# UCSF UC San Francisco Previously Published Works

### Title

Assessment of New Molecular Entities Approved for Cancer Treatment in 2020

## Permalink

https://escholarship.org/uc/item/4nn5253k

### Journal

JAMA Network Open, 4(5)

## ISSN

2574-3805

# **Authors**

Smith, Claire EP Prasad, Vinay

# **Publication Date**

2021-05-03

# DOI

10.1001/jamanetworkopen.2021.12558

# **Copyright Information**

This work is made available under the terms of a Creative Commons Attribution License, available at <a href="https://creativecommons.org/licenses/by/4.0/">https://creativecommons.org/licenses/by/4.0/</a>

Peer reviewed



### Research Letter | Oncology Assessment of New Molecular Entities Approved for Cancer Treatment in 2020

Claire E. P. Smith, MD; Vinay Prasad, MD, MPH

#### Introduction

The COVID-19 pandemic has brought unprecedented disruptions to trials and drug development.<sup>1</sup> The US Food and Drug Administration (FDA) has had to spend its resources reviewing SARS-CoV-2 therapies and vaccines.<sup>2</sup> Despite these challenges, the FDA commissioner has stated that the FDA is "full speed ahead" in 2020 on the approval of novel cancer drugs.<sup>3</sup> To assess this claim, we sought to survey all new molecular entities (NMEs) approved for cancer treatment in 2020.

**Methods** 

In this cross-sectional study, we reviewed the FDA Hematology/Oncology Approvals website<sup>4</sup> to ascertain all hematology/oncology drugs approved in 2020. The authors (C. S. and V. P.) determined which drugs were novel, defined as having no prior FDA approval for a similar or different indication. New formulations of previously approved drugs (eg, oral formulations of previously approved intravenous formulations) were not considered to be novel drugs. We recorded the response rate, complete response rate, duration of response, progression-free survival, and overall survival as reported in the FDA prescribing information for each drug. In the event that a given approval was based on 2 different trials or 2 separate arms of a trial, we recorded the mean response between the 2 trials. The type of FDA approval (accelerated or regular) and the design of the trial were noted. Accelerated approvals require further proof of efficacy in improving overall or progression-free survival.

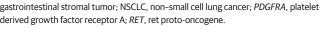
This study was not submitted for institutional review board approval because it did not use personal health care information and all study data are publicly available (Common Rule, 82 FR

Author affiliations and article information are listed at the end of this article.

| Drug                          | Disease                                 | Type of approval | Basis for approval                                       | Response rate, % <sup>a</sup> | Duration of response <sup>b</sup>            |
|-------------------------------|-----------------------------------------|------------------|----------------------------------------------------------|-------------------------------|----------------------------------------------|
| Randomized placebo-controlle  | ed trial                                |                  |                                                          |                               |                                              |
| Isatuximab-irfc               | Multiple myeloma                        | Regular          | Progression-free survival in 307 patients                | 60                            | 11.5 mo median progression-<br>free survival |
| Margetuximab-cmkb             | ERBB2-positive metastatic breast cancer | Regular          | Progression-free survival in 536 patients                | 22                            | 6.1 mo median                                |
| Ripretinib                    | GIST                                    | Regular          | Progression-free and overall<br>survival in 121 patients | 9                             | 6.3 mo progression-free<br>survival          |
| Tucatinib                     | ERBB2-positive metastatic breast cancer | Regular          | Progression-free and overall<br>survival in 612 patients | 41                            | 7.8 mo progression-free<br>survival          |
| Uncontrolled, single arm phas | e I/II trials                           |                  |                                                          |                               |                                              |
| Avapritinib                   | GIST with PDGFRA exon 18 mutation       | Regular          | Tumor shrinkage in 43 patients                           | 84                            | 61% response rate lasting<br>≥6 mo           |
| Belantamab mafodotin-blmf     | Multiple myeloma                        | Accelerated      | Overall response in 97 patients                          | 31                            | 78% at 4 mo                                  |
| Brexucabtagene autoleucel     | Mantle cell lymphoma                    | Accelerated      | Tumor shrinkage in 74<br>patients                        | 87                            | 60% at 12 mo                                 |
| Capmatinib                    | NSCLC with met exon 14 mutation         | Accelerated      | Tumor shrinkage in 97<br>patients                        | 49                            | 9.7-12.6 mo median                           |
| Decitabine + cedazuridine     | Myelodysplastic syndrome                | Regular          | Response rate in 213 patients (2 trials)                 | 60                            | 7.5-8.7 mo median (complete responses)       |
| Lurbinectedin                 | Small cell lung cancer                  | Accelerated      | Tumor shrinkage in 105 patients                          | 35                            | 5.3 mo median                                |

**Open Access.** This is an open access article distributed under the terms of the CC-BY License.

JAMA Network Open. 2021;4(5):e2112558. doi:10.1001/jamanetworkopen.2021.12558


(continued)

#### Table. Effectiveness of Novel Cancer Drugs Approved by the FDA in 2020 (continued)

| Drug                       | Disease                                                               | Type of approval | Basis for approval                                                   | Response rate, % <sup>a</sup> | Duration of response <sup>b</sup>                                        |
|----------------------------|-----------------------------------------------------------------------|------------------|----------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|
| Naxitamab                  | Neuroblastoma                                                         | Accelerated      | Overall response in 60<br>patients (2 trials)                        | 38                            | 23%-30% response rate lasting<br>≥6 mo                                   |
| Pemigatinib                | FGFR2 mutant cholangiocarcinoma                                       | Accelerated      | Tumor shrinkage in 107<br>patients                                   | 36                            | 9.1 mo median                                                            |
| Pralsetinib                | <i>RET</i> fusion NSCLC + <i>RET</i> altered medullary thyroid cancer | Accelerated      | Tumor shrinkage in 116<br>patients (lung) + 93 patients<br>(thyroid) | 65                            | 80% at 6 mo for lung, similar<br>for thyroid (prior platinum<br>therapy) |
| Sacituzumab govitecan-hziy | Metastatic triple-negative breast<br>cancer                           | Accelerated      | Tumor shrinkage in 108<br>patients                                   | 33                            | 7.7 mo median                                                            |
| Selpercatinib              | RET fusion lung and thyroid cancers                                   | Accelerated      | Tumor shrinkage in 314<br>patients (3 trials)                        | 72                            | 76%-87% response rate lasting >6 mo                                      |
| Selumetinib                | plexiform neurofibromas                                               | Regular          | Tumor shrinkage in 50<br>patients                                    | 44                            | 84% at 3 y                                                               |
| Tafasitamab-cxix           | Diffuse large B cell lymphoma                                         | Accelerated      | Tumor shrinkage in 80<br>patients                                    | 60                            | 21.7 mo median                                                           |
| Tazemetostat               | EZH2 mutant follicular lymphoma, epithelioid sarcoma                  | Accelerated      | Response rate in 42 patients<br>(follicular lymphoma)                | 69 (follicular<br>lymphoma)   | 10.9 mo median (follicular<br>lymphoma)                                  |
|                            |                                                                       |                  | Response rate in 62 patients (epithelioid sarcoma)                   | 15 (epithelioid<br>sarcoma)   |                                                                          |

Abbreviations: EZH2, enhancer of zeste homologue 2; ERBB2, receptor tyrosine-protein kinase erbB-2 (formerly HER2); FGFR2, fibroblast growth factor receptor 2; GIST, gastrointestinal stromal tumor; NSCLC, non-small cell lung cancer; PDGFRA, plateletderived growth factor receptor A; RET, ret proto-oncogene.

<sup>a</sup> Response rate is the sum of partial and complete responses as determined by imaging. <sup>b</sup>Duration of response is the time from drug initiation to cancer progression requiring change in treatment, cessation in treatment, or death.



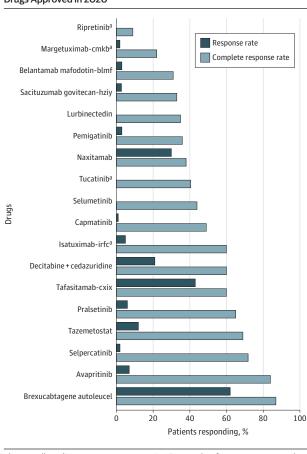



Figure. Response Rate and Complete Response Rate of Novel Cancer Drugs Approved in 2020

The overall median response rate was 49.7%. Note that for tazemetostat, only the response rate (69%) in follicular lymphoma is shown; the response rate for epithelioid sarcoma is 15%.

<sup>a</sup> Denotes a drug approved based upon a randomized placebo-controlled trial.

JAMA Network Open. 2021;4(5):e2112558. doi:10.1001/jamanetworkopen.2021.12558

#### JAMA Network Open | Oncology

§7149).<sup>4</sup> This report follows the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline for cross-sectional studies.

#### **Results**

There were 18 NMEs approved for cancer treatment in 2020 as determined by the authors (**Table**). This was more than the 13 NMEs approved for cancer in 2019, and similar to 2018.<sup>4</sup>

Two drugs (11%) were approved based on an improvement in overall survival compared with a placebo-controlled arm. These include ripretinib, which in trial had a 15.1-month overall survival in metastatic gastrointestinal stromal tumor compared with a 6.6-month survival for patients receiving placebo, and tucatinib, which when used in combination with capecitabine and trastuzumab resulted in a mean overall survival of 21.9-months in metastatic *ERBB2* (formerly *HER2*)-positive breast cancer compared with 17.4 months in the capecitabine and trastuzumab arm. The remaining 16 novel cancer drug approvals were based on response rate or progression-free survival. Of all the novel cancer therapies approved in 2020, the median response rate (ie, partial plus complete response rate) was 49.7% (range, 9%-87%); the complete response rate ranged from 0% to 62%, with a median of 3% (**Figure**).

Only 4 (22%) of the approvals were based on a randomized placebo-controlled trial. The remaining 14 approvals (78%) were based on uncontrolled, single-arm phase I/II trials. Eleven of these were accelerated approvals and will require further efficacy data.

#### Discussion

More NMEs were approved by the FDA for cancer in 2020 than in 2019. However, most approved NMEs were based upon surrogate end points with uncertain effects on survival and quality of life.<sup>5</sup> The majority of approvals were based upon uncontrolled, single-arm clinical trials, and will require postmarket efficacy testing.<sup>6</sup> Approximately half of patients given one of these novel drugs approved in 2020 will have a demonstratable tumor response. The authors acknowledge that this study is limited in that we only reviewed 1 year of FDA drug approvals. Additionally, future trial data regarding these medications may become available, rendering the observations here no longer relevant.

#### **ARTICLE INFORMATION**

Accepted for Publication: April 8, 2021.

Published: May 28, 2021. doi:10.1001/jamanetworkopen.2021.12558

**Open Access:** This is an open access article distributed under the terms of the CC-BY License. © 2021 Smith CEP et al. *JAMA Network Open*.

**Corresponding Author:** Vinay Prasad, MD, MPH, University of California, San Francisco, 550 16th St, San Francisco, CA 94158 (vinayak.prasad@ucsf.edu).

Author Affiliations: Hematology and Medical Oncology, Boston University School of Medicine, Boston, Massachusetts (Smith); Department of Medicine, University of California, San Francisco (Prasad); Department of Epidemiology and Biostatistics, University of California, San Francisco (Prasad).

Author Contributions: Dr Prasad had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Both authors.

Acquisition, analysis, or interpretation of data: Smith.

Drafting of the manuscript: Smith.

Critical revision of the manuscript for important intellectual content: Both authors.

Administrative, technical, or material support: Smith.

Supervision: Prasad.

JAMA Network Open. 2021;4(5):e2112558. doi:10.1001/jamanetworkopen.2021.12558

#### JAMA Network Open | Oncology

**Conflict of Interest Disclosures:** Dr Prasad reported receiving grant funding from Arnold Ventures during the conduct of the study; he reported receiving publishing royalties from Johns Hopkins University Press, Medscape, and MedPage; he reported receiving consulting fees from UnitedHealthcare; he reported receiving speaking fees from Evicore, New Century Health, and Patreon Plenary Session podcast outside the submitted work. No other disclosures were reported.

Funding/Support: This study was funded by Arnold Ventures.

**Role of the Funder/Sponsor**: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

#### REFERENCES

1. Waterhouse DM, Harvey RD, Hurley P, et al. Early impact of COVID-19 on the conduct of oncology clinical trials and long-term opportunities for transformation: findings from an American Society of Clinical Oncology survey. *JCO Oncol Pract.* 2020;16(7):417-421. doi:10.1200/OP.20.00275

2. US Food and Drug Administration. FDA Approves First Treatment for COVID-19. Food and Drug Administration news release. Published October 22, 2020. Accessed December 4, 2020. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19

3. Hahn SM (@SteveFDA). As we make progress in our understanding of #COVID19, we continue full speed ahead on our non-COVID cancer-related work, including important drug approvals. For instance, as of Oct. 30, the @US\_FDA has approved 42 novel drugs including 15 new drugs to treat patients with various forms of cancer. Several of these approvals have been "firsts" for oncology. November 17, 2020. Accessed April 15, 2021. https://twitter.com/stevefda/status/1328800222449979392

4. US Food and Drug Administration. US Food and Drug Administration hematology/oncology (cancer) approvals & safety notifications. Updated April 14, 2021. Accessed December 4, 2020. https://www.fda.gov/drugs/resourcesinformation-approved-drugs/hematologyoncology-cancer-approvals-safety-notifications

**5**. Haslam A, Hey SP, Gill J, Prasad V. A systematic review of trial-level meta-analyses measuring the strength of association between surrogate end-points and overall survival in oncology. *Eur J Cancer*. 2019;106:196-211. doi:10. 1016/j.ejca.2018.11.012

6. Carpenter D, Kesselheim AS, Joffe S. Reputation and precedent in the bevacizumab decision. *N Engl J Med*. 2011;365(2):e3. doi:10.1056/NEJMp1107201

JAMA Network Open. 2021;4(5):e2112558. doi:10.1001/jamanetworkopen.2021.12558