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Mismatch negativity (MMN) and P300 event-related 
potential (ERP) reductions in schizophrenia (SZ) reflect 
preattentive and attention-mediated auditory processing 
deficits, respectively. Although both have been linked to 
cognitive deficits in SZ, their relative contributions to 
real-world functioning are unclear. We sought to deter-
mine the functional significance of disrupted auditory 
processing in SZ by examining MMN and P300 in typ-
ically disabled low-functioning patients and in patients 
with high levels of independent role functioning. MMN 
to auditory deviants and P300 to infrequent auditory 
target and nontarget novel stimuli were assessed in 20 
high-functioning SZ patients (HF-SZ), 17 low-function-
ing patients (LF-SZ), and 35 healthy comparison (HC) 
subjects. There was a group effect on MMN and P300 
amplitudes across stimulus types. MMN was significantly 
diminished in LF-SZ compared to HF-SZ and HC, and 
HF-SZ demonstrated comparable MMN to HC. In con-
trast, P300 was significantly reduced in both LF-SZ and 
HF-SZ compared to HC. Logistic regression suggested 
independent sensitivity of MMN to functioning in SZ 
over and above P300 measures. Neither MMN nor P300 
were associated with positive or negative symptom sever-
ity. Results replicate MMN and P300 abnormalities in 
SZ, and also suggest that the neural mechanisms associ-
ated with the preattentive detection of auditory deviance 
are most compromised in patients with functional disabil-
ity. MMN may index pathophysiological processes that 
are critical for optimal functioning in SZ.

Key words:   auditory information processing/functional 
outcome/event-related potentials/electroencephalography/
psychosis

Introduction

Despite successful treatment of psychotic symptoms, 
disability in occupational, residential, and social func-
tioning persists for many patients with schizophrenia 
(SZ). Cognitive dysfunction is a core feature of SZ and 
a robust predictor of functional outcomes.1,2 Evidence 
that antipsychotic medications provide limited benefit 
for cognitive impairments3–6 has motivated interest in the 
development of interventions directly targeting cogni-
tion, which is guided by efforts to understand the neural 
correlates of disrupted cognitive systems in SZ. EEG-
based event-related potential (ERP) components are 
commonly used to characterize the neurophysiological 
basis of early information processing impairments that 
may contribute to higher-order cognitive dysfunction and 
associated functional disability in SZ. In particular, audi-
tory mismatch negativity (MMN) and P300 reductions 
probe the range of early information processing impair-
ments common in SZ, as they have been linked to cogni-
tion and reflect preattentive and early attention-mediated 
auditory processing deficits, respectively.

MMN is associated with auditory deviance detection 
and elicited by infrequent deviant stimuli occurring within 
a series of repeated standard sounds.7,8 Because deviance 
detection requires the short-term online formation of a 
memory trace of preceding stimuli that have been “stand-
ard” in the auditory processing stream, MMN is consid-
ered to reflect sensory echoic memory.7,9 MMN has been 
localized to both auditory cortex and frontal lobes8 and 
appears to arise from distinct neural generators within 
these regions8,10–14 depending on the deviant sound feature 
(eg, pitch, duration, intensity).8,15 Additionally, MMN 
depends on glutamatergic neurotransmission at NMDA 
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receptors, based on evidence from pharmacological 
challenge studies with NMDA receptor antagonists.16–22 
Importantly, MMN is considered to be preattentive, as it 
is elicited automatically despite engagement in an unre-
lated primary task and instructions to ignore the simulta-
neously presented auditory stimuli.7,23,24 Moreover, MMN 
is largely unaffected by top-down information proc-
essing,7,25,26 allowing the examination of auditory proc-
essing dysfunction in disorders such as SZ without the 
confounding influence of attentional and motivational 
deficits that affect performance on higher-order cognitive 
tasks.27 MMN amplitude reductions have been consist-
ently observed in SZ28,29 and are associated with impaired 
cognition.30–32 Evidence of reduced MMN amplitudes in 
individuals at clinical high-risk for psychosis, particularly 
in those who ultimately transition to full psychosis, sug-
gests that compromised MMN may reflect vulnerability 
to illness progression.33–39

In contrast to MMN, P300 is an attention-dependent 
ERP following behaviorally relevant infrequent deviant 
stimuli interspersed among frequent “standard” stimuli 
during an oddball task.40 P300 is thought to reflect con-
trolled attentional resource allocation,40–43 contextual 
updating of working memory,44,45 and stimulus salience 
processing,46,47 and prefrontal cortex and temporal-pari-
etal junction have been implicated in its generation.48,49 
Two subcomponents of P300 are evident depending on 
task conditions: P3b and P3a are elicited by infrequent 
target stimuli and infrequent non-target novel distractor 
stimuli, respectively.40,50–53 While P3a reflects bottom-up 
attention orienting and has a frontocentral scalp maxi-
mum,40,53–56 P3b reflects top-down attentional allocation 
and is maximal at parietal regions.40,51,52 Like MMN, 
auditory P300 amplitude reductions are widely replicated 
in SZ,57–59 evident in the clinically high-risk state,60–63 and 
associated with cognitive impairments.64–66

Given links between early information processing 
deficits and cognitive impairment in SZ, more recent 
work has begun to establish relationships between these 
neurophysiological measures and functional outcomes. 
Associations between MMN and skills-based measures 
of psychosocial functioning and clinician-based global 
assessment of functioning and independent living rat-
ings have been reported by several studies.32,67–71 Fewer 
studies have examined the relationship between P300 
and functioning, although associations between P3a and 
psychosocial functioning ratings,31,70,72 and between P3b 
and a functioning performance assessment,66 have been 
reported. These correlational studies may be limited, 
however, by a restricted range of functional abilities rep-
resented by typically recruited SZ samples. Additionally, 
common clinician-rated outcome measures confound 
functional disability with psychiatric symptom severity, 
capture only a single domain of functioning, or do not 
account for contextual factors that may influence func-
tional performance.73 Furthermore, previous work has 

not examined the relative contributions of MMN and 
P300 deficits to functional outcomes.

The present study sought to examine whether indices of 
auditory processing deficits in SZ, including both the pre-
attentive MMN and the later attention-mediated auditory 
P300, are associated with role functioning in a sample of SZ 
patients representing a wide range of functional outcomes. 
To achieve this aim, we prospectively recruited patients 
with high levels of functioning or more typical poor func-
tioning using a multidimensional measure of functional 
disability that rates position, performance, and support 
in several domains.73 We hypothesized that MMN deficits 
would be more prominent in lower functioning patients 
based on prior evidence.32,67–71 However, given the link 
between higher-order cognitive dysfunction and functional 
outcomes in SZ1,2 and the relatively greater contributions of 
attention-mediated cognitive processes to P300 relative to 
MMN, we reasoned that P300 would be at least as sensitive 
to variation in functional outcomes as MMN. Accordingly, 
we predicted that patients with greater functional disability 
would demonstrate reduced MMN and P300 compared to 
patients with high levels of independent role functioning, 
and that both MMN and P300 would contribute indepen-
dently to the prediction of patients’ functional status.

Methods

Participants

Thirty-seven individuals with SZ (n = 31) or schizoaffec-
tive disorder (n = 6) and 35 healthy comparison subjects 
(HC) were evaluated via structured interview.74 Exclusion 
criteria included history of substance dependence or 
abuse within the past year, significant medical or neu-
rological illness, or history of head injury with loss of 
consciousness. Additional exclusion criteria for HC par-
ticipants included a past or current DSM-IV Axis I dis-
order or having a first-degree relative with a psychotic 
disorder. The study was approved by the institutional 
review boards of Yale University and the University of 
California, San Francisco, and participants provided 
written informed consent.

Functional and Clinical Assessment

A clinical psychologist, psychiatrist, or clinically trained 
research assistant rated SZ patients’ level of func-
tional disability using the Multidimensional Scale of 
Independent Functioning (MSIF).73 The MSIF assesses 
role position, support, and performance in work, educa-
tion, and residential environments over the past month. 
Based on ratings on each dimension within each environ-
ment, global ratings are made on a scale from 1 (“essen-
tially normal role functioning”) to 7 (“totally disabled”). 
SZ patients were classified as high functioning (HF-SZ) 
if  they received global MSIF ratings of 1–3 and generally 
had normal functioning without or with some support, 
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or slightly below normal functioning but with minimal 
support. Patients rated 5–7 were classified as low func-
tioning (LF-SZ) and were significantly disabled and 
generally unable to function with or without supports. 
Participants rated as 4 (“moderately disabled”) were 
excluded from participation. Data from 20 HF-SZ and 
17 LF-SZ patients were included in the study.

Symptoms were rated using the Scale for the 
Assessment of Negative Symptoms (SANS)75 and 
the Scale for the Assessment of Positive Symptoms 
(SAPS)76 within 2 weeks of ERP assessment (mean ± 
SD = 3.70 ± 4.03 days). Demographically adjusted pre-
morbid intellectual functioning was evaluated using the 
Wechsler Test of Adult Reading.77

MMN Paradigm

MMN was assessed using a multi-deviant paradigm 
consisting of 4 blocks, approximately 5  min each, with 
a fixed pseudorandom sequence of 600 tones, presented 
in counterbalanced order. In 2 blocks, 80% of the stimuli 
were standard tones (50 ms, 633 Hz), 10% were duration 
deviant tones (100 ms, 633 Hz), and 10% were pitch devi-
ant tones (50 ms, 1000 Hz). In the other 2 blocks, 90% 
were standard tones (50 ms, 633 Hz) and 10% were dou-
ble deviant tones (combined duration and pitch deviant; 
100 ms, 1000 Hz). All tones had 5 ms rise/fall times and 
were presented with a 500 ms stimulus onset asynchrony. 
Participants were instructed to ignore auditory stimuli 
and perform a picture-word matching task that required 
button press responses.78

P300 Paradigm

During the oddball task, participants heard a random 
series of infrequent target tones (8.33%; 1000 Hz, 500 ms), 
frequent standard stimuli (83.33%; 20 Hz, 30 Hz, or 40 Hz 
click trains, 500 ms), and infrequent task-irrelevant novel 
distractor sounds (ie, a variety of natural and man-made 
sounds79; 8.33%; 175—250  ms). Stimuli averaged 80 dB 
SPL (C weighting) and were presented in 3 blocks with 
a 1250  ms stimulus onset asynchrony. Participants were 
asked to press a response key to target tones. Each of the 3 
counterbalanced blocks included 15 targets, 15 novels, and 
150 standards. In order to maximize signal-to-noise ratio, 
ERPs to the deviant stimuli were averaged across blocks. 
Trials with incorrect button presses were excluded from 
analysis, and there were no group differences in response 
accuracy, F(2, 69) = 1.65, P = .200. Time-frequency analy-
ses of the auditory steady state response to click trains are 
presented separately (Ferri et al., in preparation).

Electroencephalographic Data Acquisition and 
Preprocessing

Participants sat in an acoustically shielded booth in 
front of a computer monitor and wore insert earphones 

(Etymotic Research, Inc.). EEG was recorded at 1000 Hz 
from 26 scalp electrodes, filtered between 0.05 and 200 Hz, 
and referenced to the right mastoid (Neuroscan SynAmps, 
Compumedics Neuroscan). Additional electrodes at the 
outer canthi of both eyes and above and below the left 
eye recorded eye movements and blinks (vertical and hori-
zontal electro-oculogram; VEOG, HEOG). All electrode 
impedances were maintained below 10 kOhm.

EEG data from 9 lead sites were analyzed (F3, Fz, F4, 
C3, Cz, C4, P3, Pz, P4). Continuous data were subjected 
to a low-pass filter of 30 Hz for MMN and 12 Hz for P300 
and re-referenced offline to averaged mastoid electrodes. 
Data were separated into epochs time-locked to stimu-
lus onset (550 ms with a 50 ms prestimulus baseline for 
MMN; 1000 ms with a 100 ms prestimulus baseline for 
P300). VEOG and HEOG data were used to correct for 
eye movements and blinks with a regression-based algo-
rithm. After baseline correction (−50 to 0 ms for MMN; 
−100 to 0 ms for P300), epochs containing artifacts (volt-
ages exceeding ±100 µV) were rejected. Separate averages 
were calculated for all trial types for each participant.

For MMN, standard waves were subtracted from 
deviant waves, and MMN amplitude was defined as the 
most negative peak in the difference waves between 90 
and 290 ms for each deviant type. P300 was identified as 
the most positive peak 235—400 ms following stimulus 
onset. Because P3b and P3a have different topographies, 
different algorithms were implemented for automated 
peak-picking (supplementary material).80,81

Statistical Analysis

Group differences in MMN and P300 amplitudes were 
examined at midline electrodes using 3-way repeated-mea-
sures ANOVA models with a between-subjects factor of 
group (HF-SZ, LF-SZ, HC) and within-subjects factors of 
deviant type (MMN: duration, pitch, double; P300: target, 
novel) and lead (MMN: frontocentral Fz, Cz; P300: ante-
rior-posterior Fz, Cz, Pz). Secondary analyses were per-
formed at off-midline sites to assess potential hemispheric 
differences using 4-way group × deviant type × lead × hemi-
sphere (left, right) ANOVAs. Greenhouse-Geisser correc-
tions were applied to within-subjects effects with more than 
2 levels, and the Benjamini and Hochberg procedure82 was 
used to correct for multiple comparisons. Midline analyses 
of effects involving the group factor and off-midline analy-
ses showing hemisphere or group × hemisphere effects are 
described below. Other main effects and repeated-measures 
ANOVA models examining ERP latency effects are pre-
sented in supplementary material.

ERP amplitudes at maximal leads (ie, Fz for MMN, Cz 
for P3a, Pz for P3b) were used in regression and correla-
tional analyses. To examine independent contributions to 
functioning, MMN and P300 were entered in hierarchical 
logistic regression models predicting SZ patient group (ie, 
LF-SZ vs HF-SZ).
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Relationships between ERP amplitudes and SAPS 
and SANS global subscale scores were examined using 
Spearman rank-order correlations. An alpha level of 
P = .05, 2-tailed, was used for all statistical tests.

Results

Demographic Differences Between Groups

Demographic data are shown in table  1. Age and gen-
der did not differ between groups. The distribution of 

handedness differed at a trend level, with LF-SZ having 
a greater proportion of left-handed participants than 
HC. HC participants completed more education and had 
higher predicted IQ scores than both HF-SZ and LF-SZ, 
whereas the SZ groups did not differ. Average parental 
socioeconomic status (PSES) was lower in the LF-SZ 
than HF-SZ and HC, whereas the HF-SZ and HC did 
not differ. Given these demographic differences, analyses 
were repeated using analysis of covariance (ANCOVA) 
with education, PSES, and predicted IQ as covariates. 

Table 1.  Demographic and Clinical Characteristics

High Functioning 
Schizophrenia (n = 20)

Low Functioning 
Schizophrenia (n = 17)

Healthy Comparison 
(n = 35)

P Follow-Up Testsn % n % n %

Gender .789
  Female 4 20.00 5 29.41 8 22.86
  Male 16 80.00 12 70.59 27 77.14
Handednessa .063
  Right 19 95.00 14 82.35 34 97.14
  Left 0 0.00 3 17.65 1 2.86
  Ambidextrous 1 5.00 0 0.00 0 0.00
Antipsychotic type .642
  Atypical alone 17 85.00 15 88.24
  Typical alone 2 10.00 2 11.76
  None 1 5.00 0 0.00
Diagnostic subtype .486
  Paranoid 10 50.00 10 58.82
  Undifferentiated 2 10.00 4 23.53
  Residual 3 15.00 1 5.88
  Schizoaffective 4 20.00 2 11.76
  Catatonic 1 5.00 0 0.00

M SD M SD M SD P

Age (years) 32.60 10.64 37.47 7.61 34.57 8.88 .275
Education (years) 13.55 1.10 12.74 1.73 16.03 2.61 <.001 HF-SZ = LF-SZ, 

HC > LF-SZ,e 
HC > HF-SZe

Parental SESb 31.43 15.07 44.24 16.09 31.96 13.31 .011 HF-SZ > LF-SZ,d 
HC > LF-SZ,d 
HF-SZ = HC

WTAR predicted FSIQc 101.75 5.53 99.29 6.32 107.29 7.06 <.001 HF-SZ = LF-SZ, 
HC > LF-SZ,e 
HC > HF-SZd

CPZ equivalent dosages 429.10 399.31 665.24 456.47 .102
Duration of illness (years) 10.26 9.79 14.94 9.26 .151
MSIF global score 2.10 0.72 5.65 0.49 <.001
SAPS global total score 5.20 3.14 5.76 3.11 .588
SANS global total score 4.70 2.66 8.94 4.75 .004

Note: Numbers and percentages of participants are reported for gender, handedness, antipsychotic type, and diagnostic subtype, and 
were analyzed using Pearson chi-square tests. Group means (M) and standard deviations (SD) are reported for age, personal years 
of education, parental socioeconomic status (SES), Wechsler Test of Adult Reading (WTAR) full-scale intelligence quotient (FSIQ), 
chlorpromazine (CPZ) equivalent dosages, Multidimensional Scale of Independent Functioning (MSIF) global score, and Scale for the 
Assessment of Positive Symptoms (SAPS) and Scale for the Assessment of Negative Symptoms (SANS) global total scores, and were 
analyzed with one-way ANOVAs, followed by post hoc false discovery rate (FDR)-corrected tests to further parse group differences.
aThe Crovitz and Zener questionnaire83 was used to measure handedness.
bThe Hollingshead 4-factor index of parental socioeconomic status (SES)84 is based on a composite of maternal education, paternal 
education, maternal occupational status, and paternal occupational status. Lower values signify higher socioeconomic status.
cData missing for one healthy comparison participant.
dP < .01.
eP < .001.
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HF-SZ and LF-SZ did not differ in terms of chlorprom-
azine (CPZ) equivalent dosages of antipsychotic medi-
cations or duration of illness. However, LF-SZ patients 
experienced greater negative symptom severity than the 
HF-SZ group, and SZ group comparisons were repeated 
with SANS global total score as a covariate.

ANOVA of MMN Amplitudes

Grand average difference waves for each deviant type 
show smaller MMN amplitudes (ie, less negative) in 
LF-SZ than HF-SZ and HC (figure 1; mean ampli-
tude values are shown in supplementary table S3). The 
ANOVA of midline MMN amplitudes (table 2) revealed 
a marginally significant group effect that was qualified 
by a significant group × frontocentral lead interaction, 
which indicated variation in the strength of group effects 
at frontal and central midline leads. Parsing this interac-
tion demonstrated a group effect at Fz, with post hoc 
tests showing significantly reduced MMN amplitudes in 
LF-SZ patients compared to both HC (Cohen’s d = .92) 
and HF-SZ (d = .81), and no difference in MMN between 
the HF-SZ and HC. The group effect at central leads did 
not reach statistical significance. This pattern of results 
was unchanged when years of education, PSES, and IQ 
were included as covariates, and the difference in MMN 
between the LF-SZ and HF-SZ groups remained statis-
tically significant after covarying for negative symptom 
scores.

The ANOVA examining hemisphere effects on MMN 
demonstrated a similar pattern of group effects, but there 
were no group × hemisphere interaction effects indica-
tive of hemispheric abnormalities in the SZ patients (sup-
plementary table S1). A main effect of hemisphere was 
qualified by a frontocentral lead × hemisphere interac-
tion, parsing of which revealed greater MMN amplitudes 
at right compared to left frontal leads across participants 
and deviant types.

ANOVA of P300 Amplitudes

Grand average waveforms show reduced novelty P3a and 
target P3b amplitudes in both patient groups compared to 
HC (figure 2 and supplementary table S3). The ANOVA 
of midline P300 amplitudes indicated a significant effect 
of group, with post hoc tests demonstrating reduced 
P300 amplitudes in both LF-SZ and HF-SZ compared to 
HC (d = .76 and d = .75, respectively; table 3). This main 
effect was qualified by a group × deviant type × anterior-
posterior lead interaction. Parsing this interaction did 
not reveal an absence of the group effect or a dependence 
of the group effect on P300 deviant type. Instead, this 
interaction appeared to capture group variation in the 
anterior-posterior topography of P3a and P3b (supple-
mentary material). When education, PSES, and IQ were 
included as covariates, the group and anterior-posterior 
lead main effects remained statistically significant, while 

the interaction effects and main effect of deviant type 
were no longer significant.

The ANOVA examining hemisphere effects on P300 
(supplementary table S2) demonstrated a similar pat-
tern of group effects as observed in the midline analy-
sis, with post hoc interrogation of the significant group 
effect demonstrating P300 amplitude reductions in both 
HF-SZ and LF-SZ compared to HC. There was not a 
main effect of hemisphere or a group × hemisphere inter-
action. Parsing of higher-order interactions involving 
hemisphere revealed a hemisphere effect in HC partici-
pants only and indicated greater target P3b amplitudes at 
right (C4), relative to left (C3), central leads.

Prediction of Functioning Status

Within patients, larger MMN amplitudes (averaged 
over deviant types at Fz) were modestly associated with 
smaller P300 amplitudes (novelty P3a at Cz: r = .33, P 
= .046; target P3b at Pz: r = .37, P = .025). In the first 
of 2 hierarchical logistic regression models, P3a and P3b 
amplitudes were entered as a block in step 1 and did not 
produce a prediction effect (χ2 = 0.61, P = .736), and 
neither P3a nor P3b produced a predictive increment 
over and above the other [P3a: Wald(1) = 0.35, P = .553, 
Exp(B) = 1.07; P3b: Wald(1) = 0.58, P = .447, Exp(B) 
= .92]. At step 2, entry of MMN amplitude significantly 
improved prediction of functional status [χ2 = 8.20, P = 
.004; P3a: Wald(1) = 0.38, P = .537, Exp(B) = 1.09; P3b: 
Wald(1) = 1.78, P = .182, Exp(B) = 0.80; MMN: Wald(1) 
= 5.77, P = .016, Exp(B) = 1.88] such that smaller MMN 
amplitude was associated with poorer functioning. In the 
second model, MMN was entered at step 1 and predicted 
functional status [χ2 = 5.87, P = .015; Wald(1) = 4.52, P = 
.034, Exp(B) = 1.59]. When entered at step 2, P300 failed 
to improve this prediction [χ2 = 2.95, P = .229; MMN: 
Wald(1) = 5.77, P = .016, Exp(B) = 1.88; P3a: Wald(1) = 
0.38, P = .537, Exp(B) = 1.09; P3b: Wald(1) = 1.78, P = 
.182, Exp(B) = 0.80]. When MMN was the sole predictor, 
the results indicated that a one unit decrease in MMN 
amplitude (ie 1 µV less negative) increased the odds of 
being LF-SZ by 59%.

Correlations With Symptoms

Neither MMN nor P300 amplitudes were correlated with 
symptom ratings within LF-SZ or HF-SZ or the com-
bined SZ sample.

Discussion

This study examined the relative contributions of  pre-
attentive and attention-dependent auditory processing 
impairments to functional disability in a sample of  SZ 
patients that ranged considerably in their levels of  inde-
pendent role functioning. As expected, patients with 
poorer functioning showed MMN deficits compared to 
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patients with high levels of  independent functioning and 
healthy individuals. These results are consistent with 
observed correlations between MMN and measures 

of  functional outcome in schizophrenia patients,32,67–70 
and also support findings suggesting that MMN may 
be most closely associated with work and independent 

Fig. 1.  (A) Mismatch negativity (MMN) difference waveforms, averaged at Fz, for healthy comparison (HC), high-functioning 
schizophrenia (HF-SZ), and low-functioning schizophrenia (LF-SZ) participants by deviant type. Scalp voltage topography maps, 
showing group means of MMN amplitudes around the peak latency ±10 ms (indicated by gray bars in waveform plots), are shown for 
each deviant type. (B) Column graph shows means and standard errors for MMN amplitudes at Fz.
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living domains of  functioning.71 Our results also par-
allel previous findings demonstrating impaired basic 
tone discrimination in SZ patients residing in long-term 
care facilities, a setting that typically serves lower func-
tioning patients, relative to outpatient first-episode and 
chronic patients.85 Given the lack of  MMN reduction 
in the higher functioning group, we also extend pre-
vious reports by showing that patients without func-
tional disability may exhibit normal MMN amplitudes. 
Furthermore, the absence of  a group × deviant type 
interaction confirms prior work suggesting that the 
degree of  MMN deficit does not significantly depend 
on the type of  auditory deviance37,67,86–89 (but see Todd 
et al.90).

In contrast to some previous reports,31,66,70,72 we did 
not find an association between P300 and role func-
tioning, as novelty P3a and target P3b amplitudes were 
reduced compared to healthy participants across both 
SZ groups, regardless of  functional status. MMN, but 
not P300, predicted patients’ role functioning status 
even when covariation between MMN and P300 was 
statistically controlled. In some respects, this result is 
surprising, as P300 is thought to reflect higher-order 
cognitive functions that have been linked to functional 
outcomes in SZ.1,2 Moreover, P300 is generated by mul-
tiple distributed sources in frontal, temporal, and pari-
etal cortices,48,91,92 reflecting multi-modal associative and 
integrative processes that would be expected to support 
successful management of  the complex cognitive and 
behavioral demands associated with independent func-
tioning. MMN, in contrast, is an automatic response to 
auditory deviance, requiring no cognitive effort to gen-
erate, and is subserved by a relatively limited number 
of  neural generators in auditory and inferior frontal 
cortex.8,10–14,24

Accordingly, P300 would seem to be a more “face 
valid” indicator of the processes subsuming successful 
role functioning than MMN. Yet, our results suggest the 
opposite. One possible explanation is that the cognitive 
processes giving rise to P300 are subject to multiple influ-
ences, including motivation and effort, that may have 
compensatory or countervailing effects on the attentional 
and working memory deficits reflected by P300 reduction 
in SZ. These influences, in turn, may obscure any system-
atic relationship between P300 and functional outcomes. 
Processing reflected by MMN, on the other hand, is less 
susceptible to these influences because it is explicitly 
assessed with attention directed away from the auditory 
channel. As such, MMN may provide a more accurate 
assessment of the basic integrity of brain function-
ing that transcends its specific function in the auditory 
system, with MMN deficits reflecting a relatively broad 
neurophysiological constraint on an individual’s capac-
ity for independent functioning. Indeed, recent analyses93 
characterizing pathways from early auditory neurophysi-
ological deficits (including MMN) to poor functional 
outcomes in SZ indicated that this relationship was medi-
ated by impaired cognition. Moreover, the effects of early 
auditory processing deficits were not modality-specific, 
instead contributing to impairments in both auditory and 
visual neurocognitive domains.

These findings are also consistent with the proposed 
role of P300 as a trait marker of SZ and reports of robust 
abnormalities throughout the illness course.58,94–97 While 
deficits in MMN seem to be evident in the more typical 
subgroup of patients with lower levels of role function-
ing, P300 may have more general sensitivity to SZ irre-
spective of functioning, and therefore, may hold more 
promise as a candidate endophenotypic marker of the 
clinical diagnosis of SZ as currently defined. Although 

Table 2.  ANOVA of Midline MMN Amplitudes

Effect df F P Value Follow-Up Testsa

Group 2, 69 3.01 .056 HF-SZ < LF-SZ,b HC < LF-SZ,b HF-SZ = HC
Deviant type (double, pitch, duration) 2, 138 1.68 .194
Frontocentral lead (frontal, central) 1, 69 41.66 <.001 Fz < Czc

Group × deviant type 4, 138 0.37 .804
Group × frontocentral lead 2, 69 5.65 .005
  Group effect in frontal leads 2, 69 4.32 .017 HF-SZ < LF-SZ,d HC < LF-SZ,b HF-SZ = HC
  Group effect in central leads 2, 69 1.66 .197
  Frontocentral lead effect in HC 1, 34 37.68 <.001 Fz < Czc

  Frontocentral lead effect in LF-SZ 1, 16 0.54 .474
  Frontocentral lead effect in HF-SZ 1, 19 31.30 <.001 Fz < Czc

Group × deviant type × frontocentral lead 4, 138 1.41 .234
Deviant type × frontocentral lead 2, 138 2.14 .123

Note: More negative amplitude indicates larger MMN. ANOVA, analysis of variance; HF-SZ, high-functioning schizophrenia; LF-SZ, 
low-functioning schizophrenia; HC, healthy comparison.
aAll follow-up tests of statistically significant effects survived FDR correction for multiple comparisons.
bP < .05.
cP < .001.
dP < .01.
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P300 varies somewhat with clinical state in SZ,97 P300 
amplitude remains reduced in patients whose symptoms 
have improved97–104 and shows trait-like stability when 

assessed longitudinally.98,104,105 Given these reports, it is 
perhaps not surprising that P300 amplitude was reduced 
even in high functioning patients. In considering possible 

Fig. 2.  (A) P300 waveforms, averaged at Cz for novel stimuli (P3a) and Pz for target stimuli (P3b) for healthy comparison (HC), high-
functioning schizophrenia (HF-SZ), and low-functioning schizophrenia (LF-SZ) participants. Scalp voltage topography maps, showing 
group means of P300 amplitudes around the peak latency ±10 ms (indicated by gray bars in waveform plots), are shown for novel and 
target stimuli. (B) Column graph shows means and standard errors for novelty P3a amplitudes at Cz and target P3b amplitudes at Pz.
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reasons for conflicting results with prior work,31,66,70,72 it is 
noteworthy that prior studies have used scales requiring a 
clinician to make broad judgments about functional out-
comes or call for patients to respond to hypothetical situ-
ations to assess their understanding of what constitutes 
functionally adaptive behavior. In contrast, our criteria 
were based on objective indicators of residential, occu-
pational, and educational functioning.73 Thus, it may be 
that P300 is sensitive to variation in cognitive responses 
to hypothetical functional challenges, but has less rele-
vance to patients’ actual level of real-world functioning.

Recent meta-analytic reviews have concluded that 
first-episode SZ patients demonstrate less pronounced 
MMN deficits than chronic patients,29,106 and some stud-
ies have found normal MMN amplitudes in first-episode 
patients that subsequently decline over the first 1–2 years 

of illness,107,108 consistent with the possibility that MMN 
tracks disease progression. Although the present sample 
was comprised primarily of chronic patients, reanalysis 
after removal of first-episode participants (n = 4) main-
tained similar results, indicating that effects obtained 
were not due to a predominance of first-episode patients 
in the high-functioning group. These findings raise the 
possibility that sampling biases may partially explain 
inconsistent results, such that first-episode samples may 
typically have a greater proportion of higher functioning 
patients than chronic samples.

Similarly, converging evidence showing that MMN 
deficits predict subsequent conversion to full psychosis in 
clinically high-risk individuals37–39 may reflect greater cog-
nitive and functional impairments in those at elevated risk 
for making this transition.109–111 Some have also reported 

Table 3.  ANOVA of Midline P300 Amplitudes

Effect df F P Value Follow-Up Testsa

Group 2, 69 5.18 .008 HC > LF-SZ,b HC > HF-SZ,c LF-SZ = HF-SZ
Deviant type (novels, targets) 1, 69 23.34 <.001 Novels > targetsd

Anterior–posterior lead (Fz, Cz, Pz) 2, 138 16.19 <.001 Pz > Cz,c Pz > Fz,d Cz > Fzc

Group × deviant type 2, 69 0.54 .586
Group × anterior–posterior lead 4, 138 0.30 .835
Group × deviant type × anterior–posterior lead 4, 138 2.82 .038
  Group × anterior–posterior lead for novels 4, 138 0.23 .878
  Group × anterior–posterior lead for targets 4, 138 1.20 .315
  Group × deviant type at Fz 2, 69 0.86 .429
  Group × deviant type at Cz 2, 69 0.41 .668
  Group × deviant type at Pz 2, 69 2.34 .104
  Deviant type × anterior–posterior lead in HC 2, 68 54.35 <.001
    Deviant type effect at Fz 1, 34 27.10 <.001 Novels > targetsd

    Deviant type effect at Cz 1, 34 13.91 .001 Novels > targetsd

    Deviant type effect at Pz 1, 34 10.46 .003 Targets > novelsc

    Anterior–posterior lead effect for novels 2, 68 2.10 .150
    Anterior–posterior lead effect for targets 2, 68 24.12 <.001 Pz > Cz,d Pz > Fz,d Cz > Fzc

  Deviant type × anterior–posterior lead in HF-SZ 2, 38 33.10 <.001
    Deviant type effect at Fz 1, 19 20.29 <.001 Novels > targetsd

    Deviant type effect at Cz 1, 19 15.02 .001 Novels > targetsc

    Deviant type effect at Pz 1, 19 1.01 .327
    Anterior–posterior lead effect for novels 2, 38 0.58 .541
    Anterior–posterior lead effect for targets 2, 38 32.36 <.001 Pz > Cz,d Pz > Fz,d Cz > Fzb

  Deviant type × anterior–posterior lead in LF-SZ 2, 32 17.27 <.001
    Deviant type effect at Fz 1, 16 10.02 .006 Novels > targetsc

    Deviant type effect at Cz 1, 16 13.61 .002 Novels > targetsc

    Deviant type effect at Pz 1, 16 0.10 .760
    Anterior–posterior lead effect for novels 2, 32 1.16 .321
    Anterior–posterior lead effect for targets 2, 32 14.29 <.001 Pz > Cz,b Pz > Fz,d Cz = Fz
  Deviant type × anterior–posterior lead 2, 138 84.45 <.001
    Deviant type effect at Fz 1, 71 57.58 <.001 Novels > targetsd

    Deviant type effect at Cz 1, 71 40.93 <.001 Novels > targetsd

    Deviant type effect at Pz 1, 71 7.40 .008 Targets > novelsc

    Anterior–posterior lead effect for novels 2, 142 3.45 .048 Cz > Fz,b Cz > Pz,c Fz = Pz
    Anterior–posterior lead effect for targets 2, 142 60.77 <.001 Pz > Cz,c Pz > Fz,d Cz > Fzd

Note: ANOVA, analysis of variance; HF-SZ, high-functioning schizophrenia; LF-SZ, low-functioning schizophrenia; HC, healthy 
comparison.
aAll follow-up tests of statistically significant effects survived FDR correction for multiple comparisons.
bP < .05.
cP < .01.
dP < .001.
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that MMN abnormalities in first-episode patients may 
be confined to those with lower IQ.89,112 Inasmuch as low 
IQ is well-documented in SZ,113 the mediation of MMN 
deficits by premorbid IQ or role functioning impair-
ments is best considered a reflection of the functional 
heterogeneity that is superimposed on the generally poor 
cognitive and functional trajectory typical of SZ, rather 
than constituting a confound that needs to be controlled. 
Regardless, neither years of education nor IQ accounted 
for group differences in MMN in the present sample, 
suggesting that intact MMN in patients with success-
ful role functioning reflects more than intellectual abil-
ity per se. Furthermore, MMN and duration of illness 
were not correlated, which has also been reported by a 
recent meta-analysis.29 Together, these results suggest that 
MMN may better index functional disability than illness 
progression, and further suggest that functional status 
may be important to evaluate in MMN studies examining 
patients in other stages of illness, including the prodrome. 
Longitudinal studies will help determine whether MMN 
changes with functional status, or whether MMN deficits 
early in the illness reflect trait-like brain dysfunction that 
compromises later functional outcomes.

Interestingly, we also found that in patients, smaller 
MMN amplitudes were modestly associated with greater 
P3a and P3b amplitudes. This association should be inter-
preted with caution as it may reflect idiosyncrasies within 
our relatively small samples and therefore needs to be 
replicated in other larger samples. However, we speculate 
that the somewhat counterintuitive association observed 
might reflect the influence of later compensatory atten-
tional strategies to overcome weaknesses in early auto-
matic auditory deviance detection, particularly because 
the attentional systems reflected by the P3a and P3b are 
engaged later than the preattentive MMN.

Patients were taking antipsychotic medications when 
evaluated, which is a limitation of the present study. 
However, there were no dosage differences between 
patient groups so medication differences are unlikely to 
account for the absence of MMN deficits in the high 
functioning group. This is consistent with studies that 
failed to demonstrate an effect of antipsychotic medi-
cation on MMN.114–117 Further, evidence of P300 reduc-
tions in unmedicated patients97 and following medication 
withdrawal,118 as well as P300 improvement with antipsy-
chotic medications,59,115–117 suggests that deficits would 
have been larger across patients if  they were medication-
free. In addition, although we were able to observe robust 
effects in a relatively small sample, confirmation of these 
results in other larger samples will be reassuring.

In conclusion, the present study suggests that MMN 
deficits, but not P300 deficits, are sensitive to indepen-
dent role functioning disability in SZ. MMN may index 
relatively low-level pan-cortical neurophysiological dys-
function (eg, ubiquitous NMDA receptor dysfunction) 
that extends beyond the auditory cortex and automatic 

processing of auditory deviance, fundamentally limit-
ing the potential of a patient with SZ to live and work 
independently.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online.
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