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Abstract 

Measurement invariance (MI) is an important assumption in testing group-mean 

differences. MI describes the conditions where the measurement model of a latent construct 

is equivalent across different groups. Despite the importance of establishing full MI, it is 

unrealistic to fulfill all levels of MI (i.e., pattern, weak, strong, strict) in the real world. 

Alternatively, researchers may choose to fit partially invariant models. Yet, this popular 

approach requires the exact identification of non-invariance and leaves the question open 

about which model fitting strategies should be selected. Thus, the current dissertation seeks to 

answer two related questions via simulation studies: (1) How to use sparse Bayesian 

estimation methods (i.e., the Horseshoe prior) for detecting non-invariant items; (2) Can we 

improve the predictive performance of partially invariant models using the horseshoe (HS) 

prior?  

The first study aims to demonstrate how to use the HS prior for detecting non-

invariant items. I discuss how to approach the identification of non-invariant items as a 

variable selection problem and I describe how to identify non-invariant items within a 

Bayesian framework relying on the HS prior used in Bayesian model selection. A simulation 

study is introduced to investigate the performance of the HS priors in identifying non-

invariant items under various conditions. The simulation conditions include sample size, 

parameter difference, scale length, and item reliability. The results showed that the HS prior 

approach almost always accurately identified non-invariant items. A large sample size and a 

high item-reliability can facilitate the identification of non-invariant items even when the 

amount of non-invariance was small. For identifying invariant items, the HS prior approach 

exhibited an almost perfect performance.  

The second study seeks to improve the predictive performance of partially invariant 

models. Common model solutions for partially invariant models usually focus on explaining 
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the underlying mechanism of psychological phenomena. Current approaches may not 

generalize well to new and unseen data since MI is only considering the characteristics of the 

current sample at hand. Recently, the field has seen an increase in the interest in evaluating 

psychological assessments based on out-of-sample performance.  Here, I evaluate an out-of-

sample prediction-focused strategy based on partially invariant items. I employed a HS prior 

model to mimic the idea of Bayesian-Model-Averaging for improving the predictive 

performance of partially invariant models. The results of a simulation study indicated that the 

HS prior model outperformed the other commonly used model fitting strategies (i.e., fully 

constrained model, partially constrained model, freely estimated model) under most 

conditions. Sample size, parameter differences and item-reliability showed differential 

impacts on models’ predictive performance.  

The third study illustrated with an example how to use the HS prior approach for 

empirical analyses. First, the DERS-9 scale was assessed for item-level MI between genders 

and between two measurement occasions with a sample of 300 for each group. Next, a 

partially invariant SEM model was fitted with a sample of 728 college students, where the 

partially invariant status of the self-esteem scale between genders was confirmed, and then 

the HS prior model and the freely estimated model were fitted for comparison where peer 

victimization was regressed on self-esteem between genders. The results indicated that the 

HS prior performed well in terms of predictions with empirical data. 

In conclusion, this dissertation discussed and explored potential solutions of two 

major issues with measurement invariance: non-invariant item detections, and the predictive 

performance of partially invariant models. The results of two simulation studies indicated that 

the HS prior approach is a viable alternative to traditional methods for identifying non-

invariant items and fitting partially invariant models. Finally, the implications and limitations 

of this set of studies, along with recommendations for future studies were discussed.  
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1. Chapter 1 

Historical Background of Measurement Invariance 

1.1 Goals of Measurement Invariance Assessment 

Measurement invariance (MI) is an important assumption in testing group-mean 

differences (Byrne, Shavelson, & Muthén, 1989; Cheung & Rensvold, 2002). MI describes 

the conditions under which the measurement model of a latent construct is equivalent across 

heterogeneous populations, different measurement occasions, or survey formats (French & 

Finch, 2016; Millsap & Kwok, 2004; Millsap & Meredith, 2007). Essentially, MI assesses the 

invariance of factor structures over a given number of group variables such as measurement 

locations, time points, assessment formats, and populations’ characteristics (e.g., gender, age 

group) (e.g., Millsap, 2011). Ideally, the difference in factor scores should only be a function 

of the true difference in measured attributes, but not a function of these grouping variables. 

Otherwise, the group comparison may become theoretically uninterpretable (can we compare 

apples with bananas?), and statistically biased. Therefore, the establishment of MI ensures the 

meaningful comparisons of factor scores across different groups, the selection and diagnostic 

accuracy with different populations, and the validity of the parameter estimates in structural 

models (French & Finch, 2016; Millsap & Kwok, 2004; Millsap & Meredith, 2007; Shi, Song 

& Lewis, 2019). In contrast, the violation of MI may produce inconsistent results, artificial 

differences, or equivalences in test scores between groups (Byrne, Shavelson, & Muthén, 

1989; Cheung & Rensvold, 2002; Johnson, Measde & DuVernet, 2009). For example, in a 

Driver Knowledge Test, an individual with a fixed level of driving knowledge should 

produce the same test result using an invariant test, regardless of the location where the test is 

taken (e.g., driving school versus DMV). With a non-invariant math test, male students may 
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consistently produce higher scores than female, even though they are on the same level of 

mathematical competence. MI assessment plays a key role in various areas of research and 

decision-making stages. 

Multigroup Confirmatory Factor Analysis (MGCFA) is the most commonly used 

method in assessing MI at model/scale level (Jöreskog, 1971; Schmitt & Kuljanin, 2008; 

Vandenberg & Lance, 2000; Zumbo & Koh, 2005). The estimation of measurements in 

CFA involves four components: measurement structure, factor loading, intercepts and 

residual variance (Millsap, 2011). Each of these four components is associated with four 

levels of invariance with increasing restrictions. The first level of invariance is configural 

invariance which concerns the group equality in the measurement structure. Achieving this 

level of invariance ensure the numbers of constructs and the numbers of items related to 

each construct is the same between groups. The second level of invariance is weak 

invariance which concerns the group equality in the measurement structure and factor 

loadings. Achieving this level of invariance ensures the quantitative association between all 

scale items to the latent construct is the same between groups. The third level of invariance 

is strong invariance which concerns the group equality in measurement structure, factor 

loadings as well as intercepts. The final level of invariance is strict invariance which 

concerns the group equality in residual variance in addition to measurement structure, 

factor loadings as well as intercepts. Each level of MI is assessed via the comparison 

between a less constrained model that achieved the lower level of invariance and a more 

restrictive one. That level of invariance is established if 1) a likelihood ratio test (i.e., !! 

test) does not suggest a model rejection, or 2) the change in model fit indexes (e.g., CFI, 

RMSEA) does not exceed an acceptable/pre-defined threshold, or 3) no serious change is 

suggested in the model modification index (e.g., Cheung & Lau, 2012). 
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1.2 Issues in Measurement Invariance Assessment  
Despite the importance of establishing full MI, it is often found unrealistic to fulfill all 

levels of invariance (i.e., structural, weak, strong, strict) in practical applications (e.g., 

Millsap & Kwok, 2004; Millsap & Meredith, 2007). The progressive escalation in model 

constraints often leads to a high model rejection rate even if the group difference is small, 

especially when the model structure is complex (e.g., multi-factors, correlated errors) or a 

scale contains a large number of items. To date, the majority of MI studies have been 

focusing on MI testing, either by assessing the feasibility of invariance through model 

comparisons (Byrne et al, 1989; Cheung & Rensvold, 2002), or identifying non-invariant 

items (e.g., DIF testing, Kim, Yoon, & Lee, 2011; Millsap, 2011; Verhegan et al., 2016; 

Bayesian method, Shi et al., 2017). Comparatively, there is less attention that has been put on 

potential solutions when full MI cannot be achieved. 

As stated in a review by Vandenberg & Lance (2000), there are two primary roles that 

MI assessment serves. One is in determining the quality of scales or tests, where the item that 

fails to pass MI testing is either excluded to maintain the homogeneity of the scale among 

different populations or flagged to explore the qualitative difference between groups (Cheung 

& Lau, 2012; Cheung & Rensvold, 1998). Another is in facilitating the subsequent analysis 

such as testing mean difference, selecting candidates, or making diagnosis (e.g., Lai et al., 

2017; Millsap, 2011). To achieve either goal, identifying the exact non-invariant items is 

necessary unless a strict, or at least strong MI is attainable. However, locating the exact non-

invariant item is not an easy task since the common MI assessment only is an omnibus test 

where the exact cause of non-invariance cannot be located. In addition, even with knowing 

which items are non-invariant, researchers who are wishing to utilize measurement models 

for predictions still need to solve for the issue of non-invariance. It is simply because that 
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when the non-invariance is ignored and two groups are forced to be equal, we may expect to 

see biased estimates on factor scores due to the model misspecification, which consequently 

lead to poor predictions.  

1.3 Solutions to Common Issues in MI 

As noted, achieving full MI is hardly ever attained in the real world. In applied 

settings, researchers often find themselves in situations where some but not all items are 

invariant for a given scale. This common situation, when full MI fails, but some items are 

invariant is referred to as partial invariance, which has been found as a useful alternative 

solution to full MI. Two components are key to partially invariant models, one is locating the 

exact non-invariant items, while the other is finding an appropriate model fitting strategy. 

Next, we will discuss some common approaches with partially invariant models, followed by 

discussing its pros and cons. 

1.3.1 Partial MI Model 

With the failure of MI, one popular choice is to identify non-invariant items and fit a 

partially invariant model (e.g., Cheung & Lau, 2012; Lai et al., 2017). Partially invariant 

models refer to the situation where some but not all the parameters (e.g., factor loadings, 

intercepts) hold for invariance between groups (e.g., Millsap & Kwok, 2004; Shi et al., 2019). 

For instance, a partially strong invariant model describes where all factor loadings and factor 

structure hold for invariance, while one or more item intercepts are non-invariant between 

groups (i.e., the number of non-invariant intercept cannot exceed the total number of items). 

Several model fitting strategies are considered when measurement models only hold for 

partial invariance. Several approaches have been discussed in the previous literatures: 1) 

Deleting non-invariant items; 2) Relaxing the constraints on non-invariant parameters; 3) 

Ignoring the non-invariance in model to fit a fully constrained model; 4) Using composites 
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score instead of factor models. The first option can only be achieved if there are enough 

items, which is not always feasible (e.g., CESD-9, PHQ-8). The second one is fitting a so-

called “partially constrained model”, where the group constraints are released on non-

invariant parameters. This approach usually leads to the most accurate estimates given the 

model is correctly specified, yet sometimes is being criticized as equivalent to comparing 

“apples” with “pears”. The third option has been shown to produce biased model parameters 

(e.g., factor means, regression path coefficients) in certain conditions given it is essentially 

fitting a statistically incorrect model (Guenole & Brown, 2014; Hsiao & Lai, 2018; Shi et al., 

2019). The last option, which uses composite scores, while seemingly simple, requires even a 

higher level of invariance (i.e., tau equivalence). It can only be adopted when all the scale 

items are parallel in the population (e.g., Little, Rhemtulla, Gibson, & Schoemann, 2013), in 

other words, MGCFA models need to achieve an even more restrictive invariance state 

compared to strict invariance.  

All these approaches have certain pros and cons which provide theoretical 

foundations for researchers when deciding which model solution to take. Yet, there are still 

some unsolved issues. One theoretical issue is whether a latent construct that is partially 

invariant still can be interpreted as representing the same construct between groups (e.g., can 

we compare plutos with plums, or apriums with apricots?). Another issue is that the 

estimation bias of different model fitting strategies can vary case by case: That is, the amount 

of bias in parameter estimates is subject to a set of factors such as sample size, the pattern and 

magnitude of non-invariance, and scale length. For instance, when the magnitude of non-

invariance is small, the difference in estimation bias among different model fitting strategies 

(e.g., fully constrained model versus partially constrained model) may be quite trivial (Shi et 

al., 2019); when the magnitude of non-invariance is small, deleting the item or releasing its 
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equivalent constraint may not lead to a very different result compared to fitting a fully 

constrained model. As such, each of these model fitting strategies may be preferable to the 

others under certain conditions (Shi et al., 2019) (e.g., better model fit, higher more 

predictive accuracy, more theoretically sound). There are also some situations where different 

model fitting strategies are indistinguishable (e.g., produce similar estimates, fit data equally 

well). However, no matter which approach to partial MI is taken, the information contained 

in other models (those that were deemed as inappropriate) will be ignored. As such, the 

selection of the approach to solving the partial MI issue unwittingly introduces model 

selection.  The “best” model is then considered as having been the true data generating 

process and the one producing statistical inference for the population. This brings up a long-

standing issue in model selection – the scientific inference conditional on one single model 

can be quite limited since other possible models are overlooked (e.g., Kaplan & Lee, 2015, 

2018; Madigan & Raftery, 1994; Raftery, 1995; Raftery, Madigan, & Hoeting, 1997). This 

consequently leads to the underestimation of the uncertainties in the parameters of interests 

(e.g., factor scores). 

1.3.2. Locating Non-Invariant Items 

As noted earlier, full MI often fails to be attained in empirical studies (Cheung & Lau, 

2012; Vandenberg & Lance, 2000), and hence researchers may alternatively choose to 

remove non-invariant items, fit a partially constrained model, or interpret non-invariance 

meaningfully (Cheung & Rensvold, 1998).  Either way, identifying non-invariant items is 

inevitable. To date, most of MI assessments are model/scale level analyses (e.g., MGCFA 

model comparison, likelihood-ratio test (LRT)) (Zumbo & Koh, 2005; Jöreskog, 1971), 

where model constraint is required, and each level of invariance is assessed as whole. The 

rejection of null hypothesis (i.e., invariance fails) can only indicate the existence of group 
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differences, but not the location of those differences (i.e., loading, intercept, residual). 

Therefore, to locate non-invariant items or evaluate item-level invariance, researchers need 

additional analyses. One approach is using the model modification index as guidance to 

search for the source that causes non-invariance (Byrne et al., 1989; Shi et al., 2017; Yoon & 

Millsap, 2007). The value of the modification index gives the expected drop in !! value of a 

likelihood ratio test when a parameter constraint is relaxed (Muthén & Muthén, 1998-2011; 

Yoon & Kim, 2013), and a large value indicates that the group heterogeneity may exist in 

that parameter causing model misfit. Thus, to search for non-invariant items, each parameter 

constraint with a large modification index value is removed, one at a time, while holding 

other parameter constraints unchanged. This search will continue until no significant change 

is detected by the modification index (Cheung & Lau, 2012; Yoon & Millsap, 2007). There is 

a comparable approach under the item response theory (IRT) framework where multiple 

model comparisons are conducted via LRT. Similarly, cross-group difference/non-invariance 

for each parameter is not directly assessed, and the detection of non-invariant items is based 

on the amount of change in model fit. Several issues should be noted here: 1) When freeing 

one parameter constraint, the other constrained parameters must be assumed truly invariant; 

2) These approaches result in the multiple comparison problem, leading to inflated type I and 

II errors; 3) As the number of scale items increases, the complexity of the model structure 

may also increase (e.g., correlated error variances, cross-loading items), which not only 

amplify the issues in 1) and 2) but also make the searching procedure more cumbersome.  

Alternatively, researchers could choose item-level MI assessments where assessing 

invariance and locating non-invariance are performed simultaneously (e.g., Cheung & Lau, 

2012; Kim, Yoon, & Lee, 2011; Millsap, 2011; Verhagen, Levy, Millsap, & Fox, 2016; 

Zumbo & Koh, 2005). Item-level MI assessments focus on the group difference/non-
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invariance in item parameter values (Millsap, 2011) and assess the group difference in each 

parameter value directly. Full MI is established if group differences are not detected in any of 

the item parameter values. If any of the parameter values is found different on a single item, 

this item will be considered to be non-invariant thus leading to the rejection of full MI. 

Several methods have been developed to assess item-level MI under both MGCFA and IRT 

frameworks (Cheung & Lau, 2102; Millsap, 2011; Shi, Song, DiStefano, Maydeu-Olivares, 

McDaniel, & Jiang, 2019; Thissen, 1982; Verhagen et al., 2016). In MGCFA, Cheung & Lau 

(2012) proposed to directly assess the item parameter difference through bootstrapping 

confidence interval using maximum likelihood estimation. In IRT, a Wald test is widely 

applied (Thissen, 1982) for assessing item-level invariance.  Alternatively, Shi et al., (2019) 

used a Bayesian SEM to assess each parameter difference via the credible intervals (CrI’s) of 

the posterior distribution.      Instead of using CrI’s, Verhagen et al., (2016) developed a 

Bayesian method to assess item parameter differences using Bayes factors (BF) (Kass & 

Raftery, 1995).  

Among all the aforementioned methods, the most straightforward approach of 

detecting non-invariant items is to directly compare the parameter estimates of item loadings, 

intercepts, and residual variances between groups (Millsap, 2011, p.79). Non-invariance is 

detected if any of these comparisons pass a threshold of a given statistic (e.g., p < .05, BF > 

3). In the Bayesian framework, these between-group comparisons can be simplified by 

estimating a set of hyperparameters that are defined to represent the cross-group differences 

(Pokropek, Schmidt & Davidov, 2020). In other words, the core research question comes 

down to identifying which of these hyperparameters are statistically meaningful. From this 

viewpoint, the detection of non-invariant items becomes a variable selection problem, which 

can be solved by utilizing some popular variable selection methods. To date, the connection 
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between locating the exact non-invariant items and variable selection has not been explicitly 

mentioned or investigated. This connection will be discussed here in the hopes of expanding 

possibilities for dealing with partial measurement invariance.   

1.4 Model Selection and Model Averaging 

Selecting the best model fitting strategy with partially invariant models has proven to 

be difficult in both computational and theoretical perspectives. Another aspect to keep in 

mind is that no matter which model fitting strategy is being selected, we are making 

inferences about population conditional on one single model. The fundamental issue of 

making decisions from a single model is that it ignores the uncertainty in model selection and 

holds the belief that the final selected model represents the true data generating process (e.g., 

Kaplan & Lee, 2018; Madigan & Raftery, 2012; Raftery, Madigan & Hoeting, 1997). This is 

in line with the now famous quote by Box (1979), who noted that “All models are wrong, but 

some are useful.” 

In actuality, we never know the true data generating process and pretending a single 

model solution over many competing models is the true one can result in too much certainty 

(e.g., Navarro, 2019). This risk of being overly confident in the inference and decisions made 

from the “best” model solution is often underestimated (Hoeting, Madigan, Raftery & 

Volinsky, 1999). This is especially the case in social sciences where the scope of most studies 

is on the population level. For example, in SEM applications, the methods for model 

comparison and selections are well studied (Lin, Huang, & Weng, 2017; Liang & Luo, 2019), 

and researchers are also guided by substantive theories when choosing a single model fitting 

strategy. Yet, whichever model is selected or decided to be the best is conditional on current 

data set and the past theories. Consequently, the complexity of human characteristics and the 

evolvement of scientific theories are largely overlooked. In other words, whether a single 
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model solution conditional on a given data can generate a better prediction for unseen data or 

can be applied on the future empirical studies is under doubt (James, Witten, Hastie, & 

Tibshirani, 2013). In partially invariant models, the pattern of non-invariance can be complex 

and often varies case by case (Lai et al., 2017), which impose many uncertainties during 

model selection process. Usually, selecting one model solution (e.g., omitting non-invariant 

items) leads to the disacknowledgment of other possibilities which may contain important 

information about the population. For instance, non-invariant parameters could be manifest as 

invariant under certain conditions but not others (e.g., small N versus large N, Meade & 

Bauer, 2007). For selection, comparison, or diagnosis, researchers would require factor 

scores computed from a partially invariant model that are not only suitable for the current 

dataset, but also applicable to future studies. Accounting for model uncertainty and 

combining all possible models may be a better solution for partially invariant models (Kaplan 

& Lee, 2018; Madigan & Raftery, 2012; Raftery et al., 1997). Thus, the current dissertation 

proposes to take a model averaging approach as an alternative solution to selecting one single 

model fitting strategy.  

One way of incorporating non-invariance in the measurement model is including all 

possible model sets in the estimation process and get the averaged results via Bayesian 

method, namely, Bayesian Model Averaging (BMA) (e.g., Kaplan & Lee, 2015, 2018; 

Raftery et al., 1997). Bayesian statistics is known for handling the uncertainty in parameter 

estimation, and BMA solves one more layer of uncertainty, the uncertainty during the model 

selective process (Madigan & Raftery, 1994; Raftery et al., 1995, 1997). Rather than settling 

on one single model, BMA considers all models that are deemed to be theoretically and 

scientifically possible, and hence takes care of the uncertainties in both parameter estimates 

as well as modelling process by computing different model probabilities before averaging 
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across all models. In comparison to a single model solution, BMA preserves information 

from all possible model sets while giving those models different weights, and hence 

possesses the ability of optimizing out-of-sample predictions. This is in line with researchers 

who argue that our end goal of MI assessment is not simply evaluating invariance but 

utilizing the measurement model for practical purposes (e.g., group comparison, candidate 

selections) (Hsiao & Lai, 2018; Lai, Kwok, Yoon, & Hsiao, 2017; Millsap & Kwok, 2004). 

In both simulation and empirical studies, BMA has shown its excellent predictive ability in 

various modelling techniques (e.g., graphical models, SEM, linear regression; Kaplan & Lee, 

2015, 2018; Madigan & Raftery, 1994; Raftery et al., 1995, 1997).  

Nevertheless, implementing BMA has been found challenging because it requires 

averaging over the entire model space and the number of possible candidate models in the 

model space often varies across different modeling situation (e.g., Kaplan & Lee, 2015, 2018; 

Raftery et al., 1997). In regressions, this means including all the possible combinations with 

each predictor. With partially invariant models, this means including all the possible 

combinations of different measurement models with each of the non-invariant parameter 

maybe constrained, freely estimated, or fixed to zero/omitted (e.g., partially constrained 

model, fully constrained model). Additionally, the amount of non-invariance can vary across 

non-invariant parameters, which means that they could be negligible for some parameters, 

while highly influential for others. Hence, possible candidate models could also be each/some 

non-invariant parameter constrained at a time while other ones freely estimated. 

Consequently, the number of possible modelling strategies for a partially invariant model can 

grow exponentially. Therefore, using BMA with accounting for all possible situations is 

unfeasible in practice because the model space can become enormous. To overcome this 

computational difficulty of BMA and reduce the size of candidate model sets, researchers 
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have proposed some model selecting rules such as “Occam’s window” to exclude some 

unnecessary models (Kaplan & Lee, 2015, 2018; Raftery et al., 1997). For the MI question, 

using “Occam’s window” will first require the identification of non-invariant parameters, and 

then implementing the BMA to get averaged estimates. Alternatively, there is a simpler 

solution: utilizing appropriate priors that are known to select specific variables via 

regularization of the whole parameter space (such as the horseshoe prior) to identify non-

invariant parameters and get averaged estimates from all possible models simultaneously.  

1.4.1 Incorporation of Non-invariance in the Measurement Model using the HS Prior 

Here, we will focus on a specific prior, the so-called horseshoe (HS) prior (e.g., 

Carvalho, Polson, & Scott, 2010). The HS prior originates from a multivariate-normal scale 

mixture distribution and has a “horseshoe” like shape where its left side distribution with no 

shrinkage handles signals while the right-side distribution with almost a complete shrinkage 

handles noise (Carlos, Carvalho & Nicholas, 2010). This nice statistical property of HS prior 

allows it to function as a parameter “switch” and produces BMA like estimates (Carvalho, 

Polson, & Scott, 2009). As mentioned, using the BMA in estimating partially invariant 

models requires getting a candidate model set which contains all the possible modelling 

strategies. The candidate model set for a partially invariant model is a special case because all 

the possible models are nested within each other. In other words, there will be no new 

variable introduced in the candidate model set and all the candidate models could be easily 

transformed from one to another by adding or omitting some parameters. Specifically, all the 

models within a candidate model set can be technically transformed from each other by 

fixing relevant parameters to certain values (e.g., zero). For instance, we can turn a partially 

constrained model into a fully constrained model by fixing non-invariant parameters to be the 

same across groups. We can also obtain a shortened measurement model with all the non-
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invariant scale items deleted by fixing their parameters (i.e., loading, intercept, residual 

variance) to be zero. This model transformation process can be cumbersome under the 

frequentist statistic framework, since we need to fit a sequence of models where the number 

of models will rapidly increase as the complexity of models and non-invariant situations 

increase. In the Bayesian framework, these model transformations can be easily handled by 

placing the HS prior on the hyperparameters that are defined as cross-group differences. 

Along with the target dataset, the model shifting direction (i.e., non-invariant versus 

invariant) and quantity are automatically driven by researchers’ prior beliefs (i.e., some but 

not all the parameters are completely invariant) as well as the empirical evidence (i.e., data). 

Specifically, the right side of HS prior handles the parameters with negligible differences, 

while the left side HS prior takes care of the parameters with notable differences. Hence, the 

same result of averaging over the entire model space is obtained by using the HS prior to turn 

equality constraints off and on based on data. In estimating partially invariant models, the HS 

prior becomes a natural substitute for BMA. 

1.4.2 Locating Non-invariant Items using the HS Prior 

One way of locating the exact non-invariant items is to directly assess the cross-group 

difference on item parameters (i.e., loading, intercept, residual variance). In Bayesian 

statistics, we can simply define a set of hyperparameters to represent the cross-group 

difference on each item parameter. The task of locating non-invariant items is to assess if any 

of these “differences” parameters are effective or not. For the most established 

measurements, it is reasonable to assume that the number of invariant items exceeds those 

non-invariant ones. To locate non-invariant items, we need to search for sparse signals among 

numerous noises. Therefore, we can reframe the locating of non-invariance as a signal 

detection problem, where the invariance is obtained in the absence of signal, while the non-
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invariance is detected in the presence of signal. In the statistical machine-learning literature, 

methods in handling sparse signals and identifying relevant variables have been well 

developed (Carvalho, Polson, & Scott, 2009, 2010; Piironen, & Vehtari, 2017), and some of 

them can be useful in locating non-invariances. The sparse estimation issue arises when a 

statistical model contains a large number of parameters, yet only few of them are expected to 

be relevant, or in other words, have coefficients that significantly depart from zero (e.g., 

Piironen, & Vehtari, 2017a, b). The task under this situation is to detect signals in the 

presence of noise. Several solutions are proposed under both Frequentist and Bayesian 

frameworks. In the Frequentist framework, Lasso regression and some of its generalized 

versions are used where the sparse signals are handled by penalty parameters (James, Witten, 

Hastie, & Tibshirani, 2013; Piironen, & Vehtari, 2017; Tibshirani, 1996). In the Bayesian 

framework, two families of priors: two components discrete mixtures prior and shrinkage 

priors, are commonly used to handle sparsity (Carvalho, Polson, & Scott, 2009; Piironen, & 

Vehtari, 2017). Given that defining non-invariance as a hyperparameter can only be achieved 

using Bayesian estimation method, we will not go into details about variable selection 

methods under a Frequentist framework. Two-component discrete mixture priors, which are 

also known as Spike-and-Slab priors, use a point mass centered at zero to describe irrelevant 

variables, and an absolute continuous space to capture variables that are deemed to be non-

zero (Ishwaran & Rao, 2005; Mitchell, & Beauchamp, 1988). Shrinkage priors on the other 

hand, tend to handle the sparsity by compressing the total effect of all predictors with a 

continuous “shrinking” distribution centered close to zero (e.g., Tibshirani, 1996). From the 

theoretical perspective, the Spike-and-Slab prior should be a more appropriate choice, given 

it perfectly mimics sparsity by using the “spike” to represent the absence of signals, and the 

“slab” to represent the presence of signals (Carvalho, Polson, & Scott, 2009; Mitchell & 

Beauchamp, 1988). Yet, several estimation issues arise when implementing two component 
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discrete mixture priors in complex models (e.g., containing a large number of parameters to 

be estimated) which makes it difficult to operate in practice (Piironen & Vehtari, 2016). 

Alternatively, as a member of shrinkage priors, the HS prior highly resembles the Spike-and-

Slab prior in the distribution shape but does not contain a point mass at zero which may result 

in estimation problems when using methods such as Hamiltonian Monte Carlo that require 

smooth and differentiable posterior distributions. As such, the HS prior can be seen as a more 

generally applicable substitute to the Spike-and-Slab prior and, for this current work, a very 

promising approach for locating non-invariant items. 

1.5 Overview of Dissertation 

Numerous research papers have highlighted the importance of achieving MI for social 

and behavior research. Nevertheless, comparing to the large body of MI studies focusing on 

the assessment of MI, there are fewer studies that are concerned with the failure of invariance 

and the elaboration of alternative solutions. As noted, the probably most popular choice is to 

fit partially invariant models. But this approach requires the exact identification of non-

invariant parameters and leaves the question open about which model fitting strategies should 

be selected. Thus, the inspiring questions behind this dissertation are; (a) How do we locate 

the exact item-level non-invariance/invariance?  (b) Can we incorporate the non-invariance 

into the partially invariant measurement model using sparse Bayesian estimation methods 

(i.e., HS prior) to improve the model prediction; and (c) How do we apply these techniques 

using empirical data? Thus, the goal of current dissertation is threefold: First, we discuss and 

demonstrate how to use the HS prior for detecting non-invariant/invariant items via simulated 

data example under different conditions. Second, we evaluate the predictive performance of 

using the HS prior with partially invariant measurement models and compare its performance 

with other alternative methods. Third, we use empirical data to demonstrate how to use the 



 
 

 

16 
 

HS prior to identify the exact non-invariance and get the factor scores of a partially invariant 

model for a candidate selection.  
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2. Chapter 2 

Detecting Non-invariant Items 

2.1 Current approaches in detecting non-invariant items 

Generally speaking, there are two classes of statistical approaches for detecting non-

invariant items: (1) model comparison approaches, and (2) item-level analysis approaches. 

Model comparison approaches are commonly applied in multigroup confirmatory factor 

analysis (MGCFA) under the frequentist statistical framework. This approach assesses MI on 

a model-level which does not examine the state of invariance for each item separately, and 

thus usually requires a sequence of constrained model comparisons for identifying all non-

invariant items. Item-level analysis approaches have been applied in MGCFA as well as item 

response theory (IRT), both under frequentist statistical frameworks and Bayesian statistical 

frameworks. In contrast to model comparison approaches, item-level analysis approaches 

directly focus on the cross-group difference of each single parameter, so that all the non-

invariant items can be identified at the same time. In the following two sections we will 

review these methods in frequentist and Bayesian statistics. 

2.1.1 Frequentist approaches in detecting non-invariant items  

The most common way of identifying non-invariant items under the frequentist 

statistical framework is through MGCFA (e.g., Millsap, 2011; Schmitt & Kuljanin, 2008; 

Vandenberg & Lance, 2008; Jung & Yoon, 2016, Zumbo & Koh, 2005). A standard 

formulation of MGCFA can be written as: 

 "" = µ# + &"Y"	 + '" (1.1) 
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where "" is an ( × 1 vector of the observed item scores, µ# refers to a ( × 1 vector of the 

item intercepts, &" denotes a ( × + matrix of the item factor loadings, ," represents an 

+ × 1 vector of the latent factor scores (( > +), and '"	stands for a ( × 1 vector of the 

unique factor scores. The group membership is denoted by the subscription / which indicates 

that each parameter in equation (1.1) can vary across groups. The assumption of 

independence between the latent factors and unique factor scores (i.e., 012	(Y"	, '") 	= 	0) 

leads to the variance-covariance of  "" 

 																													7" =	&" 	8"&′" + :", (1.2) 

where 7" 	denotes a ( × ( variance-covariance matrix of "", 8" 	stands for a  + ×+ 

variance-covariance matrix of Y"	and :" refers to a ( × ( variance-covariance matrix of '"	. 

It should be noted that :" 	is usually a diagonal matrix containing the variances of  '"	 

assuming independence among all unique factors (i.e., 012	('" , '") 	= 	0). The mean 

structure of "" can be expressed as 

 ;("") = &"Y"	 + µ# (1.3) 

where Y"	is a vector of factor means for the latent variable ,", so that the likelihood of the 

observed values is  "" ∼ =(;(""), Σ"). 

  Assuming MI assessment is considered between two groups (i.e., focal group versus 

reference group), each level of invariance testing can be proceeded in the following 

sequence: configural invariance (i.e., same pattern of the measurement model), weak 
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invariance (i.e., &%= &&), strong invariance (i.e., &%= &&, µ' = µ(), and strict invariance (i.e., 

&%= && , µ' = µ(, :% 	= 	:&). The variance-covariance matrix and mean structure of a strictly 

invariant model can be written as: 

 7" = &8"Λ) + 	Θ (1.4) 

 	;("") = &A" + 	µ. (1.5) 

Equation (1.5) implies that the observed group mean difference is mostly driven by the 

difference in factor scores. Each level of invariance is tested through a series of model 

comparisons where a more constrained model (e.g., &%= &&,µ' = µ() is compared with a less 

constrained one (e.g., &%= &&). If these two models significantly differ in terms of goodness-

of-fit (e.g., Δ CFI > .01, Δ RMSEA >.01, C(!!) <.05) (e.g., Byren et al., 1989; Cheung et al., 

2002; Millsap, 2011), then one can conclude that MI fails for the more constrained level, and 

only holds for the less constrained one. MI can fail at any stage during an invariance testing 

due to one or more non-invariant items. Yet, searching for non-invariant items happens only 

after this sequence of model comparisons. 

Under MGCFA, three statistical methods are commonly applied when searching for 

non-invariant items: 1) the model comparison approach via the likelihood ratio test (i.e., !! 

test), or using the change in comparative fit indices (e.g., Δ CFI) (Rensvold & Cheung, 1998), 

2) the sequential search approach using model modification indices (Yoon & Millsap, 2007) , 

3) the parameter comparison approach using the bias-corrected bootstrap confidence interval 

(CI) method (Cheung & Lau, 2011; Jung & Yong, 2016, Meade & Bauer, 2007). In the 

model comparison approach, the same logic as MI testing is applied. That is, when a MI 

assessment fails at a certain stage of invariance testing (i.e., weak, strong, strict), a sequence 

of model comparisons will be performed between a MGCFA model that is constrained at that 

level (i.e., &%= && or, µ' = µ(, or, :% 	= 	:&) and a set of identically constrained models 
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which have one parameter relaxed from equality constraint at a time. If any of these less 

constrained models does not fit significantly worse compared to the more constrained model 

(e.g., Δ CFI > .01) (Cheung & Lau., 2011, Cheung & Rensvold, 2002), then the item 

associated with that freely estimated parameter is flagged as non-invariant. For instance, to 

locate non-invariant items for a MGCFA model that fails on the strong invariance testing 

(i.e., &%= &&, µ' = µ() a sequence of model comparisons will be performed between a 

MGCFA model that is constrained on both factor loadings as well as intercepts and a set of 

models with each item intercept freely estimated at a time. If any of these models which has a 

freely estimated intercept fits significantly better than the more constrained model, then the 

item association with that intercept is deemed to be non-invariant. Despite its wide 

application, several limitations of this model comparison approach should be noted. One 

major drawback of this approach is the use of various evaluation criteria such as Δχ!, and 

ΔCFI. Similar to the !! index that is used to assess the entire model fit, Δ!! is also sensitive 

to sample size. In other words, a significant Δ!! may not only be caused by a notable 

difference between two models but could also be a result of a large sample size. In terms of 

ΔCFI, which has no known sampling distribution and thus is not subjectable to any 

significance testing, the use of a predetermined cutoff value (e.g., .01) is often being 

criticized as arbitrary (Cheung & Lau, 2012) and unstable when evaluating models with 

different levels of complexities (Cheung & Rensvold, 2002). Additionally, multiple model 

comparisons not only make the searching procedure cumbersome (especially for long scales), 

but also lead to an inflated type II error rate given that the invariance/nonvariance of each 

parameter is conditional on the “true” invariance status of other parameters.  

In the sequential search approach, the model modification index of a constrained 

baseline model is us to identify non-invariant items. Specifically, for a MGCFA model that 



 
 

 

21 
 

fails at a certain stage of invariance testing, invariance constraints of each parameter will be 

sequentially removed based on their modification indices to achieve a better model fit, 

starting from the one with the largest value until no index exceeds a pre-determined cutoff 

value (e.g., 5) (Yoon & Millsap, 2007; Jung & Yoon, 2016). Therefore, parameters are 

deemed to be non-invariant if their model modification indices pass certain pre-determined 

values. This method seems quite promising and easy to operate given that model 

modification indices are readily available in most commercial/non-commercial software such 

as Mplus (Muthén& Muthén, 1998-2011) and lavaan (Rosseel, 2012), yet it is built upon a 

strong assumption that all the constrained parameters are truly invariant. Only when this 

assumption holds, the values of model modification indices are reliable. Ironically, this is not 

a testable assumption.  

The parameter comparison approach is an item-level analysis (Cheung & Lau, 2012; 

Meade & Bauer, 2007; Zumbo & Koh, 2005), which does not require imposing invariance 

constraints on model parameters, and thus is able to examine the invariance of all items 

simultaneously. Precisely, this approach proposed using 1000 bootstrap samples created by 

modern statistical software (e.g., Mplus) to compute a set of parameters (i.e., Δλ(*', Δτ(*') 

representing cross-group differences in factor loadings and intercepts (Cheung & Lau, 2012; 

Meade & Bauer, 2007). An item is deemed to be noninvariant if the bias-corrected CI’s of 

any of their Δ  parameters do not include zero. Compared to the previous two methods, the 

parameter comparison approach simplifies the multiple testing steps to one and eliminates the 

need for estimating constrained models that often lead to non-convergence issues. However, 

because multiple hypotheses are tested at the same time, this method does require an 

adjustment for the nominal α level to minimize the overall Type I error rate. 
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2.1.2 Bayesian approach in detecting non-invariant items 

Under the frequentist framework, the goal of MI testing is to achieve exact invariance 

and the decisions of MI testing are usually dichotomous. Thus, there are no cross-group 

differences allowed when estimating MGCFA models. Some recent studies under the 

Bayesian framework argued that an absolute invariance can hardly be achieved in practice 

and allowing a small “wiggle room” on group constraints is a more reasonable option 

(Muthén & Asparouhov, 2012, 2013, 2017). Therefore, the concept of approximate 

invariance was proposed where small variance priors (e.g., an area ~ N (0,.05)) are utilized to 

represent approximate equality constraints under the Bayesian SEM (BSEM), (Muthén & 

Asparouhov, 2012, 2013, 2017; Pokropek et al., 2020; Van de Schoot, Kluytmans, Tummers, 

Lugtig, Hox, & Muthén, 2013). Along with this Bayesian approach, researchers have 

developed an item-level analysis under MGCFA to identify non-invariant items via 

evaluating posterior distributions of parameter differences (e.g., ΔH&*%) (Shi, Song, 

DiStefano, Maydeu-Olivares, McDaniel, & Jiang, 2019, Shi, Song, Liao, Terry, & Snyder, 

2017). Like in the parameter comparison approach, a set of Δ parameters are pre-defined and 

serve as a threshold that allows certain parameter differences.  The models are then estimated 

under approximate invariance constraints (i.e., small variance priors) in Bayesian MGCFA 

(Shi et al., 2017, 2019). Two assessment criteria are used in deciding non-invariant items: 1) 

95% credible interval (CrI), 2) 95% highest density interval (HDI). The rule of thumb states 

that if the 95% CrI of posterior distributions of any parameter difference excludes zero, or the 

95% HDI of posterior distributions of any parameter difference falls within a region that is 

deemed to be practically equivalent (i.e., region of practical equivalence: ROPE), then non-

invariance is detected for that specific parameter (Kruschke, Aguinis, & Joo, 2012; Shi et al., 

2019).  
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Another major critique on frequentist methods in MI assessment pertains to the null 

hypothesis significance testing (NHST) (Kruschke 2011; Wagenmakers, Lodewyckx, 

Kuriyal, & Grasman, 2010). Researchers argued that NHST used by frequentist methods 

hardly ever provides evidence in favor of invariance given that it infers non-invariance 

through the rejection of null hypotheses (Verhagen, Levy, Millsap, & Fox, 2016). To 

overcome this issue, a bayes factor (BF) approach was proposed to gather evidence in support 

of invariance and non-invariance hypotheses, for each parameter in IRT modelling (Verhagen 

& Fox, 2013; Verhagen, Levy, Millsap, & Fox, 2016). In Verhagen et al., (2013; 2016) 

studies, a set of cross-group differences for each parameter of interest are pre-defined as Δ 

parameters, which are then being used to evaluate for invariance. Specifically, the 

probabilities of Δ parameters as zero are approximated using their posterior distributions 

(C(∆+= 0|K,, L), and the probabilities of Δ parameters as non-zero are assumed under some 

normal condition (i.e., Cauchy distribution). Then, a Savage-Dickey density ratio is used to 

calculate the BF01 = +(∆!/0|2",4)
+(∆!/0|2")

  (Dickey, 1971; Kass & Raftery, 1995), where the BF01 

reflects the ratio between the probability of invariance and non-invariance for each Δ 

parameter given the data. Using a rule of thumb, the invariance is said to be held once a BF01 

exceeds 3, while non-invariance is detected if a BF01 is less than 1/3. Notably, Verhagen and 

colleagues’ work was the first to demonstrate the use of BFs to infer MI and to underscore its 

ability to obtain fine grained comparisons for a large number of relevant parameters. 

Verhagen and colleagues’ item-level invariance testing appears to be desirable since the 

identifications of non-invariant items and model invariance are accomplished in one step.  

One question that needs to be asked is what should be the best choice of prior 

distribution on Δ	parameters in the Bayesian MI?  Whether the choice of the prior 

distributions on	Δ	parameters will impact the detection of non-invariant items is 
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inconclusive (Shi et al., 2017, 2019; Verhagen et al., 2012, 2016). Shi et al., (2017, 2019) 

have examined the influence of using highly informative priors (i.e., N(0, 0.001), N(0, 0.01), 

N(0, 0.05), N(0, 0.1)) and non-informative prior on detecting non-invariant items and found 

that the difference is minor. In Verhagen and colleagues’ studies (2012, 2016), two different 

prior distributions (i.e., standard normal distribution, Cauchy distribution) have been used to 

obtain BFs for detecting the non-invariant items. They found that under a small sample size 

condition, a more informative prior could lead to a higher Type II error rate, which means 

that non-invariant items are more likely to be falsely identified as invariant (i.e., false 

negative). The choice of priors should reflect researchers’ belief about the reality to some 

degrees. In the context of detecting non-invariant items, the goal is to determine the 

invariance status of items: invariant or non-invariant. However, the priors have been used for 

Δ parameters in previous studies such as N(0, 0.01), or N(0, 1), is either too close to 

invariance, or way too diffuse to stand for any belief, which may be computationally 

advantageous, but not theoretically sound. Here, we believe that a two components mixture 

prior (Spike-and-Slab) or its closely related prior such as horseshoe (HS) could be a better 

choice in detecting non-invariant items.   

This section has summarized some existing methods that have been developed for 

locating non-invariant items in most psychological research. The next section will introduce a 

Bayesian method for detecting non-invariant items from a novel perspective – Bayesian 

variable selection. 

2.2 Proposed Methodology: Using Bayesian Variable Selection Methods to detect non-
invariant item 

The previous section has shown that the most straightforward way of locating non-

invariant items is directly assessing the parameter difference of each item. In a frequentist 



 
 

 

25 
 

framework, the parameter difference is usually calculated after estimating MGCFA models, 

which takes two steps. In contrast, within a Bayesian framework, the parameter difference 

can be defined beforehand and estimated in one step. Additionally, there is no distribution 

assumption needed for significance testing within Bayesian framework. Yet, one question 

that remains is how to select an appropriate prior for the difference parameter. Priors have 

been used in previous Bayesian MI research mainly focused on the computational part of the 

model estimation. The conceptual part of prior selection for identifying non-invariant items 

has rarely been discussed. For well-established scales or measurements, it is reasonable to 

assume that most scale items operate in the same way for participants with different group 

memberships or being measured at different time points. In other words, the number of non-

invariant items is expected to be much smaller compared to the number of invariant items. 

Thus, the detection of non-invariant items problem can be viewed as a classical variable 

selection problem, where there is a large number of predictors yet only some of them are 

deemed to be relevant (e.g., Ishwaran & Rao, 2005). This requires finding a sparse solution 

where only some of the difference parameters are effective (Carvalho, Polson & Scott, 2009). 

Therefore, we need to find specific kinds of priors that are able to pick up signals (non-

invariance) while allowing noise (invariance). These kinds of priors are often being used in 

solving Bayesian variable selection problem/ Bayesian sparse learning cases where only 

some of the predictors in a regression model are considered to be relevant. The logic of 

variable selection can be applied to the identification of non-invariant items. In this 

dissertation we will propose a Bayesian variable selection method for identifying non-

invariant items.  In the remainder of this chapter we will discuss: First, how to approach the 

identification of non-invariant items as a variable selection problem; next we will describe 

how to identify non-invariant items within a Bayesian framework using a horseshoe (HS) 

prior used in Bayesian model selection; Finally, we will conduct a simulation study to 
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investigate the performance of HS priors in identifying non-invariant items under various 

conditions.  

2.2.1 Reframing Non-invariance as the presence of an effect 

To test if cross-group differences are present, we can introduce a variable or a set of 

variables to stand for the cross-group difference of each item in factor loadings, intercepts as 

well as residual variances, and conduct statistical testing to see if any of their coefficients 

deviate from zero. In the context of identifying non-invariant items, the absence of an effect 

would indicate invariance, while any significant deviations from zero of an effect would 

otherwise suggest non-invariance. Therefore, we can achieve the goal of detecting non-

invariant items as identifying effective predictors in a linear regression fashion. 

2.2.2 Using hyperparameters to define cross-group differences 

In a frequentist statistical framework, defining variables that capture cross-group 

differences is often done by taking the parameter difference after the MGCFA model has 

been estimated (Cheung & Lau, 2011; Jung & Yong, 2016, Meade & Bauer, 2007). Yet, it is 

not easy to conduct statistical testing for these “difference” variables given that they don’t 

have standard errors and thus some additional statistical adjustments are also needed (e.g., 

generate bootstrapped confidence intervals). Within a Bayesian statistical framework, this 

issue can be directly addressed by using hyperparameters to represent cross-group differences 

and the estimation process can be reduced to one step. We hereby use a set of Δ parameters to 

represent cross-group differences of factor loading (Δ6), item intercepts (Δ7), and residual 

variances (Δ8). The remaining question is how to select an appropriate prior distribution for 

these Δs. 
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2.2.3 Prior choice on the cross-group difference 

Now, return to the question of detecting non-invariant items, the hypothesis being 

tested is whether a cross-group difference is present or not.  That is, the prior distribution of 

the Δ coefficients should be chosen in a way to support this dichotomized decision. While we 

expect that most of the Δ‘s should be close to zero, indicating invariance, the prior 

distribution needs to allow some signals large enough to be detectable in order to detect non-

invariance. A closely related question has been studied in the context of Bayesian sparse 

learning, where the goal is to identify a small number of relevant predictors from lots of 

irrelevant ones (Carvalho, Polson & Scott, 2009; Ishwaran & Rao, 2005; Piironen & Vehtari, 

2017). From a Bayesian learning point of view, there are two families of prior distributions 

that have been discussed in solving sparse estimation problems: shrinkage priors and two 

component discrete mixtures (Carvalho, Polson & Scott, 2009). Shrinkage priors model the 

effects of predictors using a complete continuous distribution that approximates zero. While 

two component discrete priors, which are also called “Spike-and-Slab” priors, use a point 

mass at zero to shrink irrelevant predictors to zero and a complete continuous distribution to 

capture non-zero effects. For this purpose, “Spike-and-Slab” priors perfectly mimic MI 

situations where most of the cross-group differences are expected to be zero and only a small 

number of them significantly deviate from zero and thus should be the most ideal choice. 

However, “Spike-and-Slab” priors are not ready for use in some popular Bayesian statistical 

modelling tool due to the sampling issue (e.g., Stan).  Alternatively, shrinkage priors are 

relatively easy to implement, computationally convenient and even result in a similar 

performance (Carvalho et al., 2009, 2010; Piironen & Vehtari, 2016, 2017). One notable 

example is the so-called “horseshoe” (HS) prior which exhibits comparable performance to 

“Spike-and-Slab” priors in solving sparse estimation issues. The HS prior contains some 

desirable properties that enable it to handle different sparse patterns while allow large effects 
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to manifest (Carvalho et al., 2009, 2010). Therefore, we adopt the HS prior in this work 

rather than the “Spike-and-Slab” prior. Next, we will describe the HS prior in greater detail 

and we will show how it can be used to detect non-invariant parameters within a MGCFA 

model. 

2.2.4 Detecting non-invariance using the Horseshoe shrinkage prior  

Let us start introducing the HS prior by considering a generically defined parameter 

difference Δ given a MGCFA model, where (Δ|β) ∼ N(β, σ!I). Δ represents the cross-group 

differences in factor loadings, intercepts and residual variances, and β stands for the 

coefficient for all Δ parameters. Assuming there is a total of K items for three parameters 

(factor loadings, intercepts, and residual variances) in a scale and only few of them are 

expected to exhibit non-invariance, we can then set the HS prior for Q =

RQ,, Q!, Q9… , Q{9∗"}T 

																																												Q=|	H= , U ∼ =(0, H=
!U!)	

																																					H= ∼ V>(0,1), W = 1,… ,3 ∗ A.                                         (2.1)	

Where there are total 3*K parameters to be estimated, and only few of them are deemed to be 

relevant. H= is referred as local shrinkage parameters for each Q=, U is referred as a global 

shrinkage parameter as a scaling factor, and V>(0,1) is a half-Cauchy distribution describing 

H=. When handling sparsity issues, the global shrinkage parameter U regulates all Δ towards 

zero, while the local shrinkage parameter H= permits some effective [= to escape from the 

shrinkage. In the context of detecting non-invariant items, the HS prior’s tall spike around the 

origin shrinks the coefficients of invariant parameters towards an infinitely small value, while 
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its flat Cauchy-like tail allows the coefficients of non-invariant parameters remain large (see 

Figure 2. 1) (Carvalho et al., 2009, 2010; Piironen & Vehtari, 2016, 2017). 

Figure 2. 1 

The Horseshoe Prior 

 

This framework meets the model assumption of MI where there is a small number of 

items that are expected to be non-invariant. In other words, some Q values should deviate 

significantly from zero and take on meaningful quantities, while other Q values, which are 

around zero, should be compressed towards zero. To illustrate, we borrow the idea from 

Carvalho et al., (2010), first assume that  U! 	= 1 and define a random shrinkage weight \= =

1/(1 + λ=
!), which stands for the amount of weights that the posterior mean of Q= takes on 

zero given the data ^: 
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;(β=_^= , λ=
!) = ` 6#

,>6#
a ∗ ^= + `

,

,>6#
a ∗ 0 = (1 − \=) ∗ ^=.                         (2.2) 

Given \= is bounded between 0 and 1, and thus according to Fubini’s theorem,   

;(Q=|^) = ∫ (1 − \=)^=π(\=|^)e/=
0

,
= {1 − ;(\=|^=)}	^.                         (2.3) 

By examining the prior choices on \= that are implied by different π(λ=), along with this 

transformation, we can then get a clear idea about the advantage of applying the HS prior to 

distinguish between non-invariance (signals) and invariance (noises). As in equation (2.1), 

λ= ∼ V>(0,1) suggests that \= ∼ hi(1/2,1/2), a symmetric density that is bounded between 

0 and 1. This horseshoe shaped distribution indicates that two things are expected in the data: 

Strong signals indicate non-invariances (/	 ≈ 0, no shrikage), and noises indicate invariances 

(/	 ≈ 1, complete shrinkage).  

2.2.5 Using a Bayes Factor in quantifying non-invariance  

To evaluate the invariance status of each parameter via the posterior distribution of 

βs, we need to select an appropriate decision-making tool. There are several commonly used 

metrics such as 95% credible intervals (CrI), Bayes factors (BF), and Bayesian predictive 

probabilities. Out of those, we consider a Bayes factor (BF) approach, as it has shown good 

performance in the evaluation of different degrees of invariance and non-invariance in a 

Bayesian IRT framework (Verhagen et al., 2016). Indeed, BFs have a long history of serving 

as a decision-making tool for model/variable selection and they convey information on how 

much more likely one model/hypothesis is, in relation to another one given the data.  

A Bayes factor represents the probability of the data under one hypothesized 

mode(H0) relative to another (H1). Each model consists of a likelihood function and prior 
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distributions over the unknown parameters. In hypothesis testing, the prior on a parameter 

encodes the uncertainty in the parameter given the hypothesis. For example, if H0 posits that 

a parameter is exactly zero, then the prior is a point mass at zero. Alternatively, if H1 posits 

that a parameter has a .95 probability of being between -1.96 and 1.96, and a .50 probability 

of being either positive or negative, then the prior may be based on a standard normal 

distribution. The likelihood of the data is integrated over the priors of each hypothesis to 

yield marginal likelihoods: p(D|Hk)= ∫p(D|θ,Hk)p(θ|Hk)dθ. The BF then is simply the ratio of 

these marginal likelihoods: BF01 = +(4|2$)
+(4|2")

. The ratio reflects the relative support of one 

hypothesis over another, accounting for uncertainty in the hypothesized parameters. Hence, 

the BF provides the evidence in form of a likelihood ratio that takes into account the data and 

the prior reflecting different hypothetical predictions (Wagenmakers, 2007). While the BF 

yields a continuous measure of the ratio, Raftery (1995) has proposed that any values of BFs 

larger than 3 can be deemed as supportive evidence – it’s important to note that this threshold 

is arbitrary. The ratio of a BF reflects how many times more likely the support for one 

hypothesis over another is. For instance, if BF01 > 3, the data are at least three times more 

likely under H0 than under H1. Conversely, if BF01 < ⅓, the data are at least three times more 

likely under H1 than under H0. If neither condition is met (i.e., BF’s of 1/3 to 3), then the data 

are insufficient for distinguishing between these two models (cf. Wagenmakers et al., 2010).  

In the context of assessing invariance, H0 can be defined as the invariant model and 

H1 as the non-invariant model. Similarly, this approach can be used to infer differences 

among single model parameters, such as, for example, differences in factor loadings or 

intercepts. To assess the evidence in favor of invariance, one can compute the BF01 for each β 

parameter and evaluate whether invariance is tenable (BF01 > 3), non-invariance is tenable 

(BF01 < ⅓), or the data are insufficient to make a decision (⅓ < BF01 < 3) (Jeffreys, 1961). 
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Several methods are available for approximating BFs (Kass & Raftery, 1995), and one of 

such is called Savage-Dickey density ratio test, which is commonly used on statistical models 

with equality constraints on one or more parameters. Because invariant models are nested 

within non-invariant models (where some difference in parameters, Δp, is zero), thus the BF01 

supporting H0 can be reduced to the ratio between the posterior probability density of H0 and 

the prior belief about the state of invariance. Hence, the BF01 can be obtained using the 

Savage-Dickey density ratio: +(∆!/0|2",4)
+(∆!/0|2")

  (Dickey, 1971; Kass & Raftery, 1995). Figure 2. 2 

represents three versions of possible BF scenarios where the solid line represents the H1 and 

the dotted line represents the H0. The filled circle represents the density at zero for both 

hypotheses and their respective ratio corresponds to the BF. The benefit of this approach is 

that evidence for both invariance and non-invariance can be assessed for each parameter 

simultaneously. 
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Figure 2. 2 

The decision rule of invariance with BFs 

 

2.3 Method  

For the current application, we first define priors for all parameters in a one factor 

MGCFA model with two groups. Bayesian models result in posterior distributions on 

parameters as functions of the data, likelihood, and priors: p(Λ ,ϕ, Θ , Y |x) µ p(x|Λ ,ϕ, Θ ,Y) 

p(Λ ,ϕ, Θ ,Y).   The prior for each item W in group k can be defined as: 

Θ",==
*, ∼ γ(1, .5) 
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µ"= ∼ =(0,1) 

ν"= ∼ =(0,1) 

Y" ∼ =(0,1) 

where Θ",==*,  is the residual covariance, µ"= is the intercept, ν"= is the factor loading and Y" 	is 

the latent mean. 

Next, we assign Δ? , Δ@to denote the cross-group differences in factor loadings and 

item intercepts, so that the priors of their coefficients for each item i follow:  

βA= ∼ =(0, λA=
! τ!) 

β7= ∼ =R0, λB=
! τ!T 

where λC ∼ V>(0,1) that is commonly used in the HS prior. For the global shrinkage 

parameter τ, we chose a V>(0,1) that was previously proved to yield a good performance in 

Bayesian variable selections (Carvalho et al., 2009; Gelman, 2006). 

The prior corresponding to the non-invariance hypothesis (H1) was set to standard 

normal, and the posterior density at 0 was estimated using the logspline estimator (Stone, 

Hansen, Kooperberg, & Truong,1997). The BF01 was computed as the ratio of posterior and 

prior density at zero, for each parameter. The BF was then used to support invariance (BF01 > 

cutoffs), non-invariance (BF01 < 1/cutoffs), or neither due to the uncertainty in the data 

(Jeffreys, 1961). 
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2.3.1 Overview of Study 1 

In order to evaluate the method of detecting non-invariant items posed above, we 

conducted a simulation study where a variety of conditions and datasets were generated to 

mimic real situations. The data generation process, the simulation design, model fitting 

strategy and the performance evaluation metrics are described below. 

2.3.2 Data generation process 

The data were simulated based on a two-group (J=2) MGCFA population model with 

a single latent factor, continuous items and satisfied for configural invariance. For parameters 

values, we followed the previous study (Shi et al., 2017). One group served as the reference 

group where the factor mean and factor variance are fixed to be zero and unity, respectively. 

While the other group served as the focal group where the factor mean and factor variance 

are fixed to 0.5 and 1.2, respectively. For both focal and reference group, I set the population 

value of all item intercepts and residual variances to 0.6 and 0.3, respectively. For the number 

of non-invariant items, 1/3 of items are allowed to differ both on factor loadings and 

intercepts (i.e.,). 

2.3.3 Simulation Design 

 The following factors were found important to MI testing in previous studies (e.g., 

Liu & Aitkin, 2018; Yoon & Millsap, 2007): sample size, scale length, the amounts of non-

invariant items, the magnitude of non-invariance in factor loadings, the magnitude of non-

invariance in intercepts, and item reliability 1, and thus were included as simulation 

conditions as described below. Both groups were simulated with equal sample size including 

200, 400, 600 observations per group, which was considered as small, medium, and large in 

 
1 To vary item reliability, the communalities of .5, .6, and .7 which represented for low, medium, and high 
reliabilities were used and, residual variances were set to .3, for all items. 
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terms of sample size. The scale length was set to either 6 items or 9 items, which there are 1/3 

items were set to be non-invariant on both factor loadings and intercepts. The scale lengths 

were considered common for psychological measurements. The magnitude of non-invariance 

in factor loadings2 were set to 0.2 and 0.4 which were considered as small to large difference, 

respectively. The magnitude of non-invariance in item intercepts were set to 0.15 to 0.3 

which were considered as small to large difference, respectively. This led to three patterns of 

differences as following: 1) Small difference, where loadings and intercepts differ for 0.2 and 

0.15 respectively; 2) Large difference, where loadings and intercepts differ for 0.4 and 0.3 

respectively; 3) Mixed pattern one, where loadings differ for 0.4 while intercepts differ for 

0.15; 4) Mixed pattern two, loadings differ for 0.2 while intercepts differ for 0.3. This yields 

72 unique conditions (see Table 1), each of which was replicated 100 times.  

Table 1 

Simulation Design 

Simulations Condition     
Sample Size 200 400 600  
Item Reliability .45 .55 .58  
Magnitude of Difference 
on factor loadings 

.2 .4 .4 .2 

Magnitude of Difference 
on intercepts  

.15 .3 .15 .3 

Number of items 6 9   
Note. Both of the item reliability and the magnitude of difference are on a standardized scale. 
 

2.2.4 Model fitting strategy 

For the MGCFA model identification, the current study followed the reference 

indicator (RI) approach which had been recommended for MI testing (Rensvold & Cheung, 

 
2 A relative difference is used given that the differences of .2, .4 are weighted differently for different item 
reliabilities. More details about the equating process are available in the appendix A. 
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2008; Yoon & Millsap, 2007). Specifically, the mean and variance of the reference group 

were set to zero and one, respectively. Additionally, one invariant item was selected as RI 

and constrained to be equal between groups. Then, the model was fitted using Hamiltonian 

Monte Carlo sampling via Rstan (Stan Development Team, 2020; R Core Team, 2014) with 

3000 iterations and four chains to obtain standardized posterior samples for each parameter of 

interest (i.e., β for all Δs). Convergence of Monte Carlo chains was assessed using the 

potential scale reduction factor threshold of Rˆ < 1.1(Gelman & Rubin, 1992).  All models 

estimated here converged, with all Rˆ values below 1.09. 

2.2.5 Metrics of evaluating the performance of HS priors in detecting non-invariant 
items 

Because the Bayes factor can favor invariance (H0), non-invariance (H1), or neither, 

the following five metrics were used to assess performance. The first one is certainty, defined 

as the proportion of all comparisons yielding certain decisions in the sense that the resulting 

BF01 was exceeding the threshold. Next, are Sensitivity, defined as the proportion of all non-

invariant parameters detected as non-invariant, and Specificity, conversely defined as the 

proportion of all invariant parameters detected as invariant. These two metrics represent the 

ability to detect non-invariant and invariant parameters, but do not reflect accuracy. For 

example, specificity may be high (most invariant parameters are detected), but many non-

invariant parameters may be mistakenly classified as invariant. Hence, we supplemented it 

with two other metrics that describe decision accuracy: Positive predictive value (PPV), 

defined as the proportion of all parameters detected as non-invariant that are truly non-

invariant, and negative predictive value (NPV), defined as the proportion of all parameters 

detected as invariant that are truly invariant. In the ideal scenario, all four metrics will be 1, 

meaning there is a high probability of classifying parameters as non-invariant or invariant, 



 
 

 

38 
 

and the classification is accurate. These metrics were computed across all items on each 

simulation replication. 

2.4 Results  

The simulation results are presented in Figure 2. 3. As mentioned earlier, certainty 

describes the ability to make a decision, either for or against invariance. As expected, the 

magnitude of non-invariance and item reliability all showed impacts on certainty rate. In 

most simulation conditions, a high item reliability, and a large magnitude of non-invariance 

led to an increasing decision rate. Interestingly, a large sample size did not show notable 

impact on decision rate except when the magnitude of non-invariance was large. 
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Figure 2. 3 

Simulation Results using BF of 3 as Decision Rule 

 

Sensitivity describes the ability to detect non-invariance. Sensitivity increased with 

sample size across all simulation conditions. That is, as sample size increased, the probability 

of detecting non-invariant parameters increased as well. The magnitudes of non-invariance 

and item reliability altered sensitivity. Larger differences in parameters were more readily 

detectable, and sensitivity therefore increased, regardless of the item reliability. On the other 

hand, a higher item reliability increased the probability of detecting non-invariant parameters 

when the parameter difference was less prominent. That was to say, a smaller parameter 

difference was more detectable with a higher item reliability. The sensitivity rate significantly 

increased as a function of sample size for the 9-item scale when parameter differences were 
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small (see purple line in Figure 2. 3), but this was not the case for the 6-item scale. This 

asymmetry may be due to the reason that the number of non-invariant parameters was 

doubled for the 9-item scale compared to the 6-item scale, which thus increased the chance of 

detecting non-invariant parameters.  

 Specificity describes the ability to detect invariance and it was only expected to be 

impacted by sample size and item reliability. Notably, specificity was unaffected by the 

magnitude of non-invariance as it does not depend on parameter differences. That is, the 

ability to detect invariant parameters is not affected by the presence and magnitude of non-

invariance in other parameters. Specificity was perfect, which achieved 100% across all 

simulation conditions. This suggests that identifying invariant parameters was easier than 

non-invariant parameters using the HS prior under the current simulation conditions. 

Both positive and negative predictive values were high across all conditions. This 

suggests that when a parameter is classified as invariant or non-invariant, the classification is 

generally accurate. Even in the worst case, the decision accuracy remained high on average. 

For example, for low reliability, small N, and small non-invariance conditions, predictive 

values were larger than .80. In the best of conditions (large sample size, reliable items, large 

non-invariance), the HS prior has an almost perfect probability of accurately discerning 

invariant from non-invariant parameters. When N was small, the result suggest that more data 

was needed, and the decision was neither invariance nor non-invariance.  

2.5 Discussion  

Measurement invariance permits meaningful comparisons in psychological constructs 

across different populations and measurement occasions. However, it is often found hard to 

achieve full MI in most empirical studies. Instead, researchers could choose alternative model 
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fitting strategies such as fitting a partially invariant model or deleting non-invariant items. 

This would require identifying all non-invariant items beforehand. Detecting non-invariant 

items is considered a difficult task because it can only be achieved via a series of constrained 

model comparisons for the most of MI assessments that focus on model-level analyses. In 

addition, the detection of non-invariance often relies on significance tests based on the χ 2 

difference statistic or on critical differences in goodness of fit indices (e.g., Δ CFI, RMSEA; 

Chen, 2007; Cheung & Rensvold, 2002). These methods face two challenges: 1) Constrained 

model comparisons not only are cumbersome, but also inflate Type I or II rates and 2) they 

fail to provide direct evidence supporting non-invariance. Alternatively, Bayesian methods 

have shown great promise in MI assessments. For example, Verhagen et al., (2016)’s Bayes 

factor approach provides a method to gather supportive evidence for invariance on item-level 

in the IRT framework. Shi et al., (2017; 2019) utilized approximate invariance to identify all 

non-invariant items at once in the MGCFA framework. The current study proposed to apply a 

Bayesian variable selection method, where identifying non-invariant items followed a similar 

approach as variable selection. Specifically, we made use of the HS prior on pre-defined 

parameter differences for each item to compress negligible effects representing invariance 

while capture large effects representing non-invariance and then used Bayes factors to gather 

supportive evidence for making decisions.  

In this dissertation, we demonstrated how the HS prior along with Bayes factors could 

be used to detect non-invariant items simultaneously. A Monte Carlo simulation study was 

conducted to examine the performance of a HS approach under several conditions varying in 

sample size, length of scale, item-reliability, and magnitude of parameter non-invariance. The 

results suggest that the HS prior variable selection approach performed well in detecting non-

invariance at the item-level.  
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2.5.1 Considerations regarding the choice of the prior   

Verhagen et al., (2016) recommended a less informative prior (i.e., Cauchy 

distribution) as a better option for MI testing. Shi et al., (2017) found that different prior 

choices did not significantly impact the MI assessments. The current study advocated to use 

the HS prior in detecting non-invariant items for two reasons. First, from a theoretical 

perspective, the prior distribution represents our pre-existing belief about invariance, which 

should be either yes or no before seeing the data. Indeed, the shape of HS distribution 

perfectly fit this situation where high density around its origin mimics the invariance and 

Cauchy like tail mimics the non-invariance. Second, the HS prior is known for its excellent 

performance in identifying effective predictors and producing BMA-like results. Yet, it 

should be noted that a large sample size and a large amount of difference are key to detecting 

non-invariance. Again, from a practical view, this situation indicates the existence of a true 

difference. And statistically speaking, a large sample size and magnitude of difference lead to 

a narrower posterior distribution which also peaks far away from zero, regardless of prior 

distributions. 

2.5.2 Sample size considerations 

Previous studies have shown that sample size is a critical factor in MI testing (Chen, 

2007; Cheung & Rensvold, 2002; French & Finch, 2016). Because the χ2 test is highly 

sensitive to a large sample size, a negligible model misfit may lead to the model rejection, 

and support for non-invariance.  Unlike the NHST approach, Bayes factors evaluate the fit of 

both invariance and non-invariance hypotheses. Consequently, although negligible misfit 

may be present in the observed data, the invariance hypothesis may nevertheless fit better 

than the non-invariance hypothesis. Therefore, the effect of large sample sizes on sensitivity 

to negligible misfit is attenuated. 
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As expected, larger sample sizes produce more conclusive Bayes factors in favor of 

either hypothesis. When data are insufficient for deciding between non-invariance and 

invariance, BF’s appropriately suggest that the evidence is weak. To avoid inconclusive 

Bayes factors, we would encourage researchers to collect sample sizes that are no less than 

200 participants per group in order to accrue strong evidence either for or against 

measurement invariance. Moreover, the current simulation suggests that decisions based on 

the BF’s are generally accurate, even when few decisions can be made. 

2.5.3 Considerations on the threshold of BFs 

The choice of BF01 cutoff is all arbitrary, just like the choice of an alpha level (or p 

value) in NHST (Raftery, 1995; Wagemaker, 2007). Although different in practical 

implication and statistical interpretation, both p value and BF01 reflect the level of 

researchers’ confidence in making decisions. For instance, if we are confident in making a 

decision when one hypothesis is 3 times more likely than the competing hypothesis, choosing 

a relatively low Bayes factors cutoff (i.e., BF01 = 3) will be acceptable. If we think even 

stronger evidence is needed when making decisions (e.g., medical research, clinical trials), 

choosing a high Bayes factors cutoff that exceeds 20 may be more reasonable (cf. Raftery, 

1995). We recommend the BF01 of 3 as a reasonable choice for decision making criterion in 

detecting non-invariant items. However, as the practical significance of statistical results may 

vary across research areas and from studies to studies, researchers should adjust this value 

accordingly.  

2.5.3 Limitations and Future Directions 

Despite the usefulness of the HS prior variable selection approach in detecting non-

invariant items, there are several limitations to keep in mind. The current study only 

examined the performance of the HS prior in a simulated condition where the data were 
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normally distributed with no missing values, equal sample size among groups, and the model 

structure was simple (i.e., only contained one latent factor without item cross-loadings or 

correlated residual variances). For greater generalizability, future studies should investigate 

the performance of the HS prior in different simulation settings, such as when the data 

contain missing values, sample sizes are unequal across groups, or the model structure is 

more complex (e.g., item cross-loadings, correlated residual variance). In addition, since our 

study is not the only one using Bayesian method in MI testing (see Liang, & Luo, 2019; 

Muthén et al, 2013, 2017; Shi, Song, DiStefano, Maydeu-Olivares, McDaniel, & Jiang, 

2019), future studies could compare each method and discuss some pros and cons in taking 

each approach.  

Some studies have suggested that the traditional MI assessments allowing zero cross-

group difference was too restrictive in empirical studies and thus permitted small differences 

in MI testing (see approximate MI, Muthen et al., 2007). In our study, the HS prior variable 

selection approach did not perform well either when the magnitude of non-invariance was 

small. Despite the sample size requirement in quantifying small differences, one should also 

wonder if a small difference really matters for practical purposes, such as using a composite 

score (assuming tau-equivalence), or factor score for the purpose of selection or diagnosis. 

All simulation codes are available in Appendix A (see supplemental files).   
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3. Chapter 3 

Improving the Predictive Performance of Partially Invariant Models 

3.1 The issues of failure in Measurement Invariance and potential solutions 

Measurement Invariance (MI) is key to the validation of social science instruments 

(Lai, Richardson, & Mak, 2019; Meredith,1993). The establishment of full MI ensures the 

same measurement instruments can be applied with heterogenous populations (e.g., women 

and men), various time points, different testing formats (e.g., computerized V.S. papers), or 

multiple testing locations. The failure of MI may lead to a confound in the observed group 

differences (Lai et al., 2019; Millsap & Kwok, 2004). Nevertheless, achieving full MI is often 

found unrealistic in empirical studies. Indeed, often MI can only be partially fulfilled, and 

researchers need to search for alternative solutions. A number of strategies are available to fit 

the partially invariant model. One strategy is to ignore the non-invariance and still fit a fully 

constrained model, which has been shown to mostly produce biased results (e.g., Hisao et al., 

2018; Finch & French, 2016). Another is fitting a so-called “partially constrained model”, 

where the group constraints are relaxed on non-invariant parameters (Schmitt, Golubovich, & 

Leong, 2010; Shi et al., 2017). This approach usually leads to the most accurate estimates 

when the model is correctly specified. That is, there is no false detection of non-invariance 

which is not testable. A freely estimated model can also be an option that does not impose 

any group constraints on the model parameters (Shi et al., 2017). However, this model fitting 

strategy leads to an interpretational issue, because the latent construct may have different 

meanings between groups without equality constraints. It is also possible to delete non-

invariant items when there are enough items. However, a difficult question often arises about 

which option should be undertaken. This is mainly because that the impact of non-invariance 

is understudied, such that it is unclear that whether the quantities of non-invariance (small vs. 
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large), and the location of non-invariance (factor loadings or intercepts) will bias the model 

estimates. If yes, which matters more, and what parts of model estimates these non-

invariances impact the most: latent mean comparisons, regression coefficients, or correlations 

between factors? (e.g., Cheung & Rensvold, 2002; Lai, Richarderson & Mak, 2018; Shi et al., 

2017; Vandenberg & Lance, 2000). Therefore, there is no agreement on what the best 

practice in terms of fitting partially invariant models should be. In other words, researchers 

must explore potential model solutions each time when meeting with new data. This is 

common practice with SEM in the frequentist domain, where the primary goal of model 

selection is finding a model that describes the current data best (e.g., Kaplan & Lee, 2016).  

However, when using measurement models for diagnostic purposes (Lai, Richarderson & 

Mak, 2018; Millsap & Kwok, 2004), candidate selections (Lai, Yoon & Hsiao, 2017), and 

assessments/evaluations (Kaplan & Lee, 2016), researchers may desire a model that not only 

provides good estimates for current data, but also exhibit optimal predictive performance 

with future observations (Kaplan & Lee, 2016). After all, the goal of scientific psychology is 

not only explaining the underlying mechanisms of psychological phenomenon, but also 

forecasting human behaviors (Fokkema, Iliescu, Greiff, & Ziegler, 2022; Yarkoni & 

Westfall, 2017). Nevertheless, the majority of statistical models used in the field only satisfy 

for explanations, and rarely get to the point of predictions. This is no exception for partially 

invariant models. Thus, we need to search out a prediction-focused model fitting approach for 

practical purpose. For examples, clinical psychologists may want to build up a model for a 

well-established depression diagnostic scale for future prevention purpose (Lai et al., 2018); 

policy makers may want to improve the predictive performance of large-scale assessments in 

evaluating students’ progresses across-countries (Kaplan & Lee, 2017), or over time (Kaplan 

& Huang, 2021). Thus, this chapter will focus on investigating how to find a best model 

solution based on the predictive performance of measurement models when full MI fails. The 
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current chapter follows the following outline: 1) Presentation of the mathematical 

formulation of partial MI and the necessity of establishing full MI for using factor scores and 

measurement models, 2) discussion of current approaches using alternative model fitting 

strategies with partially invariant models, 3) discussion of the issue with Model selections in 

fitting partially invariant models and the prospective of using a Bayesian Model Averaging 

approach, and 4) discussion of the difficulty of averaging over the entire model space and 

proposition of  a Horseshoe prior approach as an alternative solution.   

3.1.1 Partially Invariant Models 

As discussed in the previous Chapter (see Chapter 2, section 2.1.1), strong invariance 

is a minimal requirement for achieving estimation accuracy when the factor scores are used 

for mean comparisons, latent traits evaluation, or predicting external variables (Millsap, 

2011; Jung & Yoon, 2016). The bias caused by the violation of MI can be illustrated in a full 

SEM model where an external variable is regressed on a latent factor with different 

populations, that is, in the case of a multigroup SEM (MGSEM) model. Following the 

discussion of bias in measurement and predictions by Millsap (2001), we can start with a 

simple linear regression containing multiple populations where the effect of group 

membership is not of interest. To eliminate the potential effect of group membership, a group 

variable is usually defined and included in the model as a predictor as follow:   

 

 o = Q0 + Q,"D&EFG + Q!"=HIJ&JKI, + Q9"=HIJ&JKI! + '																	(3.1)	
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Where Q0 is the intercept, Q,, Q! and Q9 denote the regression coefficients of "D&EFG 

indicating group membership, "=HIJ&JKI, and "=HIJ&JKI!, the other two key predictors of 

interests respectively, and ' is the error term. In equation (3.1), the effect of group 

membership on outcome o, if there is any, will manifest in Q,, so that the estimates of Q0 Q!, 

Q9  and '	will not be contaminated. What if we ignore the effect of group membership and 

omit it from equation (3.1)? Specifically, let’s fit a model without the grouping variable: 

  

o = Q0 + Q!"=HIJ&JKI, + Q!"=HIJ&JKI! + '			                             (3.2)	

(     

when equation (3.1) reflects the actuality, so that the invisible impact of group membership 

will be absorbed in any of Q0, Q!, Q9 or all of them. Consequently, the estimates of Q0, Q!, Q9 

will be surely biased, so is the error term. Although a simple model as equation (3.1) or (3.2) 

can never reflect the actuality, the difference between inclusion or exclusion of "D&EFG 

between two models suggests that ignoring the group membership when it effectively 

impacts the outcome variable in regression models may lead to systematic errors on future 

predictions. Similarly, in MGSEM models, any violations of MI will act as significant group 

effects in linear regression models, so that ignoring one or more non-invariances may lead to 

notable estimation bias in relevant parameters and inaccurate future predictions. To be clear, 

let’s write out the structural model concerning the regression path on an external variable 

o	as follows: 
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 																					o" = p0" + p,"Y# + q" 		 (3.3) 

where p0" is an r	 × 1 vector of intercept, p," is an r	 × 1 vector of regression coefficient 

and q" is an r	 × 1 vector of residual variance with ;(q" = 0)	and 012('" , q"). Thus, the 

predicted accuracy of o is depending on the estimate of latent factor \" which is allowed to 

vary across groups for controlling the group effect. Yet, the true group effect of Y# is related 

to the estimates of  s" and Q", and hence indirectly affected by the MI of the measurement 

model. As such, the attainment of strong MI is necessary in MGSEM models for achieving 

predictive accuracy (Millsap, 2011). For instance, one may be interested in assessing how 

well self-esteem predicts the quality of life while accounting for the gender difference within 

the given sample as well as for the future observations. Without knowing the invariance 

status of the measurement structure of self-esteem between men and women, one cannot say 

for sure that the gender effect is truly being accounted. The gender effect on predictors could 

be contaminated by the gender difference in the measurement model. Nevertheless, fulfilling 

all levels of invariance is known as being empirically difficult and some of the non-

invariances are often observed in s" or Q", or both. Thus, partial MI is considered as being 

more realistic for empirical studies (Lai et al., 2017; Millsap et al., 2004). With partially 

invariant models, controlling for group effects means allowing some levels of measurement 

non-invariance. If non-invariances are ignored and equal group constraints are enforced (e.g., 

fitting a strong invariant model) to maintain MI, the prediction of o should be expected low 

in accuracy. Although there is no cure for the failure of MI, some works exploring different 

model fitting strategies still have been done in an effort to utilize partially invariant models 

(e.g., Shi et al., 2017; Hsiao & Lai, 2018; Lai, Richardson & Mak, 2018; Lai et al., 2017). In 
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the next section, I will discuss current approaches in using different model fitting strategies 

with partially invariant models in a great detail. 

3.1.2 Current approaches in fitting models with partial MI  

MI testing aims for two goals: 1) validating the measurement structure of scales/tests, 

2) making sure the measurement model can be used as a part of full SEM or comparable 

across groups. In the former case, the task is completed either when full MI is established, or 

any of the non-invariant items are identified. Things start to become complicated in the latter 

case. When full MI is established, the task is completed given that either mean comparisons 

or full SEM can be proceeded with the measurement model. When full MI fails, researchers 

now have two options: 1) End the study and claim that MI fails so that it is invalid to use the 

measurement with heterogenous populations, or 2) identify the causes of the measurement 

non-invariance and try to fit a partially invariant model. The second option is often preferred 

in practice. Therefore, researchers often turn to search for alternative strategies to fit partially 

invariant models.  

However, as discussed previously, finding a good solution for partially invariant 

model is never an easy task. Challenges arise to fit a partially invariant model mainly based 

on two considerations. On one hand, we want the latent construct between groups to remain 

theoretically unchanged. Yet, without imposing full equality across groups, group means are 

difficult to interpret. On the other hand, the potential estimation bias on factor mean 

comparisons, path coefficients, or cross-factor correlations of different model fitting 

strategies may vary case by case, since it could be influenced by the number and quantity of 

non-invariance which are usually “unknown”.  The amount of bias in parameter estimates 

caused by different model fitting strategies is subject to a set of factors such as sample size, 

the pattern and magnitude of non-invariance, and scale length (e.g., Byrne et al., 1989; 
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Schmitt & Kuljanin, 2008; Shi et al., 2017). For instance, when the magnitude of non-

invariance is small, the difference in estimation bias among different model fitting strategies 

(e.g., fully constrained model versus partially constrained model) may be quite trivial (Shi et 

al., 2019); when the magnitude of non-invariance is small, deleting the non-invariant item or 

releasing the group constraint on non-invariant parameter may not lead to a much better 

result compared to fitting a fully constrained model. As such, some of these model fitting 

strategies may be more preferable than the others under certain conditions (Shi et al., 2019) 

(e.g., better model fit, higher more predictive accuracy, more theoretically sound).  

Several studies have been done that explore the impact of implementing different 

model fitting strategies with partially invariant models, such as examining the selection 

accuracy (Lai, Richardson & Mak, 2018; Lai, Kwok, Yoon & Hsiao, 2017; Millsap & Kwok, 

2004; Hisao & Lai, 2018), comparing the estimation bias in factor covariances, mean 

structures, regression coefficients and moderation effects (Byrne, Shavelson & Muthen, 

1989; Shi et al., 2019). This body of research underscores the practical significance of non-

invariance. They suggested that researchers should not stop at where full MI fails. Instead, 

other options should be explored for empirical uses, such as fitting partially invariant models, 

or using composite scores if the amount and of bias are acceptable. For instance, given a 

partially invariant model, how wrong could a decision on evaluation or selection be if a 

composite/sum score (Lai et al., 2017, 2018; Millsap & Kwok, 2004); how different partially 

invariant model fitting strategies will affect the estimates of other model parameters (Byrne, 

Shavelson & Muthen, 1989; Shi et al., 2019; Millsap, 2011; Hisao & Lai, 2018). Another line 

of research focuses on the practical inferences of using partially invariant models for 

predictions. Millsap (2011) has shown that the failure of attaining MI in exogenous variables 

may lead to notable estimation bias on the intercept of endogenous variables, but not so much 
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on the regression coefficient. Hisao & Lai (2018) investigated the impact of partial invariance 

on the moderation effects with multilevel data. This line of studies is relatively sparse and has 

not yet provided any conclusive answers regarding which model fitting strategies should be 

taken over others.  

3.1.3 Model Averaging Versus Model Selection 

Although identifying the best model is always desirable, there are some situations 

where different model fitting strategies are indistinguishable in terms of model fit or 

producing bias (e.g., produce similar estimates, fit data equally well). More importantly, no 

matter which model fitting strategy is selected, we are making inferences about population 

conditional on one single model. The fundamental issue of making decisions from a single 

model is that it ignores the uncertainty in model selection (e.g., Kaplan & Lee, 2018; 

Madigan & Raftery, 2012). The risk of being overly confident in the inference and decisions 

made from one single model is often underestimated (Hoeting, Madigan, Raftery & Volinsky, 

1999). This is especially the case for partially invariant models, where the pattern of non-

invariance can be complex and often varies case by case (Lai et al., 2017). Thus, taking a 

single model fitting strategy (e.g., fitting a partially constrained model) may not be optimal 

for estimating other parameters of interest, more importantly, for making scientific inference 

about population in general. Alternatively, there is a growing interest in employing Bayesian 

Model Averaging (BMA) techniques in SEM to improve models’ predictive performance and 

solving the uncertainty arising from model selections (Kaplan & Lee, 2016; Raftery, 1992).  

As previously discussed, many efforts have been made to search for the best model 

fitting strategy when MGCFA only holds for partial invariance. There are several limitations 

with existing methods. First, there are several factors affecting the final decision in selecting 

the best model fitting strategy (e.g., a fully constrained model, deleting non-invariant items, a 
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partially invariant model, a freely estimated models) such as the model selection criteria (e.g., 

model fit, predictive accuracy, estimation bias), the length of scale, sample size, or the 

amount of non-invariance (i.e., numbers, magnitudes). Second, the candidate models set 

increases as the non-invariant situations become more complex. For instance, the magnitude 

of non-invariance may be negligible on some parameters, but notable on others; some items 

may only establish for loading invariance, but not intercepts invariance. This leads to a large 

variation among different model fitting strategies within the candidate models set. Therefore, 

one problem arises during this searching procedure, that is, no matter which model is being 

selected, it is still questionable whether we can generalize the final solution to the general 

population. The popularity in model selection suggests that people often overlook the model 

uncertainty resulting from the large variation between potential model fitting strategies and 

be overly confident about the single model inference (Hoeting et al, 1999). To address this 

issue, the current study proposes a Bayesian model averaging (BMA) approach to accounting 

for the uncertainties in model selection procedure with partially invariant models.  

The BMA approach incorporates the model uncertainties by utilizing the information 

from all potential models (Clyde & Iversen, 2013; Hoeting et al, 1999; Madigan & Raftery, 

1994). Specifically, BMA estimates all candidate models to obtain averaged parameter 

estimates which are weighted by each model’s corresponding posterior probability. Several 

studies suggest that BMA provides a better out of sample prediction compared to any single 

model solution (Hoeting et al., 1999; Madigan et al., 1994). Kaplan et al., (2016; 2018) have 

discussed the application of BMA in SEM and showed that BMA exhibited a good predictive 

performance. According to Kaplan et al., (2016; 2018), BMA is particularly suitable for SEM 

when there are some competing theories about whether some paths should be 

included/excluded, and when researchers aim for improving model predictions. The same 
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logic can be applied for improving the prediction of partially invariant models, where the 

numbers and locations of imposing/relaxing equal group constraints are often uncertain. 

Therefore, we argue that using BMA technique could be a better solution rather than 

selecting a single best model. 

3.1.4 Bayesian Model Averaging 

A combined model approach using the Bayesian method has received extensive 

attention in statistical literature over the last decade (Clyde & Iversen, 2013). Two different 

frameworks of BMA have been discussed in the statistical literature (Bernado & Smith, 1994; 

Clyde & Iversen, 2013; Hoeting et al., 1999; Navarro, 2018; Vehtari, Simpson, Yao & 

Gelman, 2019). One view is referred as M-closed, where one holds belief that the true data 

generating model tI	is unknown but is included in a set of candidate models t =	 {tL , u	 =

	1. . . v}(e.g., Hoeting et al., 1999). The other perspective is referred as M-open, where tI is 

no longer a part of  {tM}, but can be approximated by using information provided by {tM} 

(Bernado & Smith, 1994; Clyde & Iversen, 2013). For current application, we will focus on 

M-closed framework and assume that the true data generating process is a part of {tM}.  

In M-closed framework, the true data generating model tI is included in the set of 

candidate models where t = {tL , u	 = 	1, 2, . . . v}. Recall that the quantity of interest in 

current study is cross-group difference for each parameter of interest (e.g., factor loadings, 

intercepts), which is defined as ". Hence its posterior distribution conditional on a dataset L 

can then be expressed as: 

 
 

#$(&) = )!"#$ #$*+! , &-#$(&)	
(3.4) 



 
 

 

55 
 

which is the averaged posterior distribution of " under each potential model in {tM} that is 

weighted by their posterior model probability, which can be written as:  

 
 

#$(+! 	|	&) = 	
#$(&	|	+!)#$(+!)

)!"#
$ #$(&	|	+!)#$(+!)

	
(3.5) 

where  

 
 

#$(&|	+!) 	= ∫ #$(&|	1! , +!)#$(1! 	|	+!)21! 	
(3.6) 

 

is the marginal likelihood of tL. 1L refers to the vectors of parameters in tL (e.g., for CFA 

model, 1L =	 (&, U, 8, :, p)), (w(xL 	|	tL)	denotes the prior density of 1L 	under  tL, 

(w(L	|	xL	, tL) is the likelihood and (w(tL) stands for the prior probability that tL is tI. The 

posterior means and variance for " can be expressed as: 

 3["	|&]	 =53	("|+! , &)#$(+!|	&)
$

!"#
	= 5#$(+!|	&)	"%6

$

!"#
	 (3.7) 

 78$[&] =5(78$["|	&,+!] 	+ "%&	
6 	)#$(+! 	|	&) 	− 	3["|	&]&

$

!"#
	 (3.8) 

This approach gets to the idea that the true model is within a known model searching space. 

Thus, tI will likely get the largest weight, while the model that differs from tI (contains 

less useful information) will get relatively smaller weight. Compared to any single model 

from {tM}, the averaged model solution has the advantage of covering both major 

information from the true model given the current data, and the peripheral information from 
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other potential models which may be ture in the general population. Hence, BMA is expected 

to provide a better predictive accuracy for future observations which has been shown via a 

logarithmic scoring rule: 

 −;	[z1{	{|(w([	|	tL , L)(w(tL|L)

M

L/,

	}] 	≤ 	−;[z1{	{(w([|	tL , L)}]	

 (Madigan et al., 1994, 1997). According to this logarithmic scoring rule, the smaller the 

value of the score is, the better the predictive task has performed (Good, 1995).  

3.1.5 The difficulty in BMA and using a Horseshoe Prior as an equivalent solution  

The essential issue of applying BMA techniques is that we have to build each possible 

model for constructing a candidate models set, and in a large SEM model this can result in an 

enormous model space (Hoeting, Madigan, Raftery, & Volinsky, 1999; Kaplan & Lee, 2016). 

In our special case -- partially invariant models, we can start with three models: t0: a fully 

constrained model, tH: a freely estimated model, t=:a partially constrained model as 

“anchoring” models. We view the model space {tM} as a continuum with limits, and then set 

t0 as its origin, tH as its endpoint, and t= as a mid-point that locates on this continuum 

somewhere between t0 and tH. The size of {tM} can be small if one limits the uncertainty 

only among anchoring models. Then we can obtain a size of {tM} which renders the 

summation of equation (3.7, 3.8) manageable. Yet, if one acknowledges that there are still 

some uncertainties among these anchoring models along the continuum, the size of  {tM} can 

grow much bigger. For instance, some non-invariant parameters may contain less group 

information (i.e., the magnitude of non-invariance is smaller), while the others contain more 

(i.e., the magnitude of non-invariance is more). Constraining those parameters with smaller 

amounts of non-invariance may not lead to a very different model. Similarly, deleting these 
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non-invariant items with low reliability (i.e., smaller factor loading) may not be the same 

compared to deleting highly reliable items. If we take all these potential models into 

considerations, the size of {tM} can grow to infinity, which leads to the complete summation 

of equation (3.7, 3.8) impractical. Two methods have been discussed in the literature to 

address this computational issue. The first one is called “Occam window” which attempts to 

reduce the size of  {tM} by excluding some trivial models (e.g., Madigan & Raftery, 1994; 

Kaplan & Lee, 2018), and only use the models that are retained by “Occam razor” to get the 

weighted average posterior distribution of the parameters of interest. The second approach 

lies in placing the horseshoe (HS) prior on the parameter of interests/uncertainties which has 

been shown producing “BMA-like” result and does not require collecting all potential models 

as the “Occam window”, hence is much less computationally demanding (Carvalho, Polson, 

& Scott, 2010; Piironen & Vehtari, 2016).  

Of course, the HS prior cannot fully substitute BMA under all conditions, but it can 

be used on partially invariant models: The main reason is that on the continuum of {tM}, all 

possible models are nested within each other such that one model can be turned into another 

by simply omitting/adding a path. This “turning on/off” action can be easily handled by 

placing the HS prior on the path of particular interest (e.g., cross group difference on 

loadings). Therefore, for improving the prediction of partially invariant models, we propose 

to use the HS prior as an equivalent solution to BMA. In the section 3.2, we will provide 

technical details about how to use the HS priors to with partially invariant models. 
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3.2 Using the Horseshoe Prior to Improve the Prediction of Partially Invariant Models  

3.2.1 The Horseshoe Prior 

The HS prior is frequently used to solve variable selection problem in Bayesian sparse 

learning literature and has been proven to produce BMA like estimates (e.g., Carvalho, 

Polson, & Scott, 2010; Piironen & Vehtari, 2016). Let’s start by introducing the HS prior in a 

simple example with linear regression where (Q) ∼ =(Q, �!Ä) and effects Q of predictors are 

assumed to be sparse. The HS prior states that each Q= holds for conditional independence 

with a density of  Å(U) which can be written as a scale mixture distribution (see Chapter 2, 

section 2.2.4, equation 2.1). When handling sparsity issues, the global shrinkage parameter U 

regulates all Q towards zero, while the local shrinkage parameter H= permits some effective Q= 

to escape from the shrinkage. (Carvalho et al., 2009, 2010; Piironen & Vehtari, 2016, 2017). 

The statistical property of the HS prior meets the model assumption of MI where 

there is a small number of items that are expected to be non-invariant. In other words, some Q 

values should deviate significantly from zero and take on meaningful quantities, while other 

Q values, which are around zero, should be compressed towards zero. To illustrate, we 

borrow the idea from Carvalho et al., (2010), firstly assume that U! 	= 1 and define a random 

shrinkage weight /= = 1/(1 + H=
!), which stands for the amount of weights that the posterior 

means of Q= takes on zero given the data ^ (see Chapter 2, section 2.2.4, equation 2.2, 2.3). 

Given the prior of /= depends on the different Å(H=), along with this transformation, we can 

then get a clear idea about the advantage of applying the HS prior to distinguish between 

non-invariance (signals) and invariance (noises). As in equation (2.1), H= ∼ V>(0,1) suggests 

that /= ∼ hi(1/2,1/2), a symmetric density that is bounded between 0 and 1. This horseshoe 

shaped distribution indicates that two things are expected in the data: Strong signals indicate 
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non-invariances (/	 ≈ 0, no shrikage), and noises indicate invariances (/	 ≈ 1, complete 

shrinkage).  

3.2.2 The Role of the Horseshoe Prior in Partially Invariant Models 

To mimic the performance of BMA, the current approach uses the HS prior to 

incorporate unknown cross-group non-invariance (e.g., numbers, magnitude) into 

measurement models. Specifically, the HS prior works as a parameter “switch” in MGCFA 

models given its statistical property (see  Figure 2. 1) (Carvalho et al., 2009, 2010; Piironen 

& Vehtari, 2016, 2017). 

Figure 2. 1, so that the switch turns off when the magnitude of non-invariances is 

large enough, while turns on when the magnitude of non-invariance is ignorable. Therefore, 

the notable non-invariance will be automatically taken as signal/effect and estimated. While 

the small non-invariance will be recognized as noise and regularized to zero. This approach 

not only improves the model’s prediction, but also simplifies the model fitting procedure. The 

traditional method usually accomplishes the model fitting procedure in three steps, 1) 

identifying non-invariant items/parameters, 2) picking the most appropriate model fitting 

strategies accordingly, 3) fitting the “selected” model to the data. By contrast, the HS prior 

approach combines the detecting the non-invariance (see Chapter two for details) and 

selecting & fitting the model into one step.  

To implement the HS prior as a parameter “switch”, a set of hyperparameters [s 

standing for the cross-group difference of each item in factor loading ([N), item intercepts 

([@), and as well as residual variances ([O) are defined. The HS prior is then placed on these 

[s to handle these undetermined noninvariances. As discussed above, the excellent 

performance of the HS prior in solving sparse problems makes it suitable for any given 
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situations where signals/effective predictors are believed to be scarce. For well-established 

measurements, the majority of scale items should be expected to hold for invariance. That is, 

only few of [s should be expected to be relevant/significant. The HS prior’s tall spike around 

the origin shrinks insignificant [s (invariant parameters) towards an infinitely small value, 

while its flat Cauchy-like tail allows relevant [s (non-invariant parameters) remain large.  

In this section, it has been demonstrated that the HS prior would be a good 

substitution for BMA for improving the prediction of partially invariant model. The section 

follows moves on to consider the choice of model selection/comparison tool in assessing the 

predictive ability of the HS prior model. 

3.2.3 Measures of Predictive Ability of Partially Invariant Models with the Horseshoe 
Prior 

There are two classes of techniques in measuring models’ out-of-sample predictive 

accuracy: cross-validation and information criteria (see a review, Kelter, 2021; Vehtari, 

Gelman, & Gabry, 2017). For the current approach, we consider a log-score based measure – 

expected logarithm pointwise predictive density (elpd) via leave-one-out cross validation as 

the best method, since it tends to select the model that generates highest probability for new 

data (Vehtari, Gelman, & Gabry, 2017). 

Let’s consider n observations ^,, ^!… Ĥ given parameters θ, and hence ((^|θ) =

∏ p(yC|θ)
P
C/, . This formulation can also include latent variables Ü= so that ((^|f, θ) =

∏ p(yC|fCθ)
P
C/, . With a prior distribution ((θ), we could obtain a posterior distribution ((θ|^) 

and a posterior predictive distribution ((yà|y) = ∫ (( Q̂â|θ)((θ|^) ex. Hence, the elpd can be 

written as:  



 
 

 

61 
 

 
 

5<#'(=(>)?@A#
)

*"#
(=(>|=) 2=(>																 

(3.9) 

 

Where (I( Q̂â) refers to the distribution of true data-generating process for Q̂â . The elpd is 

usually approximated via the Bayesian leave-one-out cross-validation (LOO-CV) given the 

true data-generating process is unknown, which follows: 
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(3.10) 

 

Where ((^=|^*=) 	= 	∫ ((^=|x)((x|^*=) ex is the LOO predictive density given the data 

without the ith data point (Vehtari, Gelman, & Gabry, 2017). To reduce the computational 

difficulty and maintain the estimation quality, we used Pareto smoothed importance sampling 

(PSIS, Vehtari, Simpson, Gelman, Yao & Gabry, 2015) for estimating elpd-loo as shown 

below: 
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(3.11) 

 

Where s denotes the number of posterior simulations, w denotes the truncated importance 

sampling weights.  

When assessing the expected predictive accuracy of a single model, the higher values 

of iz(eREEä  suggest a better out-of-sample predictive accuracy (Bürkner & Vuorre, 2018; 

Vehtari et al., 2017). When comparing the expected predictive accuracy between two fitted 

models, we can estimate the difference in iz(eREEä  so as its corresponding standard error. 

Specifically, assuming model A is compared with model B, with corresponding iz(eREE*S	ä =
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∑ iz(eREE*S,QäH
=/,  and iz(eREE*T	ä =∑ iz(eREE*T,QäH

=/, , where n is the number of independent 

sample draw. Thus, the difference in their expected predictive accuracy is Δiz(eREE*STä =

iz(eREE*S	ä −	iz(eREE*T	ä 	, and the corresponding se of the difference can be computed as: 

åi(	Δiz(eREE*STä )=	åe=/,
H (iz(eREE*S,Q	ä −	iz(eREE*T,Q	ä )∗ √r.  A ratio between the 

difference in iz(eREEä  and the se of the difference:	 UJRGV%&&'()W

KJ(	UJRGV%&&'()W )
  is used to select a model 

with better performance. A rule of thumb UJRGV%&&'()W

KJ(	UJRGV%&&'()W )
> 2	 indicates that a model 

performed significantly better than the other in terms of out-of-sample prediction (Bürkner, & 

Vuorre, 2018; Vehtari, Gelman, & Gabry, 2017). 

3.3 Method  

For the current simulation study, a population MGSEM model is defined where a 

manifest variable is regressed on a single latent factor with the varying number of items 

between two groups. Four model fitting strategies are adopted to accommodate the MGSEM 

model that only holds for partial invariance as following: 1) a freely estimated MGSEM 

where no equal group constraint is imposed; 2) a constrained MGSEM model where the 

equal group constraint is imposed on each parameter that is associated with the measurement 

model ; 3) a partially constrained MGSEM model where the equal group constraint is only 

imposed on the invariant parameter; 4) a HS constrained MGSEM where a set of predefined 

[ parameters representing parameter difference were placed with HS priors. All these models 

are fitted using Bayesian estimations where the priors and posterior are described in the 

following section.  

We first define priors for all parameters as following:  

:",==
*, ∼ é(1, .5)	
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è"= ∼ =(0,1)	

s"= ∼ =(0,1)	

Y" ∼ =(0,1)	

p0" ∼ =(0,1)	

p," ∼ =(0,1)	

q" ∼ é(1, .5)	

where i refers to the number of items in the measurement model, k refers to the group 

membership. Hence, :",==*,  is the residual covariance among items, è"= is the item intercept, 

s"= is the item loading and Y" is the latent mean. For the s p0" is the constant, p," is the 

regression coefficient and q" is the residual variance. 

Next, we assign [? , [@ to denote the cross-group differences in factor loadings and 

item intercepts, so that the priors of their coefficients for each item i follow:  

QA= ∼ =(0, HA=
! U!)	

Q@= ∼ =R0, HB=
! U!T	

where H= ∼ V>(0,1) that is commonly used in the HS prior. For the global shrinkage 

parameter U, we chose a V>(0,1) that was previously proved to yield a good performance in 

Bayesian variable selections (Carvalho et al., 2009; Gelman, 2006). Therefore, the resulted 
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posterior distributions on parameters as functions of the data, likelihood, and priors: p(Λ ,ϕ, 

Θ ,Y,	p0,	p,,	q |x) µ p(x|Λ ,ϕ, Θ ,Y,	p0,	p,,	q) p(Λ ,ϕ, Θ ,Y,	p0,	p,,	q). 

3.3.1 Overview of Study 2 

For evaluating the predictive abilities of MGSEM models using the HS prior, we 

conducted a simulation study where a variety of conditions and datasets were generated to be 

representative of a real situation. Four model fitting strategies mentioned above were 

compared in terms of out-of-sample prediction via the efficient approximate leave-one-out 

cross-validation (Vehtari, Gabry, Magnusson, Yao, Bürkner, Paananen, Gelman, 2020). The 

data generation process, simulation design, model fitting strategies and the performance 

evaluation metrics are described as below. 

3.3.2 Data generation process 

The data were simulated based on a two-group (J=2) MGSEM population model with 

a single latent factor which contains continuous items and holds for configural invariance. 

One group is served as the reference group where the factor mean and factor variance are 

fixed to be zero and unity, respectively. The other group serves as the focal group where the 

factor mean and factor variance are fixed to 0.5 and 1.2, respectively. For both focal and 

reference group, we set the population value of all item intercepts and residual variances to 

0.6 and 0.3, respectively. For the number of non-invariant items, 1/3 of items are allowed to 

differ both on factor loadings and intercepts. For the structural part, the focal group was set 

with a standardized regression coefficient of .45 and a constant of .5, while the reference 

group was set with a regression coefficient of .4 and a constant of .2. And the residual 

variance was set to .3 for both groups. 
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3.3.3 Simulation Design 

The simulation design is the same with Study 1 (see Chapter 2, Table 1).  

3.3.4 Model fitting strategy 

Recall that four models fitting strategies are compared : 1) a freely estimated 

MGSEM where no equal group constrain is imposed; 2) a constrained MGSEM model where 

the equal group constrain is imposed on each parameter that is associated with the 

measurement model ;3) a partially constrained MGSEM model where the equal group 

constrain is only imposed on the invariant parameter; 4) a HS constrained MGSEM where a 

set of predefined [ parameters representing parameter difference were placed with the HS 

prior. For the measurement model identification, the current study followed the reference 

indicator (RI) approach which had been recommended for fitting MGSEM models (Rensvold 

& Cheung, 2008; Yoon & Millsap, 2007). Specifically, the mean and variance of the 

reference group were set to zero and one, respectively. Additionally, one invariant item was 

selected as RI and constrained to be equal between groups. Then, each model was fitted using 

the Stan sampler from Rstan with 3000 iterations and four chains and its corresponding 

iz(eREEä  is estimated with 2000 sample draws using “loo” package (Stan Development Team, 

2020; R Core Team, 2014; Vehtari, Gabry, Magnusson, Yao, Bürkner, Paananen, Gelman, 

2020). Convergence of Monte Carlo chains was assessed using the potential scale reduction 

factor threshold of Rˆ < 1.1 (Gelman & Rubin, 1992). All models estimated here converged, 

with all Rˆ values below 1.09. 
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3.3.5 Metrics of evaluating the predictive performance of the HS prior in Multi-group 
SEM   

One metric is used to evaluate the predictive performance of different model fitting 

strategies. We first focus on the difference in iz(eGKQK*REEä  between two models, where a 

higher value of iz(eGKQK*REEä  suggests a better model performance. Then, we consider the 

ratio between the difference in iz(eGKQK*REEä  and the standard error of the difference in 

iz(eGKQK*REEä , where a ratio above 2 suggests that the performance of one model is 

significantly better than the other. As such, we created one metric: absolute best. For each 

iteration, the model will be scored 1 on  absolute best if it is significantly better than other 

models according to the rule of thumb: XJRGV*+,+'%&&'()W

KJ(	XJRGV*+,+'%&&'()W )
> 2 (Bürkner, & Vuorre, 2018; 

Vehtari, Gelman, & Gabry, 2017). It should be noted there may be no model scored 1 on 

absolute best under some conditions where the difference between model with the highest 

iz(eGKQK*REEä  and the model with the second highest iz(eGKQK*REEä  is trivial. 

3.4 Results  

The simulation results are presented in  
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Figure 3. 1. As mentioned earlier absolute best rate describes the condition where the 

absolute best model is significantly better than all other models according to the rule of 

thumb XJRGV*+,+'%&&'()W

KJ(	XJRGV*+,+'%&&'()W )
> 2. Therefore, the rate of absolute best is the percentage of one 

model scored 1 on absolute best over all iterations for each condition. In accordance with 

absolute best rate, the constrained model has the lowest iz(eGKQK*REEä  throughout all 

simulation conditions and the HS prior model has the highest iz(eGKQK*REEä  for most of the 

simulation conditions. The magnitude of non-invariance and item reliability all showed 

impacts on the absolute best rate of the HS prior model. In most simulation conditions, a 

large sample size, a high item reliability, and a small magnitude of non-invariance led to a 

higher absolute best rate of the HS prior model. In contrast, when the sample size was small, 

the item reliability was medium or low, and the magnitude of non-invariance was large, the 

performances of the HS prior model and the partially constrained model were 

indistinguishable. Also, there was no notable difference in the absolute best rate of the HS 

prior model between the 6-item scale and the 9-item scale.  
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Figure 3. 1 

The percentage of absolute best rate over 100 simulations 
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3.5 Discussion 

When full MI fails, researchers often turn to searching for alternative model fitting 

strategies to fit partially invariant models. The previous studies mostly focused on finding a 

model solution that yields the best model fit or produces minimal estimation bias (e.g., Hisao 

et al., 2018; Shi et al., 2019). While there was a lack of research concerning the practical 

inference of fitting partially invariant models (Lai et al., 2017), that is, finding a model that 

not only fits current data well, but also provides a good estimate for future observations or 

other populations (Kelter, 2021). In addition, some potential model fitting strategies such as a 

partially constrained model, or a fully constrained with non-invariant item deleted, would 

require identifying all non-invariant items beforehand. However, the detection of non-

invariant items is considered a difficult task (Chen, 2007; Cheung & Rensvold, 2002) and its 

accuracy cannot be examined. Also, it is hard to decide on a single model because different 

models could perform equally well under certain conditions. More importantly, the inference 

generated from a single model solution which does not account for the model space 

uncertainty may be lack of generalizability. Instead, the BMA technique could be used to 

accommodate partially invariant models since it accounts for uncertainties in the model space 

and provides a good out-of-sample prediction. Given the known computational difficulty in 

BMA, we used the HS prior as a substitution. Specifically, we applied the HS prior as a 

“switch” on the pre-defined parameter differences of each item to mimic BMA-like 

performance. The current study showed that the predictive ability of partially invariant 

models could be improved by the HS prior.  

In this chapter, we demonstrated how to use the HS prior to fit partially invariant 

MGSEM models without detecting non-invariant items. A Monte Carlo simulation study was 

conducted to evaluate the performance of a HS prior model in comparison with other models 
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under several conditions varying in sample size, length of scale, item-reliability, and 

magnitude of parameter non-invariance. According to simulation results, the HS prior model 

showed better out-of-sample predictions over other models under different conditions.  

3.5.1 Sample size consideration  
Previous studies have shown that the sample size is a critical factor in assessing 
predictive performance of BMA-SEM (Kaplan & Lee, 2016) and the HS prior model (Li, 
Craig & Bhadra, 2019). The predictive performance of BMA-SEM and the HS prior model 
benefits from a large sample size. Specifically, BMA-SEM showed better predictive 
performance in comparison with other approaches (e.g., Bayesian SEM) and the HS prior 
model produced lower bias on non-zero elements when the sample size is sufficiently large. 
Similarly, our results showed that as the sample size increased, the predictive performance of 
the HS prior model became distinguishably better than other models. However, a small 
sample size should not be a concern for using the HS prior model. As shown in  
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Figure 3. 1, although the partially constrained model produced a higher iz(eGKQK*REEä  

with a small sample size than the HS prior model, the difference was negligible.  

3.5.2 Equivalent Performance between the HS prior model and partially constrained 
model 

Previous studies have shown that partially constrained models often led to the most 

accurate parameter estimates and better model fit (Hisao et al., 2018; Shi et al., 2019). Our 

results showed that under certain conditions, the partially invariant model performed as well 

as the HS prior model. This result is not surprising since the partially invariant model 

representing the true data generating process and should be performing well even when the 

information is sparse (e.g., small sample size, low reliability). However, this can only happen 

in simulations since the truly non-invariant items/parameters are known. In practice, fitting a 

partially constrained model would require the detection of non-invariance beforehand which 

cannot be guaranteed for accuracy. 

3.5.3 Limitations and Future Directions 

Despite the good performance of the HS prior in fitting partially invariant models, 

there are several limitations to keep in mind. The current study only examined the 

performance of the HS prior in a simulated condition where the data were normally 
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distributed with no missing values, equal sample size among groups, and the model structure 

was simple (i.e., only contained one latent factor without item cross-loadings or correlated 

residual variances and the dependent variable was manifest). For greater generalizability, 

future studies should investigate the performance of the HS prior in different simulation 

settings, such as when the data contain missing values, sample sizes are unequal across 

groups, or the model structure is more complex (e.g., item cross-loadings, correlated residual 

variance, a full SEM model). Also, the current study only compared the HS prior model with 

three commonly used models, future studies could include other models such as composite 

score models, fully constrained model without non-invariant items. Additionally, since our 

study is not the only one using Bayesian method to incorporate non-invariance into 

measurement model (see approximate Bayesian MI in Liang, & Luo, 2019; Muthén et al, 

2013, 2017), future study could compare each method and discuss some pros & cons in 

taking each approach.  

As discussed in the previous chapter, whether the equality-constraint between groups 

is too restrictive, or what amount of cross-group non-invariance that should be allowed is 

often under debate (see approximate MI, Muthen et al., 2007). In our study, the quantity of 

non-invariance is auto adjusted by the HS prior given data. Other regularization priors such 

as Lasso, Spike and Slab may be also useful in calibrating the quantity of non-invariance that 

should be allowed. Future studies should compare the impact of using different regularization 

priors in quantifying permittable non-invariance on the predictive performance of partially 

invariant models. All simulation codes are available in Appendix B (see supplemental files).   
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4. Chapter 4 

Empirical Analysis of Measurement Models with Horseshoe Priors 

4.1 Introduction 

In the previous two chapters, we have demonstrated the advantages of employing the 

horseshoe (HS) prior in studying measurement invariance (MI) via simulation studies. 

Although simulation is a great way to help us identifying some crucial factors when 

developing statistical methods, the real situation can never be fully mimicked. Besides, the 

purpose of improving existing methods and developing new methods is to assist empirical 

studies. Thus, this chapter aims to show a general audience how to implement the HS prior in 

studying MI using data from two empirical studies. 
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In the first demonstration, we will show how to detect non-invariant items using the 

HS prior along with Bayes Factors (BF). In the second demonstration, we will show how to 

incorporate non-invariance into a partially invariant multigroup structural equation model 

(MGSEM) via the HS prior and illustrate the advantage of the predictive performance of the 

HS prior model.  

4.2 Evaluating the item equality of CES-D between groups 

Here we provide two empirical analyses to illustrate the application of the HS prior in 

assessing MI where 1) longitudinal MI was evaluated, 2) multi-group MI was evaluated. In 

both examples, we evaluated the MI on participants’ depressive symptoms across two 

measurement occasions and between gender.
 
We used the data from the Health and 

Retirement Study (HRS), where the latent construct of depressive symptoms among older 

adults was measured by the 9-item version of the Center for Epidemiological Studies 

Depression Scale (CES-D) (Kohout, Berkman, Evans, & Cornoni-Huntley, 1993; Radloff, 

1977).  

For the current application, we first defined priors for all parameters in a one factor 

MGCFA model with two groups. Bayesian models resulted in posterior distributions on 

parameters as functions of the data, likelihood, and priors: p(Λ ,ϕ, Θ ,Y |x) µ p(x|Λ ,ϕ, Θ , Y) 

p(Λ ,ϕ, Θ , Y).  The prior for each item W in group k can be defined as: 

Θ",==
*, ∼ γ(1, .5) 

µ"= ∼ =(0,1) 

ν"= ∼ =(0,1) 
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Y" ∼ =(0,1) 

where Θ",==*,  is the residual covariance, µ"= is the intercept, ν"= is the factor loading and Y" is 

the latent mean. 

Next, we assigned Δ? , Δ@ to denote the cross-group differences in factor loadings and 

item intercepts, so that the priors of their coefficients for each item i follow:  

βA= ∼ =(0, λA=
! τ!) 

β7= ∼ =R0, λB=
! τ!T 

where λC ∼ V>(0,1) that is commonly used in the HS prior. For the global shrinkage 

parameter τ, we chose a V>(0,1) that was previously proved to yield a good performance in 

Bayesian variable selections (Carvalho et al., 2009; Gelman, 2006).  

For the MGCFA model identification, the current study followed the reference 

indicator (RI) approach which had been recommended for MI testing (Rensvold & Cheung, 

2008; Yoon & Millsap, 2007). Specifically, the mean and variance of the reference group 

were set to zero and one, respectively. Additionally, one invariant item was selected as RI 

and constrained to be equal between groups. we followed the approach proposed by Shi et al., 

(2017) to select a referent indicator (RI). Then, the model was fitted using the Stan sampler 

from Rstan (Stan Development Team, 2020; R Core Team, 2014) with 3000 iterations and 

four chains to obtain standardized posterior samples for each parameter of interest (i.e., β for 

all Δs). Convergence of Monte Carlo chains was assessed using the potential scale reduction 



 
 

 

77 
 

factor threshold of Rˆ < 1.1 (Gelman & Rubin, 1992). All models estimated here converged, 

with all Rˆ values below 1.09. 

For MI assessment, the prior corresponding to the non-invariance hypothesis (H1) was 

set to standard normal, and the posterior density at β was estimated using the logspline 

estimator. The BF01 was computed as the ratio of posterior and prior density at zero, for each 

parameter. The BF was then used to support invariance (BF01 > cutoffs), non-invariance 

(BF01 < 1/cutoffs), or neither due to the uncertainty in the data (Jeffreys, 1961). 

4.2.1 Detecting non-invariant items Over Time 

First, we evaluated the MI on CES-D 9 across the second and third waves of HRS 

study. From the total sample of 16,781 participants, we randomly selected a subsample of 

300 participants who were repeatedly measured on both, the second and the third wave of the 

study. Using Shi’s RI approach, we identified two items (i.e., item 3 and item 4) that 

qualified as RI’s. Thus, we conducted MI testing twice using both items as RI and the results 

appeared to be identical. Here, we only reported the result when item 4 was used as RI. For 

clarity, we presented the posterior distributions for each parameter of interest (i.e., β for all 

Δs) and the corresponding BF01 for each loading and intercept in Figure 4. 1. A BF01 of 3 was 

used as the decision-making criterion. That is, for the decision of invariance, a BF01 equal or 

larger than 3 suggests that the probability of invariance is at least three times more likely than 

non-invariance. For the decision of non-invariance, a BF01 equal or less than 1/3 suggests that 

the probability of non-invariance is at least three times more likely than invariance. A BF01 

with any values between 1/3 to 3 suggests an uncertain result. Following this rule, the results 

showed that factor loading invariance was established for all items. Intercept invariance was 

established for all items except item 9 which had a Bayes factor of 0.09. That is, item 9 was 
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detected as non-invariant across two measurement occasions. Therefore, a strong partial MI 

was established for CES-D 9 across two measurement occasions.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1 
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4.2.2 Detecting non-invariant items between Genders 

Next, we evaluated MI on CES-D 9 between male and female participants from the 

second wave of HRS study. A total sample of 600 (with 50% male) participants was 

randomly selected. Item 4 was identified as the only RI and thus was selected for model 

identification. we present the posterior distributions for each parameter of interest (i.e., β for 
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all Δs) and the corresponding BF01 for each loading and intercept in Figure 4. 2. A BF01 of 3 

was used as a decision rule here as well. The results showed that factor loading invariance 

was established for all items. Intercept invariance was established for all items, except item 9, 

which had a Bayes factor of 0.13. Again, item 9 was flagged as non-invariant between 

genders. Therefore, a strong partial MI was established for CES-D 9 across between male and 

females measured on the second wave. 
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Figure 4. 2 

 

4.3 Improving the prediction of Self-deprecation to Peer Victimization  

Next, we provided an empirical analysis to illustrate the use of the horseshoe (HS) 

prior in a partially invariant MGSEM. The data were collected from 1257 undergraduate 

college students (69.9% women and 30.1% men) from the California State University, 

Northridge. For the current application, a total of 728 participants were randomly sampled 

(with 50% male) for computational efficiency. Two theoretically related variables: self-
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deprecation and peer victimizations were used. Self-deprecation describes the degree to 

which a person belittles himself/herself and his/her abilities to succeed (Owens, 1994), and 

was measured with the five negatively worded items from the Rosenberg Self-Esteem Scale 

(Rosenberg, 1979). Peer victimization was defined as repeated maltreatments (verbal, 

emotional, physical attacks) from one’s contemporaries which was measured by a 10-item 

scale and an average score was used in the current analysis. (Champion & Clay, 2007). 

Previous research has shown that people who have negative self-views were more likely to 

suffer from depression (Quilty et al., 2006), which consequently made individuals more 

vulnerable to peer victimizations (Crick and Bigbee, 1998). Therefore, a multi-group single 

factor MGSEM was specified to examine the impact of latent construct self-deprecation on 

the manifest variable peer victimization between male and female college students.  

For the current analysis, two steps were taken as following: 1) identifying the non-

invariant items using the HS prior; 2) comparing the predictive accuracy of the HS prior 

MGSEM model with a freely estimated MGSEM model. First, we defined priors for all 

parameters in a one factor MGSEM model with two groups3. Bayesian models resulted in 

posterior distributions on parameters as functions of the data, likelihood, and priors: We first 

define priors for all parameters as following:  

Θ",==
*, ∼ γ(1, .5) 

µ"= ∼ =(0,1) 

ν"= ∼ =(0,1) 

 
3 To be noted, this was done for both HS model and free model. 
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Y" ∼ =(0,1) 

α0" ∼ =(0,1) 

p," ∼ =(0,1) 

q" ∼ γ(1, .5) 

where i refers to the number of items in the measurement model, k refers to the group 

membership. Hence, Θ",==*,  is the residual covariance among items, µ"= is the item intercept, 

ν"= is the item loading and Y" is the latent mean. For the s α0" is the constant, α,# is the 

regression coefficient and q" is the residual variance. 

Next, we assigned Δ? , Δ@to denote the cross-group differences in factor loadings and 

item intercepts in the HS model, so that the priors of their coefficients for each item i follow:  

βA= ∼ =(0, λA=
! τ!) 

β7= ∼ =R0, λB=
! τ!T 

where λC ∼ V>(0,1) that is commonly used in the HS prior. For the global shrinkage 

parameter τ, we chose a V>(0,1) that was previously shown to yield a good performance in 

Bayesian variable selection (Carvalho et al., 2009; Gelman, 2006). Therefore, the resulting 

posterior distributions for parameters is proportional to the likelihood, and the priors: p(Λ ,ϕ, 

Θ ,	,	α0,	α,,	q |x) µ p(x|Λ ,ϕ, Θ ,	,	α0,	α,,	q) p(Λ ,ϕ, Θ ,	,	α0,	α,,	q). 
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For the MGSEM model identification (i.e., the HS model and the free model), the 

procedure followed the reference indicator (RI) approach which had been recommended for 

MI testing (Rensvold & Cheung, 2008; Yoon & Millsap, 2007). Specifically, the mean and 

variance of the reference group were set to zero and one, respectively. Additionally, one 

invariant item was selected as RI and constrained to be equal between groups. We followed 

the approach proposed by Shi et al., (2017) for RI selection. Then, the model was fitted using 

the Stan sampler from Rstan (Stan Development Team, 2020; R Core Team, 2014) with 3000 

iterations and four chains to obtain standardized posterior samples for each parameter of 

interest (i.e., β for all Δs). Convergence of Monte Carlo chains was assessed using the 

potential scale reduction factor threshold of Rˆ < 1.1 (Gelman & Rubin, 1992).  All models 

estimated here converged, with all Rˆ values below 1.09. 

For detecting the non-invariant items, we followed the same approach as in the 

previous example. That is, the prior corresponding to the non-invariance hypothesis (H1) was 

set to standard normal, and the posterior density at β was estimated using the logspline 

estimator. The BF01 was computed as the ratio of posterior and prior density at zero, for each 

parameter. The BF was then used to support invariance (BF01 > cutoffs), non-invariance 

(BF01 < 1/cutoffs), or neither due to the uncertainty in the data (Jeffreys, 1961).  

To compare the predictive performance of the HS model with the free model, two 

evaluation approaches were employed. First, two models were assessed on their in-sample 

predictions. Specifically, the Bayesian posterior predictive distributions for each model were 

obtained and plotted against the original data. The closer the posterior distribution get to the 

original data, the better predictive performance the model has. Second, two models were 

assessed on their out-of-sample predictions. Specifically, data were split into a training set 
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(about 60% of the original sample), which was used to fit models, and a testing set (the 

remaining 40% of the original sample), which was used to compute iz(eGKQK*REEä  which 

approximates iz(eREEä  for computational efficiency (Vehtari, Simpson, Gelman, Yao & 

Gabry, 2015). Then, we obtained the difference of iz(eGKQK*REEä  between two models: 

Δiz(eGKQK*REE*STä  and its corresponding standard error: åi(	Δiz(eGKQK*REE*STä ). A ratio 

between the difference in iz(eGKQK*REEä  and the standard error of the difference: 

UJRGV*+,+'%&&'()W

KJ(	UJRGV*+,+'%&&'()W )
  was used to select the model with better performance. A rule of thumb 

UJRGV*+,+'%&&'()W

KJ(	UJRGV*+,+'%&&'()W )
> 2	 indicated that one model performed significantly better than the other 

in terms of out-of-sample prediction (Bürkner, & Vuorre, 2018; Vehtari, Gelman, & Gabry, 

2017). 

4.3.1 Non-invariant Items 

First, the non-invariance of each parameter on self-deprecation between genders was 

evaluated. Using Shi’s RI approach, item 1 was identified and used as RI in the subsequent 

analysis. For clarity, we presented the posterior distributions for each parameter of interest 

(i.e., β for all Δs) and the corresponding BF01 for each loading and intercept in Figure 4. 3.  A 

BF01 of 3 was used as the decision-making criteria. That is, for the decision of invariance, a 

BF01 equal or larger than 3 suggests that the probability of invariance is at least three times 

more likely than non-invariance. For the decision of non-invariance, a BF01 equal or less than 

1/3 suggests that the probability of non-invariance is at least three times more likely than 

invariance. A BF01 with any values between 1/3 to 3 suggests an uncertain result. Following 

this rule, our results showed that factor loading invariance was established for all items 

except item 9 which had an impartial BF01 value of 0.77. Intercept invariances were 

established for all items except item 2 which has an impartial BF01 value of 2.21.  
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Figure 4. 3 

 

4.3.2 Prediction between genders 

Next, since the self-deprecation was found to be partially invariant between male and 

female college students, two model fitting strategies, 1) the HS prior model and 2) the freely 

estimated model, were taken to accommodate this situation using Bayesian statistics. The 
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plots of Bayesian posterior predictive distributions4 of both the HS model and the free model 

were presented for male and female separately against the actual distributions, where the 

original data were plotted by the thick blue line and the posterior draws were plotted by the 

light blue line. As shown in Figure 4. 4 and Figure 4. 5 for male college students, there was 

no visual difference of in-sample predictions between two models. Both models did equally 

well in terms of in-sample predictions given that most of the original data were covered. 

However, compared to the distribution of the original data, the distribution of posterior draws 

was slight wider and flatter which indicated an imprecision.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4 200 samples out of 6000 were randomly selected for plotting 
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Figure 4. 4 

Bayesian posterior predictive distribution of the HS prior model for males  
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Figure 4. 5 

Bayesian posterior predictive distribution of the free model for males 

 

Similarly, for female college students, there was no visual difference in terms of in-

sample prediction between two models (see Figure 4. 6, Figure 4. 7). However, comparing to 

the posterior prediction of male college students, the posterior prediction of female college 

students was less precise compared to the original data. As shown in Figure 4. 6 and Figure 4. 

7, there were more posterior predictive draws fall on both tails of the distribution and the 

mass in the middle part was missed. 
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Figure 4. 6 

Bayesian posterior predictive distribution of the HS prior model for females 
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Figure 4. 7 

Bayesian posterior predictive distribution of the free model for females 

 

 

Next, a difference of iz(eGKQK*REEä  between two models were approximated using the 

testing data set. The result showed that the  iz(eGKQK*REEä  of the HS model was significantly 

higher than the freely estimated model in terms of out-of-sample predictive accuracy, with a 

Δiz(eGKQK*REE*STä  of -145 (se = 65.5) and UJRGV*+,+'%&&'()W

KJ(	UJRGV*+,+'%&&'()W )
	= 	2.22	 > 	2	according to the 

rule of thumb ((Bürkner, & Vuorre, 2018; Vehtari, Gelman, & Gabry, 2017)). Therefore, the 
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HS model did significantly better than the free model in terms of out-of-sample prediction on 

peer victimization among college students. 

4.4 Discussion 

In this chapter, we provided two empirical examples where we showed how to solve 

the issues of MI using the HS prior approach. In the first example, two MI assessments were 

conducted on the DER-9 item scale. As a result, item 9 was identified as non-invariant with 

BFs below 1/3 in both assessments. This result suggested that item 9 was problematic within 

the given sample since individuals from different groups or at different measurement 

occasions responded differently on this item. Therefore, researchers could either get this item 

deleted, or investigate the content of this item and make some revisions accordingly. For 

those researchers who wish to proceed with the analysis without deleting any items, the 

second example would be quite enlightening. In the second example, we showed how to use 

the HS prior to remedy a partially invariant MGCFA model that was for prediction. First, a 

MGCFA model measuring self-deprecation was tested for invariance and was found to only 

hold for partial invariance. Next, a MGSEM model was specified where a manifest variable 

“peer victimization” was regressed on “self-deprecation”. To accommodate partial 

invariance, all the cross-group constraints were substituted by the HS prior, which implying 

that given the data, the amount of non-invariance would be allowed if it contributes 

significantly, otherwise it would be shrunken towards zero. For comparison, a freely 

estimated MGSEM model where no group constraint was imposed was also specified. 

Overall, the HS model performed significantly better than the free model in terms of out-of-

sample prediction.  

Further implications and limitations of this study are addressed in the next and final 

chapter. 
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5. Chapter 5 

General Discussion 

5.1 Overview of Findings 

In this set of studies, we sought to answer questions related to measurement 

invariance (MI) under the structural equation modelling (SEM) framework. Our goal was to 

address the following questions related to MI assessment: (a) Can we treat the detection of 

non-invariant items as a variable selection problem by introducing a set of variables 

representing cross-group differences?; (b) Can we assess the effectiveness of cross-group 

differences via a Bayesian variable selection approach using the horseshoe (HS) prior? ; (c) 

Can we gather the evidence of measurement invariance/non-invariance using Bayes factors? 

In addition, we also attempted to solve the following questions concerning partially invariant 

models: (a) When estimating partially invariant models, what is the major risk when only a 

single model fitting strategy is considered? (b) Can we employ Bayesian-model-averaging 

(BMA) to take advantage of all potential models instead of selecting a single model to 

improve model predictions? (c) Can we use the HS prior to substitute BMA in estimating 

partially invariant models for computational efficiency? we investigated each of these 

questions in two separate studies. In the third study, we provided two empirical analyses on 

two set of multigroup measurement data. 

5.1.1 Study 1 

The goal of Study 1 (Chapter 2) was to introduce a new method in assessing MI. we 

reframed item-level MI assessment as a variable selection problem where we defined a set of 

variables representing cross-group differences and placed the HS prior on this set of variables 

to mimic the conditions of non-invariance and invariance. Bayes factors (BF) were used as a 

decisions tool where the empirical evidence of invariance and non-invariance on each 
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parameter were gathered simultaneously. To test this method, we simulated data based on a 

single factor MGCFA model which varied in sample size, item reliability, magnitude of 

difference on factor loadings and intercepts and scale length which resulted in 72 unique 

conditions. Each of these data conditions corresponded to different non-invariant situations 

such as a small sample size with large non-invariances and a low item-reliability, or a large 

sample size with small non-invariances and a medium item-reliability. The purpose was to 

investigate the performance of the HS prior in detecting non-invariant items under different 

non-invariant situations. Then we fitted MGCFA models with the HS prior to the simulated 

data and evaluated the accuracy of non-invariance detection across different conditions. Five 

metrics were used for evaluating the performance of the HS prior approach: 1) Certainty 

which describes the proportion of all comparisons yielding certain decisions in determining 

invariance versus non-invariance using BF. 2) Sensitivity which describes the proportion of 

all non-invariant parameters detected as non-invariant. 3) Specificity, defined as the 

proportion of all invariant parameters detected as invariant. 4) Positive predictive value 

(PPV) which is defined as the proportion of all parameters detected as non-invariant that are 

truly non-invariant. 5) Negative predictive value (NPV) that is defined as the proportion of all 

parameters detected as invariant that are truly invariant. 

Results from Study 1 suggested that the HS prior approach performed well in 

assessing item-level invariance. Overall, sample size, item reliability, and the magnitude of 

non-invariance showed notable impacts on MI testing, while scale lengths and the pattern of 

non-invariance (i.e., whether items hold for loading non-invariant or intercept non-invariant 

or both) did not. First, high Certainty rates (i.e., no less than 85%) indicated that the decisions 

of invariance versus non-invariance could be made for certain under all conditions. A low 

item-reliability along with small non-invariance led to a large portion of undecided results. 
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Next, this method showed an excellent performance in correctly detecting invariant items 

across all conditions which was signaled by perfect specificity rates and high PPV. It should 

be noted that specificity and PPV were only affected by sample size and item reliability but 

not the magnitude of non-invariance. This suggested that a truly invariant parameter was 

almost always correctly classified as invariant regardless of sample size and item reliability.  

In contrast to detecting invariance, detecting non-invariance seems to be more 

difficult via the HS prior approach. A large variation in sensitivity among different 

simulation conditions suggested that the identification of non-invariance heavily depended on 

sample size, item reliability and the magnitude of non-invariance. In the worst case scenario 

(i.e., small sample size, low item reliability, small non-invariance), less than 10% of non-

invariances detections were successful. As sample size and item reliability increased, the 

detection of small non-invariance became easier. Large non-invariances were more readily 

detectable despite of smaller sample sizes and lower item reliability. Although detecting non-

invariance was overall challenging, high NPV implied that once a parameter was identified as 

non-invariant, the identification was generally accurate. This was a similar finding as for the 

detection of invariance. 

To recap, we attempted to conduct item-level MI assessment via a Bayesian variable 

selection method using the HS prior and collect the evidence of invariance on each parameter 

using BF in this study. The results from Study 1 suggested the identification of invariance 

was mostly successful and accurate when BF yielded certain decisions. On the other hand, 

the detection of non-invariance frequently failed under some disadvantageous conditions 

(e.g., small sample size) in the sense that the evidence of non-invariance was insufficient. 

This failure could be explained by a small effect size problem. That is, small effects (i.e., 

small non-invariance) were hard to manifest with a small sample size and a highly noisy 
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environment (i.e., item reliability). In an empirical setting, these findings implied that small 

differences in parameters might be hard to capture and had small impact on the overall 

estimation when sample size was small and item reliability was low, so that might be 

reasonably ignored.  

5.1.2 Study 2  

In Study 2 (Chapter 3), a BMA approach was introduced as an alternative modelling 

strategy other than relying on a single model when the MI assumption cannot be fulfilled. 

Conventionally, researchers will attempt to select a best model fitting strategy among a set of 

candidate models when MGCFA models only hold for partial invariance. The drawback of 

this model selection approach is that it overlooks the uncertainties among all potential 

modelling strategies. Consequently, the statistical inference relying on a single model 

solution might result in an overly confident conclusion about its parameter estimates. To 

overcome this issue, we employed Bayesian-model-averaging (BMA) technique which was 

accomplished by placing the HS prior on a set of parameters representing non-invariance in 

each parameter. In theory, by averaging over the entire model space, the results should yield 

best predictions compared to any single best model solution. To test this method, a 

population model was simulated following a multi-group SEM where a manifest variable was 

regressed on a single latent factor model. The simulation condition was identical to Study 1 

where sample size, scale length, the magnitude of non-invariance, pattern of non-invariance 

and item reliability were manipulated to yield a total of 72 conditions. we used the 

approximated expected logarithm pointwise predictive density (iz(eGKQK*REEä ) as a measure of 

the models’ out-of-sample prediction. Three common modelling strategies: a freely estimated 

model, a partially constrained model and a fully constrained model were used for comparison 

in terms of models’ predictive ability. The purpose was to see if the HS prior model indeed 
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led to a better prediction than the other models. Then we fitted each model to the simulated 

data and evaluated their out-of-sample prediction via iz(eGKQK*REEä  across different conditions. 

One metric was used for model comparisons. Absolute best rate was defined which describes 

the proportion of each model being significantly better than other models according to the 

rule of thumb: XJRGV*+,+'%&&'()W

KJ(	XJRGV*+,+'%&&'()W )
> 2.  

Findings from Study 2 suggested that the HS prior model led a better out-of-sample 

prediction comparing with other models in most simulation conditions. In general, the HS 

prior model has a significantly higher iz(eGKQK*REEä  than the other models for most of the 

simulation conditions. The magnitude of non-invariance and item reliability all showed 

impacts on the absolute best rate of the HS prior model. In most simulation conditions, a 

large sample size, a high item reliability, and a small magnitude of non-invariance led to a 

higher absolute best rate of the HS prior model. In contrast, when the sample size was small, 

the item reliability was medium or low, and the magnitude of non-invariance was large, the 

performances of the HS prior model and the partially constrained model were almost 

indistinguishable. Similarly, the HS prior model and the partially constrained model 

performed equally well when the non-invariance on item intercepts was large, and item-

reliability was low. Also, no significant difference was observed in the absolute best rate of 

the HS prior model between the 6-item scale and the 9-item scale. 

In Study 2, we tried to tackle the issues of predictive performance with partially 

invariant models. When MGCFA models only hold for partial invariance, the conventional 

approach tends to select a best fitting model which provides good estimates for current data 

yet may lead to poor predictions for the future data. As an alternative, we adopted the idea of 

the BMA technique which takes the information from all possible models via averaging the 
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entire model space. Yet, instead of implementing the actual BMA, the HS prior approach was 

chosen to simplify the estimation procedure. Specifically, instead of having to estimate all 

possible models, the HS prior approach weighs individual model parameters and results in an 

equivalent solution as the one obtained with BMA.  The results of Study 2 confirmed the 

usefulness of the HS prior approach in improving the predictive ability of partially invariant 

models. However, it should be noted that under certain conditions, especially when item 

reliability was low and the magnitude of non-invariance on intercepts was large, the HS prior 

model sometimes failed to outperform the partially constrained model. That is, both 

modelling strategies performed equally well in terms of predictions. This is likely due to the 

higher flexibility of the HS prior in accommodating non-invariance based on their 

magnitudes, while the partially constrained model only made dichotomous decisions. So, 

when the non-invariance was small and negligible, relaxing constraints might be unnecessary 

and shrinking the non-invariance could lead a better prediction. Once the magnitude of non-

invariance increased, relaxing constraints might produce similar results as the HS prior. Also, 

it may be also due to that the local shrinkage and global shrinkage parameters used in the 

current HS prior can better handle the simulated values in factor loadings but not intercepts. 

Although under certain conditions the HS prior model performed equivalently to the freely 

estimated model, it should be noted that the true non-invariant parameters were only known 

in simulation study. Fitting a partially constrained model requires the correct identification of 

non-invariant parameters which can never be guaranteed in empirical studies. By contrast, the 

HS prior model can identify the non-invariant parameters and automatically adjust the 

constrained values accordingly. Thus, the HS prior should be a preferable way in using 

partially invariant models for predictions. 
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5.1.3 Empirical Example 

Finally, in Study 3 (chapter 4), we performed two empirical analyses to illustrate 1) 

assessing item-level invariance via the HS prior, 2) improving the prediction of partially 

invariant models with the HS prior. To accomplish the first goal, we conducted two MI 

assessments, where DERS-9 scale was assessed on MI between genders and between two 

measurement occasions. To achieve the second goal, we first confirmed the partially 

invariant status of the “self-deprecation” scale between male and female college students. 

Then, the HS prior model and the freely estimated model were fit to the partially invariant 

data where a theoretically related variable “peer victimization” was regressed on “self-

deprecation” between genders. The predictive performance of both models was then 

compared on in-sample predictions via Bayesian posterior predictive distributions. To 

compare out-of-sample predictions between two models, about 60% of data was used to fit 

models, and 40% of the data was used to compute  iz(eGKQK*REEä .  

Findings from the first part of this study suggested that the HS prior approach 

functioned efficiently and precisely in identifying non-invariant parameters. In both MI tests, 

item 9 was flagged as problematic item with a non-invariant intercept and so that DERS-9 

was only held for partial invariance. In the context of research, several options are available 

after the source of non-invariance was identified. For psychometricians whose primary goals 

are identifying problematic items and maintaining the quality of scales, they could either 

choose to delete or edit problematic items. For clinical practitioners, whose primary goal is 

using scales for candidates’ selection or predicting individuals psychological well-beings, 

they could either select a model fitting strategy to accommodate partially invariant scales or 

take the BMA approach which was implemented in the second part of this study. 

Specifically, the second part of Study 3 explored the possibility of utilizing the HS prior to 
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improve the prediction of partially invariant models. The finding of Study 3 was in line with 

the simulation result from Study 2, as the HS prior model generally did better than the freely 

estimated model. Although both models were almost indistinguishable in terms of in-sample 

predictions, the HS prior model indeed yielded significantly higher predictive probability 

than the freely estimated model for out-of-sample predictions.  

5.2 Limitations & Future Directions 

There are a number of limitations in this set of studies that should be addressed and 

expanded in future research. One limitation is that the choice of BF cutoff is arbitrary, just 

like the choice of an alpha level (or p value) in null hypothesis significant testing (Raftery, 

1995; Wagemaker, 2007). Although they differ in practical implication and statistical 

interpretation, both p value and BF reflect the level of researchers’ confidence in making 

decisions. For instance, if we are confident in making a decision when one hypothesis is 3 

times more likely than the competing hypothesis, choosing a relatively low Bayes factors 

cutoff (i.e., BF = 3) will be acceptable. If we think even stronger evidence is needed when 

making decisions (e.g., medical research, clinical trials), choosing a larger Bayes factors 

cutoff that exceeds 20 may be more reasonable (cf. Raftery, 1995). This is consistent with our 

simulation results, where the increasing threshold of Bayes factors leads to decreasing 

numbers of decisions that can be made. We recommend the BF of 3 as a reasonable choice 

for decision making criterion in assessing MI, given that choice of BF cutoff only impacts the 

certainty rate, but not the decision accuracy in our simulation. However, as the practical 

significance of statistical results may vary across research areas and from studies to studies, 

researchers should adjust this value accordingly.   

Another limitation of the current study is that the accuracy of non-invariant/invariant 

item detection is conditional on the unbiased referent indicators selection. That is, referent 
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indicators (RI) that are imposed with equal-group constraints must be truly invariant. 

Otherwise, if a non-invariant item is taken as referent indicator, the subsequent MI 

assessment may fail and invariant items may be falsely flagged as non-invariant, or vice versa 

(Shi et al., 2007; Rensvold & Cheung, 1998). Several methods have been proposed under 

both Bayesian and frequentist frameworks in addressing RI selection issue (Cheung & Lau, 

2012; Cheung & Rensvold, 1998; Kim & Yoon, 2011; Shi et al., 2007; Stark, Chernyshenko, 

& Drasgow, 2006). For simulation studies, the invariance states of items were known so that 

there was no need to search for RIs. For empirical analyses, we used the method by Shi et al., 

(2017) to identify potential RIs since it was the only one taking a Bayesian approach. Future 

studies could explore other RI searching methods under a Bayesian framework such as 

extending Shi et al., (2017) study by employing the HS prior. 

Another limitation of the current study is associated to the prior choices of 

hyperparameters in the HS prior. Previous studies have discussed different prior choices for 

the global shrinkage hyperparameter in the HS prior (Piironen& Vehtari, 2017). The current 

study employed a half-Cauchy distribution with mean of zero and variance of one (i.e., 

V>(0,1)), which is the most common one, as the prior for the global shrinkage 

hyperparameter. Researchers have argued that this default option often left significant 

amounts of parameters (e.g., regression coefficients) unregularized and may result in bad 

results such as data separation in the logistic regression when parameters are only weakly 

identified (Piironen&Vehtari, 2017). However, this should not be a big concern in the current 

study. First, the current application of the HS prior for improving the prediction of partially 

invariant models served primarily as a proof of concept and as a first step into exploring its 

use.  Second, unlike some common HS prior applications where statistical models contain a 

large number of parameters (e.g., a regression model with a large number of predictors), the 
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number of target parameters (i.e., cross-group differences) in MGCFA models are relatively 

small. So, it is unlikely that the problem associated with this default option will lead to the 

under-regularization problem5. Finally, the method of specifying priors for the global 

shrinkage parameter proposed in Piironen and Vehtari (2017) does not fit into the framework 

of  MI studies where we cannot know the number of non-invariant parameters beforehand. 

Because it requires that researchers have some ideas about the number of effective 

parameters (Piironen & Vehtari, 2017), which can be translated as the number of non-

invariant parameters in MI studies.  

Another limitation is specific to the simulation design. In the current study, the 

simulated data were normally distributed with no missing values, equal sample size among 

groups, and the model structure was simple (i.e., only contained one latent factor without 

item cross-loadings or correlated residual variances, exogenous was observed variable), and 

MI assessments were only conducted between two groups. For greater generalizability, future 

studies should investigate the performance of the HS prior in different simulation settings, 

such as when there are more than two groups, the data contain missing values, sample sizes 

are unequal across groups, or the model structure is more complex (e.g., item cross-loadings, 

correlated residual variance). In addition, since our study is not the only one using Bayesian 

regularization methods in MI assessment (see Chen, Bauer, Belzak, & Brandt, 2021; Liang, 

& Luo, 2019; Muthén et al, 2013, 2017; Shi, Song, DiStefano, Maydeu-Olivares, McDaniel, 

& Jiang, 2019), future studies could compare the HS prior approach with other regularization 

methods such as the Spike-and-Slab prior approach (Chen et al., 2021), the small variance 

approach (Muthén et al, 2013, 2017; Shi et al., 2017), and the frequentist Lasso method 

 
5 We conducted several simulations with the different values of the global shrinkage parameter but did not 
find any difference. 
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(Bauer, Belzak, & Cole,  2019) and discuss some pros and cons in taking each approach in 

detecting non-invariant items.   

Finally, in the empirical analyses, we only compared the predictive performance of 

the HS prior approach with the freely estimated model. Although the result of Study 2 

showed that partially constrained models performed as well as the HS prior models in terms 

of predictions under some simulation conditions, we do believe that this can only happen in 

simulations where the state of invariance is known for each item. In empirical analyses, there 

is no guarantee that partially constrained models are always correctly specified given the 

false positive and false negative in non-invariant items detections. Therefore, freely estimated 

models are safer choices than partially constrained models in practice, and hence is more 

appropriate to be used for model comparison.  

5.3 Recommendations for the use of Horseshoe prior with MI assessment study 

Despite the limitations of this set of studies, we advocate for the Bayesian variable 

selection approach as a viable method in examining the item-level MI and improving the 

predictive ability of partially constrained models. First, one should begin with considering the 

main research question they want to explore with MGCFA models. If the aim is to identify 

problematic items (e.g., DIF), researchers should take Study 1 as a reference. Particularly, 

when determining the state of non-invariance for each parameter of interest, one should 

choose the cutoff value of BFs based on their actual needs. For instance, when strict 

invariance is required for practical purpose, such as using assessments for medical research 

or candidate selections, a large cutoff value of BFs (e.g., BFs > 10 for invariance) should be 

used where the decision of invariance is made upon a solid amount of empirical evidence. On 

the other hand, for some fields where the requirement of invariance can be relaxed a little bit 

(e.g., a group of school psychologists are trying to assess the level of math anxiety among 
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sixth graders), one can choose the default cutoff value (i.e., BFs > 3). When there is a fair 

number of items and none can be determined as either invariant or non-invariant (e.g., 3 > 

BFs > 1/3), one should contemplate if this is caused by a lack of statistical power or a low 

item-reliability, or both. As shown in Study 1, sample size and item-reliability are two key 

factors impacting the certainty rate. As sample size increases, one can expect more 

conclusive and accurate results. Thus, when a considerable number of items are found as 

undetermined, one can start on examining item-reliability and may consider increasing the 

sample size if it is possible. In terms of using MGCFA models for predictions only, one could 

simply skip the non-invariance detection and directly fit a MGSEM model following the 

procedures in Study 2 and Study 3. To check the quality of prediction, one way is to compare 

the out-of-sample prediction of the HS model with a freely estimated model using 

iz(eGKQK*REEä  (see Study 3).  Though, frankly speaking, we do not recommend this approach. 

Using the BMA approach to fit a partially invariant model is like putting a middle ground 

between the theory (i.e., strict MI) and the reality (i.e., data). On one hand, it permits some 

flexibilities (i.e., random noises) on the cross-group difference. On the other hand, it takes 

care of the non-invariance between groups. Therefore, if one could be satisfied with a freely 

estimated model, then why even bother testing for MI in the first place? As alternatives, we 

can take the in-sample prediction approach by plotting the posterior distribution of each 

group separately against the original data. If the posterior distribution seems way too off 

compared to the original data, one can go back to check the model to see if there is any 

misspecification, or there are too many parameters exhibiting non-invariance.  

5.4 Conclusion 

Psychological research often concerns the score or trait comparisons from individuals 

in heterogeneous conditions such as different ethnicity groups, taking evaluations at different 
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locations, or being assessed across time. To obtain valid scientific inferences from such 

comparisons, researchers need to ensure the consistency of those scores. Although the same 

measurement tends to be used under such a circumstance, there is no guarantee that the mean 

differences in the observed scores are purely driven by individuals’ different states on the 

constructs. The desirable situation should be that the mean differences in scores truly/solely 

reflect the individual differences in the same psychological construct. The term measurement 

invariance (MI) is used to refer to this situation. The violation of MI could induce 

measurement bias, so that the observed trait difference may be confounded with the 

difference of measurement construct. Therefore, the MI testing has been developed to 

examine if the same trait remains unchanged regardless of the different conditions (e.g., Jung 

& Yoon, 2016; Mellenbergh, 1989). The establishment of MI is considered as an important 

premise for social and behavior research since it enables the valid cross-group comparisons. 

Difficulties arise, however, the establishment of full MI is often found unrealistic in practice. 

One reason may be that the majority of traditional MI testing methods (e.g., constrained 

model comparisons) tend to be overly restrictive (i.e., allowing zero difference). The 

increasing model constraints may result in a high model rejection rate even if the group 

difference is small, especially when analyzing complex models (e.g., multi-factors, correlated 

errors) or large scales. Up to now, MI studies have been mostly centering upon MI 

assessments, while less attention has been given to the potential solutions when the full MI 

fails.  

With the failure of MI, one common practice is to locate the exact source causing 

non-invariance and fit a partially invariant model. Nevertheless, neither identifying non-

invariant parameters, nor selecting an appropriate model fitting strategy is an easy task. And 

it should be noted that whether the selected model fitting strategy will yield good results 
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(e.g., accurate estimates, better predictions) is conditional on the correct identification of non-

invariant parameters. In other words, any incorrect invariance detection could bias the results 

of partially invariant models. Previous MI studies mostly focused on the model level 

assessment which does not provide an exact location of non-invariance and potentially 

inflates Type I and II errors (e.g., constrained model comparison). There are only a handful of 

studies that have explored the direct way of detecting non-invariant parameters (i.e., item 

level assessment), which has not yet been widely applied. Also, there is a fundamental issue 

with respect to selecting one single model fitting strategy for partially invariant models. That 

is, the uncertainty in model selection process is largely ignored and the final selected model 

is believed to reflect the true data generating process. Whether a single model solution 

obtained from the given data can produce a better forecast for unseen data or can be utilized 

on the future studies is under doubt. Thus, this behavior is considered “dangerous” in the 

sense that it neglects the complexity of human characteristics and the evolution of science.  

The present dissertation aimed to address the aforementioned two important issues 

related to MI studies. Importantly, we investigated the potentials of a Bayesian variable 

selection approach in detecting non-invariant items and a BMA approach to improve the 

predictive abilities of partially invariant models. In this set of studies, we first attempted to 

solve two issues faced by the traditional MI testing using a Bayesian approach. Specially, 

under the Bayesian variable selection framework, we employed a Horseshoe (HS) prior 

approach to enable a parameter level MI testing which not only avoided the issue of inflated 

error rates (i.e., both Type I and Type II) due to multiple model comparisons, but also 

allowed a precise non-invariance detection. Additionally, we used Bayes factors (BF) in 

determining the state of invariance to prevent the theoretical issue caused by null hypothesis 

significance testing. The simulation results showed that the Bayesian variable selection 
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approach performed well when sample size was sufficient, and item-reliability was 

acceptable. Then, we seek to improve the predictive ability of partially invariant models 

when one or more non-invariant parameters are detected. Specifically, most studies 

concerning the predictive ability of partially invariant models have focused on selecting a 

single model fitting strategy to obtain accurate predictions, such as deleting the non-invariant 

items, fitting partially constrained models, using composite scores, or fitting fully constrained 

models. One fundamental issue of making decisions conditional on one single model is that it 

overlooks the uncertainties in model selection, which is especially the case for partially 

invariant models. In partially invariant models, the pattern and magnitude of non-invariance 

can be highly complex and vary case by case. Thus, fitting a single model may not be optimal 

for predicting the unseen data. To overcome this issue, we again used the HS approach to 

mimic Bayesian-Model-Averaging (BMA) where the prediction is made upon all possible 

models. We expected to see partially invariant models show a higher predictive probability 

with the HS approach when comparing with other common model fitting strategies (e.g., 

partially constrained models, freely estimated models). We demonstrated this via simulation 

studies with a partially invariant Multi-group SEM model where four model fitting strategies 

were compared in terms of predictive probabilities. The HS model exhibited an excellent 

predictive performance and outperformed other model fitting strategies under almost all 

simulation conditions. Finally, two sets of empirical analyses were conducted for the 

illustrative purpose. In the case of non-invariant item detection, the Bayesian variable 

selection approach picked up the source of non-invariances in one psychological 

measurement from two different aspects (i.e., between groups, over time). In the case of 

predictions with partially invariant models, the HS prior approach showed an excellent 

performance with both in-sample forecast and out-of-sample forecast when comparing with 

other model fitting strategies.  
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Despite all the limitations that have been discussed in the previous section, the 

Bayesian variable selection approach provides a new perspective for MI studies, where non-

invariance detection and partially invariant model prediction are achieved simultaneously. 

Although under this method, the distinction between invariance and non-invariance may 

become blurry, and the partially invariant model may become uninterpretable. Yet, the 

wisdom token “all models are wrong, but some are useful” from George E. P. Box suggests 

that we should focus more on “is this method useful for providing a solution to the failure of 

MI”, instead of “is this method correctly representing the state of non-invariance”. After all, 

measurement invariance does not mean anything by itself and only becomes meaningful 

when it comes to contributing to social and behavior research. 
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