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Temporal subtraction contrast-enhanced dedicated breast CT

Peymon M. Gazi1,2, Shadi Aminololama-Shakeri2, Kai Yang3, and John M. Boone1,2,a)

1Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, 
Davis, California, 95616

2Department of Radiology, University of California, Davis Medical Center, 4860 Y street, Suite 
3100 Ellison Building, Sacramento, California 95817

3Department of Radiology, Massachusetts General Hospital, 55 Fruit Street Boston, MA 2114

Abstract

Purpose—To develop a framework of deformable image registration and segmentation for the 

purpose of temporal subtraction contrast-enhanced breast CT is described.

Methods—An iterative histogram-based two-means clustering method was used for the 

segmentation. Dedicated breast CT images were segmented into background (air), adipose, 

fibroglandular and skin components. Fibroglandular tissue was classified as either normal or 

contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast 

enhancement. A variant of the Demons deformable registration algorithm, Intensity Difference 

Adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed 

from contrast enhancement. In this application, the accuracy of the proposed method was 

evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical 

usage and accuracy of the temporal subtraction framework was demonstrated using contrast-

enhanced breast CT datasets from five patients. Registration performance was quantified using 

Normalized Cross Correlation (NCC), Symmetric Uncertainty Coefficient (SUC), Normalized 

Mutual Information (NMI), Mean Square Error (MSE) and Target Registration Error (TRE).

Results—The proposed method outperformed conventional affine and other Demons variations 

in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited 

improvement in MSE(0–16%), NCC (0–6%), NMI (0–13%) and TRE (0–34%) compared to the 

conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As 

lesion size and contrast enhancement levels increased, so did the improvement. The drop in the 

correlation between the pre- and post-contrast images for the largest enhancement levels in 

phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, 

shows only submillimeter mismatches between the concordant anatomical target points in all 

patient studies. The algorithm was implemented using a parallel processing architecture resulting 

in rapid execution time for the iterative segmentation and intensity-adaptive registration 

techniques.

Conclusion—Characterization of contrast-enhanced lesions is improved using temporal 

subtraction contrast-enhanced dedicated breast CT. Adaptation of Demons registration forces as a 
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function of contrast-enhancement levels provided a means to accurately align breast tissue in pre- 

and post-contrast image acquisitions, improving subtraction results. Spatial subtraction of the 

aligned images yields useful diagnostic information with respect to enhanced lesion morphology 

and uptake.

Keywords

Breast cancer imaging; Cone beam CT; Deformable image registration; Image segmentation

I. INTRODUCTION

The use of contrast agents in breast imaging has been shown to substantially increase breast 

cancer detection, and contrast uptake has been shown to correlate with benign/malignant 

status1. Dynamic Contrast Enhanced (DCE) breast MRI is considered the standard of care 

for patients at high risk for developing breast cancer and has been shown to improve 

sensitivity with some reduction in specificity2–4. The use of iodinated contrast agent in 

dedicated breast CT has also been shown to have diagnostic potential1. Recently a number of 

investigators have studied contrast-enhanced digital mammography and contrast-enhanced 

tomosynthesis using dual-energy subtraction methods5–7.

Digital subtraction angiography is a vascular imaging procedure in which planar projection 

images of the patient are acquired before and after the injection of iodinated contrast agent. 

These planar images are subtracted, pixel by pixel, to eliminate contrast of the normal tissue 

parenchyma and thus demonstrate the vascular anatomy. Although contrast agent injection is 

used frequently with whole body computed tomography (CT), temporal subtraction methods 

have generally not been utilized. Energy subtraction is used in whole body CT however, with 

and without contrast agent injection, in order to differentiate soft tissue, bone and calcified 

plaque from vascular and parenchymal contrast agent. In general, the use of contrast agent 

combined with the 3-D imaging capabilities of whole body CT is powerful enough that 

temporal subtraction methods are not necessary.

In breast cancer screening and diagnostic breast imaging, the specific morphology of a 

lesion and its contrast uptake characteristics are important diagnostic clues8–10. To better 

quantify spatial patterns of contrast uptake in breast CT, temporal subtraction methods may 

help to better demonstrate a lesion on 3-D breast CT image data sets. In this study, temporal 

subtraction of pre-and post-contrast injection breast CT data sets was investigated. Unlike 

digital subtraction angiography, where image acquisition has high temporal resolution (sub-

second) to address rapid arterial blood flow kinetics, the acquisition of volumetric breast CT 

requires on the order of 10–16 seconds per data set. Furthermore, from a (brachial access) 

venous injection, contrast agent perfusion of the breast takes place over time frames from 20 

– 200 seconds. This longer time period between pre-contrast and post-contrast imaging can 

and does result in patient movement between acquisitions, which in turn results in spatial 

deformations between the two 3-D volume data sets to be subtracted. Because of this it is 

generally necessary to perform image registration between the pre-contrast and post-contrast 

breast CT data sets. Rigid registration methods can be used to register gross movements of 

the breast between image acquisitions. While the high malleability of breast tissue often 
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results in non-linear, non-rigid movement in the breast upon patient motion, non-rigid 

(deformable) registration methods are required to correct for breast motion before temporal 

subtraction between the 3-D volume data sets can be routinely performed.

In this investigation, a previously reported deformable registration algorithm (Demons11) 

was substantially modified to address the needs of this application. Different versions of this 

algorithm have been proposed, and a range of applications have reported benefits from use 

of this technique12–18. Deformable registration techniques are typically performed between 

two data sets with equivalent intensity scaling. However, the post-contrast breast CT volume 

data set usually contains considerable enhancement around the lesion of interest and 

elsewhere. This significantly changes the gray scale levels between the pre- and post-

contrast images, which reduces the effectiveness of standard Demons approaches. In order to 

compensate for this discontinuity between the data sets, regions of contrast enhancement are 

identified using segmentation techniques on the non-subtracted contrast-enhanced data set 

prior to the application of deformable image registration methods. With the proposed 

algorithm, this segmented region is used with a modified energy function to optimize the 

registration process.

II. METHODS AND MATERIALS

Successful temporal subtraction of breast CT images requires accurate deformable image 

registration prior to subtraction. During the deformable registration, displacement forces are 

calculated using tiered segmented images. Different tissue types are identified using a 

custom two-means clustering image segmentation method. The accuracy of the framework is 

evaluated through simulation, phantom and patient studies. A summary of notation 

associated with the methods, images and validation techniques is provided in Table 1.

A. Image segmentation framework

A three dimensional segmentation method based on the smoothed two-means clustering 

algorithm19, 20 was proposed to segment bCT images. The algorithm generates a segmented 

image with floating point format that specifies the tissue type corresponding to that of the 

original image. Assigned voxel values are as follows: air (0.0), adipose (1.0), fibro-glandular 

(2.1 – 2.9, depending upon glandularity), contrast enhanced (3.1 – 3.9, depending on the 

degree of contrast enhancement) and skin (5.0). Value 4.0 is reserved for the further 

algorithm development in the future. As shown in Figure 1, the following steps are taken to 

implement two-means clustering segmentation.

Stage 1. Given the number of bins (N), a histogram, H(n), based on the bCT 

image is generated. The maximum and minimum Hounsfield Units (HU)21 in 

the image are found. As a convention, the number of bins is determined by the 

whole numbers between HUmax and HUmin. HUmax and HUmin are also used 

to find the low-bound (nLB), high-bound (nHB) and mid-bound (nMB) bin 

values.

Stage 2. Each two-means histogram based clustering routine begins by taking 

H(n), nLB, nMB and nHB as input arguments. The lower-interval and higher-

interval average values (AVLI and AVHI) are calculated using the input 
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arguments and are then compared to check convergence. Convergence is 

achieved if the difference between AVHI and AVLI is less than a parameter, ε. 

High values of ε result in rapid convergence, lower values converge more 

slowly. In our application ε was set to 0.01. During each iteration nLB, nMB 

and nHB values are updated. The bin value at convergence (T1) specifies the 

threshold between breast tissue and background.

Stage 3. nLB is set to T1. Histogram-based two means clustering is 

implemented to find a new value for nLB. This value is set to the threshold 

between adipose and other breast tissue (T2).

Stage 4. Ratio of T1 and T2, T1/T2, is calculated and compared to the value 

found in the previous iteration. A three dimensional median filter with a kernel 

size of three cubic voxels is applied to smooth the image (unless convergence 

has been reached) at which point the two-means clustering algorithm ends. The 

minimal 3-D median filter is defined as a seven-point kernel in order to avoid 

over-smoothing that would obscure the fine details of the bCT image. The 

smoothed image generated from the last iteration is utilized in subsequent 

stages. Upon convergence, TA is found by scanning the histogram from the left 

edge toward the right edge until a bin is reached with the lowest frequency that 

is at least 1% of the total histogram height.

Shown in Figure 2, the following steps are used to segment contrast-enhanced 

voxels.

Stage 5. The peak and valley pattern of the two-means clustering method’s 

smoothed image histogram is analyzed to generate segmentation. For 

smoothing, a ten element wide RECT function is convolved with the 

histogram. The logarithm of the smoothed histogram is used to enhance local 

minima and maxima. Two-means clustering results in the separation of 

fibroglandular from adipose components of the histogram (Figure 2.b).

Stage 6. A difference calculation between the pre- and post-contrast histograms 

results in a contrast-agent defining histogram (Figure 2.c) through which PC 

and TC are found.

Stage 7. An overlay of Figure 2.b and Figure 2.c along with the application of a 

color gradient provides a visualization of the segmentation values (Figure 2.d). 

The fibroglandular segmentation values are separated into ten equally-spaced 

tiers between TFG and TC bins and then between TC and (PC + (PC − TC)). 
These tiers allow for glandularity and contrast enhancement level 

classification, respectively. Any voxel in Is containing an intensity larger than 

(PC + (PC − TC)) and not marked as skin, belongs to the highest contrast-

enhancement tier.

Stage 8. Voxels in the post-contrast segmented image, S(n), are assigned values 

based on corresponding voxels in H(n) by the following:
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(1)

where x and y are integers between 0 and 9.

Stage 9. In order to delineate the skin from other breast tissues, coronal slices 

are analyzed starting from vertical and horizontal image borders and moving 

inwards. Once the shift from background to tissue is recognized, a line profile 

with a thickness of 3 mm is generated22. The line profile’s peak, representing 

the midpoint of the skin, provides a value by which the inner border of the skin 

is defined. The actual skin thickness is the minimum of the calculated vertical 

and horizontal thicknesses. Pixels corresponding to skin are assigned a value of 

5.0 in the segmented image.

B. Image registration framework

A complete contrast-enhanced breast CT procedure results in the generation of two fully 

tomographic breast CT image sets. The breast is scanned before and after contrast material 

injection. Due to the heterogeneous and elastic nature of breast tissue, repositioning of the 

patient on the bCT system during the contrast material administration leads to local non-

linear deformations23. Rigid registration methods are not well suited for aligning pre-

contrast and post-contrast images. In designing a deformable registration framework for 

contrast-enhanced breast CT, the following considerations were addressed:

1. Sub-millimeter accuracy is required when employing any deformable 

registration technique in breast CT.

2. Voxel intensity conservation assumption (i.e. the assumption of minimal 

image intensity change between equivalent anatomical points on the pre- 

and post-con images) cannot be made.

3. Margin boundaries should be preserved in diagnostically challenging 

lesions types, such as foci (small lesions) and non-mass-like enhanced 

lesions.

4. Execution time of the registration algorithm should be realistic for clinical 

work flow.

The Demons image registration algorithm24 is a common procedure for fast greyscale 

image-based registration. A generalized method of Demons deformation field17 is calculated 

using
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(2)

where D is the estimated displacement, p is a given voxel in the moving (pre-contrast) 

image, M and F are the moving (pre-contrast) and fixed (post-contrast) images and k is the 

normalization factor accounting for spatial uncertainty on the Demons correspondences. The 

arrows emphasize that each element of the deformation field or gradient matrix is a three 

element vector specifying the orientation in orthogonal coordinates. The variable k is set to 

the mean-squared value of the image voxel size25. The variable σ is the image intensity 

noise set to [M(p) − F(p)]. Variable I can be set to M or F to generate passive11 or active 

force14 vectors calculated based on the gradient (represented by ) of moving or fixed images, 

respectively. The gradient of the post-contrast image ( ) is highly dependent upon the 

contrast uptake in any given voxel (p). The intensity conservation assumption of the basic 

hypothesis of the Demons algorithm is violated due to the contrast changes produced by 

contrast enhancement in CE-bCT. Large contrast enhancement leads to large deformation 

vectors and correspondingly large registration errors.

Combining the passive and active forces symmetrically leads to rapid convergence14, 18, 26. 

Revisiting (2) by combining both active and passive force deformation vectors and 

accounting for contrast enhancement in the post-contrast image yields IDAD (Intensity 

Difference Adaptive Demons):

(3)

In IDAD, c(p) has been defined as the Intensity Difference Correction Factor (IDCF), a 

variable introduced to the symmetric Demons to change the active force amplitude based on 

the enhancement tier assigned to p as described in Sec. II.A. IDCF is used to normalize the 

post-contrast image gradient considering that the internal force originating from the 

difference in voxel intensity of neighboring points within the post-contrast image originates 

solely from the contrast material. Introducing IDCF in (3) does not change the well-posed 

criterion without which the deformation field becomes unstable13. IDCF is defined at every 

voxel as

(4)

In (4), 2×(Pc − TC) acts as a normalizing factor: if F(p) is equal to TC (the low bound of the 

contrast-enhanced region in the contrast enhancement histogram shown in Figure 2.d), IDCF 

is 1. If F(p) is equal to 2×PC − TC (the high bound of the contrast-enhanced region), IDCF is 

Gazi et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2017 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0. As a result, the active Demons forces are normalized linearly according to the intensity 

difference between pre-contrast and post-contrast image voxels. IDCF is set to one for 

voxels not marked as contrast-enhanced in the corresponding segmented image and is set to 

zero for voxels marked as contrast-enhanced in the corresponding segmented image that 

have intensities greater than 2×PC − TC. The parameters used in IDAD framework are 

determined automatically and independent of user interaction.

Figure 3 is a graphical representation of the deformation forces defined in actual patient bCT 

images calculated using IDAD and the conventional variations of Demons. The images 

shown in Figure 3.a and b were acquired from a patient scan. Figure 3.a shows a coronal 

slice of the pre-contrast image and Figure 3.b shows the corresponding coronal slice in the 

post-contrast image. The pre-contrast image was first aligned to the post-contrast image 

using affine registration, then registered using multi-level Demons25, 27. The deformation 

field arising from Demons is comprised of a matrix. The matrix size corresponds to that of 

the pre-contrast image. Each voxel within the matrix is a vector. Each vector represents the 

displacement of the corresponding voxel in the pre-contrast image along orthogonal 

Cartesian axes. The norm of each vector is the displacement step length. Figure 3 represents 

the norms of the deformation field. The deformation norm images have been gray-scale 

coded to represent the displacement length (Figure 3.d–g). Successful alignment of the pre 

and post-contrast images generates a subtracted image that is utilized for clinical analysis. 

Improper registration results in artificial deformation of lesion boundaries within the 

subtracted image. The magnified regions shown in Figure 3.h–k, reveal the impact that 

intensity variations have upon the strength of Demons forces.

Taking the gradient of an image results in large vector norms around contrast enhanced 

lesions. These vectors generate forces that artificially deform the boundaries of the enhanced 

lesion in the subtracted image (Isub). When contrast boundaries are present within the lesion, 

such as the necrotic interior tissue, misregistration of inner boundaries may occur. Due to the 

fact that contrast enhancement is not uniform within the enhanced lesions28, lesion structure 

may be significantly deformed if the forces are not normalized. The modified forces 

alleviate these deformations as shown in Figure 3.g.

The proposed registration technique is comprised of the following steps: Segmentation; 

performed on M and F following the technique outlined in Sec. II.A. and an affine 3D 

registration based on regular step gradient descent optimization of mean square errors, 

which is performed primarily to account for breast translational, rotational or shearing 

displacement that may have occurred between the pre- and post-contrast scans. The UC 

Davis architecture of dedicated breast CT is comprised of a cone-beam CT system installed 

upon a gantry that performs one full rotation around the breast. The patient is positioned 

pendantly on the scanner table-top. A contrast-enhanced bCT study is comprised of a pre-

contrast scan followed by a post-contrast scan. Patients are positioned on the scanner before 

and after contrast injection with the breast at the center of rotation. As a result, the scaling 

factor of the affine matrix is small, though the translational or shearing factors may not be. 

The affine registration matches the overall positioning of the breast volume in pre- and post-

contrast images but does not account for complex changes in anatomical structure of the 

breast tissue. Multi-resolution Demons, a well-known pyramid architecture used to improve 
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robustness while avoiding extra iterations in the Demons framework (caused by local 

minima and maxima)29, is used to down-sample the pre- and post-contrast images by 

successive factors of 8, 4, 2 and 1. At each of these down-sampled levels, forces are 

calculated using IDAD. The deformation fields obtained from IDAD calculations at each 

pyramid level are used to initialize the calculation at the subsequent level. After the 

iterations have been completed within a level, the difference between the newly generated 

deformation field and the deformation field found in the previous step is calculated by voxel-

wise vector subtraction. When a magnitude of at least 99% of the difference vectors is 

smaller than one-tenth the voxel size, IDAD is considered convergent15. The sum of the 

calculated deformations results in the overall IDAD deformation field.

C. Validation studies

The proposed hybridized method of CE-bCT image segmentation/registration was evaluated 

quantitatively in three ways:

1. Simulation study: Mathematical deformations were applied on an actual 

patient pre-contrast bCT image set. A contrast-enhanced lesion was 

simulated and placed within the deformed images.

2. Phantom study: A custom deformable physical breast phantom, with a 

deformable phantom lesion that could be placed into the breast phantom, 

was fabricated and imaged on the bCT system used for patient scans with 

manual deformation produced between acquisitions.

3. Patient study: Five CE-bCT patient data sets exhibiting a range of 

deformation and structural complexities were selected and processed 

through the IDAD sequence.

C.1. Mathematical phantom study—Deformations were simulated using previously-

acquired patient bCT images. Due to the elasticity of breast tissue, it may undergo 

significant deformation during bCT imaging. An image data set can be transformed to 

produce deformation; however, if done so arbitrarily, the resulting deformation may not 

represent clinical reality. Therefore, a realistic mathematical forward-deformation matrix 

was generated using patient CE-bCT scans to allow for quantitative validation of the 

proposed IDAD method.

The 3D image dataset was selected based on shape, glandular distribution, deformations in 

the anatomical structure, intensity and size of the contrast enhancement. The size of the 

breast in the selected bCT dataset is near the population average with a diameter of 14.4 cm 

and a length 1.5 times the radius22. The patient in the selected dataset was repositioned on 

the scanner between pre- and post-contrast scans resulting in considerable deformation of 

the observed breast anatomy. Repositioning of the patient resulted in imaging some anatomy 

in the post-contrast image (the ribs, for example) that is not seen in the pre-contrast image.

To synthesize a post-contrast image, the patient’s pre-contrast breast CT image was 

mathematically deformed using a known deformation field. A mathematically generated 
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enhanced lesion was placed within the deformed image, effectively synthesizing a post-

contrast image. Figure 4 illustrates the method described in the following:

a. The pre-contrast image was registered to the post-contrast image using 

affine transform. A coronal slice of the transformed image is shown in 

Figure 4.a.

b. The registered pre-contrast image is then aligned with the post-contrast 

image using homologous pairs of landmarks (fiducials). A thin plate spline 

(TPS)30 method was used to deform the post-affine, pre-contrast image 

based on the fiducials placed within it. For each fiducial, the 

corresponding anatomical landmark in the post-contrast image was 

manually found and then used to warp the image via TPS. Inclusion of the 

entire breast volume in generating a deformation field was critical; the 

accuracy of the registration, however, was not. The three-dimensional 

image was divided vertically into nine equal 1 cm sections along the 

transverse direction from chest wall to nipple. In each image section, nine 

fiducials – four skin and five glandular- were placed across the tissue 

(Figure 4.a). Skin fiducials were positioned on each extreme of the 

anterior, posterior, left and right lateral parts of the skin. The glandular 

fiducials were positioned on the glandular tissue at each mid-point 

between the skin fiducials. A ninth marker was placed centrally within the 

glandular tissue, nearest the breast dorsal-ventral axis. The corresponding 

position of each fiducial marker was manually found in the post-contrast 

image (Figure 4.b). In order to cover the entire slab volume, each fiducial 

was placed 1 mm apart from the preceding fiducial in the axial direction. 

The last marker was placed on the nipple. Within the generated 

deformation field, each vector voxel corresponding to the voxel outside of 

the breast volume was set to zero. Due to the repositioning of the patient 

on the scanner between the pre- and post-contrast scans, a large 

displacement of the fiducials was observed. The resulting deformed image 

resembles a large deformation that may occur within a breast image 

between pre- and post-contrast scans. Figure 4.c shows the color-coded 

deformation field projected on the corresponding slice of the post-affine, 

pre-contrast image. Each voxel in the deformation field is a vector 

representing the movement of the voxel in the coronal, sagittal or 

transverse directions, and the norm of each vector was color-mapped in 

Figure 4.c for visualization purposes.

c. Contrast-enhancement was introduced into the deformed image. In this 

study, a synthetic lesion was generated using a normally distributed 

symmetric morphology. The surface profile of the generated homogenous 

oval enhancement type is shown in Figure 4.e. A three dimensional 

Gaussian distribution with intensity peaks of 50, 100 and 150 HU, and 

enhancement diameters of 15, 20 and 25 mm were defined. The synthetic 

lesion was inserted within a region of glandular tissue in the warped pre-

con image. The contrast agent placement extends to both adipose and 
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fibro-glandular tissue, increasing the attenuation coefficient of the whole 

region (Figure 4.f). Therefore, the simulated contrast enhancement not 

only occurs primarily within the glandular tissue, but also extends to the 

adipose tissue.

d. The deformation field resulting from fiducial-based TPS represents the 

“template” deformation field (ground truth). The deformation field 

resulting from IDAD is compared to the template deformation field using 

Mean Square Error (MSE)31, Normalized Cross Correlation (NCC)32 and 

Normalized Mutual Information (NMI)33 metrics. In calculating MSE, the 

absolute values of the vectors in the deformation fields are used. IDAD 

results were compared against those of passive, active and symmetric force 

Demons. In addition, the registration accuracy was measured by finding 

the Target Registration Error (TRE)25 between the pre-contrast image and 

the synthesized post-contrast image. Since the deformation field is known, 

the error between a voxel in the pre-contrast image and the mapped 

position of the same voxel in the synthesized post-contrast image is also 

known and is defined as the absolute value of the mapping vector. The 

average value of all the errors is TRE. This metric is used to compare the 

performance of all the Demons variations.

C.2. Physical phantom study—A phantom study was performed in order to validate the 

robustness of the proposed method. An anthropomorphic breast phantom, produced using an 

actual patient breast CT data set image was previously fabricated using a computer 

controlled water-jet cutting technique34 as displayed in Figure 5. Thermoplastic, 

representing skin, was formed into a container. Polyethylene was used to represent adipose 

tissue. The breast volume was cut along the anterior/posterior axis to generate 62 slices, each 

1.59 mm thick. The segmented glandular tissue was cut out of each slice using computer-

controlled water jet cutting. The flexibility of coronal slice positioning was ± 1–3 mm and 

±1–5 degrees in rotation around the A/P axis. Two liquid compounds, representative of 

normal and contrast-enhanced fibroglandular tissues based on their x-ray attenuation 

properties were made and inserted into the glandular cavities as explained below:

A. Pre-contrast phantom construction: A 1.3% molarity alginic acid (a 

natural polymer obtained from kelp and seaweed) solution was formed to 

represent fibroglandular tissue. The density of the “glandular solution” 

corresponds to that of water, a surrogate normally used for fibroglandular 

tissue35. The thermoplastic skin forms a container which was filled with 

adipose-density equivalent vegetable oil (Wasso Energy, Waterbury, CT). 

Each polyethylene slab was then inserted into the phantom. Compression 

was applied during insertion to reduce air bubble formation. The 

fibroglandular solution was then poured into the phantom glandular 

cavities until full. These steps resulted in a pre-contrast breast phantom. 

This phantom was scanned on the same breast CT prototype used for 

patient scans reported in this paper. A total number of 500 projection 

views were acquired at 80 kV and 9 mA with an additional 0.3 mm Cu 
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filtration. These data were used to reconstruct a 512×512×512 matrix, 

representing the 3D image data of the phantom.

B. Post-contrast phantom construction: Following the pre-contrast scan, 

the phantom was deconstructed by removing the slices from the phantom 

breast volume. Step A was then repeated, generating a deformed version 

of the pre-contrast phantom. In order to generate deformable contrast 

enhanced lesions, a 2.6% molarity calcium carbonate solution was made. 

To this solution, four different volumes of an iodine contrast agent 

(Visipaque 270; GE Healthcare, Waukesha, WI) were added to obtain 

three concentrations of iodinated solution: 1.62, 3.24 and 4.86 mg/ml. 

These three iodine solutions were used to simulate different contrast agent 

uptake levels in breast tissue. The contrast material was injected into the 

glandular solution with a flexible tipped syringe. Upon interaction with 

alginic acid solution, the iodine solution forms a membrane around the 

contrast material which generates a deformable volume and prevents the 

contrast solution from dissolving into the glandular solution. These steps 

resulted in a manually deformed breast phantom with a contrast-enhanced 

“lesion” inserted. This phantom was scanned with the same technique 

factors as before. Different volumes of iodine solutions - 0.6, 1.2 and 1.8 

ml - were used to simulate the lesion in the post-contrast phantom. Care 

was taken while performing the injections in order to avoid further 

deformation. After each injection, the phantom was scanned. A total of 

five scans were performed for each concentration of iodine solution.

The reconstructed pre-contrast image was registered to the deformed pre-contrast and post-

contrast phantom images using the framework outlined in Sec. II.B.

The hypothesis of the phantom study was that the IDAD algorithm results in similar 

registration performance despite changes in the amount of contrast enhancement. Demons 

forces are derived from the absolute value and derivative of intensity differences within and 

between the fixed and moving images (Equation 2). In order to assess the performance of the 

IDAD algorithm as a function of contrast enhancement, an entropy based similarity metric, 

Symmetric Uncertainty Coefficient (SUC)27, 36, was used. SUC is defined as

(5)

where M and E denote the mutual information and marginal entropy operators applied on the 

images. X may be either the deformed pre-contrast image or the post-contrast image. SUC 

incorporates the entropies of the individual normalized image intensity histograms in the 

form of Mutual Information (MI) and is increased with structural similarity between the 

images36, 37. In order to define a base-line for the comparison purposes of SUC values 

derived from each iodine concentration phantom scan, the normalized SUC is defined as
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(6)

By focusing on only the acquired deformed images in the numerator and denominator, this 

normalization enables a comparison between the effect of different concentrations of iodine 

on mutual information between post-contrast images acquired at different concentrations and 

the corresponding pre-contrast images. Assuming for each concentration of iodinated 

contrast agent that the structure of the phantom is unchanged, SUCN values should have 

minimal variance.

In order to ensure that the materials used in the phantom construction were a reasonable 

replica of the contrast-enhanced breast tissues, a quantitative evaluation was performed. A 

custom fabricated 15 cm diameter uniform polyethylene phantom was used for testing. Five 

inserts filled with vegetable oil (surrogate for adipose tissue), 1.33 molar alginic acid 

solution (surrogate for fibroglandular tissue) and 1.6, 3.2 and 4.8 mg/ml iodine solutions 

(surrogate for contrast enhanced tissue) were placed into the phantom and scanned using 

equivalent technique values as those employed with the physical deformable phantom.

C.3. Patient study—Data sets from five patient scans, obtained during a study of lesion 

conspicuity1, were selected in order to evaluate the performance of IDAD on real patient 

scans. Approval of the institutional review board and the Radiation Use Committee and 

written informed consent were obtained for this HIPAA-compliant study. The five selected 

cases have different breast density, breast size, lesion size, contrast uptake and deformation 

attributes. The IDAD algorithm was applied to these five cases. The accuracy of IDAD was 

measured by comparing the registered pre-contrast and the post-contrast images using MSE, 

NCC and Target Registration Error (TRE - a physical measure of accuracy)38, 39 to evaluate 

the image registration pipeline’s performance.

The level of difficulty of the image registration task varies among the selected patient 

datasets. Anatomical target points were selected and registration accuracy was measured 

across the targets to generate TRE. Six targets were used in all cases and were manually 

positioned in the image dataset as follows: a target was positioned on the anterior aspect of 

the pectorals muscle, a second target on the nipple and one on each extreme of the anterior, 

posterior, medial and lateral borders of the fibroglandular tissue on the mid-coronal slice of 

the CT image. Within each case, additional targets were placed based on breast anatomy 

characteristics.

i. Case 1. An irregular mass with indistinct borders was identified within a 

dense breast with a mild degree of enhancement (50 HU on average) and 

deformations. The definitive surgical pathology finding was ductal 

carcinoma in-situ (DCIS). Two additional targets were positioned in the 

center of the lesion and on the biopsy marker clip.

ii. Case 2. An irregular mass, 11.5 mm in diameter, with spiculated margins 

was identified within a large volume breast with scattered fibroglandular 
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tissue. The mass demonstrated avid contrast enhancement (110 HU in 

average). Minor movement occurred between acquisition of the pre-and 

post-contrast datasets. Biopsy of the mass demonstrated invasive 

mammary carcinoma (IMC). Two additional targets were positioned on 

each extreme of the anterior and posterior edges of the contrast-enhanced 

lesion.

iii. Case 3. An area of non-mass enhancement 5 mm in diameter with an 

average of 60 HU was identified in a dense breast with moderate 

background parenchymal enhancement. Biopsy of this lesion showed 

DCIS. Two additional targets were positioned on the center and anterior 

corner of the enhanced lesion.

iv. Case 4. Significant movement occurred between pre- and post-contrast 

scans with this patient. An oval enhancing mass with an average contrast 

enhancement of 70 HU was identified in a breast with scattered 

fibroglandular tissue. Core biopsy demonstrated invasive ductal carcinoma 

(IDC). Two additional target points were positioned on the center and 

posterior corner of the enhanced lesion.

v. Case 5. An extremely dense breast of small volume was repositioned on 

the scanner between the pre and post-contrast scans, resulting in large 

deformations. A small round enhancing mass measuring 85 HU on 

average was present. Lung tissue and ribs are observed in both pre- and 

post-contrast images, causing irregular maxima in the image histograms 

which affect the amplitude of the Demons forces. An additional target 

point was placed on the most posterior location of the observed ribs. A 

final additional target point was placed on the medial corner of the 

enhanced lesion.

C.4. Validation metrics—The primary thrust of this study was to demonstrate the 

adaptive nature of IDAD in dealing with contrast enhancement. A number of metrics were 

used to evaluate the performance of IDAD against other variations of Demons. When there 

is either similarity or a linear relationship between the intensity of voxels in moving and 

fixed images, intensity-based registration metrics such as MSE and NCC have been used. In 

those patients where the contrast enhancement is minimal, this class of metrics is a viable 

validation tool. Entropy-based registration metrics such as NMI and SUC are standard when 

registering images acquired using different modalities. In CE-bCT patient scans, where the 

voxel values of corresponding anatomical locations in pre- and post-contrast images may 

differ by a measure of up to 150 HU1, the usage of these types of metrics in CE-bCT is 

appropriate as pre- and post-contrast images may differ to an extent similar to that of images 

generated by different modalities (voxel values are different, and anatomical fixtures exist in 

the pre- or post-contrast that do not exist in the other). Though a laborious, manual 

registration metric, TRE is considered to be “exact” and of particular value in patient studies 

due to the direct radiologist participation. The limited number of targets in TRE however, 

cause it to suffer from quantum variations. Mathematical simulation, in which the template 

deformation is known, minimizes these variations. TRE, therefore, can be calculated for all 
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voxels of the fixed and moving images (in a 512×512×512 reconstruction for example) 

within each variation of Demons.

D. Computational performance

Custom software was developed for the hybridized image segmentation/registration method 

proposed in this paper. The software was written in C++ (Visual Studio 2010, MicroSoft 

Corporation, Seattle, WA) and was run on a quad-core system with 32 GB memory 

(Alienware Corporation, Miami, FL) and a Graphical Processor Unit (GeForce GTX 690 

GPU, NVIDIA Co., Santa Clara, CA). The smoothing filter portion of the image 

segmentation outlined in Sec. II.A was implemented in GPU, while the CPU-based multi-

threading was used to implement the two-means thresholding procedure shown in Figure 1. 

For a typical 512 × 512 × 512 dataset, 2 seconds were required for each iteration of the 

segmentation algorithm. For all the patient cases reported in this paper, segmentation 

converged in less than 12 iterations. The IDAD registration code was written for GPU when 

calculating the deformations at downsampled levels of 8, 4 and 2 (DS8, DS4 and DS2). The 

GPU used for this application did not have enough memory to contain the DS1 level 

registration. Therefore, the code for DS1 was written separately for CPU operation. The 

GPU code was written in OpenCL (Khronos Group, Beaverton, OR). The framework 

outlined in open source Insight Toolkit (ITK, Kitware Inc., Clifton Park, NY) was adopted to 

incorporate affine and IDAD into the in-house software application40. The average 

registration time for a typical 512 × 512 × 512 CT dataset (patient cases 2, 3 and 4) was 126 

seconds. Image registration was carried out prior to the radiologist’s viewing session.

III. RESULTS

A. Mathematical phantom study

The mathematical contrast enhancement added to the deformed simulated image results in 

different performances between the registration techniques as explained in Sec. II.B. In 

Figure 6, IDAD is compared with the conventional versions of the Demons algorithm. The 

degradation in registration accuracy represented by MSE and NCC stems from the intensity 

variations between the pre-contrast and the synthesized post-contrast images. In the cases 

with small lesions (10 mm in diameter), the degradation is negligible (Figure 6.a and d). For 

these cases, the MSE and NCC computed over the entire image volume are comparable for 

symmetric Demons and IDAD. Performance difference is more readily observed at higher 

enhancement levels (Figure 6.c). For large enhancement levels (25 mm in diameter), without 

adaptive correction of active demon forces, MSE and NCC rapidly degrade with increased 

voxel intensity (Figure 6.c and f). The amount of degradation depends on the specific variant 

of the Demons algorithm. This stems from the influence of the active forces in measuring 

force amplitude. The contribution of the active force increases in techniques where the 

uncorrected active forces are employed, such as symmetric Demons.

Figure 7 demonstrates an absolute comparison between registration techniques. In small 

lesions with small contrast enhancement levels, IDAD performs relatively similarly to 

symmetric Demons (the relative difference between the two methods is 2%). This is due to 

the weak corrections (IDCF close to 1) associated with the enhanced voxels. At large 
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enhancement levels however, IDAD limits the active forces, thereby preventing artificial 

degradations that result from intensity differences.

The greatest improvement is observed when the largest and highest level of contrast 

enhancement is simulated and positioned within the deformed pre-contrast image (Figure 7). 

Comparing IDAD with other variations of Demons, improvements in validation metrics are 

0–16% in MSE, 0–6% in NCC, 0–13% in NMI and 0–12% in TRE.

B. Physical phantom study

Table 2 shows the results of scanning the HU calibration phantom, fabricated as explained in 

II.C.2. Similar to the mathematical phantom study, the contrast-enhanced tissue surrogates 

fall into classes of 60 HU enhancement levels per 1.62 mg/ml iodinated solution. This 

confirms the use of the employed materials.

Figure 8 illustrates the convergence behavior of IDAD in phantom data and provides an 

initial evaluation of registration accuracy in CBCT imaging of breast. This figure shows the 

evolution of IDAD convergence between subsample levels. In order to make a comparison 

between different volumes and concentrations of iodine possible, a constant number of 

iterations (30), was used in each subsample level. The progression of convergence is evident 

at all concentrations. At each concentration level, the mutual information between the pre- 

and post-contrast images increases, thereby reducing the SUCN. A similar trend in 

convergence is observed in all lesion volumes.

Figure 9 shows the difference in SUCN between the deformed pre-contrast phantom and the 

contrast-enhanced phantom in each volume category. Each bar represents the concentration 

class’s average deviation value when convergence is reached. As shown, SUCN values for 

small volumes of injected contrast material, regardless of different concentrations of iodine, 

fall below 0.1 percent. At larger volumes of contrast material, the impact on SUCN is 

greater. Nonetheless, the maximum error, occurring at the largest volume (1.8 ml) and 

highest concentration of iodine (4.8 mg/ml), remains under 1.2%.

C. Patient scan study

Figure 10 shows the validation of the IDAD algorithm for all five patient cases in this study. 

Rows demonstrate different stages of the registration pipeline as outlined in Sec. II.A and B. 

Coronal, sagittal, axial and magnified coronal views of the contrast-enhanced lesion are 

shown. In all cases the first and second rows demonstrate the pre- and post-contrast images, 

with the same window and level settings. The third row shows the segmented image derived 

from the post-contrast image. The fourth row shows the results of the subtraction of the post-

contrast image using only rigid registration (affine) between pre and post-contrast image 

datasets. In the last row, the results of IDAD - with window-level settings identical to that of 

the fourth row images - are shown.

As shown in Table 3, the IDAD algorithm results in superior alignment of the pre-contrast to 

post-contrast images based upon all metrics. NCC between all post-IDAD registered, pre-

contrast images and the corresponding post-contrast images is above 0.99. The structural 

similarities between the images involved in registration, represented by NMI, increases. 
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MSE, a direct measure of image pixel value similarity, drops. Registration error measured by 

TRE shows submillimeter mismatches between the concordant anatomical target points in 

all but one case (case 5). Affine registration shows improvement over unregistered images in 

more difficult registration tasks (cases 3–5), but produces errors in several areas of the 

breast. Spanning over different deformations, employing IDAD in CE-bCT registration 

produces excellent accuracy in registering the pre- to the post-contrast images, producing 

three dimensional temporal-subtraction contrast-enhanced bCT which can be used as a tool 

in not only measuring size and morphology of the contrast-enhanced lesion, but also in 

quantifying the level of contrast enhancement. The enhancement levels indicated in Table 3 

summarize the average value of the enhanced lesion in the subtracted images. A visual 

comparison between the magnified image of the lesion in the subtracted image (row 5) and 

the magnified image of the same segmented slice (row 3) highlight IDAD’s effectiveness in 

correctly registering the enhanced voxels.

IV. DISCUSSION AND CONCLUSIONS

Previous studies have shown that for non-calcified lesions detected by mammography, mass 

shape and margin are important predictors of malignancy10. Specifically, irregular shape and 

spiculated margins as defined by the BI-RADS lexicon41 on mammography have been 

shown to have the highest positive predictive values for cancer10. Micro-calcifications are 

routinely described by their morphology and distribution on mammography. The BI-RADS 

descriptors with highest malignant association for micro-calcifications are linear 

morphology and linear or segmental distribution10. With modalities utilizing contrast 

material such as breast MRI, masses are characterized by their size, shape, margin and 

internal enhancement and areas of non-mass enhancement (NME) by their distribution and 

enhancement patterns. Irregular shape, spiculated margins and heterogeneous internal 

enhancement characteristics have the highest positive predictive values for malignancy in 

mass lesions8, 9. Clumped NME in a ductal distribution has been shown to be a predictor for 

malignancy in non-mass lesions on MRI9. In early studies with dedicated contrast enhanced 

breast CT, malignant masses enhanced significantly more than benign masses which offered 

a potential quantitative method for predicting malignancy. Preliminary data have shown that 

malignant calcifications due to ductal carcinoma in-situ enhance significantly more than 

benign micro-calcifications1. Hence, an accurate assessment of lesion size, shape, margin 

and enhancement pattern on dedicated breast CT is essential for lesion characterization and 

prediction of malignancy. Accurate determination of the size and extent of lesion 

enhancement is important for pre-operative staging of malignant lesions - one of the 

accepted indications for performing contrast based imaging of breast tumors.

The Demons algorithm is commonly used in deformable registration tasks for its accuracy, 

speed and simplicity. In both its original and variant forms, however, it produces registration 

errors that render it unsuitable for contrast-enhanced breast CT. Conventional Demons 

variations result in distortions both within and around enhanced lesions and the severity 

increases with the enhancement level. Assuming that quantification of contrast enhancement 

provides valuable diagnostic information1, it is important to correct for the large 

displacement vectors that artificially deform the shape of the enhanced lesion in the 

subtracted image.
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We have studied the impact of varying demon forces over different volumes and contrast 

enhancement levels. We find that registration accuracy is lowest for active force Demons 

when used in cases with large breast volumes and high levels of contrast enhancement. The 

simulation study shows that the symmetric forces Demons, containing an uncorrected fixed 

image gradient, as the active force Demons does, is also less than optimal due to the 

perturbing influence of added contrast agent. Therefore, an automatic correction of the fixed 

image gradients was investigated. As a first step, segmentation of different tissue types using 

two-means clustering was incorporated into the image registration framework. Segmentation 

classifies the contrast-enhancement into different tiers. The voxels belonging to different 

contrast-enhancement levels are treated differently in deriving the deformation vector. The 

iodine segmentation results are an intrinsic component of the new form of Demons. 

Proposed here, this hybridized framework of image segmentation and registration is called 

IDAD. Simulation results demonstrate the performance improvement using IDAD over other 

variations of Demons.

In the case of the simulations designed to evaluate the performance of the IDAD algorithm, 

the deformation field is known. Changing the volume size and enhancement level of the 

contrast-enhanced lesion results in new deformations which are compared to the known 

field. As discussed in Sec. II.C.1, IDAD demonstrates better registration accuracy compared 

to conventional Demons variations, specifically in cases of large enhancement within large 

volumes of tissue. The phantom study was implemented in order to apply IDAD to datasets 

acquired in clinical environments. A previously described deformable phantom was used to 

study the progression of IDAD through the multiscale pyramid. Results show a drop in the 

mutual information to the order of less than 1.2% from the template deformations, 

suggesting that applying IDAD results in minor mismatches with the reference deformation.

The patient cases, selected for their varying characteristics, provide a clinical quantitative 

assessment of IDAD compared to the original unregistered and affine registered cases. In all 

cases IDAD showed greater accuracy in registration of pre-contrast to post-contrast images 

compared to affine registration. The contrast enhancement in the 3-dimentional subtracted 

images follows the same pattern as shown in segmented images, proving the consistency of 

the method in correctly registering the concordant pre-contrast and contrast-enhanced tissue 

in pre- and post-contrast images.

In-house standalone software was developed for incorporating different aspects of IDAD, 

providing radiologists and researchers with tools necessary to analyze the properly 

registered images. The ability to register images quickly and accurately in a manner that is 

robust against contrast-enhancement variations was the primary goal of developing the 

IDAD framework. The ability to register images quickly and accurately in a manner that is 

robust against contrast-enhancement variations was the primary goal of developing the 

IDAD framework.

Computed tomography of the breast is a true 3-D imaging modality, and therefore delivers 

coherent views in three orthogonal views as well as off axis multi-planar views. It has been 

reported that contrast-enhanced breast CT can be potentially used in predicting the 

malignancy of a mass. Moreover, correctly identifying the contrast-enhanced lesion’s size 
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and enhancement levels using temporal subtraction can further assist radiologists in 

achieving high levels of diagnostic accuracy. Ongoing work in our laboratory includes 

qualitative analysis of the CE-bCT image data and comparing the results with those derived 

from IDAD.
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Figure 1. 
Breast two-means clustering segmentation scheme
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Figure 2. 
bCT Histogram-based Segmentation. (a) Histogram of pre-contrast and post-contrast images 

before two-means clustering, (b) Histogram of pre-contrast and post-contrast images after 

two-means clustering, (c) Subtraction of the pre- and post-contrast curves shown in (b), (d) 

Overlay of the post-contrast image after two-means clustering on the contrast curve shown 

in (c), (e) A coronal slice of pre-contrast image, (f) Corresponding coronal slice in post-

contrast image, (g) Corresponding segmented coronal slice.
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Figure 3. 
Deformations resulting from conventional Demons forces and IDAD. (a) Pre-contrast image 

registered to post-contrast image shown in (b) using an affine transform along with the post-

contrast segmented image shown in (c). Deformation step lengths resulting from passive, 

active, symmetric and IDAD are shown in (d), (e), (f) and (g) respectively. The insets 

demonstrated in (h)–(k) show magnified views of the deformations shown in (d)–(g) around 

the contrast-enhanced lesion.
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Figure 4. 
Mathematical phantom generation. (a) Pre-contrast image with fiducial markers overlaid in 

red, (b) post-contrast image with fiducial markers overlaid in green, (c) Pre-contrast image 

with generated deformation field overlaid using color coding, (d) deformed image, (e) 

synthesized post-contrast image, (f) simulated contrast-enhancement.
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Figure 5. 
The physically-deformable breast phantom. (a) Thermoplastic cast representing the skin, (b) 

polyethylene slabs representing the adipose tissue, (c) an individual polyethylene slab with 

glandular cavities, (d–f) coronal, sagittal and transvers views of the post-contrast phantom 

with the contrast-enhanced lesion shown.
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Figure 6. 
Comparison between different variations of Demons for different levels and volumes of 

contrast enhancement: (a–c): MSE evaluation, (d–f): NCC evaluation, (g–i): NMI 

evaluation, (j–l): TRE evaluation. For MSE, NCC and NMI evaluations, the deformations 

resulting from different Demons variations were compared to the template deformation field. 

In TRE evaluations, the registration error was calculated for all the bCT image voxels. The 

“original error” shows the error between the pre-contrast image and the synthesized post-

contrast image
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Figure 7. 
Comparison between different variations of Demons at different volumes of contrast 

enhancement, (a) MSE, (b) NCC, (c) NMI and (d) TRE. The “original error” shows the error 

between the pre-contrast image and the synthesized post-contrast image. The error bars 

show the standard deviation over the employed enhancement levels.
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Figure 8. 
Evolution of IDAD through the multiscale architecture with fixed number of iterations and 

different concentrations of contrast solution. (a) 1.62 mg/ml contrast solution, (b) 3.24 

mg/ml contrast solution, (a) 4.86 mg/ml contrast solution.
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Figure 9. 
Comparison between the final structural errors of the physical phantom registered images. 

Different volumes of the infused contrast-enhanced lesion within the deformable phantom 

are considered.
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Figure 10. 
Illustration of bCT datasets. In each image within a dataset, the anatomical views of the 

contrast-enhanced lesion are shown in coronal (upper left), sagittal (upper right), transverse 

(lower left) and magnified coronal (lower right) sub images. Each column represents a case. 

Rows show the results of different stages of IDAD: Ipre-con (original pre-contrast image), 

Ipost-con (original post-contrast image), Iseg-post (segmented post-contrast image), Isub-a 

(result of subtraction of post-affine registered pre-contrast image from post-contrast image), 

Isub-IDAD (result of subtraction of post-IDAD registered pre-contrast image from post-

contrast image). The position of the contrast-enhanced lesion is shown in red in each sub 

image.
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Table 1

Summary of notations

nLB Histogram bin index associated with histogram lower bound value

nMB Histogram bin index associated with histogram mid-bound value

nHB Histogram bin index associated with histogram higher bound value

H Image histogram

N Total number of histogram bins

n Histogram bin index

HUmax Maximum Hounsfield unit of image

HUmin Minimum Hounsfield unit of image

AVHI Average value of histogram higher interval

AVLI Average value of histogram lower interval

ε Two-means clustering method convergence threshold

T1 Two-means clustering first threshold

T2 Two-means clustering second threshold

PFG Histogram bin associated with histogram fibroglandular peak value

PA Histogram bin associated with histogram adipose peak value

Pc Histogram bin associated with histogram contrast peak value

TA Histogram bin associated with adipose threshold

TFG Histogram bin associated with fibroglandular threshold

TC Histogram bin associated with contrast enhancement threshold

D(p) Deformation vector at voxel p

I An Image set to fixed or moving images

Ipre-con Pre-contrast image

Ipost-con Post-contrast image

Is Smoothed image

Ia Affine-registered pre-contrast image

IIDAD IDAD-registered pre-contrast image

Iseg-post Post-contrast segmented image

Isub Subtraction result between Ipost-con and Ipre-con

Isub-a Subtraction result between Ipost-con and Ia

Isub-IDAD Subtraction result between Ipost-con and IIDAD

M Moving image

F Fixed image

σ Image intensity noise

k normalization factor

Δ Image gradient

c Intensity Difference Correction Factor (IDCF)
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DS8 Downsampled image (8×8×8 voxel binning)

DS4 Downsampled image (4×4×4 voxel binning)

DS2 Downsampled image (2×2×2 voxel binning)

DS1 Downsampled image (1×1×1 voxel binning)
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Table 2

Summary of the materials used in development of deformable breast phantom

Material Average CT Number (HU)

Adipose tissue surrogate Polyethylene −84

Corn oil −90

Fibroglandular tissue surrogate Alginic acid solution 5

Skin tissue surrogate Thermoplastic −8

Contrast-enhanced tissue surrogate

1.62 mg/ml I-CaCO3 solution 56

3.24 mg/ml I-CaCO3 solution 126

4.86 mg/ml I-CaCO3 solution 190
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