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Abstract Mixing through narrow gaps connecting ad-

jacent flow paths is an important mass and heat transfer

process for many thermo−hydraulic applications. Such

flows are considered balanced when the inlet flow speeds

of adjacent subchannels are matched. In the present

work, experimental observations are presented for bal-

anced and unbalanced flows including the mixing co-

efficients and flow visualization within the gap. The

large coherent structures are identified, with frequency

in general agreement with those reported by previous

investigators. To utilize Proper Orthogonal Decomposi-

tion (POD) for the discrete data yielded by PIV, we em-

ploy method of Singular Value Decomposition (SVD).

The bulk of the mixing is attributed to the dominant

modes and demonstrate that mixing rates estimated

from velocity measurements are in fair agreement with
mixing coefficients based on tracer concentration mea-

surements.
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Orthogonal Decomposition
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1 Introduction

Mixing through narrow gaps connecting adjacent flow

paths may result from pressure gradients across the gap

(due to unbalanced inflow or a back-pressure differ-

ential), small scale turbulence in the gap, or the de-

velopment of large-scale, periodic flow structures re-

sulting from the shear between flow in gap and sub-

channel. The presence of these large-scale, coherent flow

structures can drastically influence the rate of mixing.

(We define as balanced conditions having equal flow

speeds, and Reynolds numbers, at both sub-channel in-

lets. Whereas for unbalanced flows, the inlet Reynolds

numbers are not matched.)

Several researchers have experimentally studied the

flows in parallel channels connected by narrow gaps
[1, 2, 3, 4, 5, 6, 7, 8]. In particular, Meyer [8] provides

a review of inter-channel mixing, and discusses the un-

derlying flow processes, including the large-scale coher-

ent structures. Inter-channel mixing has also been nu-

merically investigated by several researchers, including

Chang and Tavoularis [9] [10], Home et al. [11], Derksen

[12], and Home and Lightstone [13]. Merzari et al. [14]

also used Proper Orthogonal Decomposition (POD) on

numerical and experimental data to explore the under-

lying dynamics of the flow oscillations observed in the

inter-channel flow.

As more advanced numerical models for thermo-

hydraulic applications are developed, there is an in-

creasing need for validation data. However, few stud-

ies have produced experimental data sets of mixing

through narrow gaps that are readily suitable for the

validation of high-fidelity simulations. In particular, these

flows are sensitive to small changes in boundary con-

ditions (for example, Ko et al. [15] demonstrates such

sensitivity of a similar flow).
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This paper presents an extension of the work re-

ported in Mäkiharju et al. [16] and Yoon [17], in which

the flow in a canonical geometry was investigated. The

inlet flow conditions were extensively surveyed via Laser

Doppler Velocimetry (LDV) and the bulk mass trans-

fer through the narrow gap determined based on fluid

mass flow rate and fluorescein tracer dye concentration

measurements at the channel inlets and outlets. These

measurements were conducted for varying gap dimen-

sion and flow rates. Particle Image Velocimetry (PIV)

was employed to visualize the flow within the gap at se-

lect conditions to examine the dynamics of the mixing

phenomena. Singular Value Decomposition (SVD) was

utilized to analyze the PIV data by decomposing the

flow field and to identify the most energetic coherent

structures in the gap. Subsequently, the strongest SVD

modes were used to estimate the mixing rate, which had

satisfactory agreement with mixing determined more

directly from measurements of dye concentration. In

addition to providing another way to estimate the mix-

ing rate, this approach allows us to determine which

structures account for the majority of the mixing.

The experimental setup and the inflow conditions

are described in §2. The time averaged results of in-

tegral mixing of both balanced and unbalanced inlet

mass flow rates are presented in §3. The flow structures

within the gap between the channels using SVD are

examined in §4, and data used to estimate the mixing

coefficient in §5. Details of the observed coherent struc-

tures based on analysis of the PIV data is provided in

§4, and the estimation of the mixing coefficients based

on the PIV in §5. Finally, §6 summarizes the findings.

2 Experimental Setup

The flow loop was developed to examine the inter-channel

mixing between two, parallel channels with square cross

sections connected by a rectangular gap, as shown in

Fig. 1. Both channel A and B have cross-section di-

mensions of 127 mm × 127 mm. The hydraulic diameter

Dh, defined as Dh = 4Aw/Pw where Aw is the cross-

sectional area and Pw is the wetted perimeter of the

channel, is 127 mm for each channel. The gap width Wg

and length Lg are fixed at 228.6 mm and 1219.2 mm,

respectively. The gap height Hg can be varied from 0

to 50 mm.

Figure 2 shows the flow loop’s piping and instru-

mentation diagram.

The flow into each channel was conditioned with a

series of pressure drop plates, a flow straightener, mesh

and a 6-to-1 asymmetric contraction. This led to a low

turbulence inflow into the channels without significant

swirl. The contraction was followed by boundary layer

x (u)y (v)

z
(w

)

Width, Wg

Height, Hg

Channel A Channel B

Fig. 1 Cross-sectional geometry of the test section and the
coordinate system used for the boundary layer description.
Axes convention follows the right hand rule, with the origin
y = 0 defined at the beginning of the gap, and origin at the
center of the gap (axis offset in figure for clarity).

Fig. 2 Piping and instrument diagram of the flow loop.

trips to hasten the transition to a turbulent boundary

layer on the walls of the channels. Fig. 3 shows the

detailed drawing of the test section, contraction, flow

conditioner, and trip plate; Fig. 4 identified the fields-

of-view (FOVs) used for the PIV measurements.

Two independently controlled pumps produced the

flow into each channel. Both pumps were controlled by

Yaskawa E7 variable frequency drives (E7LVD024CFX)

and drew water from a shared 17 m3 reservoir. The flow

was returned to the reservoir after passing through the
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Fig. 3 Geometry of the test section and flow conditioners,
with the trip plate shown in detail D. The coordinate system
origin (x = y = 0) is defined at the center, bottom plane of
the gap. (Note that the coordinate system of PIV is different
from that of LDV shown in Fig. 5.) All dimensions are in
millimeters, and absolute positions accurate within ±2 mm.

test section. The volume flow rates at the test section in-

lets were measured with Omega Engineering SYS/FTB-

109/FLSC-18B turbine flow meters with mfg. specified

accuracy of ±0.5 % of reading. The volume flow rates at

the outlets were measured with two Omega Engineering

FTB740 turbine flow meter with FTB700 transmitters

with manufacturer specified accuracy of ±1 % FS (±6

gpm).

The water temperature at both inlets and outlets

was measured by four 4-wire 100 Ohm platinum Resis-

tance Temperature Detector (RTD) sensor P-M-A-1/4-

6-0-P-3 with a specified accuracy ±(0.15 + 0.002|T |) °C
from -100 to 450 °C. The RTD was periodically com-

pared against an ice bath, and found to be accurate

within 0.4 °C (consistently giving a high reading), and

at room temperature agreed with a Mannix DLAF-8000

to within 0.3 °C.

The pressure immediately downstream of the bound-

ary layer trip in channel B was continuously measured

with an absolute pressure transducer Omega Engineer-

ing PX219-030A10V (with PS-4E snubber) and a man-
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Fig. 4 The three fields of view (FOV) used for the PIV. Note
the gaps between the FOVs are areas blocked by structure
and are not accessible for PIV.

ufacturer specified accuracy of ±0.25 % FS. Static pres-

sures at outlets of both pumps and at the beginning of

the flow conditioners (measured solely for system per-

formance monitoring and operator safety) were mea-

sured with Omega Engineering PX303-200G5V with a

specified accuracy of ±0.25 % BFSL (±0.5 psi). The

critical pressure difference between sides A and B, 6.45

Dh (32.25 inches) upstream of the gap was measured

with an Omega Engineering PX760-06WCDI with a

specified accuracy ±0.17 % FS of nominal range, and

also measured using water-air manometers with esti-
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mated accuracy of ±0.03 inches (±0.76 mm) H2O. The

lines to both transducers were periodically flushed to

remove any gas bubbles.

2.1 Inflow Conditions

The Reynolds number based on the channel’s hydraulic

diameter in both channel inlets was varied from Re =

4×104, 6×104, 8×104, to 1×105. With 20 °C water,

this corresponds to average inlet flow speeds into the

channels of 0.32, 0.47, 0.63 and 0.79 m/s, respectively.

For balanced cases the inflow Re of both sub-channels

are equal, and all four Reynolds numbers listed above

were studied, with this paper presenting data for lowest

and highest Re. For the unbalanced flows, focus was on

sub-channel A with inlet ReA = 105 and sub-channel B

with ReB = 4, 6 and 8 x104.

The flow conditions in the channels upstream of

the gap, but downstream of the boundary layer trip,

were surveyed using two dimensional Laser Doppler Ve-

locimetry (LDV) measurements of the axial flow veloc-

ity. LDV measurements were conducted when the inter-

channel gap was closed. Fig. 5 presents the boundary

layer profiles of the inflow. The shape factorHs is 1.4 for

the turbulent flow, and 2.6 for the laminar flow [18], the

near wall flow profiles indicate that the boundary later

is laminar/transitional at the lowest Reynolds number,

and becomes turbulent at the higher values. For the

flow conditions investigated the boundary layer shape

factor was found to be 1.5 for all cases, except Re =

4×104 for which the shape factor was 2.4. (Additional

detail including fluctuating quantities are reported in

Mäkiharju et al. 2015 [16].)

2.2 Measurement of Inter-Channel Mixing

The transport and dilution of tracer dye was used to

measure the inter-channel mixing. The bulk mixing co-

efficients were calculated based on measurements of the

concentration of fluorescein sodium salt (F6377, Sigma-

Aldrich) at the inlets and outlets of the two channels.

The dye was injected immediately upstream of the B-

side pump using a Pulsatron ChemTech dual-head Peri-

staltic Pump (model XP100-LG-LX) that according to

specifications provides a flow rate repeatable within

±5 %. The dye concentration of samples drawn from

the flow was measured with a Turner Designs Cyclops

7 (C7) fluorometer. Additionally, a secondary custom

fluorometer was used to compare against C7 to detect

anomalous readings as they occurred (e.g. due to bub-

bles getting lodged in the C7 sample chamber). Based

Fig. 5 Boundary layer profiles at y/Dh = −4.45 in channel
A. The origin y = 0 is defined at the beginning of the gap
[16] and for convenience x is set to zero on the channel wall.

on calibration with samples of known dye concentra-

tion, the uncertainty of the C7 fluorometer was deter-

mined to be ±0.5 % of the reading. The injection of dye

also permitted qualitative visualization the flow struc-

tures in the gap and within the channel, as shown in

Fig. 6.

Fig. 6 Large structures made visibly by dye for balanced
flow Re=[10 10]×104 with 50 mm gap height. Left: looking
at the two channels and gap with portions of FOV 1 and 2
visible. Right: looking into the gap from channel A side with
portions of the three FOV’s visible.
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2.3 Flow Field Measurements in the Mixing Gap

Two component planar PIV was used to obtain the ve-

locity field data within the gap between the channels

Due to the the long gap length, independent PIV data

sets were acquired at the 3 FOV locations show in Fig.

4. For the test section discussed in this paper, PIV was

recorded for the three FOVs with 10, 20 and 50 mm

gap heights, and for [ReA ReB ], henceforward referred

to for brevity as Re,= [4 4], [10 10], [4 10], [6 10] and [8

10] ×104, at 12 Hz, 4,000 image pairs per location and

condition with 223 x 298 mm FOV size. Fig. 4 shows

the location of the FOVs in the gap window with re-

spect to the origin at the center bottom of the gap.

A laser light sheet was located at the center plane of

the gap, and the PIV images were recorded with DaVis

7.2.2.470 and processed with DaVis 8.1.4.36762 from

LaVision Inc. The seeding particles were nominally 12

micron hollow glass beads. The camera was an Imager-

Pro with 1600 × 1200 pixel resolution and 12-bit depth,

and a Nikon 28mm 1:2.8D AF Nikkor lens. Illumination

was provided by a Nd:YAG Dual Cavity pulsed laser -

Quantel Evergreen PIV 200, 2 x 200 mJ/pulse at 532

nm, 15 Hz pulse rate connected to a light arm that

traversed alongside the camera on Linos rails.

The time-averages were subtracted from the instan-

taneous vector fields, and a geometric mask applied

to remove any test section structure seen in the im-

ages. The velocity vector calculations utilized Davis’

GPU Multi-pass cross-correlation, with first a 128×128,

square, 25% overlap, maximum shift of 30 pixels, down

to a fourth pass with 32×32, square, 25% overlap, max-

imum shift 4 pixels. Median and smoothing filters were

applied to the final vector fields.

3 Time-Averaged Inter-Channel Mixing

The average amount of mixing between the two chan-

nels for varying flow conditions and gap heights was

determined through the measurement of dye transport.

The mixing coefficient fA is defined as the time-averaged

fraction of water transferred from channel A to B, and

fB is the time-averaged fraction of water transferred

from Channel B to A. These are calculated based on

the conservation of water mass and the mass of the

tracer dye in a fixed control volume.
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Fig. 7 Schematic drawing of the mixing through the narrow
gap with test section, inlets, outlets and control volumes (not
drawn to scale).

3.1 Control Volume Analysis to Determine the

Inter-Channel Mixing

A control volume encompassing the entire test section,

defining a control volume for each channel is shown in

Fig. 7.

Based on mass conservation of both water and dye

in control volumes A and B, shown in Fig. 7, the fol-

lowing four equations can be written

ṁAO = ṁAI(1− fA) + ṁBIfB (1)

ṁBO = ṁAIfA + ṁBI(1− fB) (2)

ṁAOCAO = ṁAICAI(1− fA) + ṁBICBIfB (3)

ṁBOCBO = ṁAICAIfA + ṁBICBI(1− fB) (4)

where ṁ is the mass flow rate in kg/s, and C is the

tracer concentration in units of kg of tracer per kg of

water. Water mass flow rates are calculated based on

the volume flow meter readings and density of water

at loop temperature. From the sum of Eqn. (1) and

(2), and (3) and (4), the mass conservation equations

of the water and dye in the global control volume can

be written as

ṁAO + ṁBO = ṁAI + ṁBI , (5)

ṁAOCAO + ṁBOCBO = ṁAICAI + ṁBICBI . (6)

As the system is over-determined with four independent

equations for two unknowns, fA and fB , four possible

sets of solutions can be derived.
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f
(1)
A = 1− ṁAO(CAO − CBI)

ṁAI(CAI − CBI)
, (7)

f
(1)
B =

ṁAO(CAI − CAO)

ṁBI(CAI − CBI)
, (8)

f
(2)
A =

ṁBO(CBO − CBI)

ṁAI(CAI − CBI)
, (9)

f
(2)
B = 1− ṁBO(CAI − CBO)

ṁBI(CAI − CBI)
, (10)

f
(3)
A =

−ṁAICBI + ṁAOCBI − ṁBICBI + ṁBOCBO

ṁAI(CAI − CBI)
,

(11)

f
(3)
B =

−ṁAICAI + ṁAOCAI − ṁBICBI + ṁBOCBO

ṁBI(CAI − CBI)
,

(12)

f
(4)
A =

ṁAICAI − ṁAOCAO + ṁBICBI − ṁBOCBI

ṁAI(CAI − CBI)
,

(13)

f
(4)
B =

ṁAICAI − ṁAOCAO + ṁBICAI − ṁBOCAI

ṁBI(CAI − CBI)
. (14)

When the measured data are entered into these equa-

tions, the resulting mixing coefficients do not match

exactly between the four methods of computation due

to measurement uncertainties. For simplicity, averaged

values of the four sets of f
(i)
A and f

(i)
B derived in Eqn.

(7) to (14) are used as a final coefficient presented for
fA and fB in the following sections. The uncertainty of

the mixing coefficient fA, δf
(i)
A , can be estimated based

Gauss’s Formula (GUM’s Linear Approximation) [19].

Assuming all measurements are independent, the un-

certainty for f
(i)
A can be computed as :

δf
(i)2

A =
∑
j

(
∂f

(i)
A

∂ṁj

)2

δṁ2
j +

∑
j

(
∂f

(i)
A

∂Cj

)2

δCj
2. (15)

Where j = AI,AO,BI,BO.

3.2 The Measured Inter-Channel Mixing Coefficients

The above relationships were used to compute the inter-

channel mixing coefficients for the balanced and unbal-

anced flow conditions and for different gap heights. Fig.

8 presents the coefficient as a function of gap height for

the balanced flow with Re = [10, 10]×104, and Fig. 9

presents the balanced flow data for Re = [4, 4]×104.

The coefficients shown by filled symbols are based on

SVD data (the sum of the steady and dynamic mixing

coefficients, f (s) and f (d) given in tables 1 and 2). and

further discussed in §5.

Fig. 10 shows the average mixing coefficients based

on tracer dye measurements for the four balanced cases.

Fig. 8 Comparison of mixing coefficients fA and fB of Re =
[10, 10]×104 based on the dye concentration and the SVD of
the PIV data; blue square:fA based on the dye concentration,
red circle:fB based on the dye concentration, blue triangle:
fA based on the SVD of the PIV data, red downward triangle:
fB based on the SVD of the PIV data.

The mixing shows little dependence on the Reynolds

number, with no discernible difference for Hg/Dh >

0.15. A linear trend of increasing mixing with increasing

gap is maintained until the width of the gap Hg/Dh >

0.25. This is presumably due to finite size of channels

relative to flow structures, as narrower gap studied in

[16] shows a continuing linear trend. When gap width is

small producing structures that do not as fully fill the

channel by end of test section. For gap widths between

0.05 < Hg/Dh < 0.15, the mixing coefficients show

some Reynolds number dependence. There was little to

no mixing within the uncertainty of the measurement

for Hg/Dh < 0.05, albeit detectable trace amounts of

dye was found in Channel A in many cases. For all

the balanced cases, the vortical structures within the

gap were responsible for the bulk of the mixing, and

these structures were suppressed when Hg/Wg < 0.03

(Hg/Dh < 0.05).

For unbalanced flow, the mixing resulted from both

coherent structures and the presence of an average pres-

sure difference across the gap, with the latter effect in-

creasing in importance at smaller gap heights. Figs. 11,

12, and 13 present the mixing coefficient as a function

of gap height for the unbalanced flows with Re = [8,

10]×104, Re = [6, 10]×104, and Re = [4, 10]×104. The

mixing between channels A and B is no longer sym-

metric, as expected. If the mixing results from only a

one-way mass transfer from channel B to channel A,

and results in balanced flow by the end of the gap, the

mixing coefficient would be given by:

fA = 0, and fB =
1

2

(
1− ṁAI

ṁBI

)
. (16)



Single-Phase Mixing Through a Narrow Gap 7

Fig. 9 Comparison of mixing coefficients fA and fB of Re
= [4, 4]×104 based on the dye concentration and the SVD of
the PIV data; blue square:fA based on the dye concentration,
red circle:fB based on the dye concentration, blue triangle: fA
based on the SVD of the PIV data, red downward triangle:fB
based on the SVD of the PIV data.

Fig. 10 The average mixing coefficients for all balanced flow
cases as a function of gap width. The uncertainty bars are
omitted for clarity.

The horizontal line in the mixing coefficient figured rep-

resents the value yielded by Eqn. 16, thus showing the

asymptotic amount of mixing that would result solely

from the pressure difference. This is close to the mea-

sured coefficient for the smaller gaps Hg/Dh <≈ 0.1

(Hg/Wg <≈ 0.05). As the gap size increases and/or the

Reynolds numbers increases, the rate of mixing also in-

creases. This is due to the increasing importance of the

coherent structures to the overall mixing process.

Also shown in Figs. 8 through 13 are triangular

symbols that represent the mixing coefficient estimate

based on the SVD of centerline PIV data. The methods

and analysis used to derive these companion results is

presented below.

Fig. 11 Comparison of mixing coefficients fA and fB of Re
= [8, 10]×104 based on the dye concentration and the SVD of
the PIV data; blue square: fA based on the dye concentration,
red circle: fB based on the dye concentration, blue triangle:
fA based on the SVD of the PIV data, red downward triangle:
fB based on the SVD of the PIV data.

Fig. 12 Comparison of mixing coefficients fA and fB of Re
= [6, 10]×104 based on the dye concentration and the SVD of
the PIV data; blue square: fA based on the dye concentration,
red circle: fB based on the dye concentration, blue triangle:
fA based on the SVD of the PIV data, red downward triangle:
fB based on the SVD of the PIV data.

4 Coherent Flow Structures within the Gap

As shown in Fig. 6, the instantaneous flow in the chan-

nels are dominated by the presence of coherent struc-

tures. PIV measurements within the gap were used to

further characterize these coherent structures, and SVD

is utilized in an attempt to determine how these struc-

tures contribute to the inter-channel mixing. As men-

tion in section 2.3, the PIV data sets at the three FOV

locations were obtained independently rather than si-
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Fig. 13 Comparison of mixing coefficients fA and fB of Re
= [40, 100] ×104 based on the dye concentration and the SVD
of the PIV data; blue square: fA based on the dye concen-
tration, red circle: fB based on the dye concentration, blue
triangle: fA based on the SVD of the PIV data, red downward
triangle: fB based on the SVD of the PIV data.

multaneously. As such, the instantaneous PIV data can-

not simply be integrated to estimate ṁ and a spectral

decomposition method is needed.

4.1 Frequency Analysis of the Coherent Structures

The vortex shedding is characterized with a single dom-

inant frequency based on u(i, j, k) and v(i, j, k), which

are the transverse and vertical velocity components, re-

spectively. (Here i and j are 2D spatial axis indices,

and k is the time index.) Next, the peak frequency fp
of each velocity component at every position (i, j) is

defined as the frequency component that has the max-

imum amplitude:

f (u)p (i, j) = arg max
f

∣∣∣Fk

{
u(i, j, k)

}
(f)
∣∣∣, (17)

f (v)p (i, j) = arg max
f

∣∣∣Fk

{
v(i, j, k)

}
(f)
∣∣∣, (18)

where Fk{·} denotes 1D Discrete-Time Fourier Trans-

form (DTFT), and f is the frequency. Finally, the dom-

inant peak frequency fd is defined as the most frequent

peak frequency.

fd = mode
[
fp
]
, (19)

where fp = {f
∣∣f = f

(u)
p (i, j) or f = f

(v)
p (i, j) for all 1 ≤

i ≤ Ny and 1 ≤ j ≤ Nx}. Now the Strouhal number

can be defined as:

St =
fdWg

V
, (20)

where fd is the dominant peak frequency defined in

Eqn. (19), the gap width Wg is taken as the charac-

teristic length, and V is the characteristic flow velocity

chosen as V the average velocity at the channel inlets.

The vortex shedding behavior in unbalanced flow

was less periodic, with fluctuations distributed over a

wide range of frequencies. However, for the balanced

flow cases a dominant frequency is clearly definable

and presented in Fig. 14. The Strouhal number is not

strongly dependent on the inlet Reynolds number, but

it is sensitive to the gap width ratio Hd/Wg.

Fig. 14 Strouhal number of the balanced flows Re = [10
10]×104 (blue triangle) and Re=[4 4]×104 (red square) plot-
ted against the gap height/gap width ratio.

There are only a few studies exploring in detail the

flow geometry discussed in this paper; however, Meyer

and Rehme [1] present the most significant data set for a

similar geometry. A comparison to present study is not

straightforward, but for a simple comparison definition

from Eq. (20) can be used and for the clearest cases

in which we can find the relevant information ([1] p.

295 case with 77 mm gap, 21.5 m/s average velocity

and frequency peak of 68 Hz). Their data suggest a

St ≈ 0.25 when the gap height to width ratio is 0.13,

corresponding to Hg/Wg = 0.25. This appears to be in

reasonable agreement with data presented in Fig. 14.

4.2 Singular Value Decomposition of the Flow Fields

We now employ Singular Value Decomposition [20] to

analyze the PIV flow fields in the gap. The data is repre-

sented by a matrix A ∈ RM×N that has spatial domain

as rows and time domain as columns. The SVD theo-

rem states that there exist matrices L, Σ, and R such

that

A = LΣR
T
, (21)
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L = [l1 l2 · · · lM ] and R = [r1 r2 · · · rN ] are orthogonal

matrices, i.e., all its columns are orthonormal to each

other, and Σ is a diagonal matrix with all its diagonal

elements greater than or equal to zero. The diagonal

elements of Σ are sorted in descending order, σ1 ≥
σ2 ≥ · · · ≥ σL ≥ 0, where L is the minimum between

M and N .

The most energetic temporal basis vector R1 which

corresponds to σ1 is obtained by solving the following

optimization problem:

r1 = arg max
r1

||Ar1||2
||r1||2

= arg max
r1

rT

1ATAr1
rT

1 r1
, (22)

Since every column of R is orthonormal to each other,

the second most energetic temporal basis vector r2 can

be obtained by imposing an additional constraint:

r2 = arg max
r2

||Ar2||2
||r2||2

= arg max
r2

rT

2ATAr2
rT

2 r2
.

such that r
T

1 r2 = 0 such that r
T

1 r2 = 0

(23)

The most energetic spatial basis vector l1 can be ob-

tained by transposing the data matrix A:

l1 = arg max
l1

||ATl1||2
||l1||2

= arg max
l1

lT1AATl1
lT1 l1

, (24)

and L is the eigenvector matrix of AAT.

Prior to the SVD, the mean value of u ∈ RNy×Nx×Nt

and v ∈ RNy×Nx×Nt is substracted:

u′(i, j, k) = u(i, j, k)− ū(i, j), (25)

v′(i, j, k) = v(i, j, k)− v̄(i, j), (26)

where ū and v̄ are the sample mean of u and v, re-

spectively. Next, data u and v are reordered into two

dimensional matrix Au ∈ R2NyNx×Nt .

The resulting column vector of L (left singular vec-

tor) and R (right singular vector) represent the spatial

and temporal basis vector, respectively. The analysis

is completed by sorting the column vectors of L into

two-dimensional velocity fields.

Evaluating the eight most energetic modes for each

of the three PIV FOVs shows that in most cases the

energy sum of these eight modes exceed 90 % of the to-

tal energy. To illustrate the SVD decomposed velocity

fields, the results for the case of balanced flow with Re

= [10, 10]×104 with a 10 mm gap are first presented.

Fig. 15 presents the time-averaged flow fields for each

FOV, along with the first two modes from the SVD.

As the flow condition is symmetric, one can expect the

corresponding averaged flow fields and SVD modes to

also be symmetric; this is generally the case. Fig. 16

presents the third and fourth modes, along with the

spectra of first four singular vectors. The frequency is

normalized by the dominant frequency, and the spectral

peaks occur at or very near multiples of fd, although

close examination of the peaks sometimes revealed two

closely spaced frequency maxima, as discussed in [17].

Fig. 17 shows the normalized singular values and their

energy proportions of the first eight modes. The first

two modes contain most of the energy, and this is typ-

ical for all the balanced cases. Similar results for the

other balanced cases are presented in [17].

Figs. 18, 19, 20 present the mean velocity field, SVD

of the first four spatial modes, the spectra of first four

singular vectors, and the energy distributions for the

unbalanced case of Re=[6, 10]×104 with a 20 mm gap.

The time-averaged flow fields show a mean lateral flow

across the gap. The SVD results for unbalanced flow

fields are no longer symmetric, as expected. The tem-

poral singular vectors do not have a strong harmonic

content compared to those for the balanced cases, as

the coherent structures are much less periodic. Most of

the energy is, once again, contained in the first two pe-

riodic modes. Similar results for the other unbalanced

cases are presented in [17].

5 Estimation of the Mixing Coefficients Based

on PIV Data

The inter-channel mixing coefficients are now estimated

using the mean velocity fields and SVD in order to

identify how the strongest periodic motions contribute

to the overall mass transfer between the two channels.

Mixing rates estimated based on the SVD analysis will

also be compared to mixing rates measured from the

tracer dye transport. The main assumption employed

is that the mixing process can be linearly decomposed

and then superimposed. If this is the case, SVD data

can be used to compute steady and dynamic mixing co-

efficients, f
(s)
A and f

(d)
A that will sum to the total mixing

coefficient determined in Section 3.

fA = f
(s)
A + f

(d)
A , (27)

fB = f
(s)
B + f

(d)
B , (28)

Recall that not all coherent modes will contribute

to the mass transfer between two channels, as discussed

above. Because the majority of the flow energy is in the

first two modes, only these two modes will be consid-

ered for the mixing analysis. Thus, the higher modes

are considered to be localized turbulence, and assumed

to not significantly contribute to the mass transfer. Fi-

nally, to determine the overall mixing coefficient, ad-

ditional assumptions are needed about the portions of
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the flow in the gap that were not captured by the PIV

imaging.

5.1 Approximation of the Non-Visualized Average

Flow in the Gap

As shown in Fig. 4, there are portions of the gap flow

that are not captured by the PIV imaging. In order

to estimate the mean flow across the entire gap, one

must account for this non-visualized flow. Examination

of the time averaged flow fields suggest that most of

the transverse flow at the edges of the gap occurs at

the start (inflow) and the end (outflow) (FOVs 1 and 3),

while the average flow converges to a near upwards flow

near the middle of the gap (FOV 2) Fig. 15a. Hence, it

is assumed that the flows in the non-visualized portions

of the gap are similar to that of FOV 2 (the middle field

of view), and factor β is introduced:

βp =

{
1 if p = 1 or 3,

2.11 if p = 2,
(29)

where the factor 2.11 accounts for the inferred area of

the gap flow, which is 1.11 times the area of FOV2.

5.2 Center-plane versus Average Flow Velocities in the

Gap

The PIV data is collected at the gap center-plane, which

is likely a higher velocity than the bulk velocity. While

the actual flow from in this case is transient and spa-

tially non-uniform, one could approximate this flow as

2D channel flow for which the center plane velocity is

in proportion to the average velocity with a ratio de-

fined as θ(Regap). In the case of a unidirectional lami-

nar gap flow, θ(Regap)= 2/3 and for a fully turbulent

flow, the values are a function of Reynolds number [21]

with ratios increasing with Reynolds number from 0.88

to 0.90. The computed fluxes are reduced based on the

mid-plane velocity through application of θ(Regap). As

the flow is unsteady and non-unidirectional and value

is needed in gap entrance/exit region, for simplicity

θ(Regap) is approximated to be a constant 0.85. Ap-

plication of this correction would reduce the estimated

mixing coefficients by 15%.
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Figures1.pdf Figures1.pdf

FOV3

FOV2

FOV1

(a) (b) (c)

Fig. 15 The (a) time averaged velocity field of Re = [10 10]×104, Hg = 10 mm (Hg/Dh = 0.079); the three FOVs are shown;
the singular vectors of the first (b) and the second (c) spatial modes are also shown; red arrows indicate velocity vectors, and
blue lines indicate streamlines.
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Figures2.pdf Figures2.pdf

FOV3

FOV2

FOV1

(a) (b) (c)

Fig. 16 The singular vectors of the (a) third and the (b) forth spatial modes for Re = [10 10]×104, Hg = 10 mm (Hg/Dh =
0.079); red arrows indicate velocity vectors, and blue lines indicate streamlines; shown in column (c) are the temporal power
spectral densities of the first four right singular vectors; the red squares in (c) show the first and third modes.
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Figures3.pdf Figures3.pdf

FOV3

FOV2

FOV1

Fig. 17 The normalized singular values (a) and their energy proportions (b) of the first eight modes for Re=[10 10]×104, Hg

= 10 mm (Hg/Dh = 0.079).
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Figures4.pdf Figures4.pdf

FOV3

FOV2

FOV1

(a) (b) (c)

Fig. 18 The (a) time averaged velocity field of Re = [6 10]×104, Hg = 20 mm (Hg/Dh = 0.157); the three FOVs are shown;
the singular vectors of the first (b) and the second (c) spatial modes are also shown; red arrows indicate velocity vectors, and
blue lines indicate streamlines.
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Figures5.pdf Figures5.pdf

FOV3

FOV2

FOV1

(a) (b) (c)

Fig. 19 The singular vectors of the (a) third and the (b) forth spatial modes for Re=[6 10]×104, Hg = 20 mm (Hg/Dh =
0.157); red arrows indicate velocity vectors, and blue lines indicate streamlines; shown in column (c) are the temporal power
spectral densities of the first four right singular vectors; the red squares in (c) show the first and third modes.
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Figures6.pdf Figures6.pdf

FOV3

FOV2

FOV1

Fig. 20 The normalized singular values (a) and their energy proportions (b) of the first eight modes for Re = [6 10]×104, Hg

= 20 mm (Hg/Dh = 0.157).
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5.3 Estimation of the Steady Mixing Across the Gap

Taking a control volume around the boundary of the

gap, the transverse flow from side edges of the gap must

also be considered. Let F̄A and F̄B be the total steady

volume flow rates at the side edges of the gap adjacent

to Channel A and Channel B, respectively.

F̄A = Hg

∫ Lg

0

θ(Regap)ū(y,Wg/2)dy, (30)

F̄B = Hg

∫ Lg

0

θ(Regap)ū(y,−Wg/2)dy, (31)

where ū is the time averaged transverse velocity, Hg

is the gap height, Lg is the gap vertical length, Wg is

the gap width. (Note: x and y are the local coordinates

with the origin at the center bottom of the gap, while

fA and fB are the mixing coefficients.)

After discretization, the corrected flow rates includ-

ing the entire area of the gap are given by:

F̄A = Hg

3∑
p=1

βp Ny∑
i=1

θ(Regap)ū(p)(i, 1)∆y

 , (32)

F̄B = Hg

3∑
p=1

βp Ny∑
i=1

θ(Regap)ū(p)(i,Nx)∆y

 , (33)

where p is the FOV index, i is the y index, Ny and

Nx are the total number of pixels in y axis and x axis,

respectively. ū(p)(i, j) is the time-average of the trans-

verse velocity u at (i, j) location in FOV p.

The mass conservation in a control volume encom-

passing the entire gap requires F̄A = F̄B . Uncertainties

in the PIV data result in vector fields that do not com-

pletely satisfy mass conservation at every time step,

with errors typically less than ±2.5% of the total flux.

Hence, using the average value of F̄A and F̄B to com-

pute the steady mixing coefficients:


f
(s)
A =

|F̄A + F̄B |
2V̄Ai

, f
(s)
B = 0 if F̄A + F̄B < 0

f
(s)
A = 0, f

(s)
B =

|F̄A + F̄B |
2V̄Bi

if F̄A + F̄B ≥ 0,

(34)

where V̄Ai and V̄Bi are the nominal volume flow rates

at the inlet of Channel A and Channel B, respectively.

5.4 Mixing As a Result of the Coherent Motions

The mixing due to the coherent structures is periodic,

and flow should be analyzed as it moves in both direc-

tions (i.e. Channel A to Channel B and Channel B to

Channel A.) Thus, instead of integrating the transverse

flow rate, the flow must first be divided into portions

that enter and exit the gap, and then integrated sepa-

rately. Next, the absolute volume flow rate can be cal-

culated after the time-averaged velocity is subtracted.

FAin
(t) = −Hg

∫ Lg

0

min {u′(y,Wg/2, t), 0} dy, (35)

FAout
(t) = Hg

∫ Lg

0

max {u′(y,Wg/2, t), 0} dy, (36)

FBin
(t) = Hg

∫ Lg

0

max {u′(y,−Wg/2, t), 0} dy, (37)

FBout
(t) = −Hg

∫ Lg

0

min {u′(y,−Wg/2, t), 0} dy. (38)

Here, min{·, 0} and max{·, 0} are applied to the flow u′

to shift and collect entering and exiting flows separately

(e.g. when u′ is > 0, min{u′, 0} returns 0 whereas −u′
would return −u′).

Note that all F(A|B)(in|out) are defined as absolute

values. Discretizing Eqn. (35) to (38) for pth FOV yields

F
(p)
Ain

(k) = −Hg

Ny∑
i=1

min
{
u′(p)(i, 1, k), 0

}
∆y, (39)

F
(p)
Aout

(k) = Hg

Ny∑
i=1

max
{
u′(p)(i, 1, k), 0

}
∆y, (40)

F
(p)
Bin

(k) = Hg

Ny∑
i=1

max
{
u′(p)(i,Nx, k), 0

}
∆y, (41)

F
(p)
Bout

(k) = −Hg

Ny∑
i=1

min
{
u′(p)(i,Nx, k), 0

}
∆y. (42)

For estimating the coherent mixing, two additional

assumptions are needed. First, that there is no re-entry

of flow into the gap, i.e., F
(p)
Ain

(t) is only from the source

of Channel A, and F
(p)
Bin

(t) is only from Channel B. Sec-

ond, for each FOV, the fluid is fully mixed by the local

turbulence so that the composition of outgoing flow is

uniformly proportional to the flow rates entering from

Channels A and B. Then, the flow rates between Chan-

nels A and B can be taken as:

F
(p)
A→B(k) = θ(Regap)

(
F

(p)
Ain

(k)

F
(p)
Ain

(k) + F
(p)
Bin

(k)

)
F

(p)
Bout

(k),

(43)

F
(p)
B→A(k) = θ(Regap)

(
F

(p)
Bin

(k)

F
(p)
Ain

(k) + F
(p)
Bin

(k)

)
F

(p)
Aout

(k).

(44)

Eqn. (43) and (44) are time dependent. The SVD de-

composes the data into spatial (left singular vectors)
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and temporal (right singular vectors) bases along with

their intensity (singular values). Using the SVD results,

the time-averaged coherent mixing for each FOV can be

estimated.

Denote l(p,s), σ(p,s), and r(p,s) as the left singular

vector, the singular value, and the right singular vector

of the sth mode taken at pth FOV. Let û
(p,s)
(i,j) be the

reordered matrix of the transverse velocity part of the

pth FOV, sth left singular vector,

û
(p,s)
(i,j) = l(p,s)(NxNy +Nxi+ j), (45)

where l(p,s) is the sth left singular vector of pth FOV

data. Then, rewriting the centered transverse flow ve-

locity of sth mode u
′(p,s)
(i,j,k) in terms of û

(p,s)
(i,j) , singular

value, and right singular vector,

u
′(p,s)
(i,j,k) = û

(p,s)
(i,j) σ

(p,s)r
(p,s)
(k) . (46)

In the right hand side of Eqn. 46, only r
(p,s)
(k) depends on

time. Hence, time-average of u
′(p,s)
(i,j,k) is found by time-

averaging r
(p,s)
(k) . However, just taking time-average of

r
(p,s)
(k) only yields zero. Therefore, r

(p,s)
(k) must be split

into a positive and negative phase,

{
r(p,s)

}+
=

∑Nk

k=1 max{r(p,s)(k) , 0}
Nk

, (47)

{
r(p,s)

}−
= −

∑Nk

k=1 min{r(p,s)(k) , 0}
Nk

, (48)

where Nk is the total number of the temporal sampling

points. One can see that
{
r(p,s)

}+
=
{
r(p,s)

}−
as time-

average of r
(p,s)
(k) is zero. Using Eqn. (47), the absolute

valued time-average flow rate is given by

{
F

(p,s)
Ain

}+
= −Hg

(
Ni∑
i=1

min{û(p,s)
(i,1) , 0}∆y

)
σ(p,s)

{
r
(p,s)
(k)

}+
,

(49)

{
F

(p,s)
Aout

}+
= Hg

(
Ni∑
i=1

max{û(p,s)
(i,1) , 0}∆y

)
σ(p,s)

{
r
(p,s)
(k)

}+
,

(50)

{
F

(p,s)
Bin

}+
= Hg

(
Ni∑
i=1

max{û(p,s)
(i,Nx)

, 0}∆y

)
σ(p,s)

{
r
(p,s)
(k)

}+
,

(51)

{
F

(p,s)
Bout

}+
= −Hg

(
Ni∑
i=1

min{û(p,s)
(i,Nx)

, 0}∆y

)
σ(p,s)

{
r
(p,s)
(k)

}+
,

(52){
F

(p,s)
Ain

}−
=
{
F

(p,s)
Aout

}+
, (53){

F
(p,s)
Aout

}−
=
{
F

(p,s)
Ain

}+
, (54){

F
(p,s)
Bin

}−
=
{
F

(p,s)
Bout

}+
, (55){

F
(p,s)
Bout

}−
=
{
F

(p,s)
Bin

}+
. (56)

Applying Eqn. (49)-(56) to Eqn. (43) and (44), and

multiplying by θ to correct centerline to mean velocity

ratio, the time-averaged dynamic (or coherent) mixing

coefficients is given by:

f
(d)
A = θ(Regap)

3∑
p=1

Ns∑
s=1

{
F

(p)
A→B

}+
+
{
F

(p)
B→A

}−
V̄Ai

, (57)

f
(d)
B = θ(Regap)

3∑
p=1

Ns∑
s=1

{
F

(p)
B→A

}+
+
{
F

(p)
A→B

}−
V̄Bi

, (58)

where

{
F

(p)
A→B

}∗
=

( {
F

(p)
Ain

}∗{
F

(p)
Ain

}∗
+
{
F

(p)
Bin

}∗
){

F
(p)
Bout

}∗
, (59)

{
F

(p)
B→A

}∗
=

( {
F

(p)
Bin

}∗{
F

(p)
Ain

}∗
+
{
F

(p)
Bin

}∗
){

F
(p)
Aout

}∗
, (60)

where ∗ denotes the sign, + or −. However, the dynamic

coefficients thus defined do not account for contribution

of non-visualized flow. Hence, eq. 57 and 58 require a

correction that will be discussed next.

5.5 Approximation of the Non-Visualized Unsteady

Flow in the Gap

The unsteady flow that may occur at the top and bot-

tom of the FOVs must also be considered. This is 5 to

15% of the total unsteady volume flow rate for balanced

flow conditions, and up to to 30% for unbalanced flow.

Estimating those sources of vertical flows is essential to

estimate the coherent mixing. Assuming that the un-

known vertical volume flux is proportional to the known

lateral flow between Channel A and B that is observ-

able in any FOV. Let F
(p,s)
in and F

(p,s)
out be the total flow

rates of the sth singular mode incoming/outgoing from

both sides of the gap in pth FOV, respectively.

F
(p,s)
in = F

(p,s)
Ain

+ F
(p,s)
Bin

, (61)

F
(p,s)
out = F

(p,s)
Aout

+ F
(p,s)
Bout

, (62)

Then, the corrected flow rates can be taken as: If

F
(p,s)
in > F

(p,s)
out

F̃
(p,s)
Ain

= F
(p,s)
Ain

F̃
(p,s)
Bin

= F
(p,s)
Bin

F̃
(p,s)
Aout

= F
(p,s)
Aout

+
(
F

(p,s)
in − F (p,s)

out

) F (p,s)
Ain

F
(p,s)
in

F̃
(p,s)
Bout

= F
(p,s)
Bout

+
(
F

(p,s)
in − F (p,s)

out

) F (p,s)
Bin

F
(p,s)
in

, (63)



Single-Phase Mixing Through a Narrow Gap 19

otherwise

F̃
(p,s)
Ain

= F
(p,s)
Ain

+
(
F

(p,s)
out − F

(p,s)
in

) F (p,s)
Aout

F
(p,s)
out

F̃
(p,s)
Bin

= F
(p,s)
Bin

+
(
F

(p,s)
out − F

(p,s)
in

) F (p,s)
Bout

F
(p,s)
out

F̃
(p,s)
Aout

= F
(p,s)
Aout

F̃
(p,s)
Bout

= F
(p,s)
Bout

. (64)

The original flow rates in Eqn. (59)-(60) are substituted

with the corrected flow rates in Eqn (63)-(64).

Owing to the assumption above to satisfy each FOV’s

mass conservation, some inflows and outflows could be

partially double counted. To adjust for this possibility,

the corrected flow rate is multiplied by a factor αp to

only consider the flow in and out for each FOV in terms

of average values.

αp =
min

{
F

(p,s)
in , F

(p,s)
out

}
max

{
F

(p,s)
in , F

(p,s)
out

} . (65)

Finally, it is necessary to consider the effect of miss-

ing FOVs. While most of the steady mixing happened

at the start and the end of the gap, mixing due to the

coherent structures occurs more uniformly everywhere

along the gap length. Hence, the areas of the two miss-

ing FOVs are evenly divided, and it is assumed the flow

pattern in each missing FOV follows the flow pattern

of the nearest known FOV. This is achieved in practice

simply by multiplying the flow rate by the area ratio of

each FOV:

γp =


1.275 if p=1,

1.537 if p=2,

1.328 if p=3.

(66)

Finally, computing the corrected coherent mixing coef-

ficients:

f
(d)
A = θ(Regap)

3∑
p=1

(
αpγp

Ns∑
s=1

{
F

(p)
A→B

}+
+
{
F

(p)
B→A

}−
V̄Ai

)
,

(67)

f
(d)
B = θ(Regap)

3∑
p=1

(
αpγp

Ns∑
s=1

{
F

(p)
B→A

}+
+
{
F

(p)
A→B

}−
V̄Bi

)
.

(68)

5.6 Comparison of the Directly Measured and

Computed Mixing Coefficients

After applying the analysis and necessary assumptions

to the velocity field data described above, the mass

transfer based on the flow field measurements and SVD

can be computed and these results can be compared to

the coefficients calculated based on the measured values

from the tracer dye transport.

Table 1 presents computed and measured mixing

coefficients for the balanced cases Re = [10 10]×104

and Re = [4 4]×104, each at the three gap heights of

10, 20, and 50 mm (Hg/Dh = 0.079, 0.157, and 0.393).

These data (triangular symbols) are also shown in Figs.

8 and 9. For both Re = [10 10]×104 and Re = [4 4]×104,

the measured and computed coefficients follow the same

trends and are of the same order.

Table 2 show the steady, coherent, and total mix-

ing coefficients for Re = [8 10]×104, Re = [6 10]×104,

and Re = [4 10]×104, respectively for each the three

gap heights of 10, 20, and 50 mm (Hg/Dh = 0.079,

0.157, and 0.393). It is observed that the steady mix-

ing coefficients are almost constant in each flow condi-

tion regardless of the gap thickness, and the estimated

steady mixing coefficients are mostly within 5 to 10%

of the ideal steady mixing coefficients one can estimate

by requiring that the flow is balanced by the outlet.

6 Conclusions

The mixing through a narrow gap was investigated based

on both measurements of flow rates and dye concen-

trations at the channel inlets and outlets, as well as

based on planar velocity fields within the mixing gap.

The mixing coefficient was defined as a fraction of in-

let flow transferred from one channel to the other. For

balanced flows, over the finite range covered in present

work, the mixing coefficients show a weak dependence

on the Reynolds number when the gap ratio Hg/Dh is

larger than 0.06. However, when Hg/Dh < 0.06, mix-

ing coefficients show some deviation depending on the

Reynolds number, albeit within the range of the 68 %

confidence interval given the measurement uncertainty.

There was no significant mixing within the uncertainty

of the measurement for Hg/Dh < 0.025.

For unbalanced flow, the effect of the coherent struc-

tures on the mixing decreases as the flow becomes in-

creasingly unbalanced leading to more mixing due to

a simple pressure difference across the gap. And, as

the unbalance increases, weaker large-scale structures

are seen. SVD results confirmed that the energy of the

coherent structures, based on the singular values, de-

creases. Also, the right singular values become less pe-

riodic as the velocity difference between two channels

grows, as was shown in detail in [17].

The mixing coefficients were also estimated based

on the SVD of the PIV data. While several assumptions
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Table 1 Mixing coefficients based on SVD and dye tracer for the balanced cases. Recall, the total mixing coefficient, f , based
on SVD is the sum of the steady and dynamic mixing coefficients, f(s) and f(d), respectively (eq. 27-28).

Re = [4 4]×10−4 Re = [10 10]×10−4

Hg f
(s)
A f

(d)
A Tracer (fA − x)/x f

(s)
A f

(d)
A Tracer (fA − x)/x

[mm] f
(s)
B f

(d)
B (fB − y)/y f

(s)
B f

(d)
B (fB − y)/y

10 0.000 0.046 0.017 1.70 0.000 0.060 0.047 0.28
0.003 0.046 0.018 1.69 0.002 0.060 0.049 0.27

20 0.000 0.134 0.128 0.05 0.000 0.133 0.134 0.00
0.003 0.134 0.138 -0.01 0.003 0.133 0.137 0.00

50 0.000 0.317 0.323 -0.02 0.000 0.322 0.329 -0.02
0.009 0.317 0.337 -0.03 0.014 0.322 0.330 0.02

Table 2 Mixing coefficients based on SVD and dye tracer for the unbalanced cases. Recall, the total mixing coefficient, f ,
based on SVD is the sum of the steady and dynamic mixing coefficients, f(s) and f(d), respectively (eq. 27-28).

Re = [10 8]×10−4 Re = [10 6]×10−4 Re = [10 4]×10−4

Hg f
(s)
A f

(d)
A Tracer (fA − x)/x f

(s)
A f

(d)
A Tracer (fA − x)/x f

(s)
A f

(d)
A Tracer (fA − x)/x

[mm] f
(s)
B f

(d)
B (fB − y)/y f

(s)
B f

(d)
B (fB − y)/y f

(s)
B f

(d)
B (fB − y)/y

10 0.000 0.047 0.001 45.75 0.000 0.006 -0.012 -1.50 0.000 0.002 -0.015 -1.11
0.088 0.037 0.097 0.29 0.184 0.003 0.188 -0.01 0.281 0.001 0.287 -0.02

20 0.000 0.127 0.097 0.31 0.000 0.110 0.027 3.06 0.000 0.057 0.009 5.33
0.096 0.101 0.176 0.12 0.185 0.065 0.214 0.17 0.270 0.023 0.292 0.00

50 0.000 0.241 0.269 -0.10 0.000 0.150 0.187 -0.20 0.000 0.137 0.107 0.28
0.133 0.193 0.315 0.04 0.192 0.090 0.307 -0.08 0.254 0.054 0.335 -0.08

were required to compute the mixing coefficients from

SVD results, they were found to be in fair agreement

with the mixing coefficients based on the dye concentra-

tion. The SVD based mixing estimation provides some

insights into how the time-averaged and the unsteady

components of the flow affect the overall mixing, as one

can distinguish the contribution of individual modes.

E.g. in Fig. 17 we see that the first two modes dom-

inate by energy, and based on the flow fields in Fig.

15 and 16 one could evaluate mixing due to a given

mode. Based on these results, PIV with SVD alone

could be used to estimate mixing when the tracer tech-

nique (or planar laser induced fluorescence techniques)

are unfeasible due to technical or cost constraints. A

better estimate of mixing could be obtained from three-

dimensional PIV measurements within the gap, or more

planar PIV FOVs span the gap.

Notice
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sored by an agency of the United States Government.

Neither the United States Government nor any agency

thereof, nor any of their employees, nor any of their con-

tractors, subcontractors or their employees, makes any

warranty, express or implied, or assumes any legal lia-
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or any third party's use or the results of such use of any
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or represents that its use would not infringe privately

owned rights. Reference herein to any specific commer-

cial product, process, or service by trade name, trade-

mark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation,

or favoring by the United States Government or any

agency thereof or its contractors or subcontractors. The

views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States

Government or any agency thereof.
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