

STEM 0.0193 0.0560 -0.0174 -0.0229 -0.0381 -0.00758
(0.108) (0.111) (0.108) (0.0804) (0.0799) (0.0860)

Female 0.341 0.339 0.343 0.112 0.150** 0.0734
(0.221) (0.206) (0.238) (0.0763) (0.0733) (0.0850)

Male 0.0693 0.0718 0.0668 0.0722 0.105 0.0394
(0.242) (0.231) (0.257) (0.108) (0.0949) (0.128)

Sophomore 0.451** 0.421* 0.480** 0.135 0.188 0.0831
(0.214) (0.224) (0.216) (0.114) (0.125) (0.115)

Junior 0.276 0.279 0.274 0.174 0.203** 0.145
(0.206) (0.217) (0.211) (0.110) (0.101) (0.133)

Senior 0.269 0.250 0.288 0.174* 0.203** 0.145
(0.191) (0.202) (0.194) (0.0913) (0.0801) (0.112)

Graduate 0.189 0.163 0.216 0.0520 0.0714 0.0326
(0.213) (0.224) (0.216) (0.0863) (0.0811) (0.102)

Constant 0.0266 0.0753 -0.0221 0.0562 0.0470 0.0654
(0.276) (0.272) (0.293) (0.0908) (0.0757) (0.117)

Observations 3420 1710 1710 3420 1710 1710

Note: Results from OLS regression. The dependent variables take the value of one if the allocation choice in a task is
classified as mixed or exact PM, respectively. Correlation captures the correlation parameters, which takes values of -1,
-0.5, 0, 0.5 under Category (67%, 33%); -1, -0.67, -0.33, 0, 0.33 under Category (75%, 25%); and -1, -0.75, -0.5, -0.25,
0, 0.25 under Category (80%, 20%)). Each regression also includes categorical variables of probability categories, gender,
and school year, as well as indicator variables of dominant color and STEM, as controls. (75%, 25%) and (80%, 20%) are
the dummy variables which take the value of one if the task is in Category (75%, 25%) and if the task is in Category
(80%, 20%), respectively. Blue takes the value of 1 if the dominant color is blue. STEM takes the value of one if the
subject has a STEM major. Female takes the value of one if the subject’s gender is female (the benchmark is ”other”).
Male takes the value of one if the subject’s gender is male. Sophomore, Junior, Senior, and Graduate takes the value of
one if the subject’s school year falls into one of the categories. Standard errors are clustered at the subject level and listed
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.5: Baseline: Impacts of Different Marginal Correlation Changes on Mixing Behavior
(1) (2) (3) (4) (5) (6)

mixed exact PM mixed exact PM mixed exact PM
Marginal Correlation Change at CORR = −1 -0.00702 -0.347***

(0.0352) (0.0795)

Marginal Correlation Change at CORR = 0 -0.126** -0.0316
(0.0599) (0.0616)

Marginal Correlation Change at CORR ≥ 0 -0.304*** -0.0376
(0.0644) (0.0312)

(75%, 25%) -0.0215 -0.150*** -0.0211 -0.0645* -0.0181 -0.0610**
(0.0184) (0.0334) (0.0182) (0.0326) (0.0138) (0.0242)

(80%, 20%) -0.0338 -0.162*** -0.0193 -0.0925*** -0.0307 -0.0936***
(0.0224) (0.0333) (0.0231) (0.0236) (0.0192) (0.0213)

Blue -0.0246** -0.0158 -0.0193* -0.0158 -0.0143 -0.00877
(0.00983) (0.0170) (0.0105) (0.0179) (0.0105) (0.0151)

STEM -0.0236 -0.0230 0.0194 -0.0255 0.0592 -0.00360
(0.119) (0.0887) (0.113) (0.0847) (0.106) (0.0843)

Female 0.286 0.0389 0.350 0.121* 0.375** 0.138**
(0.257) (0.152) (0.265) (0.0640) (0.184) (0.0596)

Male 0.0334 -0.0344 0.0513 0.0903 0.0813 0.0997
(0.281) (0.168) (0.285) (0.106) (0.210) (0.105)

Sophomore 0.527** 0.261* 0.452* 0.117 0.363* 0.0831
(0.225) (0.139) (0.233) (0.105) (0.216) (0.0921)

Junior 0.421* 0.298** 0.234 0.160 0.130 0.143
(0.217) (0.123) (0.216) (0.112) (0.216) (0.111)

Senior 0.364* 0.268*** 0.268 0.184* 0.175 0.160*
(0.195) (0.0851) (0.202) (0.0956) (0.199) (0.0891)

Graduate 0.205 0.0846 0.189 0.0509 0.145 0.0486
(0.217) (0.0917) (0.228) (0.0843) (0.221) (0.0804)

Constant 0.133 -0.122 0.0870 0.0243 0.0788 0.0122
(0.308) (0.154) (0.322) (0.0840) (0.257) (0.0730)

Observations 1140 1140 1140 1140 1824 1824

Note: Results from OLS regression. The dependent variables take the value of 1 if the allocation choice in a task is
classified as mixed choice, or as exact PM choice. The variable of marginal correlation change at CORR = −1 takes the
value of 1 if the correlation parameter is -0.5 under Category (67%, 33%), -0.67 under Category (75%, 25%), or -0.75 under
Category (80%, 20%), and takes the value of 0 if CORR = −1. The variable of marginal correlation change at CORR = 0
takes the value of 1 if CORR = 0, and takes the value of 0 if the correlation parameter is -0.5 under Category (67%, 33%),
-0.33 under Category (75%, 25%), or -0.25 under Category (80%, 20%). The variable of marginal correlation change at
CORR ≥ 0 takes the value of 1 if CORR ≥ 0 which includes the correlation parameter that is 0 under all categories, 0.5
under Category (67%, 33%), 0.33 under Category (75%, 25%), or 0.25 under Category (80%, 20%), and takes the value
of 0 if the correlation parameter is -0.5 under Category (67%, 33%), -0.33 under Category (75%, 25%), or -0.25 under
Category (80%, 20%). The regression also includes probability categories, dominant color, gender, school year and STEM
as controls. (75%, 25%) and (80%, 20%) are the dummy variables which take the value of one if the task is in Category
(75%, 25%) and if the task is in Category (80%, 20%), respectively. Blue takes the value of 1 if the dominant color is blue.
STEM takes the value of one if the subject has a STEM major. Female takes the value of one if the subject’s gender
is female (the benchmark is ”other”). Male takes the value of one if the subject’s gender is male. Sophomore, Junior,
Senior, and Graduate takes the value of one if the subject’s school year falls into one of the categories. Standard errors
are clustered at the subject level and listed in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.6: Baseline VS Independence: Impacts of Correlation/Frame Change on
Mixing Behavior

Block 1&2 Block 1 Block 2 Block 1&2 Block 1 Block 2
mixed mixed mixed exact PM exact PM exact PM

IvsB X CORR/Frame -0.158*** -0.0977*** -0.218*** -0.125*** -0.108*** -0.142***
(0.0366) (0.0334) (0.0452) (0.0286) (0.0311) (0.0380)

CORR/Frame -0.00586 -0.00990 -0.00182 0.0121 0.0199 0.00439
(0.0114) (0.0106) (0.0161) (0.0114) (0.0183) (0.0128)

IvsB(Baseline=1) -0.175*** -0.144** -0.205*** -0.0877* -0.0564 -0.119**
(0.0661) (0.0663) (0.0721) (0.0518) (0.0515) (0.0565)

(75%, 25%) -0.00268 -0.0132 0.00787 -0.104*** -0.125*** -0.0827***
(0.0122) (0.0136) (0.0141) (0.0188) (0.0214) (0.0248)

(80%, 20%) -0.0150 -0.0176 -0.0124 -0.176*** -0.193*** -0.160***
(0.0153) (0.0158) (0.0183) (0.0221) (0.0245) (0.0260)

Blue -0.0123** -0.0140* -0.0105** -0.0111 -0.0211* -0.00117
(0.00533) (0.00778) (0.00496) (0.00791) (0.0110) (0.00988)

STEM -0.126* -0.115* -0.138* -0.0558 -0.0689 -0.0427
(0.0689) (0.0690) (0.0734) (0.0564) (0.0554) (0.0605)

Female 0.461*** 0.519*** 0.403** 0.168*** 0.207*** 0.129**
(0.152) (0.131) (0.179) (0.0486) (0.0428) (0.0619)

Male 0.210 0.252* 0.167 0.120* 0.133** 0.108
(0.164) (0.144) (0.191) (0.0703) (0.0620) (0.0855)

Sophomore 0.231 0.177 0.284 0.116 0.130 0.102
(0.174) (0.177) (0.188) (0.0804) (0.0854) (0.0882)

Junior 0.226 0.171 0.280 0.168** 0.162** 0.175*
(0.168) (0.172) (0.180) (0.0783) (0.0795) (0.0895)

Senior 0.155 0.101 0.210 0.109* 0.0947 0.123
(0.160) (0.165) (0.173) (0.0652) (0.0650) (0.0781)

Graduate 0.139 0.0774 0.200 0.0292 0.0257 0.0327
(0.169) (0.172) (0.188) (0.0622) (0.0638) (0.0772)

Constant 0.241 0.261 0.221 0.165* 0.159* 0.170
(0.224) (0.214) (0.252) (0.0868) (0.0839) (0.104)

Observations 6840 3420 3420 6840 3420 3420

Note: Results from OLS regression. The dependent variable takes the value of 1 if the allocation choice in a task is
classified as mixed, or as exact PM, respectively. CORR/Frame is the variable of correlation parameters in the Baseline
and Independence treatments. In the Baseline, it captures either the correlation change or the associated frame change.
In the Independence, it denotes the frame change only. IvsB is the dummy variable on whether the task comes from the
Baseline or Independence. It takes the value of 1 if the task is in the Baseline. The regression also includes the categorical
variables of probability categories, gender, and school year, as well as the indicator variables of dominant color, and STEM,
as controls. (75%, 25%) and (80%, 20%) are the dummy variables which take the value of one if the task is in Category
(75%, 25%) and if the task is in Category (80%, 20%), respectively. Blue takes the value of 1 if the dominant color is blue.
STEM takes the value of one if the subject has a STEM major. Female takes the value of one if the subject’s gender
is female (the benchmark is ”other”). Male takes the value of one if the subject’s gender is male. Sophomore, Junior,
Senior, and Graduate takes the value of one if the subject’s school year falls into one of the categories. Standard errors
are clustered at the subject level and listed in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.7: Independence VS Unknown: Impacts of Frame Change on Mixing Behavior
Block 1&2 Block 1 Block 2 Block 1&2 Block 1 Block 2
mixed mixed mixed exact PM exact PM exact PM

IvsU X Frame/Ex post CORR 0.00387 0.00964 -0.00190 -0.0318** -0.0648*** 0.00122
(0.0136) (0.0148) (0.0192) (0.0157) (0.0244) (0.0190)

Frame/Ex post CORR -0.00509 -0.00947 -0.000710 0.00962 0.0177 0.00159
(0.0114) (0.0106) (0.0161) (0.0114) (0.0183) (0.0129)

IvsU(Independence=1) 0.0469 0.0664 0.0274 0.0566 0.0920 0.0211
(0.0700) (0.0710) (0.0763) (0.0567) (0.0572) (0.0613)

(75%, 25%) 0.00759 0.00315 0.0120 -0.117*** -0.128*** -0.107***
(0.0153) (0.0155) (0.0183) (0.0231) (0.0247) (0.0292)

(80%, 20%) -0.00648 -0.0139 0.000899 -0.206*** -0.220*** -0.192***
(0.0177) (0.0168) (0.0217) (0.0259) (0.0259) (0.0313)

Blue -0.00413 -0.00590 -0.00236 -0.00855 -0.0165 -0.000590
(0.00450) (0.00675) (0.00531) (0.00735) (0.0110) (0.00952)

STEM -0.115 -0.106 -0.123 -0.0125 -0.0165 -0.00853
(0.0745) (0.0738) (0.0815) (0.0588) (0.0592) (0.0620)

Female 0.333 0.409* 0.258 0.143 0.159 0.127
(0.231) (0.218) (0.251) (0.114) (0.127) (0.108)

Male 0.0613 0.149 -0.0261 0.0432 0.0281 0.0582
(0.239) (0.227) (0.259) (0.125) (0.137) (0.121)

Sophomore 0.0387 0.0478 0.0297 0.148* 0.137 0.158*
(0.183) (0.179) (0.202) (0.0838) (0.101) (0.0812)

Junior 0.200 0.168 0.233 0.257*** 0.222** 0.293***
(0.181) (0.176) (0.198) (0.0873) (0.0962) (0.0856)

Senior 0.0520 0.0542 0.0499 0.106 0.0663 0.145**
(0.175) (0.171) (0.192) (0.0664) (0.0797) (0.0603)

Graduate 0.181 0.164 0.197 0.170* 0.141 0.200**
(0.183) (0.177) (0.206) (0.0929) (0.0992) (0.0953)

Constant 0.424 0.376 0.472 0.144 0.175 0.112
(0.289) (0.276) (0.315) (0.144) (0.162) (0.136)

Observations 6780 3390 3390 6780 3390 3390

Note: Results from OLS regression. The dependent variable takes the value of 1 if the allocation choice in a task is classified
as (1) mixed choice, (2) exact PM. Frame/Ex post CORR is the variable of correlation parameters in the Independence
and Unknown treatments. In the Independence, it captures the frame change only. In the Unknown, it denotes no impact
by design. IvsU is the dummy variable on whether the task is in the Unknown VS Independence. It takes the value of 1
if the task is in the Independence. The regression also includes probability categories, dominant color, gender, school year
and STEM as controls. (75%, 25%) and (80%, 20%) are the dummy variables which take the value of one if the task is in
Category (75%, 25%) and if the task is in Category (80%, 20%), respectively. Blue takes the value of 1 if the dominant
color is blue. STEM takes the value of one if the subject has a STEM major. Female takes the value of one if the subject’s
gender is female (the benchmark is ”other”). Male takes the value of one if the subject’s gender is male. Sophomore,
Junior, Senior, and Graduate takes the value of one if the subject’s school year falls into one of the categories. Standard
errors are clustered at the subject level and listed in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

149



Appendix for “What Drives Probability Matching?” Chapter A

Table A.8: Three treatments: Mixing Behavior in Zero-correlation Tasks (Task 2)
(1) (2) (3) (4)

mixed exact PM mixed exact PM
IvsB(Baseline = 1) -0.141** -0.0990*

(0.0676) (0.0541)

IvsU(Independence = 1) 0.0292 0.0607
(0.0683) (0.0567)

(75%, 25%) -0.0110 -0.101*** -0.00885 -0.126***
(0.0170) (0.0267) (0.0194) (0.0316)

(80%, 20%) -0.0285 -0.149*** -0.0288 -0.215***
(0.0207) (0.0279) (0.0211) (0.0326)

Blue -0.0219* -0.00146 -0.0103 -0.0177
(0.0128) (0.0179) (0.0121) (0.0167)

STEM -0.110 -0.0560 -0.102 -0.0165
(0.0694) (0.0580) (0.0713) (0.0562)

Female 0.472*** 0.178*** 0.359 0.140
(0.164) (0.0520) (0.232) (0.149)

Male 0.202 0.133* 0.0637 0.0292
(0.175) (0.0728) (0.240) (0.159)

Sophomore 0.162 0.0386 -0.00378 0.114
(0.181) (0.0847) (0.175) (0.0871)

Junior 0.116 0.0902 0.167 0.238**
(0.172) (0.0912) (0.173) (0.0926)

Senior 0.0799 0.0528 0.0165 0.0753
(0.165) (0.0796) (0.168) (0.0737)

Graduate 0.0732 -0.0187 0.136 0.184*
(0.174) (0.0779) (0.175) (0.0972)

Constant 0.331 0.208** 0.466 0.189
(0.237) (0.101) (0.286) (0.172)

Observations 1368 1368 1356 1356

Note: Results from OLS regression with observations in Task 2 and pooling Blocks 1 and 2 together. The dependent
variable takes the value of 1 if the allocation choice in a task is classified as (1) Mixed choice, or as (2) Exact PM
separately. IvsB is the dummy variable on whether the task is in the Baseline VS Independence. It takes the value of 1
if the task is in the Baseline. IvsU is the dummy variable on whether the task is in the Unknown VS Independence. It
takes the value of 1 if the task is in the Independence. The regression also includes probability categories, dominant color,
gender, school year and STEM as controls. (75%, 25%) and (80%, 20%) are the dummy variables which take the value of
one if the task is in Category (75%, 25%) and if the task is in Category (80%, 20%), respectively. Blue takes the value of 1
if the dominant color is blue. STEM takes the value of one if the subject has a STEM major. Female takes the value of one
if the subject’s gender is female (the benchmark is ”other”) and male takes the value of one if the subject’s gender is male.
Sophomore, Junior, Senior, and Graduate takes the value of one if the subject’s school year falls into one of the categories.
Standard errors are clustered at the subject level and listed in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.9: Mixing Behavior in Block 3 across the Three Treatments
(1) (2) (3) (4)
Mix Exact PM Mix Exact PM

IvsB(Baseline = 1) -0.283*** -0.224***
(0.0756) (0.0675)

IvsU (Independence = 1) -0.000489 -0.0465
(0.0718) (0.0706)

(70%, 30%) -0.0614*** -0.0307 -0.0841*** -0.0619*
(0.0228) (0.0253) (0.0236) (0.0324)

(80%, 20%) -0.127*** 0.0132 -0.159*** -0.0575
(0.0287) (0.0347) (0.0319) (0.0400)

Blue 0.0351** 0.0146 0.0383*** 0.0206
(0.0159) (0.0184) (0.0132) (0.0229)

STEM -0.0845 -0.0755 -0.111 -0.0946
(0.0770) (0.0691) (0.0717) (0.0735)

Female 0.477** 0.293*** 0.511** 0.388***
(0.196) (0.0655) (0.243) (0.0640)

Male 0.267 0.224** 0.169 0.214**
(0.202) (0.0909) (0.254) (0.0825)

Sophomore 0.173 0.154 -0.0656 0.246**
(0.158) (0.112) (0.178) (0.113)

Junior 0.0714 -0.0231 0.149 0.293***
(0.148) (0.0850) (0.167) (0.0989)

Senior 0.0996 0.0536 -0.0217 0.159*
(0.140) (0.0906) (0.167) (0.0885)

Graduate 0.170 0.0301 0.123 0.255*
(0.159) (0.114) (0.177) (0.132)

Constant 0.293 0.147 0.407 -0.0388
(0.242) (0.113) (0.287) (0.116)

Observations 684 684 678 678

Note: Results from OLS regression. The dependent variable takes the value of 1 if the allocation choice in a task is classified
as (1) mixed choice, (2) exact PM. IvsB is the dummy variable on whether the task is in the Baseline VS Independence. It
takes the value of 1 if the task is in the Baseline. IvsU is the dummy variable on whether the task is in the Unknown VS
Independence. It takes the value of 1 if the task is in the Independence. The regression also includes probability categories,
dominant color, gender, school year and STEM as controls. (75%, 25%) and (80%, 20%) are the dummy variables which
take the value of one if the task is in Category (75%, 25%) and if the task is in Category (80%, 20%), respectively. Blue
takes the value of 1 if the dominant color is blue. STEM takes the value of one if the subject has a STEM major. Female
takes the value of one if the subject’s gender is female (the benchmark is ”other”). Male takes the value of one if the
subject’s gender is male. Sophomore, Junior, Senior, and Graduate takes the value of one if the subject’s school year falls
into one of the categories. Standard errors are clustered at the subject level and listed in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01.
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A.6.2 Prevalence of Mixing

I classify subjects into three mutually exclusive types based on their choices: Never

Mix, Sometimes Mix, and Always Mix. The Never Mix type refers to the subject who

always allocates all the tickets on the dominant option in each task; the Always Mix type

refers to the subject who always allocates at least one ticket on the dominated option in

each task; the Sometimes Mix type refers to the subject who is in between.

Table A.10: Mixing Types across the Three Treatments
Baseline Independence Unknown

Always Mix 17.54% *** 42.11% ** 44.64%
Sometimes Mix 64.91% *** 45.61% 46.43%

Never Mix 17.54% *** 12.28% *** 8.93%
N subjects 57 57 56

Note: I classify subjects into three mutually exclusive types based on their 66 choices in each treatment: Never Mix,

Sometimes Mix, and Always Mix. The Never Mix type refers to the subject who always allocates all the tickets on the

dominant option in each task; the Always Mix type refers to the subject who always allocates at least one ticket on the

dominated option in each task; the Sometimes Mix type refers to the subject who is in between. I use the two-way t-test

to test whether the difference is significant. * p < 0.10, ** p < 0.05, *** p < 0.01

As shown in Table A.10 where I classify subjects based on all the 66 choices, types

in the Baseline are distributed differently from those in the Independence and Un-

known treatments. In the Baseline, it is most prominent for subjects to Sometimes

Mix (64.91%), which is significantly higher than those in the Independence and Un-

known treatments (two-way t-test, p = 0.000). However in the Independence and Un-

known treatments, the two most prominent types in the population are subjects who

Always Mix (Independence: 42.11%; Unknown: 44.64%) and those who Sometimes Mix

(Independence: 45.61%; Unknown: 46.43%). The fraction of Always Mix type in the

Baseline (17.54%) is significantly lower than in the other two treatments (two-way t-test,

p = 0.000). Moreover, the fraction of Never Mix type in the Baseline (17.54%) is sig-

nificantly higher than in the other two treatments: (Independence: 12.28%; Unknown:
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8.93%; two-way t-test, p = 0.000).

I also calculate the distributions of three types by blocks and find similar results. I

classify subjects into the three types based on the 30 choices in Block 1, the 30 choices in

Block 2, and the six choices in Block 3 separately, and separated by the three treatments.

Conditional on Blocks 1 and 2, Sometimes Mix is the prominent type in the Baseline,

while Always Mix is the dominant type in the Independence and Unknown. In each block,

the fraction of Always Mix type is significantly lower in the Baseline than in the other

two treatments (two-way t-test, p = 0.000). The type distribution in the Independence

is similar to that in the Unknown. As illustrated in Table A.11, compared to Block 1,

the fraction of Never Mix type increases when subjects gain some experience in Block 2.

Table A.11: Mixing Types across the Three Treatments: by Blocks
Baseline Independence Unknown

Block 1
Always Mix 24.56% *** 52.63% 53.57%

Sometimes Mix 56.14% *** 29.82% *** 35.71%
Never Mix 19.30% 17.54% *** 10.71%

Block 2
Always Mix 21.05% *** 49.12% 51.79%

Sometimes Mix 50.88% *** 28.07% 26.79%
Never Mix 28.07% *** 22.81% 21.43%

Block 3
Always Mix 31.58% *** 56.14% 57.14%

Sometimes Mix 19.30% ** 26.32% *** 17.86%
Never Mix 49.12% *** 17.54% ** 25.00%

* p < 0.10, ** p < 0.05, *** p < 0.01

Note: I classify subjects into three types based on the thirty choices in Block 1, the thirty choices in Block 2, and the

six choices in Block 3 separately, and separated by the three treatments. The Never Mix type refers to the subject who

always allocates all the tickets on the dominant option in each task; the Always Mix type refers to the subject who always

allocates at least one ticket on the dominated option in each task; the Sometimes Mix type refers to the subject who is in

between. I use the two-way t-test to test whether the difference is significant. * p < 0.10, ** p < 0.05, *** p < 0.01
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A.6.3 Suggestive Strategies

In the exit survey, subjects are asked to choose one of the following statements as

suggestive strategies:

• Never Mix: “Always allocate all your tickets on the color with larger likelihood.

That is, if blue is more likely to happen, allocate all tickets on blue; otherwise, all

on orange.”

• Mix Evenly: “Always mix between the 2 colors evenly.”

• Exact PM: “Always mix between the 2 colors in a similar way as to how they

distribute. For example, if 6 blue and 3 orange, allocate 4 tickets on blue and 2

tickets on orange.”

• Always Mix: “Mixing is always better than allocating all tickets on 1 color.”

• Sometimes Mix: “It depends. For some questions, allocating all tickets on 1 color

is better than mixing. For others, mixing is better.”

Table A.12 illustrates the fractions of subjects who chose each of the five strategies.

Although it is not incentivized, the distribution of suggestive strategies are consistent with

the aggregate behavior in the experiment: majority of subjects in the Baseline choose

Never Mix, while the prominent strategy chose in the Independence and Unknown is

Exact PM.
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Table A.12: Distribution of Suggestive Strategies across the Three Treatments
Baseline Independence Unknown

Never Mix 43.86% 29.82% 33.93%
Mix Evenly 3.51% 0% 1.79%
Exact PM 21.05% 35.09% 37.50%
Always Mix 1.75% 10.53% 8.93%

Sometimes Mix 29.82% 24.56% 17.86%

Note: Each cell represents the fraction of subjects in each treatment who chose the suggestive strategy. The fraction in

bold denotes the most prominent strategy selected in each treatment.

155



Appendix for “What Drives Probability Matching?” Chapter A

A.7 Experimental Instructions

Following pages are the instructions subjects can see in the experiment.

Overview

• Welcome to our experiment on decision making. Thank you for participating!

• This experiment consists of 3 “blocks”. Block 2 will be explained once you complete

Block 1. Similarly, Block 3 will be explained once you complete Block 2. I start

by providing you with instructions. I will ask you questions to make sure that you

understand the rules. You should be able to answer all these questions correctly.

• Please follow the instructions closely and carefully. You will not be allowed to start

the study until answering each question correctly.

• At the end of the experiment, one of the decisions will be randomly selected as the

Decision-that-counts for payment. Since all decisions are equally likely to be

chosen, you should approach each decision as if it is the Decision-that-counts.

• In addition to being paid for one decision, you will also receive $5 as participation

payment.

Important Information

• You should think about each question independently of all other questions in this

study. There is no point in strategizing across questions.

• You will note that I sometimes ask you similar-sounding questions. These questions

might have similar answers, or very different ones. Please consider each individual

question carefully.
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Block 1 (Baseline)

This block consists of 30 rounds. In each round, you face a situation like the one described

below.

You will see a roll of 2-sided coins, some of which have colors on the front and back

sides. There are 2 types of colors, blue and orange. Colors are distributed among the

front and back sides of coins based on the rules below:

• The front side of each coin either is colored with blue or has no color.

• The back side of each coin either is colored with orange or has no color.

• Different colors are NOT necessarily exclusive. That is, it is possible that 1

coin is colored with blue on the front side and orange on the back side.

The computer will randomly draw 1 coin and check the color on each side of the coin.

You do NOT know which coin is drawn. Figure A.3 is an example of the environment

you might face:
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Figure A.3: Screenshot of Interface in Baseline
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Your Objective:

In each round of this block, you will have some tickets to bet on which color the

Randomly Drawn Coin contains. On each ticket, you will choose one of the two bets:

• Bet on Blue side: the Randomly Drawn Coin contains a blue side.

• Bet on Orange side: the Randomly Drawn Coin contains a orange side.

You must verify your choices after that. The total numbers of coins, blue sides, orange

sides, and tickets VARY from round to round.

With the example above:

You will have 6 tickets to bet on which color the Randomly Drawn Coin contains.

You can choose any combination of “Bet on Blue side” and “Bet on Orange side” tickets,

but the total number of tickets you choose has to be 6.

Your Payment:

If one round in this block is chosen as the Decision-that-counts, the computer will

randomly draw 1 coin, and then randomly pick 1 ticket to pay out. I will then check if

the Randomly Drawn Coin contains the color you bet on that ticket.

If your bet on that ticket says Bet on Blue side, you will receive:

• $7 if the Randomly Drawn Coin contains a blue side;

• $0 if the Randomly Drawn Coin does not.

If your bet on that ticket says Bet on Orange side, you will receive:

• $7 if the Randomly Drawn Coin contains an orange side;

• $0 if the Randomly Drawn Coin does not.
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Feedback after each round:

You will receive feedback after each round on:

• which ticket is picked;

• your bet on that ticket;

• which coin is randomly drawn;

• what the Randomly Drawn Coin contains;

• your payoff;

• what you could have earned by choosing the alternative on that ticket

At the end of the experiment, one of the decisions will be randomly selected as the

Decision-that-counts for payment. Since all decisions are equally likely to be chosen,

you should approach each decision as if it is the Decision-that-counts.

With the example above:

If you choose that 1 of your tickets say “Bet on Blue side” and 5 of your tickets

say “Bet on Orange side”, then with 1/6 chance your bet is to “Bet on Blue side: the

Randomly Drawn Coin contains a blue side” and with 5/6 chance your bet is to “Bet on

Orange side: the Randomly Drawn Coin contains a orange side.”

If you choose that 5 of your tickets say “Bet on Blue side” and 1 of your tickets

say “Bet on Orange side”, then with 5/6 chance your bet is to “Bet on Blue side: the

Randomly Drawn Coin contains blue side” and with 1/6 chance your bet is to “Bet on

Orange side: the Randomly Drawn Coin contains an orange side.”

Suppose Ticket 4 is drawn, If your bet on Ticket 4 says “Bet on Blue side”, you’d

be paid $7 if the Randomly Drawn Coin is from Coin 1-6, otherwise $0. If your bet on
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Ticket 4 says “Bet on Orange side”, you’d be paid $7 if the Randomly Drawn Coin is

from Coin 6-8, otherwise $0.

The IMPORTANT thing to remember is that to maximize your payment you should

give us your BEST allocation of tickets.

{In Block 2, subjects see the same instruction and are informed that Block 2 is a

repetition of Block 1. }
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Block 1 (Independence)

This block consists of 30 rounds. In each round, you face a situation like the one

described below.

You will see 2 rolls of coins, Roll Blue and Roll Orange. Each roll has the same

number of coins, some of which are colored. There are 2 types of colors, blue and orange.

Colors are distributed among the coins based on the rules below:

• Each coin in Roll Blue either is colored with blue or has no color.

• Each coin in Roll Orange either is colored with orange or has no color.

The computer will randomly draw 2 coins: 1 from Roll Blue and 1 from Roll Orange.

You do NOT know which coins are drawn. Figure A.4 is an example of the environment

you might face:
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Figure A.4: Screenshot of Interface in Independence Treatment
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Your Objective:

In each round of this block, you will have some tickets to bet on which coin contains

color, that is, from which roll the Randomly Drawn Coin contains color. On each

ticket, you will choose one of the two bets:

• Bet on Roll Blue: the Randomly Drawn Coin from Roll Blue contains color.

• Bet on Roll Orange: the Randomly Drawn Coin from Roll Orange contains color.

You must verify your choices after that.

The numbers of coins, colored coins and tickets VARY from round to round.

With the example above:

You will have 6 tickets to bet on from which roll the Randomly Drawn Coin contains

color. You can choose any combination of “Bet on Roll Blue” and “Bet on Roll Orange”

tickets, but the total number of tickets you choose has to be 6.

Your Payment:

If one round in this block is chosen as the Decision-that-counts, the computer will

randomly draw 2 coins, one from each roll. 1 ticket is randomly picked to pay out.

I will then check if the Randomly Drawn Coin from the roll you bet on that ticket

contains color.

If your bet on that ticket says Bet on Roll Blue, I will check the Randomly Drawn

Coin from Roll Blue and you will receive:

• $7 if the Randomly Drawn Coin from Roll Blue contains color;

• $0 if the Randomly Drawn Coin from Roll Blue does not.

If your bet on that ticket says Bet on Roll Orange, I will check the Randomly Drawn

Coin from Roll Orange and you will receive:
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• $7 if the Randomly Drawn Coin from Roll Orange contains color;

• $0 if the Randomly Drawn Coin from Roll Orange does not.

Feedback after each round:

You will receive feedback after each round on:

• which ticket is picked;

• your bet on that ticket;

• your payoff;

At the end of the experiment, one of the decisions will be randomly selected as the

Decision-that-counts for payment. Since all decisions are equally likely to be chosen,

you should approach each decision as if it is the Decision-that-counts.

With the example above:

If you choose that 1 of your tickets say “Bet on Roll Blue” and 5 of your tickets

say “Bet on Roll Orange”, then with 1/6 chance your bet is to “Bet on Roll Blue: the

Randomly Drawn Coin from Roll Blue contains color.” and with 5/6 chance your guess

is to “Bet on Roll Orange: the Randomly Drawn Coin from Roll Orange contains color.”

If you choose that 5 of your tickets say “Bet on Roll Blue” and 1 of your tickets

say “Bet on Roll Orange”, then with 5/6 chance your bet is to “Bet on Roll Blue: the

Randomly Drawn Coin from Roll Blue contains color.” and with 1/6 chance your guess

is to “Bet on Roll Orange: the Randomly Drawn Coin from Roll Orange contains color.”

Suppose Ticket 4 is drawn, If your bet on Ticket 4 says “Bet on Roll Blue”, you’d be

paid $7 if the Randomly Drawn Coin from Roll Blue is from Coin b1-b6, otherwise $0.

If your bet on Ticket 4 says “Bet on Roll Orange”, you’d be paid $7 if the Randomly

Drawn Coin from Roll Orange is from Coin o6-o8, otherwise $0.
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The IMPORTANT thing to remember is that to maximize your payment you should

give us your BEST allocation of tickets.

{In Block 2, subjects see the same instruction and are informed that Block 2 is a

repetition of Block 1. }
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Block 1 (Unknown)

This block consists of 30 rounds. In each round, you face a situation like the one described

below.

You will see a roll of 2-sided coins, some of which have colors on the front and back

sides. There are 2 types of colors, blue and orange. Colors are distributed among the

front and back sides of coins based on the rules below:

• The front side of each coin either is colored with blue or has no color.

• The back side of each coin either is colored with orange or has no color.

• Different colors are NOT necessarily exclusive. That is, it is possible that 1

coin is colored with blue on the front side and orange on the back side.

The computer will randomly draw 1 coin and check the color on each side of the coin.

You do NOT know which coin is drawn. Figure A.5 is an example of the environment

you might face:
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Figure A.5: Screenshot of Interface in Unknown Treatment
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Your Objective:

In each round of this block, you will have some tickets to bet on which color the

Randomly Drawn Coin contains. On each ticket, you will choose one of the two bets:

• Bet on Blue side: the Randomly Drawn Coin contains a blue side.

• Bet on Orange side: the Randomly Drawn Coin contains a orange side.

You must verify your choices after that. The total numbers of coins, blue sides, orange

sides and tickets VARY from round to round.

With the example above:

You will have 6 tickets to bet on which color the Randomly Drawn Coin contains.

You can choose any combination of “Bet on Blue side” and “Bet on Orange side” tickets,

but the total number of tickets you choose has to be 6.

Your Payment:

If one round in this block is chosen as the Decision-that-counts, the computer will

randomly draw 1 coin, and then randomly pick 1 ticket to pay out. I will then check if

the Randomly Drawn Coin contains the color you bet on that ticket.

If your bet on that ticket says Bet on Blue side, you will receive:

• $7 if the Randomly Drawn Coin contains a blue side;

• $0 if the Randomly Drawn Coin does not.

If your bet on that ticket says Bet on Orange side, you will receive:

• $7 if the Randomly Drawn Coin contains an orange side;

• $0 if the Randomly Drawn Coin does not.

Feedback after each round:

You will receive feedback after each round on:
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• which ticket is picked;

• your bet on that ticket;

• your payoff;

At the end of the experiment, one of the decisions will be randomly selected as the

Decision-that-counts for payment. Since all decisions are equally likely to be chosen,

you should approach each decision as if it is the Decision-that-counts.

With the example above:

If you choose that 1 of your tickets say “Bet on Blue side” and 5 of your tickets

say “Bet on Orange side”, then with 1/6 chance your bet is to “Bet on Blue side: the

Randomly Drawn Coin contains a blue side” and with 5/6 chance your bet is to “Bet on

Orange side: the Randomly Drawn Coin contains a orange side.”

If you choose that 5 of your tickets say “Bet on Blue side” and 1 of your tickets

say “Bet on Orange side”, then with 5/6 chance your bet is to “Bet on Blue side: the

Randomly Drawn Coin contains blue side” and with 1/6 chance your bet is to “Bet on

Orange side: the Randomly Drawn Coin contains an orange side.”

Suppose Ticket 4 is drawn, If your bet on Ticket 4 says “Bet on Blue side”, you’d

be paid $7 if the Randomly Drawn Coin contains blue side , otherwise $0. If your bet

on Ticket 4 says “Bet on Orange side”, you’d be paid $7 if the Randomly Drawn Coin

contains orange side, otherwise $0.

The IMPORTANT thing to remember is that to maximize your payment you should

give us your BEST allocation of tickets.

{In Block 2, subjects see the same instruction and are informed that Block 2 is a

repetition of Block 1. }
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Block 3 (Baseline/Independence/Unknown)

This block consists of 6 rounds. In each round, you face a situation like the one

described below.

You will see a roll of 10 2-sided coins, some of which have colors on the front and

back sides. There are 2 types of colors, blue and orange. Colors are distributed among

the front and back sides of coins based on the rules below:

• The front side of each coin either is colored with blue or has no color.

• The back side of each coin either is colored with orange or has no color.

• Different colors are NOT necessarily exclusive. That is, it is possible that a

coin is colored with blue on the front side and orange on the back side.

The computer will randomly draw 1 coin. You do NOT know which coin is drawn.

Figure A.6 is an example of the environment you might face:
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Figure A.6: Screenshot of Interface in Block 3
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Your Objective:

In each round of this block, you will have 10 tickets to bet on which color of side

the Randomly Drawn Coin contains. On each ticket, you will choose one of the two bets:

• Bet on Blue side: the Randomly Drawn Coin contains a blue side.

• Bet on Orange side: the Randomly Drawn Coin contains a orange side.

You must verify your choices after that. The numbers of blue sides and orange sides

VARY from round to round.

Your Payment:

If one round in this block is chosen as the Decision-that-counts, the computer will

randomly draw 1 coin, and then randomly pick 1 ticket to pay out. I will then check

if the Randomly Drawn Coin contains the color you bet on that ticket.

If your bet on that ticket says Bet on Blue side, you will receive:

• $7 if the Randomly Drawn Coin contains a blue side;

• $0 if the Randomly Drawn Coin does not.

If your bet on that ticket says Bet on Orange side, you will receive:

• $7 if the Randomly Drawn Coin contains an orange side;

• $0 if the Randomly Drawn Coin does not.

Feedback after each round:

You will receive feedback after each round on:

• which ticket is picked;

• your bet on that ticket;
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• your payoff;

At the end of the experiment, one of the decisions will be randomly selected as the

Decision-that-counts for payment. Since all decisions are equally likely to be chosen,

you should approach each decision as if it is the Decision-that-counts. The color of

coins may change from round to round. Your bonus payment is equal to the payoff of

the selected round in dollars.

With the example above:

If you choose that 1 of your tickets say “Bet on Blue side” and 9 of your tickets

say “Bet on Orange side”, then with 10% chance your bet is to “Bet on Blue side: the

Randomly Drawn Coin contains blue side” and with 90% chance your guess is to “Bet

on Orange side: the Randomly Drawn Coin contains orange side.”

If you choose that 9 of your tickets say “Bet on Blue side” and 1 of your tickets

say “Bet on Orange side”, then with 90% chance your bet is to “Bet on Blue side: the

Randomly Drawn Coin contains blue side” and with 10% chance your guess is to “Bet

on Orange side: the Randomly Drawn Coin contains orange side.”

Suppose Ticket 4 is drawn, If your bet on Ticket 4 says “Bet on Blue side”, you’d

be paid $7 if the Randomly Drawn Coin contains a blue side, otherwise $0. If your bet

on Ticket 4 says “Bet on Orange side”, you’d be paid $7 if the Randomly Drawn Coin

contains an orange side, otherwise $0.

The IMPORTANT thing to remember is that to maximize your payment you should

give us your BEST allocation of tickets.
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Appendix for “Preference for

Sample Features and Belief

Updating”

B.1 Incentive Compatibility of the Ranking-Card Method

Let Xf = {f1, . . . , fN} be the set of forms and Xm = {m1, . . . ,mK} be the set of

bundles “null information for + compensation”. Let X = Xf

⋃
Xm be the choice set.

Assumption 1. X is well-ordered under ≿.

Since X is a finite set, there is a utility function u : X → R represents ≿.

Let R : X → Z be the ranking function that the agent assigns. Particularly, the agent

sort the elements in X. We define R(x) the number of elements behind x. For example,

suppose an agent sort X = {a, b, c, d} in the following order:

a, d, e ∼ b, c
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Note that e and b are at the same place. Then R(a) = 4, R(d) = 3, R(e) = R(b) = 1

and R(c) = 0.

In each trial, two elements in X will be chosen, and the one with higher ranking will

be selected. Denote C({x, y}) as the selected element given x, y ∈ X, then

C({x, y}) =


argmaxz∈{x,y}R(z) if R(x) ̸= R(y)

x if R(x) = R(y).

The selected element derives the agent’s realized utility, u(C({x, y}).

We then give the main characterization of the utility function given the binary choice.

Proposition 5. For any x, y ∈ X, u(x) ≥ u(y) if and only if R(x) ≥ R(y).

Proof: The necessity part is trivial. We show the sufficiency part here. Assume

u(x) < u(y). Suppose R(x) ≥ R(y). Consider the case that x and y are both chosen.

Then C({x, y}) = x, and the implied utility specification is u(x), which is strictly less

than u(y) and hence leads to a contradiction.

Since the ranking function characterizes the utility function, there is no incentive to

state the preferences otherwise. Therefore, the ranking must be truthful.
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B.2 Experimental Design Details

Table B.1: List of Reports
Report Majority Proportion Difference Count Sequence (corresponding count)
1 Orange/Green
2 0%/100%
3 33%/67%
4 20%/80%
5 40%/60%
6 ± 1
7 ± 3
8 ± 5
9 ± 9
10 3-0
11 9-6
12 2-1
13 3-2
14 10-5
15 5-0
16 9-0
17 12-3
18 4-1
19 ooo (3-0)
20 ooooooooogggggg (9-6)
21 ogogoogogoogogo (9-6)
22 ogo (2-1)
23 oog (2-1)
24 ooogg (3-2)
25 ogogo (3-2)
26 ogoogoogoogoogo (10-5)
27 ooooooooooggggg (10-5)
28 ooooo (5-0)
29 ooooooooo (9-0)
30 oogoooogoooogoo (12-3)
31 ooooooooooooggg (12-3)
32 oooog (4-1)
33 oogoo (4-1)

Note. The list shows the preassigned reports implemented in the experiment. InMajority,
the subjects either read “more orrange” or “more green”. In Difference, the listed reports
represent the difference the subjects see; for instance, “± 3” means one color has 3 more
balls than the other. In Proportion, they see the proportions of different-colored balls;
for instance, “33%/67%” means 33% of balls are in one color and 67% are in the other
color. In Count, the listed reports represent the counts the subjects see; for instance,
“2-1” means 2 balls in one color and 1 ball in the other. In Sequence, the listed reports
represent the specific sequence the subjects see; for instance, “ogo” means the subject
sees a sequence of “orange-green-orange” balls. From the same report, the majority is
randomly assigned. For instance, when a subject is assigned Report 20, she may be
assigned “ogo” or “gog” with same probabilities.
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B.3 Grether Model + Full Data

Figure B.1: Stated Belief and Bayesian Benchmark across Reports

Note: The stated posteriors are plotted against Bayesian posteriors by reports. On each point, we plot

the 95% confidence interval. The blue lines represent the 45-degree line as the Bayesian benchmark. The

fitted posterior is derived from Equation (2.7), where the coefficients are taken from Table 2.2. Include

the linear approximation of the stated beliefs of 0% and 100%.
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Table B.2: Estimated Responsiveness to changes in Likelihood Ratio with Interaction
(1) All Five reports (2) Without Majority (3) Difference vs Count vs Sequence

ln
(

π(Box O|SγR
)

π(Box G|SγR
)

)
ln

(
π(Box O|SγR

)

π(Box G|SγR
)

)
ln

(
π(Box O|SγR

)

π(Box G|SγR
)

)
ln

(
p(Box O|SγR

)

p(Box G|SγR
)

)
0.543∗∗∗ 0.674∗∗∗ 0.313∗∗∗

(0.0536) (0.0325) (0.0180)

Proportion -0.0527
(0.111)

Difference -0.131 -0.0785
(0.108) (0.0733)

Count -0.0801 -0.0274 0.0510
(0.101) (0.0541) (0.0584)

Sequence -0.0206 0.0320 0.110∗

(0.0995) (0.0552) (0.0559)

Proportion ×ln
(

p(Box O|SγR
)

p(Box G|SγR
)

)
0.131∗∗∗

(0.0467)

Difference ×ln
(

p(Box O|SγR
)

p(Box G|SγR
)

)
−0.230∗∗∗ −0.361∗∗∗

(0.0480) (0.0246)

Count ×ln
(

p(Box O|SγR
)

p(Box G|SγR
)

)
−0.187∗∗∗ −0.317∗∗∗ 0.0431∗∗∗

(0.0499) (0.0249) (0.0132)

Sequence ×ln
(

p(Box O|SγR
)

p(Box G|SγR
)

)
−0.180∗∗∗ −0.310∗∗∗ 0.0498∗∗∗

(0.0500) (0.0227) (0.0124)

Constant -0.0396 -0.0963 -0.140
(0.131) (0.0983) (0.100)

N 3205 3108 2718

Notes: ∗ ∗ ∗ p-value < 0.01, ∗∗ p-value < 0.05 and ∗ p-value < 0.1. Standard errors are clustered at the subject level with gender and grade
as controls.
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B.4 Report-Whatever-You-See Heuristics

It is possible that, instead of making better use of the proportion information, subjects

might just naively report whatever they saw under Proportion. If the majority tends to

do so and the rest performs in the identical way as under Count and Sequence, the

naive resemblance could result in the finding that the stated beliefs are on average less

compressed towards 50:50. We address this concern by classifying stated beliefs under

Report Proportion into two types according to whether it is within± 5% of the proportion

information provided. We find that the majority is out of the proportion ± 5%: 67%

are out of proportion ± 5%, and 33% of stated beliefs are within proportion ± 5%. To

further explore whether the out-of-proportion-± 5% type is more compressed towards

50:50 or closer to the Bayesian Benchmark, We plot the average stated posteriors against

Bayesian posteriors under the Report Proportion and separate them by the two types

in Figure B.2. For those out of proportion ± 5%, the stated beliefs are closer to the

Bayesian benchmark than to 50:50. This result suggests that, instead of naively stating

whatever subjects saw under Report Proportion, the majority indeed makes better use

of the information under Proportion.

One possible explanation of the subjects’ better performance under Proportion is

that the subjects are naively reporting the proportions they observe, and it naturally

makes the estimated sensitivity close to one. We provide two pieces of evidence against

this explanation. First, 67% of our subjects do not state their posterior beliefs close

(plus or minus 0.05) to the actual proportion they see. Second, when we plot the stated

posteriors against the Bayesian posteriors, the observations that are close to the presented

proportions are showing more deviated (with respect to Bayesian) sensitivity than those

are not close. Please see Figure B.2 for more details.
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Figure B.2: Stated Beliefs under Report Proportion

Note: In the left and middle panels, we plot the average stated posteriors against Bayesian posteriors
under Report Proportion and separate them by whether the stated belief is within proportion ±5%.
The percentage in the bracket is the fraction of stated beliefs which belong to the type. The right panel
plots the pooled results. On each point, we plot the 95% confidence interval.
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Appendix for “Dynamic Binary

Method”

C.1 Binarized Scoring Rule and Incentive Compati-

bility

Consider a decision maker (DM) with a probabilistic belief over a verifiable binary

outcome s ∈ {A, B}, assuming they possess a true belief p = Pr{s = A}. Binarized

scoring rule (BSR) uses two monetary prizes Mh and Ml for payment (where Mh > Ml ≥

0), and two i.i.d. draws X1, X2 ∼ U [0, 1] to determine the outcome (Hossain and Okui,

2013; Wilson and Vespa, 2018). Specifically, if s = A is true, the DM gets the prize Mh

so long as their stated belief a is greater than at least one of the two uniform draws X1

and X2. If s = B is false, the DM gets the prize Mh so long as their stated belief a is

less than at least one of the two uniform draws X1 and X2. Otherwise, the DM gets the

prize Ml.
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Given the true belief p, the probability of winning the better prize Mh is given by

π(p, a) = p ∗ (1− (1− a)2) + (1− p) ∗ (1− a2) (C.1)

Thus, BSR generates a reduced lottery L(a|p) = π(p, a) ◦Mh ⊕ (1− π(p, a)) ◦Ml. When

the true belief p is a singleton and the choice space of a is continuous on [0, 1] (as in the

classical method, for example, slider bar), the best response is a∗(p) = p as L(a∗(p)|p)

stochastically dominates any other available lottery L(a|p).

Consider the situation where the true belief p follows a non-degenerate distribution

f(p), with µp = E(p) and σ2
p = V ar(p) > 0. The DM can directly select any number

between 0 and 1 as in classical methods. The distribution over p captures the idea that

the perception of Pr{s = A} can be noisy, uncertain, or imprecise (Enke and Graeber,

2023; Frydman and Jin, 2022; Giustinelli, Manski and Molinari, 2022). Without loss of

generality, assume Ml = 0. Given the true belief p, finding the optimal stated belief

a ∈ [0, 1] that maximizes the expected utility in the BSR is equivalent to maximizing the

likelihood of receiving the prize Mh. Unlike the case where the true belief p is a singleton,

the optimization problem now involves maximizing the expected likelihood of receiving

the prize Mh:

max
a

Ep[p ∗ (1− (1− a)2) + (1− p) ∗ (1− a2)] (C.2)

where a has a continuous choice space between 0 and 1, i.e., a ∈ [0, 1]. The best response

in this situation is to select the point a∗(p) where a∗(p) = E(p) = µp.

As the DBM allows the DM not only to choose until a single point but also to

choose a random variable with a uniform distribution over a range [al, au], i.e., a ∼

Uniform[al, au], the optimization problem becomes:
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max
a

Ep{p ∗ Ea[(1− (1− a)2)|p] + (1− p) ∗ Ea[(1− a2)|p]} (C.3)

which is equivalent to

max
a

{−V ar(a)− [E(a)− E(p)]2 + E(1− p) + [E(p)]2} (C.4)

where V ar(a) and E(a) denote the variance and the mean of stated belief a, respectively.

To maximize the expected utility, it is optimal to choose until the point a∗ where a∗ =

E(p) and V ar(a) = 0.

In sum, given the true belief p, to maximize expected utility, it is optimal to select

the point a∗(p) = E(p). This holds true whether the true belief follows a non-degenerate

distribution or if the DM is allowed to select a range or a mass point as their belief.
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C.2 BDM with Myopic DM

For the DM who fails to foresee that the optimal choice is to choose until the point a∗

where a∗ = E(p) and V ar(a) = 0, they may compare among the three options in each step

instead: Uniform[Il,
Il+Iu

2
], Uniform( Il+Iu

2
, Iu], or exiting with Uniform[Il, Iu], where

Il and Iu denote the upper and lower bounds of the interval in each step, respectively.

Thus, the likelihood of receiving the prize Mh of choosing each option is:

• when a = Uniform[Il,
Il+Iu

2
]:

− V ar(a)− [E(a)− E(p)]2 + E(1− p) + [E(p)]2

= −
( Il+Iu

2
− Il)

2

12
− [

( Il+Iu
2

+ Il)

2
− E(p)]2 + E(1− p) + [E(p)]2

= −(Iu − Il)
2

12 ∗ 4
− [

3Il + Iu
4

− E(p)]2 + E(1− p) + [E(p)]2

= −(Iu − Il)
2

12 ∗ 4
− (

3Il + Iu
4

)2 + E(p) ∗ 3Il + Iu
2

+ E(1− p)

(C.5)

• when a = Uniform( Il+Iu
2

, Iu]:

− V ar(a)− [E(a)− E(p)]2 + E(1− p) + [E(p)]2

= −
(Iu − Il+Iu

2
)2

12
− [

( Il+Iu
2

+ Iu)

2
− E(p)]2 + E(1− p) + [E(p)]2

= −(Iu − Il)
2

12 ∗ 4
− [

Il + 3Iu
4

− E(p)]2 + E(1− p) + [E(p)]2

= −(Iu − Il)
2

12 ∗ 4
− (

Il + 3Iu
4

)2 + E(p) ∗ Il + 3Iu
2

+ E(1− p)

(C.6)
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• when exiting with a = Uniform[Il, Iu]:

− V ar(a)− [E(a)− E(p)]2 + E(1− p) + [E(p)]2

= −(Iu − Il)
2

12
− [

Il + Iu
2

− E(p)]2 + E(1− p) + [E(p)]2

= −(Iu − Il)
2

12
− (

Il + Iu
2

)2 + E(p) ∗ (Il + Iu) + E(1− p)

(C.7)

Whenever E(p) < Iu+Il
2

, choosing Uniform[Il,
Il+Iu

2
] yields a higher likelihood of re-

ceiving Mh than choosing Uniform( Il+Iu
2

, Iu] or exiting with Uniform[Il, Iu]. Similarly,

whenever E(p) > Iu+Il
2

, choosing Uniform( Il+Iu
2

, Iu] yields a higher likelihood of re-

ceiving Mh than choosing Uniform[Il,
Il+Iu

2
] or exiting with Uniform[Il, Iu]. Whenever

E(p) = Iu+Il
2

, all three options yield the same likelihood of receiving Mh. Thus, the DM

would be indifferent in choosing any of the three options.

To sum up, whenever E(p) is strictly within one of the two narrowed intervals, it

is optimal to choose the one that contains E(p). Otherwise, the myopic DM is indif-

ferent between choosing Uniform[Il,
Il+Iu

2
], choosing Uniform( Il+Iu

2
, Iu], or exiting with

Uniform[Il, Iu].
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C.3 More Results

The observed right side of the U-shaped accuracy curve may be attributed to in-

dividuals who proceed to the last step being overconfident in their beliefs. To test

this hypothesis, we examine the accuracy when individuals are compelled to halt their

decision-making process earlier, specifically at the 3rd, 4th or the 5th steps. Figure C.1

shows their accuracy at each step. Contrary to expectations, our analysis reveals no

significant difference in accuracy from the 3rd to the last step. If we assume that being

forced to stop earlier wouldn’t alter their decisions, then their performance would not

have improved even if they had stopped earlier. This suggests that individuals who reach

the last step exhibit sophistication in their decision-making process. The observed het-

erogeneity between subjects who arrive at the last step and those who stop at the 3rd to

5th steps may stem from factors other than irrationality.

Figure C.1: Accuracy at Each Step for Subjects Reaching Point Beliefs
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Note: The number at the bottom of the bar is the number of observations. The black horizontal line is

the median absolute deviation in CM.
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C.4 Questions used in Experiments 1 and 2

C.4.1 Experiment 1 Question Examples

1. Inflation Rate The computer randomly picked a year X between 1980 and 2018.

What do you think is the chance that the U.S. inflation rate in year X was lower

than 7.4%?

In other words, imagine that, at the beginning of Year X, the set of products that

is used to compute the inflation rate cost $100. What do you think is the chance

that, at the end of that same year, the same set of products cost less than $107.4?

2. S&P 500 The S&P 500 is an American stock market index that includes 500 of

the largest companies based in the United States.

The computer randomly picked a year X between 1980 and 2018.

What do you think is the chance that the annual change rate of S&P 500 in Year

X is less than -13%, i.e., the S&P 500 lost more than 13% of its value?

In other words, imagine that someone invested $100 into the S&P 500 at the be-

ginning of Year X. What do you think is the chance that, at the end of that same

year, the value of the investment was less than $87?

3. Prior Probability What do you think is the likelihood (percent chance) that the

selected box is the Red box, the one with more red balls? (round to the nearest

integer)

4. Posterior Probability To give you a hint of which box was selected, the computer

drew a ball from the selected box.

The drawn ball is red. What do you think is the likelihood (percent chance) that
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the selected box is the Red box, the one with more red balls? (round to the nearest

integer)

5. Compound Lottery This is either a 30-70 race or a 90-10 race.

There is a 50% chance that this is a 30-70 race, otherwise this is a 90-10 race.

What do you think is the chance that the Red horse won?(round to the nearest

integer)

6. Count Peas How many peas are there in the bowl in the picture on the left?

(round to the nearest integer)

7. Count Dots How many dots are there in the picture on the left? (round to the

nearest integer)

C.4.2 Experiment 2 Question Examples

1. Income In 2022, among all individuals aged 30, what is the percentage of those

that are working full time that earn $125,000 and above per year?

2. Inflation Rate Randomly pick a year from 1980 - 2018, what is the chance that

the inflation rate in that year is lower than 2.6%?.

In other words, imagine that, at the beginning of Year X, the set of products that

is used to compute the inflation rate cost $100. What do you think is the chance

that, at the end of that same year, the same set of products cost less than $102.6?

3. Education How many states in 2019 have less than 29% of state-level population

that have Bachelor’s degree or higher?

4. Unemployment Rate Randomly pick a year from 1980 - 2022, what is the chance

that the unemployment rate in that year is lower than 5.5%?
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5. Posterior Probability 50%, 50% priors, 15:1 red/blue balls in the Left urn, 1:17

red/blue in the Right urn, random draw one that is red, What’s the probability it

comes from the Left urn?
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