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Demersal fish biomass declines with temperature across productive shelf seas 

Running title: Fish biomass declines with temperature 

 

Abstract 

Aim: Theory predicts fish community biomass to decline with increasing temperature due to 

higher metabolic losses resulting in less efficient energy transfer in warm-water food webs. 

However, whether these metabolic predictions explain observed macroecological patterns in fish 

community biomass is virtually unknown. Here we test these predictions by examining the 

variation in demersal fish biomass across productive shelf regions. 

Location: 21 continental shelf regions in the North Atlantic and Northeast Pacific. 

Time period: 1980-2015. 

Major taxa studied: Marine teleost fish and elasmobranchs. 

Methods: We compiled high-resolution bottom trawl survey data of fish biomass containing 

166,000 unique tows and corrected biomass for differences in sampling area and trawl gear 

catchability. We examined whether relationships between net primary production and demersal 

fish community biomass are mediated by temperature, food-web structure, and the level of fishing 

exploitation, as well as the choice of spatial scale of the analysis. Subsequently, we examined if 

temperature explains regional changes in fish biomass over time under recent warming. 

Results: We find that biomass per km2 varies 40-fold across regions and is highest in cold waters 

and areas with low fishing exploitation. We find no evidence that temperature change has impacted 

biomass within marine regions over the time period considered. The biomass variation is best 
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explained by an elementary trophodynamic model that accounts for temperature-dependent trophic 

efficiency. 

Main conclusions: Our study supports the hypothesis that temperature is a main driver of large-

scale cross-regional variation in fish community biomass. The cross-regional pattern suggests that 

long-term impacts of warming will be negative on biomass. These results provide an empirical 

basis for predicting future changes in fish community biomass and its associated services for 

human wellbeing i.e., food provisioning, under global climate change. 

Keywords 

Climate change, Food webs, Metabolic theory, Macro-ecology, Ocean productivity, Teleost fish  
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Introduction 

Climate change affects marine ecosystems through multiple drivers, including changes in ocean 

productivity and temperature (Kwiatkowski et al., 2020). These changes are expected to alter fish 

distributions and abundances and eventually impact the structure and functioning of marine 

ecosystems, as well as their associated services for human wellbeing (Lotze et al., 2019; Petrik et 

al., 2020; Tittensor et al., 2021). To anticipate and adapt to the ecological consequences of climate 

change, it is therefore important to better understand and predict how changes in ocean 

productivity and temperature jointly affect fish production and biomass. 

Current model predictions of climate impacts on fish often rely upon basic ecological theories of 

how energy flows from primary producers to top predators, as well as metabolic scaling of 

individual vital rates with temperature. Specifically, warmer temperatures are expected to 

accelerate most physiological rates, e.g. maximum consumption rate and metabolic rate, and, 

consequently, the turnover rate of biomass (Brown et al., 2004; Gillooly et al., 2001). The increase 

in metabolic rate with temperature is further expected to increase the fraction of energy that is lost 

through respiration. Consequently, the increasing metabolic costs constrain the amount of energy 

that flows towards the upper trophic levels of food webs by lowering the efficiency by which 

primary production is converted into fish biomass (Eddy et al., 2021).  

The effect of temperature on the bioenergetics at least partly underlies projected trophic 

amplification of productivity, whereby fractional changes in primary production are amplified up 

through the trophic levels (Lotze et al., 2019). Since marine fish dominate the upper trophic levels 

of ocean food webs worldwide (Hatton et al., 2022), it can further be expected that the effects of 

temperature on both turnover rate and trophic transfer efficiency will drive, at least in part, large-

scale latitudinal variation in total fish community biomass (O’Connor et al., 2009, 2011). More 
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specifically, it can be hypothesized that fish community biomass should increase from the tropics 

to the poles due to a lower turnover rate and more efficient energy transfer in cold-water 

environments. This hypothesis is endorsed by empirical studies finding temperature-mediated 

patterns in fish diversity and trophic control (Frank et al., 2006, 2007). It is also supported by some 

theoretical and empirical studies demonstrating negative relationship between temperature and fish 

community biomass (Guiet et al., 2020; Maureaud et al., 2019). However, empirical support based 

on large-scale observational studies across a pronounced temperature gradient is lacking.  

There are several potential reasons why such macroecological patterns in fish biomass have not 

yet been documented. Firstly, fish communities worldwide have been exposed to long-term 

commercial fishing that changes total community biomass, as well as the underlying size- and 

trophic structure of fish communities (Andersen, 2019; Myers & Worm, 2003; Rice & Gislason, 

1996). Consequently, the exploitation history may mask potential temperature effects. Secondly, 

energy flows from primary producers to fish may be context- or scale-dependent, especially since 

some regional variations in energy flows may themselves be driven by temperature. Notably, 

warmer regions may have increased stratification and remineralization of detritus in the water 

column (Laufkötter et al., 2017; Pomeroy & Deibel, 1986), which increases pelagic production, 

but lowers the detritus flux reaching the seafloor. This in turn limits the energy available to support 

benthic prey production and the biomass of bottom-feeding (demersal) fish (van Denderen et al., 

2018). Lastly, most previous studies focused on the more easily estimated community catch rather 

than the more difficult to measure community biomass (Friedland et al., 2012; Stock et al., 2017). 

Most collection of fish biomass data primarily serves to monitor trends and fluctuations in 

population-level abundances (especially of commercially important species for fisheries 

management purposes), while less attention is given towards representing overall community 
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composition and biomass (but see, for example, Maureaud et al. (2019) and Gislason et al. (2020)). 

Taken together, data limitations and the inter-dependencies between predictor variables may have 

complicated detecting overall relationships between ocean productivity, temperature and fish 

community biomass. 

In this study, we perform a large-scale empirical investigation of the macroecological patterns and 

drivers of fish community biomass using an extensive collection of scientific bottom-trawl surveys 

sampled across pronounced temperature gradients in the North Atlantic and Northeast Pacific. The 

studied continental shelf regions account for about 15% of global fisheries catch (Watson, 2017). 

We find that temperature is a main driver of large-scale latitudinal variation in demersal fish 

community biomass. This result is likely driven by a reduced trophic transfer efficiency and a 

faster turnover rate of fish biomass in warmer waters. As expected, demersal fish biomass is 

negatively related to fishing exploitation and positively related to zooplankton prey production. 

All these findings are consistently observed across the different spatial scales studied.  
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Method 

Method overview 

We compiled bottom trawl survey data of fish biomass across marine ecosystems in the North 

Atlantic and Northeast Pacific. We analyzed the effect of temperature, and other environmental 

variables, on fish community biomass in four different ways. Using structural equation modelling, 

we examined whether relationships between net primary production and demersal fish community 

biomass are mediated by temperature, food-web structure, and the level of fishing exploitation at 

large geographic scales. Subsequently, we used wavelet-revised model regression to analyze finer-

scale fish biomass variability, both across and within ecosystems. In a third analysis, we used an 

explicit trophodynamic modelling framework to compare and explore the robustness of our 

empirical results and relate it to past investigations of fisheries catch (Friedland et al., 2012; Stock 

et al., 2017). Lastly, we examined the effect of temperature on fish biomass within ecosystems 

over time using different recursive biomass and surplus production models.   

Scientific trawl survey data 

Publicly available scientific bottom trawl survey data, primarily sampling demersal commercial 

species, are obtained from the Northeast Pacific and North Atlantic shelf regions in 2021, as 

described in Appendix S1. The data processing scripts are modified based on earlier work from 

Pinsky et al. (2013) and Maureaud et al. (2019) (Appendix S2 for details on processing). We 

selected all scientific surveys that sampled the fish community with otter trawls. For each tow in 

each survey, we selected all demersal teleost and elasmobranch species and obtained species 

weight. We corrected these weights for differences in sampling area (in km2) and trawl gear 

catchability to obtain a standardized fish biomass across hauls and surveys. We estimated sampling 

area using information on wingspread, speed of vessel and tow duration. Weights were corrected 
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for trawl gear catchability using information for 80 species in the Northwest Atlantic (Link et al., 

2008) and 128 species and 7 functional groups in the North Sea (Walker et al., 2017). The 

adjustments resulted in biomass estimates per unit area in metric tonnes (1000 kg) per km2. The 

final dataset contains 166,000 unique tows and includes data from 1980 to 2015. 

We compared the corrected trawl survey biomasses with available fisheries stock assessment 

biomasses to validate the range and distribution of the biomass estimates. To this end, we 

calculated spatial overlap between the surveyed area and the bounding region of all fisheries 

assessment areas from the RAM Legacy database (Ricard et al., 2012). For each area that 

overlapped at least 50% with the surveyed area, we compared biomass of each assessed stock with 

the gear-corrected trawl survey biomass for the corresponding species. The comparison shows that 

the corrected biomass has a reasonable match with the stock assessment biomass and no apparent 

bias, for most of the 120 stocks in the Atlantic and Pacific (Appendix S2: Figure S3). This finding 

improves confidence that the gear-corrected trawl survey estimates, hereafter termed demersal fish 

biomass and/or demersal community biomass, are representative and comparable across areas and 

surveys. 

Using the individual haul coordinates, we estimated an average demersal community biomass, in 

tonnes per km2, per equal area grid cell (6000 km2) and surveyed year. To reduce the effect of 

potential outlying biomass estimates, we removed all individual observations 1.5 times less/greater 

than the interquantile range per survey and year based on log-transformed biomass values (but 

note that the overall conclusions are robust with or without such a data removal, not shown).  
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Analysis of spatial patterns in biomass across geographic scales   

We analyzed the spatial patterns in demersal fish biomass for relationships with environmental 

and anthropogenic drivers at three spatial scales (ecoregion n = 21, subdivision n = 45 and grid 

cell n = 1083, Appendix S3: Figure S1), and using average demersal fish biomass data from three 

time periods (1990-1995, 2000-2005 and 2010-2015; note that all data are used in the time series 

analysis). For the ecoregion and subdivision scale, we used a structural equation model (SEM), 

which is a multivariate analysis to describe a network of causal relationships (Grace, 2006). The 

network links were inspired by recent modelling predictions of demersal fish biomass based on a 

trait-based food-web model (Petrik et al., 2019; van Denderen et al., 2021). As such, we 

hypothesized that relationships between net primary production and demersal fish community 

biomass are mediated by pelagic and benthic secondary production. Following the rationale laid 

out in the Introduction and Appendix S3: Figure S2, we further hypothesized that demersal fish 

biomass declines with increasing temperature, fishing exploitation and the mean trophic level of 

the community. Lastly, we expected seafloor depth to have an indirect effect on demersal fish 

biomass by changing the flux of detritus to the benthos (Appendix S3: Figure S2). SEM analyses 

were performed using the package ‘Lavaan’ in R (Rosseel, 2012). Since ecoregions/subdivisions 

varied in their characteristics, multiple sensitivity analyses were performed to test for potential 

effects of differences in e.g., the number of grid cells and sampled depths (Appendix S4: Figure 

S1-2). 

We further analyzed spatial changes in demersal community biomass at the grid cell level. This 

analysis was not done with SEM, as we expect our hypothesized causal structure to differ at more 

local spatial scales, i.e. effects of fisheries may vary with depth and prey productivity within each 

region. We used wavelet-revised model regression (Carl & Kühn, 2010) to explain finer-scale 
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“within region” variability in demersal fish biomass from the same set of predictor variables 

included in the SEM. Wavelet-revised model regression is designed for regular grid-based data 

while accounting for spatial autocorrelation and non-stationarity (i.e. spatial autocorrelation may 

vary across regions). This may be important for fish distributions due to biotic and abiotic 

differences across marine regions that could affect fish movement patterns, e.g. Windle et al. 

(2010). Wavelet-revised model regression decomposes the spatial data into different scales and 

translations using wavelet analysis. The wavelet coefficients capture the contribution of the 

corresponding wavelet function to the fish biomass at specific spatial scales and translations, where 

the translations are analogous to the phase of the wavelet. The spatial analysis at the individual 

grid cell level was done for the same three time periods as the SEM. Both biomass and the 

exploitation rate (catch/biomass) were log10 transformed. Since a few grid cells had zero catch 

(n=2 for 1990-1995, 3 for 2000-2005 and 19 for 2010-2015), we added a small quantity (1 kg per 

km2 per year) to avoid taking the log of zero. Model fits for different sets of predictors were 

assessed using the Akaike Information Criterion (AIC) and the model with the lowest AIC was 

selected as best candidate. When other candidate models had a difference of 0–2 AIC units, we 

concluded that models were essentially equivalent and the model with the fewest parameters was 

selected. The analyses were performed using the package ‘spind’ in R (Carl et al., 2018).    

The set of environmental variables used as predictors in both the SEM and wavelet-revised model 

regression was compiled from several sources. Seafloor depths were measured in 96% of the 

survey hauls and extracted for the remaining hauls, using the haul coordinates, from bathymetric 

data per 1/12° grid from the ETOPO1 Global Relief Model with sea ice cover (Amante & Eakins, 

2009). Temperatures were estimated using the COBE sea surface temperature data per 1° grid and 

year (www.esrl.noaa.gov/psd/data/gridded/data.cobe.html). Data on bottom temperatures were not 

http://www.esrl.noaa.gov/psd/data/gridded/data.cobe.html
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available for the entire time series but was used to verify some of our results (Appendix S4: Figure 

S3-4). Fish mean trophic level (MTL), describing the biomass-weighted mean trophic level of the 

community, was calculated from the survey data using species-specific trophic level information 

(Beukhof et al., 2019; Froese & Pauly, 2018). Fishing exploitation rates were estimated by dividing 

annual fisheries catch of demersal fish with demersal fish survey biomass. Fisheries catch data, 

available on a 30-minute spatial grid, were obtained from Watson (2017) and estimated as the sum 

of fisheries landings, illegal, unregulated and unreported catch and discards at sea. Net primary 

production was obtained from the cafe algorithm using MODIS data per 1/6° grid and averaged 

between 2005 and 2010 (science.oregonstate.edu/ocean.productivity) (Silsbe et al., 2016). 

Estimates of pelagic and benthic secondary production were based on output of GFDL’s Carbon, 

Ocean Biogeochemistry and Lower Trophics (COBALT) ecosystem model from a climatology of 

the global earth system model (ESM2.6) representative of the contemporary ocean under 1990 

greenhouse gas concentrations (Stock et al., 2014, 2017). Simulated mesozooplankton biomass 

and productivity in ESM2.6 broadly captures observed and estimated contrasts across Large 

Marine Ecosystems (Stock et al., 2017), and the energy available to fish through this pelagic 

pathway can be estimated as mesozooplankton production not consumed by other 

mesozooplankton (Zflux). ESM2.6-COBALT also simulates the detrital flux that reaches the 

seafloor, which is used as a proxy for benthic secondary production (Dflux). For all the predictor 

variables described above, we obtained an estimate per area and year, averaged for each time 

period, with the exception of net primary production, Zflux and Dflux, for which a fixed mean value 

was used due to data limitations and uncertainties in the estimated values over time.  

To compare and explore the robustness of the empirical SEM results, we used a trophodynamic 

model to predict demersal fish biomass for each subdivision and ecoregion. We compared these 
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with the observed estimates using linear regression and obtained the explained variance (R2) and 

Root Mean Square Error (RMSE). In the trophodynamic model, modified from Stock et al. (2017), 

we assumed that energy flux into the fish community is in equilibrium with the fisheries harvest 

out of the community after accounting for food chain length variations and trophic transfer 

efficiency. Demersal fish biomass B in each region i can then be estimated by dividing the flux 

with the observed fisheries exploitation rate (ER):  

𝐵𝑖 = (𝐷𝑓𝑙𝑢𝑥,𝑖 × 𝑇𝐸𝑖
𝑀𝑇𝐿𝑖−1 + 𝑝𝑖 × Z𝑓𝑙𝑢𝑥,𝑖 × 𝑇𝐸𝑖

𝑀𝑇𝐿𝑖−2.1)/𝐸𝑅𝑖   eq. 1 

Following the approach of Pauly & Christensen (1995) and Stock et al. (2017), zooplankton were 

assigned to trophic level 2.1 and detritus to 1, such that the number of trophic steps separating the 

zooplankton/detritus flux (Zflux and Dflux) from the fisheries catch was estimated by MTL minus 2.1 

or 1. We further assumed that only part of the zooplankton production is available to demersal fish 

and this fraction is proportional to p, which is estimated as the fraction of demersal fish catch 

relative to total fish catch in each region. The value of p was obtained from Watson (2017). The 

final parameter is the trophic transfer efficiency (TE). This parameter controls the decay of energy 

between trophic levels and was varied from 0.05 to 0.15 (Eddy et al., 2021). Additionally, we 

varied the thermal sensitivity (Q10) of TE from 0.2 to 2.5: 𝑇𝐸𝑖 = 𝑇𝐸 ∙ 𝑄10

𝑇𝑖−10

10  , with Ti being the 

average temperature T in each region i.  

Analysis of temporal biomass variation in ecoregions 

We examined whether the changes in demersal fish biomass with temperature, as observed in the 

SEM and wavelet-revised model regression  spatial analyses, also drive biomass changes in 

ecoregions over time. The length of the time series varied per region; no data were included before 

1980 and after 2015 (Appendix S2: Figure S6). We estimated the influence of temperature on 

demersal community biomass and production by fitting different recursive biomass and surplus 
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production models to the data (see Table 1 for model details). We used different models to vary 

how temperature may affect the demersal fish community. In each model, ecoregion was included 

as a random effect and fishing catch was treated as an offset. The temperature term was centered 

on the mean temperature per ecoregion (obtained from the COBE sea surface temperature data but 

see Appendix S4: Figure S4) to limit our analysis to temperature changes within each region. We 

scaled biomass and production to the maximum biomass per ecoregion. We evaluated each model 

with/without a temperature term using AIC, where a model with temperature was considered most 

parsimonious if at least 2 AIC units lower. Lastly, we examined if the temperature effect on 

biomass depended on the average temperature in an ecosystem. We did not find support for such 

a relationship and excluded the analysis from the result and discussion section.   
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Results 

Demersal fish biomass was highest in the northern regions of the Northeast Pacific (Gulf of Alaska, 

Eastern Bering Sea and Aleutian Islands) and Northeast Atlantic (Barents Sea and Norwegian Sea) 

(Figure 1a). Conversely, demersal fish biomass was lowest in the Gulf of Mexico and temperate 

regions of the North Atlantic (Baltic Sea, southern North Sea, Gulf of Saint Lawrence).  

At the ecoregion scale, Pearson correlations between demersal fish biomass and temperature 

(Figure 1b, r = -0.54), fishing exploitation (Figure 1c, r = -0.35), net primary production (Figure 

1d, r = -0.39) and detrital bottom flux (r = -0.33) were negative, while depth correlated positively 

with biomass (r = 0.23). Demersal fish biomass had no correlation with zooplankton production (r 

= 0.05) and mean trophic level (r = -0.04). Temperature had a weak negative correlation with 

fishing exploitation (r = -0.19). Whether the correlations with biomass were direct effects of the 

predictor variable or indirect effects governed by other predictor variables were examined with the 

SEM.  

Including all predictors resulted in a SEM that could be used to identify relationships between 

individual pathways but was too complex given the available number of observations to assess 

overall goodness-of-fit (Appendix S3: Figure S2). Hence, we simplified the full model before 

assessing overall goodness-of-fit by removing the detrital bottom flux, which had an insignificant 

relation with biomass in 6 out of 6 runs (2 spatial scales × 3 time periods). We also removed depth, 

which became unconnected to the SEM network after removing the detrital bottom flux. The final 

model, including the remaining five predictors, had a mean chi-square value of 6.02 (standard 

deviation from the 6 runs is 2.4) with 6 degrees of freedom, and p-values ranging between 0.21 

and 0.88, indicating that our hypothesized causal structure is supported by the data (an insignificant 

result indicates good model fit). 
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Among the individual pathways, demersal fish biomass at the ecoregion and subdivision scale was 

negatively related to temperature, fishing exploitation and mean trophic level and positively related 

to zooplankton production (Figure 2). The pronounced spatial variation in demersal fish biomass 

was reasonably well explained (mean R2 = 0.59) with no clear spatial pattern in the residuals 

(Appendix S3: Figure S3). The effects of temperature and fishing were almost equally strong 

(Appendix S3: Figure S4). For most other pathways, the directionality conformed with the initial 

expectations (Figure 2 vs Appendix S3: Figure S2). A partial effect size plot showed that demersal 

fish biomass is approximately twice as high with a decline in temperature from 15 to 5°C and a 

decline in exploitation rate from 0.3 to 0.03, whereas the effect of mean trophic level and 

zooplankton production on biomass were more variable (Figure 3). 

Similar to the SEM analyses, the grid-cell analysis using wavelet-revised model regression showed 

a negative relationship between demersal fish biomass and fishing exploitation and temperature, 

while zooplankton had a positive relationship with biomass for all three time periods (Table 2). In 

contrast to the previous analysis, the detrital bottom flux, which was excluded in the SEM, had a 

mixed effect on biomass (positive in one period and negative in the two others), but note that the 

detrital bottom flux is the least significant predictor consistent with the SEM analysis. Mean 

trophic level was not part of the best candidate model in any of the time periods. 

The best fit between observed and predicted demersal fish biomass with the trophodynamic model 

(i.e., eq. 1) was obtained with a trophic transfer efficiency of 0.075 and a Q10 temperature scaling 

of trophic transfer efficiency between 0.4 and 0.7 (Figure 4, Appendix S3: Figure S5), implying 

that trophic transfer declines with increasing temperature. Replacing the temperature-dependent 

trophic transfer efficiency with a single mean value, i.e. making the transfer efficiency temperature 

independent, sharply reduced the R2 of the trophodynamic model from 0.66 to 0.42. Furthermore, 
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replacing the exploitation rate in eq. 1 with a single mean value and refitting led to an R2 of 0.55. 

The results of the trophodynamic model are thus consistent with the SEM in suggesting 

temperature-linked trophodynamic effects and a trophic transfer efficiency decrease with 

increasing temperature.   

Finally, we found no evidence that temporal changes in temperature have impacted demersal 

community biomass within ecoregions during the period 1980-2015 (Table 1). All models with 

and without a temperature term differed less than 2 AIC units and temperature had a non-

significant effect on the historical biomass variation.   
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Discussion 

Our study supports the hypothesis that temperature is a main driver of large-scale latitudinal 

variation in fish community biomass. This result is likely driven by a reduced trophic transfer 

efficiency and a faster turnover rate of fish biomass in warmer waters. As expected, demersal 

community biomass is negatively related to fishing exploitation and positively related to 

zooplankton prey production. The effect of mean trophic level on demersal community biomass is 

relatively weak. All these findings are consistently observed across the different spatial scales 

studied. We find no evidence that temperature fluctuations and recent warming have impacted 

demersal community biomass. Even though we found no effect of recent warming, our study 

provides an empirical basis for long-term climate predictions and suggests a set of explanatory 

variables that are most important. 

The lack of a relationship between demersal fish biomass and the detrital bottom flux and the 

positive but weak relationship between zooplankton prey production and demersal fish biomass in 

the SEM were unexpected, as prey production should ultimately constrain the energy available to 

fish. From a trophodynamic perspective, the weak relationship between prey production and 

biomass and the strong relationship with temperature suggests that temperature-modulated impacts 

on fish turnover rates and/or trophic transfer efficiencies are more important than the baseline prey 

resources in determining demersal fish biomass, at least for the range of systems and scales 

considered here.  This finding is supported by the trophodynamic model, which required a strong 

negative relationship between the transfer efficiency and temperature to obtain skillful demersal 

fish biomass predictions. In retrospect, the weak relationship with prey production is not too 

surprising as the data compilation covers a considerable thermal range (-1 to 27 °C), while the 

studied shelf systems have moderate to high productivity and productivity varies less than a factor 
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4 (Figure 1d). It is thus expected that prey production could become more important for predicting 

changes in demersal fish biomass in both the SEM and the trophodynamic model along a broader 

productivity gradient. For example, a gradient from the shelf to the deep ocean that covers larger 

differences in benthic prey production (Wei et al., 2011).   

It is important to note that the negative relationship between demersal fish biomass and 

temperature does not necessarily imply that the potential sustainable fishing catch will be lower in 

warmer shelf systems. Catch is a flux (biomass removed per unit time) similar to production and 

is differently affected by temperature compared to biomass. Increased biomass turnover times at 

higher temperatures, for example, decreases the biomass associated with a given production after 

warming, e.g., du Pontavice et al. (2021).  In contrast with the demersal fish biomass results herein, 

estimates of plankton food web production available to fish can provide moderately skillful 

fisheries catch predictions at a global scale (Friedland et al., 2012; Stock et al., 2017). Similar to 

the demersal fish biomass results herein, a strong negative dependence between the transfer 

efficiency and temperature significantly improved fisheries catch estimates (Stock et al., 2017). 

Whereas most relationships in the SEM are consistently observed at the two spatial scales and 

three time periods, the link between NPP and trophic level varies from slightly positive at 

subdivision scale in 2000-2005 to strongly negative at both spatial scales in 2010-2015. We are 

unable to provide an explanation for this variable effect. Low NPP is thought to lengthen 

planktonic food chains but the trophic level of fish that we used in the analysis does not account 

for variations in the planktonic food chain. We therefore expected NPP to increase the biomass-

weighted trophic level as, theoretically, increasing productivity increases the biomass of the (top-

)predator (Oksanen et al., 1980). Possibly, the variable effect between NPP and trophic level 

reflects variation of another parameter not included in the SEM network. 
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Climate predictions of marine fish 

Global climate model simulations of marine fish typically project declines in fish community 

biomass ranging between 5 to 15% depending on the climate scenario (Tittensor et al., 2021). The 

fish community models have different ways of applying temperature, such as on feeding and 

metabolism for some, and on mortality and trophic efficiency for others. The decline in biomass 

with climate warming is estimated to ~0.5-15% per +1°C (Heneghan et al., 2021). This decline 

compares well with the predicted (spatial) decline of demersal fish biomass with temperature in 

the SEM ~5% per +1°C and the trophodynamic model ~10% per +1°C. Both our SEM and 

trophodynamic model findings thus support the fish ensemble simulations.  

The parametrization of temperature in the trophodynamic equation is naturally a simplification of 

temperature effects on fish physiology. Studies have indicated that the temperature scaling of 

feeding rates is typically lower than the scaling of metabolic rates (Rall et al., 2012; Vucic-Pestic 

et al., 2011), as implemented in some global fish models (Cheung et al., 2013; Petrik et al., 2019). 

The lower temperature scaling of feeding rates reduces the fraction of energy that is available for 

fish growth in warmer waters. As a consequence, average fish growth increases less along a 

temperature cline than the expected increase in metabolism (van Denderen et al., 2020). So far, it 

has been difficult to predict how such temperature scaling at the individual level translates to the 

overall community. Our empirical results provide evidence indicating that demersal community 

biomass is equally constrained by temperature.  

We observed no changes in demersal fish biomass that were correlated with temperature over the 

time period of the survey data. Temperature and fisheries catch fluctuate in time and fish 

populations may have lagged responses to both. We therefore expect that the observed variations 

in temperature were too small to reveal a signal, at least during the study period. Other studies 
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reporting changes in fish populations and communities under recent warming investigated species-

specific responses in recruitment, productivity and/or distributional changes, as well as shifts in 

the trait-composition of the fish community (Frainer et al., 2017; Free et al., 2019; Friedland et al., 

2020; Pinsky et al., 2013). The latter are likely more sensitive to environmental changes than 

demersal community biomass, as these trait-based metrics account for changes in both composition 

and relative abundances of individual species. Additionally, historical changes in fish carrying 

capacity as well as changes in mean trophic level due to fishing could have limited detecting 

temperature effects on fish community biomass.   

The role of fishing 

The Northeast Atlantic region was found to have the highest fisheries exploitation rates, whereas 

Aleutian Islands and Barents Sea had the lowest rates (Appendix S3: Figure S7). This finding is 

consistent with previous work on the footprint of bottom trawling, where around 2% of the total 

area was trawled in the Aleutian Islands and 45% in the North Sea (Amoroso et al., 2018). The 

exploitation rates in the North Sea showed the most pronounced temporal decline in catch per 

biomass (i.e., from  0.4 in the 1980s to 0.2 year-1 in recent years), supporting previous studies 

documenting a strong reduction of fishing pressure on the demersal community (Couce et al., 

2020). All North American regions had exploitation rates <0.06 year-1. These lower rates, 

compared with the Northeast Atlantic region, are likely due to a different fisheries management 

strategy and generally lower exploitation rates of commercial species (Witherell et al. 2000, 

Battista et al., 2018).  

We found a strong negative relationship between demersal community biomass and a log10-

transformed fishing exploitation rate. This implies that small increases at low exploitation rate 

(based on the untransformed data) may cause large declines in demersal community biomass. We 
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expect that this non-linear effect is caused by the decline of large and long-lived individuals that 

have accumulated biomass over their lifetime. Additionally, fishing had a weak but negative 

relationship with the mean trophic level of the community, which in turn had a negative 

relationship with biomass (see Appendix S3: Figure S2 for hypothesized mechanisms). This 

indirect effect of fishing channeled through mean trophic level is thus positive on demersal 

community biomass but is weaker than the direct negative effect of fishing. The sensitivity of the 

demersal fish community to fishing highlights that reducing fishing mortality is an effective way 

of reducing the impacts of climate change on the fish community, sensu Brander (2007). Our 

results further stress the need for future exploitation rate scenarios in line with the Shared 

Socioeconomic Pathways for making climate change projections of fish biomass (Hamon et al., 

2021). 

Demersal and pelagic fish  

Changes in community biomass were solely analyzed for the demersal part of the fish community. 

However, higher proportions of pelagic fish catch relative to demersal fish catch are observed in 

the three ecoregions with the highest temperatures, i.e. Northern Gulf of Mexico, Carolinian and 

Floridian. These higher proportions support previously documented patterns in global fish catches 

towards dominance of pelagic fish towards the tropics (van Denderen et al., 2018) and could have 

contributed to the observed declines of demersal fish biomass with temperature. The 

trophodynamic model implicitly accommodated regional variation in pelagic and demersal fish 

(by way of parameter p). Although the trophodynamic model confirmed the SEM outcome, it is 

important to note that not all the decline in demersal fish biomass with temperature should be 

associated with a direct bioenergetic effect of temperature on fish.  

Conclusion 
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To anticipate the consequences of climate change on marine ecosystem function and services (e.g., 

food provisioning and climate regulation through carbon sequestration) it is critical to understand 

how changes in ocean productivity and temperature may affect the upper trophic levels of marine 

ecosystems. Our large-scale empirical investigation showed a pronounced latitudinal increase in 

demersal fish community biomass from the subtropics to the poles. The changes in demersal 

community biomass are linked to differences in temperature, fishing, and ocean productivity. The 

observed negative relationship between temperature and community biomass indicates that the 

long-term impacts of climate warming on community biomass will be negative. This finding is 

consistent with model predictions of fish biomass (Lotze et al., 2019; Tittensor et al., 2021). Hence, 

our results provide an important empirical basis to formally validate and ground truth such model-

based predictions in order to evaluate sound and robust management actions in the face of global 

change.   
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Figures 

 

Figure 1. Mean demersal fish biomass per grid cell (6000 km2) in 1990-2015 (a). Bivariate 

correlations between mean demersal fish biomass and temperature (b), exploitation rate (c) and 

net primary production (d) aggregated per ecoregion. The lines were fit with linear regression.     
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Figure 2. Final SEM showing the direct and indirect effects of predictors on demersal fish biomass 

averaged across model runs (conducted at the two broad spatial scales for each time period; 

Appendix S3: Figure S4). The color and thickness of the arrows shows the sign (blue arrow = 

positive, red oval = negative) and strength of each relationship based on linear scaling of the mean 

standardized coefficients across model runs. The coefficient of determination (R2) is indicated for 

each response variable. We removed the grey predictor variables and pathways in the final SEM 

to limit the number of predictors relative to the number of observations.    
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Figure 3. Partial effect of temperature (a), exploitation rate (b), mean trophic level (c) and 

zooplankton production (d) on demersal fish biomass as estimated from the SEM (Figure 2). The 

plots show the change in demersal fish biomass along the range of each predictor while keeping 

the other variables fixed at their mean values. The lines represent different spatial scales and time 

periods (see legend and Appendix S3: Figure S4 for each SEM).  
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Figure 4. Ecoregion comparison of predicted and observed demersal fish biomass (in tonnes per 

km2) averaged between 1990-2015. The predicted biomass is estimated using the trophodynamic 

model with a transfer efficiency of 0.075 and a temperature scaling (Q10) of the transfer efficiency 

of 0.55 (see Appendix S3: Figure S5 for a range of values). The dashed line is the 1:1 line, and the 

solid line is a linear fit. R2 is the coefficient of determination, RMSE the Root Mean Square Error. 

Similar results are obtained when analysis is done at subdivision scale (Appendix S3: Figure S6).  
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Table 1. Analysis of temporal demersal biomass variation in ecoregions with different recursive 

biomass models and surplus production models. The ΔAIC is obtained by subtracting the AIC of 

a model with a temperature term θT from the AIC of a model without this term (the more negative 

ΔAIC the more important the temperature effect). The p-value of θ is also reported.  

 Formula Model information θ estimate  

(ΔAIC; p-

value) 

Recursive biomass models   

(M1) 𝐵𝑖,𝑡+1 = (𝛼 − 𝛽𝐵𝑖,𝑡 + 𝜃𝑖𝑇𝑖,𝑡)𝐵𝑖,𝑡 − 𝐶𝑖,𝑡 + 𝜀𝑖,𝑡                                                    

 

Changes in biomass B in ecoregion i over time t 

depend on biomass in the previous year, a 

growth term α, a carrying capacity term β and θ, 

which describes the influence of temperature T 

on the fish community. C is the observed 

demersal catch and is treated as an offset.  

θ = 0.003  

(2.0; 0.92)  

(M2) 
𝐵𝑖,𝑡+1 = (𝛼 − 𝛽𝐵𝑖,𝑡 −

𝐶𝑖,𝑡

𝐵𝑖,𝑡
) 𝐵𝑖,𝑡 ∙  𝑒𝜃𝑇𝑖,𝑡 ∙ 𝜀𝑖,𝑡 

Same as M1, but now temperature affects the 

fish community with a multiplicative 

temperature term. 

θ = 0.012 

(1.9; 0.70) 

(M3) 
𝐵𝑖,𝑡+1 = (1 −

𝐶𝑖,𝑡

𝐵𝑖,𝑡
) ∙ 𝐵𝑖,𝑡

(𝛼−𝛽𝐵𝑖,𝑡+𝜃𝑖𝑇𝑖,𝑡)

∙ 𝜀𝑖,𝑡 
Ricker inspired equation with same terms as M1 

and M2. 

Θ = 0.046 

(-0.1; 0.15) 

Surplus production models   

(M4) 𝑃𝑖,𝑡 = 𝑟𝑖𝐵𝑖,𝑡 (1 −
𝐵𝑖,𝑡

𝐾𝑖
) ∙  𝑒𝜃𝑇𝑖,𝑡  + 𝜀𝑖,𝑡    Surplus production model with a temperature 

term following Free et al. (2019). Surplus 

production Pi,t is calculated as the change in total 

biomass: Pi,t = Bi,t+1 – Bi,t + Ci,t. r is the intrinsic 

growth rate and K the carrying capacity. 

Temperature affects the fish community with a 

multiplicative temperature term. 

Θ = -0.253 

(1.0; 0.26) 

(M5) 𝑃𝑖,𝑡 = 𝑟𝑖𝐵𝑖,𝑡 (1 −
𝐵𝑖,𝑡

𝐾𝑖∙𝑒𝜃𝑇𝑖,𝑡
) + 𝜀𝑖,𝑡         Similar to M4, but now temperature only affects 

the carrying capacity K. 

θ = -0.02 

(1.9; 0.69) 
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Table 2. Selected models using wavelet-revised model regression for spatial changes in demersal 

fish biomass at the grid cell level. The models are tested with all five predictor variables from the 

original SEM. Mean trophic level is not shown as it is not part of the best candidate model in any 

of the time periods. Temperature = T, fishing exploitation = ER, zooplankton production = Zflux 

and detrital bottom flux = Dflux. 

Model estimated intercept P-value Years Nb of 

grid cells 

log10(B) = 0.70 – 0.04∙T – 0.36∙log10(ER) + 0.002∙Zflux + 0.001∙Dflux 

 

All P <0.001 1990-95 846 

log10(B) = 1.07 – 0.04∙T – 0.27∙log10(ER) + 0.002∙Zflux – 0.0003∙Dflux 

 

PDflux = 0.008 

All P <0.001 

 

2000-05 983 

log10(B) = 1.10 – 0.04∙T – 0.23∙log10(ER) + 0.002∙Zflux – 0.0002∙Dflux PDflux = 0.05; 

other P <0.001 

2010-15 972 

    

 

 




