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Abstract 

Tunneling corrections to the rate constant for unimolecular reactions 

in an isolated molecule are; treated within the standard transition state 

(i.e., RRKM) theory of such processes. The micro canonical distribution 

relevant to the unimolecular case causes tunneling effects to enter in a 

somewhat more complicated fashion than in the analogous transition state 

theory for thermally averaged bimolecular rate constants; e.g., even with-

in the separable approximation they do not enter as simply a multiplicative 

correction factor. Application of the theoretical expressions to some 

unimolecular processes (HZCO + HZ + CO, trans HCOH + HZCO) of interest 

in the collisionless photochemistry of formaldehyde indicate that tunneling 

9 -1 effects are quite significant for rates of 10 secor slower. Isotope 

effects are also considered and seen to be quite interesting. 
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Much has been written over the years about tunneling corrections to 

transition state theoryl for thermal rate constants of bimolecular reactions, 

but there has been little discussion about the effect of tunneling in the 

2 analogous transition state (i. e., RRKM) theory of unimolecular reactions. 

The purpose of this paper is to consider such effects and to illustrate 

them by application to some processes of current interest-in the photo-

chemistry of formaldehyde. 

Brief Sunnnary of the Standard Transition State 

(i. e. RRKM) Theory for Unimolecular Processes 

To simplify the presentation, rotational degrees of freedom will be 

ignored here; the Appendix shdws ho~ the formulae are modified to take 
; 

proper account of total angular momentum conservation and other aspects 

of the rotational degrees of freedom. Wiih this proviso, the standard 

2 -1 
expression for the unimolecular rate constant (units sec ) of an 

isolated molecule with totalenergy,E is 

r 
keEl - N(E) (1) 

where N(E) and NO(E) are the integral densities of states for the transition 

state and for the reactant molec'ule, respectively. . Specifically, , 
.. :j: 

N"(E) =~h(E-e: ) (2a) 
. n 

.n 

NO (E' = E h(E-E
n

) (2b) 
n 
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where hex) is the usual step-function, 

hex) = 
{

a, 

1, x > ° 
x < ° 

and E 
n 

and En are the vibrational energy levels of the transition state 

and the reactant molecule. In practice the vibrational energy levels 

are almost always assumed to be given by a separable harmonic oscillator 

approximation, so that 

s 1 
E = n L hw. (n. +-2) 

1. 1. 
i=l 

E 
n 

* s -1 * 1 
= Vo + E hw. (n. +-2) 

i=l 1. 1. 

where s is the number of vibrational degrees of freedom of the stable 

* molecule, {w.} and {w. } are the normal mode frequencies of the reactant 
1. 1. 

(3a) 

(3b) 

molecule and transition state, and Vo is the "bare" barrier height, i. e. , 

the energy of the saddle point of the potential energy surface (i.e., the 

transition state) relative to the minimum of the potential energy surface 

which corresponds to the reactant molecule. The total energy E is also 

defined relative to the minimum of the potential energy surface. 

Because of the large sums involved in computing the densities of 

states, it is customary in practice to approximate,them by closed form 

expressions. The simplest such approximation is the classical expression
2 

which gives (if the Marcus-Rice "semiclassical" modification2 is included) 



N(E) 

s! 
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s 
E 
s.' 

1r (hw.) 
i=l 1 

(E-V ) s-l 
. 0 

s-l 
(s~l)! .11" 

i=l 
* (hw. ) 

1 

(4a) 

(4b) 

With these approximations Eq. (1) gives the simple classical rate expression
2 

. r, 

where A is a 

k(E) 

-1 
frequency factor (units sec ) 

s s-l 
A= (Iw.)/2n(1I w.*) 

i=l 1 .i=l 1 

Modification to Include Tunneling 

The only simple way to include the effect of tunneling along the 

reaction coordinate in transition state theory is to assume that this 

degree of freedom~-i. e., motion along the reaction coordinate--is 

separable from the other degrees of freedom; this approximation is also 

consistent with the use of Eq. (3) for the energy levels:- Within the 

separable approximation tunneling is accounted forbY.replacing N(E) in 

1 
Eq. (1) by NQM(E), 

\ 

(5a) 

(5b) 

( 6) 
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where P(El ) is the one-dimensionB;l tunneling probability as a function of 

the energy El in the reaction coordinate; in the classical limit of no. 

tunneling P(E
l

) -+h(El ), and NQM(E) -+ N(E). The expression for the uni­

molecular rate constant which incorporates tunneling is thus 

"'.. =1= LJP (E-E
n

) 
n = .<>"''------ (7) 

If the barrier along the reaction coordinate is approximated as an 

inverted parabola, then the tunneling probability is given by 

E ·E = e /(l+e ) 

with 

where wb is the magnitude of the imaginary frequency related to the barrier. 

The generali.zed Eckart potential1a in general provides a more accurate 

representation of the barrier, and in this case the tunneling probability 

is given by 

sinh(a) sinh(b) (8) 

where 
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4 'IT 
JEl 

V· (V -1/2 -1/2 -1 
a = 

h~ 
+ + V ) 

o 0 1 

4tr I (V -1/2 -1/2 -1 
b = -.- JEl + VI + VI··) hW

b 0 

/-OVI . 
, 

1 
c = 2'IT -- - 16 2 

(hw
b

) 

Vo is, as before, the barrier height relative to reactants, and VI is the 

barrier height relative to products; Vl-VO is the exoergicity of 

the reaction (neglecting zero point energies). 

Eg. (6) can be written in another form by the following manipulations: 

dE P'(E) N(E-E
l

) 
1 1 

where N(E-E
l

) is the density of states defined by Eg. (2a); i.e., NQM(E) 

is given by a convolution of the classical approximation to it, namely 

N(E), and the tunneling probability. [For comparison, it is interesting 

to note that the tunneling correction factor r for a thermally averaged 

rate constant is given in terms Gf the tunneling probability by 

r 

ex> i dEl p' (El ) 
-V o 

. ] 

( 9) 
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One is tempted to' use Eq. (9) with the approximation tb N(E-El ) given 

by Eq. (4b). thereby obtaining the following simple expression for the 

tunneling rate constant: 

(
E-VO-El)S_l 

dE pI (E) 
lIE 

(10) 

where A is the same frequency factor as above. It should be emphasized, 

however, that this is not a good thing to do. Although approximating 

NO (E) by Eq. (4-a) is valid (at least for the applications below3), in 

the threshold region where tunneling is important there are so few terms 

that contribute to the sum in Eq. (6) that Eq. (4b) is a poor approximation 

to N(E-E
l

) in the integrand of Eq. (9).Eq. (10) thus gives values much 

too large, and one must retain the discrete sum; since only a few terms do 

contribute to the sum, this causes no computational difficulties. The 

final expression we use (except for the modification due to rotation 

discussed in the Appendix) is thus 

(s-l)! 

where 

:j: ·1 
w • (n +-) 
- - 2 

s 
lr hw. 

1. 
i=l :j: 1 E P [E-V -hw • (n +-)] o _ _ 2 

n 

s-l:j: 1 
E w. (n. +-2) 
i=l 1. 1. 

(11) 
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for the applications below the tunneling probability for the Eckart 

barrier [Eq. (8)] was used. 

Applications to Unimolecular Processes in the Ground 

Electronic State (SO) of Formaldehyde 

The motivation for this work has been the, current interest in the 

4 photochemistry of formaldehyde, for which there are several potentially 

relevant unimolecular processes that can take place on the potential 

'energy surface of the ground electronic state (SO), (The excited 

electronic state Sl which is initially" produced by laser excitation is 

assumed to undergo a radiationless transition back to SO') Figure 1 

5 
shows a schematic of the potential energy surface .fo.r SO' and we consider 

the unimolecular decomposition of formaldehyde to molecular products 

,(Rl) 

and the· isomerization of the metastable species trans-hydroxymethylene--

6· which has been suggested as the species first formed from Sl--to 

formaldehyde, 

(R2) 

. 5 ' 
Goddard and Schaefer have recently carried out extensive self-' 

consistent field and configuration interaction calculations on formaldehyde 

and have determined all the parameters needed to evaluate the rate 

expressions given above. The energies of the two stable species (i.e., 

H2CO and HCOH) and of the two transition states are shown in Figure 1, 
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and Table I gives the six vibrational frequencies and three rotation 

constants for all four species. Unless stated otherwise, all rates" 

constants given below were calculated from Eq. (A.8), which for J = 0 

is identical to Eq. (II), with the tunneling probability of Eq. (8). 

Figu~e 2 shows the unimolecular rate constant for reaction (Rl) 

as a, function of total energy E (relative to the bottom of the potential 

energy surface ofH2CO)~ and for comparison the "s~miclassically" 

moditled classical rate constant of Eq. (5) is also shown (broken line). 

-The arrow on the energy scale indicates the value VO' the "bare" 

barrier height plus the zero point energy of the transition state, 

s-l 1 =1= 

= Vo + L Ih w. 
i=l 1. 

which would be the threshold of the r,eaction, in a completely classical 

approximation; one sees that tunneling allows a significant rate 

9 -1 
(> 10 sec ) at this threshold energy. The rate has fallen only 

6 -1 -
to 10 sec at an energy 'V 8 kc~ll/mole below VO. The exponential 

energy dependence of k{E) (i. e., the linearity of the semi-log plot) 

-for E < Vo also indicates that the process is dominated by tunneling 

in this region. 

Figure 2 also shows that the, "semic1assically" modified classical 

(12) 

rate expression [Eq. (5)] provides a crude description of the tunneling 

region; it is at least better than the purely classical result -which goes 

to zero at VO' This partial success is the result of a cancellation of 

errors: ,the "semiclassical" approximation to N{E) [Eq. (4b)] is known2 

to become much too large asE decreases toward threshold, which tends to 
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make the rate too large~ but neglect of tunneling tends to make it too 

small, thus the partially off-setting errors. If, on the other hand, 

one includes tunneling via Eq. (9) and uses the "semiclassical" approxi-

mation to N(E-E
l
), then the rate obtained [Eq. (10)] is much (over an 

order of magnitude) too large in the tunneling region. 

Figure 3 shows similar results for the rate constant of reaction 

(R2). The arrow shows the classical threshold for the reaction, V
O

' 

and one again sees that tunneling is substantial. In this case the 

"semir:1assically" modified classical rate is rather poor in the thres­

hold region, probably a more typical situation than the better agreement 

in Figure 2. 

To assess the effect of rotation, calculations were also carried 

out for total angular momentum J > O. The rate constant in general 

decreases with increasing J, but the effect is no~ large for the present 

examples: for J = 10, as large a value as is probably of interest, the 

rate constant for both reactions is decreased by a factor of 'V 2.5 at 

E = 90 kcal/mole, and the factor decreases approximately uniformly to 

'V 1.2 at E = 120 kcal/mole. 

Isotope Effects 

Tunneling is significant for these reactions because they primarily 

involve the motion of hydrogen atoms, as evidenced by the large imaginary 

barrier frequencies iW
b 

for the transition states in. Table 1. One thus 

expects large isotope effects in the tunneling region if H-atoms are 

replaced by D atoms. The relevant frequencies (and rotation constants) 

for the deuterated species have also been determined by Goddard and 

SchaeferS and are given in Table I. 
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Figure 4 shows the isotope effect, i.e., the ratio of the hydrogen 

to the deuterium rate constant for the two reactions. It is easy to 

see that the classical rate expression [Eq. (5)] gives an energy~independent 

isotope ratio, and one sees in Figure 4 that this limit is. approached 

for energies above the classical thresholds. In the .threshold region 

and below, however, the isotope ratio is strongly dependent on energy: 

for energies significantly below the classical threshold there is an 

exponenU al energy dependence (1. e., the semi-log plot is linear), but 

near the classical threshold itself the energy dependence is quite 

complicated, showing a pronounced minimum, in the vicinity of which the 

deuterium versions of the reactions are actually faster than the hydrogen 

versions. 

Although comparing different isotopes at the. same total energy (as 

in Figure 4) is the most meaningful comparison from· a theoretical point 

of view, the experimental situation often dictates otherwise. Thus for 

formaldehyde the excitation'energy from the ground vibrational state of 

4 
So to tl1eground vibrational state of Sl is 80.6 kcal/mole for H2CO and 

80.9 kcal/mole for D2CO, and since the zero point energies of H2CO and 

D2CO are 16.1 kcal/mole and 12.8 kcal/mole, respectively, the total energies 

resulting from these vibrationless excitations are 96.7 kcal/mole for H2CO 

and 93.7 kcal/mole for D2CO. At these, energie~ the present calculations 

give 

H 
5.8 x i0

6 -1 
kl = sec k D 1.4 x 10

5 -1 
1 sec (13a) 

k H 1.9 10
7 -1 

2 
x sec k D 5 -1 

2 
5.7 x.lO sec (13b) 
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.where kl and k2 refer to reactions (Rl) .and (R2), respectively. (The values 

, H D 
for kl and kl in Eq~ (13a) include an extra factor of 2 due to symmetry, 

which has heretofore been omitted; this is because H
2

CO and D
2

CO have a 

two-fold rotation axis and thus a symmetry number of 2.) These rates are 

for total angular momentum J = 0; for J = 10 they are all about a factor 

of 2 smaller. 

Similar calculation.s have been carri,ed out for the mixed isotope HDCO 

and the rates are, perhaps not unexpectedly, intermediate between those 

for H2CO and D2CO. For the vibrationlessS
O 

-+Sl excitation, for example, 

the total energy is 95.3 kcal/mole and the rate'of reaction (Rl) is 

k HD 
1 

Concluding Remarks 

(14) 

The main purpose of this paper has been to show how tunneling can be 

incorporated in the transition state (1. e., RRKM) theory for unimolecular 

reactions in a manner analogous to the way it is included in transition 

state theory for thermal bimolecular reactions. Because the unimolecular 

case corresponds to a fixed energy rather than a fixed temperature, the 

effect of tunneling is somewhat more complicated, i.e., it does not enter 

as simply a multiplicative correction factor but rather in a more 

convoluted manner. 

With regard to the applications to formaldehyde, one must be somewhat 

cautious regarding the specific values obtained for the rate constants 

because it is known that when tunneling effects are substantial, the 

separable approximation for tunneling can be poor.
lc 

Nevertheless, the 

\ 
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results obtained for the rates do' indicate that on the time scale of 

interest in the co11ision1ess photochemistry of formaldehyde, i. e., , . . 

10-
5 

- 10-
6 

sees, tunneling is likely to playa signif'icant role. 
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Appendix: Effect of Rotational Degrees of Freedom 

There are three degrees-ot' freedom-associated with the overall 

rotCl,tion of a non~liriearmolecule,the quantum numbers for which we 

designate J, M
J

• K. J, the total angular momentum quantum number, 

and MJ ; its projection onto a space-fixed axis, are always conserved, 

while K is in general not conserved. (For a rigid symmetric top, K 

is also conserved.) One thus needs to define the unimolecular rate 

constant k(E,J) which corresponds to a fixed value of total angular 

momentum J as well as total energy E; because of the isotropy of space, 

the rate is independent of Mr 

We assume that Kis a statistical degree of freedom, i. e., that it 

interchanges energy statistically with all the vibrational degrees of 

freedom. Theunimolecular rate constant is then given by 

k(E,J) = N (E ,J) (A.l) 

2nh 

where 

N(E,J) 
J 

* L L h(E - En,J ,K) 
K=-J n -

(A.2a) 

J 
NO(E,J) = L 

K=-J 
I: h(E - E J K) n, , 
n -

-, (A.2b) 

{E *J K} and {E *J K}being .the rotational-vibrational energy levels of n, , n, • 

the transition state and of the reactant molecule, respectively.· In 

practice these energy levels are obtained by assuming a rigid rotor-harmonic 
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oscillator approximation, 

:f 

£ n,J.K 

* £ n,J,K 

s 1 
= W J ,K + r: hw. (ni +'2) 

i=l 1 

(A.3a) 

(A.3b) 

where WJ,K and WJ,K are the rotational energies of the transition state 

and of the reactant molecule. Since the energy levels of most asymmetric 

rotors are reasonably well approximated by assuming an "almost symmetric 

7 
top", we invoke that approximation here, so that 

* * * where (A,B,C) and (A ,B ,C ) are the three rotation constants of the 

molecule and of the transition state. (A and B are chosen as the two' 

* most nearly equal rotation constants of the three A, B, and C, and A 

* and B similarly.) 

The sums over vibrational quantum number n may be approximated as 

2 before, but because we consider cases of small J, the discrete sum 

over K is retained. Analogous to Eq. (4) the classical approximation 

to the sum over n in Eq. (4.2) thus gives 

J 
N(E,J) - r: 

K=-'J 

(E _ V _ W* ')S-l 
o J,K 

s-l * 
(s-l)! 1r (hw

i
) 

i=l 

(A.4a) 

(A.4b) 

(A. Sa) 
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J. 

L 
K=-J 

(E-W. ) 
J,K 
s 

s 

s! lr hw. 
i=l ~ 

so that the classical rate expression which replaces Eq. (5a) is 

k(E,J) A J 

L (E 
K=-J 

)8-1 
- WJ,K 

(A.5b) 

(A.6) 

A being the frequency factor of Eq. (5b)~ Note that forJ 0, Eq. (A.6) 

reduces to Eq. (5a). 

The effect of tunneling along the reaction coordinate is included 

in the same manner as before, by replacing N(E,J) by NQM(E,J), 

where again P(E
1

) is the one-dimensional tunneling probability.· The 

expression for the tunneling rate constant which generalizes Eq. (11) 

by including rotation is thus 

s J :j:::j:: 1 L L: P[E-V -W -h~. (n +-)] 
v- J a J,K: 2 
L\.-- g 

(s-l) ! T hw. 
~. 

i=l 
J 

L 
K=-J 

2nh (E - W )p-1 
J,K 

:j:: 

(A.7) 

(A.8) 

with the rotational energies WJ K arid WJ K given by Eq. (A.4). One notes , , 
that for the case J = a Eq. (A. 8) reduces to the result in the text [Eq. 

(11)] that ignores rotation altogether. 
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Table I. Vibrational Frequencies and Rotation Constants
a 

Hydrogen Species 

r A 
\ 

r 

H2CO .tI:-HCOH TS-M TS-R 

2843 3634 2760 3675 

2766 2684 1654 2803 

1746 1595 1137 2339 

1501 1264 941 1568 

'1247 1101 697 ·1221 

1164 1093 2288 i 2299 i 

----------------------------------------

1.13 

1.30 

9.41 

D2CO 

2160 

2056 

1700 

1106 

990 

938 

1.04 

. ;t .16 

10.52 

Deuterated 
A 

.tr-DCOD 

2525 .. 

1979 

1430 

933 

921 

799 

1.05 

·1.18 

9.06 

Species 

TS-M 

2186 

1503 

820 

72'4 

505 

1900 i 

1.09 

1. 25 

8.86 

TS-R 

2759 

2134 

1735 

·1408 

974 

1675 

\ 

i 

----------------------------------------
0.88 0.84 0.76 0.89 

1.07 0.97 0.89 1.10 

4.70 6.28 5.45 4.75 

The six values above the dotted lines are the vibrational frequencies. and 

the three values below it are the rotatioIl constants. Units for all are 

-1 
cm TS-M and TS-R are the molecular and rearrangement transition states 

indicated in Figure 1. 
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Figure Captions 

1. Schematic of the potential energy surface for the ground electronic 

state (SO) of formaldehyde. Units of energy are kcal/mole. and the 

values shown are from the work in reference 5. 

2. Unimolecular rate constant for the reaction indicated, as a function 

of total energy~ for· total angular momentum J = O. The solid curve 

includes tunneling effects and is computed from Eq. (11). The broken 

curve is from the "semiclassically" modified classical expression in 

Eq. (5). The arrow indicates the classical threshold for the reaction, 

as defined by Eq. (12). 

3. Same as Figure 2. 

4. Isotope effects. Plotted is the log of the ratio of hydrogen to 

deuterium rate constants for the reactions indicated, as a function 

of total energy. 
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