
UCLA
UCLA Electronic Theses and Dissertations

Title
Zero-Shot Relation Extraction from Word Embeddings

Permalink
https://escholarship.org/uc/item/4nj47424

Author
Goldstein, Orpaz

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4nj47424
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Zero-Shot Relation Extraction from Word Embeddings

A thesis submitted in partial satisfaction

of the requirements for the degree of Master of Science

in Computer Science

by

Orpaz Goldstein

2018

c� Copyright by

Orpaz Goldstein

2018

ABSTRACT OF THESIS

Zero-Shot Relation Extraction from Word Embeddings

by

Orpaz Goldstein

Master of Science in Computer Science

University of California, Los Angeles, 2018

Professor Guy Van den Broeck, Chair

Word embeddings learned from text are well-known to capture relational information. However, extracting such re-

lations and their associated vectors is typically performed manually, to illustrate what knowledge is embedded in the

space. We propose an automated approach to mine word embeddings for sets of entities of the same type, as well

as relationships that hold between them. Our approach starts from a single seed entity and extracts a relational rep-

resentation from the surrounding vector space. It does so without any relational supervision. Experiments show that

our extraction algorithm outperforms spectral clustering and indeed is able to extract high-quality relations from noisy

embeddings.

ii

The thesis of Orpaz Goldstein is approved.

Yizhou Sun

Majid Sarrafzadeh

Guy Van den Broeck, Committee Chair

University of California, Los Angeles

2018

iii

Contents

1 Introduction 1

2 Motivation and Related Work 1

3 Extraction Algorithm 2

3.1 Unsupervised Objective Function . 3
3.2 Bootstrapping using seed entity . 3
3.3 Finding neighbors in lower dimensions . 4

4 Analysis 5

4.1 Complexity . 5
4.2 A word on hyper parameter tuning . 6

5 Experimental Evaluation 6

5.1 Full Extraction Example . 6
5.2 Comparing Sets to Ground Truth . 6
5.3 Comparing Triplets to Ground Truth . 7
5.4 Information sharing . 9
5.5 1-N and N-1 Relations . 10
5.6 Non textual vector space . 10

6 Conclusion and Future Work 12

iv

List of Figures

1 2D projection of bootstrapping using seed entity . 3
2 t-SNE projection of the GlovE vector space, before and after reducing the dimensionality, with an

emphasis on countries. Blue dots in the plot are countries and red triangles are demonyms. 5
3 Precision-Recall Curves: each of the extraction models on the Skip-Gram or GlovE embedded space

compares with the Wikidata ground truth relationship. Our method surpasses both compared methods
and is able to produce much better recall in addition to holding to high precision longer. 9

v

List of Tables

1 Embedded spaces statistics . 6
2 Full extraction description for one triplet (A, r,B) . 7
3 Ground truth sets statistics . 7
4 Area under curve of precision recall line. Individual sets compared with WikiData ground truth 8
5 Area under curve of precision recall line. Relations extracted compared with WikiData ground truth . 8
6 Multimodal vector space relation extraction I . 11
7 Multimodal vector space relation extraction II . 11

vi

Zero-Shot Relation Extraction from Word Embeddings

1 Introduction

Relation extraction is the task of finding triplets (h, r, t)
such that a specific relation r holds between head en-
tities h and tail entities t. The ability to extract these
triplets from unstructured corpora of text is necessary
when automatically completing knowledge bases or pop-
ulating knowledge graphs. Current methods tend to rely
on predefined relationships, partially assembled knowl-
edge graphs and pre-trained models that have been as-
sembled under various levels of supervision. Relational
embedding models construct a vector space that encode
the relationship between entities, typically uses estab-
lished public knowledge bases such as Wordnet or Free-
base as input to their training phase and are therefore re-
lying on these sources of data to be reliable and available.

Creating vector representations of words from un-
structured text in models such as Skip-Gram Mikolov
et al. (2013) or GlovE Pennington et al. (2014) allows
us to capture some underlying pattern of the language.
It is often believed that within these models, there al-
ready exists an implicit representation of relationships
between groups of entities, even as they originate from an
unstructured corpus of text. Most unsupervised vector-
representation models use the probability of a word in
text appearing next to other words as a training device to
create a space where words with a similar meaning tend
to cluster together. When querying such a constructed
vector space, simple linear operations on entity vectors
allow us to take advantage of the shape of the space and
find patterns in this representation of a text corpus.

Using a vector-embedded space, we show that boot-
strapping relation extraction is possible. First, we pro-
vide an algorithm that, given an arbitrary seed entity,
finds sets of head and tail entities that share a relation-
ship. Second, we provide an algorithms to extend theses
sets while exploiting the shape of the vector-embedded
space, the common features in a set of entities, and the
ability to reduce the dimensionality of the space.

A naive approach to one- or zero-shot relation extrac-

0Code accompanying this paper can be found in the follow-
ing repository: https://github.com/orpgol/zero_
shot_extraction_from_embeddings

tion would be to construct sets of entities by examining
the neighborhood of some arbitrary head and tail entities.
While this may yield results with high recall, we are able
to show that this method of constructing entity sets pro-
duces low-precision noisy extractions. Moreover, since
naive construction of these sets assigns no importance
to the choice of head - tail relation, we lose the abil-
ity to score extractions in terms of their relational data
representation. Instead, the approach we propose in this
paper is able to bootstrap and iteratively expand sets of
related entities. As we show experimentally, this further
improves precision and recall of our extractions tested
against a ground-truth knowledge graph.

2 Motivation and Related Work

We are interested in automatically extracting relations
between entities that exist in a corpus of text represented
as a word embeddings vector space. We are specifically
interested in finding multiple sets of entities that are pair-
wise connected by a meaningful relationship. In order to
automatically discover relations in text, we will inves-
tigate the case where no prior information is given and
show how bootstrapping information that will lead to re-
lation extraction is possible.

Our approach makes no changes to the output of any of
the word embeddings models used. In addition, we have
no access to the original corpus of text that was used to
train the word embeddings models that are used here, and
use the stock pre-trained vector spaces that are presented
with the models.

Zero-shot bootstrapping of triplets using only an un-
structured corpus of text with no prior information allows
for unsupervised translation of that text into an explicitly
constructed relational representation. Contrary to knowl-
edge base completion methods, here we do not require
a pre-established source of data and are able to create a
relational representation using only a corpus of text.

In Levy et al. (2017); Yan et al. (2009); Min et al.
(2012) a zero-shot model is discussed, where relations
could be extracted by reading comprehension over the
corpus of text that is provided to the model. We believe
some advantages exist in extracting relations from word
embedding over extraction directly from source text: In
a case where we would be interested in using a private

1

data source, translation into embedding will allow us to
use the word embeddings created from text without al-
lowing access to a private text corpus. Moreover, since
embeddings are already a generalized form of the enti-
ties originating in the raw text, we are able to more ef-
ficiently extract specific entities. Lastly, since extraction
from word embeddings happens in a vector space, we can
refer to knowledge encoded within the space in terms of
a linear model. In turn this will allow us to relate such in-
formation to machine learning models and their behavior
when using word embeddings.

The majority of relation extraction and knowledge
base completion methods use either publicly available
relational data bases or pre-established relations that are
the basis for an algorithm to be built upon. Breaking free
from this dependency, relation extraction will be inde-
pendent of pre defined relations, and therefore will be
free to discover more esoteric relations in a corpus, in ad-
dition to the more mundane relations. These specialized
relations might have been otherwise missed solely due to
the fact that they were not predefined or do not exist in
the public data bases. Furthermore, the ability to provide
a model that is not constrained by the availability of an
external source of data, let alone our inability to control
its quality, will add to the practicality and robustness of
such a model.

Examining a vector space that is the product of an un-
structured word embedding method, it is straightforward
for us to manually find pairs of entities that will have a
corresponding relation. In fact many examples exist in
the literature of such pairs that are used to illustrate the
the capabilities of word embeddings vector space: Speer
et al. (2016) uses ”fire : hot :: ice : cold” as an example
to SAT like analogies and Conceptnet’s ability to recog-
nize them, Lai et al. (2016) picks various examples to
emphasize semantic properties on different word embed-
ding models and Levy and Goldberg (2014) examines a
number of relations to show dependency-based context
extraction example. On the other hand, allowing for au-
tonomous exploration of a vector space is normally not
the emphasis of these papers. Since finding pairs of enti-
ties that share a relation in a vector space boils down to
mathematical operations on vectors in a vector space, a
natural observation was that we might be able to traverse
a vector space while actively evaluating that which de-
fines a relation between entities in a vector space. i.e: if
we accept that a relation is a vector between two entities
in a space, then we could search for other entities that
share the same relation vector between them.

Once we are able to define what we believe a valid re-
lation looks like in a vector space, we are most interested
in translating a vector space into a relational representa-
tion of entities and relations. Treating this problem as a
zero shot learning problem, we wish to allow our model
to traverse a vector space with no initial input, and be
able to consider each entity in turn as a seed entity to start
our search from. Such an unsupervised approach will al-
low us to extract relations from a corpus of text without
any need for human intervention, labeling, or preprocess-

ing of the data. Moreover, since unstructured word em-
bedding models receive text as input and output a vector
space without any preprocessing of the text, then using
our method as a next step in the pipeline, we could con-
vert a corpus of text to a relational representation in a
streamlined unsupervised operation.

Knowledge Base Completion For the task of knowl-
edge base completion, Socher et al. (2013) addresses the
problem of the inability to efficiently reason with an ex-
isting knowledge base. The model in this paper converts
an existing knowledge base into an embedded vector
space using a neural network classifier receiving triplets
of entities and their relations as training data. The result-
ing trained model is able to reason over learned data as
well as predict new relationship triplets to be added to
the knowledge base. This model is able to use word rep-
resentations in order to improve accuracy.

Another knowledge completion approach, Lin et al.
(2015) models entities and relations into two completely
separate spaces. The translation from a head to tail entity
(and vice versa) is performed using a predefined relation
projection matrix that connects the entity space and the
relation space. Both approaches make use of both Word-
net and Freebase as their input to their models and as
ground truth for evaluating predicted completion of the
knowledge base.

Relation Extraction Using a matrix factorization ap-
proach combined with surface pattern discovery and uti-
lizing established knowledge bases, Riedel et al. (2013)
represents the problem of relation extraction as a matrix
completion task. This paper shows a model that is able to
estimate, using a given head, tail entities and a relation,
the probability that the head and tail entities are suitable
to the relation.

A distant supervision approach to relation extraction
is described in Mintz et al. (2009). In this paper a model
is trained to extract new relations using the Freebase
knowledge base and a Wikipedia dump. This model is
able to extract new relations that do not appear in Free-
base using a lexical and syntactical extraction, and the
distant supervision assumption that if two entities partic-
ipate in a relation, any sentence that contain those two en-
tities might express that relation. Another distant super-
vision model is described in Min et al. (2013). Extending
the Multi-Instance Multi-Label model, and learning from
positive and unlabeled bags. By treating unlabeled data
as unlabeled instead of negative examples, they are able
to improve results from earlier MIML models.

3 Extraction Algorithm

Our goal is to construct triplets (A, r,B) where A,B are
matrices, and each column vector in ai 2 A is a head en-
tity corresponding to a tail entity represented as a column
vector in bi 2 B. There exists one relation vector r that
transfers from entity ai to entity bi for each i. An exam-
ple to this would be, A = {Belgium, England, France},

2

B = {Belgian, English, French} and the r vector repre-
senting the demonym relation.

D
D

im
en

si
on

s N Head entities2

664

w11 · · · w1N

w21 · · · w2N
...

...
...

wD1 · · · wDN

3

775

A

Relation
Vector2

664

r1

r2
...
rD

3

775

r D
D

im
en

si
on

s N Tail Entities2

664

w11 · · · w1N

w21 · · · w2N
...

...
...

wD1 · · · wDN

3

775

B

Using a constructed vector-embedded space such as
the outputs of Skip-Gram or GloVe, we show that it is
possible to bootstrap these sets, using the dimensionality
and the composition of these spaces. Since in contrast
to other relation extraction solutions, we will not use a
pre-made bank of entities and relations, we show first
that using an arbitrarily chosen initial seed could lead to
the discovery of initial sets of entities bound by a single
relation. Using these initial sets we expand and discover
additional entities from each of the sets that fit the initial
definition of the triplet (A, r,B).

3.1 Unsupervised Objective Function

The ability to grade the quality of a discovered set is es-
sential for us to be able to compare these sets to one an-
other. A method of scoring we propose will grade the
level of adherence of entities in bootstrapped sets to the
relation that was used to start the process. That is, we will
use the difference in position between where we search
for an entity and the position where it is actually found.
The following scoring function acts as our unsupervised
objective function, where a 0 error would imply no dif-
ference existed when retrieving entities using the relation
vector.

As part of bootstrapping our triplets (A, r,B), we
score the quality of our set by measuring the distance
between the presumed position for a head entity (a vec-
tor in the same set as our seed entity) reached by adding
the relation vector r to the tail entity vector (a vector in
the same group opposite the seed), and the actual entity
vector discovered by locating the nearest entity to that
position. The error of the entire triplet (A, r,B) will be
therefore

Error =
1

n

nX

i=1

|bi + r � ai|, 8ai 2 A, bi 2 B

This error gives us a measure of accumulated distance
traveled in the embedded space in order to assign entities
that will fit both sides of our relation. This error is used to
refine our search for entities in addition to being a criteria
for choosing which discovered sets we wish to expand.

3.2 Bootstrapping using seed entity

let X be our word embedding matrix and w be a ran-
domly chosen entity/vector representing a word from our
text where w 2 X , and let Sim(w) be a set of the n most
similar vectors in X to w based on cosine similarity mea-
sure.

Sim(w) = {Top n v2X(cos(w, v))}

w
r

c
Sim(c)

w � c + c0c0

argmax
v

(cos(w � c+ c0, v))

w0r0

Figure 1: 2D projection of bootstrapping using seed entity

Next, we will treat vectors from Sim as a set of candidate
entities for sharing a relation with w. Since in word em-
bedding models, words that appear in similar contexts
cluster together, it is fair to assume that words in the
same neighborhood will likely share a relation. In or-
der to examine a pair of entities and establish whether
their relationship could be used to bootstrap finding our
triplets, we will try and identify additional pairs of en-
tities that are both similar to the original and candidate
entities, as well as share their relationship. A valid pair
therefore will have a relationship vector that is as similar
as possible (above some constant ↵) to the original pair’s
relationship vector.

Concretely, let c be a candidate vector, Sim(c) the set
of n most similar vectors to c. Let us look at one vector
c
0
2 Sim(c) and use vector math to retrieve w

0.
w

0 = argmax
v2X

(cos(w � c+ c
0
, v))

Now that we have two head-tail pairs of one potential
relation we can measure its accuracy. Naming the two
pairs we have rel = w�c and rel

0 = w
0
�c

0. A high co-
sine similarity of these vectors will hint a real discovered
relation. We will define some ↵ such that:

rel is a relation if cos(rel, rel’) >= ↵

Repeating this process for every c
0
2 Sim(c) we end up

with a set of pairs of entities that have a common rela-
tionship. A triplet (A, r,B) is considered good if it has
more than two entities in it.

Example Let us choose an arbitrary seed w = sailing.
Looking at Sim(w) where n = 1, we will use the closest
entity to w as our candidate vector, c = surfing. Looking
at Sim(c) where n = 2, we find the two closest entities
to c which we discover to be {surf, surfer}. Now that we
have w, c and c

0 we can finally find w
0. Starting with c

0 =
surf, by using operations on the vector space as outlined
above, we move in the vector space to find that w0 = sail.
Comparing rel and rel

0 we find that their cosine similar-
ity is above our defined ↵ = 0.6 and therefore is consid-
ered a discovered relation. Next we follow the same steps
when c

0 = surfer to receive w
0 = sailboat. At this point

our sets look as follows: A = {sailboat, sailing, sail},
B = {surfer, surfing, surf} and r is the vector repre-
senting the unnamed relation between the two sets. Our
example triplet (A, r,B) had the best objective func-
tion score amongst the sets bootstrapped using the seed
w = sailing.

3

3.3 Finding neighbors in lower dimensions

After we have found our initial triplet (A, r,B), we
would like to increase the size of each of the sets in or-
der to discover as many similar entities as possible from
each of our sets. To achieve this, we will use the com-
mon features of entities in each of the sets in order to
find more similar entities to those that were found dur-
ing the bootstrapping phase. Reducing the space of X to
contain only the most similar common features of the en-
tities in each set to produce X

0 we can then continue to
search the space for similar entities and score them.

In order to produce X
0 we examine each of the con-

structed entity sets from our triplet separately. For each
of the sets, we wish to investigate which features are
common between the entities in the set and are most im-
portant in defining the entities who belong in that set.
Using pairwise combinations, where we consider every
possible combination of two entities on the set, we ex-
tract the most similar features for each such combination
and define a Mask for every combination, which is a sub-
set of features that are most similar between the two en-
tities in the combination. Looking at the intersection of
all such Masks, we receive a subset of the features most
suitable to reduce the original space into. Let C denote
the set of all pairwise combinations of entities from a set
we are expanding. Then for each pair (ci1, ci2) 2 C we
will extract

Maski = Bottom n(Abs(ci1 � ci2))

In effect Maski consists of the n features that are closets
to 0 in the above calculation.

The final step to complete the search for a subset is
looking at the intersection

Int = Mask1 \ Mask2... \ Maskn

Using Int we reduce the original space X into a sub-
space X

0 containing only the features that are in Int.
Using the reduced space X

0 we can continue search-
ing for similar entities more efficiently. Looking in the
neighborhood of each of the entities in our set, we com-
pare each of the neighbors to the mean vector of all the
entities in the set. A neighbor that scores above some �

is appended to the set. Let A be the set we are expanding
and m̂ be the mean vector of A. then for each a 2 A

Neighbor = Top n v2X0(cos(a, v))}

Neighbor is the set of nearest neighbors of a in the new
set X 0 and for each z 2 Neighbor, z is a valid addition to
the set if it is similar to m̂ above some defined threshold
�

z is valid if cos(z, m̂) >= �

One problem that could arise from intersecting a large
number of Masks, is that the intersection might become
extremely small, and therefore will have an aggressively
reduced dimension. Such a reduced dimension might in
turn cause our expansion process to become inefficient as
multiple features might be ignored. However, since the
size of Masks directly relate to the quality and size of our

bootstrapping, we can say that controlling ↵ will affect
the number of features considered in expansion. That is,
lowering our ↵ will increase sizes of bootstrapped sets,
which in turn will produce smaller Masks and smaller ex-
pansions. Conversely increasing ↵ will produce smaller
bootstrapped sets, larger Masks and larger expansions.

Detailed Example All the examples used in the boot-
strapping and expansion of sets are real world exper-
iments, conducted using the GlovE vector-embedded
space.

Phase 1 Using our previously discovered set
{sailboat, sailing, sail}, we will have 3 combina-
tions of pairs: (sailboat, sailing), (sailboat, sail),
(sailing, sail). Extracting a maximum of n common
features from each pair of vectors representing the pair
of words we get:

Mask1 = Bottom n(Abs(sailboat � sailing)),

Mask2 = Bottom n(Abs(sailboat � sail)),

Mask3 = Bottom n(Abs(sailing � sail)).

Phase 2 Using the 3 extracted sets of common features,
we now can calculate Int, the intersection of 3 sets of
common features. Int = Mask1 \ Mask2 \ Mask3. The
result is a set of features that exist in all possible pairs of
{sailboat, sailing, sail}. Int will be used next to reduce
the original vector space to contain only the features in
Int.

Figures 2a and 2b show how dimension reduction af-
fects the entities we are interested in extracting. using
t-SNE van der Maaten and Hinton (2008) visualization
tool for high-dimensional data, we are initializing 50 ran-
dom ’country’ vectors and 20 random ’demonym’ vec-
tors using their 2 principle components. Cosine similarity
is used to measure distances between vectors, and deter-
mines the organization of neighbor visualization in our
plots. As we can see in the plots, in the original space our
target group ’countries’ can be seen fairly mixed with a
separate group ’demonym’. After reducing our original
space based on features that appeared in the country en-
tities we bootstrapped, we can see the country entities
converge nicely when compared to the same demonym
entities that are now better distinguished compared to the
original space.

Phase 3 In our example A = {sailboat, sailing, sail}.
The mean vector m̂ is the mean of the three vec-
tors representing the words in A. In the case where
n = 5, we are looking for the 5 closest neighbors of
each of our entities in A in the new vector subspace
X

0. For sailboat we find the 5 nearest neighbors are
{sailboat, sail, yacht, sailing, catamaran}. We continue
doing the same for sailing and sail. All entities’ cosine
similarity with the mean vector m̂ is above our chosen
� = 0.6 and are therefore considered valid. Following

4

(a) Original 300-dimensional
embedding.

(b) Reduced 198-dimensional
space, based on country vectors.

Figure 2: t-SNE projection of the GlovE vector space, before
and after reducing the dimensionality, with an emphasis on
countries. Blue dots in the plot are countries and red triangles
are demonyms.

the same steps for B = {surfer, surfing, surf} in the same
case where n = 5, we find nearest neighbors for surfer

and surfing. For surf we find the 5 nearest neighbors are
{surf, surfing, surfer, surfers, surf}. All entities but one’s
cosine similarity with B’s mean vector m̂ is above our
chosen � = 0.6 and are therefore considered valid. surfs

however had a cosine similarity of 0.58 with the master
set’s mean vector and therefore is considered invalid and
is not added to the expanded group.

4 Analysis

4.1 Complexity

Unsupervised extraction of our relational sets, would po-
tentially need to pass every single entity in the space to
consider it as a seed for our bootstrapping process. Given
that a well trained word embedded space typically has a
vocabulary in the order of millions of words and that a
simple iterative search for words of a similar nature or
words that share a potential relation could be quadratic in
the size of the embedded space, any naive solution will
therefore be unusable as a practical model.

Our method of searching relations is fairly flexible,
and could be increased or decreased in complexity by
carefully choosing the size of neighborhood we consider
in each of our algorithms steps. For each of the two main
steps of our algorithm, we will expand on the complexity.

Bootstrapping using seed entity

We start with obtaining Sim(w) for our seed value by
way of cosine similarity or matrix-vector multiplication.
Our matrix contains a vocabulary of n vectors. Each vec-
tor has a dimension of d. Therefore Sim(w) will cost
O(nd). Keeping a constant number of nearest neighbors
(n=100 was used for the results in this paper). For each
of the neighbors we then similarly obtain Sim(c) for the
same complexity of O(nd). Again keeping a constant
number of neighbors (n=10 for this paper), we finally ob-
tain w

0 again for each of them, costing us O(nd). Since
all other filtering and calculations are done in O(1) time,
we can calculate O(nd+ c1nd+ c2nd) for a final com-
plexity of ⇥(nd)

Finding neighbors in lower dimensions

Expanding our sets involves obtaining some information
about common features of the entities in our sets, and
performing calculations on all pairwise combinations of
entities. Since it is fair to assume that each bootstrapped
set is fairly small, and never in the order of an entire
vector-embedded space, we will treat it here as a con-
stant number of entities. Therefor, calculating the mean
vector of each of our sets as well as finding all pairwise
combinations will all take O(1) time. The costly part of
expanding our sets is finding the Neighbor set previously
described. We need to find a Neighbor set for each of our
pairwise combinations of our entities in the bootstrapped
set, costing us O(nd). Keeping a constant number of
neighbors (n=1000 was used for this paper), we then
check validity for each of the neighbors for a low O(1)

5

time. The final calculation for this is then O(c1 ⇤ nd) for
a final complexity of ⇥(nd)

4.2 A word on hyper parameter tuning

In this section we have introduced both ↵, that is a thresh-
old parameter in the bootstrapping process. And �, that is
a threshold parameter in the expanding process. Each of
the two parameters carries a different meaning to the re-
lation extraction process and can be tuned to fit a specific
use-case. ↵ is the threshold acting as the acceptance cri-
teria of newly discovered (heat, tail) pairs that share the
original relationship with the bootstrapped set. Higher
↵ will reduce the amounts of sets a specific seed entity
produces as well as the number of pairs accepted into
the set. consequently sets produces will usually carry a
more well defined relation. � is the threshold controlling
acceptance of entities discovered in the subspace dur-
ing the expansion phase. Increasing this parameter will
result in more entities collected during expansion, but
will increase the chance of noise treated as valid enti-
ties. In addition to ↵ and �, we use topn in three places:
Sim(w), Sim(c), and in finding Neighbors. Values for
n are hardcoded as 100,10,1000 respectively, and were
chosen based on our testing for specific relationships
with entities that cluster within these ranges. A valid n

could be any number of neighbors we are interested in
investigating, up to the amount of entities in the vector
space.

For this paper, we were interested in tuning ↵ to pro-
duce enough sets from a seed entity, so that the specific
relation we were interested in would be included in the
bootstrapped sets. As a first step, we will check a ran-
dom set of seed values and try to find a general rule for
a value that corresponds with a certain amount of rela-
tions found, following that with identifying a more spe-
cific rule for our needs regarding the testing in this pa-
per. Initially we generated a random array of 10 english
words: {real, rich, whimsical, route, action,

giddy, clean, identify, smoke, attend} and ran the boot-
strapping process, looking for a value which will pro-
duce a minimum of 2 sets containing 2 distinguishable
relationships on both Skip-Gram and GlovE embedded
spaces. Gradually descending ↵ values from 0.9 in mul-
tiples of 0.1. Once we hit 0.5 we were able to produce
2 separate relational sets for all entities. As a next step,
we wanted to refine this result for our experiments, and
therefore repeated the experiment with arbitrary country
and demonym entities, this time increasing ↵ from 0.5
in multiples of 0.05. This time we were able to get away
with ↵ = 0.6 for the same desired results.

Our tuning of ↵ in this case, was an optimal constraint
on a solution size we were willing to accept for this pa-
per. A future user of this model might run bootstrapping
multiple times with varying ↵ values in order to evaluate
what solution size is optimal for their own agenda.

The effects of tuning � will be explored in the exper-
iments phase, where it will be used to shift the balance
between precision and recall.

Table 1: Embedded spaces statistics

Model Dimensionality Vocabulary
Skip-Gram
GolvE

300 3M Words
300 2.2M Words

5 Experimental Evaluation

The experiments in this paper are conducted using two
of the most popular models for creating vector embed-
dings from text: Skip-Gram and GlovE to test our method
of bootstrapping relation extraction. Both models take in
unstructured text corpus as input and outputs a vector-
embedded space. Each entity in the resulting space is a
vector representing a single word. Vector representation
of words tend to cluster with words of similar meaning.
In order to show that our method generalizes, we used
stock pre-trained model for each of the two models. Each
of the two models are evaluated on bootstrapping triplet
sets (A, r,B) using an arbitrary seed entity, followed by
expansion of the discovered sets.

5.1 Full Extraction Example

Table 2 gives us a glimpse into how our relational rep-
resentation is bootstrapped and expanded. Showing the
entities which are bootstrapped in bold text and enti-
ties which are expanded in plain text, we are able to see
the different stages of constructing our sets. Entities who
have no corresponding tail/head in the other set, are enti-
ties who might still have a match on the other set, but are
a weaker match then another entity. As an initial small
bootstrapped set is expanded, a few things are worth not-
ing. We can see that as an initial bootstrapped set is
expanded, it picks up many more similar entities. And
while these entities are in most cases compatible with
the common theme of the set, some entities are picked
which we choose to count as noise, although in some
cases the gist of the entity fits as a part of a relational
triplet. For example, as can be seen in table 2, some en-
tities are picked during expansion that are a misspelling
of the original entity, others are named correctly in the
original entities’ language. Another option are initials or
a different common name for the same entity. All these
are counted as invalid entities, together with actual un-
related entities, in our following experiments and as we
compare with various data sets. If we have counted these
related entities in our experiments, keep in mind our re-
sults would have been higher.

5.2 Comparing Sets to Ground Truth

In order to measure the quality of the sets discovered,
we use Wikidata; A free community edited knowledge
base that aspires to provide a queryable source for in-
formation mining. Wikidata is the latest and largest
collaboratively edited knowledge base that provides a
documented-oriented database where each entity has a
unique identifier and its information statements take the
form of key value pairs, allowing us to mine certain types

6

Table 2: Full extraction description for one triplet (A, r,B)
seed w = belgium

country set demonym set

Skip-Gram

Belgium Belgian

Belguim -
Croatia Croatian

France French

Italy Italian

Switzerland Swiss

Algeria Algerian
Argentina Argentine
Czech Republic Czech
Denmark Danish
Serbia Montenegro Serbian
Morocco Moroccan
Slovakia Slovak
- Slovakian
...

...

extradites Noriega -

GlovE

Belgium Belgian

Belgique -
Austria Austrian

Sweden Swedish

Finland Finnish

Helsinki -
Denmark Danish
Europe European
Iceland Icelandic
U.K. -
...

...

Sweden Swedish
- Sweedish

* Bold text are bootstrapped entities. The rest are expanded

Table 3: Ground truth sets statistics

Set Size
country 204

demonym 241
capitals 325

airport-codes 373
country!demonym 245

city!NFL 32
country!capital 204

of information. For the following experiment we created
sets for all ’countries’, ’demonyms’, ’capitals’ and ’IATA
airport codes’ that exist in Wikidata to be compared to
constructed sets. These sets were chosen since in our ex-
periments we have found these four categories are pos-
sible to extract both on Skip-Gram and GlovE using the
same seed entity.

Since we wanted to compare our model to some base-
line algorithm, we compared our bootstrapping method
to two clustering algorithms; the naive approach, k-
nearest neighbors, and the more robust spectral cluster-
ing which uses eigenvalues in order to reduce dimension-
ality before performing clustering on the k-nearest neigh-
bors of our seed entity. In order to choose the best clus-
ter coming out of spectral clustering we manually print
and count which cluster has the most relevant entities
and use that cluster in our comparison. Both clustering
algorithms were compared on each of the two vector-
embedded spaces used in our experiments.

Skip-Gram

In this section all results were produces using the vec-
tor space that was produces by the Skip-Gram model,
was pre-trained by as described in Distributed Repre-

sentations of Words and Phrases and their Composition-

ality(Tomas Mikolov et al. -2013), and is available for
download here.

GlovE

In this section all results were produces using the vec-
tor space that was produces by the GlovE model, was
pre-trained by as described in GloVe: Global Vectors for

Word Representation(Jeffrey Pennington et al. -2014),
and is available for download here.

5.3 Comparing Triplets to Ground Truth

Another important measure of the relational representa-
tion we are able to extract, is the comparison between
our triplets (A, r,B) and some ground truth of the spe-
cific relation r we are describing. As our ground truth,
we extracted all data available on Wikidata of a specific
relation. In our case, we are evaluating the country !

demonym and country ! capitals triplets as well as the
City ! NFL team.

Once we find our (A, r,B) representation, we wish to
evaluate the degree in which our set corresponds with the
Wikidata representation of the same relation. Using our

7

Table 4: Area under curve of precision recall line. Individual sets compared with WikiData ground truth

AUC-PR - Individual sets
demonym set country set capitals set airport-code

set
Skip-Gram

Nearest Neighbors 0.04 0.018 0.001 -
Spectral Clustering 0.038 0.014 0.001 -
Our Model 0.21 0.135 0.058 -
Our Model + Hopping 0.29 0.174 0.075 -

GlovE

Nearest Neighbors 0.08 0.133 0.02 0.088
Spectral Clustering 0.043 0.08 0.03 0.08
Our Model 0.25 0.395 0.138 0.127
Our Model + Hopping 0.25 0.589 0.147 0.2

Table 5: Area under curve of precision recall line. Relations extracted compared with WikiData ground truth

AUC-PR - Triplets (A, r,B)
country ! demonym city ! NFL team country ! capital

Skip-Gram

Nearest Neighbors 0 0 0
Spectral Clustering 0 0 0
Our Model 0.1312 0.1921 0.0543
Our Model + Hopping 0.1312 0.1990 0.066

GlovE

Nearest Neighbors 0 0 0
Spectral Clustering 0 0 0
Our Model 0.1704 0.1705 0.1875
Our Model + Hopping 0.1708 0.1798 0.248

8

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

Recall

Pr
ec

is
io

n

NearestN
SpectralC

Our

(a) Country Relation - Skip-Gram

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

Recall

Pr
ec

is
io

n

NearestN
SpectralC

Our

(b) Demonym Relation - Skip-Gram

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

Recall

Pr
ec

is
io

n

NearestN
SpectralC

Our

(c) Country Relation - GlovE

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

Recall

Pr
ec

is
io

n

NearestN
SpectralC

Our

(d) Demonym Relation - GlovE

Figure 3: Precision-Recall Curves: each of the extraction models on the Skip-Gram or GlovE embedded space compares with the
Wikidata ground truth relationship. Our method surpasses both compared methods and is able to produce much better recall in
addition to holding to high precision longer.

expanded Head set A, we perform a check for each head
entity and verify a corresponding tail entity in Tail set B.
For all triplets that adhere to this symmetry, we calculate
the precision and recall compared to our ground truth.

In table 4 we can see results for our AUC-PR when
comparing with Wikidata. Both relations examined give
very good AUC-PR results. In the case of City !

NFL team our results are really impressive. We are able
to hold very high precision as we move up in recall. More
specifically, our precision is around 70% accuracy all the
way to 25% recall.

When comparing to baseline algorithms: Nearest
Neighbors and Spectral Clustering, we have a way of
constructing sets of entities which are the result of both
clustering algorithms, but we do not have an instance of a
relationship vector collected as part of these algorithms.
In order to be able to compare the results of these to our
ground truth, we used the same relationship vector that
our model used in each of the examples to try and find
a corresponding tail entity for each of the entities in the
head set.

5.4 Information sharing

Once we have some established relational representation
that encompasses a few relations and sets, we are in-
terested in finding wether it would be possible to ”hop
around” these sets and improve our results even more us-
ing information from a distant set that might have no im-
mediate connection to the improved set. Our assumption
in this experiment is that given two relations r1, r2, each
with head and tail set H1, H2, T1, T2 where T1 is a set

with similar entities to H2. In other words: the tail set
of one relation is of the same category as the head set of
another relation. Using these sets will allow us to do two
things; use the transitive relation to expand our relational
representation. i.e: if we have a relation a ! b and b ! c

then transitively a ! c. In addition, since the duplicate
category sets were constructed using different seed val-
ues, they therefore might benefit from the information
that exists in the mirror set.

Expansion by hopping

For the purpose of this experiment we will use our bench-
marked sets (demonyms set and countries set), and find a
new relation that will have either countries or demonyms

as a head or tail set, and use the new set to run our exper-
iment.

Using the GlovE embedded space and passing
Amsterdam as a seed, we are able to find the relation
”Capital of”, where our head set consists of capitals and
our tail set consist of countries. By identifying this kind
of situation where in our case we currently hold sets
of categories: capitals ! countries and countries !

demonyms, we are able to use the join of the bootstrapped
entities on the duplicate set and expand the joined set of
countries to receive a more robust final set as can be seen
in figure 6. By using the entities in the two similar sets,
we expect to get a more inclusive result set that have been
expanded using the unique features that the two separate
sets are likely to carry, and therefore aid in successfully
enhance our extraction process.

In order to validate the generality of this experiment
we repeated the steps outlined above on the Skip-Grap

9

embedded space. Again using Amsterdam as seed, this
time we have found a capitals ! demonyms set and used
that in the same manner of the previous example, only
this time expanding the demonym set. The improvement
in results can be seen in figure 7.

As we can see from the two examples, as well as from
further investigation as can be seen in table 3, in most
cases hopping successfully further enhances the prelimi-
nary expansion of sets and provides better AUC results.

Expansion by transitivity

Another information we wish to make use of, once
we have an initial relational representation, is the abil-
ity to establish a transitive relation between sets. Us-
ing the same example we enhanced by hopping between
sets, we can show that using the two bootstrapped sets:
capitals ! countries and countries ! demonyms, we
can construct a third representation solely by using exit-
ing information. Using the transitive rule where if a ! b

and b ! c then transitively a ! c, we can connect en-
tities from our capitals to entities in our demonyms set.
Let rel1, rel2 represent the relation between capitals and
countries, countries and demonyms respectively. and vec

be the vector representing the word paris. Using simple
arithmetic, we are able to create a bridge between vec

and its corresponding transitive relation in the demonyms

set. i.e: by calculating target = vec + rel1 + rel2, and
looking at the argmaxv2X(cos(target)) we can expect
to get the vector representing the word French. There-
fore, given that we are able to identify sets of similar
entities, we could use previously established sets to un-
cover these transitive relations between any two sets that
comply with the transitive relation rule.

5.5 1-N and N-1 Relations

While our model is geared towards constructing a 1-1 re-
lational representation, a simple change in the bootstrap-
ping process will allow us to focus collection on many to
one or one to many relationships. If in the original model,
our c and c

0 tail entities were extracted separately to en-
courage the bootstrapping of discrete entities, when look-
ing for many-one relations we will enforce c = c

0, while
still producing head entities such that w 6= w

0. Otherwise
using the same algorithm to bootstrap our one-many sets,
we will get a many set on A and a one set on our B.

Example

Using Lyon as a seed on our modified algorithm we
get A = {Grenoble, Lille, Lyon, Marseille, Montpellier,

Nantes, Rennes, Toulouse} and B = {France}.
Normally our next step would be to expand both sets.

However as this is a one-many relationship, it is enough
in this case to continue and expand only A and treat the
expanded set as the many set relating to B = {France}.

5.6 Non textual vector space

In this paper we have evaluated our model solely on
spaces embedding textual information. We are interested
however to find out wether our approach could general-
ize to extract relations from spaces encoding information

other then text. Using the the embedded space used in
Kiros et al. (2014), we run our model on the vector space
trained by using the Flickr8K image dataset that comes
with 8,000 images, with each image annotated using 5
sentences composed by independent annotators. In table
6 and 7, we can see 2 separate bootstrapped triplets. Al-
though some visual relationship in our triplets might be
obvious to us, and guessing could be done as to what
the actual relation vector might be between the head and
tail sets, the relation will largely stay unnamed. Since the
multimodal embedded space encodes a combination of
different types of data as a single vector encoding, it will
be hard for us to determine exactly what the relation be-
tween the head and the tail might be. However, since con-
volutional neural net is used to encode the images, and a
LSTM machine is used for the textual portion of the en-
coding, we can try and infer some overall relationship
between the sets that spans both visual and textual rela-
tionships. For example: in table 6, we can see the results
of seeding an image of a dog running. In the resulting
representation both our head and tail entities depict the
same breed of dog (or two that are extremely similar).
While in this case the relationship appears more obvious,
In table 7, seeding an image of a biker on a dirt trail, we
get a bootstrapped set of bike riding in various situations.
Similarly to the first case, our model captures similarity,
this time in the scenes in head and tail sets, and in ad-
dition to the similarity in the settings, it appears that our
model captured a relationship where the rider and bicycle
are mirrored between the head and tail sets.

10

Table 6: Multimodal vector space relation extraction I
Head Set Tail Set

Table 7: Multimodal vector space relation extraction II
Head Set Tail Set

11

6 Conclusion and Future Work

In our this paper, we have suggested a zero shot relation
extraction method, that allows us to generate a relational
representation using vector-embedded spaces. Allowing
us to potentially use our method in order to generate the
maximum amount of relational information from a gen-
erated vector space by iterating over all entities in the
space. We have shown that even given no prior infor-
mation our model shows great results when compared to
naive baseline and to current online relational knowledge
bases.

As next steps, the ability for our model to identify du-
plicate entities such as misspelling of a word or different
names for the same entity, will greatly increase our ac-
curacy. In addition, enhancing the effectiveness of infor-
mation sharing between established relational sets. Using
more shared information will allow us to identify entities
that have been missed in our expansion stage and add
them retroactively. Another aspect we would like to ad-
dress is our ability to filter entities that were collected
during expansion but are considered noise and are irrel-
evant to the set. This could be done by removing enti-
ties with no relevant corresponding entity that is valid in
the opposite set, or by removing entities that are not the
first match to an entity in the opposite set. Filtering out
noise from our sets will greatly increase robustness of
our model.

12

References

Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014).
Unifying visual-semantic embeddings with multi-
modal neural language models. CoRR, abs/1411.2539.

Lai, S., Liu, K., He, S., and Zhao, J. (2016). How to
generate a good word embedding. IEEE Intelligent

Systems, 31(6):5–14.
Levy, O. and Goldberg, Y. (2014). Dependency-based

word embeddings. In Proceedings of the 52nd An-

nual Meeting of the Association for Computational

Linguistics, ACL 2014, June 22-27, 2014, Baltimore,

MD, USA, Volume 2: Short Papers, pages 302–308.
Levy, O., Seo, M., Choi, E., and Zettlemoyer, L. (2017).

Zero-shot relation extraction via reading comprehen-
sion. CoRR, abs/1706.04115.

Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. (2015).
Learning entity and relation embeddings for knowl-
edge graph completion. In Proceedings of the Twenty-

Ninth AAAI Conference on Artificial Intelligence,
AAAI’15, pages 2181–2187. AAAI Press.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Burges, C.
J. C., Bottou, L., Welling, M., Ghahramani, Z., and
Weinberger, K. Q., editors, Advances in Neural Infor-

mation Processing Systems 26, pages 3111–3119. Cur-
ran Associates, Inc.

Min, B., Grishman, R., Wan, L., Wang, C., and Gondek,
D. (2013). Distant supervision for relation extraction
with an incomplete knowledge base. In Vanderwende,
L., III, H. D., and Kirchhoff, K., editors, HLT-NAACL,
pages 777–782. The Association for Computational
Linguistics.

Min, B., Shi, S., Grishman, R., and Lin, C.-Y. (2012). En-
semble semantics for large-scale unsupervised relation
extraction. In Proceedings of the 2012 Joint Confer-

ence on Empirical Methods in Natural Language Pro-

cessing and Computational Natural Language Learn-

ing, EMNLP-CoNLL ’12, pages 1027–1037, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009).
Distant supervision for relation extraction without la-
beled data. In Proceedings of the Joint Conference of

the 47th Annual Meeting of the ACL and the 4th Inter-

national Joint Conference on Natural Language Pro-

cessing of the AFNLP: Volume 2 - Volume 2, ACL ’09,
pages 1003–1011, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Empirical Methods in Natural Language Processing

(EMNLP), pages 1532–1543.
Riedel, S., Yao, L., Marlin, B. M., and McCallum, A.

(2013). Relation extraction with matrix factorization

and universal schemas. In Joint Human Language

Technology Conference/Annual Meeting of the North

American Chapter of the Association for Computa-

tional Linguistics (HLT-NAACL ’13).
Socher, R., Chen, D., Manning, C. D., and Ng, A. (2013).

Reasoning with neural tensor networks for knowledge
base completion. In Burges, C. J. C., Bottou, L.,
Welling, M., Ghahramani, Z., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing

Systems 26, pages 926–934. Curran Associates, Inc.
Speer, R., Chin, J., and Havasi, C. (2016). Conceptnet

5.5: An open multilingual graph of general knowledge.
CoRR, abs/1612.03975.

van der Maaten, L. and Hinton, G. (2008). Visualizing
data using t-SNE. Journal of Machine Learning Re-

search, 9:2579–2605.
Yan, Y., Okazaki, N., Matsuo, Y., Yang, Z., and Ishizuka,

M. (2009). Unsupervised relation extraction by min-
ing wikipedia texts using information from the web.
In Proceedings of the Joint Conference of the 47th

Annual Meeting of the ACL and the 4th International

Joint Conference on Natural Language Processing of

the AFNLP: Volume 2 - Volume 2, ACL ’09, pages
1021–1029, Stroudsburg, PA, USA. Association for
Computational Linguistics.

13

