
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Leveraging Novel Teaching Domains Toward Broader Participation in Computing

Permalink
https://escholarship.org/uc/item/4nn204vj

Author
Lovell, Emily Marie

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4nn204vj
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

 UNIVERSITY OF CALIFORNIA
 SANTA CRUZ

 LEVERAGING NOVEL TEACHING DOMAINS TOWARD
 BROADER PARTICIPATION IN COMPUTING

 A dissertation submitted in partial satisfaction
 of the requirements for the degree of

 DOCTOR OF PHILOSOPHY

 in

 COMPUTER SCIENCE

 by

 Emily Marie Lovell

 December 2021

 The Dissertation of Emily Marie Lovell is
 approved:

 Professor James Davis, chair

 Assistant Professor David Lee

 Professor Janice Pearce

 Peter Biehl
 Vice Provost and Dean of Graduate Studies

 Table of Contents

 List of Figures vi

 A bstract viii

 Dedication x

 Acknowledgements xi

 1 | Introduction 1

 1.1 Background & Motivation 5

 Informal Teaching Experience 5

 Formal Teaching Experience 11

 1.2 Document Overview 16

 2 | Course Design for Attracting Broader Participation:
 Craft of Computing 19

 2.1 Introduction 20

 2.2 Related Work 22

 2.3 Background 25

 2.4 Course Design 26

 Setting & Organization 27

 Major Assignments 29

 Infrastructure 36

 Instructional Support 39

 2.5 Reflections 40

 Challenges & Rewards of Working in the Physical World 40

 Importance of Growth Mindset at the CS0 Level 41

 Leveling the Playing Field 43

 iii

 Preparation for CS1 44

 Broadening Participation & Perceptions Through Craft 45

 Personally Meaningful Work 46

 2.6 Recommendations 47

 Course Logistics 47

 Equipment & Materials 49

 File Formatting & Exporting 50

 Emphasizing Original Creative Work 51

 2.7 Future Work 52

 2.8 Summary 53

 3 | Course Design for Retaining Broader Participation:
 Open Source Software Engineering 54

 3.1 Introduction 56

 3.2 Related Work 57

 3.3 Course Overview 59

 Term 1 60

 Term 2 63

 3.4 Student Feedback 65

 3.5 Reflections & Recommendations 67

 Project Choice 67

 Team Formation & Tools to Support Collaboration 68

 Structuring Unfamiliar Tools & Technologies 69

 Professional Mentorship 69

 3.6 Future Work 71

 3.7 Summary 72

 iv

 4 | A Case Study in Expanding Access to Electronic Textiles: The LilyTiny 74

 4.1 Introduction 75

 4.2 Related Work 77

 Physical Computing 77

 Electronic Textiles & Computing Education Research 78

 Instructional Design for K-12 STEM 79

 Independent Learning Resources for E-Textiles 80

 4.3 Design & Development 81

 The LilyTiny 81

 Companion Curriculum 84

 Pilot Testing 87

 4.4 Measuring Impact 89

 Derivative & Follow-on Products 89

 Sales Data 92

 Customer Reviews and Projects 96

 4.5 Future Work 103

 4.6 Summary 103

 5 | Conclusion 104

 Appendix A | Definitions & Acronyms 106

 Appendix B | Computing Education Seminar Resources 109

 Appendix C | Berea College Course Syllabi 119

 References 131

 v

 List of Figures

 Figure 1.1. College enrollment of women in computer science over time, as compared to other fields.

 Figure 1.2. Schools with greater underrepresented racial/ethnic group enrollment, greater low-income
 student enrollment, and situated in non-suburban settings are all less likely to offer computer science.
 Source: Code.org.

 Figure 1.3. Top row: computational craft workshops with quilters (left), scrapbookers (center), and a
 ceramics artist (right). Bottom row: Learning to screenprint at EnsAD Paris (for later use with
 thermochromic inks), participating in an outreach event for young women at Microsoft NERD, and
 learning how weaver Dena Molnar is integrating conductive materials into her practice.

 Figure 1.4. Screenshots from my earliest e-sewing tutorial website (left) and the later LilyPond
 community website (center and right).

 Figure 1.5 . Top row: facilitating an activity with Exploratorium visitors, facilitating at an evening
 special event with soft circuit artists and experts Grace Kim and Syuzi Pakhchyan. Bottom row:
 example paper circuits created for museum display (left and center), interactive paper circuit example
 for museum visitors (right).

 Figure 1.6. Teaching students to "think like a computer scientist" by issuing sandwich-making
 instructions to their instructors-turned-robots. (Pictured: Dr. Scott Heggen and myself, early in a CS1
 term.)

 Figure 2.1. Coursework components, with percentage of overall course grade and a short summary.

 Figure 2.2. Felted circuits designed by students: a fairy house that lights up inside when the flower is
 placed atop it, an angler fish, and a baby bird.

 Figure 2.3. Plotter designs produced by students as they learn to draw algorithmically. (Pen on paper,
 machine-drawn.)

 Figure 2.4. Vinyl-cut stickers, which students valued enough to apply to their own laptops.
 (Student-produced stickers appear here in magenta, dark red, and sky blue, from left to right.)

 Figure 2.5. Student final projects. Top row: laser cut coasters and a hand-embroidered pillow. Middle
 row: a hand-embroidered scene, a tooled leather bracelet, and a hand-embroidered pillow. Bottom row:
 a graduation cap, start to finish.

 Figure 2.6. Halloween-themed paper circuits made by students.

 Figure 2.7. Layered laser-cut paper, from an earlier version of Mini-Project #3.

 Figure 2.8. The course website, as organized on Trello. An overview of current tasks and references
 (left) and a "card" offering guidance on the final phase of an individual mini-project (right).

 vi

 Figure 2.9. Personally meaningful student work. Left: one student represents herself by coding and
 pen-plotting a face that is half African and half Native American. Right: another student celebrates her
 graduation by hand-embroidering a computational design and framing it in a shadowbox with
 keepsakes.

 Figure 4.1. LilyTiny prototypes, from left to right: initial milled circuit board, custom-ordered factory
 board, final commercial product (sold by SparkFun Electronics).

 Figure 4.2. Sample activities from the workshop curriculum.

 Figure 4.3. Select pages from the plush monster activity, which utilizes the LilyTiny.

 Figure 4.4. Derivative and follow-on sewable microcontroller boards. From left to right: LilyTwinkle
 ProtoSnap, Gemma, an unbranded clone, and the LilyPad LilyMini.

 Figure 4.5. LilyTiny and LilyTwinkle monthly sales, showing sustained market interest over many
 years.

 Figure 4.6. SparkFun sewable microcontroller sales, July 2012 through June 2020. Note that the
 LilyPad LilyMini was not introduced until 2016. Each color represents a different product family. Each
 pie slice represents a different product release (i.e. LilyPad Arduino 328 Main Board, LilyPad Arduino
 Simple Board, Firefly Jar kit, etc.). Kits are categorized by which board they include.

 Figure 4.7. SparkFun sewable microcontroller ordering patterns, after adjusting for lab packs which
 contain multiple boards. Notice that a much greater percentage of LilyTiny orders include quantities of
 the board suitable for teaching.

 Figure 4.8. Hobbyist projects using the LilyTiny (clockwise from upper left): an e-textile logo,
 embellished headbands, and a sock monkey with a glowing heart.

 Figure 4.9. Art and craft projects using the LilyTiny (clockwise from upper left): an embroidered
 bracelet, a knit bracelet, and a mixed media art piece.

 Figure 4.10. Evidence that some LilyTiny users are choosing to reprogram their boards (left) and are
 successful in doing so (right).

 Figure 4.11. Evidence of teaching with the LilyTiny, including offerings at camps, libraries, and K-12
 schools.

 vii

 ABSTRACT

 Leveraging Novel Teaching Domains Toward Broader Participation in Computing

 by

 Emily Marie Lovell

 The field of computer science has long been plagued by issues of diversity – in

 particular, attracting and retaining those historically marginalized in computing

 contexts. This is a great loss to the field, to the future of innovation, and to society.

 Perhaps most importantly, it is an incalculable loss to those populations excluded

 from pursuing a passion for computing in the first place.

 This dissertation chronicles a collection of projects aimed at broadening perceptions

 of computing, who is participating in computing, and what kinds of artifacts are

 created with computing. These projects leverage extensive fieldwork in the

 educational domains of computational craft and open source contribution; they entail

 (1) course design at the college level and (2) tool and curriculum design for a more

 open-ended audience of hobbyists and educators. The contribution of this dissertation

 is documentation of these design processes, along with my subsequent reflections,

 recommendations, and analysis.

 viii

 First, I share my experience designing two courses developed while on faculty at

 Berea College: Craft of Computing , which aims to attract a diversity of first- and

 second-year students to computing, and Open Source Software Engineering , which

 seeks to retain a diversity of upperclassmen through graduation and into computing

 careers beyond. Second, I revisit my own prior work in e-textiles tool/curriculum

 design, sharing long-term impact analysis for the LilyTiny sewable microcontroller

 and accompanying workshop guide.

 Evidence so far suggests that my forays into college course design successfully

 piqued students' interest in new domains, while positively influencing their

 confidence, identity, and sense of belonging. Analysis of the LilyTiny and

 accompanying workshop curriculum is also promising; it shows that an inexpensive

 and stable tool, coupled with freely available instructional resources, can indeed

 achieve widespread adoption in a market suggestive of novice and educational use.

 ix

 To my shadow, Lyra Wenley.

 x

 Acknowledgements

 It is often said that finding the right advisor is the most influential factor in one's

 graduate school experience... and I believe this through and through. I owe an

 enormous debt of gratitude to James Davis, my advisor on and off for over 15 years

 now. It was James who first trusted me with a course redesign and who lent me a

 copy of Unlocking the Clubhouse when I was feeling discouraged in college. It was

 also James who suggested I consider graduate school – and who then wrote letters of

 recommendation on almost no notice, who kept in touch with me while I was at MIT,

 and who offered me an academic home to finish my doctorate when I left. Along the

 way, James has been an unwavering ally, advocate, champion, and mentor; he has

 supported me in chasing my passions, including detouring to teach at a liberal arts

 college once it became clear that I thrive in the classroom. My meandering path has

 ultimately caused James a great deal of headache and paperwork, but he has vouched

 for me every step of the way. He has taught me how to stay calm under pressure, how

 to maintain perspective, and how to embrace life's unpredictability. He has supported

 me in balancing competing priorities, while always putting my health first. Thank

 you, James, for nurturing my growth immeasurably as a writer, communicator,

 researcher, and educator – and for always treating me as a colleague.

 I owe great thanks as well to David Lee and Jan Pearce, for serving on my committee

 and enriching my work. Thank you for asking thoughtful questions, offering

 xi

 constructive feedback, and wholeheartedly endorsing my focus on computing

 education. Linda Werner and Charlie McDowell also supported my computing

 education journey at UCSC; Charlie taught my first ever programming class, while

 Linda later sponsored a seminar of my own design. Pioneers in the field, they have

 offered expert insight, challenging and cheering me along my way.

 My MIT advisor, Leah Buechley, provided a tremendous amount of support and

 guidance throughout my master's degree and early in my doctorate; in particular, she

 entrusted me with making the LilyTiny a reality and she facilitated bringing it to

 market. More recently, she obtained sales data central to my dissertation and helped

 to guide my ensuing analysis. SparkFun Electronics generously put together that data

 set and has maintained the LilyTiny as part of their product line over the past ten

 years.

 My earlier work was also supported by others at MIT – especially High-Low Tech

 groupmate David Mellis, who taught me how to do PCB layout and who supported

 early programming workflow for the LilyTiny. Pol Pla graciously contributed to the

 design of the workshop guide and also photographed the pilot workshops. Amy

 Fitzgerald of MIT's Edgerton Center and Chris Randall of WGBH helped to pilot and

 give feedback on the LilyTiny and workshop guide. Later on, Jie Qi and Natalie

 Freed spearheaded the design of the bonus plush monster activity, which we then

 workshopped together.

 xii

 To everyone at the Exploratorium's Tinkering Studio: thank you for letting me be a

 guest in your world! My time at the Exploratorium taught me so much about

 facilitation and inspired the needle felted circuit mini-project in Craft of Computing .

 The Foss2serve and Teaching Open Source communities invited me into faculty

 circles before I had the credentials to be there – and showed me just how

 collaborative academia can be. Gina Likins, Tom Callaway, Heidi Ellis, Greg Hislop,

 Lori Postner, Darci Burdge, and so many others… thank you. Thanks also to

 everyone in the Mozilla DevTools community who supported my students, especially

 Jason Laster and David Walsh.

 My Berea College department chairs Jan Pearce and Mario Nakazawa graced my time

 as a junior faculty member with immense freedom and respect. In addition, Nancy

 Gift and Leslie Ortquist-Ahrens supported me with mentorship and advocacy, while

 Deans Chad Berry and Matt Saderholm offered institutional flexibility in support of

 my health. Colleagues Dan Feinberg, Lisa Marks, Lex Lancaster, and Scott Heggen

 offered friendship, challenged me as an educator, and provided input on my evolving

 courses. Amy Nichols, Adriana Núñez, and Billy Korinko lent accountability,

 commiseration, and support as we all sought to balance dissertations with teaching.

 And to the teaching assistants and students across all of my courses… y'all are

 amazing! Sandra Perkins and Bria Williams especially helped get Craft of Computing

 xiii

 off the ground, after which Cody Mitchell and Jacob Hill took it to the next level.

 Alex Sharron helped calmly steer students through the waters of open source.

 Many friends and loved ones have also supported me. My parents, Mark and Eileen,

 have unconditionally honored every twist and turn on my path – while my brother,

 Sean, has kept me humble and laughing along the way. I am grateful for my cohorts

 in both education and computer science, especially Mecaila Smith, Arnold Sanchez

 Ordaz, Ethan Chang, Priscilla Sung, Dhanya Sridhar, Ryan Compton, Brad Dettmer,

 and Afshin Mobramaein. (Thank you, Ryan, for inviting me to my first open source

 workshop!) More recently, Patrick Ray has been a steadfast source of support and the

 ultimate pandemic teammate, while Priscilla Sung, Mecaila Smith, and Anne-Marie

 Morey have championed me through the home stretch with walks, food deliveries,

 and co-working. (I would not be graduating if not for the hundreds of hours spent

 working in Priscilla's office and on Zoom with Mecaila.) My doctors have kept me

 healthy enough to keep going and have carefully interwoven medical treatment with

 deadlines; thank you Nevena Zubcevik, Mischa Grieder, Katherine Lantsman,

 Christine Green, and the California Center for Functional Medicine.

 I have been so fortunate to learn from many experienced educators who have offered

 guidance and encouragement, patience and trust. They have empowered me to find

 my own place in the classroom and I hope to pay this forward, inspiring others to

 experience computing with the same curiosity, playfulness, and magic that I do.

 xiv

 A portion of this material is based upon work supported by the National Science

 Foundation Graduate Research Fellowship Program under Grant No. DGE-1339067.

 This work has also been funded, in part, by the MIT Media Lab Consortium and a

 UCSC Dissertation Year Fellowship.

 xv

 1 | Introduction

 The field of computer science has long experienced a dearth of women and other

 underrepresented minorities, one which has been documented by researchers and

 reflected in both enrollment and hiring statistics [79, 80] . This is a great loss to the

 field – and more broadly to humanity – as innovation depends on a diverse workforce

 [104] . In addition, careers in computer science afford a great deal of flexibility and

 financial stability, enabling upward social mobility for a broad cross-section of

 individuals [95] .

 For women, this dearth has manifested as a decline over time; women have, in fact,

 served as some of the field's most influential pioneers. Dating back to the 1830s, Ada

 Lovelace maintained notes while working on Charles Babbage's Analytical Engine

 that document some of the earliest known computer programs and her own broad

 considerations for the future of computing [86] . When ENIAC came into existence

 over 100 years later, serving as the first general-purpose electronic computer, it was a

 group of six women that served as its first programmers – and even they were

 selected from a much larger group of women employed as mechanical computers,

 using only calculators to do their sophisticated work [66] . Not longer after, Grace

 Hopper invented the first compiler and drove the pivotal development of early

 programming languages [9] . Initially driven by the constraints of wartime, the

 1

 following years presented great opportunity for women in the field of computing.

 However, this upward trajectory of representation shifted to a decline in the

 mid-1980s, as shown in Figure 1.1. We are still recovering from this decline today.

 Figure 1.1. College enrollment of women in computer science over time, as compared to other fields.

 Unfortunately, those from non-dominant racial and ethnic groups have been

 consistently marginalized throughout the history of computing [79] . This persists to

 present day, with students of color and low-income students being far less likely to

 have access to computer science courses in their high schools [12] . (As shown in

 Figure 1.2, non-suburban students face barriers to access as well.) These disparities

 2

 are critical, as those with access to computing in high school are much more likely to

 pursue it in college [92] .

 Figure 1.2. Schools with greater underrepresented racial/ethnic group enrollment, greater low-income
 student enrollment, and situated in non-suburban settings are all less likely to offer computer science.
 Source: Code.org.

 In addition to the obvious problem of access, there are many factors thought to affect

 the persistence of historically minoritized students in computer science. For example,

 self-efficacy, or belief in one’s own domain-specific capabilities, can be just as

 important for a student’s success as the student’s actual capabilities [6, 7] . Of

 particular note, differences in perceived self-efficacy across gender may help explain

 the computer science enrollment gap – and also, persistence gap – between male and

 female students at the undergraduate level [88] . Research has shown

 pair-programming to be one effective means of bolstering student self-efficacy in

 computing [84] . An additional avenue for cultivating self-efficacy is for a student to

 see it modeled by an instructor or mentor [8] .

 3

 Related, a growth mindset is the belief that one can become smarter by working

 harder, as opposed to the belief that each person is born with a fixed amount of

 intelligence [27] . Computer science includes, by necessity, repeated encounters with

 failure — for example, though iterative software design and routine debugging. Given

 the constant evolution of programming languages and practices, it is also important

 for students to be comfortable with a shifting technical landscape [94] . Students must

 feel confident in their ability to learn from both hard work and mistakes, leading

 some researchers to promote cultivation of a growth mindset through classroom

 interventions [25, 124] .

 Additional factors that have been shown to positively influence attracting and

 retaining women, in particular, are: epistemological pluralism, a sense of belonging,

 and the potential to have positive social impact. Related research is covered in depth

 in later chapters [23, 80, 131] .

 The work described in this dissertation builds on all of the aforementioned research,

 seeking specifically to attract and retain a diversity of students – creating a diversity

 of computational artifacts – through the applied domains of computational craft and

 open source contribution. This is done through a combination of (1) course design at

 the college level and (2) tool and curriculum design for a more open-ended audience

 of hobbyists and educators; thus, my work encompasses research on hardware,

 software, and computing education. The contribution of this dissertation is

 4

 documentation of these design processes, along with my subsequent reflections,

 recommendations, and analysis.

 1.1 Background & Motivation

 I first had the opportunity to learn about course design while enrolled as an

 undergraduate at UCSC. As I progressed through the computer science curriculum

 into upper-division coursework, I noticed fewer and fewer female students in my

 classes — especially my introductory computer graphics class. In the year to follow,

 the faculty member teaching the course (James Davis, now my advisor) supported a

 small group of students and I in securing an instructional reform grant through

 UCSC's Committee on Teaching. Guided by our own diverse experiences and

 feedback from other students, we used this funding to draft and support a revised

 curriculum for the course; a new textbook, revised assignments, and partial staffing of

 student lab sections. When a new course, Technology Targeted at Social Issues ,

 debuted in a later term, I had the opportunity to engage non-engineering students in

 using technology for positive social and environmental impact through working as a

 course assistant.

 Informal Teaching Experience

 I later earned my master’s degree from the MIT Media Lab, where I worked as a

 research assistant in the High-Low Tech group [44] . Our common goal was to

 democratize engineering and to this end, we strove to support novice/hobbyist

 5

 communities at the intersection of craft and technology. This included documenting

 and disseminating our own findings — including publications, but also many tutorials

 on computational craft techniques, machines, and materials — as well as developing

 toolkits which invited participation from audiences not historically drawn to

 electronics or conventional programming.

 Also central to High-Low Tech's mission was our engagement in informal education

 to support (and also, to learn from!) diverse and underrepresented groups in

 computing. This included numerous workshops with middle and high school students,

 university design students, and community artists/craftspeople, in which we would

 teach how to build interactive circuits using computational craft materials (such as

 electrically conductive fabrics, threads, and paints) and/or physical computing

 platforms such as Arduino [3] . Venues for these workshops included the MIT

 Museum, the Fuller Craft Museum, Maker Faire, SIGGRAPH, and the Computer

 Clubhouse International Conference. Our ultimate objective was to empower

 participants to feel more comfortable creating with electronics — and in some cases,

 to incorporate interactive circuitry into an existing art or design practice. In turn,

 workshop participants helped us to understand the technology barriers they faced, and

 also sometimes shared craft expertise in areas such as screenprinting, weaving, and

 ceramics. These workshops served as a valuable fieldwork component to my

 research, allowing for reflection throughout the iterative instructional design process.

 Preparation for each workshop required thoughtful consideration of personalization,

 6

 resources, activity structure, and necessary technical knowledge. Some of these

 workshops and collaborations are shown in Figure 1.3.

 Figure 1.3. Top row: computational craft workshops with quilters (left), scrapbookers (center), and a
 ceramics artist (right). Bottom row: Learning to screenprint at EnsAD Paris (for later use with
 thermochromic inks), participating in an outreach event for young women at Microsoft NERD, and
 learning how weaver Dena Molnar is integrating conductive materials into her practice.

 Two related projects which I contributed to during this time, but which are not

 detailed in this dissertation are: CopyCAD , enabling copy and paste of physical

 objects, and The Living Wall , a programmable wallpaper which leverages a

 reconfigurable magnetic Arduino-based toolkit. These projects were presented in

 2010 at ACM's UIST and Multimedia conferences, respectively [18, 36] .

 Throughout my time at MIT, my own individual research focused on developing

 tools/curricula to support computational textiles at the K-12 level. In addition to

 organizing my own outreach workshops, mostly with young women, I also developed

 7

 resources to support informal learners working on their own; I started by developing

 very basic electronic sewing tutorials online (there was little freely available at the

 time) [39] and later collaborated with education faculty to develop an online

 community for the sharing of e-textile projects. Figure 1.4 shows select screenshots

 from these two web-based projects, which were presented at ACM's IDC and C&C

 conferences in 2010 and 2011 [71, 72] .

 Figure 1.4. Screenshots from my earliest e-sewing tutorial website (left) and the later LilyPond
 community website (center and right).

 It became apparent that there was a resource gap for educators wanting to introduce

 physical computing through sewn circuits; required physical materials were

 prohibitively expensive and curricula were either too introductory or too advanced.

 My MIT master’s thesis addressed this with the pilot, development, and launch of a

 workshop curriculum [69, 77] . In addition, I designed and prototyped a low-cost open

 source sewable microcontroller known as the LilyTiny — now sold by SparkFun

 Electronics as part of the LilyPad Arduino product line [67] . This work is further

 detailed in Chapter Four, along with a recent follow-on analysis.

 8

 I have also sought to support experiential learning with computational craft through

 collaborating with museums and museum educators. This has included facilitating

 one-off activities (such as at Santa Cruz's own Museum of Art and History) and a

 three-month long internship with the Exploratorium's Tinkering Studio in San

 Francisco (offered through the Maker Education Initiative's Maker Corps program)

 [78, 129] . Working at the Exploratorium, in particular, offered in-depth experience

 designing drop-in activities, engaging with casual learners, and creating physical

 demos/examples robust enough for a museum floor. Figure 1.5 highlights some

 activities, events, and example projects from this time period.

 Figure 1.5 . Top row: facilitating an activity with Exploratorium visitors, facilitating at an evening
 special event with soft circuit artists and experts Grace Kim and Syuzi Pakhchyan. Bottom row:
 example paper circuits created for museum display (left and center), interactive paper circuit example
 for museum visitors (right).

 9

 After completing the first year of my doctorate at MIT – and following the dissolution

 of High-Low Tech – I returned to UCSC to continue my doctorate. While exploring

 potential new research directions, I was invited to volunteer at a one-day Open Source

 Comes to Campu s workshop at Hartnell College. This workshop was co-organized by

 CSU Monterey Bay and Hartnell’s innovative CSin3 program [95] , which seeks to

 graduate underrepresented students in only three years — and by OpenHatch, which

 was a non-profit organization that supported novice open source contributors through

 online resources and in-person workshops [103] . As a mentor at the workshop, I

 supported a small group of students in discussion, hands-on exercises, and making a

 contribution to an existing open source project.

 It was both exciting and humbling having to learn on-the-fly, staying only step step

 ahead of students throughout the day. One of the students and I stayed in touch

 beyond the workshop and continued meeting on IRC to see her contribution

 successfully merged into a project. She was elated! Seeing a diversity of students’

 enthusiasm for learning real world tools (i.e. version control, bug tracking) and

 making a concrete contribution to a real world project sparked my own interest in

 using open source in the classroom as a means to attract and retain a broader

 cross-section of students. Chapter Three details my journey further into this teaching

 domain. (In parallel to all of this, I also sought to gain more personal experience

 contributing to an open source project. This led me to collaborate with two other

 UCSC computer science graduate students on interface/usability improvements to

 10

 Sahana Eden, a disaster response platform [121, 139] . We published this work at

 IEEE's 2015 GHTC [1] .)

 Formal Teaching Experience

 In addition to a wealth of informal teaching experience, being a graduate student has

 offered many opportunities for me to grow as a classroom educator. During my time

 in the High-Low Tech research group, I served as a teaching assistant for a

 project-based graduate course entitled New Textiles [98] , which explored the future of

 textiles through the combined lenses of craft and technology. After later returning to

 UCSC, I worked as a teaching assistant for our undergraduate Introduction to

 Computer Science course (CMPS 10; UCSC's version of a CS0 course).

 I wanted to progress from working as a teaching assistant to teaching courses of my

 own, so my advisor supported me in taking on a graduate student instructor (GSI)

 position to offer my own sections of Introduction to Computer Science over two

 consecutive summers at UCSC. Although I fortunately inherited a well developed and

 tested curriculum — largely based on the AP Computer Science Principles curriculum

 — I put a great deal of effort into adding more active learning components, something

 afforded by my smaller summer class sizes. These included, for example, small group

 activities in which students learned about search algorithms by playing guessing

 games as well as discussions on provocative videos and readings.

 11

 During this time, I was also organizing an informal lunchtime gathering for UCSC

 graduate students interested in computer science education; we would meet monthly

 and talk about papers we were reading, our own ideas for research projects, and even

 made plans to attend conferences (such as SIGCSE) together. Students in this group

 expressed repeated interest in diving deeper into reading and discussion — and so my

 advisor, along with another faculty member, Linda Werner, supported me in

 developing a graduate level seminar on the topic. I put together a themed reading list

 which included a few must-read papers for each week, alongside a longer list of

 supporting literature. Examples of topics/themes that we covered include: research

 methods, theoretical background, active learning/flipped classrooms, broadening

 participation, and programming languages for teaching. I organized discussion leaders

 for each topic, and came up with my own weekly discussion questions to keep

 conversation flowing when we got stuck. I put all of these assignments/resources into

 a shared document online which we collectively revised and added resources to as

 they came up during our discussions. (A complete version of our document, as it was

 at the end of our time together, is included as an appendix.) Linda contributed her

 own extensive computing education research experience by serving as a faculty

 sponsor for the course, attending our weekly meetings, and helping to facilitate

 discussions. The course was also attended by Charlie McDowell, another faculty

 member whose research has been influential to the field of computing education, the

 12

 graduate students from our earlier lunchtime group, and a few more who learned of

 the course through flyers/mailing lists.

 In my third year of doctoral studies at UCSC, around the time of my advancement, I

 was recruited for a faculty position at Berea College. Berea is a small liberal arts

 college – and also a work college – located in Berea, Kentucky. The college's mission

 is to serve students of great academic promise, but limited economic means; all

 students attend on full scholarship and participate in a campus labor program, through

 which they work part-time for the college while pursuing their degrees. The Berea

 student body is exceptionally diverse; 40% are students of color, 55% are

 first-generation college students, and 11% are international students (representing 76

 different countries, mostly in the developing world). It is a unique and impactful

 setting in which to consider broadening participation in computing, given that

 students from historically underserved communities comprise most of the student

 body.

 While fortunate to teach some of my own classes as a graduate student at UCSC, I

 seized this opportunity to join a small computer science department as a faculty

 member, viewing it as a chance to do truly immersive fieldwork. Berea, in particular,

 offered me the freedom to develop and teach my own courses at the boundaries of

 computer science and to work closely with underrepresented students. In addition, the

 college values innovative teaching pedagogy, including active learning and a flipped

 13

 classroom approach. (Figure 1.6 shows my early participation in one such

 instructional activity, in which students must verbally "program" their

 instructors-turned-robots to make a peanut butter and jelly sandwich.)

 Figure 1.6. Teaching students to "think like a computer scientist" by issuing sandwich-making
 instructions to their instructors-turned-robots. (Pictured: Dr. Scott Heggen and myself, early in a CS1
 term.)

 I taught at Berea for a total of two and a half years, during which my research and

 teaching interests were nurtured and my position converted from temporary to

 tenure-track. I designed two new computer science courses at the lowest and highest

 level offered by Berea (100-level and 400-level), both of which are detailed in this

 dissertation. I also had the opportunity to take over Berea's CS1-equivalent, Software

 Design & Implementation , teaching three sections in parallel in my final term. I left

 14

 my newfound home (and career) in rural Appalachia due only to ongoing challenges

 with my health and the difficulty of completing a dissertation while teaching full

 time. I am so terribly grateful for having had this experience, which, in turn, became

 central to my dissertation.

 Collectively, all of these teaching experiences — informal and formal — allowed me

 to better understand the perspective of various learners, from K-12 students to

 university students (sometimes, peers) to craftspeople to museum visitors. I learned

 how to translate ideas and concepts into curricula, how to appeal to a diversity of

 learning styles, and how to design learning experiences for different settings; a

 90-minute course meeting and 10-minute drop-in museum activity contrast greatly in

 their challenges and affordances! These experiences also gave me the opportunity to

 directly observe barriers to learning about computer science and electronics, such as

 low technological self-efficacy and a fixed mindset, which I wrote about as part of the

 2014 ICER Doctoral Consortium [70] . These early teaching experiences also gave me

 the chance to observe resource and opportunity gaps, some of which I sought to

 address in my later work.

 15

 1.2 Document Overview

 This remainder of this dissertation chronicles a collection of projects aimed at

 broadening perceptions of computing, who is participating in computing, and what

 kinds of artifacts are created with computing. All of these projects are situated within

 the landscape of applied domains which are not yet commonplace in teaching, namely

 computational craft and open source contribution.

 Chapters Two and Three summarize two major curriculum-design projects

 undertaken while serving on faculty at Berea College over a two and a half year

 period of time. The majority of this work was published at IEEE's 2021 Frontiers in

 Education Conference [74, 75] . Syllabi for my final offerings of these courses are also

 included as an appendix.

 More specifically, Chapter Two reports on a CS0-level computational craft course

 added to Berea College's departmental offerings in hopes of further broadening

 participation. I summarize the course design and structure, which emphasize

 algorithmic design (using Processing), handcraft, and digital fabrication. I share

 examples of creative computational work and feedback from students, as well as

 reflections on the course's efficacy within Berea's funnel-style curriculum. Early

 evidence suggests that the course offers a highly personal and creative entry point to

 16

 computing – and one that is effective at engaging a diversity of students while

 ensuring a smooth transition to CS1.

 Meanwhile, Chapter Three reports on my experience scaffolding student success in

 the uncertain landscape of open source. Following participation in faculty workshops

 on the subject, I spent two consecutive terms developing, teaching, and revising an

 upper-division open source software course. The difference between the two course

 offerings was astounding; students enrolled in the second iteration made more

 successful project contributions, spent more of their own time working outside of

 class, and felt a greater connection to both the project and the developer community

 of which they were a part. I detail my experiences, with particular focus on the

 importance of project selection – as well as the revisions I believe to be most

 responsible for improvement: additional mentorship, supplemental in-class tutorials,

 more dedicated class time for teamwork, intentional team groupings, and access to

 large screens for collaboration.

 Chapter Four presents follow-on analysis of work from my master's thesis. The

 LilyTiny sewable microcontroller was created ten years ago – as part of that thesis

 and in collaboration with my advisor at the time, Leah Buechley – in an effort to

 make electronic textiles more accessible. At the time, e-textiles was gaining traction

 as a means to invite more diverse participation in computing, but financial and

 instructional barriers stood in the way of broader adoption. In addition, there existed a

 17

 scaffolding gap between projects involving lights, batteries, and thread – and those

 requiring programming (i.e. leveraging the LilyPad Arduino and/or additional sensors

 or outputs). In an effort to expand access to electronic textiles, I designed the

 LilyTiny, an inexpensive, pre-programmed sewable microcontroller which controls

 assorted LED patterns, and which later became available for purchase through

 SparkFun. Alongside the LilyTiny, I released a free workshop guide for educators

 which details five low-cost activities that can be taught without any prior electronics

 experience. This chapter summarizes my prior development of the LilyTiny and

 companion curriculum – and then reflects on whether I met my stated goal of

 expanding access to electronic textiles in the decade since. I share and discuss various

 measures of impact, including: a survey of derivative products, a multi-year analysis

 of sales data from the LilyTiny's sole distributor SparkFun Electronics, and a

 sampling of customer reviews and projects. The majority of this work has been

 accepted for publication at ACM's 2022 CHI Conference on Human Factors in

 Computing Systems [73] .

 18

 2 | Course Design for Attracting Broader Participation:
 Craft of Computing

 My job interview at Berea College concluded with the department chair asking me

 over dinner, "If you had complete freedom to develop a new course, what would it

 be?" Intrigued by the idea, I suggested something of a mashup between introductory

 programming in Processing, computational craft, and algorithmic design. I had

 enjoyed teaching students to program in Processing at UCSC, had a lot of experience

 with computational craft (and it's creative, diverse possibilities) from my time at MIT,

 and had always wanted to experiment more with algorithmic design. All of these

 approaches also held promise as avenues for broadening participation. When offered

 the position, I was invited to design exactly this course – the same one I started

 imagining over Indian food that night.

 My only constraint was to situate the course, which we named Craft of Computing ,

 within an existing selection of CS0-level courses designed to invite diverse

 participation. These courses target both (1) non-majors who are curious about

 computing (and/or are seeking to fulfill a college-wide general education

 requirement) and (2) computer science majors who may not have much prior

 experience with computing. Accordingly, most seats in Berea's CS0 courses are

 reserved for freshman and sophomores. Unless exempted by instructor permission,

 19

 students are required to take at least one CS0-level course before proceeding to

 Berea's CS1 equivalent.

 Because of this structure – in addition to Berea's broader institutional context – this

 course offered a unique opportunity to impact student perceptions of computing; it

 was a chance to share with students how computing can be personal, creative, and

 applied, and to do so at a pivotal moment in their academic journey and identity

 development. My department unequivocally supported these efforts in terms of space,

 equipment, materials, mentorship, and teaching support – without which this work

 would not have been possible.

 2.1 Introduction

 CS0 courses can offer students with little-to-no computing background the

 opportunity to explore computer science before committing to a major [136] . What’s

 more, CS0 courses can help to level the playing field for these students by the time

 they enter CS1 alongside peers who may have taken computer science courses in high

 school and/or have a stronger mathematics background [13] .

 Berea College, among other institutions, has adopted a CS0 "funnel" approach to

 attract minoritized students; that is to say, Berea offers several CS0 courses on topics

 of interest to the general student population [108] . This approach has since been

 adopted and found to be effective elsewhere [42, 136] . Upon my hire, I was invited to

 20

 design and teach a new CS0 course in my domain of expertise – computational craft –

 in hopes of further broadening departmental demographics. Computational craft has

 been studied as a successful avenue for attracting and retaining groups historically

 excluded from computing, particularly women [14, 58] . This course, entitled Craft of

 Computing , covers core CS0 concepts including computational thinking, variables,

 loops, functions, etc. The course also showcases the creative possibilities of

 computing when paired with handcraft, digital fabrication, and algorithmic design. I

 taught Craft of Computing five times over a two-year period, during which it was

 deemed so successful as to be added to the college's permanent catalog.

 In this chapter, I detail the course structure, learning goals, and major assignments –

 complete with many compelling examples of student work; Craft of Computing

 students have created personally relevant and meaningful artifacts, often displayed in

 their dorm rooms or given as gifts. Examples include: a needle-felted fairy house with

 embedded LED lights, light-up paper circuit valentines, and beautiful recursive

 geometric patterns – first generated in Processing and then realized in the form of

 plotter drawings, vinyl-cut laptop stickers, and laser-cut wooden coasters.

 Early analysis suggests that the course offers a highly personal and creative entry

 point to computing – and one that is effective at engaging a diversity of students

 while ensuring a smooth transition to CS1. My personal observations are

 supplemented with student feedback in the form of interviews, informal course

 21

 reflections, and end-of-term course evaluations. I also provide insights and

 recommendations for others looking to adopt a craft-themed CS0 course.

 In sum, the primary goal of this chapter is to document Craft of Computing , a novel

 undergraduate course designed to broaden perceptions about computing – which in

 turn, influences who participates in computing [22, 81] .

 2.2 Related Work

 My work builds upon a body of prior research on computing education pedagogy,

 broadening participation in computing, CS0 course design and outcomes, the

 Processing programming language, and computational craft.

 The course design draws upon a number of existing pedagogical approaches that are

 well-researched both within and beyond computing education. For example, I sought

 to support affective learning in this course – doing so through encouraging informal

 social interaction, challenging students to bridge the digital and physical worlds, and

 portraying computational craft in the light of "hard fun" [106, 110] . (In other words,

 computational craft is challenging, but if actively engaged in one's personal and

 creative pursuit, one is less likely to mind.) The class is also built around an active

 learning approach, which is known to enhance student learning and motivation,

 heavily interspersing hands-on activities with short periods of instruction or tutorial

 [38, 82, 111] . Overlaying the design of the course itself, my own teaching relies

 22

 heavily on guided discovery; when a student asks a question, I respond with a series

 of questions to lead them to an answer – rather than merely supplying the answer up

 front [2] . These techniques and approaches were foundational to the design of the

 course, many of them being used widely at liberal arts colleges due to their positive

 effect on student learning and overall experience.

 Turning to broadening participation, the dearth of women and other minoritized

 groups in computing is well documented, as are some of the factors critical to

 attracting and retaining them [65, 79, 80] . Especially relevant to this chapter are a

 sense of belonging and engaging in work that is personally meaningful and/or

 culturally relevant [49, 64, 89, 132] . Building technological self-efficacy and a

 growth mindset can further support these goals [25, 77, 94, 124] . Creative computing,

 in particular, has been shown to effectively increase growth mindset and decrease

 computer anxiety [68] . The design of Craft of Computing builds upon this knowledge,

 including the incorporation of specific recommendations – for example, encouraging

 students to pursue identity-affirming creative work and curating a physical space in

 which students of diverse identities feel welcome [23] . The course also leverages pair

 programming throughout, which is well documented as supporting broader

 participation [83, 84, 134] .

 There is also ample research on the importance of CS0-level courses as an avenue

 into computing, especially for students with little-to-no prior programming

 23

 experience. Prior work also affirms the importance of CS0 as a way to broaden

 student perceptions of computer science [136] . To this end, a "funnel" curricular

 model has been well-documented, in which several different themed CS0 courses are

 offered as a means to invite diverse participation [42, 108, 136] . My work expands

 existing practice by offering yet another novel entry point to computing, through a

 domain which is both creative in nature and stereotypically "softer": craft.

 The Processing programming language was designed to support exactly this kind of

 creative work [40, 119, 120] ; it was developed by designers and meant to be more

 accessible than it's closest counterpart, Java. Processing has since been leveraged in

 university-level offerings of "CS Principles" and CS0-style courses, both as an

 approachable text-based language and a means to create art [4, 137] . It is for exactly

 these reasons that I chose to teach Craft of Computing using Processing.

 Computational craft – especially the field of electronic textiles – has been established

 as an effective means to broaden participation in computing, especially at the K-12

 level and in after-school settings [16, 56, 58] . My work expands these initiatives to

 the undergraduate context, in which students are critically deciding upon and

 pursuing a field of study to propel their careers. My work also infuses a stronger

 software component (via programming in Processing), in hopes that this may prepare

 students for CS1.

 24

 Lastly, the design of this course was especially informed by the work of CU Boulder's

 Craft Technology Lab and my prior research group at the MIT Media Lab, High-Low

 Tech [44] . Both of these now-defunct groups have laid a strong foundation of tutorials

 and tools which enable making, hacking, and programming rooted in craft. Their

 missions focused on democratization of engineering and the radical inclusion of

 diverse populations – and their research and teaching has very directly inspired my

 efforts to formalize a course at the undergraduate level.

 2.3 Background

 My course joined an existing selection of themed CS0 offerings at the college, all of

 which funnel into a singular CS1 course. Examples include: Intro to Robotics,

 Storytelling with Alice, Intro to Game Design , and Building Better Apps . While Craft

 of Computing debuted as a "special topics"/elective offering of this variety, it was

 added to the college's permanent catalog within one year.

 I taught Craft of Computing five times over a period of four consecutive 15-week

 academic terms. This chapter includes examples of student work across all of the

 terms in which the course was offered. However, in detailing the structure of this

 course, this chapter will focus on the latest iteration unless otherwise noted. There

 were some notable changes made over the two year period in which the course was

 25

 developed; those are discussed toward the end of this chapter in the context of

 recommendations for others.

 2.4 Course Design

 Craft of Computing shares the same learning goals of many other CS0-level courses,

 namely to teach core computer science competencies while showcasing applications

 of computing (in this case, creative ones), and to lower the barriers to entry for

 students with little or no programming experience [136] . I leverage craft as a context

 because it is both relatable and provocative when considered in juxtaposition to

 computing – while also exposing students to creative applications of programming. In

 terms of domain-specific content, Craft of Computing exposes students to the

 following:

 ● Programming in Processing – including coverage of computational concepts

 such as loops, variables, and functions (facilitating the creation of

 computational art)

 ● Some basic electronics – including simple textile and paper circuits

 ● Handcraft – including needle felting and embroidery (allowing students to

 realize their algorithmic designs in a traditional craft medium)

 26

 ● Digital fabrication – including use of a plotter, laser cutter, and vinyl cutter

 (allowing students to realize their algorithmic designs in a computer-mediated

 craft medium)

 The course also includes some coverage of the maker movement , in particular,

 discussion around accessibility and inclusivity of maker culture.

 Setting & Organization

 I taught Craft of Computing in a lab space shared by Berea's electronics course, which

 allows access to all of the relevant tools, materials, and equipment, as well as a sink

 for cleanup and a safe place for students to leave projects-in-progress. This classroom

 is also the setting for the department's evening lab hours which are open to students in

 all computer science courses, and where students may drop in for help or to work on

 projects. An assortment of TAs staff this space Sunday through Thursday night each

 week, and an effort is made to have one or more TAs from each class scheduled on

 any given night. Students feel great ownership over this space.

 The course meets for long class periods – 110 minutes – twice per week. One day per

 week focuses on programming or computational concepts, such as Processing syntax,

 coordinate systems, and programming fundamentals. These class periods include

 informal whiteboard "mini-lectures" covering bite-sized concepts such as variables,

 loops, and functions, one at a time. These are interspersed with exercises from the

 textbook which are completed in pairs, sharing one laptop, as dictated by pair

 27

 programming practices. Students have reported really liking this format; as one

 student commented in a course evaluation, "This is a class that doesn't work well with

 a lecture style and she knows that and taught the class accordingly, small part lecture

 and then hands-on work."

 The second day each week focuses on circuits, handcraft, and digital fabrication as

 mediums for computational art and design. During these class periods, a document

 camera and equipment/materials are used to do live demos on handcraft techniques

 and also technical topics such as how to: use a multimeter, design a simple circuit

 (with a battery and a LED), prepare files for digital fabrication, and use CNC

 equipment. These demos are interspersed with long periods of unstructured hands-on

 work time, during which students are encouraged to move around, work in clusters,

 socialize, and ask myself or one another for help as needed.

 Categories of student work and assessment are outlined in Figure 2.1. Assignments

 and quizzes focus on building core craft and programming competencies, while

 mini-projects and the final project offer the opportunity to integrate and apply these

 skill sets. (Mini-projects and the final project are detailed in the following section.)

 Homework includes readings from the textbook, work on mini and final projects, and

 sometimes finishing an in-class craft or programming exercise (although the bulk of

 this work happens in class).

 28

 Figure 2.1. Coursework components, with percentage of overall course grade and a short summary.

 Major Assignments

 The major assignments of the course, mini-projects and the final project, emphasize

 blending handcraft with electronics, the creation of original vector designs in

 Processing, and realizing those designs in physical form. Although the majority of

 these assignments are structured around a piece of digital fabrication equipment, the

 emphasis is on what creative possibilities the equipment enables, rather than simply

 learning how to use it.

 Mini-project #1: Felted Circuits

 The first mini-project invites students to blend needle felting with textile circuitry, as

 inspired by the work of artist Moxie Lieberman [93] . (Lieberman was an

 artist-in-residence in the Exploratorium's Tinkering Studio during my internship

 there.) Over a couple of class periods, students are taught how to needle-felt, how to

 design a simple circuit (with a light, a battery, and an LED), and considerations for

 working with electronic textile materials like conductive sewing thread. Each student

 sketches a three-dimensional felted object, along with plans for how they will embed

 a sewn circuit into its structure – with care and attention given to LED placement,

 29

 battery pack placement, and keeping the various threads from accidentally making

 contact and short-circuiting. Students who are interested in optionally adding a switch

 are encouraged to do so, and instructionally supported in modifying their sketches to

 accommodate this. Once students bring their sketches to me for revisions and

 approval, they collect the necessary materials and bring their circuits to life.

 Examples of student work appear in Figure 2.2.

 Figure 2.2. Felted circuits designed by students: a fairy house that lights up inside when the flower is
 placed atop it, an angler fish, and a baby bird.

 Mini-project #2: Plotter Drawings

 The second mini-project invites students to blend code-driven/algorithmic design

 (done in Processing) with vector path drawing . Students are asked to create an

 original single-frame/non-animated vector design in Processing, which must also

 meet the following technical requirements:

 ● Use of 2+ drawing commands/shapes (line , rect , ellipse , etc.)

 ● Use of variables whenever possible.

 ● At least one loop , to create visual repetition.

 30

 ● Appropriate use of comments throughout.

 Students first submit a draft of their code to Moodle (Berea's LMS) and present their

 draft to the class for feedback using an overhead projector. While students are

 working outside-of-class to incorporate any suggestions or revisions, class time is

 used to demonstrate how to export and format Processing PDFs for vector plotting

 and how to use a Cricut machine for drawing. Students submit a final draft of their

 code/design, output their design on the Cricut using pens or markers, and compose a

 written reflection about the experience. They present their final physical drawing in

 class alongside their code, again utilizing an overhead projector to do so. Examples of

 student work appear in Figure 2.3.

 Figure 2.3. Plotter designs produced by students as they learn to draw algorithmically. (Pen on paper,
 machine-drawn.)

 Mini-project #3: Vinyl-cut Stickers

 The third mini-project invites students to blend code-driven/algorithmic design (done

 in Processing) with vector path cutting . This assignment follows the same

 draft-revision-fabrication structure as the plotter mini-project, but includes the added

 31

 challenge of designing for cut paths instead of drawn lines; designing vinyl-cut

 stickers requires students to think about positive/negative space and open/closed

 shapes. Each term, an early observation and point of discussion is that overlapping

 lines in a design will generate vinyl confetti instead of a single, unified sticker.

 Students must submit an original design that is significantly different in composition

 from their plotter design. While students are working outside-of-class to revise their

 sticker designs, class time is used to demonstrate how to work with a Roland vinyl

 cutter and how to carefully transfer a cut sticker to a surface. For their final

 presentations, students are required to show their sticker adhered to a surface; even a

 piece of paper suffices, but most students choose to affix their sticker to a bicycle,

 laptop, or other personally meaningful object. Examples of student work appear in

 Figure 2.4.

 Figure 2.4. Vinyl-cut stickers, which students valued enough to apply to their own laptops.
 (Student-produced stickers appear here in magenta, dark red, and sky blue, from left to right.)

 32

 Final Project

 The final project invites students to blend code-driven/algorithmic design (done in

 Processing) with handcraft, vector path drawing, vector path cutting, or a mix of

 these. Essentially, students are asked to generate a more complicated vector design

 than they have done prior and to realize it in any of the physical mediums covered in

 the course. They may also use any art/craft medium with which they have prior

 experience or wish to explore on their own.

 This project follows the same draft-revision-fabrication structure as the two prior

 mini-projects, but with the added technical requirement that students must use

 functions in their code. Students are also expected to engage in independent research

 and planning in terms of creating a design that is suitable for their chosen medium(s),

 envisioning how they will realize this design in physical form, and requesting any

 necessary physical materials for their project. The fabrication part of this assignment

 must either incorporate handcraft in some way or demonstrate a more complicated

 application of a tool from an earlier assignment (for example, using a plotter with two

 pens/colors or using a laser cutter with a new material). Examples of student work are

 shown in Figure 2.5 – but students also used many other mediums such as charcoal,

 acrylic paint, and 3D printing.

 33

 Figure 2.5. Student final projects. Top row: laser cut coasters and a hand-embroidered pillow. Middle
 row: a hand-embroidered scene, a tooled leather bracelet, and a hand-embroidered pillow. Bottom row:
 a graduation cap, start to finish.

 Bonus Activity: Paper Circuits

 Each term, one class period is spent teaching students how to make light-up

 Halloween cards (Fall term) or valentines (Spring term), as inspired by the work of

 Jie Qi [114, 115] . This activity is ungraded, as students take their cards with them at

 34

 the end of class, but it is intended to reinforce earlier learning about circuits and to

 demonstrate yet another creative technical application.

 During this class period, which always takes place after the felted circuit mini-project,

 I teach how to create circuits on paper using copper tape, lights, and batteries. I also

 teach students how to solder – and they have the opportunity to practice what they've

 already learned about using a multimeter to measure continuity. Some examples

 appear in Figure 2.6.

 Figure 2.6. Halloween-themed paper circuits made by students.

 Deprecated Assignments

 In addition to the above, earlier offerings of the course included a textile sensor

 mini-project that followed the felted circuit mini-project. Inspired by Hannah

 Perner-Wilson's work [50, 109] , this opened up discussion of resistance and the

 differences between a "dimmer" and a "switch". We used neoprene, Velostat, and

 conductive thread to follow Perner-Wilson's Instructable on the topic [52] . Students

 added their own flair to the assignment by making their sensors in creative shapes like

 35

 dinosaurs and hearts – and enjoyed comparing how this and other variables affected

 their resistance, using a multimeter to investigate. Although students appreciated this

 more advanced electronics project, it was removed from later course offerings so that

 we could go more in-depth on frequently-requested, more advanced topics in

 computing, like translation and user interaction.

 A couple of earlier terms of the course also used a laser cutter in lieu of a vinyl cutter

 for Mini-Project #3; this was simply dependent on whether we had the necessary

 equipment access, and the project requirements and challenges were comparable

 across the two different machines. During these offerings, students were also able to

 use the laser cutter for their final projects. Examples of student work from these

 deprecated assignments appear in Figure 2.7.

 Figure 2.7. Layered laser-cut paper, from an earlier version of Mini-Project #3.

 Infrastructure

 The choice of using multiple infrastructure tools for teaching versus consolidating

 into a single platform has an effect on the tone of the class. Although there is a

 36

 learning curve to students using multiple tools in tandem, this is common in the

 computer science workplace and I emphasize their utility with regard to preparation

 for post-graduation employment.

 The course is taught entirely in Processing, aside from a Blockly-based warm up

 assignment. I chose Processing because it was originally developed by artists and

 designers to enable the creation of creative work by those with minimal programming

 background [120] . To scaffold our journey through learning to write Processing code,

 all students are required to purchase Learning Processing and it serves as the course

 textbook [123] . Craft of Computing covers the first three chapters of the book in great

 detail, with select topics from later in the book covered by request.

 A Trello board serves as our course website [24, 130] , which colorfully organizes

 upcoming assignments/due dates, requirements for each assignment, and references

 such as the syllabus and equipment documentation. Students submit coursework on

 Moodle, except for physical artifacts which are submitted in person. An example

 from one of the course offerings is shown in Figure 2.8.

 37

 Figure 2.8. The course website, as organized on Trello. An overview of current tasks and references
 (left) and a "card" offering guidance on the final phase of an individual mini-project (right).

 Students are also required to join the Craft of Computing channel on our department's

 Slack team [125] , which was created and is managed by the department's teaching

 assistants (TAs). This is where any announcements or clarifications are made in

 between course meetings, for example, deadline extensions or on-demand examples

 to clarify content. Students are also asked to post on Slack rather than emailing me, as

 this enables a quicker response from the myself, course TAs, or other students in the

 course. Students are also encouraged to send direct messages to me and/or the TAs on

 Slack if they would like to inquire about grading, ask a question specific to their code,

 or anything more private.

 Complementary to the above, Google docs is used to host software and equipment

 documentation and Calendly is used for students to schedule time on specific

 equipment [21] .

 38

 Instructional Support

 Teaching assistants have been absolutely instrumental in the success of Craft of

 Computing . Abundant teaching support is a unique benefit of teaching at a work

 college, but undergraduate tutors and graders could be tasked with similar support at

 other institutions. For this course, TAs staff evening lab hours and monitor the course

 Slack channel. They have also worked independently to create invaluable

 documentation that persists across terms; TAs have authored detailed step-by-step

 tutorials on each piece of equipment as well as file conversion processes. All of these

 feature annotated screenshots, lots of encouragement, and a sense of humor. These

 walkthroughs have been vital in terms of reducing student confusion.

 TAs also learn how to use each piece of equipment in advance of associated

 assignments and they supervise equipment time slots, which students can reserve both

 during and outside of evening lab. TAs also handle all of the signups and scheduling

 for this.

 Finally, TAs grade all of the quizzes and meet with me to grade final projects as a

 group at the end of each term. This is very helpful, as they have a window into each

 student's process and any barriers that they have encountered. On the whole, I have

 found it tremendously helpful to have my TAs' ongoing feedback on what topics

 students struggle with in lab and any issues that arise with equipment or materials.

 39

 2.5 Reflections

 In this section, I summarize some of my own observations and reflections about the

 course.

 Challenges & Rewards of Working in the Physical World

 Working with physical materials and equipment can be time-consuming and

 frustrating, as echoed in students' course evaluations, especially as it contrasts with

 the software/digital focus of most computer science coursework. However, once

 students get in the habit of planning ahead and signing up for equipment time slots,

 they often express a sense of pride and triumph in what they make; a sentiment

 echoed through many student evaluations is, "The more effort I put into a project, the

 more enjoyment I got out of it." Students have especially enjoyed making things to

 display in their dorm rooms, to personalize their belongings, or to gift to loved ones –

 sometimes requesting items be returned early from grading in time for a birthday or

 holiday.

 I have additionally observed students bonding over the above-mentioned frustrations;

 for example, how an earlier-used plotter would sometimes quit halfway through

 drawing or how awful the laser cutter smells after cutting wool felt. Students have

 also built a strong sense of community around our presentation days. Upon their

 suggestion, I stocked the lab with tea and second hand coffee mugs – and these class

 meetings came to be known as "CriTEAque Days". Sharing creative work is

 40

 vulnerable and I believe that together we have cultivated a safe space for students to

 provide constructive feedback and try new things. This is echoed by a student

 evaluation: "[The instructor] is very passionate about the topic and encourages us to

 try new techniques, or to apply these techniques differently to see the outcome."

 Students look forward to our CriTEAque class periods, taking great interest in one

 another's creative and technical growth.

 Students have also reported appreciation for learning craft techniques – as a creative

 outlet, as a destressor especially around midterms and finals, and as a means to be

 more self-sufficient. One student writes, "I hadn't concerned myself prior with sewing

 or felting, but I have a fair deal of interest and respect for the creative applications of

 both after having taken the course." Another reflects, "This course taught me the

 basics of programming and basic sewing and embroidering techniques that not only I

 can use in a career but for life skills too."

 Importance of Growth Mindset at the CS0 Level

 The importance of a growth mindset is well-documented, and the focus on creativity

 and craft in this course seems to support this objective. Most introductory computing

 courses have all students complete exactly the same assignments. This can offer the

 temptation to ask another student how they solved a bug, rather than struggling with it

 on one's own. The focus on creativity in this course means that every project is

 unique, and neither other students nor myself are likely to know the answers

 41

 immediately. This allows abundant opportunity to practice debugging and growth

 mindset towards a goal the student is personally invested in. Student evaluation

 comments reflect this experience:

 "She was very relate-able and talked through struggles. She also did not just

 give us the answers to problems in our code. She just spotted the spots where

 they were and it was like hide and seek or find Waldo. It was great to hear the

 encouragement of knowing that she had found the bug in the code and then we

 had to work on finding them ourselves."

 "She welcomes questions and mistakes on work and assignments and teaches

 us that sometimes mistakes aren't terrible things but can add on to our

 projects."

 "The instructor does a good job of leading you into fixing code you have a

 problem with instead of outright telling you what is wrong or what you need to

 add so that you can actually learn something."

 "Whenever students are stuck she just doesn’t give them the answers she asks

 them questions for them to start “thinking like a computer scientist” as she

 would say."

 "She has helped me to learn that coding is no harder than solving a puzzle."

 42

 Leveling the Playing Field

 CS0 courses strive to provide an entry point for students with little-to-no

 programming background, yet often enroll students with a wide range of preparation.

 For example, some students may opt to take CS0 as review or because they are

 interested in the specific topic/theme that is featured. This presents a unique challenge

 for CS0 instructors, as they strive to balance approachability for less experienced

 students with keeping more experienced students engaged.

 Given my experience with this course, computational craft is, in fact, very well suited

 to this challenge. Between the creative aspect of every assignment, the variety of

 tools/materials/techniques at hand, and the extensibility of Processing as a

 programming language – I have seen students of all levels remain engaged over the

 course of each term. Student evaluation comments support this:

 "[The course] allows students to brainstorm and create their own unique

 projects while ensuring the students learn the content and the projects follow

 the specifications."

 "... individuals in the class were at a variety of skill levels and [...] everyone

 was able to learn despite that challenge."

 "Anytime that we finished a certain part, she would challenge us with extra

 tasks that gave a better understanding."

 43

 Preparation for CS1

 CS0 courses aim not only to offer an appropriate entry point to computer science, but

 also to prepare students with minimal programming background for CS1. Student

 evaluations reflect success in these areas as well:

 "Even though I had no background of Computer Science, [...] this course

 [was] very accessible to me."

 "I recognize that this would be an ideal first computer science course." (This

 comment was made by a student with some programming background

 already.)

 "I would recommend anyone who is thinking about doing computer science to

 take this course. It's a perfect preparatory course for [CS1] and [CS2] by

 softly introducing key concepts that are crucial to the major. Anyone who

 takes this course will have a huge leg up in [CS1]."

 Despite the non-traditional computing topic area which may be perceived by some as

 "softer" or less difficult, Craft of Computing is one of the only CS0 courses in the

 department to use a text-based programming language; most CS0 courses in Berea's

 funnel utilize block languages. A couple of students posited in interviews that this

 makes for a smoother transition to our CS1 course taught in Python; Craft of

 Computing students already have familiarity with compiler errors, nuances of written

 44

 syntax, and data representation (e.g. ints vs. floats). Craft of Computing 's coverage of

 Processing also uniquely exposes students to debugging, libraries, and programming

 in different coordinate systems.

 Broadening Participation & Perceptions Through Craft

 The goals I was most passionate about for this course were to invite participation

 from a diverse cross-section of students and to vastly broaden students' perceptions of

 what computer science is "good for".

 A total of 69 students enrolled in Craft of Computing over the two-year interval,

 many of which were first year students. At Berea College, first year students are

 placed into Fall Term courses by an advisor, while all students self-enroll for the

 Spring Term. Looking only at Spring Term (self-enrolled) students, 19 men and 15

 women enrolled in the course. While a small course like this is hardly suitable for

 reporting statistics, this is 44% female enrollment, as compared to under 20% of

 computer science bachelor's degrees being awarded to women nationwide [96] .

 I am also very encouraged that student evaluations reflect success in broadening

 perceptions of computing:

 "Every assignment is flexible; the criteria can be met with an incredible

 number of solutions of varying complexity, and every assignment feels like it

 has the potential to be an art project."

 45

 "... the course did well to link the computational and physical areas, generally

 broadening the scope for which I might consider programming."

 "I learned so incredibly much! Before this course, I didn't know the first thing

 about programming, but now, I'm coding simple video games in my free time,

 and I have even decided to minor in computer science. I loved this course so

 much that I applied for, and was granted the opportunity to work as one of the

 two TAs for the course in the fall."

 "… her ability to relate the computing information to things in the real world,

 and to combine digital work with analog work is simply astounding."

 "This was a great opportunity to learn new things in a new field. I liked being

 able to bring my code to art."

 Personally Meaningful Work

 Lastly, Craft of Computing student projects frequently reflect students' identities,

 relationships, and milestones. Students have created homages to best friends and

 parents, gifts for their children, and decor for their dorm rooms. Many students have

 chosen to integrate their projects into their everyday lives – for example, affixing

 their vinyl cut stickers to frequently used items, sharing their projects on social

 media, and asking for work to be graded ahead of schedule so that it can be given as a

 gift. This seems especially promising, as research has shown that engaging in

 46

 personally meaningful work can attract historically marginalized students. A couple

 of examples of student final projects celebrating personal identity and

 accomplishment can be seen in Figure 2.9.

 Figure 2.9. Personally meaningful student work. Left: one student represents herself by coding and
 pen-plotting a face that is half African and half Native American. Right: another student celebrates her
 graduation by hand-embroidering a computational design and framing it in a shadowbox with
 keepsakes.

 2.6 Recommendations

 In this section, I make concrete recommendations to others who may be interested in

 offering a similar course at their own institution.

 Course Logistics

 Longer course periods really do offer more time to engage with physical materials,

 fabrication equipment, and handcraft. They also allow for more meaningful

 discussions, both on the topic of readings and on days that students are presenting

 47

 their work. I recommend scheduling a course of this type during extended time

 blocks, if your institution offers this option.

 The earliest offerings of the course were taught in a couple of different classrooms

 that did not have storage for materials or student projects – nor did they have the

 equipment used in the class. I spent a lot of time shuffling both materials and students

 between locations, to ensure that we had access to everything we needed. If at all

 possible, I recommend scheduling a course of this type in a lab space – ideally one in

 which students feel at home.

 In terms of resources, students adored Learning Processing as a textbook. They

 appreciated the author's conversational tone and the workbook-style exercises, which

 we leveraged both for homework and in class. Students had no trouble skipping ahead

 to specific topics of interest on their own if they were looking for a challenge; in fact,

 one of the most common pieces of feedback received regarding the textbook was

 simply a desire to have covered more of it. Some students also independently sought

 out the textbook author's accompanying videos which explain and demonstrate key

 concepts, and told us how helpful these were. In short, a textbook and related videos

 that directly support student activities worked well.

 Students initially complained a bit about all of the infrastructural pieces (Moodle,

 Trello, Slack, Google docs, etc.). I emphasized Trello and Slack as the most important

 resources to keep track of, encouraged students to configure Slack notifications to

 48

 their phone or email, and took great care to appropriately link between platforms.

 Ultimately, many students did find Slack to be a helpful touchstone throughout the

 term. I believe messaging on Slack feels closer to a text message than an email, and

 that this allows students to very quickly get in touch without worry over formality,

 etiquette, or perfect phrasing. Thus, I do recommend using Slack – or another

 platform emphasizing approachability, to facilitate announcements and peer support

 between course meetings.

 Equipment & Materials

 As mentioned in my earlier reflections, working with physical tools and materials is

 uniquely challenging – especially within a computer science context, where students

 are used to having everything they need to complete assignments right on their

 laptops. Over time, I have found a few strategies that helped to ease this.

 I let students know in the course description, and again on the first day of class, that

 this course will require visiting the evening lab and/or scheduling separately with

 equipment. This helps to set student expectations early on and to redirect students

 who may have an incompatible term schedule.

 I also make sure to offer plenty of unstructured time to work on projects during

 course meetings. This is especially helpful when learning about circuits, doing any

 kind of handcraft, and when students are pursuing open-ended final projects. Because

 of the demands of students' labor schedules, this helps to ensure that students have the

 49

 necessary time, support, and access (to equipment, materials, and instructional staff)

 to achieve course goals. Depending on your institutional context, you may choose to

 do this as well.

 To keep the class on schedule, I recommend purchasing any necessary equipment and

 materials before the start of the term. The one exception to this is students' final

 project materials, which students request through a Google spreadsheet. If your

 department does not have funding available to cover these needs, you may consider

 charging a materials fee for the course.

 When selecting equipment, simple is best. Early course offerings incorporated a laser

 cutter and vinyl cutter housed in a neighboring department, plus a

 powerful-but-experimental plotter. By the time of the course's latest offering, I had

 scaled back to mostly relying upon a Cricut machine (which can both cut and draw).

 The Cricut software is also easier for students to learn and to stick with over multiple

 assignments, especially compared with learning one application for a laser cutter and

 another for a vinyl cutter.

 File Formatting & Exporting

 It can be confusing for students to envision how the display output of their coded

 designs will translate into the physical world. For each Processing-based mini-project,

 it is important to be clear that the goal is generation of static images – not animations

 – because only vector data will be used to generate machine output. Students are

 50

 welcome to embellish their code with color and fills on their shapes, but it is

 important to emphasize that only the line data will be used.

 Although Processing does allow for exporting vector designs to PDF, some additional

 formatting is necessary. Most notably, Processing exports duplicate paths for each

 shape: one to represent lines and one to represent fill, even when noFill() is

 specified. The first time an assignment requires formatting student designs for a piece

 of equipment, I recommend doing a live demo of the steps required to achieve this. I

 include a quick overview of vector versus raster file formats and a brief-but-targeted

 dip into Adobe Illustrator.

 My TAs have assisted with creating written documentation of this process for

 students to follow along with on their own. In addition, I provide some simple

 example files for students to practice this process on. I recommend ensuring that you

 have tested the entire workflow and that your students have access to any necessary

 software – even one lab computer with vector graphics software (e.g. Adobe

 Illustrator) installed will suffice. A dedicated lab computer can also be very useful for

 running the digital fabrication equipment, rather than having students “print” to this

 equipment from their laptops.

 Emphasizing Original Creative Work

 From the course's inception, I had intended for students to create original designs for

 every assignment, although I was open-minded about what that meant. However,

 51

 some students dedicated quite a lot of time to recreating familiar imagery with

 Processing, while technically meeting each assignment's coding requirements. In

 some cases, this meant spending hours plotting out an existing logo or character

 coordinate-by-coordinate, failing to leverage the built-in Processing functions I had

 wanted students to learn about – and missing out on the joy and creativity of

 algorithmic design.

 In later terms, I added an explicit requirement that assignments consist of original

 creative work rather than anything derivative. This yielded better progress toward

 programming learning goals and also more interesting outcomes. Showcasing

 beautiful examples of prior student work, as they were accumulated, helped greatly

 with this as well.

 Finally, from a student course evaluation: "I suggest she buy more needle threaders."

 This is indeed a great thing to keep in mind when teaching with textiles!

 2.7 Future Work

 Evidence so far – seen in student work, enrollments, and course evaluations – is

 promising. Further analysis of student course evaluations and institutional data can

 paint a more detailed picture of who enrolls in the course – not only students' gender,

 but also their declared major and reason for enrolling. The next step after that will be

 to leverage institutional data to understand if (and how) enrollment in Craft of

 52

 Computing impacts students' choice of major and/or path through the major. Finally,

 many Craft of Computing students have voiced interest in an upper-division level of

 the course… and it would be a wonderful experience to design and offer an advanced

 elective counterpart!

 2.8 Summary

 In designing Craft of Computing , I had hoped to further broaden participation within

 my own undergraduate department, and to expand students' perceptions of computer

 science. Anecdotal evidence suggests that the course was effective in doing so; the

 course enrolled students across a diversity of majors (including art, theater, and

 applied design) and students report a broader understanding of the field in their

 course evaluations. The work that students produced – as exemplified in this chapter

 – is uniquely creative and personally meaningful, piquing students' interests in the

 creative and varied possibilities of computing.

 I hope that sharing my experiences and recommendations emphasizes the importance

 of diversified CS0 offerings and can, in particular, enable more courses of this variety

 at other institutions.

 53

 3 | Course Design for Retaining Broader Participation:
 Open Source Software Engineering

 Shortly after my first experience teaching open source, via the OpenHatch workshop

 at Hartnell College, I discovered a vast body of existing research on student

 involvement in free and open source software (FOSS) projects. This research was

 motivated by many of the same characteristics I observed that day: open source

 projects offer students a means of developing a practical skillset, building a portfolio

 of work, participating in a community of practice, and using computing to impact

 society in a meaningful way. Much of this work was published by faculty involved

 with Foss2serve [37] , a special interest subgroup of the Teaching Open Source

 community [140] . An established working group of educators and researchers,

 Foss2serve supports student involvement in humanitarian open source projects,

 specifically because of their social impact. I also learned of POSSE (the Professors’

 Open Source Software Experience), which is a multi-day professional development

 workshop offered by RedHat and Foss2serve to support faculty new to teaching open

 source [28, 91, 113] . Over the following two years – and while exploring dissertation

 directions – I participated in multiple POSSE-related workshops, during which I

 gained experience with open source tools and helped to develop curriculum and

 activities for college classroom use. I also learned from faculty at a variety of

 54

 institutions who were integrating open source contribution into their computer science

 courses and began envisioning how I might teach such a course of my own.

 Upon starting my position at Berea College, I was invited to do exactly this. Shortly

 after my hire, I was offered the opportunity to take over Berea's upper-division

 software engineering class, which had most recently been taught in the context of

 open source software. This version of the course had previously been run one or two

 terms, taught by a Berea faculty member who had also attended and who I had met

 through POSSE workshops. Informed by POSSE best practices, feedback from

 students who had taken the earliest iterations of the course, and my own teaching

 experience, I decided to redesign the course with a focus on scaffolding student

 success despite an inherently unpredictable context: the wilds of open source

 contribution. In doing so, I leaned heavily on the resources and mentorship afforded

 by my involvement with Foss2serve. I have remained involved with this faculty

 research community ever since, most recently collaborating with Lori Postner and

 Darci Burdge to offer a workshop at the 2018 Grace Hopper Celebration of Women in

 Computing on the topic of candidate project evaluation for student involvement.

 While Craft of Computing offered the opportunity to impact student perceptions of

 computing at the entry level, designing an open source elective afforded the chance to

 do so at another critical moment – as students considered whether they would pursue

 55

 a career in computing post-graduation; effectively, it offered an opportunity to retain

 a diversity of students who had already been attracted to computing.

 3.1 Introduction

 Teaching open source software development has gained traction in undergraduate

 curricula for many reasons: students learn to use real-world tools/processes, build

 portfolios of project contributions, and function within a distributed professional

 community [30, 47] . Open source also provides a clear avenue for students to have a

 positive and tangible impact on society, something that is known to be relevant to

 broadening participation in computing [26, 80] .

 Open source contribution also showcases an application of computer science that

 students may not have been aware of prior. At the upper-division course level, this is

 especially important, as students are about to decide whether they will seek a career

 in computing post-graduation [138] . The issue of post-graduation retention is

 especially critical at Berea College, where many students are working to overcome

 socioeconomic disadvantage.

 Over the course of two consecutive terms, I developed, taught, and heavily revised an

 upper-division course entitled Open Source Software Engineering . I leveraged a

 wealth of existing activities and resources in designing the course [37] , was supported

 with real-time mentorship as I ran the course (from other faculty involved with

 56

 POSSE), and secured sustained professional mentorship for my students (from the

 Mozilla DevTools project).

 The difference between the two terms was tremendous. Most notably, student project

 contributions increased from a 25% success rate in the first iteration to 100% in the

 second iteration. As a result of the course's success, it was retained in the

 department's permanent course catalog. In this chapter, I detail my experiences across

 these two terms and the revisions that I believe to be responsible for the improved

 student experience and outcomes in the second iteration.

 3.2 Related Work

 There exists a growing body of research on undergraduate engagement in free and

 open source (FOSS) projects, especially humanitarian free and open source projects

 (HFOSS). It has been well established that involving students in open source

 communities offers a valuable opportunity for students to learn within a community

 of practice, gain experience with practical tools (e.g. version control systems, bug

 trackers), build a portfolio, and contribute to a real-world project [29, 31, 46] . In

 addition, teaching with open source reaps the benefits of project-based learning – for

 example, helping students cultivate "soft" skills such as teamwork, communication,

 and project management [87] .

 57

 HFOSS projects, in particular, have been a deliberate choice for many educators

 because these communities are typically welcoming and supportive to newcomers

 [48] . It is suspected that these communities also attract participation from women and

 other underrepresented minorities, due to their social impact [112] . Additionally, the

 altruistic nature of humanitarian open source contribution lends itself nicely to

 service-learning [90] . Teaching open source also offers instructors the chance to

 model a growth mindset and to foster a sense of belonging within a professional

 community – also of great relevance to broadening participation [49, 64, 132] .

 Much like Craft of Computing , this course also leverages more general pedagogical

 techniques with a track record of supporting student learning and broader

 participation – namely, active learning and pair programming [38, 82–84, 111, 134] .

 Also as with Craft of Computing , my teaching style embodies a guided discovery

 approach, meeting student inquiries with my own series of questions, designed to lead

 them incrementally to the answer or resource they may be seeking [2] . In this course,

 I especially make a point of offering process-oriented praise, as student learning is not

 always reflected in project contributions – and nonetheless I aim to support their

 development of a growth mindset [27] .

 A number of successful open source courses pre-date my own course design, situated

 within a variety of institutional contexts [11, 48] . These range from single term

 courses, featuring a taste of open source, to immersive year-long capstone courses or

 58

 those aimed specifically at broadening participation [10, 55, 133] . In designing my

 own course, I sought to translate existing best practices to fit within our liberal arts

 upper-division elective context. Given that so many Berea students come from

 historically marginalized communities, I also sought to showcase a socially impactful

 and community-oriented application of computing, in hopes of retaining students in

 the field post-graduation.

 Despite all of its promise, teaching open source presents many curricular challenges:

 community leadership can take unexpected turns, projects vary in size and

 complexity, and student learning can be difficult to assess [30] . In addition to putting

 the aforementioned research into practice, my work reports on what I have learned;

 scaffolding student learning in such an unpredictable context is challenging, but

 thoughtful planning and revision can have a dramatic positive impact on outcomes.

 3.3 Course Overview

 Although my course is titled Open Source Software Engineering , the emphasis is

 much more on open source than on software engineering practices. The first half of

 each term is spent on history, etiquette, culture, and tools – and the second half is

 spent diving into an active open source project.

 The first offering consisted of 16 students (14 male, 2 female) and the second offering

 consisted of 12 students (10 male, 2 female). Both classes represented a wide range of

 59

 experience, as some students had only taken CS1 and CS2 while others had

 completed a variety of upper-division coursework. An overview of the two offerings

 follows.

 Term 1

 I leveraged the Foss2serve library of activities for the first half of the course, guiding

 students through licensing, candidate project evaluation, version control with git,

 communication tools (such as IRC and Slack) and more. Students completed these

 exercises in pairs, in class. I also required students to make GitHub accounts and,

 after an in-class crash-course on HTML and CSS, students practiced fixing up a

 buggy GitHub Pages site that was created in advance. I generated several GitHub

 "issues" for students to claim and work on, to help learn the GitHub workflow and to

 practice HTML/CSS. (This activity was borrowed from OpenHatch.)

 Weekly reading was assigned from either The Cathedral and the Bazaar [117] or The

 Art of Community [5] . Students were required to create blogs and to post reading

 responses there. A few group discussions were held in class on related topics.

 For the second half of the term, I embedded all students in the same open source

 project rather than each team selecting their own project. Students weren't very

 excited about this approach, but I felt that it would be easier for me to support them –

 and for them to support one another. I solicited suggestions through the Teaching

 Open Source [140] mailing list and learned of others’ positive experience engaging

 60

 with the Mozilla Firefox DevTools community [35] and, more specifically, with the

 debugger.html project [53] . (Mozilla originally developed this debugger as part of the

 Firefox Developer Tools, although it now works in both Firefox and Chrome.) I

 connected with two other faculty members teaching with DevTools, Heidi Ellis and

 Darci Burdge, and together we worked with the debugger.html community to identify

 candidate bugs for our students. (I knew both Heidi and Darci through POSSE, as

 they were both a part of the core group of faculty organizing and hosting the

 workshops, Foss2serve.) Motivated by a desire to engage students in HFOSS, we

 selected bugs under the umbrella of accessibility.

 I divided students into teams of four. I grouped students according to their own

 preferences and who I thought would work well together. One consequence, however,

 was that most teams reflected a broad spectrum of prior experience. I instructed

 students to assign themselves relevant homework between class meetings – e.g.

 tutorials, testing, or bug research – and asked that they reserve class time for team

 collaboration. Students completed bi-weekly team evaluations, in which they ranked

 themselves and each of their teammates on metrics like regular attendance,

 leadership, and attitude. (This tool was shared with me by Heidi Ellis.) These were

 treated as confidential and allowed a window into any interpersonal challenges early

 enough to intervene.

 61

 Students were required to join the Open Source Software Engineering channel on the

 department's Slack team, which was created and is managed by teaching assistants.

 Each team was also asked to create their own Slack channel, in which they would

 briefly report out in writing at the start and finish of each class. I joined each of these

 channels as well. This practice was inspired by scrum/standup meetings; each student

 had to share what they accomplished outside of class and what they would spend

 class time working on that day. This gave students experience with industry practices

 and tools and also helped guide me as to which teams needed help getting unstuck.

 This practice also held students accountable, as teammates would be disappointed if

 someone had not done any work between course meetings.

 During class, teams worked – sometimes altogether, sometimes in pairs – to make

 progress on their chosen bug. This often involved posting to communication channels

 used by the debugger.html project, including Slack and GitHub. Through our

 community interactions, it became apparent who a couple of particularly helpful

 Mozilla developers were, and we leveraged their support through the rest of the term.

 The debugger.html project is built in React [118] , which is not covered anywhere in

 our departmental curriculum. No structured support was provided for learning React;

 instead, each team sought out materials to learn the basics, and sometimes students

 shared resources across teams.

 62

 Three out of four teams got so far as to submit pull requests on GitHub. However,

 only one team's contribution was accepted and merged. The other teams got stuck in

 the review process – or in one case, were unable to even fully solve/address the bug

 they had been working on all term.

 Term 2

 I made significant changes to the course, both in response to student feedback and my

 own observations. I also hired a TA who had previously taken the class and was able

 to provide feedback based on his experience as a student in the course. Below, I

 summarize the major changes.

 Students reported getting little out of the readings from The Art of Community , so I

 dropped that textbook. Because discussions had been sparsely participated in, I spent

 less class time on them and instead asked students to reflect deeper in their blog posts.

 These changes won more class time for working in pairs or teams.

 Students from the prior term struggled with learning React and expressed frustration

 with each team discovering the same resources on their own. In response, I asked the

 course TA to develop and lead a walkthrough in which students built a barebones

 blog using React. I also created a shared virtual bulletin board (using Trello [130]),

 where students posted resources that their classmates might find useful.

 63

 I chose to involve students in the same project as before: debugger.html. This time,

 students were grouped with those of similar experience level , allowing each team to

 choose an appropriately challenging bug to tackle. Students were also grouped in

 teams of three instead of four , as I suspected this might lead to more consistent

 communication within teams. Teams did collaborate more effectively this way, with

 each member contributing more equally to conversations and to code.

 The Mozilla developers that we encountered in Term 1 brainstormed with me about

 how to better support students through the contribution process. We decided to

 identify smaller issues – or even subtasks of issues – for teams to claim, even if it

 meant shifting focus beyond accessibility. We also established a separate Slack

 channel on the DevTools team, which both the students and the developers joined.

 This offered a less intimidating venue for students to ask questions. Students were

 required to cross-post their scrum reports in this channel, so that the developers could

 track their progress in greater detail. I believe that this gave students’ self-assigned

 homework a greater weight, as they were reporting to real-world developers, and not

 just to their college instructor and classmates. I also added in-class standup meetings

 on a weekly basis, in which teams would report out to one another on their progress

 and share learned expertise.

 The teams of three grappled initially with how to collaborate during class; no longer

 could they divide-and-conquer by splitting into pairs. They began making use of large

 64

 portable screens in the classroom, which they wheeled to their desk clusters and took

 turns connecting their laptops to. This facilitated much richer discussion about each

 team’s progress, as teams could analyze code, write code, or sift through resources

 together. Instead of watching pairs head-down at their laptops, I saw teams engaging

 in lively discussion, moving around and using the screen as a prop. This also made it

 easier for me to circulate throughout the classroom and monitor each team’s progress,

 joining their discussions when helpful.

 Towards the end of the course, the Mozilla developers who were supporting my

 students offered to schedule a video call during class time. We structured this call as a

 standup meeting, during which each team reported out on their weekly progress and

 had the opportunity to receive real-time feedback. Students were also able to ask the

 developers about their personal experience getting into open source.

 Each of the four teams made at least one successful contribution to the project. One

 team made three, spanning both code and documentation!

 3.4 Student Feedback

 I asked for informal feedback throughout both terms in which the course was offered.

 In Term 1, students expressed a large degree of frustration and confusion (although

 they responded to it with a constructive attitude), while students in the second term

 openly and enthusiastically affirmed that they were having a positive learning

 65

 experience. Unsolicited, I received the following from a student via email, about

 halfway through Term 2:

 “So far I am genuinely enjoying the course. The work is not too overwhelming

 and it feels manageable. I really like how we are encouraged to try things and

 learn on our own. It is building my confidence as a woman in computer

 science."

 I also received valuable feedback on the course through students’ course evaluations,

 submitted at the end of each term. A couple of comments following Term 2:

 “I did learn a lot. I feel much more comfortable with my computer, with web

 development, with open source, with communicating, with teamwork, and

 everything we touched on in class.”

 “I learned more about open source development than I even expected to in

 this course. I think the idea of having students contribute to a real piece of

 software is amazing and it is a piece of software that millions of people,

 including myself use. Interacting with the Firefox community was very

 educational both in a coding aspect and in a... well, community aspect.“

 Comparing quantitative evaluation data, students from Term 2 spent more hours per

 week on the course, reported learning more, and rated the course higher overall.

 66

 3.5 Reflections & Recommendations

 It may seem obvious that a course should improve in its second offering, due to the

 instructor's increased familiarity with the material/structure and access to an

 experienced TA. However, this course improved dramatically, and despite a

 continually shifting context. Below, I summarize what I believe to be the most

 influential factors.

 Project Choice

 Project choice is arguably the most foundational factor in the success of any class

 structured around open source contribution. I recommend, when possible, embedding

 all students in one project/community; this allows the instructor to understand and

 support student progress while also staying in touch with a single set of community

 leaders. As is emphasized by Foss2serve, I also recommend verifying that the

 community is highly active and welcoming to newcomers; this will ensure that

 students receive timely, constructive responses to questions and pull requests. In our

 case, debugger.html's active Slack channel also meant that students could observe

 community norms before wading in themselves. The ideal solution will vary widely

 given the number of students in a course; for example, it might be overwhelming to

 embed a class of 50 or 100 students in a single community.

 Selecting a project that is well-known and/or humanitarian in nature allows students

 to have real-world impact. Additionally, selecting a very active project with clear

 67

 documentation and a welcoming atmosphere can help cultivate a sense of belonging.

 A project which leverages current/relevant tools or languages – and which uses a

 major platform to track contributions (such as GitHub) – will also help students to

 develop professional skills and a visible portfolio.

 Team Formation & Tools to Support Collaboration

 After attempting two different strategies for assigning teams, I feel strongly that it’s

 best to group students with others of similar experience level. This way, less

 experienced students do not fall behind or lose confidence – while more experienced

 students can take off and run with a more difficult problem. I also observed that teams

 of similar experience level naturally gravitated towards bugs within reach of their

 expertise; this further allowed all team members to engage equally in the process and

 to reach an affirming outcome.

 As time permits, the more experienced teams can also provide support to those that

 are stuck. This is easily facilitated by the addition of class-wide standup meetings,

 during which stalled teams can solicit help. I also recommend team-specific Slack

 channels for communication/reporting, along with a class-wide channel for students

 to ask questions and share resources between class meetings.

 Finally, a team size of three – along with access to large shared screens – encourages

 lively discussion and equitable collaboration within each team.

 68

 Structuring Unfamiliar Tools & Technologies

 Although having to learn new technologies – React, in this case – was not the

 insurmountable obstacle I expected it to be, it really helped to provide some structure

 around this in the second term. I recommend providing infrastructure for students to

 share resources, as I did with Slack and Trello. I also recommend offering

 project-specific demos and/or walkthroughs for students to build experience with any

 required tools or technologies. I believe that these things empowered students to more

 efficiently and confidently jump into working on their bug/issue. (Note that this did

 not deprive students of the opportunity to feel “productively lost”; there was still

 plenty of independent learning to be done!)

 Professional Mentorship

 Professional mentorship was a vital thread running through the entire course

 experience. I believe this to be, perhaps, the most influential factor in the course’s

 improvement. When the Mozilla developers became more involved in Term 2,

 students responded with greater motivation and a stronger sense of accountability.

 Although many students initially found it intimidating to communicate directly with

 the developers, doing so pushed them to practice communicating with

 professionalism and specificity. These developers modeled a growth mindset; not

 always having the answers, but coaching students through finding resources and

 69

 learning on the fly. They provided continuous and timely feedback via Slack and

 GitHub, doing so with proficiency, patience, and encouragement.

 Students responded especially positively to the standup video call that we did towards

 the end of Term 2. Knowing the call was on the horizon motivated them to make

 progress as a team and to generate interesting questions. Additionally, they valued

 seeing that the developers were people that they could relate to; approachable

 individuals who once had very little experience with open source themselves. In this

 sense, the developers that mentored my students became very effective role models

 for them.

 I also benefited from mentorship – both from the developers (with whom I could

 check in about student progress and impact on their community) and from other

 faculty teaching open source (who offered mutual support and years of experience).

 For most of Term 1, I had a standing weekly call with the two other faculty members

 embedding their students in the debugger.html project – and I kept in close contact

 with the Mozilla developers via Slack throughout both terms. This mentorship helped

 me to maintain a growth mindset as I guided students through unfamiliar content and

 processes; I often needed to remind both myself and my students that my role in the

 course was to guide rather than to instruct them.

 70

 For the above reasons, I emphatically recommend reaching out to others teaching

 with open source, as well as securing mentorship for your students within your

 chosen project.

 3.6 Future Work

 Although I am confident that students learned more in the second offering of the

 course, assessing actual student learning in open source is challenging. In the case of

 this course, each student entered with a different level of experience, and it was

 important to me that students make progress relative to their own starting points.

 Blogs allowed a window into each student’s process, but most students did not seem

 motivated to complete these assignments thoughtfully nor in a timely fashion.

 Students echoed these sentiments in their course evaluations, along with an explicit

 desire to be assessed on their technical contributions. Adding an assessment of

 students' concrete technical contributions would serve as a good motivator in future

 offerings. Students, in fact, wrote openly about this in their course evaluations:

 “It's a lot easier, psychologically, to work hard on the blog posts and written

 assignments, because they were graded. It's hard to get working on the coding

 and researching because it's not directly graded, and it wasn't hard to do a

 little bit and then write an enthusiastic blog post that gets full points.“

 71

 “When choosing between a graded assignment in one class and an ungraded

 assignment in [this course], it's very hard to not choose the graded one. The

 only way to combat this is to somehow make the open source work graded. I

 don't know how this could be done. But as long as the only graded work in

 this class is the blogs and writing assignments, it will be too easy to slack off

 on the open source work.“

 Although I perhaps define success and learning in broader ways than my students, it

 seems that adding an assessment of their concrete technical contributions would serve

 as a good motivator for them to expend time in that arena.

 Given the positive response from our single standup scrum video call in Term 2, I

 believe scheduling those meetings more frequently would be beneficial – and the

 developers volunteered to do so in a future course offering.

 Finally, a term-length course is barely long enough for students to dip their toes into

 an open source project. Many students have indicated interest in continuing their

 involvement in debugger.html and I would love to advocate for this to become an

 option for satisfying the department’s senior project requirement.

 3.7 Summary

 Open source is an uncertain and constantly shifting landscape within which to situate

 an undergraduate class – but the benefits are vast when well-executed. It is tricky to

 72

 get right; despite my participation in professional development workshops and

 connection with more experienced colleagues, students in the course's first offering

 were less successful than I would have preferred. The second offering resulted in

 substantially higher student success and I believe these gains were attributable

 primarily to thoughtful team formation, structuring unfamiliar tools and technologies,

 and professional mentorship. I hope that these findings are of use to others setting out

 to teach similar courses.

 73

 4 | A Case Study in Expanding Access to
 Electronic Textiles: The LilyTiny

 Ten years ago, and as part of my master's thesis, I designed a simplified sewable

 microcontroller based on the LilyPad Arduino toolkit and released a companion

 project-based e-textile curriculum along with it. This work was motivated by the

 inaccessible cost and complexity of teaching introductory electronics and

 programming at the time, despite the potential for these activities to appeal to

 historically minoritized populations and potentially help build self-efficacy.

 The resulting circuit board is known as the LilyTiny and is now commercially

 available through collaboration with SparkFun Electronics. Taking advantage of the

 resistance inherent in conductive thread, the LilyTiny simply breaks out each pin of

 an ATtiny85 microcontroller which is preprogrammed with a variety of light

 behaviors. Depending on how they are connected, the LilyTiny can drive an LED to

 blink, randomly twinkle, fade on/off in a heartbeat pattern, or fade on/off in a

 breathing pattern. The LilyTiny may also be reprogrammed by the user, thus

 expanding its utility to teach both circuit-building and programming skills.

 In the time since the release of the LilyTiny (as a commercial product) and an

 accompanying workshop guide, I turned my focus to other projects, doing little to

 promote their adoption. My dissertation research returns to this body of work,

 74

 specifically to examine what happened during that time period; did the release of

 these resources "into the wild" improve access to e-textiles, as I had hoped?

 4.1 Introduction

 Electronic textiles, also known as “e-textiles” or “soft circuits", are electrical circuits

 created using flexible conductive materials (such as conductive threads and fabrics) in

 conjunction with discrete electronic components (such as lights, batteries, switches,

 and sensors). This domain has long been gaining traction as a creative and

 approachable avenue into computing; utilizing craft materials and techniques, it

 invites diverse participation, broadens perceptions of what electronics and computing

 are "good for", and supports the creation of a very different kind of artifact when

 compared with traditional electronics prototyping materials [17] .

 The LilyPad Arduino was introduced in 2008 as a commercially available e-textile

 toolkit, enabling anyone to build their own soft, wearable, sewn – and programmable

 – circuits [14, 15] . In the years to follow, Adafruit released a similar toolkit, known as

 the Flora [128] . In addition to supporting individual artists and makers in realizing

 personal projects, these toolkits also opened up the possibility of teaching electronics

 and programming with e-textiles. Indeed, research has found this to be a fruitful

 avenue for broadening participation in computing, teaching electronics and

 75

 programming, and inspiring a new class of beautiful, computational, and personal

 artifacts [56] .

 Despite these successes, I observed critical resource gaps preventing widespread

 adoption of e-textile learning activities, especially at the K-12 level. In particular, I

 noticed that many educators did not have access to the budget required to secure

 relevant tools and materials at scale. Additionally, I noted a lack of instructional

 materials to support educators in preparing for and facilitating such activities.

 I also noticed a scaffolding "valley" between simple projects involving only lights,

 batteries, and sewn connections – and more advanced projects leveraging the

 programmable LilyPad Arduino. I designed the LilyTiny in an attempt to bridge this

 valley; each LilyTiny is pre-programmed with several LED behaviors, inviting

 conversation about the power of computation without requiring students to write (or

 even understand) code.

 This chapter summarizes my experience developing a low-cost sewable

 microcontroller, known as the LilyTiny, and a workshop guide to support it – work

 undertaken to address the aforementioned resource gaps in hopes of broadening

 access to e-textiles. I also share the results of my inquiry into the impact of this work,

 several years having elapsed since I created the LilyTiny – now a commercial product

 sold by SparkFun Electronics. My investigation includes a survey of derivative

 76

 products, a multi-year analysis of sales data, and examination of customer reviews

 and projects.

 4.2 Related Work

 The development of the LilyTiny was made possible by years of prior research in

 physical computing, electronic textiles, and education.

 Physical Computing

 In the realm of physical computing, two projects in particular directly paved the way:

 the Arduino electronics prototyping platform and, later, the sewable LilyPad Arduino.

 Arduino was initially developed to enable rapid prototyping without specialized

 engineering expertise [85] . The LilyPad toolkit extended this functionality to a textile

 context, thereby inviting participation from diverse populations as well as enabling

 the creation of soft, beautiful, computational artifacts [14, 15, 17] . Both of these

 projects pioneered the now-ubiquity of physical computing – not only by their very

 design, but also by their mass availability and pricing suitable for hobbyists, artists,

 and students. They both leverage an open source hardware (also known as "open

 hardware") model, allowing others to modify the PCB layouts for personal use or

 derivative products. My work extends these efforts, attempting to make e-textiles

 more accessible and affordable to a broader audience.

 77

 Electronic Textiles & Computing Education Research

 The LilyPad Arduino has been extraordinarily successful in leveraging handcraft

 practices and materials to draw in demographics historically excluded from

 engineering (most notably, women). This has been evidenced by a much larger

 proportion of the LilyPad Arduino market share being female purchasers when

 compared to the classic Arduino – and by an emerging design community at the

 intersection of aesthetics, craft, and computation [17] .

 Significant work has also gone into the development of curriculum to support

 adoption of the LilyPad Arduino [14, 16, 43, 58, 59, 116] . This work affirms how

 highly I valued developing curriculum to support the LilyTiny hardware.

 Ngai, et al. have developed two modular platforms for wearable computing, TeeBoard

 and i*CATch, to bring computational textiles into the classroom and teach basic

 programming [99–101] . More recently, Hill, et al. introduced the ThreadBoard, for

 rapid prototyping of e-textile circuits [45] . These projects represent critical strides in

 the mission to expand educational access, although these tools are not yet available to

 the general public.

 In parallel to the development of new e-textiles tools and kits, there has been a great

 deal of research into the impact of teaching with e-textiles. For example, studies have

 demonstrated the utility of e-textiles as a means to develop students'

 STEM/technological self-efficacy, teach debugging, develop computational thinking,

 78

 experiment with aesthetics, and create culturally relevant artifacts [34, 57, 58, 60, 77,

 122] . This body of work has inarguably established the value of e-textiles as an

 avenue for effectively broadening participation in computing, especially at the K-12

 level and in after-school settings [19, 56] . Broader impact of this work has been

 limited, in part, by the funding required to secure necessary tools and materials, as

 well as access to a variety of instructional resources to support educators. I directly

 sought to address these limitations.

 Instructional Design for K-12 STEM

 Experienced educators and organizations have been disseminating resources for

 STEM learning long before e-textiles activities came to be. In particular, WGBH (a

 PBS affiliate, now known as GBH) has a long history of publishing K-12 activity

 guides for use in classrooms and at home. (The Design Squad guides are an excellent

 example of this [107, 135] .) The National Center for Women & Information

 Technology (NCWIT) also offers "in-a-box" programming on topics including

 computer science "unplugged" (in-person, off-screen activities), outreach, and pair

 programming [97] . The design of my workshop guide drew heavily on the format of

 these successful resources, expanding their domain coverage to include e-textiles.

 (NCWIT has since released an "e-Textiles in-a-Box" program [33] .)

 79

 Independent Learning Resources for E-Textiles

 In addition to resources for educators, there has been an explosion of resources for

 individuals to independently learn new skills or complete projects related to making,

 crafting, and prototyping. At the time that I developed the LilyTiny, a handful of

 project-based e-textiles books had been released: Fashioning Technology, Switch

 Craft, Fashion Geek, and Open Softwear [32, 63, 102, 105] . Around the same time,

 MAKE Magazine – and the shorter lived CRAFT Magazine – were gaining

 popularity as monthly publications, containing example projects, relevant

 news/products, and profiles of prominent makers/crafters. Since the development of

 the LilyTiny and accompanying curriculum, two additional DIY e-textiles books have

 been released: Make: Wearable Electronics and Sew Electric (the latter containing an

 activity featuring the LilyTiny) [20, 41] .

 In addition to print resources, the internet has been host to a number of free, digital

 DIY resources over time; websites like Soft Circuit Saturdays and How To Get What

 You Want have reflected independent efforts to share e-textiles resources [50, 126] ,

 while structured tutorials have offered guidance to independent learners in the

 craft/technology realm [61, 62, 71] . Instructables has served as a valuable platform

 for many of these, especially as leveraged by prominent e-textiles artists/makers like

 Becky Stern and Hannah Perner-Wilson [51, 52] . SparkFun Education has expanded

 80

 these offerings in recent years, in particular supporting the LilyTiny with detailed

 documentation and tutorials [127] .

 My work builds on the success of many of the aforementioned projects, with an

 emphasis on lowering prevailing barriers of cost and know-how, while uniquely

 striving to support educators guiding many learners in parallel.

 4.3 Design & Development

 The LilyTiny and accompanying workshop guide were created to address known

 barriers to broader adoption of e-textiles in educational settings. In designing these

 materials, I sought to overcome challenges of cost, know-how, and also to provide a

 bridge to integrating computation and learning about microcontrollers without having

 to program. It was my hope that this work would expand access to electronic textiles

 as a creative way into computing.

 The LilyTiny

 My goal for the LilyTiny was to create a sewable microcontroller at a much lower

 price point than the LilyPad Arduino, and one which arrives pre-programmed,

 allowing users to incorporate computation in their projects without writing code. I

 designed around the ATtiny85 microcontroller because it is very inexpensive, yet is

 powerful enough to support pre-programmed behaviors such as light patterns. My

 breakout board was based on the LilyPad Arduino accelerometer board layout, which

 81

 is open source and available under a Creative Commons License. The LilyTiny is

 about the size of a quarter.

 I used a milling machine to make the first prototype of the breakout board (see Figure

 4.1). ATtiny chips were soldered by hand to each milled board, after which the broken

 out pins ("petals" in LilyPad terminology) were color-coded with permanent markers.

 I programmed these early prototypes one-by-one using an early prototype of

 SparkFun's Tiny AVR Programmer which attached to the petals of each board using

 alligator clips.

 Figure 4.1. LilyTiny prototypes, from left to right: initial milled circuit board, custom-ordered factory
 board, final commercial product (sold by SparkFun Electronics).

 After these boards were manually tested and successfully used in a pilot workshop, I

 placed a custom order with a circuit board manufacturer. This version included

 appropriately labeled pins and was more reliable than the first. This time, I used batch

 reflow soldering to affix the ATtiny chips, after which the boards were again

 programmed individually with a Tiny AVR Programmer prototype.

 82

 Following testing and an additional pilot workshop, we partnered with SparkFun

 Electronics to release the LilyTiny commercially as part of the LilyPad Arduino

 toolkit line of products. (My advisor, Leah Buechley, and labmate, David Mellis,

 guided this process.)

 All versions of the LilyTiny prototype were programmed with the same Arduino

 code, allowing a user to access four different light patterns depending on which

 output pin/petal they sew an LED to. These include: blinking on/off, a breathing

 pattern, a heartbeat pattern, and a random twinkle pattern. I chose to pre-program the

 boards in this way to invite discussion of computation without the user having to

 write or understand code, meanwhile offering out-of-the-box access to creative and

 computationally interesting behaviors. This filled a gap at the time between

 lower-tech projects involving only LEDs and batteries – and more complicated

 projects leveraging a LilyPad Arduino which must be programmed before use.

 For more advanced users, the LilyTiny offers a lower-cost means of incorporating

 computation into a project, as it can be reprogrammed using a Tiny AVR Programmer

 and the Arduino software.

 The LilyTiny debuted for sale through SparkFun for about $10, but its price has

 hovered closer to $5 for the majority of the years since introduction. This makes it

 possible for educators to consider purchasing in bulk for workshops or classrooms.

 83

 Companion Curriculum

 To support adoption of the LilyTiny, especially amongst a target audience of

 educators, I developed and self-published a companion workshop curriculum entitled

 Getting Hands-on with Soft Circuits . I made this curriculum available for free on the

 internet and also for ordering in hard copy format.

 This curriculum was designed as a standalone resource, providing just enough

 on-demand information for educators/facilitators to guide students through an

 informal activity. This includes necessary know-how relating to both sewing/crafting

 and to electronics.

 The curriculum includes a series of five workshop activities leveraging e-textiles as a

 means to explore circuits and computation, some of which are shown in Figure 4.2.

 These activities are designed in sequence, such that each activity builds on the

 concepts of those preceding it – but also such that one could choose different

 activities to workshop, depending on prior experience. Activities 4 and 5 make use of

 the LilyTiny, with the preceding activities building foundational e-textile skills.

 Figure 4.2. Sample activities from the workshop curriculum.

 84

 Each activity includes a photo of an example project, a list of tools and materials, a

 summary/overview, a list of learning goals, and directions on how to prepare for and

 facilitate the activity. When relevant, activities also include support materials, such as

 templates or handouts that can be given to students. Each project was designed to be

 doable in a two or three hour session, with the exception of the final activity which is

 better suited to a half-day workshop.

 Activities 1 through 3 build foundational e-textile skills: an introduction to circuits

 with conductive thread, a primer on switches and how they control electrical flow,

 and an overview of parallel circuits and how they enable one battery to power

 multiple lights.

 Activities 4 and 5 provide a high-level introduction to microcontrollers and the

 concept of programmability – without having to read or write code. In these activities,

 participants create light-up patches, using the pre-programmed LilyTiny to control the

 behavior of an LED (blinking, fading, twinkling, or heartbeat). This is first done

 individually, and then as part of a collaborative electronic patchwork quilt.

 All of the activities were designed around low-cost, easily obtainable materials. These

 include craft notions (acrylic felt, sewing needs, snaps, beads, etc.) as well as

 off-the-shelf electronics components (such as through-hole LEDs, coin cell batteries,

 and battery holders). These items can all be sourced for less than 50 cents apiece. The

 85

 only tools required for these activities are readily available, such as needle nose

 pliers, scissors, and hot glue guns.

 The workshop guide also includes a troubleshooting flowchart, a curated list of

 low-cost tools and materials, and pointers to additional print and online resources

 relating to soft circuits.

 After the release of the workshop guide, I co-developed one more LilyTiny-powered

 activity with collaborators Natalie Freed and Jie Qi. This activity is entitled Plush

 Monsters: Creatures with Character . Originally developed for a large-scale workshop

 at the 2011 Grace Hopper Celebration of Women in Computing, we self-published

 this activity online afterwards [76] . The activity may be used as an add-on or

 independent of the workshop guide, as it includes its own curricular materials as

 shown in Figure 4.3. (The layout of the workshop guide is very similar.)

 Figure 4.3. Select pages from the plush monster activity, which utilizes the LilyTiny.

 86

 Pilot Testing

 Design of the LilyTiny and curriculum were guided by two pilot workshops run in

 parallel with the development process. These workshops were arranged in

 collaboration with an outreach center on MIT's campus and enrolled volunteer

 homeschool students who were already familiar with basic circuits. Over a two-hour

 session, facilitators taught students to create a light-up patch with an LED whose

 behavior is controlled by a LilyTiny, using Activity 4 from the workshop guide.

 Students participating in these workshops were familiar with basic circuits and

 electronic components – a similar level of understanding to that which is covered in

 the guide’s first three activities.

 I taught the first workshop using the earliest milled version of the LilyTiny. A total of

 16 students between the ages of 11 and 16 participated (10 female, 6 male). 12 of the

 16 students were successful in getting their LilyTiny to control an LED. Two of these

 students finished early and added additional lights to their circuits in parallel

 configuration. All of the students were offered the option of taking conductive thread

 and/or additional LEDs home to complete or augment their projects.

 This workshop revealed a few areas for improvement – for example, sourcing more

 durable materials and fine-tuning techniques for novice sewing with conductive

 thread. These informed a revision of the curriculum and during this time, I also

 procured the second version of the LilyTiny circuit boards.

 87

 In order to test the usability of the materials by a third party, the second workshop

 was taught by an outside educator. I provided all of the physical materials, but asked

 her to teach the workshop using only the curriculum as a guide. 10 students

 participated in this workshop, between the ages of 11 and 14 (4 female, 6 male). I was

 present to observe this workshop, during which all participants were successful in

 sewing a patch containing a LilyTiny-controlled LED. Additionally, several students

 went beyond connecting one light to their microcontroller, adding additional lights

 with alternate behavior. This second workshop was reassuring that the curriculum

 adequately supported an accessible and scalable learning experience using the

 LilyTiny.

 In addition to my own observations, I solicited extensive feedback from the educator

 who taught the second workshop, as well as from an expert STEM activity guide

 developer. This was invaluable in making revisions.

 I also solicited feedback from students through surveys at the end of each workshop.

 Responses indicated consistency across the two workshops in terms of length,

 difficulty, and pace. This was preliminarily indicative that the instructional materials

 were transferable. When asked about future workshops, several students indicated

 specifically that they would like to learn how to program the microcontrollers

 themselves, or suggested projects that would likely require programming.

 88

 4.4 Measuring Impact

 In an effort to understand the impact of the LilyTiny in the years that have elapsed

 since it was first introduced, I conducted a followup study involving a survey of

 derivative products, analysis of sales data, and a sampling of product reviews.

 Although SparkFun has repackaged the hardware in various ways, I have done little

 to promote adoption of the LilyTiny; thus, I believe my findings to be a true reflection

 of whether these research innovations met an educational need and had impact in the

 wild.

 Derivative & Follow-on Products

 I surveyed the marketplace for low-cost sewable microcontrollers released over the

 past ten years. A handful of related and derivative products are shown in Figure 4.4.

 Figure 4.4. Derivative and follow-on sewable microcontroller boards. From left to right: LilyTwinkle
 ProtoSnap, Gemma, an unbranded clone, and the LilyPad LilyMini.

 At the time that the LilyTiny came to market through SparkFun, a sister product was

 also released, known as the LilyTwinkle. The LilyTwinkle hardware is identical to

 that of the LilyTiny; the only difference between the two products is that the

 LilyTwinkle ships with a different Arduino program. Instead of each Lily petal

 89

 offering a different light behavior as with the LilyTiny, all of the petals twinkle lights

 at different rates. While the LilyTiny was designed to invite conversations about

 computation in educational settings, the LilyTwinkle is nicely suited to creating

 sparkling wearable projects – presumably appealing to a broader audience. In addition

 to these standalone products, SparkFun bundled the LilyTwinkle into a few different

 kits and form factors, including: a Firefly Jar kit to create a twinkling felt mason jar, a

 ProtoSnap kit allowing testing of the board prior to sewing, and an E-textiles Basics

 Lab Pack to support classrooms.

 A little over a year after the release of these two products, Adafruit released the

 Gemma sewable microcontroller [54] . Like the LilyTiny, the Gemma also aims to be

 a smaller, more affordable version of it's full-scale, higher-priced counterpart, the

 Flora. The Gemma has undergone several revisions, evolving to focus on

 reprogrammability and now featuring an upgraded chip, mini-USB connector,

 on-board on/off switch and RGB LED. It currently retails for about twice the cost of a

 LilyTiny, at around $10. The pre-loaded code is not well-documented nor marketed as

 a selling point, but it does ship with example code.

 More recently, in 2016, SparkFun released the LilyPad LilyMini, another small

 sewable microcontroller which arrives pre-programmed, uses an upgraded chip, and

 includes an on-board coin cell battery holder. Although the program it ships with

 90

 offers more interactivity than the LilyTiny and LilyTwinkle, it is sold at a higher price

 point ($16) and is much more difficult to reprogram.

 A number of other sewable ATtiny85 breakout boards have been released in recent

 years. These boards are similarly bite-sized and typically manufactured using purple

 solder mask, like the original LilyTiny. However, these products feature a somewhat

 different arrangement of pins/petals and an on-board USB connector. They are sold

 under a variety of unbranded names such as "LilyTiny ATtiny85 Development

 Board", "MicroUSB LilyTiny", and "CJMCU LilyTiny". Although I was not involved

 in their development, the choice of naming leads me to believe they were directly

 inspired by the LilyTiny. These boards do not necessarily ship with any example code

 installed, requiring the user to make some modifications to the Arduino IDE in order

 to initially program them. These boards retail for $1-15 and are widely available from

 a variety of sellers on eBay, Amazon, and Alibaba.

 The LilyTiny was born out of open source hardware development, as were all of the

 aforementioned related boards. While it is not uncommon for someone to clone or

 create a derivative version of a useful circuit board, I believe that the number and

 variety of products following in the footsteps of the LilyTiny are testament to a

 market need for a small, low-cost, sewable microcontroller – especially when

 compared with the more full-featured LilyPad Arduino and Flora. It is worth noting,

 however, that the only boards advertised with their pre-loaded programs as a feature

 91

 are the LilyTiny and LilyTwinkle. I believe this to be a particular asset and selling

 point for educational settings, as out-of-the-box functionality makes teaching

 time-constrained workshops/activities much more feasible. This feature also allows

 the introduction of computational behavior without the requirement to write code or

 navigate the Arduino upload/reprogramming process.

 Sales Data

 Next, I set out to understand the LilyTiny's impact on users. I use sales data as a

 proxy for adoption and investigate LilyTiny's position within the market; whether it

 has been successful since its commercial debut, and whether this has shifted with the

 release of similar products. My MIT advisor and creator of the LilyPad Arduino,

 Leah Buechley, helped me to obtain eight years of sales data directly from SparkFun,

 dating from the release of the LilyTiny and LilyTwinkle in July 2012 through the start

 of this investigation in June 2020. Because SparkFun is the only manufacturer of the

 LilyTiny and all LilyPad Arduino products, this data encompasses all sales, including

 those made direct-to-consumer and those made to distributors/resellers.

 I first wanted to check whether our hardware has sold well as a commercial product.

 Indeed, it has; over this eight-year period, a total of 81,227 of our breakout boards

 (LilyTiny and LilyTwinkle combined) were sold. This includes boards sold

 individually as well those sold as part of a kit or lab pack. Our hardware shipped to 80

 different countries across nearly 10,000 orders. The United States generated the

 92

 highest number of orders, followed by Australia, Canada, and the United Kingdom in

 that order. Both products leveraging our hardware have sold steadily as shown in

 Figure 4.5, each averaging over 5,000 units sold per year. I think these numbers make

 clear that our breakout board is satisfying a real user need – and continuing to do so

 long past the introduction of competitor products.

 Figure 4.5. LilyTiny and LilyTwinkle monthly sales, showing sustained market interest over many
 years.

 Second, I wanted to check the hypothesis that a very basic board with pre-installed

 software is a useful intermediary between simple circuits and more complex boards

 requiring programming. To do this, I looked at sales data across the entire set of

 sewable microcontrollers offered by SparkFun. Figure 4.6 shows market share for

 each individual product, kit, or lab pack. To my surprise, the individually packaged

 LilyTiny was the single most ordered sewable microcontroller during the eight year

 time period that I examined. However, many products are related to one another

 through upgrades or repackaging, and thus I grouped these products into conceptual

 families. Even after grouping, the LilyTiny/LilyTwinkle board was purchased as often

 as boards in the much more capable LilyPad Main family, with the

 93

 LilyTiny/LilyTwinkle board representing 46% of sales. This seems to validate that a

 cheaper simpler board has value to a substantial number of users.

 Figure 4.6. SparkFun sewable microcontroller sales, July 2012 through June 2020. Note that the
 LilyPad LilyMini was not introduced until 2016. Each color represents a different product family. Each
 pie slice represents a different product release (i.e. LilyPad Arduino 328 Main Board, LilyPad Arduino
 Simple Board, Firefly Jar kit, etc.). Kits are categorized by which board they include.

 The data in Figure 4.6 also allows for comparison of sales between the LilyTiny and

 the LilyTwinkle. This is important to consider, as I designed the LilyTiny and its

 supporting curriculum with the intent of reaching educators – while the LilyTwinkle

 is likely to appeal to a more general audience. I had guessed that the hobbyist focus

 and additional marketing variations would have made the LilyTwinkle more popular.

 However, to my surprise, the LilyTiny has sold twice as many standalone boards as

 the LilyTwinkle – and about the same number of total units when considering all kits

 containing the LilyTwinkle. I believe this finding affirms that a board released with

 94

 appropriate curriculum and pre-programmed code, supporting the introduction of

 computation, invites broad adoption.

 Finally, I wanted to know if the LilyTiny is being used by educators; that is to say,

 whether it has reached my intended market. The sales data doesn't directly specify

 who is purchasing boards, but it does tell us the quantity purchased in each order.

 Individual hobbyists probably buy a few boards at most, while educators typically

 buy in quantity appropriate for classrooms or workshops. (For this analysis, I

 excluded distributor orders since I am interested in individual purchasing patterns.)

 Figure 4.7 reports on order quantities for each product family. Indeed, a much greater

 percentage of LilyTiny orders include multiples of the product and the average units

 per order is higher, when compared to the LilyPad Main family, LilyTwinkle, and

 LilyPad LilyMini. This is true despite the fact that the LilyTwinkle and LilyPad Main

 boards were explicitly marketed in "lab packs" of ten units. I believe this provides

 evidence that the LilyTiny, with its choice of assorted programmed light behaviors

 and supporting curriculum, is likely being used for teaching more frequently than the

 more complex LilyPad LilyMini and LilyPad Main boards – or even its sister product,

 the LilyTwinkle.

 95

 Figure 4.7. SparkFun sewable microcontroller ordering patterns, after adjusting for lab packs which
 contain multiple boards. Notice that a much greater percentage of LilyTiny orders include quantities of
 the board suitable for teaching.

 Taken altogether, the sales data seems to support the ongoing impact of the LilyTiny.

 It is especially notable that the LilyTiny has undergone no major revisions, nor has it

 been sold as part of a kit or lab pack during its lifetime. While the lack of revisions

 may be attributable to the simplicity of the hardware and software, it is nonetheless

 rare to be able to purchase a device maintaining compatibility with any support

 resources developed in its lifetime. I believe that this stability is crucial for

 educational adoption.

 Customer Reviews and Projects

 To complement the analysis of sales data, I wanted to get a sense of customers' actual

 experiences with the LilyTiny. First, I surveyed all of the LilyTiny product reviews on

 SparkFun's website, which are submitted by verified customers. I then preliminarily

 surveyed social media to see what kinds of artifacts individuals are making with the

 LilyTiny. I did this by searching both Twitter and Instagram for public tweets/posts

 tagged with "#lilytiny".

 96

 A first glance reveals that the LilyTiny is being used for a variety of hobbyist

 projects. A few examples may be seen in Figure 4.8.

 Figure 4.8. Hobbyist projects using the LilyTiny (clockwise from upper left): an e-textile logo,
 embellished headbands, and a sock monkey with a glowing heart.

 97

 These projects are supported by customer reviews which speak to the utility of the

 LilyTiny for hobbyist projects, both because it is easy-to-use and because it is

 affordable:

 "... It is a great board in a small form factor. Very easy to use, works well... I

 recommend this to anyone - you can't go wrong."

 "... Perfect size and power for some of my projects... Highly recommended,

 especially since they are so inexpensive."

 I also found that the LilyTiny is being used specifically for projects involving

 handcraft and fine art. A few examples appear in Figure 4.9. This application is also

 supported by customer reviews like the following:

 "Just returned from teaching a class for the Southeast Fiber Forum

 Association... The students were all new to e-textiles... Everyone went away

 knowing how to finish the stitching at home and a little about circuitry thanks

 to this great product. All are excited about the possibilities for adding

 electronics to their fiber art."

 98

 Figure 4.9. Art and craft projects using the LilyTiny (clockwise from upper left): an embroidered
 bracelet, a knit bracelet, and a mixed media art piece.

 I had hoped that the LilyTiny might provide an affordable stepping stone between

 novice projects and the broader world of Arduino programming, and for some users

 this does seem to be the case. The following customer reviews speak to the LilyTiny's

 versatility in this regard:

 "This is a great little board... I figured out how to reprogram it to do what I

 needed. It's not too hard... Great price too!"

 99

 "Easy entry point - no regrets! I bought a LilyTiny to power my first project

 using wearables... The pre-programmed functions took away a layer of

 complexity and let me just focus on learning how to set up a wearable circuit."

 "I've learned the LilyTiny is a great little programmable chip, to me it's a

 mini-Arduino... It is possibly the smallest form-factor for a Blinky LED circuit.

 Now I program the Tiny myself…"

 Figure 4.10 shows two examples of projects for which the creators have managed to

 reprogram the LilyTiny.

 Figure 4.10. Evidence that some LilyTiny users are choosing to reprogram their boards (left) and are
 successful in doing so (right).

 Lastly, and most importantly to my own goals for the project, there is ample evidence

 that the LilyTiny is being used for teaching. Some examples of customer reviews to

 support its value in this arena:

 100

 "Just using this as is was a simple project with cool results. I am hoping to use

 these for a new tinkering club at my school. Fun way to get kids excited

 without being intimidating."

 "We ran an event at our makerspace, to introduce folks to wearable

 electronics... and this item was exactly what we needed. The price is perfect,

 the simplicity of it is perfect, and it's a sturdy, well functioning little product.

 Very pleased and will be ordering hundreds more in the future, I'm sure."

 "The Lily Tiny is great for teachers: it is not as cost prohibitive as other

 microcontrollers and is pretty user friendly for beginners but still allows a

 programming option to add a challenge."

 Figure 4.11 shows an assortment of social media posts showcasing the LilyTiny's use

 in workshops and classes across a variety of venues.

 Although more in-depth research is warranted, I believe that these customer reviews

 and artifacts affirm that the LilyTiny is helping to expand access to computational

 textiles. This early evidence suggests that the board offers an affordable entry point

 for hobbyists, is capable of supporting users in the transition from simple to complex

 projects, and is reaching my target audience of educators.

 101

 Figure 4.11. Evidence of teaching with the LilyTiny, including offerings at camps, libraries, and K-12
 schools.

 102

 4.5 Future Work

 While this chapter provides an overview of market impact, I plan to continue these

 investigations to paint a richer picture of how this hardware is being used. A survey

 of follow-on curriculum and academic research will deepen understanding of

 educational use at the macro level, complemented by surveys or interviews with

 educators/facilitators who have used our hardware. I also plan to conduct further

 analysis of LilyTiny artifacts, to better understand the character of projects enabled by

 this work.

 4.6 Summary

 Ten years ago, I set out to develop, pilot, and release a hardware tool and curriculum

 to support broader educational adoption of e-textile activities. This case study affirms

 that our hardware has addressed a pressing market need, as evidenced by a variety of

 follow-on products and several years of sales data. Additionally, exploration of

 ordering patterns and customer reviews is highly suggestive that the LilyTiny is being

 used in educational settings.

 103

 5 | Conclusion

 Looking back now on 15 years of my own research, teaching, and tool/curriculum

 design, the thread through it all has been a desire to make computing more accessible

 to those not historically invited into the "clubhouse". To do so requires making

 computing more inclusive ; to experiment with new approaches and materials, to

 celebrate different ways of learning, knowing, and making, and to prod the

 ever-shifting boundaries between computer science and adjacent fields. As a

 researcher-practitioner, my work has sought to broaden participation in computing

 through extensive fieldwork in education, the highlights of which constitute this

 dissertation.

 I have detailed two complementary courses I designed at the margins of collegiate

 offerings: Craft of Computing , which aims to attract a diversity of first- and

 second-year students to computing, and Open Source Software Engineering , which

 seeks to retain a diversity of upperclassmen through graduation and into computing

 careers beyond. While more targeted analysis is required to better understand

 students' pathways beyond these courses, evidence so far suggests that they piqued

 students' interest in new domains, while positively influencing their confidence,

 identity, and belonging.

 104

 I have also revisited my own prior work in tool/curriculum design for informal

 learning, conducting follow-on analysis for the LilyTiny sewable microcontroller and

 accompanying workshop guide. This analysis showed that an inexpensive and stable

 tool, coupled with freely available instructional resources, can indeed achieve

 widespread adoption in a market suggestive of novice and educational use – even

 when challenged by the release of similar and competitor products.

 All of these efforts have been driven and shaped by endless conversations with

 students and educators; I believe the success of my work is a direct testament to the

 importance of these voices in the design process, along with an iterative approach

 where continuous feedback is welcomed. I hope that this dissertation helps to affirm

 the value of interdisciplinary research and teaching towards broadening participation

 in computing, as the need for this very much persists.

 105

 Appendix A | Definitions & Acronyms

 C&C: The ACM Conference on Creativity & Cognition.

 CS0: Computer Science 0. Common way of referring to a topical computer science

 course open to non-majors – and often used to attract a diversity of students to

 computing. Such a course may or may not count towards computer science degree

 requirements. CS0 courses are often structured either as a survey of the field,

 combining very introductory programming with an overview of topics like security,

 ethics, and data science – or as an applied introduction to computing within a specific

 domain (e.g. robotics, game design, design, etc.).

 CS1: Computer Science 1. Common way of referring to the first required course in

 any computer science department (toward a computer science degree). Typically this

 is an introductory programming course in a language such as Python or Java.

 CS2: Computer Science 2. Common way of referring to the second required course in

 any computer science department (toward a computer science degree). Typically this

 is a data structures course.

 E-sewing: electronic sewing; the process of sewing with electrically conductive

 materials (usually to create a soft circuit , see below).

 E-textiles: electronic textiles; fabric artifacts that contain soft, embedded circuitry.

 106

 Educators : not only classroom teachers, but also workshop facilitators and leaders of

 summer camps or outreach programs.

 FIE: The IEEE Frontiers in Education Conference.

 FOSS: free and open source software.

 GHTC: The IEEE Global Humanitarian Technology Conference.

 HFOSS: humanitarian free and open source software.

 ICER: The ACM Conference on International Computing Education Research, a

 single track research conference held annually (held in locations both domestic and

 abroad).

 IDC: The ACM Interaction Design and Children Conference.

 LMS: Learning Management System.

 MIT: Massachusetts Institute of Technology.

 Multimedia: The ACM Annual Conference on Multimedia.

 POSSE: Professors' Open Source Software Experience.

 SIGCSE: The ACM Special Interest Group on Computer Science Education, also

 shorthand for this group's annual conference/symposium which gathers computing

 107

 education researchers and practitioners from around the world (held in the United

 States).

 Soft circuit : a flexible electrical circuit constructed on the surface of (or embedded in)

 textiles. Such a circuit may be created using a variety of soft conductive materials

 (such as conductive threads and fabrics) in conjunction with discrete electronics

 components (such as lights, batteries, switches, and sensors).

 UCSC: The University of California at Santa Cruz.

 UIST: The ACM Symposium on User Interface Software and Technology.

 108

 Appendix B | Computing Education
 Seminar Resources

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 Appendix C | Berea College Course Syllabi

 119

 120

 121

 122

 123

 124

 125

 126

 127

 128

 129

 130

 References

 [1] Agrawal, R., Springer, A. and Lovell, E. 2015. QuickResponseHost: Enabling
 crowdsourced disaster response stations. 2015 IEEE Global Humanitarian
 Technology Conference (GHTC) (Oct. 2015), 233–239.

 [2] Alfieri, L., Brooks, P.J., Aldrich, N.J. and Tenenbaum, H.R. 2011. Does
 discovery-based instruction enhance learning? Journal of educational
 psychology . 103, 1 (2011), 1.

 [3] Arduino: https://www.arduino.cc/ . Accessed: 2020-06-15.

 [4] Astrachan, O., Barnes, T., Garcia, D.D., Paul, J., Simon, B. and Snyder, L.
 2011. CS principles: piloting a new course at national scale. Proceedings of the
 42nd ACM Technical Symposium on Computer Science Education (2011),
 397–398.

 [5] Bacon, J. 2012. The art of community: Building the new age of participation .
 O’Reilly Media, Inc.

 [6] Bandura, A. 1982. Self-efficacy mechanism in human agency. American
 psychologist . 37, 2 (1982), 122.

 [7] Bandura, A. 1977. Self-efficacy: toward a unifying theory of behavioral
 change. Psychological review . 84, 2 (1977), 191.

 [8] Bandura, A. and Wessels, S. 1994. Self-efficacy. na.

 [9] Beyer, K. 2012. Grace Hopper and the invention of the information age .
 Lemelson Center Studies in Inv.

 [10] Braught, G. 2021. Support for Broadening Participation though Humanitarian
 Free and Open Source Software. Proceedings of the 52nd ACM Technical
 Symposium on Computer Science Education (2021), 1306–1306.

 [11] Braught, G., Maccormick, J., Bowring, J., Burke, Q., Cutler, B., Goldschmidt,
 D., Krishnamoorthy, M., Turner, W., Huss-Lederman, S., Mackellar, B. and
 Tucker, A. 2018. A Multi-Institutional Perspective on H/FOSS Projects in the
 Computing Curriculum. ACM Transactions on Computing Education . 18, 2
 (Jul. 2018), 7:1-7:31. DOI:https://doi.org/10.1145/3145476.

 [12] Bridging the Computer Science Access Gap (Infographics) (August 2016):
 https://ecs.secure.force.com/studies/rstempg?id=a0r0g000009TLeI . Accessed:

 131

 2021-12-07.

 [13] Brown, M. 2013. CS0 as an indicator of student risk for failure to complete a
 degree in computing. Journal of Computing Sciences in Colleges . 28, 5 (2013),
 9–16.

 [14] Buechley, L. and Eisenberg, M. 2008. The LilyPad Arduino: Toward wearable
 engineering for everyone. IEEE Pervasive Computing . 7, 2 (2008), 12–15.

 [15] Buechley, L., Eisenberg, M., Catchen, J. and Crockett, A. 2008. The LilyPad
 Arduino: Using computational textiles to investigate engagement, aesthetics,
 and diversity in computer science education. Proceeding of the Twenty-Sixth
 Annual CHI Conference on Human Factors in Computing Systems - CHI ’08
 (Florence, Italy, 2008), 423.

 [16] Buechley, L., Eisenberg, M. and Elumeze, N. 2007. Towards a curriculum for
 electronic textiles in the high school classroom. Proceedings of the 12th
 Annual SIGCSE Conference on Innovation and Technology in Computer
 Science Education (2007), 28–32.

 [17] Buechley, L. and Hill, B.M. 2010. LilyPad in the wild: how hardware’s long
 tail is supporting new engineering and design communities. Proceedings of the
 8th ACM Conference on Designing Interactive Systems - DIS ’10 (Aarhus,
 Denmark, 2010), 199.

 [18] Buechley, L., Mellis, D., Perner-Wilson, H., Lovell, E. and Kaufmann, B.
 2010. Living wall: programmable wallpaper for interactive spaces.
 Proceedings of the international conference on Multimedia - MM ’10 (Firenze,
 Italy, 2010), 1401.

 [19] Buechley, L., Peppler, K., Eisenberg, M. and Yasmin, K. 2013. Textile
 Messages: Dispatches from the World of E-Textiles and Education. New
 Literacies and Digital Epistemologies. Volume 62. ERIC.

 [20] Buechley, L. and Qiu, K. 2014. Sew electric . H.

 [21] Calendly: https://calendly.com/ . Accessed: 2021-05-15.

 [22] Cheryan, S., Master, A. and Meltzoff, A.N. 2015. Cultural stereotypes as
 gatekeepers: Increasing girls’ interest in computer science and engineering by
 diversifying stereotypes. Frontiers in Psychology . 6, (2015), 49.

 [23] Cheryan, S., Plaut, V.C., Davies, P.G. and Steele, C.M. 2009. Ambient
 belonging: how stereotypical cues impact gender participation in computer

 132

 science. Journal of Personality and Social Psychology . 97, 6 (2009), 1045.

 [24] Craft of Computing (Course Website):
 https://trello.com/b/WGeaxo5n/craft-of-computing . Accessed: 2021-05-15.

 [25] Cutts, Q., Cutts, E., Draper, S., O’Donnell, P. and Saffrey, P. 2010.
 Manipulating mindset to positively influence introductory programming
 performance. Proceedings of the 41st ACM Technical Symposium on Computer
 Science Education (2010), 431–435.

 [26] Diekman, A.B., Brown, E.R., Johnston, A.M. and Clark, E.K. 2010. Seeking
 congruity between goals and roles: A new look at why women opt out of
 science, technology, engineering, and mathematics careers. Psychological
 Science . 21, 8 (2010), 1051–1057.

 [27] Dweck, C.S. 2013. Self-theories: Their role in motivation, personality, and
 development . Psychology press.

 [28] Ellis, H.J., Chua, M., Hislop, G.W., Purcell, M. and Dziallas, S. 2013. Towards
 a model of faculty development for FOSS in education. 2013 26th
 International Conference on Software Engineering Education and Training
 (CSEE&T) (2013), 269–273.

 [29] Ellis, H.J., Chua, M., Jadud, M.C. and Hislop, G.W. 2011. Learning through
 open source participation. Proceedings of the 42nd ACM Technical Symposium
 on Computer Science Education (2011), 83–84.

 [30] Ellis, H.J.C., Hislop, G.W., Jackson, S. and Postner, L. 2015. Team Project
 Experiences in Humanitarian Free and Open Source Software (HFOSS). ACM
 Transactions on Computing Education . 15, 4 (Dec. 2015), 18:1-18:23.
 DOI:https://doi.org/10.1145/2684812.

 [31] Ellis, H.J.C., Jackson, S., Burdge, D., Postner, L., Hislop, G.W. and Diggs, J.
 2014. Learning within a professional environment: shared ownership of an
 HFOSS project. Proceedings of the 15th Annual Conference on Information
 Technology Education (New York, NY, USA, Oct. 2014), 95–100.

 [32] Eng, D. 2009. Fashion Geek: Clothes Accessories Tech . North Light Books.

 [33] e-Textiles-in-a-Box: https://www.ncwit.org/resources/e-textiles-box . Accessed:
 2020-12-08.

 [34] Fields, D.A., Kafai, Y.B. and Searle, K. 2012. Functional aesthetics for
 learning: Creative tensions in youth e-textile designs. (2012).

 133

 [35] Firefox Developer Tools | MDN:
 https://developer.mozilla.org/en-US/docs/Tools . Accessed: 2021-05-15.

 [36] Follmer, S., Carr, D., Lovell, E. and Ishii, H. 2010. CopyCAD: remixing
 physical objects with copy and paste from the real world. Adjunct proceedings
 of the 23nd annual ACM symposium on User interface software and
 technology - UIST ’10 (New York, New York, USA, 2010), 381.

 [37] Foss2Serve: http://foss2serve.org/index.php/Main_Page . Accessed:
 2021-05-15.

 [38] Freeman, S., Eddy, S.L., McDonough, M., Smith, M.K., Okoroafor, N., Jordt,
 H. and Wenderoth, M.P. 2014. Active learning increases student performance
 in science, engineering, and mathematics. Proceedings of the national academy
 of sciences . 111, 23 (2014), 8410–8415.

 [39] Getting Started with E-Sewing:
 http://alumni.media.mit.edu/~emme/e-sewing/index.html . Accessed:
 2020-06-08.

 [40] Greenberg, I. 2007. Processing: creative coding and computational art .
 Apress.

 [41] Hartman, K., Jepson, B., Dvorak, E. and Demarest, R. 2014. Make: wearable
 electronics . Maker Media.

 [42] Haungs, M., Clark, C., Clements, J. and Janzen, D. 2012. Improving first-year
 success and retention through interest-based CS0 courses. Proceedings of the
 43rd ACM Technical Symposium on Computer Science Education (2012),
 589–594.

 [43] Hébert, C. and Jenson, J. 2020. Making in schools: student learning through an
 e-textiles curriculum. Discourse: Studies in the Cultural Politics of Education .
 41, 5 (Sep. 2020), 740–761.
 DOI:https://doi.org/10.1080/01596306.2020.1769937.

 [44] High-Low Tech: http://highlowtech.org/ . Accessed: 2020-06-15.

 [45] Hill, C., Schneider, M., Eisenberg, A. and Gross, M.D. 2021. The
 ThreadBoard: Designing an E-Textile Rapid Prototyping Board. Proceedings of
 the Fifteenth International Conference on Tangible, Embedded, and Embodied
 Interaction (2021), 1–7.

 [46] Hislop, G.W., Ellis, H.J., Tucker, A.B. and Dexter, S. 2009. Using open source
 software to engage students in computer science education. Proceedings of the

 134

 40th ACM Technical Symposium on Computer Science Education (2009),
 134–135.

 [47] Hislop, G.W., Ellis, H.J.C. and Morelli, R.A. 2009. Evaluating student
 experiences in developing software for humanity. Proceedings of the 14th
 Annual ACM SIGCSE Conference on Innovation and Technology in Computer
 Science Education (New York, NY, USA, Jul. 2009), 263–267.

 [48] Hislop, G.W., Ellis, H.J.C., Pulimood, S.M., Morgan, B., Mello-Stark, S.,
 Coleman, B. and Macdonell, C. 2015. A Multi-Institutional Study of Learning
 via Student Involvement in Humanitarian Free and Open Source Software
 Projects. Proceedings of the Eleventh Annual International Conference on
 International Computing Education Research (New York, NY, USA, Aug.
 2015), 199–206.

 [49] Höhne, E. and Zander, L. 2019. Belonging uncertainty as predictor of dropout
 intentions among first-semester students of the computer sciences. Zeitschrift
 für Erziehungswissenschaft . 22, 5 (2019), 1099–1119.

 [50] How To Get What You Want: https://www.kobakant.at/DIY/ . Accessed:
 2021-05-15.

 [51] Instructables | bekathwia (Becky Stern):
 https://www.instructables.com/member/bekathwia/ . Accessed: 2020-12-10.

 [52] Instructables | Plusea (Hannah Perner-Wilson):
 https://www.instructables.com/member/Plusea/ . Accessed: 2020-12-10.

 [53] Introducing debugger.html – Mozilla Hacks - the Web developer blog:
 https://hacks.mozilla.org/2016/09/introducing-debugger-html . Accessed:
 2021-05-15.

 [54] Introducing Gemma: Introducing Adafruit’s mini wearable microcontroller:
 2013. https://learn.adafruit.com/introducing-gemma/introduction . Accessed:
 2021-08-10.

 [55] Jackson, S. and Ellis, H. 2015. Supporting HFOSS using scrum in a capstone
 course. Acm Sigcas Computers and Society . 45, 2 (2015), 36–37.

 [56] Jayathirtha, G. and Kafai, Y.B. 2019. Electronic textiles in computer science
 education: a synthesis of efforts to broaden participation, increase interest, and
 deepen learning. Proceedings of the 50th ACM Technical Symposium on
 Computer Science Education (2019), 713–719.

 [57] Kafai, Y.B., Fields, D.A. and Searle, K.A. 2011. Everyday creativity in novice

 135

 e-textile designs. Proceedings of the 8th ACM conference on Creativity and
 cognition (2011), 353–354.

 [58] Kafai, Y.B., Lee, E., Searle, K., Fields, D., Kaplan, E. and Lui, D. 2014. A
 crafts-oriented approach to computing in high school: Introducing
 computational concepts, practices, and perspectives with electronic textiles.
 ACM Transactions on Computing Education (TOCE) . 14, 1 (2014), 1–20.

 [59] Kafai, Y.B., Searle, K., Kaplan, E., Fields, D., Lee, E. and Lui, D. 2013.
 Cupcake cushions, scooby doo shirts, and soft boomboxes: e-textiles in high
 school to promote computational concepts, practices, and perceptions.
 Proceeding of the 44th ACM technical symposium on Computer science
 education (2013), 311–316.

 [60] Kim, V.H. 2019. Development of an e-Textile Debugging Module to Increase
 Computational Thinking among Graduate Education Students . Pepperdine
 University.

 [61] Lee, J.S. 2008. Tech DIY for moms and kids: the DIY technology project for
 women. ACM SIGGRAPH 2008 posters (2008), 1–1.

 [62] Lee, J.S. 2008. Technology education for women by D.I.Y. technology in
 closing gender gap. CHI’08 Extended Abstracts on Human Factors in
 Computing Systems (2008), 3447–3452.

 [63] Lewis, A., Lin, F.-Y., Weston, H. and Sugie, H. 2008. Switch craft:
 battery-powered crafts to make and sew . Potter Craft.

 [64] Lewis, C., Bruno, P., Raygoza, J. and Wang, J. 2019. Alignment of goals and
 perceptions of computing predicts students’ sense of belonging in computing.
 Proceedings of the 2019 ACM Conference on International Computing
 Education Research (2019), 11–19.

 [65] Lewis, C.M., Yasuhara, K. and Anderson, R.E. 2011. Deciding to major in
 computer science: a grounded theory of students’ self-assessment of ability.
 Proceedings of the seventh international workshop on Computing education
 research (2011), 3–10.

 [66] Light, J.S. 1999. When computers were women. Technology and culture . 40, 3
 (1999), 455–483.

 [67] LilyTiny - DEV-10899 - SparkFun Electronics:
 https://www.sparkfun.com/products/10899 . Accessed: 2021-11-15.

 [68] Lodi, M. 2018. Can creative computing foster growth mindset? Joint

 136

 Proceedings of the 1st Co-Creation in the Design, Development and
 Implementation of Technology-Enhanced Learning workshop (CC- 2018)
 and Systems of Assessments for Computational Thinking Learning workshop
 (TACKLE 2018) co-located with 13th European Conference on Technology
 Enhanced Learning (EC 2018) (2018).

 [69] Lovell, E. 2011. Getting Hands-On with Soft Circuits: A Workshop
 Facilitator’s Guide.

 [70] Lovell, E. 2014. Promoting constructive mindsets for overcoming failure in
 computer science education. Proceedings of the tenth annual conference on
 International computing education research - ICER ’14 (Glasgow, Scotland,
 United Kingdom, 2014), 159–160.

 [71] Lovell, E. and Buechley, L. 2010. An e-sewing tutorial for DIY learning.
 Proceedings of the 9th International Conference on Interaction Design and
 Children - IDC ’10 (Barcelona, Spain, 2010), 230.

 [72] Lovell, E. and Buechley, L. 2011. LilyPond: an online community for sharing
 e-textile projects. Proceedings of the 8th ACM conference on Creativity and
 cognition - C&C ’11 (Atlanta, Georgia, USA, 2011), 365.

 [73] Lovell, E., Buechley, L. and Davis, J. 2022. The LilyTiny: A Case Study in
 Expanding Access to Electronic Textiles. CHI’22 Extended Abstracts on
 Human Factors in Computing Systems .

 [74] Lovell, E. and Davis, J. 2021. Craft of Computing: Using a Novel Domain to
 Broaden Undergraduate Participation and Perceptions of Computing at the CS0
 Level. 2021 IEEE Frontiers in Education Conference (FIE) (2021).

 [75] Lovell, E. and Davis, J. 2021. Scaffolding Student Success in the Wilds of
 Open Source Contribution. 2021 IEEE Frontiers in Education Conference
 (FIE) (2021).

 [76] Lovell, E., Qi, J. and Freed, N. 2011. Plush Monsters: Creatures with
 Character.

 [77] Lovell, E.M. 2011. A Soft Circuit Curriculum to Promote Technological
 Self-E cacy . Massachusetts Institute of Technology.

 [78] Maker Ed’s Maker Corps Program: https://makered.org/makercorps/ .
 Accessed: 2021-11-13.

 [79] Margolis, J. 2010. Stuck in the Shallow End: Education, Race, and Computing .

 137

 MIT Press.

 [80] Margolis, J. and Fisher, A. 2003. Unlocking the Clubhouse: Women in
 Computing . MIT Press.

 [81] Master, A., Cheryan, S. and Meltzoff, A.N. 2016. Computing whether she
 belongs: Stereotypes undermine girls’ interest and sense of belonging in
 computer science. Journal of Educational Psychology . 108, 3 (2016), 424.

 [82] McConnell, J.J. 1996. Active learning and its use in computer science.
 Proceedings of the 1st Conference on integrating Technology into Computer
 Science Education (1996), 52–54.

 [83] McDowell, C., Werner, L., Bullock, H.E. and Fernald, J. 2006. Pair
 programming improves student retention, confidence, and program quality.
 Communications of the ACM . 49, 8 (2006), 90–95.

 [84] McDowell, C., Werner, L., Bullock, H.E. and Fernald, J. 2003. The impact of
 pair programming on student performance, perception and persistence. 25th
 International Conference on Software Engineering, 2003. Proceedings. (2003),
 602–607.

 [85] Mellis, D.A., Banzi, M., Cuartielles, D. and Igoe, T. 2007. Arduino: An Open
 Electronics Prototyping Platform. Proceedings of CHI (2007), 1–11.

 [86] Menabrea, L.F. and Lovelace, A. 1842. Sketch of the analytical engine
 invented by Charles Babbage. (1842).

 [87] Mills, J.E. and Treagust, D.F. 2003. Engineering education—Is problem-based
 or project-based learning the answer. Australasian journal of engineering
 education . 3, 2 (2003), 2–16.

 [88] Miura, I.T. 1987. The relationship of computer self-efficacy expectations to
 computer interest and course enrollment in college. Sex roles . 16, 5–6 (1987),
 303–311.

 [89] Morales-Chicas, J., Castillo, M., Bernal, I., Ramos, P. and Guzman, B.L. 2019.
 Computing with relevance and purpose: A review of culturally relevant
 education in computing. International Journal of Multicultural Education . 21,
 1 (2019), 125–155.

 [90] Morelli, R., de Lanerolle, T. and Tucker, A. 2012. The Humanitarian Free and
 Open-Source Software Project: Engaging Students in Service-Learning through
 Building Software. Service-Learning in the Computer and Information

 138

 Sciences: Practical Applications in Engineering Education . (2012), 117–136.

 [91] Morgan, B., Hislop, G.W. and Ellis, H.J. 2019. Faculty Development for
 FLOSS Education. IFIP International Conference on Open Source Systems
 (2019), 165–171.

 [92] Morgan, R. and Klaric, J. 2007. AP® Students in College: An Analysis of
 Five-Year Academic Careers. Research Report No. 2007-4 . College Board.

 [93] Moxie 2010. I Felt Awesome: tips and tricks for 35+ needle-poked projects .
 North Light Books.

 [94] Murphy, L. and Thomas, L. 2008. Dangers of a fixed mindset: implications of
 self-theories research for computer science education. Proceedings of the 13th
 Annual Conference on Innovation and Technology in Computer Science
 Education (2008), 271–275.

 [95] Narayanan, S., Cunningham, K., Arteaga, S., Welch, W.J., Maxwell, L.,
 Chawinga, Z. and Su, B. 2018. Upward mobility for underrepresented students:
 A model for a cohort-based bachelor’s degree in computer science.
 Proceedings of the 49th ACM Technical Symposium on Computer Science
 Education (2018), 705–710.

 [96] National Center for Science and Engineering Statistics 2021. Women,
 Minorities, and Persons with Disabilities in Science and Engineering: 2021.
 National Science Foundation.

 [97] NCWIT Programs-in-a-Box:
 https://www.ncwit.org/resources/type/programs-box . Accessed: 2020-12-07.

 [98] New Textiles 2012: https://newtextiles.media.mit.edu/ . Accessed: 2020-06-17.

 [99] Ngai, G., Chan, S.C., Leong, H.V. and Ng, V.T. 2013. Designing i* CATch: A
 multipurpose, education-friendly construction kit for physical and wearable
 computing. ACM Transactions on Computing Education (TOCE) . 13, 2 (2013),
 1–30.

 [100] Ngai, G., Chan, S.C.F., Cheung, J.C.Y. and Lau, W.W.Y. 2009. The TeeBoard:
 an education-friendly construction platform for e-textiles and wearable
 computing. Proceedings of the 27th international conference on Human factors
 in computing systems - CHI 09 (Boston, MA, USA, 2009), 249.

 [101] Ngai, G., Chan, S.C.F., Ng, V.T.Y., Cheung, J.C.Y., Choy, S.S.S., Lau, W.W.Y.
 and Tse, J.T.P. 2010. i*CATch: a scalable plug-n-play wearable computing
 framework for novices and children. Proceedings of the 28th international

 139

 conference on Human factors in computing systems - CHI ’10 (Atlanta,
 Georgia, USA, 2010), 443.

 [102] Olsson, T. 2011. Open Softwear: fashionable prototyping and wearable
 computing using the Arduino . Blushing Boy.

 [103] Open Source Comes to Campus: https://campus.openhatch.org/ . Accessed:
 2021-05-15.

 [104] Page, S. 2019. The diversity bonus . Princeton University Press.

 [105] Pakhchyan, S. 2008. Fashioning Technology: A DIY Intro to Smart Crafting .
 O’Reilly Media, Inc.

 [106] Papert, S. 1993. The children’s machine: Rethinking school in the age of the
 computer. ERIC.

 [107] Paulsen, C.A., Green, S. and Carroll, S. 2011. Design Squad Nation:
 Evaluation report . Concord Evaluation Group, LLC.

 [108] Pearce, J. and Nakazawa, M. 2008. The funnel that grew our CIS major in the
 CS desert. Proceedings of the 39th SIGCSE Technical Symposium on Computer
 Science Education (2008), 503–507.

 [109] Perner-Wilson, H. and Buechley, L. 2010. Making textile sensors from scratch.
 Proceedings of the fourth international conference on Tangible, embedded, and
 embodied interaction (2010), 349–352.

 [110] Picard, R.W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D.,
 Machover, T., Resnick, M., Roy, D. and Strohecker, C. 2004. Affective
 learning—a manifesto. BT technology journal . 22, 4 (2004), 253–269.

 [111] Pirker, J., Riffnaller-Schiefer, M. and Gütl, C. 2014. Motivational active
 learning: engaging university students in computer science education.
 Proceedings of the 2014 conference on Innovation & technology in computer
 science education (2014), 297–302.

 [112] Postner, L., Burdge, D., Jackson, S., Ellis, H., Hislop, G. and Goggins, S. 2015.
 Using humanitarian free and open source software (HFOSS) to introduce
 computing for the social good. ACM SIGCAS Computers and Society . 45, 2
 (2015), 35–35.

 [113] Professors’ Open Source Software Experience:
 http://foss2serve.org/index.php/POSSE . Accessed: 2021-11-13.

 [114] Qi, J. 2012. The fine art of electronics: paper-based circuits for creative
 140

 expression . Massachusetts Institute of Technology.

 [115] Qi, J. and Buechley, L. 2014. Sketching in circuits: designing and building
 electronics on paper. Proceedings of the SIGCHI Conference on Human
 Factors in Computing Systems (2014), 1713–1722.

 [116] Qiu, K., Buechley, L., Baafi, E. and Dubow, W. 2013. A curriculum for
 teaching computer science through computational textiles. Proceedings of the
 12th international conference on interaction design and children (2013),
 20–27.

 [117] Raymond, E.S. 2001. The cathedral and the bazaar: musings on Linux and
 Open Source by an accidental revolutionary . O’Reilly.

 [118] React – A JavaScript library for building user interfaces: https://reactjs.org/ .
 Accessed: 2021-05-15.

 [119] Reas, C. and Fry, B. 2014. Processing: a programming handbook for visual
 designers and artists . The MIT Press.

 [120] Reas, C. and Fry, B. 2006. Processing: Programming for the media arts. AI &
 SOCIETY . 20, 4 (Sep. 2006), 526–538.
 DOI:https://doi.org/10.1007/s00146-006-0050-9.

 [121] Sahana Eden: 2011. https://sahanafoundation.org/products/eden/ . Accessed:
 2021-11-13.

 [122] Searle, K.A. and Kafai, Y.B. 2015. Boys’ Needlework: Understanding
 Gendered and Indigenous Perspectives on Computing and Crafting with
 Electronic Textiles. ICER (2015), 31–39.

 [123] Shiffman, D. 2009. Learning Processing: a beginner’s guide to programming
 images, animation, and interaction . Morgan Kaufmann.

 [124] Simon, B., Hanks, B., Murphy, L., Fitzgerald, S., McCauley, R., Thomas, L.
 and Zander, C. 2008. Saying isn’t necessarily believing: influencing
 self-theories in computing. Proceedings of the Fourth International Workshop
 on Computing Education Research (2008), 173–184.

 [125] Slack: https://slack.com/ . Accessed: 2021-05-15.

 [126] Soft Circuit Saturdays: https://www.gellacraft.com/softcircuitsaturdays .
 Accessed: 2020-12-05.

 [127] SparkFun Education - Maker Education:

 141

 https://sparkfuneducation.com/index.html . Accessed: 2021-08-12.

 [128] Stern, B. and Cooper, T. 2015. Getting started with Adafruit FLORA: making
 wearables with an Arduino-compatible electronics platform . Maker Media, Inc.

 [129] The Tinkering Studio Home | Exploratorium:
 https://www.exploratorium.edu/tinkering . Accessed: 2021-11-13.

 [130] Trello: https://trello.com/ . Accessed: 2021-05-15.

 [131] Turkle, S. and Papert, S. 1992. Epistemological pluralism and the revaluation
 of the concrete. Journal of Mathematical Behavior . 11, 1 (1992), 3–33.

 [132] Veilleux, N., Bates, R., Allendoerfer, C., Jones, D., Crawford, J. and Floyd
 Smith, T. 2013. The relationship between belonging and ability in computer
 science. Proceeding of the 44th ACM Technical Symposium on Computer
 Science Education (2013), 65–70.

 [133] Weng, J. and Murphy, C. 2018. Bridging the Diversity Gap in Computer
 Science with a Course on Open Source Software. 2018 Research on Equity and
 Sustained Participation in Engineering, Computing, and Technology
 (RESPECT) (Baltimore, MD, Feb. 2018), 1–4.

 [134] Werner, L.L., Hanks, B. and McDowell, C. 2004. Pair-programming helps
 female computer science students. Journal on Educational Resources in
 Computing (JERIC) . 4, 1 (2004), 4-es.

 [135] Wolsky, M. 2014. Design Squad: Inspiring a New Generation of Engineers.
 The Go-To Guide for Engineering Curricula, Grades 6-8: Choosing and Using
 the Best Instructional Materials for Your Students . Corwin Press. 19.

 [136] Wood, Z.J., Clements, J., Peterson, Z., Janzen, D., Smith, H., Haungs, M.,
 Workman, J., Bellardo, J. and DeBruhl, B. 2018. Mixed approaches to CS0:
 Exploring topic and pedagogy variance after six years of CS0. Proceedings of
 the 49th ACM Technical Symposium on Computer Science Education (2018),
 20–25.

 [137] Xu, D., Wolz, U., Kumar, D. and Greenburg, I. 2018. Updating introductory
 computer science with creative computation. Proceedings of the 49th ACM
 Technical Symposium on Computer Science Education (2018), 167–172.

 [138] Yardi, S. and Bruckman, A. 2007. What is computing? Bridging the gap
 between teenagers’ perceptions and graduate students’ experiences.
 Proceedings of the Third International Workshop on Computing Education

 142

 Research (2007), 39–50.

 [139] 2021. Sahana Eden on GitHub . Sahana Software Foundation.

 [140] TeachingOpenSource – Instructors and open source communities supporting
 teaching open source.

 143

	Preamble.pdf
	Diss3
	Diss4
	Diss5
	Diss6
	Diss7
	Diss8
	Diss9
	Diss10
	Diss11
	Diss12
	Diss13
	Diss14
	Diss15

