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Abstract

Spatiotemporal Signal Characteristics and Processing During Natural Vision

by

Vasha Guerin DuTell

Doctor of Philosophy in Vision Science

University of California, Berkeley

Professor Bruno A. Olshausen, Chair

A current limitation in our understanding of the visual system is its function under natural
viewing conditions, especially in the context of dynamic, human behavior. While there
have been many advances in understanding the spatial response properties of visual neurons
in relation to static stimuli such as natural images, understanding of the corresponding
temporal properties has been limited by the lack of high-fidelity datasets that document
the properties of the signal that reaches the human retina under natural conditions. In this
thesis, I describe the design and construction of a mobile tracking device that can re-create
the signal present on the retina of a human as they perform everyday tasks. This device is
used to collect high fidelity video and tracking data from human subjects performing a set
of tasks that sample the everyday human environment and behavioral repertoire.

This new dataset makes it possible to characterize the spatiotemporal statistics of natural
time-varying signals as they occur on the retina. Here I examine the spatio-temporal power
spectrum, which is of interest as a natural scene statistic in part because it is the Fourier
transform of the autocorrelation function. In the absence of ego motion (movement of head
and body), the spatiotemporal power spectrum of the dynamic environment has similar
power-law structure to that previously reported for Hollywood movies. Head and eye motion
modulate the spatiotemporal signal, boosting mid- and high-range temporal frequencies, such
that the visual input on the retina is nearly whitened. This can be beneficial for reducing
signal redundancy and maximizing the use of available bandwidth in the optic nerve.

The phase spectrum, which compliments the power spectrum, also carries relevant infor-
mation about natural image statistics. Despite the strong perceptual signal carried by the
classically defined global phase, I show that it has limited utility to differentiate natural
images from noise. However, phase congruency, a locally-defined property of the phase,
shows marked differences between the distributions of natural images and noise, as well as
differences within separate categories of natural scenes.
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Finally, I explore the relationship between natural signals and the human visual system by
optimizing a neural network to carry the most amount of information through a bottleneck
inspired by the human optic nerve, while limiting the energy utilized by neural spikes. I
show that a previously proposed model exhibits computational instabilities that hinder the
use of autodifferentiation software in training this model, and I offer methods of addressing
them. I also show that this model can be reformulated with a restructuring of the network,
from a single layer model to an autoencoder framework, avoiding computational instabilities
altogether. I conclude with a summary of contributions, as well as a discussion of future
areas of exploration.
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Chapter 1

Introduction

1.1 What are Natural Scene Statistics?

The study of ‘natural scene statistics’ refers to the description of both the regularities and
modes of variability present in the natural world around us. Typically, as an area of study
spanning Computer Science, Vision Science, and Neuroscience, these properties are studied
in the context of images and/or videos that were recorded or otherwise collected from the
natural world.

Interest in studying natural signals first emerged in Vision Science and Neuroscience as an
alternative to the common practice of measuring neural and psychophyical responses to the
commonly used artificial stimlui such as bars, gratings, and Gabors. While these artificial
stimuli offer ease of experimental control and repeatability, because they are often relatively
low-dimensional and simplistic as compared to complex natural signals, they are less likely to
elicit the rich responses seen when a subject or organism interacts in its natural environment.
Measured responses in this context of these simple, relatively impoverished stimuli, will likely
cover a limited regime of responses, and will therefor limit our understanding of the system.
By forgoing these manufactured inputs in favor of stimuli more reminiscent of the ecologically
relevant environment of the organism, one can observe a more full range of behavior and
neural responses, and better understand the utility of neural organization and response
patterns.

When utilizing natural signals as stimuli, how can we address this loss of control and
parameterization? Solving this issue is one of goals of natural scene statistics: to describe
the statistical regularities and modes of variability within natural signals. Armed with
descriptors for the differences between categories of natural signals, as well as the ability
to modify natural signals, allowing them to deviate away from their natural properties in a
controlled manner, one can study the relationship of the visual system to its input in a more
fruitful manner.
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1.2 Properties of Natural Scenes

The statistical regularities in natural scenes are thought to emerge from physical properties
of the natural world. For example, the tendency of matter to combine together and form
objects, when coupled with sufficient density of those objects in 3D space, form occlusions
that emerge from layering basic shapes in depth; this is known as a ‘dead leaves model’ [66],
and has been shown to reproduce some of the commonly studied statistical regularities in
natural images such as the ‘power law’, explained in further detail below.

Another regularity present in natural images relates to the horizon. Due to the force of
gravity pulling matter towards the ground in our 3D environment, there is often a horizontal
boundary present (the horizon), especially in images where far viewpoints are present and the
camera is pointed parallel to the ground (typical of human gaze positions). When quantities
such as the 2D power spectrum are measured over groups of images, this causes a statistical
bias towards higher power in vertical spatial frequencies [96, 98].

Beyond these logically explainable regularities of our human environment, the scene
statistic known as ‘critical scaling’ appears to emerge from the fractal properties present
in a whole host of natural phenomena [69], including images of nature, art [81], and even
ecology [18]. In the context of images, critical scaling refers to the property that at any
scale, from a photo of a small leaf, to a large aerial landscape, many statistical properties
are conserved, when images are analyzed in aggregate [87]. This fractal nature has strong
ties to metrics such as the slope of the 2D power spectrum[103, 11], which we will soon
discuss in detail.

Finally, the vast majority of efforts in natural scene statistics have involved properties of
the power spectrum. But as we will see in chapter 4, the counterpart of the power spectrum,
that is the phase information present in images, appears to be more perceptually relevant
than the power spectrum, containing edge information that forms objects and shapes. Some
observed regularities in natural scenes are more closely tied to phase. As an example, the
distribution of activations for a set of log-scaled Gabor filter banks, when convolved with
natural images, takes on a kurtotic (sparse) distribution [39, 77]. We explore various phase-
related statistics and their relationship to natural images in chapter 4.

1.3 Theoretical Neuroscience

The human visual system evolved in the natural world, processing the visual signal from
the natural environment. This visual signal is what natural scene statistics aim to describe.
It follows, then, that the visual system has likely adapted to the visual properties present
in that natural environment, and that taking this ecologically-relevant visual environment
into account lends insight when aiming to understand visual processing [44, 9]. One of the
most early descriptions of this relationship was in 1981, with Laughlin’s study of the natural
contrast distribution and its match to the neural response properties of interneruons of the
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fly compound eye [65]. Since then, in addition to further work on contrast [16], more complex
examples parallels have been drawn between the visual system and its visual environment.

One framework for understanding that adaptation is in terms of efficiency, in that the
visual system may be adapted to most efficiently encode the incoming visual signal, which
can be quantitatively measured using tools from information theory such as entropy and
mutual information [8] [4]. This ‘efficient coding‘, or ’redundancy reduction’ framework has
informed many areas of investigation within Neuroscience, Vision Science, and Computer
Science, both experimentally and theoretically.

From a theoretical neuroscience standpoint, utilizing natural image patches when train-
ing neuron models, while optimizing these models for efficiency, has been shown to reproduce
a wide variety of neuron properties, including receptive field characteristics of visual neu-
rons [77, 56]. In the experimental literature, countless experiments have documented the
marked changes in the response properties of real visual neurons when stimulated with nat-
ural images and movies, as opposed to synthetic stimuli such as white noise, and there is
evidence supporting the theory that the neural responses to natural stimuli are preferable
by information theoretic measures [23].

Considering and utilizing naturalistic stimuli in both experimental and theoretical neuro-
science pursuits however, introduces challenges that have deterred many in these communities
from pursuing their use. Primarily, natural scenes are much more difficult to parameterize
than more simple, synthetic stimuli such as Gabor wavelets. That is, that we lack the ability
to describe, in a principled, neurally-relevant way, what varies between different instances of
natural images and movies; this is due in large part to a lack of statistical descriptors suffi-
cient to describe natural images and movies. This lack of sufficient parameterization presents
challenges to creating controlled vision science and neuroscience experiments. Through im-
proved descriptions of the statistical regularities and variability within natural signals, we
can increase the ability of such experiments to utilize natural images and videos.

1.4 Datasets

One difficulty in studying natural scene statistics is the broad, unspecific definition of what
constitutes a natural scene. For example, though the human visual system evolved in an
environment without modern structures such as buildings and roads, the ecologically rele-
vant environment for most modern humans contains man-made structures. This dilemma is
reflected in the wide variety of databases available. Very early natural image databases such
as the classic Van Hateren Natural Image Database [49], contain greyscale images of natu-
ral outdoor content such as wooded areas, ground and plant matter. Since Van Hateren’s
dataset, new natural scenes databases have emerged with higher-resolution color content,
and sample a variety of environments including man-made content. Note that these datasets
differ from popular databases such as ImageNet [25], as natural image databases aim to avoid
biases such as being cropped to a single object, but aim to represent a snapshot in time of
a human observer. In fact, some of these databases such as the Places dataset address the
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broad definition of ‘natural scene’ by including a hierarchical categorization system to label
image content both broadly such as man-made/nature and indoor/outdoor, and well as more
specifically such as ‘bedroom’ and ‘garden’ [108]. Not only are these various image categories
known to vary in their power spectra, as we will see in chapter 4 that these categories also
show different phase profiles.

As interest has grown in extending beyond the spatial domain of images, and into the
temporal domain with natural video databases, this ambiguity regarding what content is
‘natural’ continues to persist. Like with natural images, Van Hateren’s natural video dataset,
created by sampling video content from nature documentaries, remains a classic [50]. Since
then, databases have much improved spatial and temporal resolution, as well as color chan-
nels[54, 93, 80]. For natural video, the large amount of time that many now spend on screens
[17] arguably makes screen-based content an ecologically-relevant visual stimulus for modern
humans. We know that statistical differences between screen-based and real-world visual en-
vironments exist [104], and that they may be relevant for many aspects of human perception
[13, 91]. Many video databases such as YouTube-8m now include categorical descriptors [3].

When considering the relationship between dynamic natural scenes and the human visual
system, it becomes important to account for all the motion types that are present on the
signal that reaches the retina. Many databases include videos recorded from a ‘first person
view’, commonly with a GoPro or other action camera strapped on a person’s head, and often
as they perform extreme-sport activities such as BMX, parkour, or skydiving [3]. While these
videos introduce body and head motion, the datasets have strong biases towards action-filled
moments, which are distinct from the motion profile seen by most humans in their day-to-
day life. In addition, head-strapped cameras, in the absence of paired eye-tracking, cannot
re-create the eye motion imparted on the signal by the constant movement of the human
eyes. A variety of efforts have been made to collect such datasets, but as discussed in 2,
most have been limited in either the types of tasks being performed, and/or in their spatial
and temporal resolution.

1.5 Spatiotemporal Power Spectrum

One of the most basic and widely studied regularity of natural scenes is the shape of the
spatial power spectrum, which is described by the ‘(inverse) power law’, or ‘one over f
squared’ relationship. This is described in detail in chapter 3. This regularity, first described
by David Field in studies of natural images [39], describes the property that the 2D power
spectrum of natural scenes, when averaged over many images, falls approximately inversely
proportional to the square of the spatial frequency. As the square root of the power, the
amplitude spectrum falls proportional to the spatial frequency. While this 1D property is
typically measured by collapsing the 2D image space onto a single frequency plane, other
investigations have studied the complex, 2D shape of the power spectrum, and found it to
vary depending on the scene category [96] [98] [7]. Mathematically, the power spectrum
can be derived from the auto-correlation function through the convolution theorem, and the



CHAPTER 1. INTRODUCTION 5

power law interpreted to describe the property of natural images that a given pixel has a
high correlation with those closest to it, with this correlation decreasing at a given rate with
increasing pixel distance.

While the spatial power spectrum of natural images is a critical regularity of our natural
world, spatial regularities alone can only describe a single snapshot in time; these statistics
ignore the temporal regularities present in the dynamic signals of a moving and changing
environment the human visual system evolved in. Previous work measured the joint spatial-
temporal power spectrum of Hollywood movies [29], showing an inseparable relationship
between spatial and temporal frequencies and power. Like the spatial power spectrum, it is
thought that the human visual system, thorough evolution, has adapted to these regularities
in order to most efficiently process the incoming visual signal, including using spatial and
temporal whitening [30, 86, 85], an information theoretic process that increases efficiency of
information processing.

These power spectrum analyses on Hollywood movies however, were done in the 1990’s
where spatial resolution and framerate, as well as computational power were limited. And
while statistics of Hollywood movies are well poised to inform video compression, their
content strongly differs from the dynamic scenes experienced by the human visual system.
Furthermore, these videos do not incorporate the complex ego-motion from the body, head,
and eyes, that introduce additional motion into the signal processed by the human retina
and brain.

In chapter 2, we discuss the design and build of a head mounted eye tracking system
designed to capture, in high resolution, the dynamic visual input for a human observer,
along with their accompanying body, head, and eye motion. This device is the first of its
kind to capture such data in high-fidelity, incorporating specialized hardware for eye and
body tracking, as well as color and depth of the scene. This allows for the high-fidelity
reconstruction of the dynamic signal that reaches the retina. It is also designed as a mobile
device, such that this data can be collected outside of the laboratory, and even outdoors, as
a human subject navigates the natural environment sitting, standing, or walking.

Using this device, as discussed in chapter 3, we have collected a dataset of natural video
and matched ego motion from human subjects performing a set of 15 everyday tasks such
as reading a book, making a sandwich, and throwing a ball, as well as standing and walking
in both indoor and outdoor environments.

Using this dataset, we then repeat the spatiotemporal power spectrum analysis of Dong
and Atick [29], with our high-fidelity video dataset, and compare the power spectrum for
videos with no ego motion, head and body motion only, and finally incorporating eye motion
to reconstruct as closely as possible the visual signal that falls on the retina for the human
subject. As we shall see in chapter 3, head and body motion strongly modulate the signal,
boosting a portion of the temporal frequency spectrum. Eye motion further modulates the
signal, resulting in a temporally whitened visual signal.
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1.6 Phase

Despite the importance of the power spectrum in natural scene statistics, an arguably more
perceptually relevant measure of natural images and video is in their phase spectrum. The
phase spectrum is an additional quantity produced when the Fourier Transform method
is used to calculate the power spectrum of a natural image or video [45], but is typically
unused. While the power spectrum describes the relative amount of different sine/cosine
waves (frequencies) present in a signal, the phase spectrum describes their relative positions.
We refer to this phase spectrum as the ‘global phase’.

While both power/amplitude and phase information are necessary for complete recon-
struction of an image or video using the inverse Fourier Transform, phase information appears
to carry more perceptually relevant information. That is, as shown in chapter 4, an image
created from the amplitude spectrum of one image, and the phase spectrum of another, will
resemble the structure of the phase’s corresponding image, even maintaining recognizable
objects. Given this, it stands to reason that regularities in the phase spectrum may have
even more importance to understanding the relationship of the human visual system to the
natural visual input than the amplitude/power spectrum.

1.7 Implications

In addition to the basic science questions addressing the relationship between the physics
of our natural world, and the relationship of our human visual system to that world, the
impact of an improved understanding of natural scene statistics has wide reaching potential
in many areas of applied science and medicine. For example, one of the main impediments
to using retinal implants to restore vision in the millions of visually impaired, is our limited
understanding of the coding strategies utilized by the visual neurons these implants would
replace, limiting our ability to properly relay visual signals to downstream brain regions.
Despite advances in implantable hardware [20], only through better understanding of the
spike-based communication visual neurons use, a communication strategy that evolved to
process the natural visual world, will we be able to fully restore vision to these patients [36].

Another challenge is facing the increasing bandwidth requirements of streaming video
content on the internet [38]. In developing regions of the world where internet access is slow
and/or data-metered, huge bandwidth requirements make such content inaccessible [95].
Stored in raw formats, the size of video content quickly becomes unwieldy. The accessibility
of video content at high resolutions such as 4K, and the standardization of ‘lower’ resolutions
such as 1080p, has been enabled by compression algorithms such as AVC (H.264) [83], and
more recently HEVC (H.265) [97]. These compression algorithms take advantage of basic
statistical regularities such as difference coding [45] that are common in natural video in
order to save streaming/storage space. More sophisticated descriptions of the statistical reg-
ularities present in the natural world will allow for improved compression algorithms, that
are more closely adapted to the properties of their video signals, and can therefore encode
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higher resolution video content in fewer bits. Given humans move their eyes when viewing
such content, an understanding of the dynamics of the signal as seen by the visual system
will be helpful in understanding what type of perceptually-based compression mechanisms
may be effective. In addition, an understanding of how signal regularities vary between dif-
ferent types of content (nature, sports, cartoons, etc), would allow for adaptive compression
algorithms which can tailor themselves to most efficiently encode the given type of video
signal.

Also related to video coding, the world’s increasing dependence on the internet as a
source of information and news has brought about a crisis of misinformation, with ever-
improving ‘deep-fakes’ and other artificially generated/manipulated videos that impersonate
world leaders and claim to serve as ‘proof’ of events that never happened, quite literally
threatening democracy [21]. One avenue of addressing these issues is through improved
understanding of the regularities in natural videos, and better computational models of how
the human visual system processes them. These will allow us to better compress video data,
by identifying what visual information is not captured by the human visual system, and need
not be transmitted, as well as what regularities are not obeyed in fraudulent videos that we
as humans cannot perceive, improving verification of the validity of visual media[107].
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Chapter 2

Integrating High Fidelity Eye, Head
and World Tracking in a Wearable
Device

2.1 Abstract

We describe the design and performance of a high-fidelity wearable head-, body-, and eye-
tracking system that offers significant improvement over previous such devices. This device’s
sensors include a binocular eye tracker, an RGB-D scene camera, a high frame-rate scene
camera, and two visual odometry sensors, for a total of 10 cameras, which we synchronize
and record from with a data rate of over 700MB/s. The sensors are operated by a mini-
PC optimized for fast data collection, and powered by a small battery pack. The device
records a subject’s eye, head, and body positions, simultaneously with RGB and depth data
from the subject’s visual environment, measured with high spatial and temporal resolution.
The headset weighs only 1.4kg, and the backpack with batteries 3.9kg. The device can be
comfortably worn by the subject, allowing a high degree of mobility. Together, this system
overcomes many limitations of previous such systems, allowing high-fidelity characterization
of the dynamics of natural vision.

2.2 Introduction

The visual system evolved and developed in the natural environment, so obtaining a full
understanding of its function requires studying how vision is engaged in everyday tasks. For
this reason, there is a great need to expand vision science beyond the controlled laboratory
setting and into the natural world. Data collected in such natural conditions provide crucial
information about mechanisms underlying stereopsis [68, 94, 40, 41], eye movements [40]
and their coordination with head movements [60, 51, 64], eye optics [43], and other motor
behaviors [73, 14, 15]. To create a better account of natural sensory-motor relationships,
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Figure 2.1: Left to right: Sample frames collected from Ximea camera, RealSense RGB
stream, RealSense depth stream, and Pupil Labs binocular eye-tracking cameras. Images
shown are frames as captured by each sensor, before post-processing.

data must be collected along with eye tracking, depth, and motion information when the
subject is performing everyday tasks in real world. Furthermore, many applications, such as
measurement of the power spectrum [31], require data to be recorded with high spatial and
temporal resolution. Designing and building a device that fits these requirements presents
many serious technical challenges. We first review previous work and then describe our
device.

Early work in mobile eye tracking was restricted to the indoor laboratory environment: for
instance using hard-wired acquisition computers and coil-based eye tracking [46]. Later work
pioneered the collection of real-world scene and gaze-tracking data, adapting eye-tracking
hardware designed for use in the laboratory into devices that allowed mobile recording outside
the lab [55, 33, 68, 106, 94, 40]. Unfortunately, cameras in these devices had very limited
spatial and temporal resolution, and heavy and bulky eye-tracking hardware limited subject
mobility.

More recent efforts utilized compact hardware that is amenable to mobile data collection
outside the lab; see [22] for a recent review. In particular, the introduction of lightweight,
mobile-friendly eye trackers such as Pupil Labs tracker [57] and Tobii glasses [1], as well as
lightweight sensors such as Intel RealSense devices [58], has led to more work in this area
[73, 90, 92]. In addition, improved usability of collection software has allowed collection of
hundreds of hours of data for many subjects [99, 90]. However, these datasets offer only low
to medium temporal resolution and medium to high spatial resolution because of the limited
capabilities of the scene cameras. An exception is the high-resolution data reported by [35];
but this is for subjects navigating virtual environments. Many of them also employ cameras
with on-device H.264/H.265 encoding, which introduces compression artifacts into the data.

We present a solution to these issues with a wearable device optimized to obtain robust,
high-fidelity, multi-modal data, while remaining lightweight and portable enough to enable
data collection during everyday behavior in the natural environment. Our solution adapts
consumer electronics and laboratory hardware to the needs of mobile, head-mounted track-
ing. The hardware is combined with custom software that enables accurate, high-resolution
data acquisition and post-processing in a convenient interface.
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Figure 2.2: Example trajectory of head position as a person walks through an indoor
environment. Color evolves over time from purple to yellow over 2 minutes. A RealSense
T265 tracking sensor collects position data (such as this one) along with orientation and
velocity data at 200Hz. Another tracker on the head provides the same odometry information
for the head.

2.3 Hardware

Devices and Sensors To record information from the subject and scene, our device uses
six sensors (Table 2.1). To capture high-fidelity video, we use a Ximea PCIE RGB camera
with a global shutter running at 200Hz. We supplement the color video with corresponding
depth information by including an Intel RealSense D435i, which records both depth and
RGB video streams (Figure 2.9). Our device allows us to match the high-fidelity world-
camera data to a lower-resolution depth signal. It also allows us, by coordinating with the
eye tracker, to estimate the subject’s fixation point in the three-dimensional scene. To track
the eyes, we use the Pupil Labs binocular eye-tracker [57]. To track the subject’s head and
body motion, we use two Intel RealSense T265 tracking sensors [51] (Figure 2.2). One is
mounted on the subject’s back to measure body position and motion. The second is mounted
on the head, attached rigidly to the headband, to measure head position and motion.

At full resolution and framerate, the total data flow produced is substantial at∼700MB/s.
The Ximea camera contributes more than 90% of this. The mini-PC, with 3TB on-board
M.2 storage, allows just over an hour of recording time at the highest framerate.

Because our device pushes the framerate limits of the sensors, one challenge was mini-
mizing dropped frames, especially in the visual sensors. The combination of image resolution
and framerate settings reported in Table 2.1 maximizes spatial and temporal resolution with-
out causing a significant number of dropped frames. With this configuration, frame loss is
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Table 2.1: Device sensors and settings utilized by the system. These settings yield the best
overall results for our experimental setup, but resolution and frame-rate settings for the
RGB-D and eye tracking cameras can be easily modified in the GUI. The Ximea camera’s
spatial and temporal resolution is easily changed in a YAML file, and the field of view
adjusted with a lens change.

Device Resolution Field of View Model Location Data Format

High-Fidelity 2064 × 1544 @
200Hz

61◦ × 46◦ Ximea Head 8-bit CMYK

RGB Camera Global Shutter MX031CGSY-
X2G2-FL

Raw Binary

RGB-D 640× 480 @ 60Hz
(color)

64◦ × 41◦ RealSense D435i Head MPEG-4

Camera 848× 480 @ 90Hz
(depth)

86◦ × 57◦ NumPy/PNG

Binocular 192×192 @ 200Hz 37◦ × 37◦ Pupil Labs L/R Eye MPEG-4
Eye Tracker

Odometry 1 200Hz - RealSense T265 Head .pldata

Odometry 2 200Hz - RealSense T265 Body .pldata

less than two frames over 2 minutes of data collection with the Ximea and RealSense RGB
cameras. The depth stream typically varies in its effective framerate between 70–90Hz. We
handle the frame drops that do occur with up-sampling during post-processing.

Device Ergonomics We had two key goals in designing the head-mounted part of the
device (Fig. 2.3): (1) to be as lightweight and comfortable as possible, and (2) to be
adjustable to accommodate each participant’s head and face shape, and the task at hand.
The headband is modified from a binocular indirect ophthalmoscope and adapted to hold the
sensors. Custom components were designed in SolidWorks and 3D printed in PLA, making
them robust yet lightweight. The three scene cameras (Ximea, RealSense D435i and T265)
are mounted together on the same 3D-printed bracket. This is connected to the headband
via three-point 3D-printed adjustable ball-and-socket joints and is secured by clamps. This
arrangement enables adjustment of the pitch of the camera ensemble depending on the task.
For tasks involving far viewing (e.g., outdoor walking), pitch can be adjusted upward to
∼0◦, and for tasks involving near viewing (e.g., cooking) pitch can be adjusted to ∼30◦

downward; mid-range tasks (e.g., seated chatting) are recorded using a mid-angle pitch. The
Ximea camera’s switch box is strapped to the back of the headband (Fig. 2.4). This switch
box converts the PCIE connection from the computer to the ribbon-cable connection on the
camera.

The two eye-tracking cameras are connected to the headband with custom designed and
3D-printed spherical joints (Fig. 2.3), which allow convenient, stable positioning of the
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Figure 2.3: Subject wearing the device. The two scene cameras (Ximea and RGB-D)
and tracker (IMU 1) are mounted together with a custom 3D-printed mount, adjustable
in position with a 3-point ball-and-clamp adjustable mount. Custom ball-and-socket joints
combined with set screws enable positioning of eye trackers below the eyes. A white ribbon
cable connects the Ximea camera to the rear switch box.
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Table 2.2: Details of operating computer used to control sensors and store acquired data.

Device Model Form Factor Size Notable Specs

Motherboard Asus ROG Strix Z390-
I

Mini ITX - Dual M.2, Wifi, PCIE

Hard Drives 2x Samsung 970 Evo M.2 1TB, 2TB Write 1.2 GB/sec

Memory Crucial Ballistix
Sport LT

DDR4 RAM 2x16GB 3200 MHz

CPU Intel i7-8700 - - 6 Cores, 65 Watts

Batteries BPS Freedom CPAP 2x bricks
(7.5”x5”x1”)

2x 100Wh 12V/8A out

camera. We anticipated degradation of eye tracking in outdoor scenes due to intense scene
illumination. To deal with this, a neutral-density filter can be placed in front of the lenses
when recording outdoors [12]. The filter makes pupil detection more difficult, but this can
be addressed when running pupil detection offline during post-processing.

The power and data cables connecting the sensors and computer are bound together into
a clean band (Fig. 2.4); we loop this band behind the subject’s back with slack in the loop.
The binding and slack eliminates tangling while allowing the subject to move freely. We
secure the body tracker on the back using a posture-correcting strap, which is underneath
the backpack, but leaves the back tracker’s cameras exposed. This avoids occluding the
subject’s and camera’s views of the scene ahead, which would have occurred with front
mounting.

The head mount weighs only 1.4kg. In the future we will investigate whether the device
affects natural motion dynamics.

Operating Computer To collect data from all sensors simultaneously, we built a PC
using consumer parts (Table 2.2). The high-speed camera requires a x8 PCIE port for which
no laptop solutions were available, so we custom-built the computer. To minimize the form
factor, we use a Mini ITX motherboard with 32GB of RAM, dual M.2 support, a PCIE port,
and integrated WiFi. We use the Intel i7-8700 processor, which has sufficient computational
power, yet maximizes battery life due to its low power consumption (65W). To maintain
sufficient disk-write speed and avoid RAM overflow, we use M.2 SSDs—one with 1Tb and
one with 2Tb—capable of writing at 1.2GB/s. We mounted a touchscreen inside the PC
case for quick viewing and control of the computer while mobile. Power is provided by a
pair of compact batteries designed to power CPAP machines. The batteries are connected in
parallel and power both the computer’s DC power supply and the PCIE camera’s external
power supply. We modified a standard mini ITX computer case with a custom 3D-printed
enclosure. The enclosure covers the ports at the back of the computer case, exposing only
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Figure 2.4: Rear view of a subject wearing the device with the backpack in mobile configu-
ration. Computer and batteries are housed in the backpack. Ximea switch box is mounted
with Velcro on the back of the head. Cords are bound in an adjustable loop enabling head
mobility. Another motion tracker is mounted on back strap under backpack with the sensor
positioned just above backpack.
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Figure 2.5: Hardware control during data collection is performed in Pupil Lab’s Pupil Cap-
ture with custom plugins running on the acquisition computer. The computer is controlled
remotely with Chrome Remote Desktop over WiFi. Settings are adjusted and acquisition
started and stopped by the experimenter using an iPad or laptop.

the ports for DC power, an external monitor, and Ethernet, leaving the band of sensor
cables permanently connected. One CPU heatsink/fan is sufficient for cooling the computer.
To cool the high-speed camera, we attached two 25mm fans to either side of the camera,
powered by the camera switch box.

A video overview of the device hardware is available at: https://www.youtube.com/

playlist?list=PLEloutX3oXFbi2CoA3_koqFSwKpdxLliF

2.4 Acquisition Software

Software Structure We wrote the device acquisition software in Python 3 [101] as plugins
for Pupil Labs’ Pupil Capture software [57] allowing for control of all the devices in a single
graphical interface (Fig. 2.5). We use the RGB sensor on the Intel D435i as the world
camera, and a plugin to the Pupil Capture software to save depth information as either
raw NumPy values [48] or lossless PNG images with multiple images per file rather than the
default lossy MPEG-4 encoding. Our software includes a plugin to align the RealSense depth

https://www.youtube.com/playlist?list=PLEloutX3oXFbi2CoA3_koqFSwKpdxLliF
https://www.youtube.com/playlist?list=PLEloutX3oXFbi2CoA3_koqFSwKpdxLliF
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and RGB streams online. This online alignment reduces the highest achievable framerate,
so we perform spatial alignment of frames during post-processing instead. We also wrote a
plugin to view and record from the Ximea camera as well as load and apply camera settings
from a YAML file. For the odometry sensors, we use the tracker code from [52], modified
slightly to support recording from both tracking devices and the Intel RGB/depth device
simultaneously.

During data collection, we use the Pupil Labs’ Capture software, modified by our plugins,
to observe and control the computer, switch between visual stream views, run eye-tracking
calibration, adjust camera framerate and gain, and start and stop collection. When the
subject’s task does not involve locomotion, we control the computer and observe the video
stream using an external monitor and Bluetooth keyboard and mouse with the computer
placed on a table next to the subject. During tasks involving locomotion, we control the
acquisition computer through Remote Desktop over WiFi with a laptop or iPad (Fig. 2.5).
For eye tracking, we use the default Pupil Capture eye-camera recording software, which
records infrared video of each eye at 200Hz. We turn off Pupil Capture’s online pupil
detection and accomplish detection offline with the Pupil Player software after data collection
is completed. This reduces the computational load on the acquisition computer, and allows
manual adjustment of the pupil-detection parameters, which in turn minimizes the number
of frames with failed pupil detection.

To accommodate various lighting conditions, we include an analog (sensor) gain adjust-
ment switch for the Ximea camera in our GUI, which can be used in combination with
aperture adjustment for the varying light levels in indoor and outdoor data collection. This
adjustment along with imaging a standard color checker chart [37] allows the experimenter
to account for the system’s luminance gain and perform color balancing.

We incorporate various software scripts related to eye-tracking calibration. The high-
fidelity raw image data (particularly from the Ximea camera) is very storage intensive. To
deal with this, we include a framerate adjustment switch for the Ximea camera in our GUI.
The adjustment allows us to reduce framerate during calibration, which saves storage space
significantly. We also use a custom Pupil Capture plugin to visualize a 9-point marker placed
within the world camera’s field of view (Figure 2.7) together with a custom 3D calibration
routine adapted from [42].

High-Speed Acquisition The most significant design challenge for this system was ac-
quiring and writing the high-speed RGB data from the Ximea camera, particularly in accom-
modating the high rate of data input (637MB/s for this sensor alone). To interface with and
control the camera, configure settings, and collect data, we use Xiapi, Ximea’s Python API.
We utilize Python’s threading and queue packages to create data-collection worker threads
that continuously check for and collect images and their associated timestamps from the
camera’s buffer, placing them in FIFO queues. These queues are simultaneously checked by
data-saving worker threads, which write queued frames and timestamps to disk. We save
frames in the raw binary format from the camera (1000 images per file) for offline conversion
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Figure 2.6: Custom plugin for recording from the high-speed Ximea camera has a GUI
interface built as a plugin for the Pupil Capture software allowing control of camera settings
and recording by the experimenter.
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Figure 2.7: The custom Pupil Labs plugin toggles 9-point calibration positions overlaid on
the video stream used for directing the subject to position a handheld calibration target for
the calibration procedure.

to a standard image format. We tried other acquisition methods and they failed because
either the camera’s internal buffer was overwritten due to buffer overflow or because of a
buildup of frames in the computer’s RAM due to insufficient transfer of frames from RAM
to disk. We use a similar multi-threaded queuing strategy for saving depth frames (also
stored in raw format) to stabilize the effective framerate for the depth stream, and to avoid
dropped frames.

The data collection software plugins are available at: https://github.com/vdutell/

hmet_aquisition. The analysis software is available at: https://github.com/vdutell/

st-bravo_analysis.

https://github.com/vdutell/hmet_aquisition
https://github.com/vdutell/hmet_aquisition
https://github.com/vdutell/st-bravo_analysis
https://github.com/vdutell/st-bravo_analysis
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2.5 Post Processing

After each recording session, pupil detection is performed offline inside the Pupil Player soft-
ware. Then, the data are transferred to a computational server via the exposed Ethernet port
for post-processing. During this offline phase, timestamp synchronization and image regis-
tration are performed to align the streams spatially and temporally. This alignment allows
the depth-map and gaze-position information to be overlaid in the high-framerate camera
space. Finally, we perform the remainder of the eye-tracking analysis pipeline including
calibration and gaze-point estimation.

Temporal Synchronization To temporally align data from the multiple streams, we first
align the timestamps of all streams. Many multi-sensor devices address temporal synchro-
nization issues with a synchronized triggering system so that timestamps are already aligned
during data collection. This method is not supported in Pupil Labs, so to maximize each
device’s frame-rate, we instead allow individual sensors to ’free-run’ at their specified fram-
erates during data collection, and then synchronize their timestamps in post-processing.
For the Ximea camera, we measure clock offsets between the sensor’s internal clock and
the computer’s Unix timestamp at the beginning and end of recording. We then align the
recorded timestamps to ensure there is minimal temporal drift between the two clocks during
recording. For the other devices, Pupil Labs’ software handles timestamp synchronization
internally with Unix timestamps directly. We investigated the accuracy of the synchroniza-
tion and found that the match between cameras is within one 200Hz frame (±5ms) (Figure
2.8) with typically fewer than one dropped frame over a 2 minutes of data collection. In post-
processing, a ground-truth timeline at the desired frame-rate is generated, and frames from
each stream resampled at their nearest matching timestamp. This addresses any dropped
frames and allows for resampling lower framerate streams at higher frequencies as needed.

Spatial Registration For spatial registration of the images, a standard offline camera and
stereo calibration is combined with depth-dependent alignment. This is done twice, once for
an ’indoor’ setting with an open aperture on the Ximea camera and once for an ’outdoor’
setting with a smaller aperture. For each aperture setting, we first use a checkerboard grid to
estimate the distortion matrix for the Ximea camera. The RealSense RGB distortion matrix
is factory calibrated and the image is undistorted on the chip. Then, we use the same
checkerboard grid to run a stereo calibration, fixing the distortion matrices and estimating
the extrinsics matrix between the RealSense RGB and Ximea RGB streams. Because the
rectification of the depth stream into the RGB frame of reference is depth dependent, we use
the Pyrealsense2 align to() method to rectify the depth stream to Ximea RGB space in two
steps: 1) storing the frames in .bag file format and 2) reading in the .bag file for alignment.
In the first step, we provide the RealSense camera’s self-reported depth to RGB extrinsics to
the alignment method, rectifying the depth frames into the RealSense RGB camera’s frame of
reference. This puts depth information into the RealSense RGB camera’s frame of reference
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Figure 2.8: Visual streams are temporally synchronized to the framerate of the slowest
visual stream (60Hz). Temporally synchronized frames from three visual streams (top to
bottom): Ximea RGB stream, RealSense RGB stream, RealSense depth stream. White
boxes indicate zoom-in on bottom panel, showing ball in same position at moment of release
from hand during toss, which is evidence that timestamps are well matched. Note the greater
motion blur of the ball in the RealSense RGB stream running at 60Hz (bottom middle panel)
compared to the Ximea RGB stream running at 200Hz (bottom left panel).
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for gaze localization. Next, we combine the RealSense to Ximea RGB extrinsics matrix
(measured during the stereo calibration) with the RealSense camera’s self-reported depth
to RGB extrinsics matrix to create a depth-to-Ximea extrinsics matrix. Finally, we used
this combined RealSense RGB to Ximea RGB extrinsics matrix in the .bag file alignment,
rectifying these depth frames directly into the Ximea camera’s frame of reference. Performing
the alignment in one step with a combined extrinsics matrix avoids loss of image data due
to the vertical field of view of the RealSense RGB being smaller than the depth and Ximea
RGB streams. We perform all spatial registration offline after data collection. An example
set of aligned frames is shown in Figure 2.9.

Spatial Accuracy There are various sources of error within the sensors, their synchro-
nization, and eye tracking calibration which individually contribute to the overall spatial
and temporal accuracy limits of the system. The largest source of spatial uncertainty in our
system is in the eye tracking. We use a custom, depth-aware calibration and gaze localization
method, which reduces estimated error to 0.25◦ in the best case, and 0.5-0.6◦ for an average
subject, which is better than the <1◦ and the 1.5-2.5◦ accuracy reported for the Pupil Labs
2D and 3D gaze mapping methods, respectively [57]. We report the details of this custom
method in previous work [42]. With the magnification factor of the lens used in our system,
0.25◦ corresponds to approximately 8 pixels - a wider angle lens would reduce this, and a
temporal smoothing window can also be applied to the eye trace to reduce high-frequency
jitter.

Temporal Accuracy The largest source of temporal uncertainty in our system is in the
depth stream, which is frame rate limited by maximum sampling rate of the RealSense
depth sensor at 90Hz. We up-sample the depth stream in post-processing, from the native
90Hz to the 200Hz sampling rate of the high fidelity cameras. Because both our gaze map-
ping and spatial re-projection methods are depth-dependent, this depth accuracy limitation
propagates through our analysis and is a limiting factor of our system.

2.6 Discussion

To our knowledge, the apparatus and data collection and analysis methods are the first to
enable high-fidelity, data-intensive, and synchronized multi-sensor signal capture in a mobile
eye-tracking device. It enables a high-quality reconstruction of the natural visual input as
experienced by the human eye as a subject goes about everyday activities. At the same time,
it records the subject’s body, head, and eye movements.

A limitation of the device is the high framerate camera (particularly in its switch-
box/PCIE system) because the camera adds weight and bulk to the head, which may restrict
subject movement during data collection. In other words, the weight and bulk may affect the
statistics of the measured body, head, and eye motion. When we designed the device, this
camera was the best available option for high-speed collection without introducing artifacts
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Figure 2.9: Visual streams are spatially aligned through registration with extrinsics matri-
ces. Top: Original depth frame as provided by RealSense camera before spatial alignment.
Middle: RealSense RGB frame reference on left and aligned depth on right. Bottom: Ximea
RGB frame reference on left and aligned depth on right.
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due to on-camera compression. Since then, new cameras have been released that connect
via other methods including USB-C and they allow high-fidelity and lighter weight.

Data collected with the device will reveal the complex spatiotemporal patterns of light
that strike the retina during everyday life. Quantifying the statistics of these patterns will
be important for gaining a better understanding of the human visual and motor systems and
how they have adapted to the natural environment. The data collected with this device will
be useful to a number of scientific and technical communities including vision science, exper-
imental psychology, neuroscience, bioengineering, computer science, and display technology.
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Chapter 3

The Spatiotemporal Power Spectrum
of Natural Human Vision

Abstract

When engaging in natural tasks, the human visual system processes a highly dynamic visual
data stream. The retina, performing the very first steps in this processing, is thought to be
adapted to take advantage of low-level signal regularities, such as the autocorrelation function
or power spectrum, to produce a more efficient encoding of the visual signal. Previous
work examined the joint spatiotemporal power spectrum of handheld camera videos and
Hollywood movies, showing that power falls as an inverse power-law function of spatial and
temporal frequency, with an inseparable relationship. However, these data are far from
an accurate characterization of a day in the life of the retina due to body, head, and eye
motion, which overlay additional diverse types of complex motion to the incoming signal,
modifying the overall statistics. In addition, the distribution of natural tasks will influence
the statistics of this signal. Here, we aim to characterize these statistics of natural vision
using a custom device that consists of a head-mounted eye tracker coupled with high frame-
rate world cameras and orientation sensors. Using video data captured from this setup, we
analyze the joint spatiotemporal power spectrum for three conditions: 1) a static camera
viewing a natural task being performed (environmental motion only) 2) a head mounted
camera worn by a subject engaged in a natural task (head and body motion added) 3) videos
simulating the dynamic retinal image, created by overlaying the subject’s eye motions on
the head-mounted camera video stream (eye motion added). This allows for analysis of the
signal properties imparted by each of these motion types individually and an account of the
final signal that reaches the retina, which incorporates all motion types. Results suggest
that compared to a static camera, body and head motion have the effect of boosting high
temporal frequencies. Furthermore, eye motion enhances this effect, particularly for mid
to high spatial frequencies, causing this portion to deviate from the power-law and become
nearly flat. These data will be helpful in developing efficient coding models relevant to
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natural vision.

3.1 Introduction

The power spectrum of natural images, averaged over many images, is known to follow a
power-law [39]. This relationship can be described with the equation:

P (f) ≈ β

fα

where f is the spatial frequency, β is a scaling factor that varies with the image’s contrast,
α defines the slope of the falloff, and P (f) is the power as a function of frequency f . The
value of α obtained from a function fit to a single individual image or image patch is quite
variable. Averaged over a large number of natural images/patches, however, α is generally
found to have a value of ∼ 2 for the power spectrum ∼ 1 for the amplitude spectrum [39].

This power-law property of the power spectrum of natural scenes results in the amount
of power being the same, regardless of spatial scale (zooming in or out of an image); this is
known as scale invariance, or self-similarity, and is thought to emerge from the structure of
object sizes in the natural environment [87]. However, missing from this purely spatial per-
spective is an account of the dynamic properties of natural scenes, which contain motion that
contributes to a corresponding temporal frequency spectrum. These temporal frequencies
interact with the spatial frequency spectrum in a non-trivial way.

Previous literature on spatiotemporal natural scene statistics focused on analyzing widely
available video content, typically from sources such as nature documentaries. A seminal
study analyzing the spatiotemporal power spectrum of Hollywood and handheld camcorder
movies reported that movies depicting naturalistic scenes have a joint spatiotemporal power
spectrum that follows a power-law both in space and in time [30] The results of their analysis
is shown in figure 3.1. These power spectrum curves show a complex relationship between
spatial and temporal frequencies that cannot be described by a simple separable function of
spatial frequency f and temporal frequency w. Non-separability means that the spatiotem-
poral power spectrum G(f, w) cannot be factored into a product of two functions F (f) and
W (w), which each depend only on the spatial and temporal frequencies, respectively.

G(f, w) 6= F (f)W (w)

Visually, the inseparability of these curves is evident by the variable slopes for the dif-
ferent dotted lines in figure 3.1, indicating a spatial frequency falloff that is dependent on
temporal frequency and a temporal frequency falloff that is dependent on spatial frequency.
A separable function would have independent spatial and temporal frequency falloffs, result-
ing in parallel lines bounded by lines of the same slope both above and below the curves.
Separability can be evaluated mathematically using Principal Component Analysis (PCA),
to determine the amount of variability in the data explained by a product of two 1D functions
[32].
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Figure 3.1: Spatiotemporal power spectrum of naturalistic videos follow a power law. Figure
From [30]. Sampled temporal frequency lines plotted along the spatial frequency axis, with
the lowest temporal frequencies bounded below by 1

f
, and the highest temporal frequencies

bounded by 1
f2

above (upper). Sampled spatial frequency lines plotted along the temporal

frequency axis, with the lowest spatial frequencies bounded below by 1
w

, and the highest
spatial frequencies bounded by 1

w2 above (lower).
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These power spectra reflect the statics of Hollywood and camcorder movies, with tracking,
panning, zooming, and other camera motion. However, these motion types are not represen-
tative of the signal that reaches the human retina, which is modulated by ego motions such
as head and body movements, as well as the complex motions of the eye.

Understanding the shape of the spatiotemporal power spectrum has strong implications
for understanding the coding properties of the human visual system. In the efficient coding
framework [9], the visual system is thought to be adapted through evolution to process visual
information optimally, and importantly, to have adopted coding strategies that are optimal
given the statistical properties of the incoming visual signal. For example, in the spatial
domain, it is thought that the center-surround receptive fields of retinal ganglion cells are
matched to the 1

f2
power spectrum of natural images, and act to spatially whiten the retinal

signal, an effect that is beneficial from an information theoretic standpoint. However, in
the temporal domain, understanding this relationship has been limited due to a lack of high
fidelity data documenting all the complex motions present in the dynamic retinal signal.
Collecting such data and accounting for the joint spatiotemporal aspects of the incoming
signal’s power spectrum is necessary to extend our understanding of the complex relationship
between the human visual system and its environment.

3.2 Methods

We collected data from a set of three human subjects, each performing the same set of 14
everyday tasks while wearing a custom-designed tracking device that collected visual and
depth data from the environment, the subject’s eye position, and motion of the subject’s
body and head. We also collected data with the tracking device mounted on a mannequin
head while the mannequin ‘viewed’ the task being performed from an approximately first-
person perspective.

Subjects

Three subjects (two females and one male, ages 26-33, all self-reported emmetropic) partic-
ipated in the experiment. The subject protocol was approved by the Institutional Review
Board at the University of California, Berkeley. All subjects gave informed consent before
starting the experiment.

Apparatus

Subjects wore a custom mobile head-mounted eye tracking device, which is described in
detail in Chapter 2, and consisted of a helmet with world cameras, head, and eye trackers,
a back strap with a body tracker, and a backpack which held an acquisition computer and
batteries. The helmet held a high fidelity RGB camera with an adjustable lens, a lower
fidelity RGB camera, a depth sensor, a motion, velocity, and acceleration tracker, and a pair
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of binocular eye trackers. The cameras were attached to the helmet using custom-designed
3D printed parts that allowed adjustment of the camera positions. The back strap was fit
snugly to the body and held a second odometry tracker. The mesh backpack held a custom-
built data acquisition computer and a pair of batteries. The backpack was worn only during
mobile tasks and sat on the table next to the subject during seated tasks.

The adjustable lens was used in two different modes, open and pinhole aperture, which
were used during indoors and outdoor tasks, respectively. The lens’ focus was adjusted once
before collecting data from the first subject, and its position was locked in with a set screw
throughout the entire experiment, unaltered through the collection of data for all subjects.
The focus and aperture settings were set with the following protocol: First, the aperture
was fully opened to create the smallest depth of field possible, and the focus adjusted to
0.75 meters, fixing this as the lens focal position. Next, we closed the aperture to as close
to pinhole as possible, validating that there was sufficient light for an indoor task with
the indoor gain setting of 5dB, then opened the aperture to the position that avoided a
washed out scene for the outdoor tasks, with the outdoor gain setting of 0dB. Both of these
were tested at the experimental exposure time of 4.75ms, and chosen as the two aperture
settings for indoor and outdoor tasks. Finally, we returned to the open aperture, validating
that objects were in focus at both at near and far distances, testing this with an increased
exposure time to increase the overall light levels. Finally, we noted the open and closed
aperture positions and the focal position and secured them with a set screw.

Acquisition Software

The data acquisition software was written as individual plugins to Pupil Lab’s Pupil Capture
software, such that camera streams could be easily viewed, settings could be easily adjusted,
and acquisition of all cameras could be both temporally synchronized, and recording easily
started and stopped. The plugins included a plugin for Ximea camera acquisition, a plugin
for saving depth in raw NumPy format, a plugin for acquiring data from the head and
body trackers (adapted from [51]), and for acquiring and target positioning for the 9-point
calibration. These plugins are available online at https://github.com/vdutell/hmet_

aquisition, and are described in further detail in Chapter 2.

Tasks

While wearing the tracking device, each subject was recorded while performing a set of 14
tasks, each for 2 minutes. These tasks listed in Table 3.1, were inspired by the American
Time Use Survey [47, 63], as well as reports indicating the increased use of screen time in
recent years[17], and selected to represent as much as feasible the common of everyday tasks
of an average person living in modern society.

In addition to data recorded from the human subjects, we also recorded 2 minutes each of
the 14 tasks with the recording device mounted on a mannequin head attached to a tripod.
The mannequin head was positioned as close as possible to where the subject’s head would

https://github.com/vdutell/hmet_aquisition
https://github.com/vdutell/hmet_aquisition
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Table 3.1: Set of 14 everyday tasks surveying a ‘day in the life’ of an average person. Walking
tasks were paired with standing tasks in the same location for comparison to environmental-
only recordings from the mannequin. Tasks varied in location (indoor vs outdoor), mobility
(seated, standing, walking), and viewing distances. Tasks were included that engaged var-
ious aspects of vision such as reading, passive viewing, sensory-motor engagement, smooth
pursuit, and complex navigation such as stairs. For the ‘watch movie’ task, subjects watched
a clip from Indiana Jones, which was studied in [29].

Task Location Mobility Viewing Distance Notable Aspects

Read Book Indoor Seated Near Reading
Use Cellphone Indoor Seated Near Reading,Active,Screen
Use Computer Indoor Seated Near/Mid-Range Active,Screen
Make Sandwich Indoor Seated Near/Mid-Range Sensory-Motor
Watch Movie Indoor Seated Near/Mid-Range Passive,Screen
Chat with Person Indoor Seated Mid-Range Human,Eye-Contact
Fold Laundry Indoor Seated Near/Mid-Range Sensory-Motor
Stand in House Indoor Mobile Mid-Range/Far Carpentered
Walk in House Indoor Mobile Mid-Range/Far Carpentered,Navigation
Play Catch Indoor Mobile Near/Mid-Range/Far Sensorimotor,Pursuit
Stand on Patio Outdoor Mobile Mid-Range/Far Nature
Walk on Patio Outdoor Mobile Mid-Range/Far Nature,Navigation
Stand on Road Outdoor Mobile Far Urban
Walk on Road Outdoor Mobile Far Urban,Navigation

have been performing the task themselves. The mannequin then observed the task being
performed from an egocentric position but absent from ego-motion.

Calibration

We utilize a custom calibration routine described in [42], which consists of a modified 9-point
calibration routine and a custom 3D-printed handheld calibration target with a fixation-
cross-shaped hole in the middle and a flashlight in the back. For each eye, at each of the
9 positions, the subject would keep the target covered with their thumb, then align the
target with the gaze point of one eye, in the manner of a gun-sight, until they could see
the flashlight light coming through the hole in the front of the target. This ensured that
the normal vector to the plane of the target was aligned with the eye position. The subject
would then uncover the target to allow automatic target detection in both depth and RGB
streams. This method created a 3D point cloud of eye and gaze positions, which allowed
accurate binocular gaze positioning in 3D space during data collection.

Each full calibration routine included the above described 9 point calibration taken once
in each eye, a binocular validation with the target placed at ∼ 8 random positions within the
field of view, and measurement of the primary position (eye position with subject focused at
infinity). This full routine was done once every 3-4 tasks, or if the headset was re-positioned
on the head. In addition, a single point target validation was taken at a 2-3 meter distance
before and after each task, allowing the identification and correction of any drift in the
calibrated gaze positions during data collection.
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Motion Categories

Video cubes of 512x512 pixels by 400 frames (2 seconds) were sampled from the recorded
data in each of three conditions

• Static: Starting at a random location within the static camera (tripod + mannequin)
movie, and remaining spatially localized in the frame as the “movie” progressed.

• Head-Body: Starting at a random location within the head-mounted camera movie,
but remaining spatially localized in the frame as the move progressed.

• Retinal: Starting at a measured spatial-temporal eye position location within the head
mounted camera movie frame, moving spatially matching measured eye positions as
the movie progressed.

Fourier Analysis

For each movie chunk, we averaged over 3 color channels to get a greyscale movie, applied a
raised cosine window, subtracted the chunk mean, then calculated the 3D Fourier transform.
We then squared this value to calculate the power spectrum, and took the rotational average
over the two spatial dimensions. We repeated this method for 250 movies per subject/task
combination, and calculated the mean over all subjects, and over all tasks. These mean
power spectra are reported.

3.3 Results

We report here the results taken from a subset of the data. Shown here are the results from
a single subject performing a subset of six tasks (read book, use phone, use computer, watch
movie, chat, and make sandwich).

Mean Power Spectra - All Tasks and Subjects

We first report the grant means of the spatiotemporal power spectrum for one subject per-
forming the six seated tasks.

When considering environmental motion only, without any modulation by ego motion, we
find that the spatiotemporal power spectrum follows the general inseparable shape previously
reported by Dong and Atick [29] (Figure 3.2). The highest power is found in the lowest
spatiotemporal frequencies, and the lowest power in the joint high spatial, high temporal
frequency regime. In the spatial frequency domain, the lowest temporal frequencies have
the highest power and fall the most sharply with increasing spatial frequency, bounded
by approximately 1

f2
. The highest temporal frequencies, by contrast, fall shallowly with

increasing spatial frequency, bounded by approximately 1
f
. This leads to an overall triangular

shape in the joint 2D frequency space (Figure 3.2, top).
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Figure 3.2: Mean Spatiotemporal Power Spectra over all subjects and tasks for three con-
ditions: World (top): video data taken from tripod/mannequin with environmental motion
only. Head (middle): video data taken directly from the head-mounted camera with environ-
mental, body, and head motion. Retinal (bottom): video data taken from the head-mounted
camera with eye motion overlaid; this includes environmental, body, head, and eye motion.
There is a progressive change in the shape of the power spectrum as additional motion types
are included. Head and body motion boosts mid-range temporal frequencies, while retinal
motion boosts high temporal frequencies, resulting in a partial temporal whitening of the
signal that reaches the retina.



CHAPTER 3. THE SPATIOTEMPORAL POWER SPECTRUM OF NATURAL
HUMAN VISION 32

When head and body motion is introduced, adding ego motion on top of the environ-
mental motion signal, this modulation strongly affects the resulting spatiotemporal power
spectrum. The effect in the spatial frequency domain is subtle but is more pronounced in
the temporal and joint spatiotemporal frequency space. The effect of head and body motion
boosts the power for mid-range temporal frequencies, particularly those in the low to mid-
spatial frequency range. This dramatically reduces the slope of the temporal frequency falloff
in the mid-range (Figure 3.2, middle). This mid-range boosting strongly changes the shape
of the joint 2D space, resulting in a box-like shape. As we will show in section 3.3, the mid-
range spatiotemporal frequencies boosted are consistent with the corresponding velocities of
body and head motion.

When eye motion is introduced, overlaid on top of the environmental, body, and head
motion, approximately recreating the retinal signal, the spatiotemporal power spectrum is
further changed. Again, this boosting effect is most strongly seen in the temporal frequency
domain but is most present in the high temporal frequencies, especially those in the low to
the mid-range spatial frequency range (Figure 3.2, bottom). This further reduces the slope
of the falloff with increasing temporal frequency, reducing the slope to zero for the high-
range spatial frequencies, and reducing the slope significantly even for the lowest spatial
frequencies. This is seen again in the shape of the joint 2D space, where mid and high
spatial frequencies with the lowest power no longer depend on temporal frequency. As we
will show in Figure 3.3, the high-range temporal frequencies boosted are consistent with the
corresponding velocities of eye motion.

To separate the effect of head/body motion and eye movements on these power spectra,
we calculated the difference between the mean power spectra shown above (Figure 3.3).
The effect of head and body motion is simply calculated by subtracting the ‘World’ power
spectrum from the ‘Head’ power spectrum. We see that the effect of head and body motion
is a dampening of low temporal frequencies at all spatial frequency ranges and a boosting
along with a subset of mid-range spatial and temporal frequencies. The effect of eye motion
has a similar dampening effect; however, the boosting imposed by eye motion lies in the low
to mid spatial frequency range, at high temporal velocities only. We will see in 3.3 that these
profiles are more easily interpreted in terms of their corresponding velocities.

Velocities

Each point in the joint spatiotemporal-frequency plane corresponds to a specific velocity,
allowing for the translation of spatiotemporal power to power of velocities. Velocity is
calculated by dividing temporal frequency in units of cycles

second
by spatial frequency in units of

cycles
degree

. This yields a speed in units of degrees
second

. Figure 3.4 shows the corresponding velocities
for the range of spatiotemporal values shown in Figure 3.2. When plotted in log-log space,
areas of equivelocity appear as parallel right-diagonal lines (slope of 1). By comparing this
velocity plot to 3.3, we see that the effect of head and body motion is an increase in mid-range
velocities on the order of 10deg

sec
. Eye motion, however, boosts power for higher velocities on
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Figure 3.3: Effect of Body and Head Motion (top) and Eye Motion (bottom) as calculated
by differences between respective power spectra. Pink indicates a boost in power. Green
indicates power is dampened.
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Figure 3.4: Right-diagonal lines in the spatiotemporal frequency plane correspond to lines
of equal velocity.

the order of 100deg
sec

. These results are consistent with the biomechanics of body/head and
eye motion and previously reported velocity distributions [33].

Separability Analysis - Approximation by 1D Functions

Separability, in the context of the spatiotemporal power spectrum, is the degree to which
the 2D power can be described by a product of the separate spatial and temporal frequency
spectra. Qualitatively, we find distinct separability in the power spectra of all three con-
ditions by noting the temporal-frequency dependent difference in the slope of power falloff
in spatial frequency spectrum, and the spatial-frequency dependent slope in the temporal
frequency spectrum. A completely non-separable spectrum reported by Dong & Atick [30],
would result in the power falloff in spatial frequency to be independent of temporal frequency
and vice versa, resulting in spatially offset parallel falloff lines. We instead see notable dif-
ferences in slope, and qualitatively, the spatiotemporal power spectrum appears separable.
Moreover, although the introduction of ego motion dramatically alters the overall shape of
the power spectrum, we find that this does not alter the separability property, at least by
visual inspection.

To investigate these results quantitatively, we followed the Singular Value Decomposition
(SVD) method [32], which in decomposing the 2D power spectrum into it’s singular values
and vectors, measures the degree to which this 2D function can be described by the product
of two 1D functions (one function of spatial frequency, one function of temporal frequency).
The degree of separability is quantified by the index of separability α, which is the ratio
of the first singular value to the sum of all singular values. Thus, a high α indicates high
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separability in that the product of two 1-D functions can explain a majority of the variance
in the data. By this quantitative metric, we find very high α values of 0.9973, 0.9949, and
0.9994 for the environmental, head/body, and retinal conditions, respectively, which is in
agreement with the high (> 0.99) α values previously reported for natural video sequences
[32].

3.4 Discussion

High Fidelity Spatiotemporal Power Spectrum

Surveying the visual input from various everyday human environments, in the absence of
ego-motion, we find that the environment and task has little effect on the qualitative shape
of the spatiotemporal power spectrum. Even when compared with the highly motion-biased
dataset studied by Dong & Atick [29], the overall spatiotemporal power spectrum retains the
same general properties. There is an inseparable relationship between spatial and temporal
frequencies, with the falloff in both spatial and temporal frequency bounded by 1

f
below, and

1
f2

above, where high temporal frequencies falloff faster in space, and high spatial frequencies
falloff faster in time.

This relationship is scale-invariant within the measured range, extending into spatial and
temporal frequencies much higher than previously investigated. This is not surprising in
the spatial domain, as scale invariance in natural images has been widely described [88].
Given the relatively few investigations into temporal natural scene statistics as compared to
spatial. However, the extension of this relationship into higher temporal frequencies is not
obvious. Furthermore, the highest temporal frequencies investigated here (100Hz), though
beyond the classic flicker fusion limit of 35-60 Hz [53, 34, 70], are within the range of both
perceptually visible frequencies, which have been detected at 500Hz [24], as well as the
high temporal frequency range known to stimulate and entrain visual neurons [105]. In the
spatial frequency domain, the maximum detectable frequency is ∼ 60 cycles per degree,
which is also beyond the measurement capabilities of our system. Future studies may wish
to investigate the range of even higher spatiotemporal frequency stimuli beyond our current
system’s capabilities, but that is also relevant to the human visual system sensitivity range.

Separability

Our results for separability are somewhat conflicting, in that visual inspection of the power
spectra show an inseparable relationship, while a quantitative analysis indicates a high sep-
arability metric (∼ 0.999). Given the clear inseparability indicated in the visualizations (Fig
3.2), as well as the previous work by Dong & Atick [30] outlining this visually defined sep-
arability metric, we interpret this mismatch in favor of the visual inseparability result and
conclude that for some reason, the separability metric does not seem to reflect the separabil-
ity seen in the data. We note that for our environmental motion condition, our value for α is
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in agreement numerically with the results from Eckert et al. [32] in which Hollywood video
data was analyzed. In addition, we run separability analysis on the log-normalized power
spectrum, as in Dong & Atick, as this reveals its scale-invariant structure (the same reason
for visualizing it in log space); when this step is omitted, α is closer to 0.990. We suspect
that given the power-law structure of the data, either the SVD method may be over-fitting
to a subset of data points, or that a seemingly large value of ∼ 0.999 is not high enough to
indicate separability in our case. These issues deserve further investigation.

In everyday task environments, we find that the spatiotemporal power spectrum of the
environment itself is qualitatively inseparable. The shape of falloff of power in spatial fre-
quency is temporal frequency-dependent, and vice versa. Such a quantitative analysis is
performed simply by observing the differing slopes of the sampled power spectra in Figure
3.2. These are the same qualitative results as reported previously for Hollywood movies [29].
Furthermore, this inseparable quality is unchanged by adding ego motions of the body, head,
and eye. However, when speaking quantitatively, numerical analysis points towards a more
separable relationship, which is also in agreement with previous studies on natural video
[32]. We also find that ego motion does not affect this quantitative metric of separability.

Incorporating the modulation of ego motion on the environmental signal, we find that
this separability metric is not majorly altered despite the substantial changes imparted
on the power spectrum plot. This is the case for both qualitative as well as quantitative
measures of separability. It stands to reason that the visual system would not need to
make spatial and temporal frequencies separable, as there is little evidence for a system
that factorizes spatial and temporal signals. Instead, the signal is split downstream into the
magnocellular/parvocellular/koniocellular pathways, which each code a portion of the join
spatiotemporal frequency spectrum in parallel [67].

Temporal Whitening

We find a strong temporal boosting effect caused by the combination of head/body and
eye motion. When analyzing these portions of the spatiotemporal power spectrum in terms
of their corresponding velocities, this makes sense given the velocity distributions of head
and eye motion. However, in the context of the vestibulo–ocular reflex (VOR), a visual
motor system that aids in gaze stabilization, one might have expected more corresponding
eye motion that would cancel out head and body motion in the service of gaze stabilization,
rather than independent boosting. Given the evidence for varied VOR strength depending
on locomotor task [27, 26], investigation of the whitening effects for seated, mobile, and
standing tasks should be investigated individually.

This boosting effect has computational implications, particularly in the context of whiten-
ing, a strategy that is computationally beneficial by decorrelating or removing the redun-
dancy in a signal [9]. Spatial-domain whitening, for example, is often thought to occur in
the retina as an effect of the center-surround structure of retinal ganglion cells [5], and is
often modeled as a necessary pre-processing step in V1 models [77, 28]. Temporal whitening,
studied on a scale smaller than discernible by our methods, is thought to be a feature of fix-
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ational eye motion including microsaccades and fixational drift [89]. While we find evidence
of whitening by larger, saccade-level eye motion, we do not believe that mirosaccade-scale
temporal whitening is mutually exclusive of larger-scale temporal whitening. This makes
sense given the saccidic main sequence [6], in that the categorization of saccades and mi-
crosaccades is somewhat arbitrary, and the two are well described as portions of a continuous
spectrum.

Our temporal whitening results are somewhat in contrast to previous theoretical work ar-
guing for the role of the downstream Lateral Geniculate Nucleus (LGN) in temporal whiten-
ing of the visual signal [30]. While this theory points to the lagged and non-lagged cells of
the LGN as the stage at which temporal whitening occurs, our evidence points to whitening
of the signal before even reaching the retina. As LGN whitening is expected to occur on
the same scale as the eye motion we record, it seems counter-intuitive that the visual sys-
tem would perform temporal whitening/decorrelation twice, as this would over-whiten, and
reintroduce correlations, removing any computational benefit. This apparent conflict can
perhaps be resolved in noting that our results show a trend towards a whitened signal rather
than a complete decorrelation. Especially for lower spatial frequencies, the signal reaching
the retina is only partially temporally whitened. It is possible that these two systems work
in concert, and given the complex dynamics of both eye motion and the LGN, that the LGN
completes the partial whitening imparted by eye motion.

Saccadic Supression

Finally, the power spectra analyzed here are measured from two-second time windows drawn
uniformly from the two-minute tasks. However, it is known that the statistics of eye motion
are not stationary over time, varying between periods of saccades and fixations, as well other
eye motions, including vergence and smooth pursuit, depending on the task. Saccades are
of particular interest due to the effect of saccadic suppression, the effect of visual informa-
tion being suppressed during saccades [72]. This is particularly relevant in the context of
whitening, as it is unclear what portion of the whitening seen here is a result of saccadic
eye motion, which is less likely to be perceptually relevant. Future work will calculate the
power spectrum for saccadic and inter-saccadic intervals separately to determine the degree
to which this whitening occurs during perceptually relevant timepoints.
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Chapter 4

Phase Analysis of Natural Images

4.1 Introduction

Toward the goal of understanding the properties present in natural visual signals, several lines
of research have identified regularities in the statistics of natural images. One of the most
well-known of these is the ‘power law’, or 1/f relationship, which describes the amplitude
of the frequencies present in natural images; specifically, the amplitude of a given frequency
in any given natural image is found to fall off as the inverse of the frequency [39]. This 1/f
spectrum has implications in visual neuroscience, having been shown to be matched to the
band pass filter properties of the early stages of the human visual system, where this system
seemingly works to remove redundancy in the incoming visual signal [5].

The power law alone however, is only a simple description of one property of natural
images, and without additional parameters, is insufficient to describe natural images com-
pletely. For example, one can generate 1/f noise images (Figure 4.1) for which their power
spectra follow the power law, but are distinct from a true natural image. Furthermore, sta-
tistical descriptors are needed to characterize what commonalities are shared among natural
images but are not present in other power law signals such as noise images.

In addition to the commonalities among all natural images, additional lines of research
have sought to understand what statistical differences exist that separate subcategories of
natural images. Such analyses can be used to quickly identify, for example, the location
of a scene as indoor/outdoor or natural/man-made. Though there are differences in the
orientation-averaged power spectrum for different scene categories, they are relatively subtle.
However, when considering the full 2D power spectrum, which allows the differentiation of
slope at different orientations, the slope of the power in the vertical, horizontal, and oblique
directions is quite variable between images of natural and man-made scenes and objects [98].

These noted statistical regularities of natural images are derived from one aspect of the
natural image, its amplitude spectrum, as calculated from the discrete Fourier transform
(DFT). However, all of these analyses ignore the other quantity produced by the DFT,
an image’s phase spectrum. We know that the phase component of a Fourier transformed
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Figure 4.1: 1/f Noise has a power spectrum with a distribution characteristic of natural
images. The phase spectrum typically takes a random uniform distribution. While this 1/f
noise image has no discernible structure, it is visually distinct from white noise, which has a
power spectrum distribution that is uniform.
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Figure 4.2: Top: Original Images with cosine window applied, reconstructed from origi-
nal phase and amplitude spectrum information. Bottom: Images with phase information
swapped. Image with phase information from cat image but amplitude spectrum from beach
image retains the cat appearance, while the image with cat amplitude spectrum and beach
phase spectrum appears more like the beach image.

image contains more perceptually relevant information than the amplitude. For example,
combining the phase of one image with the amplitude of another image, and taking the
inverse Fourier transform results in a reconstructed image that looks much closer to the
image that contributed the phase information, never the image that contributed the am-
plitude (Figure 4.2). In addition, image reconstruction given only the phase spectrum is
readily implemented, whereas reconstruction given only the amplitude spectrum is much
more challenging. The phase angle contains more perceptually relevant information about
the image than the amplitude. It stands to reason then that by analyzing only the power
spectrum, the natural scene statistics, the field is missing out on a large part of an image’s
perceptually-relevant information.
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Figure 4.3: Phase angles for the beach image, taken from the Fourier Transform, with
locations intact. Though the shape retains the original image’s dimensions, each pixel cor-
responds to a given horizontal and vertical spatial frequency pair.

4.2 Spatial Structure in Global Phase

We first attempt to derive information from the global phase of natural images, analyzing
these images to determine the feasibility of a global phase analysis method. Such a statistic
would be useful to combine with the power law of the amplitude spectrum and used to
synthesize images that more closely resemble true natural images than 1/f noise.

As a first step to understanding the phase component of natural images, we view the
raw phase values derived from the Fourier Transform, keeping their relative locations intact.
An example of this is shown for the beach image in Fig 4.3, with individual pixels in the
phase image corresponding to a pair of vertical and horizontal spatial frequencies, rather
than spatial location. Thus, despite the strong perceptual signal contained in the phase
spectrum as seen in Figure 4.2, it is difficult to discern any spatial structure at all, let alone
any structure corresponding to the image.

In the cat image, however (Figure 4.5, left), there is some structure visible in a small
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Figure 4.4: Subset of phase angle from cat photo shows areas of localized structure within
the phase angle ‘image’.

Figure 4.5: Image and Reconstruction from Spatially Structured Phase

section of the phase image (Fig 4.4). In the phase plot, there is visible striped structure
along the diagonal. This area corresponds to locations of increased amplitude. Some other
analyzed images contain small amounts of visible structure, but he cat image contains the
most visible spatial organization in its phase plot.

In order to determine what properties of the image cause this structure to appear, a
uniformly random phase spectrum is augmented by manually inserting only this spatially
structured portion of the image’s phase angle into the random spectrum. This is then
combined with the cat image’s amplitude spectrum and reconstructed using the inverse
Fourier transform. Interestingly, the reconstructed image contains only the texture of the
carpet (Figure 4.5). The repetitive striped pattern of the carpet can be described well by sine
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Figure 4.6: Windowed Entropy Distribution

waves and is therefore sparse in the Fourier domain. This explains the amplitude spectrum’s
peak and perhaps correlations between neighboring phase angle values, leading to interesting
structured patterns in the global phase image.

Total & Local Entropy of Global Phase

To quantify these interesting structured patterns in the phase spectra, and potentially utilize
this quality for image categorization, entropy is used as a measure of structure in the phase
angle image. Global values for entropy in the phase angle are conserved between images
and vary only slightly between true phase distributions and uniform noise, (difference of
0.0001 for values of around 3.32), (Figure 4.6). As a comparison, values for entropy of the
images themselves are around 3.07, and vary by around 0.02 between images. Thus, entropy
measurements of the global phase do not appear to differentiate natural images from noise.

Because the structure is localized to one spatial area of the phase angle plot, entropy is
measured locally, using a 30x30 pixel window convolved with the phase angle image to look
for spatially-localized variations in entropy, which is expected to correspond to the apparent
spatial structure in the image. Indeed, the structures corresponds to spatially localized areas
of decreased entropy. Binning these values to evaluate their distributions reveals that the
phase angle values have a very similar distribution compared to a uniform random phase
spectrum. While the true phase angle values tend towards lower entropy, their means are
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Figure 4.7: Spatial Distribution of Entropy of subset of phase angle for cat image (top),
and for phase angle of uniform noise image of matched size (bottom). Natural image shows
regions of low entropy, leading to a smaller entropy value overall.

very similar.
To determine if the spatial areas of low entropy are significantly different, the same

analysis is performed using a smaller window (5x5 pixels) convolved with the subset of
the phase angle which contained the pinwheels. Again, localized areas of lower entropy
appear near the center of the pinwheels. Binning these entropy values and comparing their
distribution to the same windowed analysis over a uniform random phase spectrum reveals
that the distributions have very similar means. However, the true phase values have a
large distribution of values at very low entropy, as expected, where the uniform random
distribution does not (Figure 4.7).

Windowed entropy measured across the spatial distribution of phase angles does appear
to separate some natural images from noise. However, this is only for a subset of images
and appears to be those with particular spatial structure, such as textures with repeating
patterns.

Large Scale Image Analysis of Global Phase

Given the promising differences between a single image and random distributions, the anal-
ysis is now expanded to a larger dataset of greyscale natural images and noise images. We
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Figure 4.8: Image Categories

use the Places dataset [108]; the categories included are: indoor images, outdoor:man-made
images, outdoor:natural images, 1/f distributed noise, uniformly distributed noise, and Gaus-
sian distributed noise, with 1000 images per category. This allows us to examine the statistics
that vary between images and distributions and compare within natural images to determine
if any measured statistics varied between natural and less-natural images. Figure 4.8 gives
examples of the image and noise categories tested.

Employing this dataset, global entropy analysis of the raw images and the global phase
spectrum is measured. For the entropy of the images, the mean global entropy for all image
categories is around 3.1-3.2. Uniform and 1/f noise share these values, and Gaussian noise
is slightly higher at 3.3. In terms of the entropy of the global phase spectrum, all image
categories and noises have similar distributions and mean entropy values of 3.32, with the
exception, surprisingly, of 1/f noise, which had a slightly lower entropy of 3.10.

Overall, some specific images show differences in the spatial structure of their global phase
angle spectrum, as measured by windowed entropy. However, this appears to be restricted
to specific images which have repeated texture patterns. It does not appear that windowed
entropy alone can differentiate natural images from noise images, or differentiate categories
of natural images. It may be possible, given 1/f noise images have lower entropy values,
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that such an entropy analysis could be used in conjunction with the amplitude spectrum to
differentiate natural images from noise, but this is left to future work.

4.3 Phase Congruency & Energy

Background

While an image’s global phase spectrum itself can difficult to interpret due to its diffuse
nature, an alternative and more tractable quantity for analysis is the instantaneous phases
of constituent frequencies at each point in the image. In particular, we can measure the
amount of instantaneous phase alignment between all the frequencies at a given point. This
ratio of alignment, or the phase congruency (PC) of an image, has been described previously
[75], [62]. Phase congruency has shown to be useful as an edge detector, as areas in the image
where many Fourier components are all aligning spatially are in 1D, likely to be edges, and
in 2D, likely to be corners [62]. While PC has certain advantages as compared to other edge
detectors such as the Canny, its relatively large computational requirements have hindered
its wide adoption as an edge detector. Rather than an edge detector, we propose phase
congruency as a tool to study the statistical regularities of natural images and variation
between subcategories of natural images.

Phase congruency (PC) is a quantity defined for every sample of a discrete signal, which
measures the ratio of Fourier components for which their instantaneous cosine phases are
aligned (regardless of phase value). In one dimension, it is defined as:

PC(x) = max
φ̄∈[0,2π]

∑
nAn cos(φn(x)− φ̄)∑

nAn

Where φn is the phase of frequency n, and φ̄ is the mean phase over all frequencies at
point x.

However, for computational ease, we calculate phase congruency equivalently by first
calculating the local energy E, then normalizing the local energy to a number between 0 and
1. Thus, we define local energy E as:

E(x) =
√
f 2(x) + f 2

H(x)

where f is the Fourier transform of signal x, and fH is the Hilbert transform of f , which
rotates the signal f by π

2
. This is derived from the definition of the analytical signal. We

then normalize our local energy E(x) by the sum of the n Fourier amplitudes An.

PC(x) =
E(x)∑
An(x)

Figure 4.9 shows an example of this analysis applied to a 3-level discrete step function
(top). The local energy spectrum (middle) of this step function yields a function that peaks
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Figure 4.9: PC & Energy of a 1D Step Function
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Figure 4.10: 2D PC of Cat Image. Note how phase congruency highlights edges and bound-
aries, by selecting for pixels for which phases are in alignment.

at the highest discontinuity, at the fall from 1 to -1, with smaller peaks at the step from 0 to 1,
and at the start and end of the function. Note, however, that the values are unnormalized.
When we divide by the sum of the Fourier amplitudes to compute the phase congruency
(bottom), we have normalized values that sit between 0 and 1 but retain the same shape,
with the same maximum and minimum values.

To expand the phase congruency analysis to images, we calculate the local energy inde-
pendently in each x and y direction of the image using a 1D Fourier transform applied in
parallel along one axis of the image. To independently analyze the PC for the horizontal and
vertical directions, we divide each directional energy by the mean corresponding directional
Fourier amplitude. Finally, we sum the two directional energies together at each pixel, and
divide by the mean amplitude of 2D Fourier transform. This yields the 2D PC for the image
(one PC value per pixel).

Other interpretations of 2D PC use azimuthal sums to calculate the 2D PC, measuring
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Figure 4.11: PC Distributions

phase alignment from all phases rather than just the x and y directions. These implemen-
tations have better localization and avoid the streak-like artifacts that appear in our two
directional implementations (Figure 4.10). Avoiding these artifacts is crucial in certain con-
texts, such as using PC as an edge detector. In our case, however, for the computational
feasibility of calculating the 2D PC over many images, we use the sum of the x and y
directional PC values as the 2D PC.

Distributions of PC for Natural Images and Noise

To explore the feasibility of phase congruency to differentiate natural images from noise, as
well as between different image categories, we apply the phase congruency calculation to the
images in the categories from the Places dataset [108], shown in Figure 4.8. We calculate
both the 1D (axial) and 2D PC at each pixel image and the mean axial and mean 2D PC
value overall pixels for each image.

As an initial comparison of the PC for the different categories, their distributions are
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visualized in Fig 4.11. When comparing the 2D PC values among the various image cate-
gories, despite sampling the PC for 1000 images per category, the mean values for PC are not
significantly different among the three image categories. However, there does appear to be
some separation, with indoor images having a slightly higher mean value for overall PC. The
difference between distributions, however, is not large enough to classify one image based on
its PC distribution. Results are similar for image-wise mean PC value distributions.

However, when comparing the distribution of all images as compared to all noise types,
all the noise distributions have significantly lower values, even the 1/f distribution, which
matches the natural images in the power spectrum. This can be explained in that images
contain structure and edges, which contribute to phase congruency, while noise distributions
have fewer sharp edges. Again, results are similar for image-wise mean PC value distribu-
tions. Mean PC values for natural images are above 0.1, whereas mean PC values for noise
distributions were below 0.1. This result points to a baseline of phase congruency values as
an invariant property of natural images.

Axial Phase Congruency

A characteristic difference between indoor/outdoor and natural/man-made images is in the
variation of the amplitude falloff between the horizontal, vertical, and oblique axes [98].
Therefore, calculating horizontal and vertical phase congruency separately, variability may
be present in the axial phase congruency for different image categories. The value of mean
horizontal PC to mean vertical PC for each image and fit a line to these points is shown in
Figure 4.12. The 1/f distribution has a very strong fit to the 1:1 line; this should be expected
because there is no directional tendency in the noise distributions. However, PC values are
so low for Gaussian and uniform noise they could not be fit and are not shown. The next
closest fit to 1:1 is the indoor image category, with a slope of 0.54. Both outdoor image
categories have poor fits, and their distributions look similar (this similarity could be due
to poor labeling - see methods). Of note in this distribution is the strong tendency of all
images, especially both outdoor categories, to fall far above the 1:1 line, indicating more PC
as measured along the vertical direction (horizontal lines) than as measured in the horizontal
direction (vertical lines). In addition, the images with the overall largest mean PC values
are for indoor images.

4.4 Methods

Global Phase Analysis

All analyses were performed in Python3 [102] inside the JupyterLab environment [59]. For
the global phase analysis of the individual images, we preprocessed 6 hand-picked 620x826
pixel color images of different types: two cats sunbathing on a textured carpet, a remote
tropical beach, a running trail in the woods, an aerial photograph of a city, a portrait of a
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Figure 4.12: Axial PC Ratios

face, and a riverboat in front of a city skyline. All were captured on a Pixel2 smartphone
and resized using Google Photos. We preprocessed these images by averaging the three color
channels to produce a greyscale image. We then subtracted the mean of each image to center
its pixel values about zero (removing the DC component), and divided by the mean value,
resulting in the image being normalized between -1 and 1. Before taking the Discrete Fourier
Transform (DFT), a cosine window was applied to the image, removing low frequency phase
artifacts caused by abrupt image edges during the DFT calculation. Finally, the DFT was
calculated, extracting the amplitude and real part of the phase spectra.

Local Phase Analysis

For the local phase (PC analysis) and the large-scale global phase calculations, images from
the Places365 dataset [108] were used, which classifies images into the ‘indoor’, ‘outdoor:man-
made’, and ‘outdoor:natural’ categories. Images used were only those classified as falling into
only one of the these three categories, throwing out all others. Images were cropped to a
uniform 512x512 size, averaged over the three color channels to get greyscale images, and



CHAPTER 4. PHASE ANALYSIS OF NATURAL IMAGES 52

normalized to lie between 0 and 1. For the PC analysis only, no cosine window was applied,
as this completely changed the shape of the local energy distribution. Then, 1000 images
from each category were randomly sampled for the analysis. While overall, the categoriza-
tion appeared mostly consistent, especially for outdoor vs. indoor, several images labeled
outdoor:natural were noted to contain significant man-made structures. This may have re-
duced any difference noted between the two outdoor categories. Finally, phase congruency
was calculated as described in the Phase Congruency & Energy section.

4.5 Discussion & Future Work

Global Phase

Global phase entropy does not appear to be a defining factor of natural images. In fact, with
the textured carpet as an example, it appears that only particular man-made objects contain
sparse representations and lower entropy in the Fourier domain, whereas completely natural
(nature) images do not. Even in the specific subgroup of man-made images containing such
structure, the change in entropy is minimal in the specific area of the phase plot where
this structure is visible. While entropy of an image itself appears to be a somewhat helpful
statistic in image space, the entropy of the phase does not appear to be. We suspect this is
because the information is too spatially distributed. Future work could explore and verify
this for the tested images’ phase entropy measures.

Local Phase (PC)

The most notable result in this analysis is the difference in PC distribution values between
images and noise. This difference in distribution points to an invariant image property. A
potential extension is to sample from this distribution to synthesize new images that follow
the same distribution. Images generated using this method may look more like natural
images than 1/f noise, as they will contain edges. However, it is unclear if such an image
synthesized from a natural image-like PC distribution will follow a 1/f amplitude spectrum
or if this is an additional constraint that must be explicitly modeled. It is also unclear
whether these generated images contain actual object-like structure with continuous edges
or spatially distributed phase coherence.

A prerequisite to synthesizing such images is to parameterize the distribution of phase
values such that this distribution can be sampled from. It is clear that the distribution of
PC values in natural images is not Gaussian (Figure 4.11) - an exponential distribution may
be more appropriate and should be explored.

Relatedly, a potentially fruitful line of exploration is an analysis of the spatial distribution
of the PC values of images. Like the images themselves, PC values likely have a strong
correlation with nearby pixels, but these correlations may be dependent on whether or not
the PC value is high or not. For example, if a PC value is high, this is likely to be on an edge,
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and that in one direction, the PC values at 2-neighbor pixels will also be high, and in the
other direction, the 2-neighbor PC values will be low, or anti-correlated. By performing axial
PCs individually, one may be able to predict which neighbors (vertical or horizontal) will
be correlated and anti-correlated. By contrast, if the PC value is low at the reference pixel,
nearby neighbors are also likely to be low on average and, therefore, positively correlated.

Another distribution that could be analyzed for comparison using these methods is the
dead leaves model [66], which incorporates borders and occlusion with scale-invariance. We
expect this model to more closely follow the PC distribution of real images rather than
noise. This is because images generated using this method contain edges and borders that
we expect to contribute larger PC values.
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Chapter 5

Retinal Models of Natural Image
Processing

5.1 Introduction

Among the computational tasks performed by the retina is the compression of visual infor-
mation from the 6-7 million cone photoreceptors that detect incoming light, to the 1.5 million
retinal ganglion cell fibers that convey this information to the brain, is one of the most im-
portant. We can think of the coding scheme used by the retina as an optimal adaptation
that through evolution, is optimized to perform this compression, within a set of relevant
biological constraints. In this context, the constraints for the case of spatial information we
consider here are:

• The coding strategy must transmit relevant information in the visual signal as faithfully
as possible to the brain for further processing (maximize information transmitted).

• The coding strategy must allow for an optic nerve small enough to allow for physical
movement of the eyeball within the skull (limited number of neurons).

• The coding scheme must be robust to the limited precision of neural spikes (limited
bandwidth; modeled as robustness to noise).

• The coding scheme must limit the number of spikes in order to minimize energy ex-
penditure (limited number of spikes).

Through neural network modeling, we can study the relationship between these con-
straints and the optimal coding strategies to satisfy them by training networks with similar
physical structure and loss functions reflective of these constraints. By adjusting the relative
importance of these different constraints for the model through the choice of cost function,
we can explore the landscape of these coding strategies. Finally, we can compare the proper-
ties of these coding strategies to the properties of the coding strategy seen in real biological
retinas, which has been optimized through evolution rather than gradient descent.
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In Karklin & Simoncelli, 2011 [56], the authors model this retinal compression task by
training a single layer, linear/nonlinear neuron model on natural images to produce an
output that conveys as much information as possible about the image. The model contains
few constraints, all of them well biologically motivated. One main finding of this work is
that when given the proper constraints, the model learns a spatial weight function with with
properties that are strikingly similar to receptive fields of retinal neurons. As a first step
towards extending this model into the temporal domain, we present work in reproducing this
result, using Tensorflow [2], a popular software package for training neural networks.

Software packages such as TensorFlow and PyTorch [78] have gained popularity in recent
years, in major part due to their ease of use, and specifically their use of automatic differ-
entiation (autodiff, also sometimes referred to as autograd), in calculating the loss surface
for backpropagation. While the automation and abstraction of these calculations lowers the
barrier to entry, this opaque-ness can make debugging difficult.

This chapter describes an investigation into the mathematical underpinnings of training
this model, with the aim of reproducing the same results. In particular, we discuss issues in
the calculation and backpropagation of the error signal in the mutual information portion of
the loss function. First, I describe and implement a method of circumventing some of these
issues by reformulating the problem as an autoencoder; this effectively avoids the numerical
precision issues by using reconstruction as a proxy for mutual information. I then dive back
into the original issue in the mutual information calculation, and discuss numerical precision
issues in this calculation that lead to difficulties in reproducing this result. Specifically,
in calculating the inverse, and later the determinant of a singular matrix as a part of the
mutual information calculation. In addition, I show that a Tensorflow implementation of the
Moore-Penrose pseudoinverse would also work to estimate the true inverse.

Unlike other chapters in this thesis that highlight the final product and results of com-
pleted research, this chapter intentionally steps through the debugging process for a neural
network model, navigating the steps, pitfalls, and solutions along the way to the desired final
product. My hope is that this walk-through of the process, emphasizing the importance of
simplifying the problem, and taking the time to understand the mathematical fundamentals
that are abstracted away by neural network software, may be helpful to future students
facing similar issues.

5.2 Model Description

In the Karklin & Simoncelli model [56], the early visual system is modeled using a set of 100
linear/nonlinear neurons to encode 16x16 pixel natural image patches, compressing them
from a 256-dimensional space to a 100-dimensional space, in a manner reminiscent of the
retina. In the model (Figure 5.1), natural image patches x are combined with static Gaussian
noise nx. These are fed to linear weights w which are trained, yielding linear output yi. This
in turn is fed to nonlinear functions f (fi in Figure 5.1), which are learned in addition to
the weights. These nonlinear functions are parameterized as mixtures of 500 Gaussians, so
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Figure 5.1: Linear-Nonlinear model from [56].

the shape of the resulting activation curve can be learned. Finally, output noise nr is added
to the output of f , and r measured. The response ri of each neuron i is calculated as:

yi = wT
i (x + nx)

ri = fi(yi) + nr

The nonlinear responses fi are approximated via a first-order Taylor approximation by
Gi, a diagonal matrix where each diagonal entry is the derivative of the response of each
nonlinear function at the output y from the filters W, fi(y). In addition, a vector of learned
offsets fo are added to the output.

ri ≈ GiWT (xi + nix) + nir + fio

The model is trained using gradient descent to maximize an objective function which
maximizes mutual information between the image and the response I(X;R). Mutual infor-
mation is defined as the difference between the entropy of the input X and the conditional
entropy of the input given the response R:

I(X;R) = H(X)−H(X|R)

The model also works to maintain a low overall spiking rate of the output < rj >. These
two quantities are weighted together using the constant λ as a trade-off parameter, with λ
adjusted to achieve an average response value r of one per neuron per image. This gives the
following cost function:

Fcost = −I(X;R) +
∑
j

λj〈rj〉

Fcost = −H(X) +H(X|R) +
∑
j

λj〈rj〉
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Because the global input entropy H(X) does not depend on the model, mutual infor-
mation is maximized by minimizing the conditional entropy H(X|R). The cost function
becomes:

Fcost = H(X|R) +
∑
j

λj〈rj〉

The conditional entropy H(X|R) can be approximated to first order using the determi-
nant of the covariance matrix Cx|r (see paper for a more detailed derivation).

H(X|R) ≈ E

[
1

2
ln
(
2πe det(Ci

x|r)
)]

The posterior Ci
x|r is in turn calculated by the covariance matrix Cr|x of the prior, p(r|x),

multiplied by the weights W and the diagonal matrix of the nonlinear responses G, and
added to the inverse of the global covariance matrix of the input images Cx.

Ci
x|r = (C−1

x + WGi(Ci
r|x)
−1GiWT )−1

This is in turn calculated by combining the global covariance of the images Cx, the
weights W, the slope of the activation function for a given image G, as well as the co
variances of the input noise Cnx and of the response noise Cnr.

Ci
r|x = GiWTCnxWGi + Cnr

This leads to a total cost function to be minimized:

Fcost = E

[
1

2
ln
(
2πe det(Ci

x|r)
)]

+
∑
j

λj〈rj〉

Where:
Ci
x|r = (C−1

x + WGi(Ci
r|x)
−1GiWT )i

−1

Ci
r|x = GiWTCnxWGi + Cnr

This training can be done using typical neural network training methods. An image x is
fed into the network, resulting in a response vector r and slope of activation G. The cost
function Fcost is then evaluated based on these values.

By training this network on many batches of natural image patches, and adding the
correct amounts of noise, the authors obtained weight vectors that share many similarities
to neurons in the retina. First, each of the 100 individual weight vectors (corresponding to
the filter of one hidden layer unit or ‘neuron’ in the input image space) is spatially localized
in one small area of the image (Figure 5.2). Second, the weight vectors self separate into
two populations, one selective for light patches with dark annuli surrounding them (ON-
center), and the other population selective for dark patches with light annuli surrounding
them (OFF-center). Finally, all the weight vectors in a given population, put together, tile
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Figure 5.2: Expected Results - Two neural populations [56].

the entire space of the input image, causing the network to code both the ‘on’ and ‘off’ signal
in parallel.

5.3 An Autoencoder Solution

The goal here is to reproduce these properties of the weight vectors in this model. However,
as we shall see in the next section, there are numerical instabilities inherent to the mutual
information calculation in the loss function. Before diving into solving this issue however,
we will see that this problem can be avoided. Because these instabilities come about as part
of the mutual information calculation, a reformulation of the problem allows us to avoid this
calculation altogether. This is achieved by formulating the problem as a 2-layer autoencoder,
using image reconstruction as a proxy for mutual information.

This auto-encoder network (Figure 5.3) adds a simple nonlinear layer to the output of the
encoder, re-expanding the network from 100 nodes, back to the original 256, the dimension
needed for a reconstruction of the original image patch. The loss function for this model then,
is simply the reconstruction error between the original image path and this reconstruction.
Here, we use the L2 norm.

This autoencoder model is trained with the following cost (loss) function:

Fcost = ||Xrecon −Xorig||2 + λweight〈wj〉+ λspike〈rj〉

The first term,
||Xrecon −Xorig||2
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Figure 5.3: Simple Single Layer Autoencoder with added noise allows a loss function based
on reconstruction of the image patch, rather than based on mutual information between the
image patch and the neural representation. This is achieved by simply adding a set of a
fully connected linear weights which learn to reconstruct the 16x16 image patch (shown).
Optionally, a non-linear response can be added onto the output to increase the power of the
reconstruction network.

signifies the L2 norm on the reconstruction of the image patch. The second term, λweight〈wj〉
is a soft weight constraint, to keep the weight vectors from imploding/exploding. The final
term, λspike〈rj〉, is the activation constraint, encouraging the solution to have a low number
of spikes (energy constraint).

This model can be trained using Tensorflow, which uses autodiff to calculate the derivative
of this cost function with respect to the weights dFcost

dW
, and takes a small step in the direction

of minimizing the cost function by slightly changing the weight values accordingly using
backpropagation. This entire process is then repeated for a new batch of images, for the
desired number of iterations.

5.4 Revisiting Mutual Information: Instabilities

While the autoencoder solution avoids numerical stability issues, it also introduces it’s own
additional issues and biases. First, it is at best debatable that the brain is actually attempting
to reconstruct the image signal from the retina pixel-for-pixel. Even if this is the case, or
that reconstruction is an appropriate stand-in for mutual information, an L2 loss is not
necessarily appropriate for measuring the quality of such a reconstruction. Furthermore, the
brain is not limited to a simple, single linear layer to reconstruct the input image patch, as
in this model, though from an efficient coding perspective, a simple reconstruction would
likely be preferable. While the addition of a pointwise non-linearity to the linear output



CHAPTER 5. RETINAL MODELS OF NATURAL IMAGE PROCESSING 60

Figure 5.4: Cx, Covariance of Input Images

of the reconstruction weights is possible, one must take care as the approximately normally
distributed ground truth image patch with values in the range [-3,3] has negative pixel values
that cannot be reconstructed with the output of a standard Rectified Linear Unit (ReLu),
or Sigmoidal function (Sigmoid), which have positive-only outputs. It is worthwhile then, to
revisit the mutual information formulation, and diagnose the issues, so they can be addressed
in the context of the original model.

When first implementing this model in Tensorflow, one runs into the following error:
“Cannot compute inverse, determinant is zero to working precision.” Upon further investi-
gation, this attempt to invert a matrix with zero determinant happens in the inversion of
the Cx|r term, for which the determinant is calculated in the equation for H(X|R).

Mathematically speaking, for a square matrix which Cx|r is, there are only a few reasons
for a zero determinant. Either an entire row is zero, two rows or columns are equal, or
a row or column is a multiple of another. Computationally speaking however, there is
another potential cause of a determinant evaluating at zero. If the values in the matrix are
small enough such that that when multiplied together (as is done in the calculation of the
determinant), they become evaluated at zero by the computer. Given the small numbers in
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Figure 5.5: Image Pixel Distributions

these matrices, and the large 126x126 size of Cx|r, the last of these is the likely culprit.
Looking at the calculation of Cx|r itself, we see that the root of this problem may lie in

Cx, the covariance matrix of the input images having too small values, though Cx appears as
expected for vectorized image patches (Figure 5.4). Specifically, because the original 16x16
image patches are vectorized to 256, the covariance matrix appears as 16x16 blocks of the
256 pixel strips correlated highly within themselves and the patches surrounding them along
the larger diagonal, and with distant strips less correlated to each other.

5.5 Understanding a Single Example

The approach to solving the problem is to simplify it as much as possible. We take the
calculations out of the difficult to debug Tensorflow graph framework, implementing it di-
rectly in numerical python (NumPy) [48]. This allows us to use print statements withing the
calculation to easily query various steps within the calculation, as well as keep calculated
values in the global scope for later accessing. Another simplification is to remove the batch
dimension, reducing all the dimensions by one, and ensuring there were no mistakes caused
by batch application of matrix operations. This allows us to first work through the simpler
process of calculating the mutual information for one image patch by itself, and then simply
put that in a loop to sample multiple images.

To address this problem, we run these calculations outside of the Tensorflow graph,
and also with a new dataset (described below). This immediately gets past the error of
the determinant of Cx|r term being zero, but causes an overflow error. The source of this
overflow error is identified by deconstructing the Cx|r term. There are some values in the
Cx matrix that are very small. In the process of doing the full Cx|r calculation, Cx ends up
being inverted a total of 3 times, and this is causing values in Cx|r in turn to be relatively
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Figure 5.6: Inverting Matrix Cx with small values

large. When the determinant of Cx|r is computed - which multiplies many of these large
values together - there is a numerical overflow.

The reason for this discrepancy is uncovered by turning to the distribution of the image
set. The original image set’s pixel values is log-normed and then z-scored during preprocess-
ing, giving a Gaussian distribution with mean zero. An alternative normalization technique
is normalizing by the geometric mean. This yields a similarly shaped distribution, but with
all values between zero and 1 (Figure 5.5). This change barely alters the shape of the distri-
bution of Cx and Cx|r, but changes their ranges dramatically (Figure 5.6), and the overflow
error in the determinant persists. This distribution changes slightly with the exact image
set chosen, but the normalization has a huge effect.

This relatively small change in input resulting in a huge numerical change at the output is
reminiscent some N-R solvers. All the matrix inversions cause the results to implode/explode,
finally with the determinant causing either numerical overflow or underflow, with underflow
coming in the form of a matrix being singular to working precision. However, this instability
in the calculation can be pinned down to the magnitude of the covariance matrix being
either below or above 1. To address this, we normalize the distribution, calculating the
correlation matrix instead of the covariance matrix, putting all values in the range [0,1]. It
seems plausible then that the original paper may calculating the covariance matrix rather
than the correlation matrix.

5.6 Matrix Identity for Increased Numerical Stability

While image normalization stabilizes the value of C−1
x , fixing the overflow error, the deter-

minant calculation remains unstable, as some of the values in C−1
x end up being fairly large,
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on the order of 10. This in turn causes the determinant of C−1
x to not be finite. To handle

this problem, we turn to the matrix identity [74]:

ln(det(a)) = tr(ln(a))

With regards to numerical stability, calculating the trace of a matrix is preferable to the
determinant. Using this identity to replace the determinant calculation for the trace, we can
modify the cost function as follows to give more numerical robustness:

−H(X|R) = −E[
1

2
ln 2πe det(Ci

x|r)]

−H(X|R) = −E[
1

2
(ln(2πe) + ln(det(Ci

x|r)))]

−H(X|R) = −E[
1

2
(ln(2πe) + tr(ln(Ci

x|r))]

−H(X|R) = −E[
1

2
ln(2πe) +

1

2
tr(ln((Ci

x|r)))]

Because we care about the gradient of −H(X|R) rather than the value itself, the con-
stant 1

2
ln(2πe) term vanishes when taking the gradient of both sides:

−∇H(X|R) = −∇E[
1

2
tr(ln(Ci

x|r))]

Giving the following cost function:

Fcost = tr(ln(Ci
x|r))

5.7 Transitioning to Tensorflow

Using this trick finally gets past the non-finite determinant issue. The true test however, is
implementing the equation within a graph, and testing if the equation truly calculates mutual
information. If so, a neural network that uses this equation as it’s loss function should become
trained. That is, it’s cost over time should go down, and it’s weights should change. Ideally,
the network’s weights should reproduce the results from Karklin & Simconcelli, 2011.

Towards this end, we convert the single iteration NumPy code into a Tensorflow graph,
and implement batch training, using the modifications described in earlier sections. Im-
plementing batching was a bit tricky, as matrix multiplication in Tensorflow does not yet
support broadcasting. To solve this, a vectorized batch matrix multiply function, while pos-
sible, is extremely slow, with 10 iterations taking on the order of minutes, even on a GPU.
To speed things up, we implement batched matrix multiplication using Einstein summa-
tions, which are significantly faster, and utilizing them makes training time practical. They
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Figure 5.7: Initial Structure in Weights

also result in much cleaner code overall; multiple batched matrix multiplications which in-
cluded transposes becoming brief one-liners. Take for example the calculation of Crx, which
becomes:

crx = tf.einsum(’ijk,lk,lm,mn,ino->ijo’ G, w, cnx, w, G) + cnr

5.8 Weights Becoming NaN

With these changes we can begin training the mutual information model. Structure begins
to emerge in the weight matrix (Figure 5.7). This is a strong sign that the cost function is
indeed meaningful, and the network is learning a set of weights that will extract information
from the natural images to minimize the cost (maximize mutual information). This is good



CHAPTER 5. RETINAL MODELS OF NATURAL IMAGE PROCESSING 65

Figure 5.8: Poorly Conditioned Matrices

news, however we soon run into a different problem. After just over 300 iterations each of
1000 batched training examples, the values in the weight matrix become NAN. The number
of successful iterations before this error happened depends on the chosen learning rate, but
a learning rate small enough to avoid this error is not sufficient to train the network.

5.9 Poorly Conditioned Cost Function

In neural network training, this problem of weights becoming NAN is often times due to
a poorly conditioned matrix. If such a matrix is present, a small learning rate r will be
appropriate for the parts of the matrix with small eigenvalues, but a large learning rate
is necessary to train the parts of the matrix with large eigenvalues. This comes from the
backpropagation calculation on a poorly conditioned matrix M , calculated as δCost

δM
. Large

learning rates will quickly cause the parts with smaller eigenvalues to become NAN, and
smaller learning rates will never be able to train the larger parts of the network.

To determine if this may be the problem, we compute the condition number of matrix
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Cxr, the matrix used to calculate the cost function. As this is not implemented in Tensorflow,
we do this manually, calculating the ratio of the maximum to the minimum eigenvalues of
Cxr. We use SVD for each individual instance of Cxr This greatly slows computation - as
SVD operation on 1000 256x256 matrices for each of 300 runs is computationally expensive.
Eventually, we find that indeed, the condition numbers are all poor, all above 9000 (Figure
5.8). Importantly, this distribution has a very long tail on the high side, meaning some
condition numbers were above 14,000. It makes sense that once in awhile, an extremely high
condition number would cause a divide by zero and a resulting NAN, that would propagate
through to the weights.

Plotting the evolution of the condition numbers over training however, while one might
expect that over training, the condition number increases over time until the matrix is so
poorly conditioned that the weights became NAN. Instead, what we see is that the average
condition number actually decreases over time, from an average well above 9000, then lowers
over training until it bottoms out at around 9000. It seems then, some other constraint on
the network is to blame, forcing the condition number to be above 9000, but not lower. And
without the ability to go lower, the network cannot train any further.

5.10 ReLu & a Weight Constraint

One important simplification in this implementation as compared to the original paper is
to use a predetermined off-the-shelf point-wise nonlinear function, rather than the reported
method of learning a generalized nonlinearity as estimated by a sum of Gaussians. Up
until now we have used a sigmoidal function. We note that the nonlinearities learned by
the network appear to be less sigmoid looking, and more like a rectified linear unit (ReLu)
(Figure 5.2. It stands to reason that we may want to use a ReLu function instead of the
sigmoid, in order to better reproduce these results.

Applying this weight regularization as a soft constraint, we get the following cost function:

Fcost = tr(ln((Ci
x|r))) + λweight〈wj〉+ λspike〈rj〉

5.11 Moore-Penrose Pseudoinverse of Cxr

Finally, making this change we began to see localized, discrete filters that separated into
on and off-like weight vectors, and appear to somewhat tile the input image space (Figure
5.9). Indeed, the network is learning something like mutual information, and we are close
to reproducing the paper’s results. However, the filters are not of similar sizes, and more
importantly, do not show the center-surround shape we would have expected. Furthermore,
these results are always be followed by a NAN error, as before.

Though it is future work to determine why the ReLu works so much better than the
sigmoid, it is possible that the sigmoid may cause the network to be over constrained in
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Figure 5.9: Localized, on and off Filters

some way, as the activation output of a neuron from a sigmoid function by definition cannot
go above 1. The activation constraint λ encourages activations to be on average, one per
neuron per image. With a sigmoid, this would mean all neurons are always maximally
activated for all images, which is not an information dense code. The ReLu however, is
unbounded in the maximum value of activation it can have, which would give the network
enough freedom to learn an information dense code while maintaining the activation average
of 1 per neuron per image.

Also of note is the improvement of the condition number of Crx. While it still follows the
pattern of improving over training, the value now starts and ends at a much more reasonable
number, on the order of 300-500 (Figure 5.10).

There is an additional weight constraint implemented in the paper that we so far have
not included in our model. Specifically, each of the 100 weight vectors ~wi of W was con-
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Figure 5.10: Condition Number Improves with Weight Constraint

strained to have ‖ ~wi‖ = 1. This serves as a form of regularization that could keep values
from running away. Indeed, adding this normalization ended the NAN error. In our im-
plementation however, this constraint causes weight vectors to lose their spatial localization
seen before; they appear more like the original distributed filters. Despite various hyperpa-
rameter adjustments (changing input/output noise, activation constraints, L1 vs L2 norm,
etc), localized weights do not seem to emerge. Exploring this is left to future work.

Once the network is training and learning the mutual information calculation using the
ReLu network, the final step is to implement the Moore-Penrose pseudoinverse [10], and
try using it in place of the matrix inverse for the Cxr inverse calculation. If the inverse
calculation is the same, it should give the same result. We implement it using the SVD
method [79], which goes as follows for calculating A+:

1. Calculate SVD on A: UΣV ∗ = A

2. Calculate Σ+ is the inverse of each diagonal value, except zeros, which remain zero.

3. Calculate A+: V Σ+V
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Figure 5.11: Difference between C+
xr and C−1

xr Decreases

We use this method to calculate C−1
xr within the Tensorflow graph, and use it’s value as the

input to the cost function. However, this causes another major roadblock. The Tensorflow
gradient descent optimizer cannot propagate the gradient through the SVD calculation. As
of 2015, this functionality has been requested but has not yet been implemented. This
problem does not arise when calculating SVD to investigate the condition number, as this
value was simply reported, and not used for the optimization.

Another option is to use an alternative method for the pseudoinverse calculation, such as
the Ben-Israel & Cohen iterative method. Rank decomposition and QR methods however,
would likely run into the same problem of gradient descent not being defined over them.

In order to confirm that the calculated pseudoinverse is correct, we use the true inverse
for the training, and report back the Frobenious norm for the difference between the two
values. This allows us to do the SVD calculation without putting it in the cost function. If
the calculations are equivalent, we expect this value to be low. Indeed, they are fairly small
considering the size of Cxr and condition number, around 8 by the end of training (Figure
5.10). Interestingly, the norm decreases over training, and that the decrease followed the
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same pattern as the condition number (Figure 5.10). This decrease in condition number may
cause the decrease in the distance between the two methods. This would make sense if Cxr
has some very small values, as these are the ones that will be inverted and become very large
in the true inverse, when the true inverse would have just reported zero.

5.12 Conclusions

We step through the process of reproducing the result from [56], debugging implementation
issues, particularly those related to computational instabilities which are exposed by autodif-
ferentiation software in Tensorflow. Future work is in the direction of reproducing this work.
One option is to take the derivative of the cost function by hand, and train the network
by applying this gradient manually at each training step. This would avoid the instabilities
cause with auto-differentiation software such as Tensorflow. Another area of exploration is in
additional constraints on aspects of the model such as the weight matrix, that may alleviate
the computational instibilities.

5.13 Acknowledgements

I firstly thank Dr. Bruno Olshausen for introducing me to this paper, proposing the
Magno/Parvo project that prompted the investigation into reproducing this paper’s results,
and for guiding me along the way. I also thank Dr. Shariq Mobin for his write-up of the
derivations for this paper that he wrote for journal club; this framework helped greatly in my
understanding of the mathematics of this paper. I also thank Dr. Jaijeet Roychowdhury for
giving me the mathematical background to more deeply understand the issues in training this
model during his Numerical Simulation and Modeling course, as well as his open-mindedness
in allowing me to investigate this as a final project during his course, despite his distaste for
neural networks.



71

Chapter 6

Conclusion

6.1 Summary of Contributions

In this thesis, I have described a set of explorations surrounding natural scene statistics.
This includes the development of custom hardware to collect a dataset representative of the
signal that reaches the human retina. I have also described the analysis of this and other
natural scenes datasets in terms of space, time, power spectrum and phase, with the ultimate
goal of understanding the relationship of these statistical properties to the coding properties
of the visual system.

In chapter 2, a novel, high-fidelity world, body, head, and eye tracking device is used to
create a dataset of the visual signal experienced by humans as they go about their everyday
life. This device can record data both inside and outside of the laboratory, in both seated
and mobile tasks. It is designed with ergonomics in mind, and is relatively lightweight
and unobtrusive for the subject, ensuring the recorded motion is as natural as possible. It
also records this data at spatial and temporal frequencies higher than have been measured
previously in such a device, and incorporates depth information for the scene in the same
frame of reference as the high-resolution camera.

In chapter 3, this tracking device is used to collect a dataset of 15 everyday tasks, each
performed by 3 human subjects. We analyze this data in terms of the spatiotemoral power
spectrum, showing that the characteristics of the spectrum previously reported for environ-
mental motion only are conserved at the higher spatial and temporal frequencies that were
previously unable to be measured. In addition, three conditions are compared, each progres-
sively increasing the amount of motion present on each scene from environmental only, then
including head and body motion, and finally including eye motion to re-create as closely as
possible the signal present on the subject’s retina. I show that head/body motion modulates
the power spectrum of the incoming spatiotemporal signal, boosting mid range temporal
frequencies. I also show that eye motion also modulates this signal, further boosting the
mid and high range portions of the temporal frequency spectrum. These modification to the
signal can be thought of as a temporal whitening, a property which has favorable properties
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from an information theoretic standpoint.
In chapter 4, considering the larger perceptual relevance of the phase spectrum as com-

pared to the power spectrum, I identify statistical regularities present in the phase spectrum
of natural images. First, I analyze structure in the phase spectrum of natural images, using a
windowed entropy analysis to identify substructures in this spectrum that correspond to per-
ceptually relevant information including regions with repeated textures. Then, contrasting
this global phase measurement, we turn to a more locally defined property of phase, known
as ‘phase congruency’ [61], a quantity that can be used to identify image boundaries such as
edges and corners. We show that phase congruency values in natural images are much larger
in natural images than for various categories of noise images, and that the distribution is
slightly different even among different categories of natural images (indoor/outdoor/man-
made/natural). As phase congruency can be defined separately for different orientations,
we also explore directional biases between these different categories. While this difference
may not be large enough to allow automatic categorization, such prior knowledge about the
underlying structure of natural images could be used to inform image and video compression
algorithms, even allowing for adaptive compression algorithms based on content type.

In chapter 5, we utilize the statistics of natural signals to model the human visual system
using a single layer neural network. We show many of the difficulties in training such a
model, addressing computational instabilities that hinder the training of this model using
auto-differentiation software. In addition to modifying the loss function and training protocol
to address these issues, we also demonstrate a method of reformulating the model as an
autoencoder, to avoid these computational instabilities.

6.2 Future Work

Mobile Tracking Device and Data Set

There are areas for improvement and continuation of data collection with our head mounted
eye tracking setup. Firstly, in future iterations of the tracking device, there are improvements
possible such as less bulky cameras, a second camera to collect high-fidelity binocular data,
as well as a laptop acquisition computer for improved battery life and ease of data collection.
With respect to the type of data collected, while we collected data using this device for a
specific set of 15 tasks, this device could also be used to study human perception in a wide
range of additional settings. To improve our dataset, a wider variety of outdoor and mo-
bile tasks could be included, including tasks performed in more nature-heavy environments.
Furthermore, this device could be used for completely separate studies, for example to study
specific sensory-motor tasks like grasping, or eye movements in a variety of fast-paced tasks,
and could be used to compare clinical and non-clinical populations. In more applied settings,
data recorded from our device could help inform more specialized tasks such as driving or
specific job-related tasks, especially those in which fast motion is present and task-relevant.
Additionally, the use of object recognition, pose recognition, and image segmentation soft-
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ware [82, 84, 71] would allow for high-level analysis of the video data, and could even be
performed real-time in some cases.

Natural Tasks Data Set Analysis

With the dataset we have collected, there are countless potential analyses possible. Within
experimental neuroscience, this dataset could be used as the visual stimulus while performing
any variety of cellular recording techniques (intracellular, extracellular, calcium imaging,
etc). The most obvious recordings would be from the postmortem human retina, to study
the response of neurons in the human retina to this natural stimulus, but other recording
situations could be easily imagined.

From a natural scene statistics point of view, as we have seen with spatial phase, the power
spectrum analysis described above only just scratches the surface. An analysis of temporal
phase congruency, for example, is an obvious extension. Given the temporal natural of this
data, the statistics of optic flow on the retina would be an interesting, and neurally-relevant
direction [100], as this has been shown to be important for tasks such as navigation [73].
In addition, while the first step of our Fourier analysis collapses the three color channels
into a single greyscale channel, we pair our RGB recording with images of a known color
calibration target for each lighting condition, allowing any of these natural scene analyses
to incorporate color. This is particularly relevant in the magno/parvo/konio system of the
retina and LGN, which pairs spatiotemporal signal properties with color opponent channels
in parallel pathways.

As we used a lens subtending approximately 60◦ horizontally, there is an opportunity with
our dataset to study the statistics of not only foveal vision as we have with our spatiotemporal
Fourier analysis, but also how the visual signal may deviate statistically as one moves into the
mid-periphery. In this situation, it becomes even more important to model the defocus blur
for peripherally-viewed objects that are in a different depth plane than the gaze point, an
additional area of future work. In all of these contexts, our dataset allows for the comparison
of these statistics for the separate conditions of environmental-only motion, environmental
with body and head motion included, and finally for the complete recreation of the retinal
signal, with eye motion layered on top of the other three.

Finally, in addition to the recorded visual data, the data from the motion trackers that
record the head and body position and motion during the tasks is an additional untapped
area of exploration from this dataset. Even on its own, the variability of motion profiles
between tasks as well as between individual subjects will be an interesting dataset to explore.
Furthermore, when combined with the visual portion of the dataset, it could be used to
compare to the visual motion seen in the recordings, as well as to tease apart the separate
effects of head versus body motion, which cannot be separated out from the visual data
alone.
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Extending classical natural scene statistics approaches, we can also explore the natural vi-
sual signal by studying the decomposition of the recorded video, as well as the statistical
properties of the convolution of this video data with various classes of filters. For example,
PCA and ICA [50], though likely much simpler than the true decomposition performed by
the visual system, can likely shed light on the major modes of variation in these dynamic
signals, and can also be used to better understand the effect of various motion types on
that variability. Such methods can be applied to full frames of the video, chunks of the
video, or even optic flow computed from the motion vectors between two subsequent frames.
Increasing in complexity, pyramidal decomposisitions such as the spatiotemporal steerable
pyramid, are more neurally plausible, and may begin to shed light on the relationship be-
tween the natural retinal signal and the representation in the early layers of visual area
V1. Learned filter representations such as in spatiotemporal sparse coding [76] may show
interesting differences in the learned basis functions when ego-motion is included. And as
we have seen in Chapter 5, this type of video data can be of use to understand the principles
underlying earlier stages of visual processing including the retina. Manifold learning [19] is
also a promising direction in this area, which could benefit from this high-fidelity dataset of
the retinal signal.

In summary, we have designed and built a new data high-fidelity mobile recording device,
and used it to create a novel dataset for use by the Vision Science, Neuroscience, and Com-
putational Vision communities. We then use this data to show the effects of environmental
and ego motion on the dynamic visual signal processed by the human retina, and statistical
properties of this signal that have implications for the coding properties of the human visual
system.
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