UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Leveraging Novel Teaching Domains Toward Broader Participation in Computing

Permalink
https://escholarship.org/uc/item/4nn204vj

Author
Lovell, Emily Marie

Publication Date
2021

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4nn204vj
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

LEVERAGING NOVEL TEACHING DOMAINS TOWARD
BROADER PARTICIPATION IN COMPUTING

A dissertation submitted in partial satisfaction
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in
COMPUTER SCIENCE
by
Emily Marie Lovell

December 2021

The Dissertation of Emily Marie Lovell is
approved:

Professor James Davis, chair

Assistant Professor David Lee

Professor Janice Pearce

Peter Biehl
Vice Provost and Dean of Graduate Studies

Table of Contents

List of Figures

Abstract

Dedication

Acknowledgements

1 | Introduction

1.1

1.2

Background & Motivation
Informal Teaching Experience
Formal Teaching Experience

Document Overview

2 | Course Design for Attracting Broader Participation:
Craft of Computing

2.1
2.2
23
24

2.5

Introduction

Related Work

Background

Course Design

Setting & Organization

Major Assignments

Infrastructure

Instructional Support

Reflections

Challenges & Rewards of Working in the Physical World
Importance of Growth Mindset at the CSO Level

Leveling the Playing Field

111

vi

viii

Xi

11
16

19
20
22
25
26
27
29
36
39
40
40
41
43

2.6

2.7

2.8

Preparation for CS1

Broadening Participation & Perceptions Through Craft

Personally Meaningful Work
Recommendations

Course Logistics

Equipment & Materials

File Formatting & Exporting
Emphasizing Original Creative Work
Future Work

Summary

3 | Course Design for Retaining Broader Participation:
Open Source Software Engineering

3.1
3.2
33

34

3.5

3.6
3.7

Introduction

Related Work

Course Overview

Term 1

Term 2

Student Feedback

Reflections & Recommendations

Project Choice

Team Formation & Tools to Support Collaboration
Structuring Unfamiliar Tools & Technologies
Professional Mentorship

Future Work

Summary

v

44
45
46
47
47
49
50
51
52
53

54
56
57
59
60
63
65
67
67
68
69
69
71

72

4 | A Case Study in Expanding Access to Electronic Textiles: The LilyTiny

4.1

4.2

4.3

4.4

4.5
4.6

Introduction

Related Work

Physical Computing

Electronic Textiles & Computing Education Research
Instructional Design for K-12 STEM
Independent Learning Resources for E-Textiles
Design & Development

The LilyTiny

Companion Curriculum

Pilot Testing

Measuring Impact

Derivative & Follow-on Products

Sales Data

Customer Reviews and Projects

Future Work

Summary

5 | Conclusion

Appendix A | Definitions & Acronyms

Appendix B | Computing Education Seminar Resources

Appendix C | Berea College Course Syllabi

References

74
75
77
77
78
79
80
81
81
84
87
89
89
92
96
103
103
104
106
109
119
131

List of Figures

Figure 1.1. College enrollment of women in computer science over time, as compared to other fields.

Figure 1.2. Schools with greater underrepresented racial/ethnic group enrollment, greater low-income
student enrollment, and situated in non-suburban settings are all less likely to offer computer science.
Source: Code.org.

Figure 1.3. Top row: computational craft workshops with quilters (left), scrapbookers (center), and a
ceramics artist (right). Bottom row: Learning to screenprint at EnsAD Paris (for later use with
thermochromic inks), participating in an outreach event for young women at Microsoft NERD, and
learning how weaver Dena Molnar is integrating conductive materials into her practice.

Figure 1.4. Screenshots from my earliest e-sewing tutorial website (left) and the later LilyPond
community website (center and right).

Figure 1.5. Top row: facilitating an activity with Exploratorium visitors, facilitating at an evening
special event with soft circuit artists and experts Grace Kim and Syuzi Pakhchyan. Bottom row:
example paper circuits created for museum display (left and center), interactive paper circuit example
for museum visitors (right).

Figure 1.6. Teaching students to "think like a computer scientist" by issuing sandwich-making
instructions to their instructors-turned-robots. (Pictured: Dr. Scott Heggen and myself, early in a CS1
term.)

Figure 2.1. Coursework components, with percentage of overall course grade and a short summary.

Figure 2.2. Felted circuits designed by students: a fairy house that lights up inside when the flower is
placed atop it, an angler fish, and a baby bird.

Figure 2.3. Plotter designs produced by students as they learn to draw algorithmically. (Pen on paper,
machine-drawn.)

Figure 2.4. Vinyl-cut stickers, which students valued enough to apply to their own laptops.
(Student-produced stickers appear here in magenta, dark red, and sky blue, from left to right.)

Figure 2.5. Student final projects. Top row: laser cut coasters and a hand-embroidered pillow. Middle
row: a hand-embroidered scene, a tooled leather bracelet, and a hand-embroidered pillow. Bottom row:
a graduation cap, start to finish.

Figure 2.6. Halloween-themed paper circuits made by students.
Figure 2.7. Layered laser-cut paper, from an earlier version of Mini-Project #3.

Figure 2.8. The course website, as organized on Trello. An overview of current tasks and references
(left) and a "card" offering guidance on the final phase of an individual mini-project (right).

vi

Figure 2.9. Personally meaningful student work. Left: one student represents herself by coding and
pen-plotting a face that is half African and half Native American. Right: another student celebrates her
graduation by hand-embroidering a computational design and framing it in a shadowbox with
keepsakes.

Figure 4.1. LilyTiny prototypes, from left to right: initial milled circuit board, custom-ordered factory
board, final commercial product (sold by SparkFun Electronics).

Figure 4.2. Sample activities from the workshop curriculum.

Figure 4.3. Select pages from the plush monster activity, which utilizes the LilyTiny.

Figure 4.4. Derivative and follow-on sewable microcontroller boards. From left to right: LilyTwinkle
ProtoSnap, Gemma, an unbranded clone, and the LilyPad LilyMini.

Figure 4.5. LilyTiny and LilyTwinkle monthly sales, showing sustained market interest over many
years.

Figure 4.6. SparkFun sewable microcontroller sales, July 2012 through June 2020. Note that the
LilyPad LilyMini was not introduced until 2016. Each color represents a different product family. Each
pie slice represents a different product release (i.e. LilyPad Arduino 328 Main Board, LilyPad Arduino
Simple Board, Firefly Jar kit, etc.). Kits are categorized by which board they include.

Figure 4.7. SparkFun sewable microcontroller ordering patterns, after adjusting for lab packs which
contain multiple boards. Notice that a much greater percentage of LilyTiny orders include quantities of
the board suitable for teaching.

Figure 4.8. Hobbyist projects using the LilyTiny (clockwise from upper left): an e-textile logo,
embellished headbands, and a sock monkey with a glowing heart.

Figure 4.9. Art and craft projects using the LilyTiny (clockwise from upper left): an embroidered
bracelet, a knit bracelet, and a mixed media art piece.

Figure 4.10. Evidence that some LilyTiny users are choosing to reprogram their boards (left) and are
successful in doing so (right).

Figure 4.11. Evidence of teaching with the LilyTiny, including offerings at camps, libraries, and K-12
schools.

vil

ABSTRACT

Leveraging Novel Teaching Domains Toward Broader Participation in Computing

by

Emily Marie Lovell

The field of computer science has long been plagued by issues of diversity — in
particular, attracting and retaining those historically marginalized in computing
contexts. This is a great loss to the field, to the future of innovation, and to society.
Perhaps most importantly, it is an incalculable loss to those populations excluded

from pursuing a passion for computing in the first place.

This dissertation chronicles a collection of projects aimed at broadening perceptions
of computing, who is participating in computing, and what kinds of artifacts are
created with computing. These projects leverage extensive fieldwork in the
educational domains of computational craft and open source contribution; they entail
(1) course design at the college level and (2) tool and curriculum design for a more
open-ended audience of hobbyists and educators. The contribution of this dissertation
is documentation of these design processes, along with my subsequent reflections,

recommendations, and analysis.

viii

First, I share my experience designing two courses developed while on faculty at
Berea College: Craft of Computing, which aims to attract a diversity of first- and
second-year students to computing, and Open Source Software Engineering, which
seeks to retain a diversity of upperclassmen through graduation and into computing
careers beyond. Second, I revisit my own prior work in e-textiles tool/curriculum
design, sharing long-term impact analysis for the LilyTiny sewable microcontroller

and accompanying workshop guide.

Evidence so far suggests that my forays into college course design successfully
piqued students' interest in new domains, while positively influencing their
confidence, identity, and sense of belonging. Analysis of the LilyTiny and
accompanying workshop curriculum is also promising; it shows that an inexpensive
and stable tool, coupled with freely available instructional resources, can indeed

achieve widespread adoption in a market suggestive of novice and educational use.

1X

To my shadow, Lyra Wenley.

Acknowledgements

It is often said that finding the right advisor is the most influential factor in one's
graduate school experience... and I believe this through and through. I owe an
enormous debt of gratitude to James Davis, my advisor on and off for over 15 years
now. It was James who first trusted me with a course redesign and who lent me a
copy of Unlocking the Clubhouse when 1 was feeling discouraged in college. It was
also James who suggested I consider graduate school — and who then wrote letters of
recommendation on almost no notice, who kept in touch with me while I was at MIT,
and who offered me an academic home to finish my doctorate when I left. Along the
way, James has been an unwavering ally, advocate, champion, and mentor; he has
supported me in chasing my passions, including detouring to teach at a liberal arts
college once it became clear that I thrive in the classroom. My meandering path has
ultimately caused James a great deal of headache and paperwork, but he has vouched
for me every step of the way. He has taught me how to stay calm under pressure, how
to maintain perspective, and how to embrace life's unpredictability. He has supported
me in balancing competing priorities, while always putting my health first. Thank
you, James, for nurturing my growth immeasurably as a writer, communicator,

researcher, and educator — and for always treating me as a colleague.

I owe great thanks as well to David Lee and Jan Pearce, for serving on my committee

and enriching my work. Thank you for asking thoughtful questions, offering

X1

constructive feedback, and wholeheartedly endorsing my focus on computing
education. Linda Werner and Charlie McDowell also supported my computing
education journey at UCSC; Charlie taught my first ever programming class, while
Linda later sponsored a seminar of my own design. Pioneers in the field, they have

offered expert insight, challenging and cheering me along my way.

My MIT advisor, Leah Buechley, provided a tremendous amount of support and
guidance throughout my master's degree and early in my doctorate; in particular, she
entrusted me with making the LilyTiny a reality and she facilitated bringing it to
market. More recently, she obtained sales data central to my dissertation and helped
to guide my ensuing analysis. SparkFun Electronics generously put together that data
set and has maintained the LilyTiny as part of their product line over the past ten

years.

My earlier work was also supported by others at MIT — especially High-Low Tech
groupmate David Mellis, who taught me how to do PCB layout and who supported
early programming workflow for the LilyTiny. Pol Pla graciously contributed to the
design of the workshop guide and also photographed the pilot workshops. Amy
Fitzgerald of MIT's Edgerton Center and Chris Randall of WGBH helped to pilot and
give feedback on the LilyTiny and workshop guide. Later on, Jie Qi and Natalie
Freed spearheaded the design of the bonus plush monster activity, which we then

workshopped together.

Xil

To everyone at the Exploratorium's Tinkering Studio: thank you for letting me be a
guest in your world! My time at the Exploratorium taught me so much about

facilitation and inspired the needle felted circuit mini-project in Craft of Computing.

The Foss2serve and Teaching Open Source communities invited me into faculty
circles before I had the credentials to be there — and showed me just how
collaborative academia can be. Gina Likins, Tom Callaway, Heidi Ellis, Greg Hislop,
Lori Postner, Darci Burdge, and so many others... thank you. Thanks also to
everyone in the Mozilla DevTools community who supported my students, especially

Jason Laster and David Walsh.

My Berea College department chairs Jan Pearce and Mario Nakazawa graced my time
as a junior faculty member with immense freedom and respect. In addition, Nancy
Gift and Leslie Ortquist-Ahrens supported me with mentorship and advocacy, while
Deans Chad Berry and Matt Saderholm offered institutional flexibility in support of
my health. Colleagues Dan Feinberg, Lisa Marks, Lex Lancaster, and Scott Heggen
offered friendship, challenged me as an educator, and provided input on my evolving
courses. Amy Nichols, Adriana Nufiez, and Billy Korinko lent accountability,
commiseration, and support as we all sought to balance dissertations with teaching.
And to the teaching assistants and students across all of my courses... y'all are

amazing! Sandra Perkins and Bria Williams especially helped get Craft of Computing

Xiii

off the ground, after which Cody Mitchell and Jacob Hill took it to the next level.

Alex Sharron helped calmly steer students through the waters of open source.

Many friends and loved ones have also supported me. My parents, Mark and Eileen,
have unconditionally honored every twist and turn on my path — while my brother,
Sean, has kept me humble and laughing along the way. I am grateful for my cohorts
in both education and computer science, especially Mecaila Smith, Arnold Sanchez
Ordaz, Ethan Chang, Priscilla Sung, Dhanya Sridhar, Ryan Compton, Brad Dettmer,
and Afshin Mobramaein. (Thank you, Ryan, for inviting me to my first open source
workshop!) More recently, Patrick Ray has been a steadfast source of support and the
ultimate pandemic teammate, while Priscilla Sung, Mecaila Smith, and Anne-Marie
Morey have championed me through the home stretch with walks, food deliveries,
and co-working. (I would not be graduating if not for the hundreds of hours spent
working in Priscilla's office and on Zoom with Mecaila.) My doctors have kept me
healthy enough to keep going and have carefully interwoven medical treatment with
deadlines; thank you Nevena Zubcevik, Mischa Grieder, Katherine Lantsman,

Christine Green, and the California Center for Functional Medicine.

I have been so fortunate to learn from many experienced educators who have offered
guidance and encouragement, patience and trust. They have empowered me to find
my own place in the classroom and I hope to pay this forward, inspiring others to

experience computing with the same curiosity, playfulness, and magic that I do.

Xiv

A portion of this material is based upon work supported by the National Science
Foundation Graduate Research Fellowship Program under Grant No. DGE-1339067.

This work has also been funded, in part, by the MIT Media Lab Consortium and a

UCSC Dissertation Year Fellowship.

XV

1 | Introduction

The field of computer science has long experienced a dearth of women and other
underrepresented minorities, one which has been documented by researchers and
reflected in both enrollment and hiring statistics [79, 80]. This is a great loss to the
field — and more broadly to humanity — as innovation depends on a diverse workforce
[104]. In addition, careers in computer science afford a great deal of flexibility and
financial stability, enabling upward social mobility for a broad cross-section of

individuals [95].

For women, this dearth has manifested as a decline over time; women have, in fact,
served as some of the field's most influential pioneers. Dating back to the 1830s, Ada
Lovelace maintained notes while working on Charles Babbage's Analytical Engine
that document some of the earliest known computer programs and her own broad
considerations for the future of computing [86]. When ENIAC came into existence
over 100 years later, serving as the first general-purpose electronic computer, it was a
group of six women that served as its first programmers — and even they were
selected from a much larger group of women employed as mechanical computers,
using only calculators to do their sophisticated work [66]. Not longer after, Grace
Hopper invented the first compiler and drove the pivotal development of early

programming languages [9]. Initially driven by the constraints of wartime, the

following years presented great opportunity for women in the field of computing.
However, this upward trajectory of representation shifted to a decline in the

mid-1980s, as shown in Figure 1.1. We are still recovering from this decline today.

What Happened To Women In Computer Science?
% Of Women Majors, By Field

. Medical School . Law School Physical Sciences . Computer science

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

T T T T T T T T T
1970 1975 1980 1985 1990 1995 2000 2005 2010

Source: National Science Foundation, American Bar Association, American Association of Medical Colleges
Credit: Quoctrung Bui/NPR

Figure 1.1. College enrollment of women in computer science over time, as compared to other fields.

Unfortunately, those from non-dominant racial and ethnic groups have been
consistently marginalized throughout the history of computing [79]. This persists to
present day, with students of color and low-income students being far less likely to
have access to computer science courses in their high schools [12]. (As shown in

Figure 1.2, non-suburban students face barriers to access as well.) These disparities

are critical, as those with access to computing in high school are much more likely to

pursue it in college [92].

Underrepresented Racial/Ethnic Groups* Income Level and Access to Percent of High Schools Teaching
and Access to Computer Science Computer Science Computer Science by Community Type

60%

T0%

50%

Percent of High Schools Teaching CS
i
Q

Percent of High Schools Teaching CS
Percent of High Schools Teaching CS

0% G
0-24% 25-49% 50-74% 75-100% 0-24% 25-49% 50-74% 75-100% City Suburban Town Rural

Percent of School Student Population from URG" Percent of Students In the School Eligible Community Type
Free and Reduced Lunch

Figure 1.2. Schools with greater underrepresented racial/ethnic group enrollment, greater low-income
student enrollment, and situated in non-suburban settings are all less likely to offer computer science.
Source: Code.org.

In addition to the obvious problem of access, there are many factors thought to affect
the persistence of historically minoritized students in computer science. For example,
self-efficacy, or belief in one’s own domain-specific capabilities, can be just as
important for a student’s success as the student’s actual capabilities [6, 7]. Of
particular note, differences in perceived self-efficacy across gender may help explain
the computer science enrollment gap — and also, persistence gap — between male and
female students at the undergraduate level [88]. Research has shown
pair-programming to be one effective means of bolstering student self-efficacy in
computing [84]. An additional avenue for cultivating self-efficacy is for a student to

see it modeled by an instructor or mentor [8].

Related, a growth mindset is the belief that one can become smarter by working
harder, as opposed to the belief that each person is born with a fixed amount of
intelligence [27]. Computer science includes, by necessity, repeated encounters with
failure — for example, though iterative software design and routine debugging. Given
the constant evolution of programming languages and practices, it is also important
for students to be comfortable with a shifting technical landscape [94]. Students must
feel confident in their ability to learn from both hard work and mistakes, leading
some researchers to promote cultivation of a growth mindset through classroom

interventions [25, 124].

Additional factors that have been shown to positively influence attracting and
retaining women, in particular, are: epistemological pluralism, a sense of belonging,
and the potential to have positive social impact. Related research is covered in depth

in later chapters [23, 80, 131].

The work described in this dissertation builds on all of the aforementioned research,
seeking specifically to attract and retain a diversity of students — creating a diversity
of computational artifacts — through the applied domains of computational craft and
open source contribution. This is done through a combination of (1) course design at
the college level and (2) tool and curriculum design for a more open-ended audience
of hobbyists and educators; thus, my work encompasses research on hardware,

software, and computing education. The contribution of this dissertation is

documentation of these design processes, along with my subsequent reflections,

recommendations, and analysis.

1.1 Background & Motivation

I first had the opportunity to learn about course design while enrolled as an
undergraduate at UCSC. As I progressed through the computer science curriculum
into upper-division coursework, I noticed fewer and fewer female students in my
classes — especially my introductory computer graphics class. In the year to follow,
the faculty member teaching the course (James Davis, now my advisor) supported a
small group of students and I in securing an instructional reform grant through
UCSC's Committee on Teaching. Guided by our own diverse experiences and
feedback from other students, we used this funding to draft and support a revised
curriculum for the course; a new textbook, revised assignments, and partial staffing of
student lab sections. When a new course, Technology Targeted at Social Issues,
debuted in a later term, I had the opportunity to engage non-engineering students in
using technology for positive social and environmental impact through working as a

course assistant.

Informal Teaching Experience

I later earned my master’s degree from the MIT Media Lab, where I worked as a
research assistant in the High-Low Tech group [44]. Our common goal was to

democratize engineering and to this end, we strove to support novice/hobbyist

communities at the intersection of craft and technology. This included documenting
and disseminating our own findings — including publications, but also many tutorials
on computational craft techniques, machines, and materials — as well as developing
toolkits which invited participation from audiences not historically drawn to

electronics or conventional programming.

Also central to High-Low Tech's mission was our engagement in informal education
to support (and also, to learn from!) diverse and underrepresented groups in
computing. This included numerous workshops with middle and high school students,
university design students, and community artists/craftspeople, in which we would
teach how to build interactive circuits using computational craft materials (such as
electrically conductive fabrics, threads, and paints) and/or physical computing
platforms such as Arduino [3]. Venues for these workshops included the MIT
Museum, the Fuller Craft Museum, Maker Faire, SIGGRAPH, and the Computer
Clubhouse International Conference. Our ultimate objective was to empower
participants to feel more comfortable creating with electronics — and in some cases,
to incorporate interactive circuitry into an existing art or design practice. In turn,
workshop participants helped us to understand the technology barriers they faced, and
also sometimes shared craft expertise in areas such as screenprinting, weaving, and
ceramics. These workshops served as a valuable fieldwork component to my
research, allowing for reflection throughout the iterative instructional design process.
Preparation for each workshop required thoughtful consideration of personalization,

6

resources, activity structure, and necessary technical knowledge. Some of these

workshops and collaborations are shown in Figure 1.3.

Figure 1.3. Top row: computational craft workshops with quilters (left), scrapbookers (center), and a
ceramics artist (right). Bottom row: Learning to screenprint at EnsAD Paris (for later use with
thermochromic inks), participating in an outreach event for young women at Microsoft NERD, and
learning how weaver Dena Molnar is integrating conductive materials into her practice.

Two related projects which I contributed to during this time, but which are not
detailed in this dissertation are: CopyCAD, enabling copy and paste of physical
objects, and The Living Wall, a programmable wallpaper which leverages a
reconfigurable magnetic Arduino-based toolkit. These projects were presented in

2010 at ACM's UIST and Multimedia conferences, respectively [18, 36].

Throughout my time at MIT, my own individual research focused on developing
tools/curricula to support computational textiles at the K-12 level. In addition to

organizing my own outreach workshops, mostly with young women, I also developed

resources to support informal learners working on their own; I started by developing
very basic electronic sewing tutorials online (there was little freely available at the
time) [39] and later collaborated with education faculty to develop an online
community for the sharing of e-textile projects. Figure 1.4 shows select screenshots
from these two web-based projects, which were presented at ACM's IDC and C&C

conferences in 2010 and 2011 [71, 72].

Esowing ks

.....

=EY AR

ﬂﬂﬂﬂﬂ

Figure 1.4. Screenshots from my earliest e-sewing tutorial website (left) and the later LilyPond
community website (center and right).

It became apparent that there was a resource gap for educators wanting to introduce
physical computing through sewn circuits; required physical materials were
prohibitively expensive and curricula were either too introductory or too advanced.
My MIT master’s thesis addressed this with the pilot, development, and launch of a
workshop curriculum [69, 77]. In addition, I designed and prototyped a low-cost open
source sewable microcontroller known as the LilyTiny — now sold by SparkFun
Electronics as part of the LilyPad Arduino product line [67]. This work is further

detailed in Chapter Four, along with a recent follow-on analysis.

I have also sought to support experiential learning with computational craft through
collaborating with museums and museum educators. This has included facilitating
one-off activities (such as at Santa Cruz's own Museum of Art and History) and a
three-month long internship with the Exploratorium's Tinkering Studio in San
Francisco (offered through the Maker Education Initiative's Maker Corps program)
[78, 129]. Working at the Exploratorium, in particular, offered in-depth experience
designing drop-in activities, engaging with casual learners, and creating physical
demos/examples robust enough for a museum floor. Figure 1.5 highlights some

activities, events, and example projects from this time period.

A A

Figure 1.5. Top row: facilitating an activity with Exploratorium visitors, facilitating at an evening
special event with soft circuit artists and experts Grace Kim and Syuzi Pakhchyan. Bottom row:
example paper circuits created for museum display (left and center), interactive paper circuit example
for museum visitors (right).

After completing the first year of my doctorate at MIT — and following the dissolution
of High-Low Tech — I returned to UCSC to continue my doctorate. While exploring
potential new research directions, I was invited to volunteer at a one-day Open Source
Comes to Campus workshop at Hartnell College. This workshop was co-organized by
CSU Monterey Bay and Hartnell’s innovative CSin3 program [95], which seeks to
graduate underrepresented students in only three years — and by OpenHatch, which
was a non-profit organization that supported novice open source contributors through
online resources and in-person workshops [103]. As a mentor at the workshop, I
supported a small group of students in discussion, hands-on exercises, and making a

contribution to an existing open source project.

It was both exciting and humbling having to learn on-the-fly, staying only step step
ahead of students throughout the day. One of the students and I stayed in touch
beyond the workshop and continued meeting on IRC to see her contribution
successfully merged into a project. She was elated! Seeing a diversity of students’
enthusiasm for learning real world tools (i.e. version control, bug tracking) and
making a concrete contribution to a real world project sparked my own interest in
using open source in the classroom as a means to attract and retain a broader
cross-section of students. Chapter Three details my journey further into this teaching
domain. (In parallel to all of this, I also sought to gain more personal experience
contributing to an open source project. This led me to collaborate with two other

UCSC computer science graduate students on interface/usability improvements to

10

Sahana Eden, a disaster response platform [121, 139]. We published this work at

IEEE's 2015 GHTC [1].)

Formal Teaching Experience

In addition to a wealth of informal teaching experience, being a graduate student has
offered many opportunities for me to grow as a classroom educator. During my time
in the High-Low Tech research group, I served as a teaching assistant for a
project-based graduate course entitled New Textiles [98], which explored the future of
textiles through the combined lenses of craft and technology. After later returning to
UCSC, I worked as a teaching assistant for our undergraduate Introduction to

Computer Science course (CMPS 10; UCSC's version of a CS0 course).

I wanted to progress from working as a teaching assistant to teaching courses of my
own, so my advisor supported me in taking on a graduate student instructor (GSI)
position to offer my own sections of Introduction to Computer Science over two
consecutive summers at UCSC. Although I fortunately inherited a well developed and
tested curriculum — largely based on the AP Computer Science Principles curriculum
— I put a great deal of effort into adding more active learning components, something
afforded by my smaller summer class sizes. These included, for example, small group
activities in which students learned about search algorithms by playing guessing

games as well as discussions on provocative videos and readings.

11

During this time, I was also organizing an informal lunchtime gathering for UCSC
graduate students interested in computer science education; we would meet monthly
and talk about papers we were reading, our own ideas for research projects, and even
made plans to attend conferences (such as SIGCSE) together. Students in this group
expressed repeated interest in diving deeper into reading and discussion — and so my
advisor, along with another faculty member, Linda Werner, supported me in
developing a graduate level seminar on the topic. I put together a themed reading list
which included a few must-read papers for each week, alongside a longer list of
supporting literature. Examples of topics/themes that we covered include: research
methods, theoretical background, active learning/flipped classrooms, broadening
participation, and programming languages for teaching. I organized discussion leaders
for each topic, and came up with my own weekly discussion questions to keep
conversation flowing when we got stuck. I put all of these assignments/resources into
a shared document online which we collectively revised and added resources to as
they came up during our discussions. (A complete version of our document, as it was
at the end of our time together, is included as an appendix.) Linda contributed her
own extensive computing education research experience by serving as a faculty
sponsor for the course, attending our weekly meetings, and helping to facilitate
discussions. The course was also attended by Charlie McDowell, another faculty

member whose research has been influential to the field of computing education, the

12

graduate students from our earlier lunchtime group, and a few more who learned of

the course through flyers/mailing lists.

In my third year of doctoral studies at UCSC, around the time of my advancement, I
was recruited for a faculty position at Berea College. Berea is a small liberal arts
college — and also a work college — located in Berea, Kentucky. The college's mission
is to serve students of great academic promise, but limited economic means; all
students attend on full scholarship and participate in a campus labor program, through
which they work part-time for the college while pursuing their degrees. The Berea
student body is exceptionally diverse; 40% are students of color, 55% are
first-generation college students, and 11% are international students (representing 76
different countries, mostly in the developing world). It is a unique and impactful
setting in which to consider broadening participation in computing, given that
students from historically underserved communities comprise most of the student

body.

While fortunate to teach some of my own classes as a graduate student at UCSC, 1
seized this opportunity to join a small computer science department as a faculty
member, viewing it as a chance to do truly immersive fieldwork. Berea, in particular,
offered me the freedom to develop and teach my own courses at the boundaries of
computer science and to work closely with underrepresented students. In addition, the

college values innovative teaching pedagogy, including active learning and a flipped

13

classroom approach. (Figure 1.6 shows my early participation in one such

instructional activity, in which students must verbally "program" their

instructors-turned-robots to make a peanut butter and jelly sandwich.)

Figure 1.6. Teaching students to "think like a computer scientist" by issuing sandwich-making
instructions to their instructors-turned-robots. (Pictured: Dr. Scott Heggen and myself, early in a CS1
term.)

I taught at Berea for a total of two and a half years, during which my research and
teaching interests were nurtured and my position converted from temporary to
tenure-track. I designed two new computer science courses at the lowest and highest
level offered by Berea (100-level and 400-level), both of which are detailed in this
dissertation. I also had the opportunity to take over Berea's CS1-equivalent, Software

Design & Implementation, teaching three sections in parallel in my final term. I left

14

my newfound home (and career) in rural Appalachia due only to ongoing challenges
with my health and the difficulty of completing a dissertation while teaching full
time. I am so terribly grateful for having had this experience, which, in turn, became

central to my dissertation.

Collectively, all of these teaching experiences — informal and formal — allowed me
to better understand the perspective of various learners, from K-12 students to
university students (sometimes, peers) to craftspeople to museum visitors. I learned
how to translate ideas and concepts into curricula, how to appeal to a diversity of
learning styles, and how to design learning experiences for different settings; a
90-minute course meeting and 10-minute drop-in museum activity contrast greatly in
their challenges and affordances! These experiences also gave me the opportunity to
directly observe barriers to learning about computer science and electronics, such as
low technological self-efficacy and a fixed mindset, which I wrote about as part of the
2014 ICER Doctoral Consortium [70]. These early teaching experiences also gave me
the chance to observe resource and opportunity gaps, some of which I sought to

address in my later work.

15

1.2 Document Overview

This remainder of this dissertation chronicles a collection of projects aimed at
broadening perceptions of computing, who is participating in computing, and what
kinds of artifacts are created with computing. All of these projects are situated within
the landscape of applied domains which are not yet commonplace in teaching, namely

computational craft and open source contribution.

Chapters Two and Three summarize two major curriculum-design projects
undertaken while serving on faculty at Berea College over a two and a half year
period of time. The majority of this work was published at IEEE's 2021 Frontiers in
Education Conference [74, 75]. Syllabi for my final offerings of these courses are also

included as an appendix.

More specifically, Chapter Two reports on a CS0-level computational craft course
added to Berea College's departmental offerings in hopes of further broadening
participation. I summarize the course design and structure, which emphasize
algorithmic design (using Processing), handcraft, and digital fabrication. I share
examples of creative computational work and feedback from students, as well as
reflections on the course's efficacy within Berea's funnel-style curriculum. Early

evidence suggests that the course offers a highly personal and creative entry point to

16

computing — and one that is effective at engaging a diversity of students while

ensuring a smooth transition to CS1.

Meanwhile, Chapter Three reports on my experience scaffolding student success in
the uncertain landscape of open source. Following participation in faculty workshops
on the subject, I spent two consecutive terms developing, teaching, and revising an
upper-division open source software course. The difference between the two course
offerings was astounding; students enrolled in the second iteration made more
successful project contributions, spent more of their own time working outside of
class, and felt a greater connection to both the project and the developer community
of which they were a part. I detail my experiences, with particular focus on the
importance of project selection — as well as the revisions I believe to be most
responsible for improvement: additional mentorship, supplemental in-class tutorials,
more dedicated class time for teamwork, intentional team groupings, and access to

large screens for collaboration.

Chapter Four presents follow-on analysis of work from my master's thesis. The
LilyTiny sewable microcontroller was created ten years ago — as part of that thesis
and in collaboration with my advisor at the time, Leah Buechley — in an effort to
make electronic textiles more accessible. At the time, e-textiles was gaining traction
as a means to invite more diverse participation in computing, but financial and

instructional barriers stood in the way of broader adoption. In addition, there existed a

17

scaffolding gap between projects involving lights, batteries, and thread — and those
requiring programming (i.e. leveraging the LilyPad Arduino and/or additional sensors
or outputs). In an effort to expand access to electronic textiles, I designed the
LilyTiny, an inexpensive, pre-programmed sewable microcontroller which controls
assorted LED patterns, and which later became available for purchase through
SparkFun. Alongside the LilyTiny, I released a free workshop guide for educators
which details five low-cost activities that can be taught without any prior electronics
experience. This chapter summarizes my prior development of the LilyTiny and
companion curriculum — and then reflects on whether I met my stated goal of
expanding access to electronic textiles in the decade since. I share and discuss various
measures of impact, including: a survey of derivative products, a multi-year analysis
of sales data from the LilyTiny's sole distributor SparkFun Electronics, and a
sampling of customer reviews and projects. The majority of this work has been
accepted for publication at ACM's 2022 CHI Conference on Human Factors in

Computing Systems [73].

18

2 | Course Design for Attracting Broader Participation:
Craft of Computing

My job interview at Berea College concluded with the department chair asking me
over dinner, "If you had complete freedom to develop a new course, what would it
be?" Intrigued by the idea, I suggested something of a mashup between introductory
programming in Processing, computational craft, and algorithmic design. I had
enjoyed teaching students to program in Processing at UCSC, had a lot of experience
with computational craft (and it's creative, diverse possibilities) from my time at MIT,
and had always wanted to experiment more with algorithmic design. All of these
approaches also held promise as avenues for broadening participation. When oftfered
the position, I was invited to design exactly this course — the same one I started

imagining over Indian food that night.

My only constraint was to situate the course, which we named Craft of Computing,
within an existing selection of CS0-level courses designed to invite diverse
participation. These courses target both (1) non-majors who are curious about
computing (and/or are seeking to fulfill a college-wide general education
requirement) and (2) computer science majors who may not have much prior
experience with computing. Accordingly, most seats in Berea's CSO courses are

reserved for freshman and sophomores. Unless exempted by instructor permission,

19

students are required to take at least one CS0O-level course before proceeding to

Berea's CS1 equivalent.

Because of this structure — in addition to Berea's broader institutional context — this
course offered a unique opportunity to impact student perceptions of computing; it
was a chance to share with students how computing can be personal, creative, and
applied, and to do so at a pivotal moment in their academic journey and identity
development. My department unequivocally supported these efforts in terms of space,
equipment, materials, mentorship, and teaching support — without which this work

would not have been possible.

2.1 Introduction

CSO0 courses can offer students with little-to-no computing background the
opportunity to explore computer science before committing to a major [136]. What’s
more, CSO courses can help to level the playing field for these students by the time
they enter CS1 alongside peers who may have taken computer science courses in high

school and/or have a stronger mathematics background [13].

Berea College, among other institutions, has adopted a CS0 "funnel" approach to
attract minoritized students; that is to say, Berea offers several CS0 courses on topics
of interest to the general student population [108]. This approach has since been

adopted and found to be effective elsewhere [42, 136]. Upon my hire, I was invited to

20

design and teach a new CSO course in my domain of expertise — computational craft —
in hopes of further broadening departmental demographics. Computational craft has
been studied as a successful avenue for attracting and retaining groups historically
excluded from computing, particularly women [14, 58]. This course, entitled Craft of
Computing, covers core CS0 concepts including computational thinking, variables,
loops, functions, etc. The course also showcases the creative possibilities of
computing when paired with handcraft, digital fabrication, and algorithmic design. I
taught Craft of Computing five times over a two-year period, during which it was

deemed so successful as to be added to the college's permanent catalog.

In this chapter, I detail the course structure, learning goals, and major assignments —
complete with many compelling examples of student work; Craft of Computing
students have created personally relevant and meaningful artifacts, often displayed in
their dorm rooms or given as gifts. Examples include: a needle-felted fairy house with
embedded LED lights, light-up paper circuit valentines, and beautiful recursive
geometric patterns — first generated in Processing and then realized in the form of

plotter drawings, vinyl-cut laptop stickers, and laser-cut wooden coasters.

Early analysis suggests that the course offers a highly personal and creative entry
point to computing — and one that is effective at engaging a diversity of students
while ensuring a smooth transition to CS1. My personal observations are

supplemented with student feedback in the form of interviews, informal course

21

reflections, and end-of-term course evaluations. I also provide insights and

recommendations for others looking to adopt a craft-themed CSO course.

In sum, the primary goal of this chapter is to document Craft of Computing, a novel
undergraduate course designed to broaden perceptions about computing — which in

turn, influences who participates in computing [22, 81].

2.2 Related Work

My work builds upon a body of prior research on computing education pedagogy,
broadening participation in computing, CSO course design and outcomes, the

Processing programming language, and computational craft.

The course design draws upon a number of existing pedagogical approaches that are
well-researched both within and beyond computing education. For example, I sought
to support affective learning in this course — doing so through encouraging informal
social interaction, challenging students to bridge the digital and physical worlds, and
portraying computational craft in the light of "hard fun" [106, 110]. (In other words,
computational craft is challenging, but if actively engaged in one's personal and
creative pursuit, one is less likely to mind.) The class is also built around an active
learning approach, which is known to enhance student learning and motivation,
heavily interspersing hands-on activities with short periods of instruction or tutorial

[38, 82, 111]. Overlaying the design of the course itself, my own teaching relies

22

heavily on guided discovery; when a student asks a question, I respond with a series
of questions to lead them to an answer — rather than merely supplying the answer up
front [2]. These techniques and approaches were foundational to the design of the

course, many of them being used widely at liberal arts colleges due to their positive

effect on student learning and overall experience.

Turning to broadening participation, the dearth of women and other minoritized
groups in computing is well documented, as are some of the factors critical to
attracting and retaining them [65, 79, 80]. Especially relevant to this chapter are a
sense of belonging and engaging in work that is personally meaningful and/or
culturally relevant [49, 64, 89, 132]. Building technological self-efficacy and a
growth mindset can further support these goals [25, 77, 94, 124]. Creative computing,
in particular, has been shown to effectively increase growth mindset and decrease
computer anxiety [68]. The design of Craft of Computing builds upon this knowledge,
including the incorporation of specific recommendations — for example, encouraging
students to pursue identity-affirming creative work and curating a physical space in
which students of diverse identities feel welcome [23]. The course also leverages pair
programming throughout, which is well documented as supporting broader

participation [83, 84, 134].

There is also ample research on the importance of CS0O-level courses as an avenue

into computing, especially for students with little-to-no prior programming

23

experience. Prior work also affirms the importance of CS0 as a way to broaden
student perceptions of computer science [136]. To this end, a "funnel" curricular
model has been well-documented, in which several different themed CSO courses are
offered as a means to invite diverse participation [42, 108, 136]. My work expands
existing practice by offering yet another novel entry point to computing, through a

domain which is both creative in nature and stereotypically "softer": craft.

The Processing programming language was designed to support exactly this kind of
creative work [40, 119, 120]; it was developed by designers and meant to be more
accessible than it's closest counterpart, Java. Processing has since been leveraged in
university-level offerings of "CS Principles" and CS0-style courses, both as an
approachable text-based language and a means to create art [4, 137]. It is for exactly

these reasons that I chose to teach Craft of Computing using Processing.

Computational craft — especially the field of electronic textiles — has been established
as an effective means to broaden participation in computing, especially at the K-12
level and in after-school settings [16, 56, 58]. My work expands these initiatives to
the undergraduate context, in which students are critically deciding upon and
pursuing a field of study to propel their careers. My work also infuses a stronger
software component (via programming in Processing), in hopes that this may prepare

students for CS1.

24

Lastly, the design of this course was especially informed by the work of CU Boulder's
Craft Technology Lab and my prior research group at the MIT Media Lab, High-Low
Tech [44]. Both of these now-defunct groups have laid a strong foundation of tutorials
and tools which enable making, hacking, and programming rooted in craft. Their
missions focused on democratization of engineering and the radical inclusion of
diverse populations — and their research and teaching has very directly inspired my

efforts to formalize a course at the undergraduate level.

2.3 Background

My course joined an existing selection of themed CSO0 offerings at the college, all of
which funnel into a singular CS1 course. Examples include: Intro to Robotics,
Storytelling with Alice, Intro to Game Design, and Building Better Apps. While Craft
of Computing debuted as a "special topics'/elective offering of this variety, it was

added to the college's permanent catalog within one year.

I taught Craft of Computing five times over a period of four consecutive 15-week
academic terms. This chapter includes examples of student work across all of the
terms in which the course was offered. However, in detailing the structure of this
course, this chapter will focus on the latest iteration unless otherwise noted. There

were some notable changes made over the two year period in which the course was

25

developed; those are discussed toward the end of this chapter in the context of

recommendations for others.

2.4 Course Design

Craft of Computing shares the same learning goals of many other CS0-level courses,
namely to teach core computer science competencies while showcasing applications
of computing (in this case, creative ones), and to lower the barriers to entry for
students with little or no programming experience [136]. I leverage craft as a context
because it is both relatable and provocative when considered in juxtaposition to
computing — while also exposing students to creative applications of programming. In
terms of domain-specific content, Craft of Computing exposes students to the

following:

® Programming in Processing — including coverage of computational concepts
such as loops, variables, and functions (facilitating the creation of
computational art)

e Some basic electronics — including simple textile and paper circuits

e Handcraft — including needle felting and embroidery (allowing students to

realize their algorithmic designs in a traditional craft medium)

26

e Digital fabrication — including use of a plotter, laser cutter, and vinyl cutter
(allowing students to realize their algorithmic designs in a computer-mediated

craft medium)

The course also includes some coverage of the maker movement, in particular,

discussion around accessibility and inclusivity of maker culture.

Setting & Organization

I taught Craft of Computing in a lab space shared by Berea's electronics course, which
allows access to all of the relevant tools, materials, and equipment, as well as a sink
for cleanup and a safe place for students to leave projects-in-progress. This classroom
is also the setting for the department's evening lab hours which are open to students in
all computer science courses, and where students may drop in for help or to work on
projects. An assortment of TAs staff this space Sunday through Thursday night each
week, and an effort is made to have one or more TAs from each class scheduled on

any given night. Students feel great ownership over this space.

The course meets for long class periods — 110 minutes — twice per week. One day per
week focuses on programming or computational concepts, such as Processing syntax,
coordinate systems, and programming fundamentals. These class periods include
informal whiteboard "mini-lectures" covering bite-sized concepts such as variables,
loops, and functions, one at a time. These are interspersed with exercises from the

textbook which are completed in pairs, sharing one laptop, as dictated by pair

27

programming practices. Students have reported really liking this format; as one
student commented in a course evaluation, "This is a class that doesn't work well with
a lecture style and she knows that and taught the class accordingly, small part lecture

and then hands-on work."”

The second day each week focuses on circuits, handcraft, and digital fabrication as
mediums for computational art and design. During these class periods, a document
camera and equipment/materials are used to do live demos on handcraft techniques
and also technical topics such as how to: use a multimeter, design a simple circuit
(with a battery and a LED), prepare files for digital fabrication, and use CNC
equipment. These demos are interspersed with long periods of unstructured hands-on
work time, during which students are encouraged to move around, work in clusters,

socialize, and ask myself or one another for help as needed.

Categories of student work and assessment are outlined in Figure 2.1. Assignments
and quizzes focus on building core craft and programming competencies, while
mini-projects and the final project offer the opportunity to integrate and apply these
skill sets. (Mini-projects and the final project are detailed in the following section.)
Homework includes readings from the textbook, work on mini and final projects, and
sometimes finishing an in-class craft or programming exercise (although the bulk of

this work happens in class).

28

Assignments 20% | Includes written reading responses, programming exercises, and outside-of-class research. Intended to
broaden both craft and technical skill sets.

Quizzes (x5) 25% | Cover technical content and allow the instructor to better understand which topics would benefit from more
coverage. Quizzes are reviewed in class, with focus on revisiting topics students may have struggled with.

Mini-projects (x3) 30% | Through these special assignments, students learn to interface between the digital and physical worlds — for
example, by making something on a vinyl cutter which was first designed on a computer using Processing.

Final project 25% | Invites students to blend craft and computation in a more open-ended context than the mini-projects. Once
again, students bring a design of their own into the physical world — but they do so through a medium and
technique of their choice.

Figure 2.1. Coursework components, with percentage of overall course grade and a short summary.

Major Assignments

The major assignments of the course, mini-projects and the final project, emphasize
blending handcraft with electronics, the creation of original vector designs in
Processing, and realizing those designs in physical form. Although the majority of
these assignments are structured around a piece of digital fabrication equipment, the
emphasis is on what creative possibilities the equipment enables, rather than simply

learning how to use it.

Mini-project #1: Felted Circuits

The first mini-project invites students to blend needle felting with textile circuitry, as
inspired by the work of artist Moxie Lieberman [93]. (Lieberman was an
artist-in-residence in the Exploratorium's Tinkering Studio during my internship
there.) Over a couple of class periods, students are taught how to needle-felt, how to
design a simple circuit (with a light, a battery, and an LED), and considerations for
working with electronic textile materials like conductive sewing thread. Each student
sketches a three-dimensional felted object, along with plans for how they will embed

a sewn circuit into its structure — with care and attention given to LED placement,

29

battery pack placement, and keeping the various threads from accidentally making
contact and short-circuiting. Students who are interested in optionally adding a switch
are encouraged to do so, and instructionally supported in modifying their sketches to
accommodate this. Once students bring their sketches to me for revisions and

approval, they collect the necessary materials and bring their circuits to life.

Examples of student work appear in Figure 2.2.

Figure 2.2. Felted circuits designed by students: a fairy house that lights up inside when the flower is
placed atop it, an angler fish, and a baby bird.

Mini-project #2: Plotter Drawings

The second mini-project invites students to blend code-driven/algorithmic design
(done in Processing) with vector path drawing. Students are asked to create an
original single-frame/non-animated vector design in Processing, which must also

meet the following technical requirements:

e Use of 2+ drawing commands/shapes (1ine, rect, ellipse, etc.)
e Use of variables whenever possible.
e At least one /oop, to create visual repetition.

30

e Appropriate use of comments throughout.

Students first submit a draft of their code to Moodle (Berea's LMS) and present their
draft to the class for feedback using an overhead projector. While students are
working outside-of-class to incorporate any suggestions or revisions, class time is
used to demonstrate how to export and format Processing PDFs for vector plotting
and how to use a Cricut machine for drawing. Students submit a final draft of their
code/design, output their design on the Cricut using pens or markers, and compose a
written reflection about the experience. They present their final physical drawing in
class alongside their code, again utilizing an overhead projector to do so. Examples of

student work appear in Figure 2.3.

OOO\VO
ONY/ON\Y/ONY/O
O
O
OINOANOANO,

\O O/ OA\O

Figure 2.3. Plotter designs produced by students as they learn to draw algorithmically. (Pen on paper,
machine-drawn.)

Mini-project #3: Vinyl-cut Stickers
The third mini-project invites students to blend code-driven/algorithmic design (done
in Processing) with vector path cutting. This assignment follows the same

draft-revision-fabrication structure as the plotter mini-project, but includes the added

31

challenge of designing for cut paths instead of drawn lines; designing vinyl-cut
stickers requires students to think about positive/negative space and open/closed
shapes. Each term, an early observation and point of discussion is that overlapping

lines in a design will generate vinyl confetti instead of a single, unified sticker.

Students must submit an original design that is significantly different in composition
from their plotter design. While students are working outside-of-class to revise their
sticker designs, class time is used to demonstrate how to work with a Roland vinyl
cutter and how to carefully transfer a cut sticker to a surface. For their final
presentations, students are required to show their sticker adhered to a surface; even a
piece of paper suffices, but most students choose to affix their sticker to a bicycle,
laptop, or other personally meaningful object. Examples of student work appear in

Figure 2.4.

, ,
e o 1)
Positive \sibies @ N @ |
S

Psilie Fife

O oy

Figure 2.4. Vinyl-cut stickers, which students valued enough to apply to their own laptops.
(Student-produced stickers appear here in magenta, dark red, and sky blue, from left to right.)

32

Final Project

The final project invites students to blend code-driven/algorithmic design (done in
Processing) with handcraft, vector path drawing, vector path cutting, or a mix of
these. Essentially, students are asked to generate a more complicated vector design
than they have done prior and to realize it in any of the physical mediums covered in
the course. They may also use any art/craft medium with which they have prior

experience or wish to explore on their own.

This project follows the same draft-revision-fabrication structure as the two prior
mini-projects, but with the added technical requirement that students must use
functions in their code. Students are also expected to engage in independent research
and planning in terms of creating a design that is suitable for their chosen medium(s),
envisioning how they will realize this design in physical form, and requesting any
necessary physical materials for their project. The fabrication part of this assignment
must either incorporate handcraft in some way or demonstrate a more complicated
application of a tool from an earlier assignment (for example, using a plotter with two
pens/colors or using a laser cutter with a new material). Examples of student work are
shown in Figure 2.5 — but students also used many other mediums such as charcoal,

acrylic paint, and 3D printing.

33

O000oooooooaa

0oo 000
000 ooo |
00 00
0 0
O | 0
0 0
O | 0
0\ O
O O
O | O
O O
O | O
0 0
0 O
O | O
0 0
Dé\\ 00
000>~ - — 1000

Oo0ooooooooooooooooo

Figure 2.5. Student final projects. Top row: laser cut coasters and a hand-embroidered pillow. Middle
row: a hand-embroidered scene, a tooled leather bracelet, and a hand-embroidered pillow. Bottom row:
a graduation cap, start to finish.

Bonus Activity: Paper Circuits

Each term, one class period is spent teaching students how to make light-up
Halloween cards (Fall term) or valentines (Spring term), as inspired by the work of
Jie Qi [114, 115]. This activity is ungraded, as students take their cards with them at

34

the end of class, but it is intended to reinforce earlier learning about circuits and to

demonstrate yet another creative technical application.

During this class period, which always takes place after the felted circuit mini-project,
I teach how to create circuits on paper using copper tape, lights, and batteries. I also
teach students how to solder — and they have the opportunity to practice what they've

already learned about using a multimeter to measure continuity. Some examples

appear in Figure 2.6.

Figure 2.6. Halloween-themed paper circuits made by students.

Deprecated Assignments

In addition to the above, earlier offerings of the course included a textile sensor
mini-project that followed the felted circuit mini-project. Inspired by Hannah
Perner-Wilson's work [50, 109], this opened up discussion of resistance and the
differences between a "dimmer" and a "switch". We used neoprene, Velostat, and
conductive thread to follow Perner-Wilson's Instructable on the topic [52]. Students

added their own flair to the assignment by making their sensors in creative shapes like

35

dinosaurs and hearts — and enjoyed comparing how this and other variables affected
their resistance, using a multimeter to investigate. Although students appreciated this
more advanced electronics project, it was removed from later course offerings so that
we could go more in-depth on frequently-requested, more advanced topics in

computing, like translation and user interaction.

A couple of earlier terms of the course also used a laser cutter in lieu of a vinyl cutter
for Mini-Project #3; this was simply dependent on whether we had the necessary
equipment access, and the project requirements and challenges were comparable
across the two different machines. During these offerings, students were also able to

use the laser cutter for their final projects. Examples of student work from these

deprecated assignments appear in Figure 2.7.

AN/ X
AN TANL
<iie e
TR AL
Faove
EIANS]
&=

I

<
Ve
-
/L
(
\7>
</
>
=
[\
<
~
</
>
.
|\
<
~
=~/

T ¥5° 5) Qi
WYY NTATAYL

Figure 2.7. Layered laser-cut paper, from an earlier version of Mini-Project #3.

Infrastructure
The choice of using multiple infrastructure tools for teaching versus consolidating

into a single platform has an effect on the tone of the class. Although there is a

36

learning curve to students using multiple tools in tandem, this is common in the
computer science workplace and I emphasize their utility with regard to preparation

for post-graduation employment.

The course is taught entirely in Processing, aside from a Blockly-based warm up
assignment. I chose Processing because it was originally developed by artists and
designers to enable the creation of creative work by those with minimal programming
background [120]. To scaffold our journey through learning to write Processing code,
all students are required to purchase Learning Processing and it serves as the course
textbook [123]. Craft of Computing covers the first three chapters of the book in great

detail, with select topics from later in the book covered by request.

A Trello board serves as our course website [24, 130], which colorfully organizes
upcoming assignments/due dates, requirements for each assignment, and references
such as the syllabus and equipment documentation. Students submit coursework on
Moodle, except for physical artifacts which are submitted in person. An example

from one of the course offerings is shown in Figure 2.8.

37

mBoard v Craftof Computing @ Fal2oi Fee © Pubic)) inviee

& Vinyl Cutter Design (Part 2: Output) 2
in list Past Assignmants
Admin Current Assignments Past Assignments LABELS OUE DATE SUGGESTED -
Course Syllabus Informal Course Reflection Study for Quiz #4! ADD TO CARD
@1 = 0 = = Description Edit S

-—
Textbook Website

Now that you've made a design with Processing, the next step is to use the

vinyl cutter to realize your design in sticker form. © Labeis

Final Project: Proposal N need to: Bl cheskin

F = est.png”); so thatit is the last line in your
draw his will cause Processing to export a PNG file which © Due date

—-— e ey P — c— contains your design as you see it on screen. p—
Rotate Example/Reference Vinyl Design Documentation « Open your PNG in the free Silh
@ - ind, & Cover
—-— — POWER-UPS
KNK Force (Plotter) Manual Vinyl Cutter Design (Part 2: Output) + Add Power-Ups

-—
Adobe lllustrator Installation Learning Processing: Chapter 7

+ Add another card a2 -+ Add another card a

+ Add button

Figure 2.8. The course website, as organized on Trello. An overview of current tasks and references
(left) and a "card" offering guidance on the final phase of an individual mini-project (right).

Students are also required to join the Craft of Computing channel on our department's
Slack team [125], which was created and is managed by the department's teaching
assistants (TAs). This is where any announcements or clarifications are made in
between course meetings, for example, deadline extensions or on-demand examples
to clarify content. Students are also asked to post on Slack rather than emailing me, as
this enables a quicker response from the myself, course TAs, or other students in the
course. Students are also encouraged to send direct messages to me and/or the TAs on
Slack if they would like to inquire about grading, ask a question specific to their code,

or anything more private.

Complementary to the above, Google docs is used to host software and equipment
documentation and Calendly is used for students to schedule time on specific

equipment [21].

38

Instructional Support

Teaching assistants have been absolutely instrumental in the success of Craft of
Computing. Abundant teaching support is a unique benefit of teaching at a work
college, but undergraduate tutors and graders could be tasked with similar support at
other institutions. For this course, TAs staff evening lab hours and monitor the course
Slack channel. They have also worked independently to create invaluable
documentation that persists across terms; TAs have authored detailed step-by-step
tutorials on each piece of equipment as well as file conversion processes. All of these
feature annotated screenshots, lots of encouragement, and a sense of humor. These

walkthroughs have been vital in terms of reducing student confusion.

TAs also learn how to use each piece of equipment in advance of associated
assignments and they supervise equipment time slots, which students can reserve both
during and outside of evening lab. TAs also handle all of the signups and scheduling

for this.

Finally, TAs grade all of the quizzes and meet with me to grade final projects as a
group at the end of each term. This is very helpful, as they have a window into each
student's process and any barriers that they have encountered. On the whole, I have
found it tremendously helpful to have my TAs' ongoing feedback on what topics

students struggle with in lab and any issues that arise with equipment or materials.

39

2.5 Reflections

In this section, I summarize some of my own observations and reflections about the

course.

Challenges & Rewards of Working in the Physical World

Working with physical materials and equipment can be time-consuming and
frustrating, as echoed in students' course evaluations, especially as it contrasts with
the software/digital focus of most computer science coursework. However, once
students get in the habit of planning ahead and signing up for equipment time slots,
they often express a sense of pride and triumph in what they make; a sentiment
echoed through many student evaluations is, "The more effort I put into a project, the
more enjoyment I got out of it." Students have especially enjoyed making things to
display in their dorm rooms, to personalize their belongings, or to gift to loved ones —
sometimes requesting items be returned early from grading in time for a birthday or

holiday.

I have additionally observed students bonding over the above-mentioned frustrations;
for example, how an earlier-used plotter would sometimes quit halfway through
drawing or how awful the laser cutter smells after cutting wool felt. Students have
also built a strong sense of community around our presentation days. Upon their
suggestion, I stocked the lab with tea and second hand coffee mugs — and these class

meetings came to be known as "CriTEAque Days". Sharing creative work is

40

vulnerable and I believe that together we have cultivated a safe space for students to
provide constructive feedback and try new things. This is echoed by a student
evaluation: "[The instructor] is very passionate about the topic and encourages us to
try new techniques, or to apply these techniques differently to see the outcome.”
Students look forward to our CriTEAque class periods, taking great interest in one

another's creative and technical growth.

Students have also reported appreciation for learning craft techniques — as a creative
outlet, as a destressor especially around midterms and finals, and as a means to be
more self-sufficient. One student writes, "I hadn't concerned myself prior with sewing
or felting, but I have a fair deal of interest and respect for the creative applications of
both after having taken the course.” Another reflects, "This course taught me the
basics of programming and basic sewing and embroidering techniques that not only 1

can use in a career but for life skills too."

Importance of Growth Mindset at the CSo Level

The importance of a growth mindset is well-documented, and the focus on creativity
and craft in this course seems to support this objective. Most introductory computing
courses have all students complete exactly the same assignments. This can offer the
temptation to ask another student how they solved a bug, rather than struggling with it
on one's own. The focus on creativity in this course means that every project is

unique, and neither other students nor myself are likely to know the answers

41

immediately. This allows abundant opportunity to practice debugging and growth
mindset towards a goal the student is personally invested in. Student evaluation

comments reflect this experience:

"She was very relate-able and talked through struggles. She also did not just
give us the answers to problems in our code. She just spotted the spots where
they were and it was like hide and seek or find Waldo. It was great to hear the
encouragement of knowing that she had found the bug in the code and then we

had to work on finding them ourselves."

"She welcomes questions and mistakes on work and assignments and teaches
us that sometimes mistakes aren't terrible things but can add on to our

projects."”

"The instructor does a good job of leading you into fixing code you have a
problem with instead of outright telling you what is wrong or what you need to

add so that you can actually learn something."”

"Whenever students are stuck she just doesn t give them the answers she asks
them questions for them to start “thinking like a computer scientist” as she

would say."

"She has helped me to learn that coding is no harder than solving a puzzle."

42

Leveling the Playing Field

CSO0 courses strive to provide an entry point for students with little-to-no
programming background, yet often enroll students with a wide range of preparation.
For example, some students may opt to take CSO0 as review or because they are
interested in the specific topic/theme that is featured. This presents a unique challenge
for CSO instructors, as they strive to balance approachability for less experienced

students with keeping more experienced students engaged.

Given my experience with this course, computational craft is, in fact, very well suited
to this challenge. Between the creative aspect of every assignment, the variety of
tools/materials/techniques at hand, and the extensibility of Processing as a
programming language — I have seen students of all levels remain engaged over the

course of each term. Student evaluation comments support this:

"[The course] allows students to brainstorm and create their own unique
projects while ensuring the students learn the content and the projects follow

the specifications."

"... individuals in the class were at a variety of skill levels and [...] everyone

was able to learn despite that challenge."

"Anytime that we finished a certain part, she would challenge us with extra

tasks that gave a better understanding.”

43

Preparation for CS1
CSO0 courses aim not only to offer an appropriate entry point to computer science, but

also to prepare students with minimal programming background for CS1. Student

evaluations reflect success in these areas as well:

"Even though I had no background of Computer Science, [...] this course

[was] very accessible to me."

"[recognize that this would be an ideal first computer science course." (This
comment was made by a student with some programming background

already.)

"I would recommend anyone who is thinking about doing computer science to
take this course. It's a perfect preparatory course for [CS1] and [CS2] by
softly introducing key concepts that are crucial to the major. Anyone who

takes this course will have a huge leg up in [CS1]."

Despite the non-traditional computing topic area which may be perceived by some as
"softer" or less difficult, Craft of Computing is one of the only CSO courses in the
department to use a text-based programming language; most CSO courses in Berea's
funnel utilize block languages. A couple of students posited in interviews that this
makes for a smoother transition to our CS1 course taught in Python; Craft of

Computing students already have familiarity with compiler errors, nuances of written

44

syntax, and data representation (e.g. ints vs. floats). Craft of Computing's coverage of
Processing also uniquely exposes students to debugging, libraries, and programming

in different coordinate systems.

Broadening Participation & Perceptions Through Craft
The goals I was most passionate about for this course were to invite participation
from a diverse cross-section of students and to vastly broaden students' perceptions of

what computer science is "good for".

A total of 69 students enrolled in Craft of Computing over the two-year interval,
many of which were first year students. At Berea College, first year students are
placed into Fall Term courses by an advisor, while all students self-enroll for the
Spring Term. Looking only at Spring Term (self-enrolled) students, 19 men and 15
women enrolled in the course. While a small course like this is hardly suitable for
reporting statistics, this is 44% female enrollment, as compared to under 20% of

computer science bachelor's degrees being awarded to women nationwide [96].

I am also very encouraged that student evaluations reflect success in broadening

perceptions of computing:

"Every assignment is flexible; the criteria can be met with an incredible
number of solutions of varying complexity, and every assignment feels like it

has the potential to be an art project.”

45

"... the course did well to link the computational and physical areas, generally

broadening the scope for which I might consider programming."”

"[learned so incredibly much! Before this course, I didn't know the first thing
about programming, but now, I'm coding simple video games in my free time,
and I have even decided to minor in computer science. I loved this course so
much that I applied for, and was granted the opportunity to work as one of the

two TAs for the course in the fall."”

"... her ability to relate the computing information to things in the real world,

and to combine digital work with analog work is simply astounding."

"This was a great opportunity to learn new things in a new field. I liked being

able to bring my code to art."

Personally Meaningful Work

Lastly, Craft of Computing student projects frequently reflect students' identities,
relationships, and milestones. Students have created homages to best friends and
parents, gifts for their children, and decor for their dorm rooms. Many students have
chosen to integrate their projects into their everyday lives — for example, affixing
their vinyl cut stickers to frequently used items, sharing their projects on social
media, and asking for work to be graded ahead of schedule so that it can be given as a

gift. This seems especially promising, as research has shown that engaging in

46

personally meaningful work can attract historically marginalized students. A couple
of examples of student final projects celebrating personal identity and

accomplishment can be seen in Figure 2.9.

Figure 2.9. Personally meaningful student work. Left: one student represents herself by coding and
pen-plotting a face that is half African and half Native American. Right: another student celebrates her
graduation by hand-embroidering a computational design and framing it in a shadowbox with
keepsakes.

2.6 Recommendations

In this section, I make concrete recommendations to others who may be interested in

offering a similar course at their own institution.

Course Logistics
Longer course periods really do offer more time to engage with physical materials,
fabrication equipment, and handcraft. They also allow for more meaningful

discussions, both on the topic of readings and on days that students are presenting

47

their work. I recommend scheduling a course of this type during extended time

blocks, if your institution offers this option.

The earliest offerings of the course were taught in a couple of different classrooms
that did not have storage for materials or student projects — nor did they have the
equipment used in the class. I spent a lot of time shuffling both materials and students
between locations, to ensure that we had access to everything we needed. If at all
possible, I recommend scheduling a course of this type in a lab space — ideally one in

which students feel at home.

In terms of resources, students adored Learning Processing as a textbook. They
appreciated the author's conversational tone and the workbook-style exercises, which
we leveraged both for homework and in class. Students had no trouble skipping ahead
to specific topics of interest on their own if they were looking for a challenge; in fact,
one of the most common pieces of feedback received regarding the textbook was
simply a desire to have covered more of it. Some students also independently sought
out the textbook author's accompanying videos which explain and demonstrate key
concepts, and told us how helpful these were. In short, a textbook and related videos

that directly support student activities worked well.

Students initially complained a bit about all of the infrastructural pieces (Moodle,
Trello, Slack, Google docs, etc.). I emphasized Trello and Slack as the most important

resources to keep track of, encouraged students to configure Slack notifications to

48

their phone or email, and took great care to appropriately link between platforms.
Ultimately, many students did find Slack to be a helpful touchstone throughout the
term. I believe messaging on Slack feels closer to a text message than an email, and
that this allows students to very quickly get in touch without worry over formality,
etiquette, or perfect phrasing. Thus, I do recommend using Slack — or another
platform emphasizing approachability, to facilitate announcements and peer support

between course meetings.

Equipment & Materials

As mentioned in my earlier reflections, working with physical tools and materials is
uniquely challenging — especially within a computer science context, where students
are used to having everything they need to complete assignments right on their

laptops. Over time, I have found a few strategies that helped to ease this.

I let students know in the course description, and again on the first day of class, that
this course will require visiting the evening lab and/or scheduling separately with
equipment. This helps to set student expectations early on and to redirect students

who may have an incompatible term schedule.

I also make sure to offer plenty of unstructured time to work on projects during
course meetings. This is especially helpful when learning about circuits, doing any
kind of handcraft, and when students are pursuing open-ended final projects. Because

of the demands of students' labor schedules, this helps to ensure that students have the

49

necessary time, support, and access (to equipment, materials, and instructional staff)
to achieve course goals. Depending on your institutional context, you may choose to

do this as well.

To keep the class on schedule, I recommend purchasing any necessary equipment and
materials before the start of the term. The one exception to this is students' final
project materials, which students request through a Google spreadsheet. If your
department does not have funding available to cover these needs, you may consider

charging a materials fee for the course.

When selecting equipment, simple is best. Early course offerings incorporated a laser
cutter and vinyl cutter housed in a neighboring department, plus a
powerful-but-experimental plotter. By the time of the course's latest offering, I had
scaled back to mostly relying upon a Cricut machine (which can both cut and draw).
The Cricut software is also easier for students to learn and to stick with over multiple
assignments, especially compared with learning one application for a laser cutter and

another for a vinyl cutter.

File Formatting & Exporting

It can be confusing for students to envision how the display output of their coded
designs will translate into the physical world. For each Processing-based mini-project,
it is important to be clear that the goal is generation of static images — not animations

— because only vector data will be used to generate machine output. Students are

50

welcome to embellish their code with color and fills on their shapes, but it is

important to emphasize that only the line data will be used.

Although Processing does allow for exporting vector designs to PDF, some additional
formatting is necessary. Most notably, Processing exports duplicate paths for each
shape: one to represent lines and one to represent fill, even when noFill() is
specified. The first time an assignment requires formatting student designs for a piece
of equipment, I recommend doing a live demo of the steps required to achieve this. |
include a quick overview of vector versus raster file formats and a brief-but-targeted

dip into Adobe Illustrator.

My TAs have assisted with creating written documentation of this process for
students to follow along with on their own. In addition, I provide some simple
example files for students to practice this process on. I recommend ensuring that you
have tested the entire workflow and that your students have access to any necessary
software — even one lab computer with vector graphics software (e.g. Adobe
[lustrator) installed will suffice. A dedicated lab computer can also be very useful for
running the digital fabrication equipment, rather than having students “print” to this

equipment from their laptops.

Emphasizing Original Creative Work
From the course's inception, I had intended for students to create original designs for

every assignment, although I was open-minded about what that meant. However,

51

some students dedicated quite a lot of time to recreating familiar imagery with
Processing, while technically meeting each assignment's coding requirements. In
some cases, this meant spending hours plotting out an existing logo or character
coordinate-by-coordinate, failing to leverage the built-in Processing functions I had
wanted students to learn about — and missing out on the joy and creativity of

algorithmic design.

In later terms, I added an explicit requirement that assignments consist of original
creative work rather than anything derivative. This yielded better progress toward
programming learning goals and also more interesting outcomes. Showcasing
beautiful examples of prior student work, as they were accumulated, helped greatly

with this as well.

!

Finally, from a student course evaluation: "I suggest she buy more needle threaders.'

This is indeed a great thing to keep in mind when teaching with textiles!

2.7 Future Work

Evidence so far — seen in student work, enrollments, and course evaluations — is
promising. Further analysis of student course evaluations and institutional data can
paint a more detailed picture of who enrolls in the course — not only students' gender,
but also their declared major and reason for enrolling. The next step after that will be

to leverage institutional data to understand if (and how) enrollment in Craft of

52

Computing impacts students' choice of major and/or path through the major. Finally,
many Craft of Computing students have voiced interest in an upper-division level of
the course... and it would be a wonderful experience to design and offer an advanced

elective counterpart!

2.8 Summary

In designing Craft of Computing, 1 had hoped to further broaden participation within
my own undergraduate department, and to expand students' perceptions of computer
science. Anecdotal evidence suggests that the course was effective in doing so; the
course enrolled students across a diversity of majors (including art, theater, and
applied design) and students report a broader understanding of the field in their
course evaluations. The work that students produced — as exemplified in this chapter
— is uniquely creative and personally meaningful, piquing students' interests in the

creative and varied possibilities of computing.

I hope that sharing my experiences and recommendations emphasizes the importance
of diversified CSO offerings and can, in particular, enable more courses of this variety

at other institutions.

53

3 | Course Design for Retaining Broader Participation:
Open Source Software Engineering

Shortly after my first experience teaching open source, via the OpenHatch workshop
at Hartnell College, I discovered a vast body of existing research on student
involvement in free and open source software (FOSS) projects. This research was
motivated by many of the same characteristics I observed that day: open source
projects offer students a means of developing a practical skillset, building a portfolio
of work, participating in a community of practice, and using computing to impact
society in a meaningful way. Much of this work was published by faculty involved
with Foss2serve [37], a special interest subgroup of the Teaching Open Source
community [140]. An established working group of educators and researchers,
Foss2serve supports student involvement in humanitarian open source projects,
specifically because of their social impact. I also learned of POSSE (the Professors’
Open Source Software Experience), which is a multi-day professional development
workshop offered by RedHat and Foss2serve to support faculty new to teaching open
source [28, 91, 113]. Over the following two years — and while exploring dissertation
directions — I participated in multiple POSSE-related workshops, during which I
gained experience with open source tools and helped to develop curriculum and

activities for college classroom use. I also learned from faculty at a variety of

54

institutions who were integrating open source contribution into their computer science

courses and began envisioning how I might teach such a course of my own.

Upon starting my position at Berea College, I was invited to do exactly this. Shortly
after my hire, I was offered the opportunity to take over Berea's upper-division
software engineering class, which had most recently been taught in the context of
open source software. This version of the course had previously been run one or two
terms, taught by a Berea faculty member who had also attended and who I had met
through POSSE workshops. Informed by POSSE best practices, feedback from
students who had taken the earliest iterations of the course, and my own teaching
experience, | decided to redesign the course with a focus on scaffolding student
success despite an inherently unpredictable context: the wilds of open source
contribution. In doing so, I leaned heavily on the resources and mentorship afforded
by my involvement with Foss2serve. I have remained involved with this faculty
research community ever since, most recently collaborating with Lori Postner and
Darci Burdge to offer a workshop at the 2018 Grace Hopper Celebration of Women in

Computing on the topic of candidate project evaluation for student involvement.

While Craft of Computing offered the opportunity to impact student perceptions of
computing at the entry level, designing an open source elective afforded the chance to

do so at another critical moment — as students considered whether they would pursue

55

a career in computing post-graduation; effectively, it offered an opportunity to retain

a diversity of students who had already been attracted to computing.

3.1 Introduction

Teaching open source software development has gained traction in undergraduate
curricula for many reasons: students learn to use real-world tools/processes, build
portfolios of project contributions, and function within a distributed professional
community [30, 47]. Open source also provides a clear avenue for students to have a
positive and tangible impact on society, something that is known to be relevant to

broadening participation in computing [26, 80].

Open source contribution also showcases an application of computer science that
students may not have been aware of prior. At the upper-division course level, this is
especially important, as students are about to decide whether they will seek a career
in computing post-graduation [138]. The issue of post-graduation retention is
especially critical at Berea College, where many students are working to overcome

socioeconomic disadvantage.

Over the course of two consecutive terms, I developed, taught, and heavily revised an
upper-division course entitled Open Source Software Engineering. | leveraged a
wealth of existing activities and resources in designing the course [37], was supported

with real-time mentorship as I ran the course (from other faculty involved with

56

POSSE), and secured sustained professional mentorship for my students (from the

Mozilla DevTools project).

The difference between the two terms was tremendous. Most notably, student project
contributions increased from a 25% success rate in the first iteration to 100% in the
second iteration. As a result of the course's success, it was retained in the
department's permanent course catalog. In this chapter, I detail my experiences across
these two terms and the revisions that I believe to be responsible for the improved

student experience and outcomes in the second iteration.

3.2 Related Work

There exists a growing body of research on undergraduate engagement in free and
open source (FOSS) projects, especially humanitarian free and open source projects
(HFOSS). It has been well established that involving students in open source
communities offers a valuable opportunity for students to learn within a community
of practice, gain experience with practical tools (e.g. version control systems, bug
trackers), build a portfolio, and contribute to a real-world project [29, 31, 46]. In
addition, teaching with open source reaps the benefits of project-based learning — for
example, helping students cultivate "soft" skills such as teamwork, communication,

and project management [87].

57

HFOSS projects, in particular, have been a deliberate choice for many educators
because these communities are typically welcoming and supportive to newcomers
[48]. It is suspected that these communities also attract participation from women and
other underrepresented minorities, due to their social impact [112]. Additionally, the
altruistic nature of humanitarian open source contribution lends itself nicely to
service-learning [90]. Teaching open source also offers instructors the chance to
model a growth mindset and to foster a sense of belonging within a professional

community — also of great relevance to broadening participation [49, 64, 132].

Much like Craft of Computing, this course also leverages more general pedagogical
techniques with a track record of supporting student learning and broader
participation — namely, active learning and pair programming [38, 8284, 111, 134].
Also as with Craft of Computing, my teaching style embodies a guided discovery
approach, meeting student inquiries with my own series of questions, designed to lead
them incrementally to the answer or resource they may be seeking [2]. In this course,
I especially make a point of offering process-oriented praise, as student learning is not
always reflected in project contributions — and nonetheless I aim to support their

development of a growth mindset [27].

A number of successful open source courses pre-date my own course design, situated
within a variety of institutional contexts [11, 48]. These range from single term

courses, featuring a taste of open source, to immersive year-long capstone courses or

58

those aimed specifically at broadening participation [10, 55, 133]. In designing my
own course, | sought to translate existing best practices to fit within our liberal arts
upper-division elective context. Given that so many Berea students come from
historically marginalized communities, I also sought to showcase a socially impactful
and community-oriented application of computing, in hopes of retaining students in

the field post-graduation.

Despite all of its promise, teaching open source presents many curricular challenges:
community leadership can take unexpected turns, projects vary in size and
complexity, and student learning can be difficult to assess [30]. In addition to putting
the aforementioned research into practice, my work reports on what I have learned;
scaffolding student learning in such an unpredictable context is challenging, but

thoughtful planning and revision can have a dramatic positive impact on outcomes.

3.3 Course Overview

Although my course is titled Open Source Software Engineering, the emphasis is
much more on open source than on software engineering practices. The first half of
each term is spent on history, etiquette, culture, and tools — and the second half is

spent diving into an active open source project.

The first offering consisted of 16 students (14 male, 2 female) and the second offering

consisted of 12 students (10 male, 2 female). Both classes represented a wide range of

59

experience, as some students had only taken CS1 and CS2 while others had
completed a variety of upper-division coursework. An overview of the two offerings

follows.

Term 1

I leveraged the Foss2serve library of activities for the first half of the course, guiding
students through licensing, candidate project evaluation, version control with git,
communication tools (such as IRC and Slack) and more. Students completed these
exercises in pairs, in class. I also required students to make GitHub accounts and,
after an in-class crash-course on HTML and CSS, students practiced fixing up a
buggy GitHub Pages site that was created in advance. I generated several GitHub
"issues" for students to claim and work on, to help learn the GitHub workflow and to

practice HTML/CSS. (This activity was borrowed from OpenHatch.)

Weekly reading was assigned from either The Cathedral and the Bazaar [117] or The
Art of Community [5]. Students were required to create blogs and to post reading

responses there. A few group discussions were held in class on related topics.

For the second half of the term, I embedded all students in the same open source
project rather than each team selecting their own project. Students weren't very
excited about this approach, but I felt that it would be easier for me to support them —
and for them to support one another. I solicited suggestions through the Teaching

Open Source [140] mailing list and learned of others’ positive experience engaging

60

with the Mozilla Firefox DevTools community [35] and, more specifically, with the
debugger.html project [53]. (Mozilla originally developed this debugger as part of the
Firefox Developer Tools, although it now works in both Firefox and Chrome.) I
connected with two other faculty members teaching with DevTools, Heidi Ellis and
Darci Burdge, and together we worked with the debugger.html community to identify
candidate bugs for our students. (I knew both Heidi and Darci through POSSE, as
they were both a part of the core group of faculty organizing and hosting the
workshops, Foss2serve.) Motivated by a desire to engage students in HFOSS, we

selected bugs under the umbrella of accessibility.

I divided students into teams of four. I grouped students according to their own
preferences and who I thought would work well together. One consequence, however,
was that most teams reflected a broad spectrum of prior experience. I instructed
students to assign themselves relevant homework between class meetings — e.g.
tutorials, testing, or bug research — and asked that they reserve class time for team
collaboration. Students completed bi-weekly team evaluations, in which they ranked
themselves and each of their teammates on metrics like regular attendance,
leadership, and attitude. (This tool was shared with me by Heidi Ellis.) These were
treated as confidential and allowed a window into any interpersonal challenges early

enough to intervene.

61

Students were required to join the Open Source Software Engineering channel on the
department's Slack team, which was created and is managed by teaching assistants.
Each team was also asked to create their own Slack channel, in which they would
briefly report out in writing at the start and finish of each class. I joined each of these
channels as well. This practice was inspired by scrum/standup meetings; each student
had to share what they accomplished outside of class and what they would spend
class time working on that day. This gave students experience with industry practices
and tools and also helped guide me as to which teams needed help getting unstuck.
This practice also held students accountable, as teammates would be disappointed if

someone had not done any work between course meetings.

During class, teams worked — sometimes altogether, sometimes in pairs — to make
progress on their chosen bug. This often involved posting to communication channels
used by the debugger.html project, including Slack and GitHub. Through our
community interactions, it became apparent who a couple of particularly helpful

Mozilla developers were, and we leveraged their support through the rest of the term.

The debugger.html project is built in React [118], which is not covered anywhere in
our departmental curriculum. No structured support was provided for learning React;
instead, each team sought out materials to learn the basics, and sometimes students

shared resources across teams.

62

Three out of four teams got so far as to submit pull requests on GitHub. However,
only one team's contribution was accepted and merged. The other teams got stuck in
the review process — or in one case, were unable to even fully solve/address the bug

they had been working on all term.

Term 2

I made significant changes to the course, both in response to student feedback and my
own observations. I also hired a TA who had previously taken the class and was able
to provide feedback based on his experience as a student in the course. Below, |

summarize the major changes.

Students reported getting little out of the readings from The Art of Community, so 1
dropped that textbook. Because discussions had been sparsely participated in, I spent
less class time on them and instead asked students to reflect deeper in their blog posts.

These changes won more class time for working in pairs or teams.

Students from the prior term struggled with learning React and expressed frustration
with each team discovering the same resources on their own. In response, I asked the
course TA to develop and lead a walkthrough in which students built a barebones
blog using React. I also created a shared virtual bulletin board (using Trello [130]),

where students posted resources that their classmates might find useful.

63

I chose to involve students in the same project as before: debugger.html. This time,
students were grouped with those of similar experience level, allowing each team to
choose an appropriately challenging bug to tackle. Students were also grouped in
teams of three instead of four, as 1 suspected this might lead to more consistent
communication within teams. Teams did collaborate more effectively this way, with

each member contributing more equally to conversations and to code.

The Mozilla developers that we encountered in Term 1 brainstormed with me about
how to better support students through the contribution process. We decided to
identify smaller issues — or even subtasks of issues — for teams to claim, even if it
meant shifting focus beyond accessibility. We also established a separate Slack
channel on the DevTools team, which both the students and the developers joined.
This offered a less intimidating venue for students to ask questions. Students were
required to cross-post their scrum reports in this channel, so that the developers could
track their progress in greater detail. I believe that this gave students’ self-assigned
homework a greater weight, as they were reporting to real-world developers, and not
just to their college instructor and classmates. I also added in-class standup meetings
on a weekly basis, in which teams would report out to one another on their progress

and share learned expertise.

The teams of three grappled initially with how to collaborate during class; no longer

could they divide-and-conquer by splitting into pairs. They began making use of large

64

portable screens in the classroom, which they wheeled to their desk clusters and took
turns connecting their laptops to. This facilitated much richer discussion about each
team’s progress, as teams could analyze code, write code, or sift through resources
together. Instead of watching pairs head-down at their laptops, I saw teams engaging
in lively discussion, moving around and using the screen as a prop. This also made it
easier for me to circulate throughout the classroom and monitor each team’s progress,

joining their discussions when helpful.

Towards the end of the course, the Mozilla developers who were supporting my
students offered to schedule a video call during class time. We structured this call as a
standup meeting, during which each team reported out on their weekly progress and
had the opportunity to receive real-time feedback. Students were also able to ask the

developers about their personal experience getting into open source.

Each of the four teams made at least one successful contribution to the project. One

team made three, spanning both code and documentation!

3.4 Student Feedback

I asked for informal feedback throughout both terms in which the course was offered.
In Term 1, students expressed a large degree of frustration and confusion (although
they responded to it with a constructive attitude), while students in the second term

openly and enthusiastically affirmed that they were having a positive learning

65

experience. Unsolicited, I received the following from a student via email, about

halfway through Term 2:

“So far I am genuinely enjoying the course. The work is not too overwhelming
and it feels manageable. I really like how we are encouraged to try things and
learn on our own. It is building my confidence as a woman in computer

science."

I also received valuable feedback on the course through students’ course evaluations,

submitted at the end of each term. A couple of comments following Term 2:

“I did learn a lot. I feel much more comfortable with my computer, with web
development, with open source, with communicating, with teamwork, and

everything we touched on in class.”

“I learned more about open source development than I even expected to in
this course. I think the idea of having students contribute to a real piece of
software is amazing and it is a piece of software that millions of people,
including myself use. Interacting with the Firefox community was very

educational both in a coding aspect and in a... well, community aspect. “

Comparing quantitative evaluation data, students from Term 2 spent more hours per

week on the course, reported learning more, and rated the course higher overall.

66

3.5 Reflections & Recommendations

It may seem obvious that a course should improve in its second offering, due to the
instructor's increased familiarity with the material/structure and access to an
experienced TA. However, this course improved dramatically, and despite a
continually shifting context. Below, I summarize what I believe to be the most

influential factors.

Project Choice

Project choice is arguably the most foundational factor in the success of any class
structured around open source contribution. I recommend, when possible, embedding
all students in one project/community; this allows the instructor to understand and
support student progress while also staying in touch with a single set of community
leaders. As is emphasized by Foss2serve, I also recommend verifying that the
community is highly active and welcoming to newcomers; this will ensure that
students receive timely, constructive responses to questions and pull requests. In our
case, debugger.html's active Slack channel also meant that students could observe
community norms before wading in themselves. The ideal solution will vary widely
given the number of students in a course; for example, it might be overwhelming to

embed a class of 50 or 100 students in a single community.

Selecting a project that is well-known and/or humanitarian in nature allows students

to have real-world impact. Additionally, selecting a very active project with clear

67

documentation and a welcoming atmosphere can help cultivate a sense of belonging.
A project which leverages current/relevant tools or languages — and which uses a
major platform to track contributions (such as GitHub) — will also help students to

develop professional skills and a visible portfolio.

Team Formation & Tools to Support Collaboration

After attempting two different strategies for assigning teams, I feel strongly that it’s
best to group students with others of similar experience level. This way, less
experienced students do not fall behind or lose confidence — while more experienced
students can take off and run with a more difficult problem. I also observed that teams
of similar experience level naturally gravitated towards bugs within reach of their
expertise; this further allowed all team members to engage equally in the process and

to reach an affirming outcome.

As time permits, the more experienced teams can also provide support to those that
are stuck. This is easily facilitated by the addition of class-wide standup meetings,
during which stalled teams can solicit help. I also recommend team-specific Slack
channels for communication/reporting, along with a class-wide channel for students

to ask questions and share resources between class meetings.

Finally, a team size of three — along with access to large shared screens — encourages

lively discussion and equitable collaboration within each team.

68

Structuring Unfamiliar Tools & Technologies

Although having to learn new technologies — React, in this case — was not the
insurmountable obstacle I expected it to be, it really helped to provide some structure
around this in the second term. I recommend providing infrastructure for students to
share resources, as I did with Slack and Trello. I also recommend offering
project-specific demos and/or walkthroughs for students to build experience with any
required tools or technologies. I believe that these things empowered students to more
efficiently and confidently jump into working on their bug/issue. (Note that this did
not deprive students of the opportunity to feel “productively lost”; there was still

plenty of independent learning to be done!)

Professional Mentorship

Professional mentorship was a vital thread running through the entire course
experience. | believe this to be, perhaps, the most influential factor in the course’s
improvement. When the Mozilla developers became more involved in Term 2,
students responded with greater motivation and a stronger sense of accountability.
Although many students initially found it intimidating to communicate directly with
the developers, doing so pushed them to practice communicating with
professionalism and specificity. These developers modeled a growth mindset; not

always having the answers, but coaching students through finding resources and

69

learning on the fly. They provided continuous and timely feedback via Slack and

GitHub, doing so with proficiency, patience, and encouragement.

Students responded especially positively to the standup video call that we did towards
the end of Term 2. Knowing the call was on the horizon motivated them to make
progress as a team and to generate interesting questions. Additionally, they valued
seeing that the developers were people that they could relate to; approachable
individuals who once had very little experience with open source themselves. In this
sense, the developers that mentored my students became very effective role models

for them.

I also benefited from mentorship — both from the developers (with whom I could
check in about student progress and impact on their community) and from other
faculty teaching open source (who offered mutual support and years of experience).
For most of Term 1, I had a standing weekly call with the two other faculty members
embedding their students in the debugger.html project — and I kept in close contact
with the Mozilla developers via Slack throughout both terms. This mentorship helped
me to maintain a growth mindset as I guided students through unfamiliar content and
processes; I often needed to remind both myself and my students that my role in the

course was to guide rather than to instruct them.

70

For the above reasons, I emphatically recommend reaching out to others teaching
with open source, as well as securing mentorship for your students within your

chosen project.

3.6 Future Work

Although I am confident that students learned more in the second offering of the
course, assessing actual student learning in open source is challenging. In the case of
this course, each student entered with a different level of experience, and it was
important to me that students make progress relative to their own starting points.
Blogs allowed a window into each student’s process, but most students did not seem
motivated to complete these assignments thoughtfully nor in a timely fashion.
Students echoed these sentiments in their course evaluations, along with an explicit
desire to be assessed on their technical contributions. Adding an assessment of
students' concrete technical contributions would serve as a good motivator in future

offerings. Students, in fact, wrote openly about this in their course evaluations:

“It's a lot easier, psychologically, to work hard on the blog posts and written
assignments, because they were graded. It's hard to get working on the coding
and researching because it's not directly graded, and it wasn't hard to do a

I3

little bit and then write an enthusiastic blog post that gets full points. ‘

71

“When choosing between a graded assignment in one class and an ungraded
assignment in [this course], it's very hard to not choose the graded one. The
only way to combat this is to somehow make the open source work graded. 1
don't know how this could be done. But as long as the only graded work in
this class is the blogs and writing assignments, it will be too easy to slack off

on the open source work. “

Although I perhaps define success and learning in broader ways than my students, it
seems that adding an assessment of their concrete technical contributions would serve

as a good motivator for them to expend time in that arena.

Given the positive response from our single standup scrum video call in Term 2, I
believe scheduling those meetings more frequently would be beneficial — and the

developers volunteered to do so in a future course offering.

Finally, a term-length course is barely long enough for students to dip their toes into
an open source project. Many students have indicated interest in continuing their
involvement in debugger.html and I would love to advocate for this to become an

option for satisfying the department’s senior project requirement.

3.7 Summary

Open source is an uncertain and constantly shifting landscape within which to situate

an undergraduate class — but the benefits are vast when well-executed. It is tricky to

72

get right; despite my participation in professional development workshops and
connection with more experienced colleagues, students in the course's first offering
were less successful than I would have preferred. The second offering resulted in
substantially higher student success and I believe these gains were attributable
primarily to thoughtful team formation, structuring unfamiliar tools and technologies,
and professional mentorship. I hope that these findings are of use to others setting out

to teach similar courses.

73

4 | A Case Study in Expanding Access to
Electronic Textiles: The LilyTiny

Ten years ago, and as part of my master's thesis, I designed a simplified sewable
microcontroller based on the LilyPad Arduino toolkit and released a companion
project-based e-textile curriculum along with it. This work was motivated by the
inaccessible cost and complexity of teaching introductory electronics and
programming at the time, despite the potential for these activities to appeal to

historically minoritized populations and potentially help build self-efficacy.

The resulting circuit board is known as the LilyTiny and is now commercially
available through collaboration with SparkFun Electronics. Taking advantage of the
resistance inherent in conductive thread, the LilyTiny simply breaks out each pin of
an ATtiny85 microcontroller which is preprogrammed with a variety of light
behaviors. Depending on how they are connected, the LilyTiny can drive an LED to
blink, randomly twinkle, fade on/off in a heartbeat pattern, or fade on/off in a
breathing pattern. The LilyTiny may also be reprogrammed by the user, thus

expanding its utility to teach both circuit-building and programming skills.

In the time since the release of the LilyTiny (as a commercial product) and an
accompanying workshop guide, I turned my focus to other projects, doing little to

promote their adoption. My dissertation research returns to this body of work,

74

specifically to examine what happened during that time period; did the release of

these resources "into the wild" improve access to e-textiles, as I had hoped?

4.1 Introduction

Electronic textiles, also known as “e-textiles” or “soft circuits", are electrical circuits
created using flexible conductive materials (such as conductive threads and fabrics) in
conjunction with discrete electronic components (such as lights, batteries, switches,
and sensors). This domain has long been gaining traction as a creative and
approachable avenue into computing; utilizing craft materials and techniques, it
invites diverse participation, broadens perceptions of what electronics and computing
are "good for", and supports the creation of a very different kind of artifact when

compared with traditional electronics prototyping materials [17].

The LilyPad Arduino was introduced in 2008 as a commercially available e-textile
toolkit, enabling anyone to build their own soft, wearable, sewn — and programmable
— circuits [14, 15]. In the years to follow, Adafruit released a similar toolkit, known as
the Flora [128]. In addition to supporting individual artists and makers in realizing
personal projects, these toolkits also opened up the possibility of teaching electronics
and programming with e-textiles. Indeed, research has found this to be a fruitful

avenue for broadening participation in computing, teaching electronics and

75

programming, and inspiring a new class of beautiful, computational, and personal

artifacts [56].

Despite these successes, I observed critical resource gaps preventing widespread
adoption of e-textile learning activities, especially at the K-12 level. In particular, I
noticed that many educators did not have access to the budget required to secure
relevant tools and materials at scale. Additionally, I noted a lack of instructional

materials to support educators in preparing for and facilitating such activities.

I also noticed a scaffolding "valley" between simple projects involving only lights,
batteries, and sewn connections — and more advanced projects leveraging the
programmable LilyPad Arduino. I designed the LilyTiny in an attempt to bridge this
valley; each LilyTiny is pre-programmed with several LED behaviors, inviting
conversation about the power of computation without requiring students to write (or

even understand) code.

This chapter summarizes my experience developing a low-cost sewable
microcontroller, known as the LilyTiny, and a workshop guide to support it — work
undertaken to address the aforementioned resource gaps in hopes of broadening
access to e-textiles. I also share the results of my inquiry into the impact of this work,
several years having elapsed since I created the LilyTiny — now a commercial product

sold by SparkFun Electronics. My investigation includes a survey of derivative

76

products, a multi-year analysis of sales data, and examination of customer reviews

and projects.

4.2 Related Work

The development of the LilyTiny was made possible by years of prior research in

physical computing, electronic textiles, and education.

Physical Computing

In the realm of physical computing, two projects in particular directly paved the way:
the Arduino electronics prototyping platform and, later, the sewable LilyPad Arduino.
Arduino was initially developed to enable rapid prototyping without specialized
engineering expertise [85]. The LilyPad toolkit extended this functionality to a textile
context, thereby inviting participation from diverse populations as well as enabling
the creation of soft, beautiful, computational artifacts [14, 15, 17]. Both of these
projects pioneered the now-ubiquity of physical computing — not only by their very
design, but also by their mass availability and pricing suitable for hobbyists, artists,
and students. They both leverage an open source hardware (also known as "open
hardware") model, allowing others to modify the PCB layouts for personal use or
derivative products. My work extends these efforts, attempting to make e-textiles

more accessible and affordable to a broader audience.

77

Electronic Textiles & Computing Education Research

The LilyPad Arduino has been extraordinarily successful in leveraging handcraft
practices and materials to draw in demographics historically excluded from
engineering (most notably, women). This has been evidenced by a much larger
proportion of the LilyPad Arduino market share being female purchasers when
compared to the classic Arduino — and by an emerging design community at the

intersection of aesthetics, craft, and computation [17].

Significant work has also gone into the development of curriculum to support
adoption of the LilyPad Arduino [14, 16, 43, 58, 59, 116]. This work affirms how

highly I valued developing curriculum to support the LilyTiny hardware.

Ngai, et al. have developed two modular platforms for wearable computing, TeeBoard
and 1*CATch, to bring computational textiles into the classroom and teach basic
programming [99-101]. More recently, Hill, et al. introduced the ThreadBoard, for
rapid prototyping of e-textile circuits [45]. These projects represent critical strides in
the mission to expand educational access, although these tools are not yet available to

the general public.

In parallel to the development of new e-textiles tools and kits, there has been a great
deal of research into the impact of teaching with e-textiles. For example, studies have
demonstrated the utility of e-textiles as a means to develop students'

STEM/technological self-efficacy, teach debugging, develop computational thinking,

78

experiment with aesthetics, and create culturally relevant artifacts [34, 57, 58, 60, 77,
122]. This body of work has inarguably established the value of e-textiles as an
avenue for effectively broadening participation in computing, especially at the K-12
level and in after-school settings [19, 56]. Broader impact of this work has been
limited, in part, by the funding required to secure necessary tools and materials, as
well as access to a variety of instructional resources to support educators. I directly

sought to address these limitations.

Instructional Design for K-12 STEM

Experienced educators and organizations have been disseminating resources for
STEM learning long before e-textiles activities came to be. In particular, WGBH (a
PBS affiliate, now known as GBH) has a long history of publishing K-12 activity
guides for use in classrooms and at home. (The Design Squad guides are an excellent
example of this [107, 135].) The National Center for Women & Information
Technology (NCWIT) also offers "in-a-box" programming on topics including
computer science "unplugged" (in-person, off-screen activities), outreach, and pair
programming [97]. The design of my workshop guide drew heavily on the format of
these successful resources, expanding their domain coverage to include e-textiles.

(NCWIT has since released an "e-Textiles in-a-Box" program [33].)

79

Independent Learning Resources for E-Textiles

In addition to resources for educators, there has been an explosion of resources for
individuals to independently learn new skills or complete projects related to making,
crafting, and prototyping. At the time that I developed the LilyTiny, a handful of
project-based e-textiles books had been released: Fashioning Technology, Switch
Craft, Fashion Geek, and Open Softwear [32, 63, 102, 105]. Around the same time,
MAKE Magazine — and the shorter lived CRAFT Magazine — were gaining
popularity as monthly publications, containing example projects, relevant
news/products, and profiles of prominent makers/crafters. Since the development of
the LilyTiny and accompanying curriculum, two additional DIY e-textiles books have
been released: Make: Wearable Electronics and Sew Electric (the latter containing an

activity featuring the LilyTiny) [20, 41].

In addition to print resources, the internet has been host to a number of free, digital
DIY resources over time; websites like Soft Circuit Saturdays and How To Get What
You Want have reflected independent efforts to share e-textiles resources [50, 126],
while structured tutorials have offered guidance to independent learners in the
craft/technology realm [61, 62, 71]. Instructables has served as a valuable platform
for many of these, especially as leveraged by prominent e-textiles artists/makers like

Becky Stern and Hannah Perner-Wilson [51, 52]. SparkFun Education has expanded

80

these offerings in recent years, in particular supporting the LilyTiny with detailed

documentation and tutorials [127].

My work builds on the success of many of the aforementioned projects, with an
emphasis on lowering prevailing barriers of cost and know-how, while uniquely

striving to support educators guiding many learners in parallel.

4.3 Design & Development

The LilyTiny and accompanying workshop guide were created to address known
barriers to broader adoption of e-textiles in educational settings. In designing these
materials, I sought to overcome challenges of cost, know-how, and also to provide a
bridge to integrating computation and learning about microcontrollers without having
to program. It was my hope that this work would expand access to electronic textiles

as a creative way into computing.

The LilyTiny

My goal for the LilyTiny was to create a sewable microcontroller at a much lower
price point than the LilyPad Arduino, and one which arrives pre-programmed,
allowing users to incorporate computation in their projects without writing code. I
designed around the ATtiny85 microcontroller because it is very inexpensive, yet is
powerful enough to support pre-programmed behaviors such as light patterns. My

breakout board was based on the LilyPad Arduino accelerometer board layout, which

81

is open source and available under a Creative Commons License. The LilyTiny is

about the size of a quarter.

I used a milling machine to make the first prototype of the breakout board (see Figure
4.1). ATtiny chips were soldered by hand to each milled board, after which the broken
out pins ("petals" in LilyPad terminology) were color-coded with permanent markers.
I programmed these early prototypes one-by-one using an early prototype of
SparkFun's Tiny AVR Programmer which attached to the petals of each board using

alligator clips.

Figure 4.1. LilyTiny prototypes, from left to right: initial milled circuit board, custom-ordered factory
board, final commercial product (sold by SparkFun Electronics).

After these boards were manually tested and successfully used in a pilot workshop, I
placed a custom order with a circuit board manufacturer. This version included
appropriately labeled pins and was more reliable than the first. This time, I used batch
reflow soldering to affix the ATtiny chips, after which the boards were again

programmed individually with a Tiny AVR Programmer prototype.

82

Following testing and an additional pilot workshop, we partnered with SparkFun
Electronics to release the LilyTiny commercially as part of the LilyPad Arduino
toolkit line of products. (My advisor, Leah Buechley, and labmate, David Mellis,

guided this process.)

All versions of the LilyTiny prototype were programmed with the same Arduino
code, allowing a user to access four different light patterns depending on which
output pin/petal they sew an LED to. These include: blinking on/off, a breathing
pattern, a heartbeat pattern, and a random twinkle pattern. I chose to pre-program the
boards in this way to invite discussion of computation without the user having to
write or understand code, meanwhile offering out-of-the-box access to creative and
computationally interesting behaviors. This filled a gap at the time between
lower-tech projects involving only LEDs and batteries — and more complicated

projects leveraging a LilyPad Arduino which must be programmed before use.

For more advanced users, the LilyTiny offers a lower-cost means of incorporating
computation into a project, as it can be reprogrammed using a Tiny AVR Programmer

and the Arduino software.

The LilyTiny debuted for sale through SparkFun for about $10, but its price has
hovered closer to $5 for the majority of the years since introduction. This makes it

possible for educators to consider purchasing in bulk for workshops or classrooms.

83

Companion Curriculum

To support adoption of the LilyTiny, especially amongst a target audience of
educators, I developed and self-published a companion workshop curriculum entitled
Getting Hands-on with Soft Circuits. I made this curriculum available for free on the

internet and also for ordering in hard copy format.

This curriculum was designed as a standalone resource, providing just enough
on-demand information for educators/facilitators to guide students through an
informal activity. This includes necessary know-how relating to both sewing/crafting

and to electronics.

The curriculum includes a series of five workshop activities leveraging e-textiles as a
means to explore circuits and computation, some of which are shown in Figure 4.2.
These activities are designed in sequence, such that each activity builds on the
concepts of those preceding it — but also such that one could choose different
activities to workshop, depending on prior experience. Activities 4 and 5 make use of

the LilyTiny, with the preceding activities building foundational e-textile skills.

Figure 4.2. Sample activities from the workshop curriculum.

84

Each activity includes a photo of an example project, a list of tools and materials, a
summary/overview, a list of learning goals, and directions on how to prepare for and
facilitate the activity. When relevant, activities also include support materials, such as
templates or handouts that can be given to students. Each project was designed to be
doable in a two or three hour session, with the exception of the final activity which is

better suited to a half-day workshop.

Activities 1 through 3 build foundational e-textile skills: an introduction to circuits
with conductive thread, a primer on switches and how they control electrical flow,
and an overview of parallel circuits and how they enable one battery to power

multiple lights.

Activities 4 and 5 provide a high-level introduction to microcontrollers and the
concept of programmability — without having to read or write code. In these activities,
participants create light-up patches, using the pre-programmed LilyTiny to control the
behavior of an LED (blinking, fading, twinkling, or heartbeat). This is first done

individually, and then as part of a collaborative electronic patchwork quilt.

All of the activities were designed around low-cost, easily obtainable materials. These
include craft notions (acrylic felt, sewing needs, snaps, beads, etc.) as well as
off-the-shelf electronics components (such as through-hole LEDs, coin cell batteries,

and battery holders). These items can all be sourced for less than 50 cents apiece. The

85

only tools required for these activities are readily available, such as needle nose

pliers, scissors, and hot glue guns.

The workshop guide also includes a troubleshooting flowchart, a curated list of
low-cost tools and materials, and pointers to additional print and online resources

relating to soft circuits.

After the release of the workshop guide, I co-developed one more LilyTiny-powered
activity with collaborators Natalie Freed and Jie Qi. This activity is entitled Plush
Monsters: Creatures with Character. Originally developed for a large-scale workshop
at the 2011 Grace Hopper Celebration of Women in Computing, we self-published
this activity online afterwards [76]. The activity may be used as an add-on or
independent of the workshop guide, as it includes its own curricular materials as

shown in Figure 4.3. (The layout of the workshop guide is very similar.)

Identifying Polarity

+C 3 Il
- *Hi=
o

batery holder

PLUSH MONSTERS
creatures with character

LilyTiny Diagram

fade

An Example Circuit

anumbered pr paralel
sideof the LED:
the Uiyriy.

the battery hoider. perfoming adifeent behavir.

Figure 4.3. Select pages from the plush monster activity, which utilizes the LilyTiny.

86

Pilot Testing

Design of the LilyTiny and curriculum were guided by two pilot workshops run in
parallel with the development process. These workshops were arranged in
collaboration with an outreach center on MIT's campus and enrolled volunteer
homeschool students who were already familiar with basic circuits. Over a two-hour
session, facilitators taught students to create a light-up patch with an LED whose
behavior is controlled by a LilyTiny, using Activity 4 from the workshop guide.
Students participating in these workshops were familiar with basic circuits and
electronic components — a similar level of understanding to that which is covered in

the guide’s first three activities.

I taught the first workshop using the earliest milled version of the LilyTiny. A total of
16 students between the ages of 11 and 16 participated (10 female, 6 male). 12 of the
16 students were successful in getting their LilyTiny to control an LED. Two of these
students finished early and added additional lights to their circuits in parallel
configuration. All of the students were offered the option of taking conductive thread

and/or additional LEDs home to complete or augment their projects.

This workshop revealed a few areas for improvement — for example, sourcing more
durable materials and fine-tuning techniques for novice sewing with conductive
thread. These informed a revision of the curriculum and during this time, I also

procured the second version of the LilyTiny circuit boards.

87

In order to test the usability of the materials by a third party, the second workshop
was taught by an outside educator. I provided all of the physical materials, but asked
her to teach the workshop using only the curriculum as a guide. 10 students
participated in this workshop, between the ages of 11 and 14 (4 female, 6 male). [was
present to observe this workshop, during which all participants were successful in
sewing a patch containing a LilyTiny-controlled LED. Additionally, several students
went beyond connecting one light to their microcontroller, adding additional lights
with alternate behavior. This second workshop was reassuring that the curriculum
adequately supported an accessible and scalable learning experience using the

LilyTiny.

In addition to my own observations, I solicited extensive feedback from the educator
who taught the second workshop, as well as from an expert STEM activity guide

developer. This was invaluable in making revisions.

I also solicited feedback from students through surveys at the end of each workshop.
Responses indicated consistency across the two workshops in terms of length,
difficulty, and pace. This was preliminarily indicative that the instructional materials
were transferable. When asked about future workshops, several students indicated
specifically that they would like to learn how to program the microcontrollers

themselves, or suggested projects that would likely require programming.

88

4.4, Measuring Impact

In an effort to understand the impact of the LilyTiny in the years that have elapsed
since it was first introduced, I conducted a followup study involving a survey of
derivative products, analysis of sales data, and a sampling of product reviews.
Although SparkFun has repackaged the hardware in various ways, I have done little
to promote adoption of the LilyTiny; thus, I believe my findings to be a true reflection
of whether these research innovations met an educational need and had impact in the

wild.

Derivative & Follow-on Products
I surveyed the marketplace for low-cost sewable microcontrollers released over the

past ten years. A handful of related and derivative products are shown in Figure 4.4.

3d ¥ % e 3 3 -y & Fh
procosnan o= 2) LilyMini

ProtoSnap

Figure 4.4. Derivative and follow-on sewable microcontroller boards. From left to right: LilyTwinkle
ProtoSnap, Gemma, an unbranded clone, and the LilyPad LilyMini.

At the time that the LilyTiny came to market through SparkFun, a sister product was
also released, known as the LilyTwinkle. The LilyTwinkle hardware is identical to
that of the LilyTiny; the only difference between the two products is that the

LilyTwinkle ships with a different Arduino program. Instead of each Lily petal

89

offering a different light behavior as with the LilyTiny, all of the petals twinkle lights
at different rates. While the LilyTiny was designed to invite conversations about
computation in educational settings, the LilyTwinkle is nicely suited to creating
sparkling wearable projects — presumably appealing to a broader audience. In addition
to these standalone products, SparkFun bundled the LilyTwinkle into a few different
kits and form factors, including: a Firefly Jar kit to create a twinkling felt mason jar, a
ProtoSnap kit allowing testing of the board prior to sewing, and an E-textiles Basics

Lab Pack to support classrooms.

A little over a year after the release of these two products, Adafruit released the
Gemma sewable microcontroller [54]. Like the LilyTiny, the Gemma also aims to be
a smaller, more affordable version of it's full-scale, higher-priced counterpart, the
Flora. The Gemma has undergone several revisions, evolving to focus on
reprogrammability and now featuring an upgraded chip, mini-USB connector,
on-board on/off switch and RGB LED. It currently retails for about twice the cost of a
LilyTiny, at around $10. The pre-loaded code is not well-documented nor marketed as

a selling point, but it does ship with example code.

More recently, in 2016, SparkFun released the LilyPad LilyMini, another small
sewable microcontroller which arrives pre-programmed, uses an upgraded chip, and

includes an on-board coin cell battery holder. Although the program it ships with

90

offers more interactivity than the LilyTiny and LilyTwinkle, it is sold at a higher price

point ($16) and is much more difficult to reprogram.

A number of other sewable ATtiny85 breakout boards have been released in recent
years. These boards are similarly bite-sized and typically manufactured using purple
solder mask, like the original LilyTiny. However, these products feature a somewhat
different arrangement of pins/petals and an on-board USB connector. They are sold
under a variety of unbranded names such as "LilyTiny ATtiny85 Development
Board", "MicroUSB LilyTiny", and "CIMCU LilyTiny". Although I was not involved
in their development, the choice of naming leads me to believe they were directly
inspired by the LilyTiny. These boards do not necessarily ship with any example code
installed, requiring the user to make some modifications to the Arduino IDE in order
to initially program them. These boards retail for $1-15 and are widely available from

a variety of sellers on eBay, Amazon, and Alibaba.

The LilyTiny was born out of open source hardware development, as were all of the
aforementioned related boards. While it is not uncommon for someone to clone or
create a derivative version of a useful circuit board, I believe that the number and
variety of products following in the footsteps of the LilyTiny are testament to a
market need for a small, low-cost, sewable microcontroller — especially when
compared with the more full-featured LilyPad Arduino and Flora. It is worth noting,

however, that the only boards advertised with their pre-loaded programs as a feature

91

are the LilyTiny and LilyTwinkle. I believe this to be a particular asset and selling
point for educational settings, as out-of-the-box functionality makes teaching
time-constrained workshops/activities much more feasible. This feature also allows
the introduction of computational behavior without the requirement to write code or

navigate the Arduino upload/reprogramming process.

Sales Data

Next, I set out to understand the LilyTiny's impact on users. I use sales data as a
proxy for adoption and investigate LilyTiny's position within the market; whether it
has been successful since its commercial debut, and whether this has shifted with the
release of similar products. My MIT advisor and creator of the LilyPad Arduino,
Leah Buechley, helped me to obtain eight years of sales data directly from SparkFun,
dating from the release of the LilyTiny and LilyTwinkle in July 2012 through the start
of this investigation in June 2020. Because SparkFun is the only manufacturer of the
LilyTiny and all LilyPad Arduino products, this data encompasses all sales, including

those made direct-to-consumer and those made to distributors/resellers.

I first wanted to check whether our hardware has sold well as a commercial product.
Indeed, it has; over this eight-year period, a total of 81,227 of our breakout boards
(LilyTiny and LilyTwinkle combined) were sold. This includes boards sold
individually as well those sold as part of a kit or lab pack. Our hardware shipped to 80

different countries across nearly 10,000 orders. The United States generated the

92

highest number of orders, followed by Australia, Canada, and the United Kingdom in
that order. Both products leveraging our hardware have sold steadily as shown in
Figure 4.5, each averaging over 5,000 units sold per year. I think these numbers make
clear that our breakout board is satisfying a real user need — and continuing to do so

long past the introduction of competitor products.
1000

SOZ il i ||||\|||“M|||HH | l | “”“H\‘“h | M !|||| | ‘WllH‘lH\lhn I

2013 2014 2015 2016 2017 2018 2019 2020
M LilyTiny mLilyTwinkle

Figure 4.5. LilyTiny and LilyTwinkle monthly sales, showing sustained market interest over many
years.

Second, I wanted to check the hypothesis that a very basic board with pre-installed
software is a useful intermediary between simple circuits and more complex boards
requiring programming. To do this, I looked at sales data across the entire set of
sewable microcontrollers offered by SparkFun. Figure 4.6 shows market share for
each individual product, kit, or lab pack. To my surprise, the individually packaged
LilyTiny was the single most ordered sewable microcontroller during the eight year
time period that I examined. However, many products are related to one another
through upgrades or repackaging, and thus I grouped these products into conceptual
families. Even after grouping, the LilyTiny/LilyTwinkle board was purchased as often

as boards in the much more capable LilyPad Main family, with the

93

LilyTiny/LilyTwinkle board representing 46% of sales. This seems to validate that a

cheaper simpler board has value to a substantial number of users.

LilyTiny

LilyTiny + 40,516
yliny 23%

LilyTwinkle LilyPad Main Family
Combined 82,670
81,227 48%
46% D

LilyTwinkle
40,711
23%

/N

LilyPad LilyMini
10,040
6%

Figure 4.6. SparkFun sewable microcontroller sales, July 2012 through June 2020. Note that the
LilyPad LilyMini was not introduced until 2016. Each color represents a different product family. Each
pie slice represents a different product release (i.e. LilyPad Arduino 328 Main Board, LilyPad Arduino
Simple Board, Firefly Jar kit, etc.). Kits are categorized by which board they include.

The data in Figure 4.6 also allows for comparison of sales between the LilyTiny and
the LilyTwinkle. This is important to consider, as I designed the LilyTiny and its
supporting curriculum with the intent of reaching educators — while the LilyTwinkle
is likely to appeal to a more general audience. I had guessed that the hobbyist focus
and additional marketing variations would have made the LilyTwinkle more popular.
However, to my surprise, the LilyTiny has sold twice as many standalone boards as
the LilyTwinkle — and about the same number of total units when considering all kits

containing the LilyTwinkle. I believe this finding affirms that a board released with

94

appropriate curriculum and pre-programmed code, supporting the introduction of

computation, invites broad adoption.

Finally, I wanted to know if the LilyTiny is being used by educators; that is to say,
whether it has reached my intended market. The sales data doesn't directly specify
who is purchasing boards, but it does tell us the quantity purchased in each order.
Individual hobbyists probably buy a few boards at most, while educators typically
buy in quantity appropriate for classrooms or workshops. (For this analysis, I
excluded distributor orders since I am interested in individual purchasing patterns.)
Figure 4.7 reports on order quantities for each product family. Indeed, a much greater
percentage of LilyTiny orders include multiples of the product and the average units
per order is higher, when compared to the LilyPad Main family, LilyTwinkle, and
LilyPad LilyMini. This is true despite the fact that the LilyTwinkle and LilyPad Main
boards were explicitly marketed in "lab packs" of ten units. I believe this provides
evidence that the LilyTiny, with its choice of assorted programmed light behaviors
and supporting curriculum, is likely being used for teaching more frequently than the
more complex LilyPad LilyMini and LilyPad Main boards — or even its sister product,

the LilyTwinkle.

95

AVERAGE | % OF ORDERS | % OF ORDERS
PRODUCT UNITS/ CONTAINING | CONTAINING

ORDER QUANTITY 5+ | QUANTITY 10+
LilyPad Main Family 4.2 12.1% 7.7%
LilyPad LilyMini 5.1 14.7% 8.9%
LilyTiny 9.8 34.1% 24.9%
LilyTwinkle 6.7 18.0% 11.2%

Figure 4.7. SparkFun sewable microcontroller ordering patterns, after adjusting for lab packs which
contain multiple boards. Notice that a much greater percentage of LilyTiny orders include quantities of
the board suitable for teaching.

Taken altogether, the sales data seems to support the ongoing impact of the LilyTiny.
It is especially notable that the LilyTiny has undergone no major revisions, nor has it
been sold as part of a kit or lab pack during its lifetime. While the lack of revisions
may be attributable to the simplicity of the hardware and software, it is nonetheless
rare to be able to purchase a device maintaining compatibility with any support
resources developed in its lifetime. I believe that this stability is crucial for

educational adoption.

Customer Reviews and Projects

To complement the analysis of sales data, I wanted to get a sense of customers' actual
experiences with the LilyTiny. First, I surveyed all of the LilyTiny product reviews on
SparkFun's website, which are submitted by verified customers. I then preliminarily
surveyed social media to see what kinds of artifacts individuals are making with the
LilyTiny. I did this by searching both Twitter and Instagram for public tweets/posts

tagged with "#lilytiny".

96

A first glance reveals that the LilyTiny is being used for a variety of hobbyist

projects. A few examples may be seen in Figure 4.8.

Angela Sheehan @the_gella - Dec 16, 2018 g S PP . oo = P .
GellaCraft now has an e-textile logo made with LilyPad LEDs and a (g % © Konichiwakitty PHinisheD = ¢ @konichiwa... - Jan 20, 2018
LilyTiny

Finding time to squeeze in a bit of #hacking with the @sparkfun LilyTiny
today! & #Maker

“ ‘5 formerlyswantonartroc « Follow

Burlington Generator Space

‘n formerlyswantonartroom Thanks to
a LilyTiny, my Funky Sock Monkey will

have a glowing heartbeat with an

on/off switch! #etextiles #cml17

225w

0 iceyesigh Awesome. Love lilytiny. ©

225w 1like Reply

Qv A

18 likes
AUGUST 2, 2017

@ Add a comment...

Figure 4.8. Hobbyist projects using the LilyTiny (clockwise from upper left): an e-textile logo,
embellished headbands, and a sock monkey with a glowing heart.

97

These projects are supported by customer reviews which speak to the utility of the
LilyTiny for hobbyist projects, both because it is easy-to-use and because it is

affordable:

".. It is a great board in a small form factor. Very easy to use, works well... 1

recommend this to anyone - you can't go wrong."

"... Perfect size and power for some of my projects... Highly recommended,

especially since they are so inexpensive."”

I also found that the LilyTiny is being used specifically for projects involving
handcraft and fine art. A few examples appear in Figure 4.9. This application is also

supported by customer reviews like the following:

"Just returned from teaching a class for the Southeast Fiber Forum
Association... The students were all new to e-textiles... Everyone went away
knowing how to finish the stitching at home and a little about circuitry thanks
to this great product. All are excited about the possibilities for adding

electronics to their fiber art."

98

O’ Dowager Allison Salmon @CodeCrafty - Apr 2, 2014 JJ Litke @jenztweets - Sep 5, 2016
GrogtessonmyLivITny/poneredbracelstbrolect 6 The battery case and lilytiny will be hidden by the overlap of the bracelet.

paolaguimeransanchez - Follow
Donostia-San Sebastian, Spain

paolaguimeransanchez RGB
interactive colorspace #diy #tutorial
#instructables #wassilykandinsky
#lilytiny #arduino #papercircuit
#softinterfaces #conductivepompom
#softsensors #visualarts
http://www.instructables.com/id/SOFT-
DIGITAL-ARTWORK/

207w

Qv W

70 views

DECEMBER 5, 2017

w @ Add a comment...

Figure 4.9. Art and craft projects using the LilyTiny (clockwise from upper left): an embroidered
bracelet, a knit bracelet, and a mixed media art piece.

I had hoped that the LilyTiny might provide an affordable stepping stone between
novice projects and the broader world of Arduino programming, and for some users
this does seem to be the case. The following customer reviews speak to the LilyTiny's

versatility in this regard:

"This is a great little board... I figured out how to reprogram it to do what I

needed. It's not too hard... Great price too!"

99

"Easy entry point - no regrets! I bought a LilyTiny to power my first project
using wearables... The pre-programmed functions took away a layer of

complexity and let me just focus on learning how to set up a wearable circuit."

"I've learned the LilyTiny is a great little programmable chip, to me it's a
mini-Arduino... It is possibly the smallest form-factor for a Blinky LED circuit.

Now I program the Tiny myself..."

Figure 4.10 shows two examples of projects for which the creators have managed to

reprogram the LilyTiny.
Karen Blumberg @KarenBlumberg - Jul 10, 2014) Julie Ga“‘:“e; @juliegoat - Mar 28, 2018
. . o \ #STEM in fashion: Ursa Major with a light-up Big Dipper, using two
soic C|Ip (via Pomona) used to reprogram a Lllmiy from @SparkFun. " parallel circuits off of the two analog-out pins on a #LilyTiny USB, writing
@bri_huang knows everything! #itpedcamp #cmk14 code using trig for the pulsing effect, and the #engineering to make it all

fit together

Figure 4.10. Evidence that some LilyTiny users are choosing to reprogram their boards (left) and are
successful in doing so (right).

Lastly, and most importantly to my own goals for the project, there is ample evidence
that the LilyTiny is being used for teaching. Some examples of customer reviews to

support its value in this arena:

100

"Just using this as is was a simple project with cool results. I am hoping to use
these for a new tinkering club at my school. Fun way to get kids excited

without being intimidating."

"We ran an event at our makerspace, to introduce folks to wearable
electronics... and this item was exactly what we needed. The price is perfect,
the simplicity of it is perfect, and it's a sturdy, well functioning little product.

Very pleased and will be ordering hundreds more in the future, I'm sure.”

"The Lily Tiny is great for teachers: it is not as cost prohibitive as other
microcontrollers and is pretty user friendly for beginners but still allows a

programming option to add a challenge."

Figure 4.11 shows an assortment of social media posts showcasing the LilyTiny's use

in workshops and classes across a variety of venues.

Although more in-depth research is warranted, I believe that these customer reviews
and artifacts affirm that the LilyTiny is helping to expand access to computational
textiles. This early evidence suggests that the board offers an affordable entry point
for hobbyists, is capable of supporting users in the transition from simple to complex

projects, and is reaching my target audience of educators.

101

v ypsilibrary + Follow
Ypsilanti District Library

208w

oQv

9 likes

MARCH 10, 2016

© Addacomment...

§f wsiibrary siytiny smakerworkshop
#creativitylab #makeit #sewelectric
#ttw16 #teentechweek2016 #fun

: lan Ostrom @lanOstrom - Jan 29
Student project in HS fashion tech class. #LilyPad #LilyTiny @sparkfun

#etextiles #Arduino

Cynthia M Guerard @CynthiaGuerard - May 14, 2019
#circuitmonsters made by @WorcesterAcdmy 6th graders. Circuitry made
with #lilytiny and other parts from @sparkfun

Emily Brooks, PhD @Emily_F Brooks - Jul 21, 2017
So grateful to partner with @sparkfun for our #LilyTiny project! @MSL_UF
Girls Tech Camp loved their bracelets a whole watt! #GirlsWhoCode

Angela Sheehan @the_gella - Dec 1, 2018
Check out these awesome e-textile creatures made w/ LilyTiny boards in
my workshops today! We had tons of fun crafting w/ electronics during
@csedlive. Thanks @sparkfun for donating supplies & @boulderlibrary for
inviting me to teach. #CSforAll #BoulderCSED #MakerEd #STEM
#STEAM

= Mrs. Wartel @MVirsWartel - Jun 6, 2016
Sparkle Bracelets LilyTiny Circuits! @SadlerMeansYWLA #STEMCamp

Figure 4.11. Evidence of teaching with the LilyTiny, including offerings at camps, libraries, and K-12

schools.

102

4.5 Future Work

While this chapter provides an overview of market impact, I plan to continue these
investigations to paint a richer picture of how this hardware is being used. A survey
of follow-on curriculum and academic research will deepen understanding of
educational use at the macro level, complemented by surveys or interviews with
educators/facilitators who have used our hardware. I also plan to conduct further
analysis of LilyTiny artifacts, to better understand the character of projects enabled by

this work.

4.6 Summary

Ten years ago, I set out to develop, pilot, and release a hardware tool and curriculum
to support broader educational adoption of e-textile activities. This case study affirms
that our hardware has addressed a pressing market need, as evidenced by a variety of
follow-on products and several years of sales data. Additionally, exploration of
ordering patterns and customer reviews is highly suggestive that the LilyTiny is being

used in educational settings.

103

5 | Conclusion

Looking back now on 15 years of my own research, teaching, and tool/curriculum
design, the thread through it all has been a desire to make computing more accessible
to those not historically invited into the "clubhouse". To do so requires making
computing more inclusive; to experiment with new approaches and materials, to
celebrate different ways of learning, knowing, and making, and to prod the
ever-shifting boundaries between computer science and adjacent fields. As a
researcher-practitioner, my work has sought to broaden participation in computing
through extensive fieldwork in education, the highlights of which constitute this

dissertation.

I have detailed two complementary courses I designed at the margins of collegiate
offerings: Craft of Computing, which aims to attract a diversity of first- and
second-year students to computing, and Open Source Software Engineering, which
seeks to retain a diversity of upperclassmen through graduation and into computing
careers beyond. While more targeted analysis is required to better understand
students' pathways beyond these courses, evidence so far suggests that they piqued
students' interest in new domains, while positively influencing their confidence,

identity, and belonging.

104

I have also revisited my own prior work in tool/curriculum design for informal
learning, conducting follow-on analysis for the LilyTiny sewable microcontroller and
accompanying workshop guide. This analysis showed that an inexpensive and stable
tool, coupled with freely available instructional resources, can indeed achieve
widespread adoption in a market suggestive of novice and educational use — even

when challenged by the release of similar and competitor products.

All of these efforts have been driven and shaped by endless conversations with
students and educators; I believe the success of my work is a direct testament to the
importance of these voices in the design process, along with an iterative approach
where continuous feedback is welcomed. I hope that this dissertation helps to affirm
the value of interdisciplinary research and teaching towards broadening participation

in computing, as the need for this very much persists.

105

Appendix A | Definitions & Acronyms

C&C: The ACM Conference on Creativity & Cognition.

CS0: Computer Science 0. Common way of referring to a topical computer science
course open to non-majors — and often used to attract a diversity of students to
computing. Such a course may or may not count towards computer science degree
requirements. CSO courses are often structured either as a survey of the field,
combining very introductory programming with an overview of topics like security,
ethics, and data science — or as an applied introduction to computing within a specific

domain (e.g. robotics, game design, design, etc.).

CS1: Computer Science 1. Common way of referring to the first required course in
any computer science department (toward a computer science degree). Typically this

is an introductory programming course in a language such as Python or Java.

CS2: Computer Science 2. Common way of referring to the second required course in
any computer science department (toward a computer science degree). Typically this

is a data structures course.

E-sewing: electronic sewing; the process of sewing with electrically conductive

materials (usually to create a soft circuit, see below).
E-textiles: electronic textiles; fabric artifacts that contain soft, embedded circuitry.

106

Educators: not only classroom teachers, but also workshop facilitators and leaders of

summer camps or outreach programs.

FIE: The IEEE Frontiers in Education Conference.

FOSS: free and open source software.

GHTC: The IEEE Global Humanitarian Technology Conference.

HFOSS: humanitarian free and open source software.

ICER: The ACM Conference on International Computing Education Research, a
single track research conference held annually (held in locations both domestic and

abroad).

IDC: The ACM Interaction Design and Children Conference.

LMS: Learning Management System.

MIT: Massachusetts Institute of Technology.

Multimedia: The ACM Annual Conference on Multimedia.

POSSE: Professors' Open Source Software Experience.

SIGCSE: The ACM Special Interest Group on Computer Science Education, also

shorthand for this group's annual conference/symposium which gathers computing

107

education researchers and practitioners from around the world (held in the United

States).

Soft circuit: a flexible electrical circuit constructed on the surface of (or embedded in)
textiles. Such a circuit may be created using a variety of soft conductive materials
(such as conductive threads and fabrics) in conjunction with discrete electronics

components (such as lights, batteries, switches, and sensors).

UCSC: The University of California at Santa Cruz.

UIST: The ACM Symposium on User Interface Software and Technology.

108

Appendix B | Computing Education
Seminar Resources

Useful Resources in Computing Education Research

¢ Mark Guzdial's blog: https://computinged.wordpress.com
* The University of Auckland's Intro to Computing Education Research course:
https://www.cs.auckland.ac.nz/courses/compsci747s2¢/lectures/
* relevant conferences
* SIGCSE (flagship conference, practice & research) - student volunteer opportunity
» ITiCSE (working groups)
* ICER (resarch focused) - doctoral consortium opportunity
» Koli Calling (intimate discussion)
* ICREE International Conference on Research on Engineering Education
 relevant journals/places to publish in print
* ACM Inroads (2010 to present) quarterly magazine (http://inroads.acm.org/)
¢ SIGCSE link for places to publish (http://sigcse.org/resources/publish)
¢ ACM Transactions on Computing Education (TOCE) (http://toce.acm.org/)
» Journal of Engineering Research JEE
* Journal of Research on Technology in Education
 International Journal of Research & Methods in Education
* Empirical Software Engineering
* Journal of Educational Data Minin
* Software Engineering Education & Training
¢ Computers & Education
 Journal of Women and Minorities in Science and Engineering
¢ American Educational Research Association Conference
 Journal of Education Computing Research
* Communications of the ACM
* Journal of Computer Science Education Online
* Computing Research News
* CSTA Voice
¢ methods texts
e Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods
approaches. Sage publications.
* Luker, K. (2008). Salsa dancing into the social sciences: Research in an age of info-glut.
Harvard University Press.
* Patton, M. Q. (1990). Qualitative evaluation and research methods . SAGE Publications,
inc.
* Pring, R. (2004). The Philosophy of Educational Research. Bloomsbury Publishing.
* Weiss, R. S. (1995). Learning from strangers: The art and method of qualitative interview
studies. Simon and Schuster.
* relevant classes at UCSC
* EDUC 235: Introduction to Educational Inquiry
* EDUC 236: Quantitative Methods in Educational Research
* EDUC 237: Qualitative Research Methods
* PSYCH 204: Quantitative Data Analysis
* PSYCH 214A: Multivariate Techniques
¢ PSYCH 214B: Advanced Multivariate Techniques
* SOE grad student mailing list (for computing education research)
* Emily can add you!
* usually, we meet informally once a month for lunch/coffee to check in - although on hiatus
this quarter due to the seminar
* Center for Statistical Analysis in the Social Sciences (CSASS)
* http://csass.ucsc.edu/
* Free experiment design and psychometric consulting available to faculty and students

109

¢ Basic Experiment Research Paper Rubric

e https:/drive.google.com/file/d/0Bzp0dKE9hnvBL Wx2MVFTX28yUFk/view?usp=sharing
Duties for Weekly Discussion Leader

* you do not need to be an expert on the topics or readings

« if you'd like to focus on readings other than the ones that Emily prioritized for your week, touch
base with her and update the TitanPad at least 1 week in advance of your discussion date

* come to class with some questions for group discussion

 take a lead in faciltating the group discussion

« feel free to be creative! you can ask the group to do a hands-on activity (either to prepare - with
enough notice - or in class), you can share background info on the author(s), etc.

Week 1 (9/25): Research Methods, Conferences, Context, etc.

¢ Borrego, M., Douglas, E. P., & Amelink, C. T. (2009). Quantitative, qualitative, and mixed
research methods in engineering education. Journal of Engineering Education, 98(1), 53-66.
* https://www.cs.auckland.ac.nz/courses/compsci747s2¢/lectures/borrego.ea-quantitative-
jee-09.pdf
e Case, J. M., & Light, G. (2011). Emerging research methodologies in engineering education
research. Journal of Engineering Education, 100(1), 186-210.
* https:/www.cs.auckland.ac.nz/courses/compsci747s2c/lectures/case.light-emerging-jee-

11.pdf

Week 2 (10/2): Theoretical Background - Motivation and Development

* Required Reading
* Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience (Vol. 41). New
York: HarperPerennial.
e Chapter 4: The Conditions of Flow (p. 71-93):
https://llk. media.mit.edu/courses/readings/Csikszentmihalyi-Flow-Ch4.pdf
* Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of
intrinsic motivation, social development, and well-being. American psychologist, 55(1),
68.
* http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.335.6945&rep=rep1 &type=pdf
» Wikipedia page for Zone of Proximal Development:
* https://en.wikipedia.org/wiki/Zone of proximal development
* Wikipedia page for Maslow's Hierarchy of Needs:
* https://en.wikipedia.org/wiki/Maslow%27s_hierarchy of needs
* Stretch Goals!
* Maslow, A. H. (1943). A theory of human motivation. Psychological review, 50(4), 370.
* http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.318.2317&rep=rep1 &type=pdf
* Vygotsky, L. (1978). Interaction between learning and development. Mind and society:
The development of higher psychological processes.
* http:/www.psy.cmu.edu/~siegler/vygotsky78.pdf
¢ In Class Resources
e Mark Guzdial's blog post on integration of research into teaching practice
e https://computinged.wordpress.com/2015/09/21/a-terrific-and-dismal-view-of-
what-influences-cs-faculty-to-adopt-teaching-practices/
¢ paper on belonging (Emily will add)
* paper on peer leaders in the classroom (Emily will add)

110

¢ The Pause Procedure (Charlie)

 http://www.tc.umn.edu/~bunte002/resources/Ruhl 1987 .pdf
* student critics of teaching (Dylan)

¢ http://crookedtimber.org/2013/05/28/employing-a-student-to-criticize-my-teachin
* learning styles debunked (Charlie)

 http://www.psychologicalscience.org/index.php/news/releases/learning-styles-

debunked-there-is-no-evidence-supporting-auditory-and-visual-learning-
psychologists-say.html

Week 3 (10/9): Theoretical Background Continued - Self Efficacy, Growth Mindset, and Grit

* Required Reading
* Wikipedia page for "Self-Efficacy" (brief initial summary only)
* brief initial summary only: https://en.wikipedia.org/wiki/Self-efficacy
¢ Dweck, C. S. (2000). Self-theories: Their role in motivation, personality, and development.
Psychology Press.
* Chapter 1 (p. 1-4): https:/llk. media.mit.edu/courses/readings/Dweck.pdf
¢ Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit:
perseverance and passion for long-term goals. Journal of personality and social
psychology, 92(6), 1087.

* http://rrhs.schoolwires.net/cms/lib7/WI101001304/Centricity/Domain/187/Grit
%20JPSP.pdf
e Stretch Goals!

¢ Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change.
Psychological review, 84(2), 191.
* http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.315.4567&rep=rep1&type=pdf

¢ Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of educational
research, 66(4), 543-578.

* http://files.eric.ed.gov/fulltext/ED384608.pdf

¢ Dweck, C. S. (2000). Self-theories: Their role in motivation, personality, and development.
Psychology Press.

¢ Chapters 2, 3 (p. 5-19): https:/llk.media.mit.edu/courses/readings/Dweck.pdf

Week 4 (10/16): Constructivism, Constructionism, and Project-Based Learnin

* Required Reading

¢ Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the
difference. Future of learning group publication, 5(3), 438.
* http://www.sylviastipich.com/wp-content/uploads/2015/04/Coursera-Piaget-_-
Papert.pdf

* Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books,
Inc..

¢ Chapter 1: Computers and Computer Culture
¢ Full book here:
http://eclass.uoa.gr/modules/document/file.php/PPP240/B1Aic/MNDSTORMS

%20Children,%20Computers,%20and%20Powerful%20Ideas.%20Papert.pdf
e Stretch Goals!

¢ Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books,
Inc..

¢ Preface: The Gears of My Childhood
 Introduction: Computers for Children

111

¢ Full book here:

http://eclass.uoa.gr/modules/document/file.php/PPP240/B1fAic/MNDSTORMS
%20Children,%20Computers,%20and%20Powerful %20Ideas. %20Papert.pdf
* Eisenberg, M. (2003). Mindstuff educational technology beyond the computer.
Convergence: The International Journal of Research into New Media Technologies, 9(2),
29-53.
* http://13d.cs.colorado.edu/~ctg/pubs/Mindstuff.pdf
e Turkle, S., & Papert, S. (1992). Epistemological pluralism and the revaluation of the
concrete. Journal of Mathematical Behavior, 11(1), 3-33.
¢ http://kvantti kapsi.fi/Documents/Turkle%20Papert%20-%20Epistemological
%20Pluralism%?20and%20the%20R evaluation%200f%20the%20Concrete%20-
%201992.pdf
* Kirajcik, J. S., & Blumenfeld, P. C. (2006). Project-based learning (pp. 317-334). na.
* http://pisga.lms.education.gov.il/pluginfile.php/121596/mod _resource/content/1/C
HAPTER%2019%20PBL%20Kraichik.docx
* In Class Resources
* Authenticity - Martin Heidegger's vision of becoming more authentic
 http://www .tc.umn.edu/~parkx032/XP226.html
* Coursera: Learning How to Learn
* https://www.coursera.org/learn/learning-how-to-learn
¢ Qakley, Barbara. "A Mind for Numbers"
* http://www.amazon.com/Mind-Numbers-Science-Flunked-
Algebra/dp/039916524X/ref=asap bc?ie=UTF8
* CodeSpells (programming by writing "spells")
* http://codespells.org
* Glitch (programming through debugging games)
* http://betsydisalvo.com/projects/glitch-game-testers/
* Blog (Norris/Soloway) on Sept. 2015 OECD (Organisation for Economic Cooperation and
Development) report on how computers in the classroom HURT learning

* https://thejournal.com/articles/2015/09/21/oecd-report.aspx
Week 5 (10/23): Programming Languages for Teaching

* Required Reading
* Mclver, L., & Conway, D. (1996, January). Seven deadly sins of introductory
programming language design. In Software Engineering: Education and Practice, 1996.
Proceedings. International Conference (pp. 309-316). IEEE.
* http://www.csse.monash.edu.au/~damian/papers/PDF/SevenDeadlySins.pdf
¢ Mannila, L., & de Raadt, M. (2006, February). An objective comparison of languages for
teaching introductory programming. In Proceedings of the 6th Baltic Sea conference on
Computing education research: Koli Calling 2006 (pp. 32-37). ACM.
* http://eprints.usq.edu.au/1701/2/research2.pdf
* Guzdial, M. (2013, August). Exploring hypotheses about media computation. In
Proceedings of the ninth annual international ACM conference on International
computing education research (pp. 19-26). ACM.

* https://users.soe.ucsc.edu/~emme/other/p19-guzdial.pdf

* http://dl.acm.org/citation.cfm?id=2493397 try this if Emily's link doesn't work for
you (sorry, there was a typo! first link should be working now)

* Stretch Goals!
* Henriksen, P., & Kolling, M. (2004, October). Greenfoot: combining object visualisation
with interaction. In Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications (pp. 73-82). ACM.

¢ http://www.researchgate.net/profile/Michael Koelling/publication/221321474_gree
nfoot_combining_object_visualisation with_interaction/links/0c9605244913f84d8

112

8000000.pdf
* Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch
programming language and environment. ACM Transactions on Computing Education
(TOCE), 10(4), 16.
 http://web.media.mit.edu/~jmaloney/papers/Scratchl angAndEnvironment.pdf
* Cooper, S., Dann, W., & Pausch, R. (2000, April). Alice: a 3-D tool for introductory
programming concepts. In Journal of Computing Sciences in Colleges (Vol. 15, No. 5, pp.
107-116). Consortium for Computing Sciences in Colleges.
* http://web.stanford.edu/~coopers/alice/ccscne00.PDF
* Reas, C., & Fry, B. (2006). Processing: programming for the media arts. A7 & SOCIETY,
20(4), 526-538.
* http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.207.7452&rep=rep1&type=pdf
* Hadjerrouit, S. (1998). Java as first programming language: a critical evaluation. ACM
SIGCSE Bulletin, 30(2), 43-47.
* maybe include a hands-on exercise where we all try Python & Scratch (Snap?
Processing.org? Guzdial "Media Computation" Language vs Tool/Environment)?
* In Class Resources
* lots of websites where you can test drive a language quickly
* tryruby.org
¢ trypython.org
* Philip Guo's survey showing Python at the top
e http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-
introductory-teaching-language-at-top-us-universities/fulltext
* Logical Journey (computer game from the 1990s)
* http://www.amazon.com/Zoombinis-Logical-Journey-PC-Mac/dp/B0000SLBVU
* https://itunes.apple.com/us/app/zoombinis/id961739806?mt=8
* LaPlaya - UCSB's more constrained take on Scratch
* https://octopi.herokuapp.com
¢ Snap! - Berkeley's extended take on Scratch
* http://snap.berkeley.edu
e programming Arduino with a Scratch-like environment
¢ S4A: http://s4a.cat
¢ Modkit: http:/www.modkit.com
» Karel the Robot - turtle-like programming
* https://www.cs.mtsu.edu/~untch/karel/
* Bee-Bot - physical turtle robot

* https://www.bee-bot.us
¢ NAND to Tetris course/book

 http://www.nand2tetris.org

Week 6 (10/30) : Hot Topics - Flipped Classrooms, Peer Instruction, and Active Learnin,

* Required Reading
* NYT Article: Are College Lectures Unfair?
* http://www.nytimes.com/2015/09/13/opinion/sunday/are-college-lectures-
unfair.html? r=0
¢ Bishop, J. L., & Verleger, M. A. (2013, June). The flipped classroom: A survey of the
research. In ASEE National Conference Proceedings, Atlanta, GA.

* http://www.studiesuccesho.nl/wp-content/uploads/2014/04/flipped-classroom-

artikel.pdf
* The attention curve: http:/cain.blogspot.com/2012/10/podcasting-and-attention-
curve.html

113

* Ruhl et al, Using the Pause Procedure to Enhance Lecture Recall,
http://www.tc.umn.edu/~bunte002/resources/Ruhl_1987 .pdf
* Porter, L., Bailey Lee, C., & Simon, B. (2013, March). Halving fail rates using peer
instruction: a study of four computer science courses. In Proceeding of the 44th ACM
technical symposium on Computer science education (pp. 177-182). ACM.
* https://users.soe.ucsc.edu/~emme/other/p177-porter.pdf
* Stretch Goals!
* Peer Instruction/Collaborative Learning
* Crouch and Mazur, Peer Instruction: Ten years of experience and results,
http://web.mit.edu/jbelcher/www/TEALref/Crouch Mazur.pdf
¢ Buffum, Philip Sheridan, et al. "Leveraging collaboration to improve gender equity
in a game-based learning environment for middle school computer science."
Research in Equity and Sustained Participation in Engineering, Computing, and
Technology (RESPECT), 2015. IEEE, 2015.
http://ieeexplore.ieee.org.oca.ucsc.edu/xpls/abs_all.jsp?arnumber=7296496
* Linda Werner, Jill Denner, Shannon Campe, Eloy Ortiz, Dawn DeLay, Amy C.
Hartl, and Brett Laursen. 2013. Pair programming for middle school students: does
friendship influence academic outcomes?. In Proceeding of the 44th ACM technical
symposium on Computer science education(SIGCSE '13). ACM, New York, NY,
USA, 421-426. DOI=http://dx.doi.org/10.1145/2445196.2445322
* Porter, L., Bailey Lee, C., Simon, B., & Zingaro, D. (2011, August). Peer
instruction: do students really learn from peer discussion in computing?. In
Proceedings of the seventh international workshop on Computing education
research (pp. 45-52). ACM.
* Simon, B,, Esper, S., Porter, L., & Cutts, Q. (2013, August). Student experience in
a student-centered peer instruction classroom. In Proceedings of the ninth annual
international ACM conference on International computing education research (pp.
129-136). ACM.
* In Class Resources
* recent news story on meditation in San Francisco schools
¢ http://www.inhabitots.com/schools-in-san-francisco-implement-meditation-time-
students-happiness-and-academic-success-soars/

Week 7 (11/6): Challenges & Broadening Participation

* Speaker: Jill Denner, Ph.D. is a senior research scientist at ETR. She does applied research with a
focus on increasing the number of women, girls and Latino/a students in computing. Dr. Denner
also has led the development of several after-school programs designed to increase children’s
opportunities to become producers, not just users, of technology. She is nationally recognized as
an expert in strategies to engage girls/women and Latino/a students in computer science, in both
K-12 and community college, and regularly does peer review of journal articles as well as grant
proposals for the National Science Foundation.

* Required Reading

* Denner, J., Bean, S., & Martinez, J., The Girl Game Company: Engaging Latina Girls in
Information Technology. National Institute on Out-of-School Time, "Afterschool Matters
Spring 2009" (2009). Afterschool Matters. Book 21, pp 26-35.

¢ http://repository.wellesley.edu/cgi/viewcontent.cgi?
article=1016&context=afterschoolmatters

* Margolis, Goode, Binning (2015). Expanding the Pipeline -Exploring Co mputer Science:
Active Learning for Broadening Participation in Computing. Computing Research News.
Oct. 2015, Vol. 27/No. 9.

http://cra.org/crn/2015/10/expanding-the-pipeline-exploring-computer-science-
active-learning-for-broadening-participation-in-computing/

* Margolis, J., Estrella, R., Goode, J., Holme, J.J., & Nao, K., (2008). Stuck in the Shallow
End: Education, Race, and Computing. MIT Press. Read the Conclusion - "The Best and

114

the Brightest"? The book is a quick read.
* http://ieeexplore.ieee.org.oca.ucsc.edu/xpl/ebooks/bookPdfWithBanner.jsp?
fileName=6283349.pdf&bkn=6267411&pdfType=chapter conclusion
* http://ieeexplore.ieee.org.oca.ucsc.edu/xpl/bkabstractplus.jsp?bkn=6267411 table
of contents
* http://ieeexplore.ieee.org.oca.ucsc.edu/xpl/ebooks/bookPdfWithBanner.jsp?
fileName=6283348.pdf&bkn=6267411&pdfType=chapter introduction
* Stretch Goals!
* Zweben, S., & Bizot, B. (2015). 2014 Taulbee Survey. COMPUTING, 27(5).
* http://archive2.cra.org/uploads/documents/resources/crndocs/2014-Taulbee-
Survey.pdf
* Pinkard, N., Barron, B., & Martin, C. (2008, June). Digital youth network: fusing school
and after-school contexts to develop youth's new media literacies. In Proceedings of the
8th international conference on International conference for the learning sciences-Volume
3 (pp. 113-114). International Society of the Learning Sciences.
¢ Rusk, N., Resnick, M., & Cooke, S. (2009). Origins and guiding principles of the computer
clubhouse. The computer clubhouse: Constructionism and creativity in youth communities,
17-25.
* http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.141.5830&rep=rep1&type=pdf
* Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse: Women in computing. MIT
press.
* READING ON BELONGING? MENTORSHIP?
* ASK BRAD FOR A PAPER SUGGESTION FOR COGNITIVE DISABILITIES
* In Class Resources
* Max/MSP (multimedia programming with visual modules and "wires")
 https://en.wikipedia.org/wiki/Max_(software)
* https://cycling74.com/products/max/
* http://www.instructables.com/id/Intro-to-MaxMSP/

* Pure Data - similar to Max/MSP but open source!

 https://puredata.info

* music-meets-computer science/programming class by someone in Boston? (mentioned by
Jill)

Week 8 (11/13): Growth Mindset & Self-Efficacy in the Classroom

* Required Reading
* Hutchison, M. A., Follman, D. K., Sumpter, M., & Bodner, G. M. (2006). Factors
influencing the self-efficacy beliefs of first-year engineering students. JOURNAL OF
ENGINEERING EDUCATION-WASHINGTON-, 95(1), 39.
* https://users.soe.ucsc.edu/~emme/other/p39-hutchison.pdf
* McDowell, C; Werner, L; Bullock, H E; & Fernald, J. (2006). Pair programming improves
student retention, confidence, and program quality. Communications of the ACM, 49(8), 90
-95. doi: 10.1145/1145287.1145293.
* http://escholarship.org/uc/item/1s49s13f
* Cutts, Q., Cutts, E., Draper, S., O'Donnell, P., & Saffrey, P. (2010, March). Manipulating
mindset to positively influence introductory programming performance. In Proceedings of
the 41st ACM technical symposium on Computer science education (pp. 431-435). ACM.
* http://ims.mii.lt/ims/konferenciju medziaga/SIGCSE'10/docs/p431.pdf
* Stretch Goals!
* Murphy, L., & Thomas, L. (2008). Dangers of a fixed mindset: implications of self-
theories research for computer science education. ACM SIGCSE Bulletin, 40(3), 271-275.
 http://www.researchgate.net/profile/Lynda Thomas4/publication/220808023 Dang
ers of a fixed mindset implications of self-

115

theories research for computer science education/links/02bfe5137acd1lccea0000
000.pdf

* Dunlap, J. C. (2005). Problem-based learning and self-efficacy: How a capstone course
prepares students for a profession. Educational Technology Research and Development,
53(1), 65-83.

* Zeldin, A. L., & Pajares, F. (2000). Against the odds: Self-efficacy beliefs of women in
mathematical, scientific, and technological careers. American Educational Research
Journal, 37(1), 215-246.

* Zeldin, A. L., Britner, S. L., & Pajares, F. (2008). A comparative study of the self-efficacy
beliefs of successful men and women in mathematics, science, and technology careers.
Journal of Research in Science Teaching, 45(9), 1036-1058.

* https://users.soe.ucsc.edu/~emme/other/p1036-zeldin.pdf
* Quintin Cutt's crib sheet - http://www.dcs.gla.ac.uk/~quintin/cribsheet.doc
* paper that discussed pair programming pairings:
¢ Bevan, J., Werner, L., & McDowell, C. (2002). Guidelines for the use of pair
programming in a freshman programming class. In Software Engineering
Education and Training, 2002.(CSEE&T 2002). Proceedings. 15th Conference on
(pp. 100-107). IEEE.

* http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=995202

eek 9 (11/20) : Computing for Education - MOQC:sS, Intelligent Tutorin ames, Crowdgrader

* Required Reading
* Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent
tutoring goes to school in the big city.
* http://repository.cmu.edu/cgi/viewcontent.cgi?article=1000&context=hcii
» DiSalvo, B., & Bruckman, A. (2011). From interests to values. Communications of the
ACM, 54(8), 27-29.
* http://www.researchgate.net/profile/Betsy Disalvo/publication/220423452 From I
nterests to Values/links/0046353a98acf9159b000000.pdf
* de Alfaro, L., & Shavlovsky, M. (2014, March). CrowdGrader: A tool for crowdsourcing
the evaluation of homework assignments. In Proceedings of the 45th ACM technical
symposium on Computer science education (pp. 415-420). ACM.
 http://arxiv.org/pdf/1308.5273.pdf
* Compeau, P., & Pevzner, P. A. (2015). Life after MOOCs. Communications of the ACM,
58(10), 41-44.
¢ http://cacm.acm.org/magazines/2015/10/192385-life-after-moocs/fulltext
* Stretch Goals!
* Koedinger, K. R., & Corbett, A. (2006). Cognitive tutors: Technology bringing learning
sciences to the classroom. na.
* http://isites.harvard.edu/fs/docs/icb.topic603902.files/KoedingerCorbett05.pdf
e Lee, M.J., & Ko, A. J. (2011, August). Personifying programming tool feedback improves
novice programmers' learning. In Proceedings of the seventh international workshop on
Computing education research (pp. 109-116). ACM.

¢ http://www.pixel42.com/cv/publications/Lee2011 GidgetPersonification.pdf

Week 10 (12/4): Open Source Hardware & Software in the Classroom (Fabrication, too!)

* Required Reading
¢ Eisenberg, M. (2007, March). Pervasive fabrication: Making construction ubiquitous in
education. In Pervasive Computing and Communications Workshops, 2007. PerCom
Workshops' 07. Fifth Annual IEEE International Conference on (pp. 193-198). IEEE.

116

* http://ojs.academypublisher.com/index.php/jsw/article/download/03046268/975

¢ Buechley, L., & Hill, B. M. (2010, August). LilyPad in the wild: how hardware's long tail

is supporting new engineering and design communities. In Proceedings of the 8th ACM
Conference on Designing Interactive Systems (pp. 199-207). ACM.

* http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.207.8075&rep=rep1&type=pdf

Hislop, G. W., Ellis, H. J., Pulimood, S. M., Morgan, B., Mello-Stark, S., Coleman, B., &
Macdonell, C. (2015, July). A Multi-Institutional Study of Learning via Student
Involvement in Humanitarian Free and Open Source Software Projects. In Proceedings of
the eleventh annual International Conference on International Computing Education
Research (pp. 199-206). ACM.

* https://users.soe.ucsc.edu/~emme/other/p199-hislop.pdf

Stretch Goals!
* Lakhani, K., & Wolf, R. G. (2003). Why hackers do what they do: Understanding

motivation and effort in free/open source software projects.

 http://flosshub.org/system/files/lakhaniwolf.pdf

* Qiu, K., Buechley, L., Baafi, E., & Dubow, W. (2013, June). A curriculum for teaching

computer science through computational textiles. In Proceedings of the 12th International
Conference on Interaction Design and Children (pp. 20-27). ACM.
* http://www .researchgate.net/profile/Wendy Dubow/publication/262206765 A_cur
riculum_for_teaching_computer_science_through computational_textiles/links/550
b49260cf2855640970616.pdf

Miscellaneous readings of interest that don't fit anywhere in particular...

Winograd, T., & Flores, F. (1986). Understanding computers and cognition: A new foundation for
design. Intellect Books.
Karat, J., & Dayton, T. (1995, May). Practical education for improving software usability. In
Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 162-169).
ACM Press/Addison-Wesley Publishing Co..
Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding.
Cognitive structure and conceptual change, 211, 231.
Raymond, E. S. (2001). The Cathedral & the Bazaar: Musings on linux and open source by an
accidental revolutionary. " O'Reilly Media, Inc.".
check ICER 2015? (something about blocks-based languages...)
Pair Programming at UCSC

* McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002, February). The effects of

pair-programming on performance in an introductory programming course. In ACM
SIGCSE Bulletin (Vol. 34, No. 1, pp. 38-42). ACM. http://p8888-
ucelinks.cdlib.org.oca.ucsc.edu/sfx local?
sid=google&auinit=C&aulast=McDowell&atitle=The+effects+of+tpair-
programming-+on+performance+int+an+introductory+programming-+course&id=doi:10.114
5/563340.563353 &title=SIGCSE+bulletin&volume=34&issue=1&date=2002 &spage=38&
issn=1096-3936

Werner, L. L., Hanks, B., & McDowell, C. (2004). Pair-programming helps female
computer science students. Journal on Educational Resources in Computing (JERIC), 4(1),
4. http://p8888-ucelinks.cdlib.org.oca.ucsc.edu/sfx_local?
sid=google&auinit=L I &aulast=Werner&atitle=Pair-
programming+helps+female+computer+science+students&id=doi:10.1145/1060071.10600
75&title=Journal+on+educational+resources+int+computing&volume=4&issue=1&date=2
004 &spage=4&issn=1531-4278

McDowell, C; Werner, L; Bullock, H E; & Fernald, J. (2006). Pair programming improves
student retention, confidence, and program quality. Communications of the ACM, 49(8), 90
- 95. doi: 10.1145/1145287.1145293. UC Santa Cruz: Retrieved from:

117

http://escholarship.org/uc/item/1s49s13f
¢ Werner, L. L., Hanks, B., McDowell, C., Bullock, H., & Fernald, J. (2005). Want to

increase retention of your female students. Computing Research News,17(2), 2.
https://users.soe.ucsc.edu/~charlie/projects/pairprogramming/Pipeline.pdf
¢ CSTA K-12 Computer Science Standards
http://www.csta.acm.org/Curriculum/sub/K 12Standards.html
* Grover, S., & Pea, R. (2013). Computational Thinking in K—12 A Review of the State of the Field.
Educational Researcher, 42(1), 38-43.

* http://edr.sagepub.com/content/42/1/38.full.pdf+thtml

count =0
def incCount():
counts = count + 1 #whoops should be count
incCount()
print count #expected 1 got 0
count = "cow"
print count # wait I thought count was an int

118

Appendix C | Berea College Course Syllabi

Craft of Computing Syllabus

Fall 2018
Instructor: Emily Lovell Course Number: CSC 110
Instructor e-mail: emily_lovell@berea.edu Class time: Tue/Thu 1:00pm-2:50pm
Office hours: Mon 2:30pm-4:00pm Classroom: Danforth Tech 104
Wed 3:30pm-5:00pm Lab times: Sun-Thu 7:00pm-9:00pm

Office: Danforth Tech 102B
Phone: (859) 985-3930

Note: This syllabus is subject to changes and updates throughout the term.

Catalog Description

An introduction to the foundations of computer science within a craft context. Students will gain
experience with a text-based programming language while exploring themes of computational
design. Throughout the semester, we will also experiment with artisanal craft techniques and
realize our designs using tools such as a laser cutters or vinyl cutter. No previous crafting or
computer programming experience is required.

In Other Words...

We'll start by getting our feet wet with the Processing programming language, which was
originally developed as a tool for artists and designers. While learning computer science
fundamentals, we’'ll also experiment with traditional craft techniques such as felting, sewing, and
embroidery.

To this end, we will spend roughly half of our class time in the technical world. For example, we'll
spend time learning how to think like a computer scientist and to program in Processing.

We'll spend the rest of our time in the realm of craft/design. This may entail learning a new craft
technique or design tool, having a class discussion based on a reading or video, and/or
critiquing one another’s work.

As the term progresses, we’'ll combine these two approaches to create designs/patterns that we
can realize in physical craft form.

Some examples of artifacts you might make in this course are:

e Lasercut stationery/greeting cards, iron-on patches, wooden coasters, or felt trivets
e Vinylcut stickers

119

e Pen-plotted drawings or paintings

You will be actively encouraged to propose your own ideas as well!

Practical Reasoning Requirement

This course satisfies Berea College’s Practical Reasoning requirement. At completion of the
course, a successful student will be:
1. more sensitive to nuances of language use;
able to identify logical relationships between and among propositions;
able to use and to recognize different patterns of reasoning;
able to recognize improper patterns of reasoning;
able to use appropriate criteria to evaluate reasoning;
able to deliberate about various courses of action by weighing evidence;
able to think clearly about values and their place in a reflective and active life.

No gD

Required Text & Reading

We will be using Slack as our primary means to communicate outside of class. This is where |
will post announcements, additional information regarding assignments, etc. It is also a place
where you can ask one another for help or advice. For this reason, | consider our course’s Slack
channel to be required reading. Once you've joined our team and channel, you can set up
notifications that go to your phone and/or e-mail.

The textbook that we'll using is more of a workbook than a traditional textbook. It also has a
really great companion website, which you can find at: http://learningprocessing.com

Leaming Processing:
A Beginner's Guide to Programming Images, Animation, and Interaction (Second Edition)
by Daniel Shiffman

You should bring your copy of the textbook with you to every class meeting. You should also
bring your computer with you to every class.

Grade Distribution

Assignments: 20%

Assignments may include (but are not limited to): written reading responses, programming
exercises, and outside-of-class research.

120

Quizzes: 25%

A handful of quizzes will occur throughout the term, with time to prepare and information on
what they will cover. These will mostly cover technical content and will allow me to better
understand which topics would benefit from more coverage.

Mini-projects: 30%

Mini-projects will offer the opportunity to bring your code to life. Through these special
assignments, you will learn to interface between the digital and physical worlds — for example,
by making something on a laser cutter which you first designed on your computer.

Final project: 25%

The final project will allow you to blend craft and computation in a more open-ended context
than the mini-projects. Once again, you will bring a design of your own into the physical world —
but you will do so through a medium and technique of your choice.

Late Work Policy

Because we will be building upon prior coursework throughout the term, it's extremely important
that you complete assignments on time. However, | will accept one assignment late without
penalty. All other late assignments will be reduced by a flat penalty of 20%. No submissions
will be accepted beyond three days late. No extensions will be granted on quizzes, in-class
presentations, or the final project. Exceptions will be considered only in case of severe illness,
hospitalization, etc. which will be handled on a case-by-case basis.

Grading Scale

100% = A 93% > A- 90%

v
v

90% > B+

v

87% > B

v

83% > B-

v

80%

80% > C+ = % > C 2 73% > c- = 70%

63% > F

\"
(=]

0% > D+

v

67% > D

v

Attendance Policy

We will be actively engaging during class time in small group exercises, pair programming,
presentations, and projects. Your attendance is critical in supporting these activities and for this
reason my attendance policy is as follows:

121

e [l take attendance at each class, once at the beginning.

e |[f you arrive late, it's your responsibility to make sure I've included your name on the
attendance list. It's my prerogative to count late arrivals as 2 absence. (The same
applies if you leave early or do not participate in class.)

e After 3 absences, your course grade will be reduced by ¥ of a letter grade per absence.
There is no distinction between excused and unexcused absences (except in very
unusual cases of emergency such as family death or severe illness, which you must
discuss with me and which must be documented).

e More than 6 absences (or roughly 20% of the course) automatically results in a failing
grade for the course.

Quizzes will be held during class periods. Make-up quizzes must be arranged in advance and
will be granted at my discretion. Any quiz that is missed without appropriate communication will
earn a grade of zero.

If you miss class for any reason, you are responsible for getting yourself caught up. This means
taking it upon yourself to talk to classmates about missed material — after which you should
follow up with me if you have outstanding questions.

Delays

In rare instances, | may be delayed arriving to class. If | have not arrived by the time class is
scheduled to start, you must wait a minimum of 20 minutes for my arrival. In the event that | will
miss class entirely, this will be communicated on Slack along with any additional information
regarding assignments.

Academic Honesty
This course adheres fully to the college’s policies regarding academic honesty/dishonesty.

In the preparation and presentation of any assigned work, all students shall conform to a strict
standard of academic honesty. Any attempt to pass-off the ideas or work of others as your
original work or to help another student to do so will be considered a violation of this standard.
Thus, you must formally acknowledge in any work you submit the words and/or ideas of others
taken from other students or from any print source or any electronic media, whether a direct
quotation such as a cut-and paste or a paraphrase. Any omission of this standard, however
minaor, is dishonest and is called plagiarism. In the real-word, plagiarism is considered theft. In
the workplace, such theft can lead to lawsuits which cost the company time, money, and
prestige. In this course, you must clearly document in everything you submit what is your own

122

original work and what is the work of others. Academic dishonesty also includes presenting
fabricated data as authentic.

At the first instance of plagiarism or academic dishonesty, assuming | see it as a minor one, the
student will receive an "F" for that assignment. At the second minor offense, or any such offense
| see as major, the student will receive an "F" in the course. In addition, ALL offenses of
plagiarism, including the any minor ones, will be reported to the Associate Provost for Academic
Services as detailed in the Berea College Student Handbook.

Technology Policies

Much of the work in this course will require use of a computer, so these policies are designed to
help you better understand how to be effective in a technology-rich environment.

Laptop and Software: We will regularly make use of laptops during class, and you are expected
to have them unless explicitly stated otherwise. However, | will sometimes ask that you close
your laptops in order to fully participate in discussion or critique.

Cell Phones: You may not use a cell phone during class - neither to talk or to text - except in
case of emergency. (If you are expecting an emergency call, let me know before class and step
out quietly when you receive it.)

Communication: We will use a few different tools to aid in communication throughout the
semester.
e Trello: Our Trello “board” will serve as our course website. Assignments, due
dates, and support resources will all be listed here.

e Slack: Slack is a tool for realtime collaboration - and we’'ll use it for
announcements and communication in between classes. This is the best way to
ask myself, our TA, and your classmates for help or clarification. You should
either plan to check Slack on a daily basis or configure notifications to go to your
e-mail and/or phone.

o Moodle: Moodle is Berea College’s course content system. We'll use Moodle for
assignment submission, grades, and feedback on assignments (when
applicable).

These are all mechanisms you would likely use in a professional position in the real world. You
are, likewise, expected to use them in a responsible and professional manner in this course.

File Submission: It is your responsibility to verify that you have uploaded the correct file(s) for
submission to Moodle. You should download a copy of each file after submission to check that it
is the file you intended and that it can be opened.

123

Backups: All students are expected to back-up their work on a daily basis. The best way to do
this is to store a copy of all work in a cloud service such as Dropbox, BereaBox, Google Drive,
or to use a flash drive. Storing multiple copies of something on your laptop is not a backup. Itis
your responsibility to ensure that you do not lose any of your work throughout the term.

Statements Regarding Accommodations

Berea College will provide reasonable accommodations for students with disabilities to make all
learning experiences accessible. If you feel you may need accommodations based on the
impact of a disability of health condition, please contact Lisa Ladanyi (DAS - Disability &
Accessibility Services, 111 Lincoln Hall, 859-985-3237, lisa.ladanyi@berea.edu) to initiate a
conversation about your options. Students must provide their instructor(s) with an
accommodation letter before any accommodations can be provided. Accommodations cannot
be provided retroactively. Please meet with your instructor(s) in a confidential environment to
discuss arrangements for these accommodations.

Under Title IX of the Education Amendments of 1972, pregnant and parenting students may be
afforded certain accommodations regarding their educational experience. If you believe that
pregnancy or pregnancy-related conditions are likely to impact your participation in this course,
please contact Berea’s Title IX Coordinator, Katie Basham, to discuss appropriate
accommaodations. She may be reached at katherine_basham@berea.edu or 859-985-3606.

124

Open Source Software Engineering Syllabus
Spring 2018

Instructor: Emily Lovell Class time: Tues/Thurs 1:00pm-2:50pm
Instructor e-mail: emily lovell@berea.edu Classroom: Danforth Tech 104

Office hours: Mon 3pm-5pm, Wed 1pm-3pm

Office: Danforth Tech 102B

Phone: (859) 985-3930

Course Number: CSC 426

Note: This syllabus is subject to changes and updates throughout the term.

Catalog Description

An introduction to open source software engineering, this course covers the philosophy and
practice of developing software in large, distributed teams. Students will explore social and
technological aspects of this process by contributing directly to an existing open source project.
In doing so, students will learn the tools, the techniques, and the strategies — technical and
social — that are common to all developers working in teams through this semester-long
exercise.

Course Goals

These goals provide the “big picture” of our work developing and contributing to open source
communities with collaborators from around the world.

Open Community and Culture

Open software happens in a rich cultural context. It is important not only that we understand
who we are working with, but the cultural values they embrace and exemplify through their work
within a community.

Tools and Technologies

All open projects involve the use of tools.... lots and lots of tools. Whether they are wikis, or chat
systems, or mailing lists, or version control systems, or bug trackers, or... the list goes on and
on. This course will introduce you to some of these tools and help you establish the mindset that
you will be learning new tools for the rest of your life as you continue to work in computing.

125

Development and Process

Developing software is a collaborative process. It involves communication with others,
agreement on design, agreement on style, and agreement on when to agree and when to
disagree. These dialogues all have a process and the technical act of designing, implementing,
committing, testing, and publishing software all have processes as well. Understanding these
layers of human- and technical-oriented process are critical to modern software development.

Coliaboration and Communication

Working with people is hard. It involves patience, kindness, humility, and an awareness of self
that many people working in technology do not have or even realize they should focus on
developing. We will read about, practice, and engage in readings and discussions about who we
are, how we work with others, and how to reflect on those interactions productively in the
context of collaborative, distributed software development.

Texts & Required Reading

We will be using Slack as our primary means to communicate outside of class. This is where |
will post announcements, additional information regarding assignments, etc. It is also a place
where you can ask one another for help or advice. For this reason, | consider our course’s Slack

channel to be required reading. Once you've joined our team and channel, you can set up
notifications that go to your phone and/or e-mail.

We will pull readings primarily from two books, both of which are available for free online.

The Cathedral and the Bazaar:

Musings on Linux and Open Source by an Accidental Revolutionary
By Eric S. Raymond
hitp://www.catb.org/esr/writings/cathedral-bazaar/

The Art of Community:
Building the New Age of Participation (Second Edition)
By Jono Bacon

hittp://artofcommunityonline.org/Art_of Community Second_Edition.pdf

Grade Distribution
Blog: 40%

You will be blogging regularly throughout this class, which will allow me to assess your learning
process as well as progress towards your own goals. Prompts will include reading responses,

126

in-class activity reports, and reflections on contributing to an open source community (including
any obstacles which you may encounter).

In-class participation and activities: 25%

We will frequently spend class time learning about new tools through hands-on activities. Later
in the semester, you will be asked to share periodic updates on your own involvement with an
open source community.

Peer evaluation: 10%

Because you will be working in small teams (or pairs) for much of the semester, a portion of your
grade will come from peer evaluation. This will be a combination of you making a sincere effort
to assess your teammates and also the grades which they assign to you.

Final portfolio: 25%

Your final portfolio will be a combination of a written reflection, any deliverables that you have
worked on, and an in-class presentation. It will offer the opportunity to share what you've
learned throughout the semester and to reflect on progress towards your own learning goals.

Late Work Policy

Because we will be building upon prior coursework throughout the term, it's extremely important
that you complete assignments on time. However, | will accept one assignment late without
penalty. All other late assignments will be reduced by a flat penalty of 20%. No submissions
will be accepted beyond three days late. No extensions will be granted on in-class
presentations or your final portfolio. Exceptions will be considered only in case of severe illness,
hospitalization, etc. which will be handled on a case-by-case basis.

Grading Scale

100% = A 2 93% > A- P 90%

90% > B+ P 87% > B = 83% > B- = 80%
80% > C+ 2 7% > C 2 3% > C- 2 70%
0% > D+ 2 67% > D = 63% > F 2 0

127

Attendance Policy

We will be actively engaging during class time in small group exercises, pair programming,
presentations, and projects. Your attendance is critical in supporting these activities and for this
reason my attendance policy is as follows:

e [l take attendance at each class, once at the beginning.

e [f you arrive late, it's your responsibility to make sure I've included your name on the
attendance list. It's my prerogative to count late arrivals as ¥ absence. (The same
applies if you leave early or do not participate in class.)

e After 3 absences, your course grade will be reduced by ¥4 of a letter grade per absence.
There is no distinction between excused and unexcused absences (except in very
unusual cases of emergency such as family death or severe illness, which you must
discuss with me and which must be documented).

e More than 6 absences (or roughly 20% of the course) automatically results in a failing
grade for the course.

If you miss class for any reason, you are responsible for getting yourself caught up. This means
taking it upon yourself to talk to classmates about missed material — after which you should
follow up with me if you have outstanding questions.

Delays

In rare instances, | may be delayed arriving to class. If | have not arrived by the time class is
scheduled to start, you must wait a minimum of 20 minutes for my arrival. In the event that I will
miss class entirely, this will be communicated on Slack along with any additional information
regarding assignments.

Academic Honesty

This course adheres fully to the college’s policies regarding academic honesty/dishonesty.

In the preparation and presentation of any assigned work, all students shall conform to a strict
standard of academic honesty. Any attempt to pass-off the ideas or work of others as your
original work or to help another student to do so will be considered a violation of this standard.
Thus, you must formally acknowledge in any work you submit the words and/or ideas of others
taken from other students or from any print source or any electronic media, whether a direct
quotation such as a cut-and paste or a paraphrase. Any omission of this standard, however
minor, is dishonest and is called plagiarism. In the real-word, plagiarism is considered theft. In

128

the workplace, such theft can lead to lawsuits which cost the company time, money, and
prestige. In this course, you must clearly document in everything you submit what is your own
original work and what is the work of others. Academic dishonesty also includes presenting
fabricated data as authentic.

At the first instance of plagiarism or academic dishonesty, assuming | see it as a minor one, the
student will receive an "F" for that assignment. At the second minor offense, or any such offense
| see as major, the student will receive an "F" in the course. In addition, ALL offenses of
plagiarism, including the any minor ones, will be reported to the Associate Provost for Academic
Services as detailed in the Berea College Student Handbook.

Technology Policies

Much of the work in this course will require use of a computer, so these policies are designed to
help you better understand how to be effective in a technology-rich environment.

Laptop and Software: We will regularly make use of laptops during class, and you are expected
to have them unless explicitly stated otherwise. However, | will sometimes ask that you close
your laptops in order to fully participate in discussion or presentations.

Cell Phones: You may not use a cell phone during class - neither to talk or to text - except in
case of emergency. (If you are expecting an emergency call, let me know before class and step
out quietly when you receive it.)

Communication: We will use a few different toals to aid in communication throughout the
semester.
e Trello: Our Trello “board” will serve as our course website. Assignments, due
dates, and support resources will all be listed here.

e Siack: Slack is a tool for realtime collaboration - and we’ll use it for
announcements and communication in between classes. This is the best way to
ask myself, our TA, and your classmates for help or clarification. You should
either plan to check Slack on a daily basis or configure notifications to go to your
e-mail and/or phone.

e Moodle: Moodle is Berea College’s course content system. We'll use Moodle for
assignment submission, grades, and feedback on assignments (when
applicable).

These are all mechanisms you would likely use in a professional position in the real world. You
are, likewise, expected to use them in a responsible and professional manner in this course.

129

File Submission: It is your responsibility to verify that you have uploaded the correct file(s) for
submission to Moodle. You should download a copy of each file after submission to check that it
is the file you intended and that it can be opened. Similarly, it is your responsibility to verify that
your blog entries are published and publically accessible.

Backups: All students are expected to back-up their work on a daily basis. The best way to do
this is to store a copy of all work in a cloud service such as Dropbox, BereaBox, Google Drive,
or to use a flash drive. Storing multiple copies of something on your laptop is not a backup. It is
your responsibility to ensure that you do not lose any of your work throughout the term.

Statements Regarding Accommodations

Berea College will provide reasonable accommodations for students with disabilities to make all
learning experiences accessible. If you feel you may need accommodations based on the
impact of a disability of health condition, please contact Lisa Ladanyi (DAS - Disability &
Accessibility Services, 111 Lincoln Hall, 859-985-3237, lisa.ladanyi@berea.edu) to initiate a
conversation about your options. Students must provide their instructor(s) with an
accommodation letter before any accommodations can be provided. Accommodations cannot
be provided retroactively. Please meet with your instructor(s) in a confidential environment to
discuss arrangements for these accommodations.

Under Title IX of the Education Amendments of 1972, pregnant and parenting students may be
afforded certain accommodations regarding their educational experience. If you believe that
pregnancy or pregnancy-related conditions are likely to impact your participation in this course,
please contact Berea's Title IX Coordinator, Katie Basham, to discuss appropriate
accommodations. She may be reached at katherine_basham@berea.edu or 859-985-3606.

130

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

Agrawal, R., Springer, A. and Lovell, E. 2015. QuickResponseHost: Enabling
crowdsourced disaster response stations. 2015 IEEE Global Humanitarian
Technology Conference (GHTC) (Oct. 2015), 233-239.

Alfieri, L., Brooks, P.J., Aldrich, N.J. and Tenenbaum, H.R. 2011. Does
discovery-based instruction enhance learning? Journal of educational
psychology. 103, 1 (2011), 1.

Arduino: https://www.arduino.cc/. Accessed: 2020-06-15.

Astrachan, O., Barnes, T., Garcia, D.D., Paul, J., Simon, B. and Snyder, L.
2011. CS principles: piloting a new course at national scale. Proceedings of the
42nd ACM Technical Symposium on Computer Science Education (2011),
397-398.

Bacon, J. 2012. The art of community: Building the new age of participation.
O’Reilly Media, Inc.

Bandura, A. 1982. Self-efficacy mechanism in human agency. American
psychologist. 37,2 (1982), 122.

Bandura, A. 1977. Self-efficacy: toward a unifying theory of behavioral
change. Psychological review. 84, 2 (1977), 191.

Bandura, A. and Wessels, S. 1994. Self-efficacy. na.

Beyer, K. 2012. Grace Hopper and the invention of the information age.
Lemelson Center Studies in Inv.

Braught, G. 2021. Support for Broadening Participation though Humanitarian
Free and Open Source Software. Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education (2021), 1306—1306.

Braught, G., Maccormick, J., Bowring, J., Burke, Q., Cutler, B., Goldschmidt,
D., Krishnamoorthy, M., Turner, W., Huss-Lederman, S., Mackellar, B. and
Tucker, A. 2018. A Multi-Institutional Perspective on H/FOSS Projects in the
Computing Curriculum. ACM Transactions on Computing Education. 18, 2
(Jul. 2018), 7:1-7:31. DOI:https://doi.org/10.1145/3145476.

Bridging the Computer Science Access Gap (Infographics) (August 2016):
https://ecs.secure.force.com/studies/rstempg?id=a0r0g000009TLel. Accessed:

131

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]

[23]

2021-12-07.

Brown, M. 2013. CSO0 as an indicator of student risk for failure to complete a
degree in computing. Journal of Computing Sciences in Colleges. 28, 5 (2013),
9-16.

Buechley, L. and Eisenberg, M. 2008. The LilyPad Arduino: Toward wearable
engineering for everyone. IEEE Pervasive Computing. 7, 2 (2008), 12—15.

Buechley, L., Eisenberg, M., Catchen, J. and Crockett, A. 2008. The LilyPad
Arduino: Using computational textiles to investigate engagement, aesthetics,
and diversity in computer science education. Proceeding of the Twenty-Sixth
Annual CHI Conference on Human Factors in Computing Systems - CHI 08
(Florence, Italy, 2008), 423.

Buechley, L., Eisenberg, M. and Elumeze, N. 2007. Towards a curriculum for
electronic textiles in the high school classroom. Proceedings of the 12th
Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education (2007), 28-32.

Buechley, L. and Hill, B.M. 2010. LilyPad in the wild: how hardware’s long
tail is supporting new engineering and design communities. Proceedings of the
8th ACM Conference on Designing Interactive Systems - DIS ’10 (Aarhus,
Denmark, 2010), 199.

Buechley, L., Mellis, D., Perner-Wilson, H., Lovell, E. and Kaufmann, B.
2010. Living wall: programmable wallpaper for interactive spaces.
Proceedings of the international conference on Multimedia - MM ’10 (Firenze,
Italy, 2010), 1401.

Buechley, L., Peppler, K., Eisenberg, M. and Yasmin, K. 2013. Textile
Messages: Dispatches from the World of E-Textiles and Education. New
Literacies and Digital Epistemologies. Volume 62. ERIC.

Buechley, L. and Qiu, K. 2014. Sew electric. H.
Calendly: https://calendly.com/. Accessed: 2021-05-15.

Cheryan, S., Master, A. and Meltzoff, A.N. 2015. Cultural stereotypes as
gatekeepers: Increasing girls’ interest in computer science and engineering by
diversifying stereotypes. Frontiers in Psychology. 6, (2015), 49.

Cheryan, S., Plaut, V.C., Davies, P.G. and Steele, C.M. 2009. Ambient
belonging: how stereotypical cues impact gender participation in computer

132

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

science. Journal of Personality and Social Psychology. 97, 6 (2009), 1045.

Craft of Computing (Course Website):
https://trello.com/b/WGeaxoSn/craft-of-computing. Accessed: 2021-05-15.

Cutts, Q., Cutts, E., Draper, S., O’Donnell, P. and Saffrey, P. 2010.
Manipulating mindset to positively influence introductory programming
performance. Proceedings of the 41st ACM Technical Symposium on Computer
Science Education (2010), 431-435.

Diekman, A.B., Brown, E.R., Johnston, A.M. and Clark, E.K. 2010. Seeking
congruity between goals and roles: A new look at why women opt out of

science, technology, engineering, and mathematics careers. Psychological
Science. 21, 8 (2010), 1051-1057.

Dweck, C.S. 2013. Self-theories: Their role in motivation, personality, and
development. Psychology press.

Ellis, H.J., Chua, M., Hislop, G.W., Purcell, M. and Dziallas, S. 2013. Towards
a model of faculty development for FOSS in education. 2013 26th

International Conference on Software Engineering Education and Training
(CSEE&T) (2013), 269-273.

Ellis, H.J., Chua, M., Jadud, M.C. and Hislop, G.W. 2011. Learning through
open source participation. Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education (2011), 83—84.

Ellis, H.J.C., Hislop, G.W., Jackson, S. and Postner, L. 2015. Team Project
Experiences in Humanitarian Free and Open Source Software (HFOSS). ACM
Transactions on Computing Education. 15, 4 (Dec. 2015), 18:1-18:23.
DOI:https://doi.org/10.1145/2684812.

Ellis, H.J.C., Jackson, S., Burdge, D., Postner, L., Hislop, G.W. and Diggs, J.
2014. Learning within a professional environment: shared ownership of an
HFOSS project. Proceedings of the 15th Annual Conference on Information
Technology Education (New York, NY, USA, Oct. 2014), 95-100.

Eng, D. 2009. Fashion Geek: Clothes Accessories Tech. North Light Books.

e-Textiles-in-a-Box: Attps://www.ncwit.org/resources/e-textiles-box. Accessed:
2020-12-08.

Fields, D.A., Kafai, Y.B. and Searle, K. 2012. Functional aesthetics for
learning: Creative tensions in youth e-textile designs. (2012).

133

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

Firefox Developer Tools | MDN:
https://developer.mozilla.org/en-US/docs/Tools. Accessed: 2021-05-15.

Follmer, S., Carr, D., Lovell, E. and Ishii, H. 2010. CopyCAD: remixing
physical objects with copy and paste from the real world. Adjunct proceedings
of the 23nd annual ACM symposium on User interface software and
technology - UIST ’10 (New York, New York, USA, 2010), 381.

Foss2Serve: http://foss2serve.org/index.php/Main_Page. Accessed:
2021-05-15.

Freeman, S., Eddy, S.L., McDonough, M., Smith, M.K., Okoroafor, N., Jordt,
H. and Wenderoth, M.P. 2014. Active learning increases student performance

in science, engineering, and mathematics. Proceedings of the national academy
of sciences. 111,23 (2014), 8410-8415.

Getting Started with E-Sewing:
http://alumni.media.mit.edu/~emme/e-sewing/index.html. Accessed:
2020-06-08.

Greenberg, 1. 2007. Processing: creative coding and computational art.
Apress.

Hartman, K., Jepson, B., Dvorak, E. and Demarest, R. 2014. Make: wearable
electronics. Maker Media.

Haungs, M., Clark, C., Clements, J. and Janzen, D. 2012. Improving first-year
success and retention through interest-based CSO courses. Proceedings of the
43rd ACM Technical Symposium on Computer Science Education (2012),
589-594.

Hébert, C. and Jenson, J. 2020. Making in schools: student learning through an
e-textiles curriculum. Discourse. Studies in the Cultural Politics of Education.
41, 5 (Sep. 2020), 740-761.
DOI:https://doi.org/10.1080/01596306.2020.1769937.

High-Low Tech: http://highlowtech.org/. Accessed: 2020-06-15.

Hill, C., Schneider, M., Eisenberg, A. and Gross, M.D. 2021. The

ThreadBoard: Designing an E-Textile Rapid Prototyping Board. Proceedings of
the Fifteenth International Conference on Tangible, Embedded, and Embodied
Interaction (2021), 1-7.

Hislop, G.W., Ellis, H.J., Tucker, A.B. and Dexter, S. 2009. Using open source
software to engage students in computer science education. Proceedings of the

134

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

40th ACM Technical Symposium on Computer Science Education (2009),
134-135.

Hislop, G.W., Ellis, H.J.C. and Morelli, R.A. 2009. Evaluating student
experiences in developing software for humanity. Proceedings of the 14th
Annual ACM SIGCSE Conference on Innovation and Technology in Computer
Science Education (New York, NY, USA, Jul. 2009), 263-267.

Hislop, G.W., Ellis, H.J.C., Pulimood, S.M., Morgan, B., Mello-Stark, S.,
Coleman, B. and Macdonell, C. 2015. A Multi-Institutional Study of Learning
via Student Involvement in Humanitarian Free and Open Source Software
Projects. Proceedings of the Eleventh Annual International Conference on
International Computing Education Research (New York, NY, USA, Aug.
2015), 199-206.

Hoéhne, E. and Zander, L. 2019. Belonging uncertainty as predictor of dropout
intentions among first-semester students of the computer sciences. Zeitschrift
fiir Erziehungswissenschaft. 22,5 (2019), 1099-1119.

How To Get What You Want: https.//www.kobakant.at/DIY/. Accessed:
2021-05-15.

Instructables | bekathwia (Becky Stern):
https://www.instructables.com/member/bekathwia/. Accessed: 2020-12-10.

Instructables | Plusea (Hannah Perner-Wilson):
https.://www.instructables.com/member/Plusea/. Accessed: 2020-12-10.

Introducing debugger.html — Mozilla Hacks - the Web developer blog:
https://hacks.mozilla.org/2016/09/introducing-debugger-html. Accessed:
2021-05-15.

Introducing Gemma: Introducing Adafruit’s mini wearable microcontroller:
2013. https://learn.adafruit.com/introducing-gemma/introduction. Accessed:
2021-08-10.

Jackson, S. and Ellis, H. 2015. Supporting HFOSS using scrum in a capstone
course. Acm Sigcas Computers and Society. 45, 2 (2015), 36-37.

Jayathirtha, G. and Kafai, Y.B. 2019. Electronic textiles in computer science
education: a synthesis of efforts to broaden participation, increase interest, and
deepen learning. Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (2019), 713-719.

Kafai, Y.B., Fields, D.A. and Searle, K.A. 2011. Everyday creativity in novice
135

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

e-textile designs. Proceedings of the 8th ACM conference on Creativity and
cognition (2011), 353-354.

Kafai, Y.B., Lee, E., Searle, K., Fields, D., Kaplan, E. and Lui, D. 2014. A
crafts-oriented approach to computing in high school: Introducing
computational concepts, practices, and perspectives with electronic textiles.
ACM Transactions on Computing Education (TOCE). 14, 1 (2014), 1-20.

Kafai, Y.B., Searle, K., Kaplan, E., Fields, D., Lee, E. and Lui, D. 2013.
Cupcake cushions, scooby doo shirts, and soft boomboxes: e-textiles in high
school to promote computational concepts, practices, and perceptions.

Proceeding of the 44th ACM technical symposium on Computer science
education (2013), 311-316.

Kim, V.H. 2019. Development of an e-Textile Debugging Module to Increase
Computational Thinking among Graduate Education Students. Pepperdine
University.

Lee, J.S. 2008. Tech DIY for moms and kids: the DIY technology project for
women. ACM SIGGRAPH 2008 posters (2008), 1-1.

Lee, J.S. 2008. Technology education for women by D.L.Y. technology in
closing gender gap. CHI'08 Extended Abstracts on Human Factors in
Computing Systems (2008), 3447-3452.

Lewis, A., Lin, F.-Y., Weston, H. and Sugie, H. 2008. Switch craft:
battery-powered crafts to make and sew. Potter Craft.

Lewis, C., Bruno, P., Raygoza, J. and Wang, J. 2019. Alignment of goals and
perceptions of computing predicts students’ sense of belonging in computing.
Proceedings of the 2019 ACM Conference on International Computing
Education Research (2019), 11-19.

Lewis, C.M., Yasuhara, K. and Anderson, R.E. 2011. Deciding to major in
computer science: a grounded theory of students’ self-assessment of ability.

Proceedings of the seventh international workshop on Computing education
research (2011), 3—10.

Light, J.S. 1999. When computers were women. Technology and culture. 40, 3
(1999), 455-483.

LilyTiny - DEV-10899 - SparkFun Electronics:
https://www.sparkfun.com/products/10899. Accessed: 2021-11-15.

Lodi, M. 2018. Can creative computing foster growth mindset? Joint

136

Proceedings of the 1st Co-Creation in the Design, Development and
Implementation of Technology-Enhanced Learning workshop (CC-TEL 2018)
and Systems of Assessments for Computational Thinking Learning workshop
(TACKLE 2018) co-located with 13th European Conference on Technology
Enhanced Learning (ECTEL 2018) (2018).

[69] Lovell, E. 2011. Getting Hands-On with Soft Circuits: A Workshop
Facilitator’s Guide.

[70] Lovell, E. 2014. Promoting constructive mindsets for overcoming failure in
computer science education. Proceedings of the tenth annual conference on
International computing education research - ICER "14 (Glasgow, Scotland,
United Kingdom, 2014), 159-160.

[71] Lovell, E. and Buechley, L. 2010. An e-sewing tutorial for DIY learning.
Proceedings of the 9th International Conference on Interaction Design and

Children - IDC ’10 (Barcelona, Spain, 2010), 230.

[72] Lovell, E. and Buechley, L. 2011. LilyPond: an online community for sharing
e-textile projects. Proceedings of the 8th ACM conference on Creativity and
cognition - C&C ’11 (Atlanta, Georgia, USA, 2011), 365.

[73] Lovell, E., Buechley, L. and Davis, J. 2022. The LilyTiny: A Case Study in
Expanding Access to Electronic Textiles. CHI'22 Extended Abstracts on
Human Factors in Computing Systems.

[74] Lovell, E. and Davis, J. 2021. Craft of Computing: Using a Novel Domain to
Broaden Undergraduate Participation and Perceptions of Computing at the CSO
Level. 2021 IEEE Frontiers in Education Conference (FIE) (2021).

[75] Lovell, E. and Davis, J. 2021. Scaffolding Student Success in the Wilds of
Open Source Contribution. 2021 IEEE Frontiers in Education Conference
(FIE) (2021).

[76] Lovell, E., Qi, J. and Freed, N. 2011. Plush Monsters: Creatures with
Character.

[77] Lovell, EMM. 2011. 4 Soft Circuit Curriculum to Promote Technological
Self-E fficacy. Massachusetts Institute of Technology.

[78] Maker Ed’s Maker Corps Program: https.//makered.org/makercorps/.
Accessed: 2021-11-13.

[79] Margolis, J. 2010. Stuck in the Shallow End: Education, Race, and Computing.

137

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

MIT Press.

Margolis, J. and Fisher, A. 2003. Unlocking the Clubhouse: Women in
Computing. MIT Press.

Master, A., Cheryan, S. and Meltzoff, A.N. 2016. Computing whether she
belongs: Stereotypes undermine girls’ interest and sense of belonging in
computer science. Journal of Educational Psychology. 108, 3 (2016), 424.

McConnell, J.J. 1996. Active learning and its use in computer science.

Proceedings of the 1st Conference on integrating Technology into Computer
Science Education (1996), 52-54.

McDowell, C., Werner, L., Bullock, H.E. and Fernald, J. 2006. Pair
programming improves student retention, confidence, and program quality.
Communications of the ACM. 49, 8 (2006), 90-95.

McDowell, C., Werner, L., Bullock, H.E. and Fernald, J. 2003. The impact of
pair programming on student performance, perception and persistence. 25¢h

International Conference on Software Engineering, 2003. Proceedings. (2003),
602-607.

Mellis, D.A., Banzi, M., Cuartielles, D. and Igoe, T. 2007. Arduino: An Open
Electronics Prototyping Platform. Proceedings of CHI (2007), 1-11.

Menabrea, L.F. and Lovelace, A. 1842. Sketch of the analytical engine
invented by Charles Babbage. (1842).

Mills, J.E. and Treagust, D.F. 2003. Engineering education—Is problem-based
or project-based learning the answer. Australasian journal of engineering
education. 3,2 (2003), 2—16.

Miura, I.T. 1987. The relationship of computer self-efficacy expectations to
computer interest and course enrollment in college. Sex roles. 16, 5-6 (1987),
303-311.

Morales-Chicas, J., Castillo, M., Bernal, I., Ramos, P. and Guzman, B.L. 2019.
Computing with relevance and purpose: A review of culturally relevant

education in computing. International Journal of Multicultural Education. 21,
1 (2019), 125-155.

Morelli, R., de Lanerolle, T. and Tucker, A. 2012. The Humanitarian Free and
Open-Source Software Project: Engaging Students in Service-Learning through
Building Software. Service-Learning in the Computer and Information

138

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]
[99]

[100]

[101]

Sciences: Practical Applications in Engineering Education. (2012), 117-136.

Morgan, B., Hislop, G.W. and Ellis, H.J. 2019. Faculty Development for
FLOSS Education. /FIP International Conference on Open Source Systems
(2019), 165-171.

Morgan, R. and Klaric, J. 2007. AP® Students in College: An Analysis of
Five-Year Academic Careers. Research Report No. 2007-4. College Board.

Moxie 2010. I Felt Awesome: tips and tricks for 35+ needle-poked projects.
North Light Books.

Murphy, L. and Thomas, L. 2008. Dangers of a fixed mindset: implications of
self-theories research for computer science education. Proceedings of the 13th

Annual Conference on Innovation and Technology in Computer Science
Education (2008), 271-275.

Narayanan, S., Cunningham, K., Arteaga, S., Welch, W.J., Maxwell, L.,
Chawinga, Z. and Su, B. 2018. Upward mobility for underrepresented students:
A model for a cohort-based bachelor’s degree in computer science.
Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (2018), 705-710.

National Center for Science and Engineering Statistics 2021. Women,
Minorities, and Persons with Disabilities in Science and Engineering: 2021.
National Science Foundation.

NCWIT Programs-in-a-Box:
https://www.ncwit.org/resources/type/programs-box. Accessed: 2020-12-07.

New Textiles 2012: https://newtextiles.media.mit.edu/. Accessed: 2020-06-17.

Ngai, G., Chan, S.C., Leong, H.V. and Ng, V.T. 2013. Designing i* CATch: A
multipurpose, education-friendly construction kit for physical and wearable
computing. ACM Transactions on Computing Education (TOCE). 13,2 (2013),
1-30.

Ngai, G., Chan, S.C.F., Cheung, J.C.Y. and Lau, W.W.Y. 2009. The TeeBoard:
an education-friendly construction platform for e-textiles and wearable
computing. Proceedings of the 27th international conference on Human factors
in computing systems - CHI 09 (Boston, MA, USA, 2009), 249.

Ngai, G., Chan, S.C.F., Ng, V.T.Y., Cheung, J.C.Y., Choy, S.S.S., Lau, WW.Y.
and Tse, J.T.P. 2010. i*CATch: a scalable plug-n-play wearable computing
framework for novices and children. Proceedings of the 28th international

139

conference on Human factors in computing systems - CHI 10 (Atlanta,
Georgia, USA, 2010), 443.

[102] Olsson, T. 2011. Open Softwear: fashionable prototyping and wearable
computing using the Arduino. Blushing Boy.

[103] Open Source Comes to Campus: Attps://campus.openhatch.org/. Accessed:
2021-05-15.

[104] Page, S. 2019. The diversity bonus. Princeton University Press.

[105] Pakhchyan, S. 2008. Fashioning Technology: A DIY Intro to Smart Crafting.
O’Reilly Media, Inc.

[106] Papert, S. 1993. The children’s machine: Rethinking school in the age of the
computer. ERIC.

[107] Paulsen, C.A., Green, S. and Carroll, S. 2011. Design Squad Nation:
Evaluation report. Concord Evaluation Group, LLC.

[108] Pearce, J. and Nakazawa, M. 2008. The funnel that grew our CIS major in the
CS desert. Proceedings of the 39th SIGCSE Technical Symposium on Computer
Science Education (2008), 503-507.

[109] Perner-Wilson, H. and Buechley, L. 2010. Making textile sensors from scratch.
Proceedings of the fourth international conference on Tangible, embedded, and
embodied interaction (2010), 349-352.

[110] Picard, R.W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D.,
Machover, T., Resnick, M., Roy, D. and Strohecker, C. 2004. Affective
learning—a manifesto. BT technology journal. 22, 4 (2004), 253-269.

[111] Pirker, J., Riffnaller-Schiefer, M. and Giitl, C. 2014. Motivational active
learning: engaging university students in computer science education.

Proceedings of the 2014 conference on Innovation & technology in computer
science education (2014), 297-302.

[112] Postner, L., Burdge, D., Jackson, S., Ellis, H., Hislop, G. and Goggins, S. 2015.
Using humanitarian free and open source software (HFOSS) to introduce
computing for the social good. ACM SIGCAS Computers and Society. 45, 2
(2015), 35-35.

[113] Professors’ Open Source Software Experience:
http://foss2serve.org/index.php/POSSE. Accessed: 2021-11-13.

[114] Qi, J. 2012. The fine art of electronics: paper-based circuits for creative
140

expression. Massachusetts Institute of Technology.

[115] Qi, J. and Buechley, L. 2014. Sketching in circuits: designing and building
electronics on paper. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (2014), 1713-1722.

[116] Qiu, K., Buechley, L., Baafi, E. and Dubow, W. 2013. A curriculum for
teaching computer science through computational textiles. Proceedings of the
12th international conference on interaction design and children (2013),

20-27.

[117] Raymond, E.S. 2001. The cathedral and the bazaar: musings on Linux and
Open Source by an accidental revolutionary. O’Reilly.

[118] React — A JavaScript library for building user interfaces: https://reactjs.org/.
Accessed: 2021-05-15.

[119] Reas, C. and Fry, B. 2014. Processing: a programming handbook for visual
designers and artists. The MIT Press.

[120] Reas, C. and Fry, B. 2006. Processing: Programming for the media arts. 47 &
SOCIETY. 20, 4 (Sep. 2006), 526-538.
DOI:https://doi.org/10.1007/s00146-006-0050-9.

[121] Sahana Eden: 2011. Attps.//sahanafoundation.org/products/eden/. Accessed:
2021-11-13.

[122] Searle, K.A. and Kafai, Y.B. 2015. Boys’ Needlework: Understanding
Gendered and Indigenous Perspectives on Computing and Crafting with
Electronic Textiles. ICER (2015), 31-39.

[123] Shiffman, D. 2009. Learning Processing: a beginner’s guide to programming
images, animation, and interaction. Morgan Kaufmann.

[124] Simon, B., Hanks, B., Murphy, L., Fitzgerald, S., McCauley, R., Thomas, L.
and Zander, C. 2008. Saying isn’t necessarily believing: influencing
self-theories in computing. Proceedings of the Fourth International Workshop
on Computing Education Research (2008), 173—184.

[125] Slack: https://slack.com/. Accessed: 2021-05-15.

[126] Soft Circuit Saturdays: https.//www.gellacraft.com/softcircuitsaturdays.
Accessed: 2020-12-05.

[127] SparkFun Education - Maker Education:

141

https://sparkfuneducation.com/index.html. Accessed: 2021-08-12.

[128] Stern, B. and Cooper, T. 2015. Getting started with Adafruit FLORA: making
wearables with an Arduino-compatible electronics platform. Maker Media, Inc.

[129] The Tinkering Studio Home | Exploratorium:
https://www.exploratorium.edu/tinkering. Accessed: 2021-11-13.

[130] Trello: https.//trello.com/. Accessed: 2021-05-15.

[131] Turkle, S. and Papert, S. 1992. Epistemological pluralism and the revaluation
of the concrete. Journal of Mathematical Behavior. 11, 1 (1992), 3-33.

[132] Veilleux, N., Bates, R., Allendoerfer, C., Jones, D., Crawford, J. and Floyd
Smith, T. 2013. The relationship between belonging and ability in computer
science. Proceeding of the 44th ACM Technical Symposium on Computer
Science Education (2013), 65-70.

[133] Weng, J. and Murphy, C. 2018. Bridging the Diversity Gap in Computer
Science with a Course on Open Source Software. 2018 Research on Equity and

Sustained Participation in Engineering, Computing, and Technology
(RESPECT) (Baltimore, MD, Feb. 2018), 1-4.

[134] Werner, L.L., Hanks, B. and McDowell, C. 2004. Pair-programming helps
female computer science students. Journal on Educational Resources in
Computing (JERIC). 4, 1 (2004), 4-es.

[135] Wolsky, M. 2014. Design Squad: Inspiring a New Generation of Engineers.
The Go-To Guide for Engineering Curricula, Grades 6-8: Choosing and Using
the Best Instructional Materials for Your Students. Corwin Press. 19.

[136] Wood, Z.J., Clements, J., Peterson, Z., Janzen, D., Smith, H., Haungs, M.,
Workman, J., Bellardo, J. and DeBruhl, B. 2018. Mixed approaches to CS0:
Exploring topic and pedagogy variance after six years of CS0. Proceedings of
the 49th ACM Technical Symposium on Computer Science Education (2018),
20-25.

[137] Xu, D., Wolz, U., Kumar, D. and Greenburg, I. 2018. Updating introductory
computer science with creative computation. Proceedings of the 49th ACM
Technical Symposium on Computer Science Education (2018), 167-172.

[138] Yardi, S. and Bruckman, A. 2007. What is computing? Bridging the gap
between teenagers’ perceptions and graduate students’ experiences.
Proceedings of the Third International Workshop on Computing Education

142

Research (2007), 39-50.
[139] 2021. Sahana Eden on GitHub. Sahana Software Foundation.

[140] TeachingOpenSource — Instructors and open source communities supporting
teaching open source.

143

	Preamble.pdf
	Diss3
	Diss4
	Diss5
	Diss6
	Diss7
	Diss8
	Diss9
	Diss10
	Diss11
	Diss12
	Diss13
	Diss14
	Diss15

