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LATTICE AND HEEGAARD FLOER HOMOLOGIES OF ALGEBRAIC LINKS

EUGENE GORSKY AND ANDRAS NEMETHI

ABSTRACT. We compute the Heegaard Floer link homology of algebrakslin terms of the
multivariate Hilbert function of the corresponding planee singularities. The main result of
the paper identifies four homologies: (a) the Heegaard Hildehomology of the local embed-
ded link, (b) the lattice homology associated with the Hillfienction, (c) the homologies of the
projectivized complements of local hyperplane arrangdaseut out from the local algebra, and
(d) a generalized version of the Orlik—Solomon algebra e§éhlocal arrangements. In particu-
lar, the Poincaré polynomials of all these homology graangsthe same, and we also show that
they agree with the coefficients of the motivic Poincar&eseof the singularity.

1. INTRODUCTION

Complex analytic/algebraic plane curve singularitiesvigte interesting connections be-
tween analytic theory of singularities and low dimensiawglology, in particular, knot the-
ory. The rigidity properties of algebraic links help to com the topological invariants via
analytic methods, while knot theory provides topologicaamcterizations for certain ana-
lytic invariants (see e.g. [1,] 9, 16] and references thgreihg., in [4] Campillo, Delgado
and Gusein-Zade related the multi-variable Alexander patyial of an algebraic link to the
multi-dimensional semigroup of the divisors of analytiaétions. They also identified the co-
efficients of the Alexander polynomial with the Euler chaeaistics of certain projectivized
hyperplane arrangement complements associated withrtgefifunctions. In this paper, we
prove a “homological lift” of their theorem biglentifying the Heegaard Floer link homology
of the local analytic link with the homology of these hypang arrangements, and providing
a concrete and computable description of them in terms afsatal singularity invariants of
algebraic links (Hilbert function, or Alexander polynort)ia

Usually, the identification of the Heegaard Floer link hoogy H F'L~ is very hard, and
very few concrete examples are known. Eeispace links we propose a strategy, which makes
a conceptual simplification, however at this generalitg gtrategy is also obstructed seriously
at several points. The strategy provides a spectral sequawerging taH F'L~, whoseFE,
term is a lattice cohomology associated with certain weaighthich are determined by the
Alexander polynomial. But for a generat-space link the collapse of the spectral sequence is
not guaranteed.

However, for algebraic links we eliminate all these obdgiors as follows. Firstly, in[[11]
we proved that algebraic links afe-space links, hence the strategy runs. Then, we identify
the H F' L—weights needed for the, (lattice cohomology) term with the values of the Hilbert
function of the local algebra (where the multi—filtrationgisen by valuations induced by the
normalization). For this we need an ‘analytic inversiorrnfmila, which provides the Hilbert
function from the Alexander polynomial.

This Hilbert function is the central singularity invariamt has a rich structure which will
be exploited deeply. Based on this, we analyze the progesfi¢he lattice cohomology (de-
fined in [23] in a very general setup) associated with theéttlbunction weights, and we show

that it is isomorphic to the cohomology of certain hypergl@amrangements embedded in the
1


http://arxiv.org/abs/1301.7636v4

2 EUGENE GORSKY AND ANDRAS NEMETHI

ring of functions. For this step we need to use and improvedig—Solomon theory of the
cohomology of hyperplane arrangement complements. Thiestem exploits the structure of
Orlik—Solomon cohomology rings (determined by the rigidtroia properties of our Hilbert
function). We define a bigrading on the Orlik—Solomon corr@erd prove a vanishing result
which guarantees that the cohomology is supported on awith (espect to this bigrading).
This intrinsic structure and vanishing will imply finally é¢hcollapse of the above mentioned
spectral sequence involving théF L~ theory (showing that all the higher differentials en-
dowed with the bigrading are necessarily trivial).
The final picture identifies the ranks of the following fouaded homologies:

(a) The Heegaard Floer link homology of the local embedddddf the germ,

(b) The local lattice homology associated with the Hilbertdtion,

(c) The (simplicial) homologies of the projectivized complents of local hyperplane ar-
rangements cut out from the local algebra by valuationsgbyethe normalizations of
irreducible components,

(d) A generalized version of the Orlik—Solomon algebra efs#hlocal arrangements.

In particular, the Poincaré polynomials of all these hamgglgroups are the same, and we also
show that they agree with the coefficients of the motivic Baié series of the singularity germ
[6,(10,/18]. Since the homologies have Adorsion, the corresponding Poincaré polynomials
provide the complete description of the corresponding Hogies.

It is important to mention that the above isomorphisms arnedée separately for each
Alexander grading, which belongs to the latti€e(wherer is the number of components of a
link). For each lattice point € Z" we define a separate topological spabe) (which is ei-
ther empty or a complement to a hyperplane arrangementjedate its homology télFL ™ (v).
This recoverdiFL™ = @, HFL™ (v) as aZ" & Z—graded vector space (for a comment regard-
ing coefficients, see Remark 2.11.2). Here the Iagfrading is the homological grading. (All
other homologies in the above list (a)—(d) are graded siipi)a

Some of the important structures presenHiAL.~ are not immediately recovered with this
approach. In particular, the Heegaard Floer theory defipesators/, . . ., U, which act on
HFL™ and shift the Alexander grading in various directions. #ras plausible that the action
of U; is determined by the Hilbert function too, but we do not sttidg action in the present
paper — such a study would require a comparison of spH¢esfor differentv.

In order to realize the above program, we need to recallowvgseveral properties of Hee-
gaard Floer link homology of—space links in sectidd 2 and of local algebraic curve sagul
ties (e.g. how to invert the Alexander polynomial to the lditfunction) (sectiohl3), to develop
the theory of lattice cohomology (associated with the Hilfienction weights) (sectidn 4), and
to adjust and improve the theory of Orlik—Solomon algebsastfori5). Based on all these we
finish the main proof in sectidd 6. Finally, in sectidn 7 we leifly compute the homologies
(a)-(d) for the Hopf link, corresponding to the singularjtyy = 0}.

1.1. The next subsections provide more details on the ieebinvariants and identifications
(for the precise definitions and statements see the nexoss}t

Trough the paper the following notations will be used. Thmbar of link components will
be denoted by. SetK, = {1,...,r}. Lete; denote the-th coordinate vector iiZ". For
a subset’ C K, we writeex = ) ., e; ande = eg, = > e, Givenv € Z7, we define
Uk = ) ;e Viei. | K| denotes the cardinality of . We set a partial order afi” by

u=v < u; <wv; foralli.
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1.2. The Hilbert series and the related singularity ‘package’. Let (C,0) = (U._,C;,0) be
a reduced plane curve singularity at the origitCi whereC; are the irreducible components.
Let; : (C,0) — (C;,0) be the normalization of the components. We considegluations on
the C—algebra® = Oc: o defined byv;(f) = ord (f (7:())), and aZ"-indexed filtration

)

Jw)={f€O|v(f

The Hilbert functionh : Z" — Z is defined byh(v) = dim O/J(v), while the multivariable
Hilbert series byH (t) = >, h(v)t]* - - -, cf. [3.1.1. It guides most of the classical analytic
and topological invariants of the germ. For example, thetivariable Poincaré series satisfies
P(t)=—H(t)-T[,(1—t;"). By [4] P(t) is related to the multivariable Alexander polynomial
A(t) as follows: A(t) = P(t) if » > 1, while A(t) = (1 — t)P(t) for r = 1. This shows
that A(t) is determined by the Hilbert serid$(t). We prove an ‘Inversion Theorerh™3.4.3
providing an explicit way to recoveH (t) from A(t¢). (This explicit formula can be used to
define an analogue df (¢) for any non-algebraic link as well; this plays an importasierin
the study ofL-space links in Heegaard Floer link theory: it produces tkets of the lattice
complex whose lattice cohomology is the term of the spectral sequence, cf. Theorem 1.5.1.)
Another objects determined by the valuations are the tgpcdb spaces

H(v) :=={f € O] v,(f) = forall i}

> v; forall i}.

and their projectivization®# (v). Although#(v) andP#(v) are infinite-dimensional, they
can be projected onto finite-dimensional varieties withneffiibers. Furthermorel{(v) =
J(v)\U;J(v+e;) (Wheree; are the base vectors), heriév) is either empty or a complement
of a central hyperplane arrangement, see seltidn 3.6.nls tauit that the Euler characteristic
of PH(v) is exactly the coefficient, of ¢’ in the Poincaré serieB(t). Replacing the Euler
characteristier, by the Poincaré polynomial,(¢) of the homology ofP# (v) (or by the class
of PH(v) in the Grothendieck ring of algebraic varieties), we obtidie ‘motivic Poincaré
seriesP(t;q) = >, m(q)t* [6,/10,[18].

1.3. The Orlik—Solomon theory. To describe the homology df(v), we need some facts
from the theory of hyperplane arrangements. {&t, ..., H,.} be a collection of hyperplanes
in a complex vector spacg. Brieskorn in [3] proved that the de Rham cohomology of the
complement{ := V'\ U, H; is generated as an algebra by the classes of 1-f®irms%, where

¢; are the defining equations @f;. Orlik and Solomon[[24] gave an explicit combinatorial
description of the ideal of relations betweenin terms of linear dependencies betwegn
(sed5.R). To connect the Orlik-Solomon theory with Zre@nodule structure of the lattice and
HF L~ cohomologies, we prove the following improvement of thegult (see Theorem 5.2.8).

Theorem 1.3.1.Consider the free anticommutative algelsfgenerated by;. It is naturally
bigraded: a monomial;c z; has bidegre€| K|, p(K)), wherep(K) := dim V/ Njex H;.

(a) There is a differentia, on £ of bidegreg—1, 0) such thatH,.(€, dy) ~ H.(H).

(b) There is a differentiaby = 9y + U, on E[U] such thatH, (E[U], Oy) ~ H.(PH).

(c) All classes in the homology ¢f; haveU-degree0 and can be presented as sums of
monomialsy = A;cg z; such that the hyperplandg;c ;. are independent.

Corollary 1.3.2. (a) The homology of), or 0y inherits a bidegree, and for the nontrivial
generatorda| = p(a). Therefore, the bidegrees in non-trivial homology eleméiaton a line.
(b) TheU—action onH,(E[U], dy) ~ H.(PH) is trivial.
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1.4. The lattice homology. This note introduces the lattice homology(6f, 0). Recall that in
[23] the lattice homology of a normal surface singularityswaroduced via the lattice provided
by its resolution graph (or plumbing graph of the link). Thatariant created a bridge between
the analytic invariants of the surface singularity and sgvepological invariants (like Seiberg—
Witten invariant and Heegaard Floer homology) of its 3—disienal link. The goal of the
present construction is similar; nevertheless here weaelyhe latticeZ" discussed above,
and the needed weight function is provided by the normadinatf C', namely by the Hilbert
functionh(v).

In short, the definition for an arbitrary weight functian: Z" — Z runs as follows. The
lattice complexC., is generated oveL[U] by cubed of all dimensions irR", with vertices in
the latticeZ". For such a cube we defing[(]) = max,cqnz- w(z). The differential is defined
as

op(UmD) =U™ > U0,

wherel]; are the oriented boundary cubesCafande; are the corresponding signs (as in the
boundary operator of the classical cubic homology). We @dfiehomological degreeof the
generators byleg(U™) = —2m + dim(0) — 2w(0); dy decreases it by one.

The complexC;, is naturallyZ"-filtered: the subcompleX (v) is generated by the cubes
contained in the positive quadrant originatingvatOne of our main theorems describes the
homology of the subcomplexe, (v) and the associated graded complexes’,, for all v.

Theorem 1.4.1. (&) If wis non-decreasing (thatis;(v) < w(u)forv < u), thenH* (L (v)) ~
Z[U] with a generator of homological degreew(v).
(b) In the algebraic case (that is, it = h), the Poincaé ponnomiaIPgrv E}_(t) of the

homology okr, £, agrees with the—coefficient in the motivic Poincarseries:
Pgrv L;<_t71) = th(v)ﬂ-v@)'
(c) The following (co)homologies are isomorphic:

H—Qh(v)—* (grv ‘C’]:) ~ H* (]PH(U))?

and both spaces are fré&modules.
(d) The induced/—action onH,(gr, £,) is trivial.

We prove the parts of this theorem in Theoréms 4[1.7,. 4. 21Bah1.

1.5. Heegaard Floer link homology. We relate the Heegaard Floer link homolddy L~ of
an algebraic link to lattice homology of the corresponditgnp curve singularity. (For the
definition of HFL ™~ see[[27| 28, 29, 30] and [33]).

Recall that anl-space is a 3-manifold with minimal possible rank of its Heegl Floer
homology, and ai—space link is a link ir5® such that a sufficiently large surgery $t along
its components yield ah—space. Ozsvath and Szab6 proved.in [27] that the Heedéaed
homology of anL—spaceknotis determined by its Alexander polynomial. Hedden proved in
[12] than every algebraknotis anL—space knot. As a consequence, Heegaard Floer homology
of an algebraic knot is determined by its Alexander polyradntiowever, forL—spacdinksis
not known if their Heegaard Floer link homology is deterndaifyy the multivariable Alexander
polynomial.

As a generalization of the above facts valid for knots, weppsee the following program.
First, in [11] (motivated by the present manuscript), théhats observe that all algebraic links
are L-space links. Then, by the general theory of Ozsvath anth&pl L—space links and
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by ‘Large Surgery Theorem’ of Manolescu and Ozsvath [16¢hsa link L C S* provides a
functiong : Z" — Z as follows (we call it F' L—weight function). The F'L~ complex is a
Z|Uy, . .., U,] module with Alexander filtratioR A~ (v) },ez-, WhereU; (A~ (v)) C A= (v+ey).

A~ (v) is a subcomplex andA[U, . .., U,| submodule. Its homology is a free rank dfié/|-
module (withU = U;). Theng(v) is essentially the homological degree of its unique geperat
(similarly to Theoreni 1.4]1(a)). The functigiiv) is determined by the multi-variable Alexan-
der polynomial ofZ. (Theoreni 2.2.11). We prove the following (see Theorem B)2.1

Theorem 1.5.1.Let L be anL—space link and ley : Z" — 7Z be its H F' L—weight function.
Then for each fixed € Z" there exists a spectral sequence with the following propert

(a) The E' page can be identified (as A[U] module) with the lattice complex, £
associated witly(v).

(b) The E? page is isomorphic (oveZ) to the local lattice homology associated witf).

(c) TheE*> page isisomorphic (as gradettmodule, where the grading is the homological
one) toHFL™ (L, v), the Heegaard Floer link homology @f with Alexander grading
v. Moreover, the spectral sequence collapseg’apage (or earlier).

(d) If r < 3 then the spectral sequence collapses atiRgage.

For algebraic links the following additional facts hold.(@heorem§6.112 arid 6.1.3).

Theorem 1.5.2.1f L is the link of a plane curve singularityC', 0) then the H F' L—weight
functiong(v) coincides with the Hilbert functioh(v). Moreover, the spectral sequence always
collapses at thev? page.

Corollary 1.5.3. If L is the algebraic link of C, 0) then for each fixed € Z" one has
HFL™(L,v) ~ H.(gr, £;) ~ H™ 2"~ (PH(v))

(isomorphism of graded modules). Moreover, the Poind@apolynomial of the Heegaard Floer
link homology is described by Theorém 11.4.1 by the coeftsmrithe motivic Poincdr series.
Furthermore HFL™ (L, v) # 0 if and only ifv belongs to the semigroup ¢f’, 0).

Theorem 1.5]1 can be compared with|[31, Theorem 1.1], whenmidar spectral sequence
from a different form of lattice homology (associated withlambing graph) to Heegaard Floer
homology was considered. For the first part of Thedrem I1.® 218 the ‘Inversion Theorem’
[3.4.3, and in the proof of collapse we use some specific ptiepaf the lattice homology and
Orlik—Solomon algebras established in Theofem 4.2.1 (ofollary[1.3:2).
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2. HEEGAARD FLOER LINK HOMOLOGY

2.1. Review of Heegaard Floer link homology. In this subsection we recall certain basic
algebraic structures of Heegaard Floer link homology. Forewsee [15, 27, 28, 29, 30,/33].
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To every 3-manifoldM/ with fixed Heegaard splitting one can associatéegaard Floer
complexC' F'~ (M) of free Z|U]-modules. The operatdf has homological degree-2), and
the differentiald has degreé—1). This complex is not unique, but different choices (e.g.
of a splitting) lead to quasi-isomorphic complexes. Therefthe homology of ' F— (M) is
an invariant ofM calledHeegaard Floer homologgind denoted by{ F~(M). For example,
HF~(S%) = Z[U].

ToalinkL = L, U---U L, C S? one can associateZd -filtered complex ofZ[Uy, .. ., U,]-
modules, denoted b¢’F'L~(L). If one ignores the filtration, then the complex is quasi-
isomorphic to the Heegaard Floer compt&k — (S?), where all the operatois; are homotopic
to each other, cf[[29]. One can also consider this compleZ48/|-module, wherd/ = U,.

However, the filtration (called Alexander filtration) caps nontrivial information about
the link. Forv € Z", we will denote the Alexander filtration byA~(v)},. EachA~(v) =
(B, A" (v),d) is asubcomplex of 'L~ (L) (in [15] they are denoted b33t~ (v))[]]. The upper
indexr denotes the homological (or Maslov) grading. They satisfy

A= (v) D A (u) foru » v, and

A (v)N A (u) = A (max{v, u}).

The subcomplexed~(v) are Z[U, ..., U,]-submodules, the operatot have homological
degreg(—2) and are homotopic to each other. Moreov&t A~ (v)) C A~ (v + ¢;).

The Heegaard Floer link homology is defined as the homologthefassociated graded
pieces ofA~ (v):

HFL™(L,v) := H.((gr A™)(v)), where(grA™)(v) := A" (v)/ ZA*(u).

uv

(2.1.1)

For example, for = 1 one hadFL™ (L,v) = H.(A (v)/A~ (v + 1)).

Remark 2.1.2. At present, Heegaard Floer link homology is defined onlyHgcoefficients,
hence, strictly speaking, all results of this section arell#ist section are valid only ovék.
Nevertheless, we believe that all the statements are treiZoas well, but the cautious reader
might take everywherg, instead ofZ.

By [29, Proposition 9.2], the Euler characteristic of theegaard Floer link homology coin-
cides with the Reidemeister torsion, and it satisfies

{A(t) if r > 1,

AY() T S
Tt ” T ——1,

(2.1.3) > X(HFL™(L,v))-t" =

VELT

whereA is the multivariable Alexander polynomial éf

2.2. L-space links. In [27] Ozsvath and Szab0o introduced the notion of aspace: a rational

homology 3—spheré/ is an L—space if for anypin“—structures one hasank ﬁTT(M, s)=1
(or, equivalentlyH F— (M, s) is a freeZ|U]—-module of rank 1).

Definition 2.2.1. A link L c S? is called anL-space linkif a sufficiently large surgery on all
of its components is ah-space.

The following ‘Large Surgery Theorem’ shows the importantéhe L-space property.

1For a more transparent match with the algebraic picture ewerse the sign of, thus reversing the direction
of the filtration as well.
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Theorem 2.2.2.([15, Theorem 10.1]see alsd31, Lemma 4.2 If dy, ..., d, are sufficiently
large integers, then the homology 4f (v) (considered aZ.[U]-module) is isomorphic to the
Heegaard Floer homologi/ F'~ of the 3-manifolds} ~ , (L) obtained froms® by d;-surgery
along the components of the lidk (for a certainspin®~structure depending o#).

In particular, if L c S® is an L-space link, then for any € Z" the homology ofA~(v) is a

free Z|U]-module of rank 1.
Letg(v) denote the homological degree of the unique generatfl, (~(v)).

Lemma 2.2.3.For all i andv € Z" eitherg(v + ¢;) = g(v) or g(v + €;) = g(v) — 2.
Furthermore, the inclusion mapg~ (v + ¢;) < A~ (v) induces an injection on homology.

Proof. One has the following inclusions:
(2.2.4) A () DA (v+¢) DUA (v) DUA (v+e).

By Theorem 2.Z212H, (A~ (v)/U;A~(v)) andH,. (A~ (v+e;) /U; A~ (v+e¢;)) are freeZ-modules
of rank 1 with generators of homological degrgés) andg(v + e;). Similarly to [27, Lemma
3.2] (see alsd [10]), froni(2.2.4) one obtains the followatigrnative:

(2.2.5) g(v+e;)=9g(v)anddim H,(A™ (v)/A (v +e¢;)) =0, or
o g(v+e)=9g(v)—2anddim H,(A (v)/A~(v+¢;)) = 1.
The long exact sequence in the homology implies the injggtf the inclusion. O

Motivated by Theorem 4.11.7 (valid for algebraic links) waaduce the following definition.
Definition 2.2.6. We define thed F'L—weight functiorof an L-space link by

g(v) == —37(v).

Note that by LemmB 2.2.3 the valuesgdi) have the same parity for all hencey(v) € Z
org(v) € 1 + Zforall v, henceg(v + ¢;) — g(v) € {0, 1}.

Corollary 2.2.7. For all v > v the inclusioni,, : A= (u) — A~ (v) induces an injective map
on homology. I&(u) and z(v) are generators inH, (A~ (u)) and in H,(A~ (v)) respectively,
then

T (2(0)) = Ug(“)*g(”)z(v).

Definition 2.2.8. Consider the “iterated cone” complex

Kv) := @ A™ (v +ek), Dz(H—ZEi,K@',

Kc{l,..r} i=1

whered is a differential onA—, 0, : A~ (v + ex) — A (v + ex — ¢;) is the inclusion map
(¢ € K), and the signs; - = +1 are chosen such thar* = 0.

It is useful to present’(v) as an--dimensional cube with the complexgd~ (v + ex ) } i at
vertices. The differential acts in vertices, whil® := Y"'_| ¢, x0; acts along the edges. The
homological grading of a generatorc A~ (v+ek ), considered as a generatokiiw), equals
| K|+ v. The differentiald decreases by 1 and preservgg(|, the differentiald decreasegx|
by 1 and preserves, so both decrease the total grading by 1.

Lemma 2.2.9. The complexegr A~)(v) andK(v) are quasi-isomorphic.
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Proof. We prove this by induction on. Forr = 1 itis clear that'C(v) is just the cone of the
inclusion mapA~(v+e;) — A~ (v), so itis quasi-isomorphic tegr A=) (v) = A~ (v) /A~ (v+
61).

Forr > 1, we can write (usingIZ[] 1))

(er A)(v ( /ZA (v+e)) )/(A_(v+er)/§/1_(v+ei+er))>.

Each of these quotients can be realized as an iterated awhggrad ~)(v) can be realized as a
cone of the natural map between them. O

The following theorem and its proof is similar to the mainuie®f [31], although it ap-
pears in a different setup. The algebraic construction efitarated cone’ complekX. can be
compared with the construction appearing.in [31, Theoreh 4.

For the definition of the lattice complex and cohomology sd#section 4J1 and sectidh 4.

Theorem 2.2.10.Let L be anL-space link with- components. Let us fix a point Z". There
exists a spectral sequence with the following properties:

a) Its E? page is isomorphic (as gradetimodule) toH, (gr, L), whereL  denotes the
lattice complex associated with ti#&F L—weight functiory(v).

b) Its E> page is isomorphic (as gradétimodule) toHFL™ (L, v), the Heegaard Floer
link homology ofl. with Alexander grading.

c) The spectral sequence collapsegdtpage (or earlier).

d) If L has three or less components, then the spectral sequerapsed atF?.

Proof. One has two (anti)commuting differentialsand 9 on the compleXC(v), hence there
exists a spectral sequence which starts with the cohomalbgyand converges to the coho-
mology of D = d + 9. By Lemmd 2.2.9, its (multigraded)> page is isomorphic to

E>(v) = H,(K(v), D) = H.((gr A”)(v)) = HFL™(L,v).
On the other hand, by Theorém 2]2.2, fiiepage of this spectral sequence is isomorphic to

E'(v) = @H “(v+ek)) @Z 2(v + ex),

where, as above, we denote the generator in the homolady @f) by z(«). One can naturally
identify this E'* page with the lattice complgxr, L, grdy), viathe identification o (v+e)
by O(v, K). Note that the/—grading ofz(v +e4) (in K(v)) equalsg(v + ex) = —2g(v +ex),
hence the homological gradingGf*z(v+ex ) equals/ (U™ z(v+eg))+ | K| = —2m—2g(v+
ex) + | K|, in agreement with the definition of the homological degrethimlattice complex
in[4.1, see alsd (4.1.4). The next differential is inducedbgnd by Corollary 2.2]7 it agrees
with the lattice differential for the weight functiof(v). Indeed,

U + eK Z j:a U + GK)) — Z :tUg(U+€K)_g(U+6K—€i)Z(rU +ex — ei)-

€K €K

The differentiald, in the spectral sequence decreddésby k& and increases the-grading
(homological grading in vertices of the cube) by- 1 (assuming thatl = d, ando = d,).
In particular, fork > r the differentiald, vanishes automatically. Moreover, the class of the
uniquer-dimensional cube is not in the kernel of the lattice différal, sod, vanishes too.
Since thev-gradings of all classes afi* page has the same paritl, can be nontrivial only
if k£ is odd. In particular, for < 3 we haved, = d; = 0, SOE? = E°. O
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The next theorem expresses the functign) in terms of the Euler characteristic of the
HF L~ homology (or, equivalently, in terms of multivariable Ader polynomial).

Theorem 2.2.11.Let L denote the sublink associated wikhC K. Then for every € Z"

goy= Y (=D N X(HFL (L, ).

KCKyp 0=2uxvg—ex

Proof. Since the Heegaard Floer complex is finitely generate#[&3-module, there exists
N = (Ny,...,N,) large enough such that~ (v) C A~ (—N) for anyv. Hence

9(v) = g(max{v, =N}).
For a subset{ = {iy,... ik} C K, consider a sublink.x := UjcxL;. L is alsoL—
space link (cf. [[14, Lemma 1.6]), so it defineg#aF' L-weight functiongx on the sublattice
of Z" supported or. By [29, Proposition 7.1], the restriction of the filtratiohr (v) to this
sublattice coincides with the filtration on the HeegaaretFtmmplex for the sublink . Given

Vigs oo Vi) define
A A L Uj, j & K,
U(Viys -y Vi) 1= {—Nj, P4 K
thenA~ (u(vi,, ..., vi)) = Ap, (Vi -, vi,,) @Nd
(2.2.12) G(u(Viys o3 Vi) = gr(Vigs - -5 Vi)

At Euler characteristic level we obtain

(2.2.13) Y(HFL (Lg,v)) = X(A’(v)/ > A (v+ ei)> =) ()M g0+ ep).

1 ¢ MCK
This is a linear system of equations fgw), and by Theorein 3.4.3 (whedeshould be replaced
by —N) the functiong(v) is defined uniquely by the equations(2.2.12) dnd (2]12.13pugm
overall shift. O

3. THE HILBERT FUNCTION AND ITS RELATION WITH OTHER INVARIANTS

In this section we discuss the connections between the-varitible Alexander polynomial,
three series (Poincaré, Hilbert and motivic Poincarayl #the semigroup associated with an
isolated plane curve singularity. All the statements, pkt¢lose which involve the Alexan-
der polynomial, are valid for arbitrary (non necessarilgr®) curve singularity germs. The
Alexander polynomial, by its very essence, is an invaridrthe embedded topological type
(hence of the embedded link); in the algebraic case it cdartbe theory of links of5® with
the above algebraic invariants.

3.1. The Hilbert series of the multi-index filtration. We fix a local reduced plane curve
singularity withr irreducible components; and normalizations; : (C,0) — (C;,0). Set the
valuationsv;(f) = ord; (f (7i(t))) onO = O¢2 o, and aZ"-indexed filtration

J()={f€OJo(f) = v}.
Note that the ideald(v) are defined for negative valueswéas well. The filtration is decreas-
ing: if u < vthenJ(u) D J(v).

Definition 3.1.1. TheHilbert series of the multi-index filtratiod is
(3.1.2) H(ty,....t;) =Y h(v)- "+ £ € Z[[tr, 1", .. b 8],
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whereh(v) = dimc O/J(v). Note that

(3.1.3) h(v) = h(max{v,0}).
HenceH is determined completely b/ ()|o<, = > <, h(v)t

3.2. The Poincaré series.If r = 1, then the Poincaré series of the graded eng (v)/J (v +
e1)is P(t) = —H(t)(1 —t~'). For generat, one defines the Poincaré series similarly

(3.2.1) P(ty,....t;) = —H(tr,....t,) - [JA = ;).
This means that the coefficient of P = >, - t]* ... tJ" satisfies
(3.2.2) mo= Y (1) h(v + ex).
KCKy
The spacé[[t;, ¢, ..., t.,t '] is a module over the ring of Laurent power series, hence the

multiplicationin [3.Z.1) is a well-defined. One can checkifg e.g.[(3.1]3)) that the right hand
side of [3.2.11) is a power series involving only nonnegapieeers oft;.

3.3. Poincaré series and the Alexander polynomial. The topological aspect and importance
of the Poincaré series is shown by the following theorem.

Theorem 3.3.1([4, 5]). Let A(t4,...,t,) be the multi-variable Alexander polynomial of the
link of C. If » =1thenP(t)(1 —t) = A(t), while P(ty,...,t,) = A(ty, ..., t.) if r> 1.

The Alexander polynomial is symmetric in the following senBor anyi € K let u; andd;
(respectivelyu(C) andé(C')) be the Milnor number and the delta invariant@f(respectively
of C), seel[1] 16]. Let{C};, C;) be the intersection multiplicities at(g # ). Then, cf. [16],
wi = 26;, andu(C) +r —1=26(C). Definel = (Iy,...,1.) by

Li=pi+ Y (C;,C) (1<i<r)
J#i
ThenA(t™!) =t~ A(t) for r = 1, and (e.g. by[9])
At Y (Ht”) (ty,...,t,) forr>1.

By [7,/18], the Hilbert function also satisfies similar syntnggoroperties

(3.3.2) h(l —v) — h(v) = §(C) — |v|,
wherejv| = >""_, v;. In particular, forv > [ one has
(3.3.3) h(v) = |v] = §(C).

3.4. The equivalence of the Poincag series and the Hilbert series.For any subsek’ =
{ir,... ik} C Ko, K # 0, consider the curv€’x = U;cxC;. As above, this germ defines
the Hilbert seriedi,. of C in variables{t; };cx:

K(p) . " £
Hep (tiy, ...t ,‘K‘ E h il Liige -

By the very definitionH¢, (t;,, - - - ,‘K‘) He(th, ..o t)|t—0 igk; OF
(3.4.1) ifv; = 0foralli ¢ K, then h'(v) = h(v).
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Analogously, we also consider the Poincaré serigs;gaf

E K Vi '\K\
PCK(tila--- Z\K\ T, t .. Z\K\ .

By definition, for K = () we taker” = 0.

By [36] the multi-variable Alexander polynomial (and heryeTheoreni 3.3]1 the Poincaré
seriesP(t)) determines the embedded topological typ€'oin particular all the serieSPc,. } k-
Nevertheless, the reduction procedure fréno P, is more complicated than the analogs of
(3.4.1) valid for the Hilbert series. Indeed, these formewdee of type (seé [35]):

1
(1- t(QCI,CZ)) (1 - t$C1,Cr))'

(34.2)  Pog iy (tereeeits) = Pty oty)]om

The next theorem inverts (3.2.2): we recovéfrom P. The fact that// can be recovered
from P was already proved in[17, Corollary 4.3]. However, we wiglptesent a more general
statement which also clarifies under what condition thersiea works, and which is applied
for certain coefficients provided by the Heegaard Floer hoknology as well, cf. Theorem

2.2.10 and identity(2.2.1.3).

Theorem 3.4.3.ConsiderG(t,,...,t,) = > ... t7 - g(v) € Z[[ts,t7", ... ., Y]] with
the following properties:

(@) g(v) = g(max{v,0});

(b) g(0) = 0.

(c) Fix K C Ko. We extend any = (v;,, ..., v;,,) to a vector with entries indexed ki,
such that the entries indexed B \ K are zero. (In this way(v) make sense.) Then, we also
require that the coefficients gfsatisfy (for anyK’) the following identities:

K = Z ()M g(v+ey)  foranyv = (vy,, ... s Vi) )-
MCK

ThenG is uniquely determined byFPc, } x (hence byP too), and it satisfies

(3.4.4) G(tl,...,tr)\ojvzﬁ S (LK 1(Ht) P (et

Y KcKo i€eK

Proof. The identity [(3.4.14) is equivalent to the following idegtdf the coefficients:

(3.4.5) glv)= Y (=nFt YT xk

KCKy 0=xu=zvg—eg

We will prove the identity[(3.4]5) by a two-step inductiohetfirst induction is by the number
of components, and the second one (for fixedlis over the normu| = > v;.
If » = 1, then (d) impliest, = g(v+1) — g(v). Henced ., ., , 7. = g(v) sinceg(0) = 0.
Let us prove[(3.4]5) for the case when at least one of codelimavanish. We can assume
thatv, = 0. By (3.4.1) and the induction assumption we get

g0) = glor v, 0) = S0 (—pE ST g

Kc{l,..r—1} 0=u=vK —ex
On the other hand, in(3.4.5) for al c K, with » € K we get the vacuous restriction
0 < u, < —1, hence we get a nontrivial contribution only from terms withc {1,...,r—1}.

Suppose now that has no vanishing coordinates and that we already pravedj¥ar
v — eg for all non-empty subsets” C K. We can rewrite (d) as a linear equation{or{v —
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eK)}K:
Toe = 3 (=10 — ).
KCKy
By the induction assumption fd¥ # () we have

glo—ex)= Y (=M > T

MCK 0=u=(vam—exnm—en)

and we should establish the same identity&or= (). Therefore we need to prove that

(3.4.6) o= 3 3 (m1y KM T M

KCKo MCKo 0=u=(vpmr—exnm—enr)

Let us fix M andu < v — e and sum the expressidgn-1)/%! over all setsk’ ¢ K, such that
u; < v; —2fori e KN M. This sum vanishes unled¢ = K, andu;, = v; — 1 for all 7, when
itis 1. This proves(3.416). O

Corollary 3.4.7. (a) The Hilbert series satisfies the assumptions of the abwegsion theo-
rem, hence&; = H.

(b) The restricted Hilbert functiof (¢)|¢<, of a multi-component curve is a rational function
with denominato [;_, (1 — #;)*.

Proof. For (a) use identitie$ (3.4.1) arld (3]2.2) applieddgy, while for (b) Theorem§3.4.3
and3.3.1. O

Remark 3.4.8. Let us reprove the identity (3.3.3) using (314.5). We analye different con-
tributions. Fork = {i} we have}__, ., 7 = v — §(C;). ForK = {i, j} (sincePe, is

-1 "u
a polynomial) we hav®” 7{"} = P, (1,1). This equal§C;, C;) by (34.2). By similar argu-
ment, for| K'| > 2 the contribution is zero. Hendgv) = >, (v; — 6(Cy)) — >_,,;(Ci, Cj) =

vl = 0(C).
3.5. The semigroup ofC'. Important information about the algebraic cu&es coded in its
semigroup. Itis defined & := {v € Z" | there exists € O with v(f) = v}.

Lemma 3.5.1. The semigroup can be equivalently defined by the followinglition:
S={veZ|h(v+e)>h(v) foreveryi=1,...,r}.

Next, fix any0 < v ande;. Thenh(v + ¢;) = h(v) + 1 if there is an elemeni € S such that
u; = v; andu; > v, for j # i. Otherwiseh(v + ¢;) = h(v).
In particular, H andS determine each other.

Proof. If h(v + ¢;) > h(v) for all 4, then there exist functiong such thatv,(f;) = v; and
v,(f;) > v; for j # 4. Thereforeo(d> ,_, \;f;) = v for generic coefficients,. For the second
part note thab(v + e;) — h(v) = dim J(v)/J(v + e;). This quotient space is trivial if there is
no functionf such thaw;(f) = v; andv;(f) > v; for j # i. Otherwise it is one-dimensional.
Indeed, ifo;(f1) = v;(f2) = v; thenthere exists # 0 such thav,(f;—\f>) > v;. If, moreover,
v;(f1),0;(f2) > v, forall j # i, thenv,(fi—Afz) > v; too. Thereforefi—\f, € J(v+e;). O

Next we establish the ‘matroid properties’ of the functian

Lemma 3.5.2.(a) Assume thak(v) = h(v + ¢;) for some fixed € Ky. Thenh(v + ex) =
h(v + ex + ¢;) for any K with K # .
(b) Suppose thak’,, K, C Kyandv € Z". Then

h(v+ek,)+h(v+ex,) > h(v+ exnk,) + (v + exuk,)-
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4--44-56
S

FIGURE 1. Values of the Hilbert function fod;

(c) For any base vectar; andn > [; one hasi(v + (n+ 1)e;) — h(v + ne;) = 1.

Proof. (a) UseJ (v +ex +¢€;) = J(v+ex) N J(v+¢;).

(b) Replacingv by v + e, nk,, We can assume thaf; N K, = (). ThereforeJ(v + e, ) N
J(v+eg,) = J(v+ exuk,). Henceh(v + ex,) + h(v + ex,) — h(v) — h(v + ex,uk,) =
dim J(v)/(J(v + ex,) + J(v + eg,)) > 0. For (c) use[(3.3]3) and Lemrha35.1. O

Remark 3.5.3. It turns out (using e.g[(3.3.3) and Lemma 3.5.1) fhathe conductor of, in
particularv € S whenevew > [.

Example 3.5.4.Consider the singularityl,,,_; defined by the equation® — y?* = 0. Its
Poincaré series equals- ¢ty + - - - + (t1t2)" !, and the Poincaré series of both its components
equalsl /(1 — t). The Hilbert series is given by the following equation:

1 (31 lo -1
H(t1, ) o< = —tito(1+ ..+ (tit)" :
(t1, t2)]o< (1—t1)(1—t2)<1—t1+1—t2 ita(1+ ...+ (tita) ))

Therefore, for non-negative integdrs, v,) one has
hv) = max(vy, va), Iif min(.vl,vQ) <n,
vy +v2 —n, otherwise.

Figure[1 illustrates this formula for the Hilbert functioorfA; singularity. The points corre-
sponding to the semigroup are marked in bold.

Example 3.5.5.Consider the singularity; defined by the equation- (2> — y3) = 0. Then

P(ti,ty) =1+ 1t3, Pi(t) = % Py(ty) = Lﬁt;
— 1 1—1t,
One can check that(v,, v;) for non-negative;, andv, is given by the following formula:

(01, if vg < 3,01 >0
v+ 1, if vo =3,01 >0
h(vy,v2) =  vg — 1, if v <2,v9>2
v +ve—3, ifog>20v,>4

L0, 1,1, if vy =0 andvy, =0,1,2.

Figurel2 illustrates the Hilbert function and the semigro@is.
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4--drd D6
ST S

FIGURE 2. Values of the Hilbert function fobs

3.6. The local hyperplane arrangements.For any fixedv let us consider the set

Hv) ={feO : n(f):v}:J(v)\U J(v+e).

SinceJ(v + ¢;) is eitherJ(v) or one of its hyperplanes (cE_3.5.1,(v) is either empty or
it is a hyperplane arrangement if{v). This can be reduced to a finite dimensional central
hyperplane arrangement

W) =

J(v+e v+ ek,)

sinceH(v) ~ J(v + eg,) x H'(v). Note that both+'(v) and#H(v) admit a freeC*—action

(multiplication by nonzero scalar), hence one automdsidahs the two projective arrange-
mentsPH'(v) = H'(v)/C* andP#H(v) = H(v)/C* as well. The following proposition can be
deduced from{3.212) and inclusion-exclusion formula see [4/5] and Lemmia3.7.1 below).

Proposition 3.6.1. The Euler characteristic of??{(v) (and of P#'(v)) equalsr,, the coeffi-
cient of the Poinca® seriesP(t) att”.

3.7. Motivic Poincaré series.The seriesP(ty,...,t.;q) € Z[[t1, ..., t.]][q] is defined in([6]
as arefinement dP(t¢) as follows. By definition, the coefficient of' .. .t" is the (normalized)
class ofPH'(v) in the Grothendieck ring of algebraic varieties. It turng that the class of a
central hyperplane arrangement can always be expressedns bf the clas&. of the affine
line. Indeed, one has:

Lemma 3.7.1.V be a vector space and &t = {#,, ..., H,} be a collection of linear hyper-
planes inV. For a subset’ we define the rank function By K') = codim U;exH;. Then in
the Grothendieck ring of varieties (by the inclusion-exan formula) one has

VA\U_ Hi] = Z (=) [MaexHa] = Z (—1) /K] LdimV=p(K)

KCKy KCKy
Since[C*] =L — 1, one also ha§(V \ Ul_H;)/C*] = [V \ U_ H;] /(L — 1).
Corollary 3.7.2. The class of the (finite) local hyperplane arrangen#ht) equals
()] = (L= DPH )] = Y (-1 L)),

KCKy
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ReplacingL.—! by a new variable, one can define (following [6]) the motivic Poincaré series
P(tiq) = >, mo(q)t” by

1
mlq) = LB ()| = o 3 (1) g ) =
L-1=¢q 1— q
KCKo

h(v+e h(v

S (i L
l—q

KCKy

Note thatlim,,, P(¢;q) = P(¢). In [10,[18] several properties @(¢4,...,t,;q) are proved,
e.g. itis a rational function with denominatpf,_, (1 — ¢;¢). We will need the following.

Lemma 3.7.3.The support ofP(¢; q) is exactlyS. That is,m,(¢) # 0 if and only ifv € S.

Proof. If v ¢ S, then there existse K|, such that(v+e;) = h(v) (cf.[3.5.1), hence,(¢) =0
by[B5.2(a). Ifv € S, thenh(v + ;) = h(v) + 1 for all i andh(v + ex) > h(v) + 1 for all
subsetsy, hencer,(q) = ¢"+ higher order terms. O

By Theoreni 3.413P(¢; ¢) and P(t), in fact, determine each other.

3.8. Conclusion. By the above discussions, the following objects associatithl a plane
curve singularity carry the same amount of information: rthéti-variable Alexander polyno-
mial A(t), the semigrouid, the Hilbert seried{(t), the Poincaré serieB(t) and the motivic
Poincaré serie®(t; ¢). The role of the spaceX (v) will be crucial in the next parts: we will
compute their homology using the Orlik—Solomon algebralsypierplane arrangements. This
will connect two other objects: the local lattice homologggociated with the weight function
h) and the Heegaard Floer link homology of the link@f This connection and the ‘matroid
properties’ [(3.5.2) of the weight functiain are responsible for the collapse of a spectral se-
guence connecting the Heegaard Floer link homology withattiee homology.

The Poincaré polynomials of all these cohomologies willdentified with the coefficients
of the motivic Poincaré series.

Remark 3.8.1.1n the above definitiodc: o can be replaced b§. In this way, one can extend
all the above definitions off (t), P(t), P(t;q), S to the case of any (not necessarily plane)
reduced curve singularity. The topological embedded-ilimkriantA(¢) has no analogue in
this general case. It is a nice challenge to find the analoftleed? ' L—theory (via(H (t) as

in this note) applied for a (non—planar) curve singularity.

4. LATTICE HOMOLOGY

Lattice homology associated with the intersection lattita resolution of a normal surface
singularity was introduced in [23], as a topological ineati of negative definite plumbed 3—
manifolds. For a possible generalization to algebraic &rsste the recent manuscript/[32].

In this section we introduce another homology theory asgediwith curve singularities,
where the lattice and the corresponding weight functioreheawdifferent nature. In order to
make a distinction between the two cases we will call thegaretheorylattice homology of
curve singularities via their normalizationdn fact, the definitions below extend identically
to any, not necessarily plane curve singularity, that ignei¥ (C, 0) does not have any local
embedded linkn the 3—sphere.
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4.1. The general theory: lattice complex, filtrations, lattice fomology.

In this subsection we present the general theory of latiieediogy associated with an arbi-
trary weight function. This will be specialized for the fuion 4 in subsection 412, and for the
H F L—weight functiong given by Heegaard Floer link theory in sectidn 6 (see alst®&2).

We will use the cubes iR™ with vertices in the lattice pointd”. Every such cub®@(v, K),
wherev € Z" and K C K, is defined as

BB, K)={zeR :v=zr=v+eg}, dmB(v,K)=|K|.

We conside B with its natural orientation (as a subsef®f). In the classical cubical homol-
ogy, the chain complex is a fré&@module with generatorsl = (v, K') corresponding to the
cubesll(v, K), and the differential can be written 860) = > . ¢;,00;, wherel, are oriented
codimension 1 faces of the culiefi

Definition 4.1.1. Let us choose a function : Z" — 7Z, which will be calledweight function
We define theveight of a cubdy

w(d) = max{w(v) : v € BNZ"}.
If w(v) is non-decreasing (that ig,(u) < w(v) whenever < v), then, in factw(O(v, K)) =
w(v+ ek).

Definition 4.1.2. The lattice complexC;, associated with a weight functian is a freeZ[U]-
module generated by all cubes= C(v, K) with the followingZ[U]-linear differential:

(4.1.3) op(0) =) gUurOCi0,

One verifies thad? = 0. We setdeg U = —2 and we introduce theomological gradingof
a generator by

(4.1.4) deg(U™0) = —2m + dim(O) — 2w(O).
The differentialo,; decreases the homological grading by 1.

Remark 4.1.5. It is clear that the weight functions(v) andw(v) + const define isomorphic
lattice complexes. However, the shift of by a constant induces a shift in the homological
degree[(4.1]4) as well.

Definition 4.1.6. We define &"-indexed filtration on the comple&;, as follows: the subcom-
plex L (u) (u € Z") is generated ovet[U] by all the cube&(v, K) with v > w.

It is easy to see thak; preserves the filtration, SO, (u) is a subcomplex of , for all u. The
next theorem shows that the homologies of different subdexeg, and the homology df;,
itself, is simple (compatibly with facts from Heegaard Flbek theory, cf. Theorerh 2.212).

Theorem 4.1.7. Assume that is non-decreasing. Then the following facts hold.

(@) The homology of ;, (u) is isomorphic tdZ[U] (asZ[U]-module). It is generated by the
classd(u, ) of homological degree-2w(u).

(b) If additionallyw(v) = w(max{0,v}), then the inclusiorC,(0) C £, induces an iso-
morphism at the level of homology. In particular, the hongglofZ, is Z[U].

Note that the assumptions anare satisfied by the Hilbert functignof a curve, sed (3.1.3).

°Note that here and below a full squaliedenotes a geometric objedf{|—dimensional solid cube iR"),
while a hollow squaré&] denotes the corresponding abstract generator in a chaipleam
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Proof. (a) For everyt > w(u) let us define the topological spasg(u) := | B(v, K) C R",
where the union is over cubdl(v, K') with v = v andw(0O(v, K)) = w(v + ex) < k. Note
thatB(u, () satisfies the requirements, herf;éu) is non-empty, it contains.

Similarly to [23, Theorem 3.1.12], we show the following msorphism ofZ—modules for
anyq € Z:

(4.1.8) Hy(L,(w) = @ Hy(Sk(w),2).

k>w(u)

q'—2k=q
This can be proved as follows. Lét(Sy(u)) be the usual cubical chain complex 8f(u).
@r>nw)Ci(Sk(u)) is their direct sum (as chain complexes), where we preferrite Wk, «)
for an element of thé-th component. We define tHé-linear morphism® : £ (u) —
Pr>h(w)Ci (Sk(w)) by U'D(v, K) — (I + w(v + ex), O(v, K)), where the latter cub&l(v, K)
is considered i x| (Sk(u)), positioned in the componeht= [+w(v+eg ). Thisis alinear iso-
morphism with inversék, (v, K)) +— UFvC@KIO(y, K). Moreover® (0, (U'O(v, K))) =
0®(U'0(v, K)) (whered means the direct sum of usual boundary operato€s @, (u))).

Furthermore, multiplication by/ in £, (u) corresponds to the operator, ) — (k +
1,4(0)), wherei is induced by the inclusiofi, — Sk at the level 0fb > w)C. (Sk(u)).

Hence,® induces a morphism at the level of homology. If the homolabdegree—2/ +
|K| — 2w(v + ex) of U'O(v + eg) is denoted by;, then its homological class is sent iy
into H, (Sk), whereq’ = | K| and2k = 2(l + w(v + ex)) = | K| — ¢ = ¢ — q. Hence[(4.118)
follows.

Next, we prove that;(u) is contractible for allt. Indeed, sincev is non—-decreasing, if
B(v, K) C Sk(u), then the seby(u) contains the whole parallelepipéd : © <z < v+ ex}.
Such a space can be contracted to the lattice point

In particular, in [(4.1.B), should be zerog = —2k andk > w(u), while Hy(Sk(u)) = Z.
This means thatl, (£, (u)) is zero unlesg = —2w(v) — 2/ for I > 0, and in this case it i&
corresponding to the generafdfu, ) considered irb,,(,)+; of, in the homology o, (u), to
the class ot/!0(u, ). Hence

H.(£,,(u)) = Z[U] - O(u, 0).

(b) For1 < p < r we define the sub-compleg;, , of L. generated oveZ[U] by cubes
O(v, K) with v = (v,...,v,), v; > 0for1 <i < p. ThenL; = £(0) and we also set
L,o:= L, Weshowthat,  C £, ,isahomotopy equivalence, hence (b) follows by
induction onp.

Let (Q,-1,9%) be the quotient compleg, , /L, . Itis generated by cubés(v, K) with
v; > 0for1 <i<p-—1andy, < 0. Note that for such a lattice point one hag) = w(v +
e,). Therefore(Q, 1,0%) is a tensor product of two complexéB, ;,9%) @ (T, 9T), where
(T,97) is the quotient lattice compleR /R, associated with the constant zero weight (this
corresponds to thg-th coordinate). More precisely, is generated by O—cubeg := O(n, 0)
and 1-cubes,, := ((n, {1}) forn € Z.y, andd’ (a,,) = a1 —a,, (with the notatioru, = 0).

It is easy to check that the homology @, §7) is trivial, henceH., (Q,_1,9%) = 0 too. O

The point is that the really interesting information is deal in the associated graded ver-
sions and in the pages of the corresponding spectral seggienoverging tdf,.(L,,).

Definition 4.1.9. We define the multi-graded direct sum compéex~ = &, gr, L, where
gr, L7 =L (v)/3 L7 (v+e)
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with induced boundary operatgr 9;;. The graded homology grodpl.™ = @, HL ™ (v), where
HL™ (v) := H.(gr, L™, gr, Jv),

is called thelocal lattice homology associated with the weight functi@nit has an induced
Z[U] module structure.

Remark 4.1.10.Consider the filtratioq F,, } ,.cz, where the sub-compleX, of £, is generated
overZ[U] by cubed](v, K') with |v| > n. ThenF,, /F, 11 = ®jy|=n &1, L, and®,, F},/ F, 11 =
gr L. Therefore, there exists a spectral sequence

E'= H.(grL£;) = E* = H,(Ly).

Remark 4.1.11. The bigrading ofC;,. The following bigrading helps to enlighten some
hidden structure of the lattice homology (cf. part (3) of drem[4.2.1l and the proof after it).
We define the following improvement of the homological grap{4.1.4)

bdeg(U™0) = (—2m — 2w(0),dim(0)) € Z*.

Then the boundary operatdy has bidegre¢0, —1). In particular,H L~ (v) is also bigraded.
Let HL, ,(v) denote the correspondirig, b)—component of/ L~ (v).

4.2. The case of algebraic curvesGiven a curve singularity’ with Hilbert functionh(v),
one can consider the lattice complex with the weight fumctio— A(v) (which is non-
decreasing). In this case we will abbreviate the notatiofite= £ := £, .

Theorem 4.2.1.(1) Consider the motivic Poincarseries of”, P(t; q) = >, m,(q)t". Thenthe
Poinca polynomial ofHL ™ (v), namelyP~ " (¢) := >, ¢ rank H;(gr, L™, gr, Or), satisfies

(4.2.2) PE (=7 = ") 1y (1),

In particular, (—1)"® . 1,(—q) is a polynomial ing with non-negative coefficients.

Moreover, the Euler characteristie~ (—1) = >_.(—1)’rank H;(gr, £L~) equalsm,(1) =
T, thev—coefficient of the Poincarseries.

(2) Furthermore H_o1)—p(gr, L™, gr, 0y) ~ HP(PH'(v), Z), wherePH'(v) is the comple-
ment of the projective hyperplane arrangement definéd in 3.6

(3) If Hyp(gr, L7, gr, du) # 0 then necessarily + 2b = —2h(v) (or, deg = —2h(v) — b).

(4) TheU—-action onH,(gr, L, gr, Jy) is trivial.

We postpone the proof of Theorém 4]2.1 till subsediioh 5Hene we will use hyperplane
arrangements and their Orlik-Solomon algebras. The singrsimilarities between the Orlik—
Solomon complex and the lattice complex will be used dedyéyertheless, here we will show
how (4.2.2) can be deduced from (3). This also shows thafAyinot the output of a merely
homological manipulation, but it reflects a deeper vanghproperty of the Orlik-Solomon
algebras.

Proof. (3)= (4.2.2). For an bigraded-module{H,;}., set the virtual Poincaré polynomial
P, (t) == Zavb(—l)bt“ rank H, ;. In particular, this applied tgr, £, and counting the bi-
degrees of the cubdd/™ (v, K) }1>0, kK ck,» WE g€t

vir — | K| t_Qh(U+eK) -2
Pbdeg(t)(grv‘c ) = Z (_1) T 9 T TrU(t )

1 —1t2
KCKO
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Since the differentiad;; has bi-degreé0, —1), the virtual Poincaré polynomials of the complex
and its homology coincide and we gefy., (t)(HF~(v)) = P, (t)(gr, L), hence

eg
(4.2.3) > (=Dl rank HIL, o (v) = my(t72).
a, K
Then [4.2.2) is equivalent to
Z(—l)mt“ -rank HL o (v) = Z(—l)mt%”h(”)”m‘ -tank HL_ 1((v).

a, a,

a, K a,K
But this is true, since = 2a + 2h(v) + 2|K'| whenevetH L | ;. (v) # 0 by (3). O

Corollary 4.2.4. v € S if and only if HL. " (v) # 0. For anyv € S one hasP* (—t1) =
t2Mv) - higher order terms. (This shows that the clas§X9f, (}) does not vanish ifiL ™~ (v).)
In particular, P~ (t) andn,(q) determine each other.

Proof. Use Lemma& 3.7]3 (and its proof) and the idenfity (4.2.2). O

4.3. Example. The case of a curve with one component.

Suppose that = 1. We will abbreviatelJ(v,0) = a,, O(v,{1}) = «,. If v € S then
(gr, Ov)(aw) = a,, henceHL™ (v) = 0. If v € S then(gr, dy)(a,) = Ua,, henceHL™ (v) =
Z{a,,) of homological degree-2h(v). Hence forv € S one hasP?™ (t) = t=2) compatibly
with P(t;q) = 3, cs "WtV

Furthermore, the spectral sequence from Remark4.1.1€fieaf’! ~ E> ~ Z[U] asZ-
modules. Nevertheles#! »# E* asZ[U] modules: E! has trivial U-action, while inE>
the U—action sends the generator of a semigroup element to theragen of the consecutive
semigroup element.

Remark 4.3.1. (TheU = 0 (or “hat”-) version.) (@) It is interesting to consider the com-
plex £,,_, too (obtained fromZ~ via substitution/ = 0), generated ovef by the cubes and
boundary operator given by (4.1.3) with substitution= 0. ThenH.(L;_,) = Z (gener-
ated by the class afy). Moreover, the filtration! := F,|y—o induces a spectral sequence
{Ef_o}x. F./F!,, is generated oveZ by all a, anda,, and the only non-trivial components
of the boundary map are the isomorphisis,) — Z{a,) for anyv ¢ S. HenceFE},_, is
DesZ(a,, a,) of homological degrees-2h(v) and—2h(v) — 1 repectively. The non-trivial
components of the' : E/_, — EJ_, operator are the isomorphisii&c.,) — Z{a,.1)
whenever bothy andv + 1 are elements aof. Hence, the&?_, term is

Ziay, o) fveS, v—-1¢€8S v+1€&S8,
B2 (v) = Z{ay,) ?fUGS,v—lgS,v—l—lES,
U=0 Z{c,) foeS, v—1€S, v+1€S8,
0 otherwise

The parity of the homological degree providegagrading{ £%_, }. of E?%_,, wheree € {0, 1}
has the same parity as the homological degree. Then, dife= (1 —¢) >, 1Y,

D (=1)° rank(Ef_o(v)o) 7 = A(2).
Since for irreducible plane curveésandA classifies the topological type of the knot@©f cf.
[36], both E},_, and E? _, terms contain the complete information about the local lmgioal
type of C. Note also thaf?._, is supported if0, ], whereu = 24 is the Milnor number of”,
andv — p — v — 2¢ IS a symmetry oiE?J:Qe which preserves the-degree.

veES
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The B2, termisH.(L,,_,) = Z.
(b) The short exact sequence of complees £~ L L;_, — 0induces a long

exact sequence connecting the groéfs— (v) with the ‘U = 0'—counterparts, whose explicit
description is left to the reader.

4.4. Example. The case of a curve with two components.

We will abbreviate (v, §) = a,, O(v, {1}) = «, O(v,{2}) = B, andO(v, {1,2}) = T,.
By the general theory, if ¢ SthenH L~ (v) = 0. If v € S there are two cases.

a)h(v) =h(v+e +e2) —1; ap — Uay, B, = Uay, I'y — o, — By, thenHL™ (v) = Z{a,)
of homological degree-2h(v). (In this casePH (v) =point.)

b) h(v) = h(v + e + €3) — 2; ay = Uay, B, — Uay, 'y — Ucay, — UB,, thenHL ™ (v) =
Z{a,, o, — B3,) of homological degrees2h(v), —1 —2h(v). (Cf. withPH(v) = P\ 2 points.)

In case (b) the Euler characteristic Bi.” (v) (and the corresponding coefficient in the
Alexander polynomial) vanishes, but the homology and thedfmeent in the motivic Poincaré
series do not vanish. This case appears, for example, foirahe conductor ot

Using Figured 1l anfll2, one can compute thle~ for the singularities of typesl; and
Ds. The analogous computation for the two-component singulat,, ; agrees with the
computations of the Heegaard Floer link homologylinl [29]. éxplicit computation in the
caseA, is given in sectiofl7.

4.5. Application to the theory of deformations of singularities.

In this subsection we consider deformations of plane cunguarities. ¢ From topological
point of view, they induce cobordisms between the corregmonlinks in the three-sphere,
hence maps between their Heegaard Floer link homologiespré&ent here the analogous
maps in lattice homology, under the restriction that there¢fiber of the deformation is irre-
ducible (while the generic fiber is allowed to have severahgonents).

We wish to emphasize that semicontinuity results for ddifdisingularity invariants are cru-
cial in the deformation theory of singularities, since tin@ght provide more information about
the (open) problem of adjacencies of singularity types.

Proposition 4.5.1. Let (C’,0) be a curve singularity withr irreducible components, and as-
sume that it is a deformation of an irreducible ge(t, 0). Thenhe (v) > he(|v]) for every
vel.

Proof. By Corollary[3.4.7, the Hilbert function is determined byettopological type of a
singularity. Consider the family of curves, with the central fibelC;, = C and the generic
fiber C, topologically equivalent t&’. Let us fixv € Z". One can assume that,(v) is
constant for small enough (but nonzeto)

We get a family of subspacek, (v) in O (or rather in a sufficiently large jet spaggQ)
of fixed codimensiorhc, (v) = her(v). Since the Grassmannidir(he (v), j5O) is compact,
this family has a well defined limify(v) = lim; o J¢, (v).

Let us prove the inclusioy (v) C Jo(|v|). Indeed, every functiogin this limiting subspace
is a limit of a sequence of functiong intersectingC; with multiplicity at least|v|, so by the
semicontinuinty of the intersection multiplicigyshould interseat’ with multiplicity at leastv|
too. Therefore/y(v) C Je(|v]) andhe(|v]) = codim Jo(|v|) < codim Jy(v) = her(v). O

3We thank Maria Pe Pereira and Patrick Popescu-Pampu fergnatjap in the first version of the proof of this
proposition.
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After the first version of this paper appeared on arXiv, Baik@nd Livingston[[2] gave an
alternative proof of this proposition (only farconstant deformations) using Heegaard Floer
theory.

Theorem 4.5.2. Suppose that a (possibly reducible) curéis a deformation of an irre-
ducible curveC. Then there exists a natural chain map: £, — L, with ¢(0(v,0)) =
Uher)=he(rD(|u], 0) and ¢(Lg, (v)) € Lo(|v]) for anyv € Z". Moreover, for any, the
induced map

G(v) : Ho(Lei(v)) = Hu (Lo ([0]))
is the multiplication by /e’ @ =hc (vl . ZIU1(O(v, ) — Z[UJ{O(Jv|, B)), hence itis injective.
Proof. Let us define a map acting on the generators of the lattice complex as folloves. &~
0— or al— dimensional cube iZ" one can define its natural projection oitdy

p(@(v, 0)) :==O(Jv],0); p(O(v,{z})) :== O(Jv], 1).

Then for an arbitrary cubel define

o(0) :== Uho@=haw@ (@) if dimO < 1,
~ )0 if dim0O > 1.

By Lemmd4.5.11 the power &f above is nonnegative, hengés well-defined. It preserves the
filtration on £~ and it commutes with the differentials (by a straightfordvaomputation left
to the reader). The injectivity af, (v) follows from Theoreni 4.117. O

We plan to study deformation theoretical applications inemtetails in the future.

5. CENTRAL HYPERPLANE ARRANGEMENTS
5.1. Matroids and rank functions.
Definition 5.1.1. (a) (|34]) LetK, be a finite set. A functiop, assigning a non-negative integer
to any subsefl’ C K, is called arank function if
(1) 0 < p(K) < |K].
(3) For every pair of subsefs; and K, one has
p(K1 N Ks) + p(K1 U K3) < p(Ky) + p(K2).

(b) A matroid M = (K, p) is a finite seti(, with a rank functiorp defined on it.
(c) The characteristic polynomial of a matraid = (K, p) is defined as

Yu(t) = Z (—1)IKlgpFo)=p(K)
KCKQ
Remark 5.1.2. Some authors define the characteristic polynomial usindgvieius function
of a matroid. This definition is equivalent to the present,aee e.g.[[34, Theorem 2.4].

Let h(v) denote the Hilbert function of a plane curve singularityt uefix Ko = {1,...,r}
and for every consider the following function on subsets/of:
po(K) :=h(v+ex) — h(v) =dim J(v)/J (v + ek).

Then Lemmak 351 and 3.5.2 show that for evetiye functionp, is a rank function oK.
We will call p, the rank function for a théocal matroid MZ,. In the space/(v) we haver
subspaced (v + ¢;) of codimension 0 or 1. I € S, then the set of functions with valuation
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v can be represented as a complement of a hyperplane arranig@i€g18], or[3.6 here). If
v & S, thenJ(v) = J(v+e;) for somei (cf. Lemmd3.5.11), hencé(v+ex) = J(v+ex +¢;)
for any K with K # i by[3.5.2. Therefore, in this case, by pairwise cancelatian,t) = 0.

5.2. Some general facts on central hyperplane arrangements.Let V' be a vector space
and letH = {Hi,...,H,.} be a collection of linear hyperplanes in. For a subsef of
Ky ={1,...,r} we definep(K) = codim N;cx H;. One can check thatis a rank function
on K. Let us denote by () its characteristic polynomial.

To an arrangemer#. one associates the corresponding Orlik-Solomon algebfallag/s.
Consider the anticommutative algelsrgenerated by the variables . . ., z,. corresponding to
hyperplanes. For any sét = {i,...,i.} C Ky we consider the monomial; = z;, A--- A
z;, € €. We can equigg with the natural differentiad sendingz; to 1, namely

k
O(zr) = > (=1 2k 41,y
7j=1
The natural degree afy is | K|. Henced has degree-1.

Definition 5.2.1. We call the setK’ dependentif the linear equations of the corresponding
hyperplanes are linearly dependent. Otherwisis calledindependent

The Orlik-Solomon idedl is the ideal i€ generated by the elemeritsy for all dependent
setsK. The Orlik-Solomon algebra is the quotiedt= £ /7.

Theorem 5.2.2.([24, Theorem 5.2] The integral cohomology ring of the complemént,
UI_,H,; is isomorphic to the Orlik-Solomon algebédZ. It has no torsion, and its Poincér
polynomial is given by the formula

P(H1) = (000 (=) = 3 (1)),

KCKy

As a corollary, we conclude that the homologylof\ U;_,H; is defined by its class in the
Grothendieck ring, cf. Lemma3.7.1. The same is true forripggutivization (see below). (This
property of hyperplane complements explain why the coefiitsi of the motivic Poincaré series
can guide the complete cohomological information.)

Later we will define a distinguished homological degre& jrsuch that the above isomor-
phism will preserve the corresponding gradings.

First, we consider the followingleformation of the differential of'.

Definition 5.2.3. Let us define the following operator:
k

Oy : EIU) = EIU),  Op(zx) = _(—1)T PO
j=1
whereU is a formal variable an& = {i, ..., i}.
Note thatp(K) — p(K \ {7,}) € {0, 1}, hencedy decomposes into a sum of two components
(524) 6(] = 60 + U@l, with 80 + 0 = 0.
Lemma 5.2.5. The operatordy; is a differential on£[U], that is,d% = 0. In particular, the

following identities hold:
83 == 8% - 0, 8081 + 8180 = 0

Proof. Straightforward. O
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Let 7 and J+ denote thesubspacesf £ spanned by the elementg for all dependent,
respectively independent subséfs Clearlyé = 7 @& J+.

Lemma 5.2.6. The following statements hold:

(@) ([24, Lemma 2.7][25, Lemma 3.19] Z = J + 0J.

(b) 80L7J' =0, hencdm 80 = 80j

()T Cc T, hencel =T +0T =T + 0pJ.

(d) ker 9y = J+ + Im 0.

(e) There exist subspacesc J7,B C J+ suchthaimd, = A ® B.
Proof. The claims (b) and (c) are clear. Let us prove (d). The inolusi+ + Im 9, C ker 9,
is also clear, hence we need to prove thalifp) = 0 then there existé; € J+ such that
¢ — ¢ € Im(d).

Let us callz; essentiain a monomialz; A zg, if p({i} U K) = p(K) + 1, andredundant

otherwise. Let us decomposge= z; A1 + 21 Apo+ p3, Wherez; is essential in every monomial
of z; A ¢1, redundant in every monomial ef A ¢,, andgs contains noz;. Then

0= 80(<b) =21 A 'l/J + ¢2 + 80(¢3)

for somey), and neithery, nor dy(¢3) containz;. Hencep, = —dy(¢3). Sincez; is redundant
in every monomial ire; A 0y(¢3), it is redundant in every monomial in A ¢3 too. Therefore

Oo(21 N ¢3) = 3 — 21 A Oo(3) + 21 A,

wherez, is essential in every monomial ef An. Indeed, ifi; € K, 2 is redundant ik U{1}
and essential ik, thenz, is essential i U {1} \ {7, }. We conclude that

¢ —0o(z1 AN p3) =21 A (o1 — 1)

andz; is essential in every monomial in the right hand side. Nbw, 0y (¢) = —21 A0y (d1—n),
hencedy(¢; — n) = 0. Then we can repeat the procedure inductively replagiby ¢; — 7,
andz; by z,, etc. Atthe end we reducg moduloIm(d,) to an element of where allz; are
essential; such an element belonggteo.

Next, we prove (e). Recall thdin d, = 0yJ and K is dependent ifp(K) < |K]|. If the
monomialzx, appears iy (zx) thenp(K) = p(K') and|K’| = |K| — 1. Therefore, withix’
dependent)y(zx) € J+ if p(K) = |K| — 1, anddy(zx) € J otherwise. O

Lemma 5.2.7.(cf. [25, Lemma 3.42][8, 1.46) Let d;* be the differential induced by, on
A = £/T. Thend{t is acyclic, that isim 95 = ker 0;*.
Proof. In the proof we always refer to the points (a)—(e) of Lenima®.3uppose that the class
[a] € A = &£/T belongs to the kernel @i, s0d; (a) € Z. By (c) we can assume thatc J+.
Thend(a) = 0,(a) e ZNJL. By (€)-()INJ+ = (T +A®B)NJ+ =B C 9,7, hence
there existsy; € J such thav, («) = dy(ay). Furthermoregyd; (o) = 0100(c1) = 0, hence
O1(aq) € ker 9y N 01 J. But again by (c)-(d)-(e) one hasr 9,Nd,J C (JH+A®B)NT =
AC 80j Hence there eXiStSQ € J with 81(041> = 80(042). Again,@l(ag) € ker 80 N 81j
This procedure can be repeated to providec J with 0;(as) = 0y(as), and, in fact, a
sequencey; ¢ J with 60(0[2‘) =0 (Oéi_l) (Oéo = Oz).

Note thatp(«;) = p(«) — i, SO this process eventually stops. Now

Ia—ag+ay—...)=0(a)— d(ag) — (1) + () + 1 (az) — ... =0.

Sinced is acyclic on&, there exists’ such thab () = o — a; + as — . ... Let us decompose
B =3+ 3" wherep’ € 7+ ands” € 7, then by (b),

a=0(f)+0(B") +ow —ay+...= () modZ,



24 EUGENE GORSKY AND ANDRAS NEMETHI

hencela] belongs to the image @f*. O

The following theorem determine the homology of the come$gX', 9,) and(E[U], dy).

Theorem 5.2.8. (1) The homology of the differentid), is isomorphic to the Orlik-Solomon
algebraA = £ /7. This fact together with Theordm 5.2.2 provide

H.(€,00) = A~ H" (V\U_H,).

(2) The homology of the differentidl; is isomorphic (asZ—module) to the homology of the
projectivized arrangement:

H,(E[U],0y) ~ ker & ~ H* (PV \ Ur_,PH,),

and it can be generated by a set of elements of fypex, withm = 0 and K independent.

In particular, the induced/—action onH..(E[U], dy) is trivial.

(3) & is bi-graded: one can assigik |, respectively(K), to zx. d, decreases the first grad-
ing by 1 and preserves the second one, heAGéS, 0y) is bi-graded too. Nevertheless, the two
gradings onH,(€, dy) agree, and the isomorphisms from (1) and (3) are graded isphisms
(whereH* (V \ U_,H,;) and H* (PV \ U_,PH;) have their natural cohomological gradings).

Proof. (1) By Lemmd5.2J6 one hdsr d, = J+ + Im 9, andIm 9, = 9,7, hence
H,(E,00) = (T++ 0T) /06T =~ T*+/(00T NTH) = ENT + 0T).

The last identity follows from the splitting in Lemrha 5.2e$( Then use Lemnia 5.2.6(c).

(2) Sincedy = 9y + U0y, there exists a spectral sequence starting WithE[U], 9y) and
converging tof. (E[U], dy). The E' page is((H.(E[U],d), UdY)) = (A[U],Ud"), and by
Lemmd®5.2.l7 théZ? page has a form:

H,(E[U],0y) ~ H,(A[U],Ud') ~ ker 0.

Since this homology is concentrated in the lowEstlegree, all higher differentials vanish.
This shows the first isomorphism of (2). For the second on¢&éeheorem 1.50].

(3) ¢ From the proof of part (1) follows th&t*(€, dy) can be identified with a quotient of
J+. SinceJ* is spanned by the independent monomials, the gradings éadog| /X | and
p(K) coincide onH*(&, dy). The isomorphisms from the already cited!/[24, Theorem 5d] a
[8, Theorem 1.50] are compatible with this grading. O

Remark 5.2.9. (Cf. [25, Corollary 3.58]) Sincé” \ Ul_,H; = C* x (PV \ U._,PH,), the
Poincaré polynomial$’(H,¢) and P(P#, t) of the cohomologies of the complements of the
linear and projective arrangements satisfies- ¢t) - P(PH,t) = P(H,1).

Example 5.2.10.Consider the arrangementofines through the origin iV = C2. Then

8U(1> = 0, 8[](22‘) = U, 8U(zi A Zj) = U(ZZ — Zj) = U&(ZZ VAN Zj),

6(](2[() = a(ZK) for |K| > 3.

The homology ob); is spanned by, z; — zs, ..., z; — z.. On the other han®V \ PH is the
complement ta points inCP', homotopically equivalent to the bouquet(ef— 1) circles.
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5.3. The Orlik-Solomon complex and the lattice complex for curvesingularities.

Consider a curve singularity, the associated lattice complex (cf. Secfibn 4) and thecell
tion of local hyperplane arrangemerigv) (cf. [3.6). We wish to compare the Orlik-Solomon
complex (£[U], 0y) associated with the local hyperplane arrangenféfit) and the lattice
complex(gr, L7, gr, Ov).

Theorem 5.3.1.(a) For any fixedb one has an isomorphism
H opw)-s(gr, L, g1, 0y) = Hy(E[U], 0p).

In the left hand side the homological degree is the one defim@d1.4), while in the right hand
side is induced byleg(zx) = | K|, cf.[5.2. (This is & module isomorphism; sindé acts on
H.(E[U], 0y) trivially, cf. 5.2.8, it acts orH..(gr, L, gr, Jy) trivially as well.)

(b) Assume that théf, ,(gr, £, gr, dy) # 0, where(a, b) is the bi-grading introduced in
4171 Therja,b) = (—2h(v) — 2| K|, |K|) for someK.

Proof. Define : gr, L~ — E[U] by v (U™O(v, K)) = U™zk. One verifies that it is an
isomorphism, andy o ¢» = v o gr, dy. Hence induces an isomorphism at homological level
too. By Theorer 5.218(3) for the generators we can assurheitka0 andp, (K) = |K|. Then
the homological degree @i(v, K) isdeg = —2h(v+ex) + | K| = —2h(v) —2p,(K) + | K| =
—2h(v) — | K|, while the degree ofx is | K|. For (b) note that the bi-degree of suckiv, K)

is (—2h(v) — 2| K|, |K]). O

5.4. Proof of Theorem[4.2.1. Assumev ¢ S and fixi € K, such thath(v) = h(v + ;)
(cf. Lemma3.5.1), henck(v + ex) = h(v + ex + ¢;) for any K with K Z i by[3.5.2. Let
¢ :gr, L~ — gr, L~ be defined by
o D(’U,KUZ()) |fZ0¢K,
o0, K)) = { 0 if iy € K.
Then ¢ realizes a homotopy between the identity and the zero migp: + ¢ dy = id on
gr, L~. HenceH,(gr, £L~) = 0. On the other handi(v) = (), henceH*(PH(v)) = 0 too.
If v € S then parts (2) and (3) follow from Theorefs 5]3.1 And %.3.84o0ssible second
proof of part (1) is the following (for the first proof see 4.2)
tQh(U)

PE (7Y 631 £210) P(E[U], Dy, 1) B.2.83) £200) p(PH(v), 1) 5ZJ -

P(H(v),1)

522 S () () = (=" S (1)l (g,

1+1 KCKo L+t KCKo

6. HEEGAARD FLOER LINK HOMOLOGY FOR ALGEBRAIC LINKS

6.1. We can now apply the results of the previous sectiorfssteomputation of the Heegaard
Floer homology of algebraic links using the following resul

Theorem 6.1.1.([11]) All algebraic links areL-space links.

Proposition 6.1.2.1f L is an algebraic link then it97 F' L-weight function coincides with the
Hilbert functioni(v) up to an additive constant.

Proof. By Theoreni 3.3]1 the Poincaré series coincides with theakider polynomial, hence
with the Euler characteristic of F'L~. The statement now follows from Theorems 3.4.3 and
2.2.11. O
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Theorem 6.1.3.Let L be an algebraid.-space link corresponding to a plane curve singularity
C. Then the spectral sequence defined in Thearem 2.2.10 sefatl? page for allv:

HFL™(L,v) ~ HL™(L,v) = H.(gr, £L;) (as gradedZ modules.

Proof. By Propositio 6.1]2 thél F'L-weight function forL coincides with the Hilbert function
of C. Consider the spectral sequence of Thedrem 2.2.1@Image coincides withi, (gr £7).

We consider the bi-grading oH. (gr, £7), cf. [4.1.11, and we use the notations of the proof
of Theoreni 2.2.10. Note that the bi-gradifig b) coincides exactly witl{v, |K|). Hence, by
Theorem§5.311 on the? page all the non-trivial entries are on the line- 2| K| + 2h(v) = 0,
while the differentiald,. has bi-degre¢k — 1, —k), hence two elements of this line are never
connected by, whenevelk > 2. Henced,, = 0. O

Remark 6.1.4. A similar spectral sequence was defined in the context ofuhsace arrange-
ments by Jewell[13], who also proved its degeneratioh’gpage.

Corollary 6.1.5. By Corollary[4.2.4, the set af such thatHFL™(L,v) # 0 coincides with
the semigroup of’. In particular, the support ofIFL.~ determines the topological type of the
algebraic link completely.

It is well known [27] that forL-spaceknots(hence for all algebraic knots) the dimension of
the Heegaard Floer homology with given Alexander gradingt isiost 1. For algebraiinks
we get the following generalization of this result (it wad@pendently proven in [14, Theorem
1.15] for generalL-space links).

Corollary 6.1.6. If L is an algebraic link, themank HFL™ (L, v) < 2"~ ! forall v € Z". Forv
large enough+ = [ in the notations of sectidn 3.8\nk HFL ™ (L,v) = 2"

Proof. It is clear from Theorerh 5.2.8 that the total dimension of hleenology of the com-
plement tor hyperplanes cannot exceetl and equal®” if and only if the hyperplanes are
independent. By the same theorem, projectivization of trengement halves the total dimen-
sion of its homology. It remains to note that by (313.3) thpdrmplanes in the local arrangement
H(v) are independent far - |. O

7. EXAMPLE. THE HOPF LINK

7.1. We illustrate the main results of the paper for the pasitdopf link, the link of theA;
singularity{zy = 0}. Its Alexander polynomial equals(t,,t;) = 1.

A. Hyperplane arrangements. Let us describe the spacggv) explicitly. A functiong €
Clx,y] has order) on one of the components if and only its constant term is monznd
hence its order on the second component also equdlserefore

H(0,0) = {« + higher order termsa # 0} ~ C*,  H(a,0) = H(0,a) = @ for a > 0.
Furthermore, for, b > 0 the spacé4(a, b) is
{az® + By + terms of typeyz'y’ with (4, 5) > (1,1), or (b+1,0), or (0,a + 1) |, B # 0},
ThereforeH (a,b) ~ (C*)?, and
H*(point) = Z ifa=5b=0,

(7.1.1) H*(PH(a,b)) = {0 if ab =0, (a,b) # (0,0)
HNC)=Z®Z ifab>0.
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e
S

FIGURE 3. Values of the Hilbert function fod; singularity

Note that fora, b > 0 the Euler characteristic & (a, b)) vanishes, so

> tth x(PH(a, b)) =1 = Aty La).

a,beZ?

B. Local lattice homology. The Hilbert function of thed, singularity is (cf. Examplg3.5.4):

h(a,b) max(a, b), if min(a,b) =0,
" la+b-—1, otherwise.

It is shown in Figuré13. Let us compute the local lattice havgglwith the weighti(v). For

all v = (a, b) the local lattice complex has 4 generataoysa,, 3, ', overZ[U]. Herea, can

be identified with the point, «, andj, can be identified with the east- and northward pointing
segments starting atandI’, can be identified with the square with minimal vertex The
differential is given by the equation:

B(ay) = 0, ) = UPEHLD=R@D 4 50y  [rhlabr-hab)y
a(r,) = UhlatLbt)=hat1b) o - prh(atlbtl)=h(abtl) g

Forv = (0,0) one has)(«a,) = 9(8,) = Ua,,o(I',) = o, — B,,, SO the homology is spanned
by a,. Forv = (a,0),a > 0 one has)(a,) = Ua,,d(5,) = a,,0(I'y) = a, — Up,, and
the homology vanishes (similarly as for= (0, a)). Finally, forv = (a,b),a,b > 0 one has
J(a,) = 9(B) = Ua,, O(I',) = U(a, — 5,) and the homology is spanned byanda,, — 5,,

in agreement witH (7.1l 1). The homological degrees-&e: +b) +2 and—2(a+b) + 1. Note
thatU acts by0 on the homology in all cases.

C. Link Floer homology. Similarly to [29, Section 12], one can check that the minimal
Heegaard Floer complex' F'L~ has fourZ[U;, Us]-generatorsy, 3, ~, § of Alexander grad-
ings (0,0), (1,0), (0,1), (1,1) and homological degrees —1, —1, —2. The differential is
Z|Uy, Us]-linear given by the formula:

d(B) = Uia + 8, d(v) = Usar + 6, d(a) = d(6) = 0.

The filtered subcompleX(v) is spanned by all elements of Alexander grading greater than
or equal tov. By definition, HFL™ (v) is the homology of the associated graded complexe
gr A= (v). Forv = (0,0) the complexgr A= (0, 0) is generated ovéef by a single element.
Fora > 0 the complexgr A= (a, 0) is generated ovek by Uca, U~ 3, with the differential

de (US18) = Utav.
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Thereforegr A= (a, 0) (and similarlygr A= (0, a)) is acyclic. Finally, fora,b > 0 the complex
gr A= (a, b) is generated by¢Ube, UF1ULB, UfUY 'y andUs~ US4, with the differential

dgr(U{l_lUgﬁ) = dgr(U{lUg_l’y) = U{IUSQ
lts homology (in agreement with (7.1.1)) equals
HFL ™ (a.b) = H'(gr A™(a,b)) = Z{UP U318, U U35 — UU3 ).

D. Filtered subcomplexes.Let us also compute the homology @f (v) for variousv. The
complexA~(0,0) coincides withC'F'L~ and its homology has the form

H*(A_(0,0)) = Z[Ul, UQ]<O&>/(U10Z = UQOz) ~ Z[UKO[)

Fora > 0 the complexA~(a, 0) is generated oveL[U,, Us] by Uta, Uf~1 3, Uty and U 14.
One can check that
H*(A™(a,0)) ~ Z[UKUF™ 1),

and its generator has homological degre:. Similarly, H*(A~(0,b)) ~ Z[U(UY*5) gen-
erated at degree2b. Finally, fora, b > 0 the subcomplex!™ (a, b) is generated ovet|U;, Us]
by UcUba, UST'ULB, UsUL™ vy andU U215, One can check that

H*(A™(a,)) = Z[U|UT'U7'6),

and its generator has homological degrer: — 2b + 2. Therefore for allv the subcomplex
A~ (v) is afreeZ[U]-module of rank 1, and its generator has homological degtggv).
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