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BACKGROUND: Maternal cigarette smoking during pregnancy (MSDP) is associated with numerous adverse health outcomes in infants and children with
potential lifelong consequences. Negative effects ofMSDP on placental DNAmethylation (DNAm), placental structure, and function are well established.

OBJECTIVE: Our aim was to develop biomarkers of MSDP using DNAm measured in placentas (N=96), collected as part of the Vitamin C to
Decrease the Effects of Smoking in Pregnancy on Infant Lung Function double-blind, placebo-controlled randomized clinical trial conducted between
2012 and 2016. We also aimed to develop a digital polymerase chain reaction (PCR) assay for the top ranking cytosine–guanine dinucleotide (CpG)
so that large numbers of samples can be screened for exposure at low cost.

METHODS: We compared the ability of four machine learning methods [logistic least absolute shrinkage and selection operator (LASSO) regression,
logistic elastic net regression, random forest, and gradient boosting machine] to classify MSDP based on placental DNAm signatures. We developed
separate models using the complete EPIC array dataset and on the subset of probes also found on the 450K array so that models exist for both plat-
forms. For comparison, we developed a model using CpGs previously associated with MSDP in placenta. For each final model, we used model coeffi-
cients and normalized beta values to calculate placental smoking index (PSI) scores for each sample. Final models were validated in two external
datasets: the Extremely Low Gestational Age Newborn observational study, N =426; and the Rhode Island Children’s Health Study, N=237.
RESULTS: Logistic LASSO regression demonstrated the highest performance in cross-validation testing with the lowest number of input CpGs.
Accuracy was greatest in external datasets when using models developed for the same platform. PSI scores in smokers only (n=72) were moderately
correlated with maternal plasma cotinine levels. One CpG (cg27402634), with the largest coefficient in two models, was measured accurately by digi-
tal PCR compared with measurement by EPIC array (R2 = 0:98).
DISCUSSION: To our knowledge, we have developed the first placental DNAm-based biomarkers of MSDP with broad utility to studies of prenatal dis-
ease origins. https://doi.org/10.1289/EHP13838

Introduction
Maternal cigarette smoking during pregnancy (MSDP) is associ-
ated with increased risk of low birth weight, prematurity, and peri-
natal mortality.1–4 MSDP is also associated with greater risk of
cardiovascular, metabolic, respiratory, and neurocognitive health
outcomes in childhood and into adulthood.5–10 Despite smoking
cessation efforts, >50% of female smokers will continue to smoke

during pregnancy, resulting in ∼ 8% of all infants born in the
United States exposed to cigarette smoking in utero.11,12

Quantification of the level and duration of exposure to MSDP
can improve our understanding of the underlying mechanisms for
the direct consequences of MSDP on fetal and childhood health
and can also improve our ability to model other exposure–disease
relationships by more accurately adjusting for MSDP as a covari-
ate. However, MSDP is typically assessed based on self-report,
which is subject to underreporting due to social stigma12,13 and
does not accurately capture information on the intensity or fre-
quency of smoking. Cotinine, the primarymetabolite of nicotine, is
the current gold standard chemical biomarker of daily smok-
ing,14,15 but single or cross-sectional cotinine measurements may
be unavailable. With a shorter half-life (8.8 h) during preg-
nancy,16,17 and the fluctuation in daily smoking rates among preg-
nant women,18 cotinine is an unreliable measure of cumulative
prenatal smoke exposure.

Alternatively, robust DNA methylation (DNAm) signatures
of prenatal exposure to maternal smoking may serve as molecular
biomarkers, and it has been proposed that these DNAm-
biomarkers can be used as a proxy for exposure when modeling
exposure–outcome relationships.19–21 Several blood-based DNAm-
biomarkers of prenatal MSDP exposure have been developed using
samples collected at birth, in childhood, adolescence, and even in
adulthood.22–26
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We hypothesized that placental DNAm could be used to de-
velop an accurate and more quantitative biomarker of MSDP
based on several characteristics. First, the placenta regulates
transfer of material between the mother and fetus, and some
xenobiotics and chemicals, including nicotine, readily cross the
placental barrier.27 Therefore, the placenta may provide a cumu-
lative molecular record of exposure to maternal smoking through-
out gestation. Second, the placenta contains a higher frequency of
partially methylated domains relative to blood,28 and it has been
suggested that cytosine–guanine dinucleotides (CpGs) sites with
intermediate levels of methylation can be measured with greater
precision than at extreme values (i.e., near b=0 or fully unme-
thylated and near b=1 or fully methylated).29,30 Third, placental
DNAm is dysregulated with in utero exposure to environmental
pollutants,31–33 and some of the greatest effect sizes have been
reported in association with MSDP.33–36

To test this hypothesis, we measured placental DNAm
genome-wide using the Illumina MethylationEPIC array platform
in a subset of placentas (N =96, from 24 never-smokers and 72
self-reported smokers) collected at delivery from the Vitamin C to
Decrease the Effects of Smoking in Pregnancy on Infant Lung
Function (VCSIP) (NCT01723696) cohort. We applied four
machine learning methods [logistic least absolute shrinkage and
selection operator (LASSO) regression, logistic elastic net regres-
sion, random forest, and gradient boosting machine] to identify
DNAm signatures that predict maternal smoking during preg-
nancy. We developed three final models using probes from the
EPIC array, the 450K array, and a previous meta-analysis of
MSDP. We also examined the association between the resulting
placental smoking indices and cotinine levels, measured in plasma
of pregnant smokers during different windows of gestation. Using
digital polymerase chain reaction (PCR), we developed an inex-
pensive, high-throughput targeted assay for screening of prenatal
smoking exposure in placental DNA. Last, we examined the bio-
logical relevance of CpGs in the placental smoking index (PSI) to
help understand the role of DNAm in the pathway between smoke
exposure and later health outcomes.

Methods

Study Populations
VCSIP. The randomized controlled trial (RCT) cohort VCSIP
recruited women with singleton pregnancies (≥15 y old; <23 wk
gestation) with a history of current cigarette smoking and docu-
mented refusal/inability to quit37–39 from three centers in the
United States (Oregon, Washington, and Indiana) between 2012
and 2016. The women were randomized to receive vitamin C
(500 mg=d) vs. placebo after a successful run-in trial for medica-
tion compliance that required 75% adherence and return for
follow-up within 7–21 d. A total of 252 pregnant women who
were smokers were randomized and 243 infants were available
for study at delivery. The RCT was approved by each site’s insti-
tutional review board and monitored by a National Institutes of
Health–appointed Data Safety Monitoring Board. A group of 33
pregnant women who were never-smokers were enrolled toward
the end of the RCT as a reference group. We obtained written
informed consent from all participants prior to enrollment.37 The
training dataset consisted of a subset of 96 participants from this
RCT with placental epigenome-wide DNA methylation data (24
never-smokers and 72 self-reported smokers). We excluded pla-
centas from participants with gestational hypertension, pree-
clampsia, or preterm delivery (<37 wk), as well as placentas
sampled >3 h after delivery owing to concern over sample deteri-
oration. We then prioritized placentas with RNA-sequencing

(RNA-seq) data available (n=80) and 16 additional samples for
inclusion on EPIC arrays (Figure S1).

Extremely Low Gestational Age Newborn. The Extremely
Low Gestational Age Newborn (ELGAN) observational study
was established to learn more about medical and developmental
deficits common in babies born very premature.40 Women giving
birth before 28 wk gestation between 2002 and 2004 at 1 of the
14 participating ELGAN sites (in North Carolina, Michigan,
Illinois, Connecticut, and Massachusetts) were invited to enroll.
All protocols were approved by the institutional review board at
each of the 14 participating sites and all participants provided
written informed consent to participate.40 Within this cohort, suf-
ficient placental DNA was available for methylation analysis
from 426 participants.41 The present analysis included 399 partic-
ipants (43 exposed to MSDP; 356 not exposed) with placental
DNAm EPIC data and information on smoking status available
through the Environmental influences on Child Health Outcomes
(ECHO) consortium.42 Datasets were excluded if they were not
available in the ECHO data portal or if they were missing infor-
mation on smoking status.

Rhode Island Children’s Health Study. The Rhode Island
Children’s Health Study (RICHS) is a birth cohort of mother–child
dyads in the Rhode Island and Southeastern Massachusetts
area designed to study the role of the placenta in the effects of
environmental exposures on children’s health, as previously
described.43,44 Women and infants were enrolled between 2010
and 2013 from nonpathological pregnancies at term (≥37 wk ges-
tation), and the cohort was oversampled for infants classified as
large or small for gestational age. All protocols were approved by
the institutional review boards at the Women and Infants Hospital
and Dartmouth College, and all participants provided written
informed consent.43 In the present study, we included 237 partici-
pants with 450K DNAm data available on Gene Expression
Omnibus (GEO) (GSE75248) and metadata available for maternal
smoking during pregnancy (35 exposed; 202 not exposed).
Datasets were excluded if theyweremissing information onmater-
nal smoking status.

DNAMethylation Profiling
VCSIP. Placentas were collected and processed by trained
research staff using standardized protocols, as described previ-
ously.45 We analyzed 96 placentas and prioritized 80 samples used
previously in transcriptome-wide analysis, as well as 16 additional
placentas, to balance samples from RCT groups by sex and gesta-
tional age at delivery.45 In brief, 500 ng of placental DNA was
bisulfite converted and applied to Illumina Infinium Methylation
EPIC BeadChips following the Infinium HD Methylation
15019521v01 protocol. Data normalization and quality control
assessment were performed using the Chip Analysis Methylation
Pipeline (ChAMP) package: non-CpG probes, probes with a bead-
count (beadC) <3 in at least 5% of samples, probes annotated to
single nucleotide polymorphisms (SNPs),46 probes with a detec-
tion p-value (detP) >0:01 in one or more samples, cross-
hybridizing probes,47 and probes on X/Y chromosomes were
removed, and the remaining probes (n=714,666) were normalized
via functional normalization.48

ELGAN. The ELGAN Illumina EPIC dataset was accessed
from the ECHO Cohort high-performance cluster.42 DNAm data
was analyzed for quality and processed by the ECHO Data
Analysis Center using a standard pipeline. Samples were removed
in cases of discrepant sex, low overall intensity, duplicates, bisul-
fite intensity <4,000, >1% probeswith detP >0:05, or >1% probes
with beadC <3 . Probes were removed in caseswhere >1% of sam-
ples had detP >0:5, 1% of samples with beadC <3, cross-reactive
probes, or probes with a SNP at the CpG site. The Noob method of
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normalization was applied to correct for probe and dye bias within
an array/sample.49

RICHS. The RICHS Illumina 450K dataset was obtained
from the National Center for Biotechnology Information Gene
Expression Omnibus (NCBI GEO) submission GSE75248.
Sample collection and processing of samples and DNAm data
has been previously described.50,51 Poor quality probes (detP
<0:001), sex-chromosome probes, and SNP-associated loci were
removed, and the data was adjusted for type 1 and type 2 probe
variation using functional normalization.48 The normalized beta
matrix and phenotype matrix were downloaded from the GEO on
14 November 2019.

Smoking Variables
VCSIP. In this RCT cohort, smoking status was confirmed based
on repeated questionnaires, measures of urine cotinine, hair nico-
tine, and plasma nicotine metabolites collected at randomization
(median= 18.7 wk), at mid-gestation (median= 26 wk), and at
late-gestation (median= 31.7 wk). At the randomization visit for
our study, only 1 of the 72 self-reported smoking participants
with placental DNAm had urine cotinine levels <100 ng=mL, a
common cutoff to define active smoking.52

ELGAN. Prenatal tobacco smoke exposure was defined at the
time of enrollment based on maternal self-report of active smok-
ing during pregnancy.53 Women were interviewed in their native
language using a structured data questionnaire that included the
question: “Did you smoke cigarettes during this pregnancy
(0= no, 1= yes)?”53

RICHS. We downloaded the metadata table for GSE75248
from the GEO and used the variable “smoking_status” as truth in
our assessment of model performance, coded as “Yes,” “No,” or
“unknown.” Subjects with DNAm and “smoking status” listed as
“unknown” were not included in the present study.

Machine Learning Methods
Each machine learning method was performed via the Tidymodels
library (Kuhn and Wickham) in R (version 4.0.3; R Development
Core Team). The four methods evaluated in the present study
include logistic LASSO regression54 from the glmnet engine,55

logistic elastic net regression56 from the glmnet engine, random
forest57 from the ranger engine58 with importance set to impurity,
and gradient boosting machine59 from the xgboost engine60 (Figure
1). CpGs beta values were centered and scaled for all modeling
methods. For each method, we defined two model datasets: a) the
entire set of EPIC probes, and b) the probes that overlap between
EPIC and 450K platforms. For the LASSO regression, we defined
an additional dataset: c) probes previously reported to be associated
with MSDP in a meta-analysis by the Pregnancy And Childhood
Epigenetics (PACE) consortium.35

Variable Preselection
To subset the hundreds of thousands of CpGs for which we had
methylation measurements prior to model training, we employed
an unadjusted differentially methylated CpG analysis using the
lmFit, contrasts.fit, and eBayes functions from the Limma
library61 with the comparison set as “smoker vs. nonsmoker.”
Following this statistical test, the top smoking associated CpGs
with the lowest p-values were selected, using “nCpGs” as a tuna-
ble hyperparameter (ranging from 10 to 1,000, in 10 intervals of
110). For LASSO and elastic net regression only, highly corre-
lated top CpGs were removed according to a correlation cutoff of
0.75, and the remaining non-highly correlated top smoking-
associated CpGs were used as features in the downstream model
fitting process.

Hyperparameter Tuning
In machine learning, hyperparameters are user-defined values used
to control the learning process and vary depending on the applied
method. To find optimal hyperparameters values, we implemented
a grid search along with 10-fold cross-validation stratified across
smoking status for each unique hyperparameter value (or unique
combination of values if therewasmore than one hyperparameter).

For logistic LASSO regression, the penalty parameter lambda
was tuned via the grid_regular function from Tidymodels with a
tune length set to 20 (tune length corresponds to the number of val-
ues to use). The nCpG parameter used 10 values evenly spaced
between 10 and 1,000. For logistic elastic net regression, both the
penalty parameter lambda and the mixture parameter alpha were
tuned via the grid_regular function with tune length set to 10, and
the nCpG parameter set to 5 values between 50 and 1,000. For ran-
dom forest, two rounds of hyperparameter tuning were employed.
First, the hyperparameters ntree and nCpG were tuned with ntree
set to 10 values between 50 and 1,000, and nCpG set to 10 values
between 10 and 1,000. Following this first round of tuning, the best
performing values were selected for ntree and nCpG, and the mtry
and min_n parameters were tuned. The mtry parameter was set to
20 values between 1 and 100, whereas themin_n parameter was set
to 10 values between 1 and 15. The gradient boosting machine
used three hyperparameters: a) nCpG, set to 5 values between 50
and 1,000; b) ntree, set to 20 values between 50 and 1,000; and
c) depth, set to 10 values between 1 and 20.

Criteria for Model Selection
Following 10-fold cross-validation for each unique hyperpara-
meter combination, we obtained performance metrics measuring
model performance for each fold. These values were averaged
across all 10 folds to obtain a mean performance metric for each
hyperparameter combination (Excel Table S1). Cohen’s kappa is
designed to better assess model performance on datasets with a
class imbalance,62 such as in the VCSIP training dataset, which is
majority smokers. Although Cohen’s kappa was the primary
measure used to compare model performance, accuracy and area
under the receiver operating characteristic (ROC) curve were
also computed, and we prioritized models with a lower number
of nCpGs (more parsimonious).

Final LASSOModels
Following hyperparameter tuning of LASSO models on the three
datasets defined above, the hyperparameter values resulting in the
highest kappa score were selected for the final models (Excel
Table S1). These hyperparameter values were used for an addi-
tional round of training on the entire VCSIP dataset (n=96) to
create three final LASSO models to be tested on external datasets
as validation. Although the 450K dataset had two combinations
resulting in the same highest kappa score, we selected the combi-
nation resulting in the fewest number of CpGs with nonzero
coefficients.

Weighted Mean Calculation for Missing CpGs
WhenCpGs required by the model are missing from a dataset, users
have the option to fill inmissing beta valueswith the weightedmean
of the training dataset (Excel Table S2). We employed a weighted
approach owing to our training dataset being majority smokers,
whichmay not be representative of or appropriate for all future data-
sets taken from the US population. The weighted mean was calcu-
lated by first determining the average beta value for smokers and
nonsmokers separately. The average beta value for smokers was
multiplied by 0.123 (based on previously reported prevalence of
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MSDP63), and the average in nonsmokers was multiplied by (1 –
0.123). Finally, these resulting numbers were summed per CpG to
obtain theweightedmean beta value.

Final Model Exploration
Calculation of PSI score. For each of the three final LASSO
models depicted in Figure 1, a PSI score can be calculated for
each sample using the model coefficients for the selected CpGs
and beta values centered and scaled according to the VCSIP
training data to produce predictions consistent with the trained
model (https://github.com/ba-davis/PSI_final_models). We pro-
vide mean and standard deviation values for each CpG in each
final model in the code repository and in Excel Table S2. The PSI
score is equal to the normalized CpG beta value multiplied by the

coefficient for the same CpG, and summed over all CpGs in the
model (Excel Table S3).

Correlation of PSI with maternal plasma cotinine levels. The
smoking samples from the VCSIP dataset include measures of
cotinine at three different time points: at randomization, at mid-
gestation, and at late-gestation. We performed Pearson correla-
tion between PSI score and cotinine concentration at each gesta-
tional window in the 72 smokers only (Excel Table S3). We did
not include nonsmokers in our correlation analyses because the
majority of our nonsmokers had cotinine levels at or below the
limit of detection (LOD=0:195).

Performance metrics. ROC curves (Figure 2), area under the
ROC curve (AUC), and partial AUC (pAUC) values were calcu-
lated from the predictions using the pROC library.64 AUC values
were obtained from the roc function, whereas partial AUC values
from the 90%–100% specificity interval were obtained from the
auc function. Plots were generated with the plot.roc function.
Percentage accuracy was calculated as the number correctly classi-
fied/total number of datasets × 100. Sensitivity was calculated as
the number of predicted smokers/total number of smokers × 100.
Specificity was calculated as the number of predicted nonsmokers /
total number of nonsmokers × 100.

Biological importance/previous epigenome-wide association
studies. We used the online Epigenome-Wide Association Studies
(EWAS) Open Platform (https://ngdc.cncb.ac.cn/ewas/) to exam-
ine the biological relevance and previous associations of probes
selected in any one of our models.65 First, we input the list of
probes selected in any of the three final LASSO models (Excel
Table S2) into the EWAS Toolkit for enrichment of GO (gene on-
tology), KEGG (Kyoto Encyclopedia of Genes and Genomes)
terms, and traits. Next, we looked up individual probes in the
EWAS Atlas to compile a table of traits, studies, tissue sources,
and publications previously associated with each probe.

Digital PCR
Primer design. Digital PCR primers were designed using the
DNA sequence 75 bp upstream and downstream from the target CpG
(cg27402634) extracted from the University of Santa Cruz Genome
Browser.66 Synthetic gblock DNA for the matching sequence
was purchased from IGT and used for primer optimization.
The DNA sequence was bisulfite converted in silico using

Tune Hyperparameters via Grid Search and 
10 Fold Cross Valida�on for 4 ML methods

LASSO Regression

Elas�c Net Regression

Random Forest

Gradient Boos�ng Machine

Assess performance metrics, determine 
hyperparameter combo resul�ng in highest 
Cohen’s kappa value

Select LASSO Regression based on performance

Subset VCSIP EPIC array to 450K and PACE 
probes. Tune hyperparameters for LASSO 
regression via 10 Fold Cross Valida�on. 

Train 3 final LASSO models on all 96 samples using best 
hyperparameter values to obtain final coefficients

Valida�on - Predict on ELGAN 
(n=399) and RICHS (n=237) 

datasets

Model 2 – 450K Model 3 –PACEModel 1 – EPIC

Training – VCSIP (n=96)
Methyla�onEPIC placental datasets

(72 smokers/ 24 never-smokers)

Figure 1. Flowchart detailing the steps from training to final models. Initially,
four machine learning methods for predicting smoking status in the VCSIP
dataset underwent hyperparameter tuning via 10-fold cross-validation.
Hyperparameters varied according to the machine learning method, but all
methods included a hyperparameter “nCpG” that signifies the top n CpGs
ranked by p-value following differential analysis with Limma. LASSO regres-
sion achieved among the highest kappa values while also providing a simpler
interpretation than other methods. The VCSIP EPIC beta matrix was subset to
probes overlapping the 450K array, as well as probes overlapping the PACE
meta-analysis, and hyperparameter tuning was performed the same way on
these datasets. Hyperparameter values resulting in the highest kappa value
were used for a final round of training on all VCSIP samples for each dataset
(EPIC, 450K overlaps, PACE overlaps) to obtain three final LASSO models.
These final models were used to predict smoking status in two external placen-
tal DNAmethylation datasets with known smoking exposure. Note: CpG, cyto-
sine–guanine dinucleotide; ELGAN, Extremely Low Gestational Age
Newborn; EPIC, Infinium MethylationEPIC array; LASSO, least absolute
shrinkage and selection operator; ML, machine learning; PACE, Pregnancy
and Childhood Epigenetics; RICHS, Rhode Island Children’s Health Study;
VCSIP, Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant
Lung Function.

Figure 2. ROC curves for (A) model 1, trained on EPIC probes using pla-
cental DNAm data from 72 smokers and 24 never-smokers in the VCSIP
RCT and applied to the ELGAN dataset (n=399), and (B) model 2, trained
on 450K probes and applied to the RICHS dataset (n=237). Note: AUC,
area under the ROC curve; ELGAN, Extremely Low Gestational Age
Newborn; EPIC, Infinium MethylationEPIC array; RCT, randomized con-
trolled trial; RICHS, Rhode Island Children’s Health Study; ROC, receiver
operating characteristic; VCSIP, Vitamin C to Decrease the Effects of
Smoking in Pregnancy on Infant Lung Function.
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MethPrimer followed by primer and probe design using
Primer3Plus (Fprimer: AGTTTTTAGTAAACGTTTTTT; Rprimer:
CTTCCCCTTTACCAATAA; Methylated probe: FAM-
TGGATTATAGAcgTATTTTTGA; Nonmethylated probe: HEX-
TGGATTATAGActTATTTTTGAT). Primers and probes were
combined in a 10× primer–probe mix as recommended [0:8 lM
forward primer; 0:8 lM reverse primer; 0:4 lM probe (0:2 lM
each if duplex)].

Assay validation. Digital PCR was performed using standard
reaction conditions recommended for the QIAcuity 8.5K 24-well
plates and the QIAcuity 4X Probe PCRMasterMix (Qiagen): 3 lL
of 4× Probe PCRMaster Mix; 1:2 lL of 10× primer–probe mix;
2 lLDNA;RNase-freewater up to 12 lL.Methylated and nonme-
thylated standards were used to generate a standard curve with
samples at 20%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%,
80%, and 85% methylation, and run in duplicate on the QIAcuity
Eight digital PCR instrument (Qiagen) with the following PCR
conditions: 95° for 5 min, × 40 cycles of (95° for 55 s, 52° for
40 s). Pearson correlation was used to compare concentration of
standards to measured concentrations using digital PCR. Human
placental DNA (1 lL; average of 120 ng=lL) was bisulfite con-
verted using the Methylamp DNA Modification Kit, as described
in the manufacturer protocol (Epigentek). We performed digital
PCR on the bisulfite product using the same reaction conditions as
above, but in triplicate per sample. The coefficient of variation
(CV) was calculated across replicates. Pearson correlation was
used to comparemean results from digital PCR vs. EPIC array beta
values for the same samples.

Results

Baseline Characteristics
Demographics of the participants included in the training and vali-
dation datasets are summarized in Table 1. Limited demographic
data for the RICHS validation dataset participants were obtained
from the metadata linked to the GEO submission (GSE75248). We
did not perform statistical comparisons between datasets but, rather,
describe the major known differences herein. First, given that the
training dataset was an RCT cohort of pregnant smokers, the preva-
lence of maternal smoking based on self-report in participants with
placental DNAm was 75%, whereas in the validation datasets the
prevalence of smoking among participants with placental DNAm
was 11% in the ELGAN and 15% in the RICHS cohorts. Second,
given that the ELGAN cohort is a prospective cohort of extremely
low gestational age newborns, the median gestational age of partici-
pants with DNAm was 25.68 wk compared with those in our train-
ing dataset, which excluded preterm deliveries from DNAm
analysis [median gestational age ðGAÞ=39:21 wk]. The mean
birthweight in ELGAN participants with DNAm data was 832:61 g
compared with 3,328 g in the training dataset. Our training dataset
also excluded participants with preeclampsia or gestational hyper-
tension, whereas this was not an exclusion criterion for ELGAN.
Several socioeconomic measures indicated lower socioeconomic
status (e.g., fewer years of maternal education and lack of private
health insurance) in the training data of majority smokers compared
with ELGAN participants. The ELGAN dataset also included a
higher proportion of participants that self-identified as Black or
other race, as well as a higher proportion of self-described Hispanic
or Latino ethnicity, relative to the training dataset, which predomi-
nantly includedWhite/Caucasian participants.

Summary of Cross-Validation Metrics
EPIC beta matrix. The LASSO models exhibited high perform-
ance with mean kappa scores of ∼ 0:89. The mean performance

scores for elastic net regression were similar to those of LASSO
regression, but the top performing nCpG values were larger over-
all than those of the LASSO regression. The random forest and
gradient boosting machine returned lower mean kappa scores,
with top performing values of ∼ 0:86 and 0.85, respectively
(Excel Table S1).

450K beta matrix. The same machine learning methods and
hyperparameter tuning scheme were performed on the 450K beta
matrix. Once again, the LASSO regression and the elastic net
regression performed well with top mean kappa scores of ∼ 0:94,
higher than the top mean kappa values from the hyperparameter
tuning performed on the EPIC array beta matrix. Random forest
resulted in slightly worse mean kappa scores than from the EPIC
array beta matrix cross-validation, although the second round of
tuning increased the top mean kappa score dramatically from
0.74 to 0.82. Gradient boosting machine reached a top mean
kappa score of 0.84 (Excel Table S1).

PACE beta matrix. Logistic LASSO regression hyperpara-
meter tuning was performed on the sustained smoking CpGs
obtained from the PACE meta-analysis,35 which overlapped the
EPIC array beta matrix. The mean kappa scores were high fol-
lowing cross-validation, with a top mean kappa score of 0.95
(Excel Table S1).

Final Models
We selected the logistic LASSO regression for final model build-
ing owing to the high-performance metrics and the simplicity of
model interpretation. Three final models were developed using
the hyperparameter values resulting in the highest mean kappa
score for each probe matrix (EPIC, 450K, PACE) using all 96
VCSIP samples to obtain model coefficients. This resulted in
selection of 18 CpGs with nonzero coefficients for model 1
(EPIC), 21 CpGs for model 2 (450K), and 18 for model 3
(PACE–sustained). A total of 5 CpGs were shared for all three
models and 4 CpGs in two models (Figure S2; Table 2). PSI
scores had a similar overall distribution across datasets, with the
exception of one extreme outlier in the ELGAN dataset with dra-
matically lower PSI in each of the three final LASSO models
(Figure S3; Excel Table S3).

Correlation of PSI with maternal plasma cotinine levels at
early-, mid-, and late-gestation. Because the CpGs selected to
calculate the PSI are implicated in biological processes affected
by smoking, we hypothesized that the PSI scores would be corre-
lated with smoking level even though the models were trained on
binary exposure. The PSI scores for the VCSIP smoker samples
(n=72) correlated with maternal cotinine levels, with lower PSI
scores associated with lower cotinine levels. We did not include
nonsmokers in our correlation analyses because the majority of
our nonsmokers had cotinine levels at or below the limit of detec-
tion (LOD). The lowest correlation between each PSI score (one
from each final LASSO model) and maternal cotinine was at
mid-gestation (model–EPIC r=0:221, model 2–450K r=0:234,
and model 3–PACE r=0:231), and the highest correlation for
each PSI was at late-gestation (model 1 r=0:340; model 2
r=0:397; and model 3 r=0:432; Table 3; Excel Table S3).
Cotinine correlation coefficients at randomization fell between
those for mid- and late-gestation. If we replaced values below the
LOD with 0.195, the correlation coefficients between PSI and
cotinine increased to between ∼ 0:5 and 0:6.

External validation. The three models were used to predict
smoking status on two external datasets from ELGAN and
RICHS. The performance metrics from these predictions are
shown in Table 4. Model 1 (trained on all EPIC CpGs) achieved
the highest accuracy and kappa values when predicting on the
ELGAN dataset (Figure 2; Table 4), although the kappa values
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Table 1. Participant characteristics for the VCSIP study training and testing dataset and the ELGAN and RICHS validation datasets.

Characteristic
VCSIP

(training and testing)
ELGAN

(EPIC validation)
RICHS

(450K validation)

Maternal smoking—self-report (%) [n (%)]
Not exposed 24 (25) 356 (89) 202 (85)
Exposed 72 (75) 43 (11) 35 (15)
Maternal plasma cotinine (ng/mL)—smokers only (mean + IQR)
Randomization 71:24± 57:43 NA NA
Mid-gestation 55:22± 38:23 NA NA
Late-gestation 62:29± 43:53 NA NA
Maternal race [n (%)]
American Indian or Alaska Native 1 (1) ≤5 NA
Asian 0 (0) ≤5 NA
Black 5 (5) 111 (28) NA
Multiple race 7 (7) 14 (4) NA
Other race 1 (1) 19 (5) NA
White 82 (85) 245 (61) NA
Missing 0 ≤5 NA
Maternal ethnicity [n (%)]
Not Hispanic or Latino 91 (96) 364 (91) NA
Hispanic or Latino 4 (4) 34 (9) NA
Missing 1 1 NA
Maternal education [n (%)]
Master’s degree (MA, MS) and above (PhD, MD) 8 (8) 63 (16) NA
Bachelor’s degree (BA, BS) 14 (15) 81 (21) NA
Some college, no degree; associate’s degree (AA, AS); trade school 16 (17) 92 (24) NA
High school degree, GED or equivalent 21 (22) 102 (26) NA
Less than high school 37 (39) 51 (13) NA
Missing 0 10 NA
Marital status [n (%)]
Married or living with a partner 25 (26) 310 (78) NA
Single, never married; partnered (boyfriend or girlfriend), not living together 29 (30) 74 (19) NA
Widowed; separated; divorced 42 (44) 15 (4) NA
Private insurance [n (%)]
No 62 (65) 137 (34) NA
Yes 34 (35) 262 (66) NA
Gestational diabetes [n (%)]
No 84 (88) 362 (93) NA
Yes 12 (13) 28 (7) NA
Missing 0 9 NA
Gestational hypertension [n (%)]a

No 96 (100) 370 (93) NA
Yes 0 (0) 29 (7) NA
Missing 0 0 NA
Preeclampsia [n (%)]a

No 96 (100) 326 (82) NA
Yes 0 (0) 73 (18) NA
Missing 0 0 NA
Child sex [n (%)]
Female 51 (53) 189 (47) NA
Male 45 (47) 209 (53) NA
Unknown 0 1 NA
Gestational age [n (%)]
Mean 39.21 25.68 39.36
Median (min, max) 39 (37, 42) 26 (23, 27) 39 (39, 40)
Preterm [n (%)]a

Preterm (GA<37 or CBI indicates preterm at birth) 0 (0) 399 (100) 0 (0)
Term (GA≥37 or CBI indicates not preterm at birth) 96 (100) 0 (0) 237 (100)
Birth weight (g) [n (%)]
Mean 3,328 832.61 NA
Median (min, max) 3,359 (2,376, 4,241) 830 (420, 1,418) NA
Missing 1 0 NA

Note: For categorical variables we present the total n per cohort above the columns and the n and percentage for each category. When data is missing, we do not include the missing
observations in calculation of percentages. For the ELGAN dataset (n=399), we were restricted in reporting summary statistics and counts <5. For the RICHS dataset (n=237), we
were limited to metadata available in the GEO repository. AA, associate of arts; AS, associate of science; BA, bachelor of arts; BS, bachelor of science; CBI, child birth information;
DNAm, DNA methylation; ELGAN, Extremely Low Gestational Age Newborn; EPIC, Infinium MethylationEPIC array; GA, gestational age; GED, General Educational
Development; GEO, Gene Expression Omnibus; IQR, interquartile range; MA, master of arts; max, maximum; MD, doctor of medicine; min, minimum; MS, master of science; NA,
not available; PhD, doctor of philosophy; RICHS, Rhode Island Children’s Health Study; VCSIP, Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung
Function.
aIn VCSIP DNAm analysis (n=96), we excluded placentas from patients with preeclampsia, preterm delivery, gestational hypertension, or collection ≥3 h after delivery owing to con-
cern of sample degradation.
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dropped significantly for all three models on the new datasets
compared with the training dataset. Model 2 (trained on CpGs fil-
tered for 450K probes) had the highest accuracy and kappa value
for the RICHS dataset (Figure 2; Table 4), but also the lowest
sensitivity with 12 of the 35 smokers being classified as non-
smokers. Model 3 (trained on CpGs previously associated with
sustained smoking) ranked among the highest sensitivity and
lowest specificity for both datasets, resulting in the greatest num-
ber of true positives and the also the most false positives. We
additionally performed a sensitivity analysis of model perform-
ance in the ELGAN dataset after removing 76 patients with either
preeclampsia or hypertension, to be more comparable to our orig-
inal training dataset. The accuracy and specificity improved for
all models, and the sensitivity was also improved in model 1,
which is trained on data from the same EPIC platform (Table 4).

The RICHS 450K dataset was missing CpGs required for
each of the three models. As a strategy to fill in the missing beta
values for the required CpGs, we supplied the weighted mean
beta value from the training data (Excel Table S2), with beta val-
ues from smokers and nonsmokers weighted according to the
national average of women smokers of 12.3% (see the “Methods”
section). Model 1 was built on EPIC data and therefore had the
most missing CpGs in the RICHS 450K dataset (11 CpGs), and it
also showed the largest improvement after filling in missing
CpGs. The accuracy, kappa, and specificity increased, whereas
the sensitivity greatly decreased due to the majority of the smok-
ers being incorrectly classified as nonsmokers. Models 2 and 3
had only 1 or 2 CpGs missing, and each showed modest changes
in performance metrics after filling in missing CpGs (Table 4).

Biological relevance of selected CpGs. All CpGs selected in
our three models were examined using the EWASToolkit for previ-
ous associations with biological traits, GO terms, and KEGG path-
ways. Of the five CpGs selected in all three models (Table 2),
cg27402634 and cg08103568 were previously associated with per-
sonal smoking in blood from adults (Excel Table S4),67,68

cg07168214 has been associated with preeclampsia and preterm
birth,69–71 cg04233054 with preterm birth and ancestry72,73 in pla-
cental DNA specifically, and cg08621277 with asthma status in air-
way epithelial cell DNA.74 A total of seven CpGs in anymodel have
been previously associated with personal smoking, smoking cessa-
tion, or electronic cigarette use (Table S4). Hypergeometric testing
identified enrichment of several traits with relevant biology among
model CpGs, including preeclampsia, aging, preterm birth, asthma,
maternal lead exposure, smoking cessation, and Down syndrome.
The missMethyl package identified greatest enrichment in the GO
term “negative regulation of bone development” and in the KEGG
pathway “VEGF signaling pathway” (Figure S4; Excel Table S5).

Digital PCR
We developed a digital PCR assay for the top ranked CpG
(cg27402634) associated with MSDP in both our EPIC and 450K
models using the QIAcuity platform and fluorescently labeled
probes designed to separately measure methylated and nonmethy-
lated copies of DNA. In standard curve analysis of gblock DNA
ranging from 20% to 85% methylation, the CV between replicates
was between 1% and 16%, with higher CVs at the top of the
standard curve. The correlation between actual and measured
concentrations was 0.995 (Figure 3A; Excel Table S6). We next
measured percent methylation in a subset of our human placental
DNA samples by digital PCR and compared that with beta values
measured by EPIC array. Again, the CV between replicates was
low (between 4% and 10%) and the measured concentrations
were highly correlated with EPIC measurements in the same
samples (R2 = 0:989; Figure 3B; Excel Table S7).

Discussion
In the present study, we developed three sets of placental DNAm-
biomarkers for exposure to MSDP. We tested our models in two
external datasets: a) a preterm cohort (i.e., ELGAN) with a median
age of delivery of 26 wk, and b) a birth cohort (i.e., RICHS) in the
Rhode Island and Southeastern Massachusetts area composed pre-
dominantly of nonsmokers based on self-report. Our model trained
on all EPIC probes had 60% accuracy, 74% sensitivity, and 58%
specificity when applied to the ELGAN EPIC dataset, and our
model trained on 450K probes had 71% accuracy, 66% sensitivity,
and 72% specificity when applied to the RICHS 450K dataset.

Although ourmodels were trained on smoking status for classifi-
cation of exposure, correlation of our DNAm-based PSI withmater-
nal cotinine levels measured at different windows of gestation
suggests that these placental DNAm-biomarkers may be useful as a
continuous variable to account for smoke exposure, as previously

Table 3. Correlation of placental smoking index (PSI) with maternal plasma
cotinine levels in VCSIP training data from smokers only (n=72).

Model r p-Value

Model 1–EPIC
Randomization 0.241 4:14× 10−2

Mid-gestation 0.221 6:24× 10−2

Late-gestation 0.340 3:52× 10−3

Model 2–450K
Randomization 0.304 9:42× 10−3

Mid-gestation 0.234 4:82× 10−2

Late-gestation 0.397 5:53× 10−4

Model 3–PACE
Randomization 0.276 1:88× 10−2

Mid-gestation 0.231 5:04× 10−2

Late-gestation 0.432 1:49× 10−4

Note: PSI scores were calculated for each sample using the sum of model coefficients mul-
tiplied by normalized beta values. Maternal plasma cotinine was measured at randomiza-
tion (median= 18.7 wk), at mid-gestation (median = 26 wk), and at late-gestation
(median= 31.7 wk) in the VCSIP training dataset for smokers. Maternal plasma cotinine
level was either not measured or was below the limit of detection in nonsmokers and was
therefore not included in the correlation analysis. p-Value from Pearson correlation. 450K,
Illumina Methylation450K array; EPIC, Infinium MethylationEPIC array; PACE,
Pregnancy And Childhood Epigenetics; VCSIP, Vitamin C to Decrease the Effects of
Smoking in Pregnancy on Infant Lung Function.

Table 2. Five CpGs were selected in all three final LASSO models (EPIC, 450K, and PACE) to predict maternal smoking trained on placental DNAm data
from 72 smokers and 24 never-smokers in the VCSIP randomized controlled trial.

IlmnID CHR MAPINFO Nearest gene Feature—CpG island Gene description

cg04233054 1 23112654 EPHB2 Body-shore Ephrin type-B receptor 2
cg27402634 3 156536860 LEKR1 IGR-shore Leucine, glutamate, and lysine rich 1
cg08103568 4 100737138 DAPP1 TSS1500-opensea Dual adapter of phosphotyrosine and 3-phosphoinositides 1
cg08621277 11 68271518 SAPS3 5 0UTR-opensea Protein phosphatase 6 regulatory subunit 3
cg07168214 17 7380112 ZBTB4 5 0UTR-shelf Zinc finger and BTB domain containing 4

Note: The full list of selected CpGs is in Table S2. 450K, Illumina Methylation450K array; BTB, Broad-complex, Tramtrack, and Bric à brack; CHR, chromosome; CpG, cytosine–
guanine dinucleotide; DNAm, DNA methylation; EPIC, Infinium MethylationEPIC array; IlmnID, unique identifier from the Illumina CG database; LASSO, least absolute shrinkage
and selection operator; MAPINFO, Chromosomal coordinates of the CpG; PACE, Pregnancy And Childhood Epigenetics; VCSIP, Vitamin C to Decrease the Effects of Smoking in
Pregnancy on Infant Lung Function.
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suggested.21 Of note, when we explored the CpGs included in our
models for biological relevance using the EWAS Atlas,65 we
observed enrichment for CpGs previously associated with maternal
lead exposure, which is a known chemical of concern in cigarette
smoke, given that lead concentrations in maternal plasma are nega-
tively correlated with infant birth weight, length, and head circum-
ference.75 We also demonstrated enrichment of CpGs associated
with preeclampsia, preterm birth, asthma, and Down syndrome,
suggesting that our PSImay not only be a biomarker of exposure but
also a predictor of adverse outcomes later in childhood because
MSDP increases risk for these outcomes. Interestingly, the median
PSI scores were higher in the placentas from preterm ELGAN non-
smokers than for the VCSIP and RICHS nonsmokers that were
delivered at term, and therefore CpGs in the PSI may also be associ-
atedwith pretermdelivery or intrauterine growth restriction.

Previous research in the field of DNAm-biomarkers of prenatal
smoke exposure have been primarily developed and tested using
DNAm measured in blood specimens and a priori selection of
CpGs identified in previous studies.22–24,76 In 2016, Ladd-Acosta

et al. developed a maternal smoking classification model22 using
26 CpG loci previously associated with prenatal smoking in infant
cord blood,77 and this model was able to classify prenatal smoke
exposure in childhood blood with 81% accuracy within the same
training dataset.22 That model included several covariates, such as
maternal age, ancestry, maternal education, and cell type propor-
tions, which may improve accuracy but decrease generalizability
to external datasets missing this information.

In 2017, Reese et al. developed a blood-based DNAm score24
for sustained prenatal smoke exposure trained on a total of 1,057
cord blood datasets from the Norwegian Mother and Child
Cohort Study (MoBA). The Reese model used raw beta values
without covariates to increase reproducibility and generalizabil-
ity, and the final model consisted of 28 CpGs with 91% accuracy,
58% sensitivity, and 97% specificity in a smaller batch of samples
from the same cohort (n=221). Because these performance met-
rics are from application to a subpopulation of the same larger
cohort, they are likely to be higher than in an external dataset.24
To test this hypothesis, we applied the Reese cord blood model to

Table 4.Model performance metrics (sensitivity, specificity, Cohen’s kappa, accuracy, AUC curve) for three final LASSO models (EPIC–18 CpGs, 450K–21
CpGs, and PACE–18 CpGs) to predict maternal smoking trained on placental DNAm data from 72 smokers and 24 never-smokers in the VCSIP randomized
controlled trial based on application in the ELGAN EPIC dataset (n=399) and in the RICHS 450K dataset (n=237).

Dataset CpGs selected (n) CpGs available (n) Accuracy Sensitivity Specificity Kap AUC p_AUC

ELGAN validation dataset (n=399; EPIC)
Model 1–EPICa 18 18 0.6015 0.7442 0.5843 0.1368 0.7390 0.6651
Model 2–450K 21 21 0.4987 0.7442 0.4691 0.0756 0.6661 0.6486
Model 3–PACE 18 18 0.3734 0.8605 0.3146 0.051 0.724 0.6239
ELGAN validation dataset (n=323; EPIC)b

Model 1–EPICa 18 18 0.6749 0.7429 0.6667 0.1958 0.7664 0.7477
Model 2–450K 21 21 0.5263 0.6857 0.5069 0.0729 0.6502 0.669
Model 3–PACE 18 18 0.4149 0.8571 0.3611 0.0672 0.7656 0.7113
RICHS validation dataset (n=237; 450K)
Model 1–EPIC 18 7 0.4093 0.9143 0.3217 0.0914 0.7683 0.6002
Model 2–450Ka 21 20 0.7173 0.6571 0.7277 0.2552 0.7598 0.6099
Model 3–PACE 18 16 0.3797 0.9143 0.2871 0.0756 0.6897 0.5855
RICHS validation dataset (n=237; 450K)—fill missing
Model 1–EPIC 18 18 0.8565 0.1714 0.9752 0.2047 0.7683 0.6002
Model 2–450K 21 21 0.7468 0.6571 0.7624 0.2944 0.7598 0.6099
Model 3–PACE 18 18 0.3966 0.8857 0.3119 0.0762 0.6897 0.5855

Note: When validation datasets were missing CpGs in a given model, we filled in missing beta values with the weighted mean of the VCSIP training dataset to avoid adding values of
zero for missing CpGs. The weighted mean was calculated by first determining the average beta value for smokers and nonsmokers separately. The average beta value for smokers
was multiplied by 0.123 (based on previously reported national prevalence of maternal smoking in pregnancy), and the average in nonsmokers was multiplied by (1 – 0.123). 450K,
Illumina Methylation450K array; AUC, area under the ROC curve; CpG, cytosine–guanine dinucleotide; DNAm, DNA methylation; ELGAN, Extremely Low Gestational Age
Newborn; EPIC, Infinium MethylationEPIC array; Kap, Cohen’s kappa; LASSO, least absolute shrinkage and selection operator; PACE, Pregnancy And Childhood
Epigenetics; p_AUC, partial area under the ROC curve; RICHS, Rhode Island Children’s Health Study; VCSIP, Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant
Lung Function.
aResults from application of platform-specific models to the same test platform.
bSensitivity analysis removing 76 patients with either preeclampsia or hypertension.

Figure 3. The top CpG ranked by absolute value of coefficient for all placental smoking index models was cg27402634. Measurement of cg27402634 methyla-
tion by digital PCR shows linear fit over (A) a wide range of synthetic DNA standards (r=0:995) and (B) high correlation with measurements in obtained
from EPIC arrays (r=0:989) for the same samples from VCSIP. p-Values are from Pearson correlation. Numeric data can be found in Excel Tables S6 and S7.
Note: CpG, cytosine–guanine dinucleotide; dPCR, digital polymerase chain reaction; EPIC, Infinium MethylationEPIC array; VCSIP, Vitamin C to Decrease
the Effects of Smoking in Pregnancy on Infant Lung Function.
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96 cord blood datasets from our training cohort (i.e., VCSIP),
and calculated performance metrics of 69% accuracy, 58% sensi-
tivity, and 100% specificity.

The PACE consortium performed a meta-analysis for the
association between maternal smoking in pregnancy and newborn
blood DNA methylation using Illumina 450K BeadChip data
from 13 cohorts (n=6,685) and identified 568 Bonferroni-
significant CpGs. The PACE consortium additionally examined 5
cohorts of older children, and identified 19 CpGs associated with
prenatal smoke exposure at Bonferroni significance.78 Richmond
et al. later tested whether a DNA methylation score derived by
combining methylation values at these 568 or 19 CpGs, sepa-
rately, could predict prenatal smoke exposure in samples col-
lected from adults in the Avon Longitudinal Study of Parents and
Children (ALSPAC) cohort (n=922).76 Prediction performance
was assessed by AUC and resulted in values of 0.69 for the 568
CpG score and 0.72 for the 19 CpGs score.76 Of note, both new-
born and child samples from the ALSPAC cohort were included
in the original PACE meta-analyses and therefore may overlap
with adult participants used for testing. In comparison, the AUC
values calculated in the present study for prenatal smoke expo-
sure models trained on placental DNAm from the VCSIP cohort
(n=96) and validated in two independent datasets (ELGAN,
n=399; RICHS, n=237) ranged from 0.66 to 0.77, and model
performance was greatest when validation data included the same
platform/probe selection as the training method (model 1, EPIC
AUC in ELGAN=0:74; model 2, 450K AUC in RICHS=0:76).

Most recently, Rauschert et al. tested several machine learning
approaches to develop a DNAm score for prenatal smoke exposure
trained on blood datasets collected from adolescents and adults.23

The best performing Rauschert model consisted of 204 CpGs,
developed with elastic net regression, and exhibited 73%–83% ac-
curacy when applied to external datasets.23 In the 96 cord blood
datasets available from theVCSIP cohort, the prenatal smoke score
generated using the Rauschert model is highly correlated with
scores from the Reese model, with comparable performance (64%
accuracy, 53% sensitivity, and 96% specificity). In the present
study, we used a similar analysis approach as Rauschert et al. to
identify the best performingmachine learningmethod for this data-
set. Therefore, our model accuracies in external datasets of the
same platform (model 1, EPIC accuracy in ELGAN=60%; model
2, 450K accuracy in RICHS=72%) are comparable or higher than
previous models when applied to external data. When we used our
own cohort data to generate ROC curves for each model, the inter-
nal accuracy for classification was 100%. If we trained our models
on the probes identified by PACE meta-analysis in placenta, they
then hadmuch lower performance.

Previous blood-based scores consist of a minimum of 19 CpGs
and up to 568 CpGs, which could be cost prohibitive for measuring
by targeted analysis in large studies. Given the large effect sizes of
MSDP on placental DNAm, we postulated that a placental-based
DNAm biomarker may contain fewer CpGs that could be measured
inexpensively using digital PCR. As proof of principle, a digital PCR
assay using just the single top ranked CpG associated with MSDP in
all three of our models showed accuracy and linearity over a wide
range ofmethylation levels and agreedwithmeasurements performed
on the Illumina EPIC array. Digital PCR assays have similarly been
developed to detect, for example, current smoking and alcohol
use.79,80 and have broad utility in clinical, forensic, and research
applications.81 The present study provides evidence that digital PCR
assays also have the potential to predict exposure tomaternal smoking
in utero in additional placental biospecimens in the absence of funds
for genome-widemeasurements. Further work is needed to determine
whether this single-CpG assay can accurately predict exposure alone,
similar to an assay available for screening in blood.80

Strengths and Limitations
To the best of our knowledge, the present study is the first known
attempt to take advantage of substantial and robust placental DNA
methylation signatures in response to cigarette smoke exposure to
develop a novel objective DNAm biomarker, with great utility in
identifying exposure-related health outcomes. Reliance on self-
report of smoking often leads to information bias and pregnant per-
sons aremore likely to underreport their smoking. The gold standard
nicotine metabolite, cotinine, is often not measured in large cohort
studies, and reflects only very recent exposure.15 In contrast, ameth-
ylation biomarker in the placenta may reflect the cumulative expo-
sure to that tissue and the fetus during pregnancy and allow for more
reliable classification of smoking exposure when assessing impacts
of this exposure on health outcomes. In addition, methylation bio-
markers can be used to adjust for confounding introduced by prena-
tal smoke exposure when studying other exposure–outcome
relationships.82 Therefore, given the decreasing cost of array- and
sequencing-based technologies to measure epigenome-wide DNA
methylation, our placental DNAm-based biomarkers can be used in
existing placental DNAm datasets as either a proxy for exposure or
as a covariate to adjust for the effects ofMSDP in the absence of reli-
able exposure data. Our study also demonstrates that it is possible to
measure methylation levels at biomarker CpGs using digital PCR at
low cost. Because the effect size of prenatal smoke exposure on pla-
cental DNAm are substantial in comparison with effect sizes in
blood and because of the unique methylation landscape of placental
DNAm, a placental biomarker may have more quantitative preci-
sion than blood-based biomarkers.83

Additional strengths of our study include the extensive smoking
history available for the VCSIP cohort (i.e., self-report, cigarettes
per day, cotinine, hair nicotine) across the entire gestation period, as
well as testing of our models in two cohorts with very different
patient demographics from our training cohort. Our model perform-
ance in these diverse populations was comparable to previous mod-
els developed in blood, which supports the potential generalizability
of our placental smoking indices to diverse populations. In addition,
we developed separate models trained on EPIC and 450K CpGs so
that models exist for both platforms. A third model we developed
that was restricted to CpGs previously associated with maternal
smoking in a placental meta-analysis of 450K data35 had lower ac-
curacy in both of our test datasets but had higher sensitivity to pre-
dict true exposed samples as exposed.

Limitations of our study include a relatively small sample
size compared with previous studies used to develop prenatal
smoke biomarkers in blood. However, having a larger percentage
of smokers in our cohort compared with previous studies allowed
for correlation of our PSI with maternal cotinine levels over a
broad range of exposure levels at three periods during gestation.
We acknowledge that our correlation coefficients were relatively
low (between 0.22 and 0.43) because we did not have cotinine
measurements available for most of the nonsmokers in our study
and those we had were below the LOD. Therefore, these correla-
tions are conservative given that they include the narrow range of
PSI scores and cotinine values only for active smokers. If we
impute missing cotinine levels for nonsmokers with the LOD,
these correlations increase to between 0.5 and 0.6. In addition,
cotinine levels only reflect recent smoking, which is expected to
fluctuate over the course of pregnancy. We also cannot separate
cotinine resulting from cigarette smoking from other nicotine
delivery products, such as electronic cigarettes.

In addition, the specificity of our models when applied to
datasets other than the dataset used for training were low, sug-
gesting that our models are best applied to datasets on the same
platform and with limited missing CpGs. Ideally, we would
advise using platform-specific models to limit the number of
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missing CpGs, given that imputing the weighted mean for miss-
ing CpGs may perform poorly if the proportion of missingness is
high or if the external dataset is not representative of the general
population (i.e., smoking prevalence is very high or low).
Although this imputation approach may not be optimal, the alter-
nate approach of deleting missing CpGs would be more biased
given that it is implicitly imputing missing beta values as 0. An
additional caveat in our validation datasets is that we relied on
self-report of any smoking in pregnancy as our “truth” in assess-
ing model performance. However, we know that some pregnant
smokers will successfully quit during pregnancy or reduce to low
use and that some pregnant women will not report smoking on
medical records. Last, we acknowledge that the participant char-
acteristics in the validation cohorts available for this study are
distinct from our population of mostly active smokers and that
predictions for new participants may be influenced by this dis-
similarity. We would expect prediction performance in datasets
with different baseline characteristics from the training set to be
an underestimate of true model performance. We were especially
impressed by the performance of our EPIC PSI model in the
ELGAN validation dataset, which consisted of participants who
delivered extremely preterm, whereas our training data were all
from term placentas. Performance metrics improved with exclu-
sion of ELGAN participants with either preeclampsia or gesta-
tional hypertension. Therefore, future studies to refine a placental
DNAm biomarker should include a larger, more general popula-
tion that includes a wider range of smoking behaviors, pregnancy
complications, and sociodemographic characteristics.

Conclusions
Results from the present study have broad utility to studies of
prenatal disease origins. First, a placental DNAm smoking index
could be used as a proxy for in utero smoke exposure to assess its
association with health outcomes or to adjust for MSDP when
modeling other exposure–disease relationships. Second, we dem-
onstrate that targeted digital PCR assays (based on the PSI loci)
may be used if placenta was collected, but funds are not available
for epigenome-wide DNAm analysis. Finally, by examining the
loci that comprise the PSI, we may improve our mechanistic
understanding of the effects of maternal smoking during preg-
nancy on later health outcomes.
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