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ABSTRACT OF THE DISSERTATION 

 

Bridging Cell Biology with Macroscopic Tumor Features via Large-Scale Computational 

Modeling 

 

by 

 

Jiayi Du 

Doctor of Philosophy in Physics and Biology in Medicine 

University of California, Los Angeles, 2024 

Professor Ke Sheng, Committee Chair 

 

Radiomics offers a promising method to discern tumor biology through non-invasive medical 

imaging, successfully performing various prediction tasks and demonstrating potential in clinical 

applications. However, limitations in interpretability and robustness are significant obstacles to 

its broad clinical adoption. In the era of personalized medicine, there is an urgent need to better 

understand the physio-biological properties reflected by Radiomics and, more fundamentally, the 

multiscale problem of how these microscopic tissue properties develop as the tumor grows, 

leading to macroscopic tumor patterns or features in medical images. 
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In this study, we introduced a hybrid simulation platform that integrates continuum tissue 

dynamics with discrete vasculature modeling for large-scale, vascularized tumor growth 

simulations with comprehensive hemodynamic capabilities. Through innovative vasculature 

conditioning and remodeling strategies, this platform enables unbiased simulations of tumor 

development to sizes previously unattainable, closely mirroring the biophysical vascular 

properties and tissue growth patterns observed in actual tumors. 

Our study has significant implications for understanding tumor characteristics. By examining the 

influence of cellular proliferation rate (PR) and oxygen consumption rate (OCR) on tumor 

patterning and heterogeneity, we have elucidated the mechanistic links between biophysical 

properties and tumor characteristics. Key findings include the pivotal role of tumor proliferation 

rate in driving necrosis and tissue heterogeneity and the impact of OCR on tissue vascular 

density. Using our platform, we analyzed 20 randomly generated samples to predict PR and OCR 

using Radiomics, based on semantic and agnostic features. The resulting high-performance 

predictive model sees through tumor appearance to identify critical features that uncover 

underlying biological processes. Given the insight from modeling, the rationale behind feature 

selection can be understood, and features can be interpreted. 

Our study advanced our understanding of the complex tumor vasculature and tissue development 

problem and laid the groundwork for integrating computational models with Radiomics, bridging 

the gap between data-driven tumor prediction and fundamental biophysics. This integration 

opens up exciting new avenues for research in personalized medicine and beyond. It provides a 

new paradigm for interpreting tumor features and can help identify tumor property types with the 
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highest potential to reveal specific biophysical properties, guiding the development and selection 

of imaging modalities for advanced non-invasive biophysical assessments. 
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1.Introduction 

 

1.1 Radiomics 

 

“Images are more than pictures”.1 Medical images (CT, MRI, PET, etc.) contain far more 

information beyond the visual interpretation of human eyes that could support disease diagnosis 

and prognosis. Radiomics is one of the emerging research fields that aim to build machine 

learning-based predictive models using high-throughput quantitative features extracted from 

medical images2 that are believed to reflect underlying pathophysiologic characteristics.  

A typical Radiomics analysis process starts with the extraction of large numbers of quantitative 

features from the region of interest (ROI) of the medical images. Typically, hundreds or 

thousands of features are extracted, including a small number of semantic clinical features and a 

large amount of agnostic quantitative features such as Intensity-based features, shape features, 

texture features, transform-based features, radial features, and deep learning extracted features3. 

Then, feature selection is performed to remove irrelevant or redundant features. The reduced 

feature dimensionality permits higher learning efficiency and lower overfitting risks in the 

subsequent steps4. After selection, various machine learning algorithms are applied to analyze the 

features and establish a predictive model, such as support vector machine (SVM), random forest 

(RF), k-nearest neighbors (KNN), and neural networks (NN).  
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With the pioneering work of Aerts et al.2, there has been an exponential growth in Radiomic 

publications since 2014, reporting tasks including treatment response and outcomes prediction5, 

tumor staging6, tissue identification7 and assessment of cancer genetics8. Radiomics provides a 

non-invasive method to peek into tumor biology through radiologic images, providing 

complementary information that is otherwise unavailable for treatment decision-making. 

Radiomics using existing medical imaging information can be easily integrated into clinical 

workflow.  

Despite the potential of Radiomics in personalized medicine, its application has been largely 

retrospective and non-interventional due to significant concerns about its reliability, accuracy, 

and interpretability. Radiomics is found to lack repeatability and reproducibility9. 

Balagurunathan et al. 10 found the majority of features unstable between even repeated lung 

cancer patient CT scans acquired only 15 minutes apart, not to mention features extracted from 

images obtained using different machines in different institutions. Guha et al.11 identified several 

loopholes in Radiomics analysis for head and neck cancer response assessment, including the 

lack of reproducibility and consistency. These questions are related to the most fundamental 

challenge for Radiomics, which is the interpretability of the extracted features and the generated 

models12. Due to its data-driven nature, radiomics provides only correlation without causation, 

does not offer insights into the underpinning biology of observed relationships, and does not 

clinically interpret its decisions. Without overcoming these limitations, Radiomics would remain 

an academic exercise without influencing the course of patient treatment. There are attempts to 

tackle the interpretability issue by connecting radiomics to tumor biology13. For instance, 

correlations between cancer imaging features and certain gene expressions or gene mutations 
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were studied14,15, as well as the correlations between imaging features and a specific histological 

substrate like microvascular density16, and the correlations between tumor metabolism and 

radiomic features17. On the prediction model side, Yi Luo et al.18 developed a Bayesian network 

to identify the hierarchical relationships among biophysical features for lung cancer radiotherapy 

local control prediction. Novel visualization methods that highlight regions of the tumor 

according to their importance for the prediction of the generated classifier have also been 

developed.12,19 Although these studies improved our understanding of radiomic features and how 

prediction models work, they do not establish causality nor offer the mechanistic view of feature 

and prediction formation. Without such a causal relationship, the radiomic features are not truly 

interpretable, and the generality and robustness of extracted features are questionable, thus 

hindering Radiomics from being widely adopted as a reliable clinical component, particularly for 

interventional purposes.  

In the era of personalized medicine, there is an urgent need to better understand Radiomics and 

the reflected physio-biological properties behind, or more essentially, to better understand the 

multiscale problem of how those key physio-biological microscopic tissue properties lead to the 

emergence of macroscopic tumor patterns or high-level features that can be captured in medical 

images. However, the direct connection between arbitrary genes or expressions and features can 

be overwhelmingly obstructed and complicated. One mutation could affect multiple aspects of 

tumor development, and one apparent physio-biological property or tumor feature may be 

controlled by multiple mutations. For example, oncogenes like MYC, RAS, BRAF, suppressor 

genes like TP53 and PTEN, and growth-factor-related genes like EGFR and HER2/neu may 
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share roles in the alteration of apparent tumor cell proliferation rate, while each of them also has 

other function in other aspects of tumor development20–23.  

For a clearer view of the pattern formation process, it can be roughly divided into two steps. The 

first step involves how genes and their expression affect the apparent physio-biological 

properties of various components in tumors at the molecular level. The second step is about how 

these apparent microscopic physio-biological properties of the tumor lead to macroscopic 

features or pattern formation as the tumor grows, which is a better-defined, physics-driven 

process. It is reasonable to believe that molecular alteration identifiable in medical images must 

first change the apparent property of tissue components to alter downstream macroscopic 

imaging features. Decoupling apparent tumor properties from their complex molecular backend 

is a necessary step for us to gain a clear and causal view of the feature development process.  

The knowledge related to the first step can be acquired through in vitro or in vivo experiments. 

Recent advances in RNAseq, transcriptomics, and proteomics significantly facilitated the 

understanding of cell behaviors as a result of genetics24. However, our understanding of tumor 

cell development and organization into tumors that can be observed in macroscopic medical 

images remains highly limited. In this study, we propose to use physics-driven computational 

modeling to explore how the microscopically apparent tumor physio-biological properties can 

casually and mechanistically derive the observable macroscopic appearance that is interpreted as 

Radiomics. Computational modeling allows us to conduct clean variable control with arbitrary 

data samples in tumor development complementary to actual experiments that are more limited 

by scientific scopes and economic feasibility. Through mechanism and physics-based modeling, 
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the causality relationship between biological parameters and the tumor macroscopic features can 

be studied and established.  

To achieve the goal, an ultra-large-scale computational tumor model emphasizing emergency 

tumor heterogeneity needs to be established.  

 

1.2 Computational Oncology 

 

Cancer represents a leading health threat globally, with a lifetime risk of one in four individuals 

and nearly half of these cases being fatal25At its core, cancer involves uncontrolled cell growth 

with the potential for metastasis and presents as an extremely complex and heterogeneous 

evolutionary phenomenon influenced by interplaying factors across subcellular, cellular, and 

tissue scales. The complexity of tumors can be rationalized through the eight hallmark traits and 

two enabling characteristics as delineated by D Hanahan et al.26,27. To better understand the 

complex physical, chemical, and biological processes in cancer development and treatment 

intervention, there has been an emerging interest in using computational models to study these 

multiscale processes, encompassed in a field called computational oncology, from subcellular 

level DNA synthesis, degradation or damage, cellular level signaling network28 to tissue-level 

multicellular system development29.  
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The computational models of multicellular cancer development can be generally divided into 

discrete, continuum, and hybrid models.  

The discrete model is also known as the cell-based model30. Cell-based models simulate 

individual cells as they interact in virtual tissues, which allows us to explore how single-cell 

behaviors lead to the dynamics we observe and work to control in cancer systems. It can be 

further classified into Lattice-Based Methods and Off-Lattice methods depending on whether the 

agents are allowed to move freely in space. For lattice-based methods, there could be subcellular 

elements (Cellular Potts models (CPM)31), a single (cellular automaton (CA)32) or multiple cells 

(lattice gas cellular automaton (lattice gas CA (LGCA) 33) in each lattice site. Lattice-base 

models suffer from grid biases34, whereas the off-lattice method is free of such issues. Off-lattice 

models can be divided into Center-Based models (CBMs) and Boundary-tracking methods30. 

Center-based models track cell centers and enable a more realistic cell movement simulation by 

incorporating forces such as adhesive, repulsive, locomotive, and drag-like forces29,35, 

meanwhile assuming a simple spherical shape of cells. Boundary-tracking models put more 

computational resources into the morphological characterization of the cells36. 

Different from the discrete or cell-based methods, continuum models represent the evolution of 

the tumor generally involving using partial differential equations, disregarding the behavior of 

each individual cell
37–39

. The most common type of continuum model is called diffusive 

models
40,41

. These models use the reaction-diffusion formalism to describe the change of tumor 

cell density: diffusion term to describe the invasion of tumor cells in the surrounding tissues and 

source term that describes the proliferation of tumor cells. The RD model is widely used due to 
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its simplicity and consistency with the biological tumor growth process
42

. One emerging type of 

diffusive model is phase-field
43,44

 model that considers the tumor as a multiphase system and uses 

a phase field to model the tumor and normal tissue transition
45

. The interface between 

constituents can be characterized by a gradient term in the energy of the system and is handled 

automatically as a feature of the solution
37

. A general derivation of the continuum theory of 

mixtures with diffuse interfaces is provided in
37

.  

The hybrid models include both discrete and continuum components, combining the strength of 

heterogeneity characterizing the discrete component with the computation efficiency of the 

continuum tissue. Cell-based models usually also include a continuum of oxygen field29 making 

it actually a hybrid model by definition, and the distinction between these two is usually blurred.  

Computational simulations have been utilized to study various oncological topics
46

, such as 

epithelial ducts and cysts through the epithelial acini models
47

, the development of initial phases 

of avascular tumor development through multicellular tumor spheroid (MCS) models
48,49

, 

angiogenesis and vascular network formation problems
50

, and all major types of anti-cancer 

treatments effectiveness modeling
51,52

. However, computational simulation has not been used to 

explore the way macroscopic tumor textures and the underlying biological mechanisms are 

related.  
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1.3 Overview 

 

Cancer is an evolutionary and ecological process53, and cancer heterogeneity is a complex 

systems problem that involves interactions between cancer cells and tissue microenvironments.30 

Hypoxia is one common tumor microenvironment factor of all cancers where the oxygen 

demand of the intensively proliferating and expanding tumor tissue cannot be fulfilled by the 

enhanced but still unpaired angiogenesis process and the resulting limited blood perfusion and 

oxygen supply54. The oxygen level in normal organs varies from 4% to 10%, and the average 

level is about 5%55. While the oxygen level in tumors falls between approximately 0.3% to 

4.2% and mostly showing median oxygen levels less than 2%55. The pathological hypoxic 

environment in the tumor could trigger metabolism transition, invasion mechanisms 

enhancement, the release of vascular endothelial growth factor (VEGF), or even the process of 

necrosis or apoptosis, with respective thresholds depending on the different sensitivity to oxygen 

conditions of each cell. Meanwhile, it is believed that the misshapen, irregular, disorganized, and 

tortuous architecture arising from tumor-induced angiogenesis eventually results in the formation 

of hypoxic voids, necrosis, and an acidic milieu, which are the basis for imaging tumor 

heterogeneity with CT56. Therefore, we believe that the interrelated angiogenesis and hypoxia 

mechanisms in tumors play an important role in driving the formation of macroscopic 

heterogeneities and texture patterns. Such an idea is supported by an empirical in vivo study 

where B Ganeshan et al.57 showed that texture parameters derived from CT images of NSCLC 

have the potential to act as imaging correlates for tumor hypoxia and angiogenesis. For the 
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reasons above, we are going to focus on angiogenesis, blood perfusion, and oxygen supply 

during tumor development. Additionally, for the emergence of macroscopic heterogeneity, the 

size of the tumor needs to be sufficiently large, and high throughput modeling is needed for 

statistical analysis. These imposed a high requirement for both modeling efficiency and fidelity. 

Given the pivotal roles of angiogenesis, blood perfusion, and oxygen supply in tumor growth and 

behavior, our study will concentrate on these critical aspects during tumor development. Besides, 

to adequately capture the emergence of macroscopic heterogeneity, the modeled tumors must 

reach a significant scale. Furthermore, comprehensive statistical analysis necessitates high-

throughput modeling capabilities. Consequently, our approach must meet stringent requirements 

for both computational efficiency and model fidelity to accurately reflect the complex dynamics 

of tumor growth and vascular development. 

Considering the crucial influence of angiogenesis, blood perfusion, and oxygen supply on tumor 

progression and characteristics, our research will focus intently on these aspects during tumor 

development. Moreover, to accurately represent the emergence of macroscopic heterogeneity our 

models must simulate tumors on a substantial scale. High-throughput modeling is also 

indispensable for conducting in-depth statistical analysis of the simulation results. These 

requirements necessitate a modeling framework that balances the demands of computational 

efficiency with the need for high fidelity to provide realistic and insightful representations of 

tumor biology. 

In this dissertation, I will first introduce our work on large scale avascular cell-based modeling 

platform in Chapter 2. We highlight critical enhancements in modeling speed and memory 
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efficiency, crucial for facilitating comprehensive cell-based simulations. In Chapter 3, we 

explore the vasculature of both tumor and normal tissues, focusing on their morphology and 

functionality in relation to perfusion and oxygenation. Notably, our methods achieve real-time, 

coupled perfusion-oxygenation modeling at a scale representative of actual mice tumors and 

vasculature, marking a significant achievement. Chapter 4 is dedicated to our ultra-large physics-

driven vascularized tumor model, which illuminates the mechanisms contributing to the 

formation of macroscopic tissue heterogeneity. Additionally, this chapter provides insights into 

how imaging features, extracted from the model analyzed with Radiomic approach, can be 

interpreted. 
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2.Chapter 1: Gell: A GPU-powered 3D 

hybrid simulator for large-scale 

multicellular system 

 

As a powerful but computationally intensive method, cell-based hybrid computational models 

study the dynamics of multicellular systems by evolving discrete cells in reacting and diffusing 

extracellular microenvironments. As the scale and complexity of studied biological systems 

continuously increases, the exploding computational cost starts to limit large-scale cell-based 

simulations. In this chapter I will introduce our work on developing Gell: a fast and memory-

efficient open-source GPU-based hybrid computational modeling platform for large-scale system 

modeling. We fully parallelize the simulations on GPU for high computational efficiency and 

propose a novel voxel sorting method to further accelerate the modeling of massive cell-cell 

mechanical interaction with negligible additional memory footprint. As a result, Gell efficiently 

handles simulations involving tens of millions of cells on a personal computer. We compare the 

performance of Gell with a state-of-the-art paralleled CPU-based simulator on a hanging droplet 

spheroid growth task and further demonstrate Gell with a ductal carcinoma in situ (DCIS) 

simulation. Gell affords ~150X acceleration over the paralleled CPU method with one-tenth of 

the memory requirement. 
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2.1 Introduction 

 

Computational modeling has become an important tool for studying the dynamics of tissue 

development and tumor response to different therapeutic interventions over the past three 

decades. Three major types of models are commonly utilized in these studies: discrete, 

continuum, and hybrid models32. Discrete models, also known as cell-based models or agent-

based models, simulate the individual behaviors and the mutual interactions of the cells in a 

system. Continuum models consider biological tissues as domains composed of different solid 

and fluid phases and describe the system evolution using partial differential equations. Hybrid 

models combine the aforementioned two methods as they model discrete cells in a continuum 

environment.  

Cell-based and hybrid simulations adopt the discrete representation of the cell of interest. 

Compared to the continuum representation, the discrete modeling of individual cells better 

captures the heterogeneity of tumorous tissue with independently tracked cell states and enables 

a more straightforward translation from biological hypothesis to simulation rules30. Cell-

based/hybrid simulation has been utilized to explore various kinds of oncological topics46, such 

as epithelial ducts and cysts through the epithelial acini models58 47, the development of the 

initial phases of avascular tumor development through multicellular tumor spheroid (MCS) 

models48, angiogenesis, vascular network formation problems59, and anti-cancer treatments 
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effectiveness modeling52 51. The method for discrete representation of cells can either be lattice-

based or off-lattice. Lattice-based methods are mesh-based, including cellular automaton (CA) 

models60, lattice gas CA (LGCA) models61, and Cellular Potts models (CPM)62. Lattice-based 

models are susceptible to grid biases34, which do not affect the off-lattice methods. Two major 

types of off-lattice models are Boundary-tracking models36 and Center-Based models (CBMs)32 

29. Boundary-tracking models dedicate more computational resources to the cells' morphological 

dimension and are thus more computationally expensive than CBMs30. CBMs assume a spherical 

cell shape and represent cell movement by displacing the cell center position. Cell movements 

can be realistically modeled by incorporating forces such as adhesive, repulsive, locomotive, and 

drag-like forces29. Center-based representation is often a superior choice for large-scale cell-

based/hybrid simulations interested in the heterogeneous development of biological tissue due to 

its realistic modeling of multicellular interactions and lower computational cost than other cell-

based methods.  

However, even with a center-based representation of discrete cells, as the scale and complexity 

of the studied biological systems continuously increase, the exploding computational cost still 

limits the large-scale cell-based/hybrid simulations. Several CPU-based cell-based/hybrid 

simulation software frameworks have been proposed to enable large-scale biological system 

modeling on high-performance computers. Biocellion63, a closed-source commercial software, 

has simulated millions to billions of cells on computer cluster. PhysiCell29 is an open-source 

parallel simulation platform capable of simulating 18.2 days of hanging drop spheroid growth 

with up to one million cells in 3 days on a high-performance computer. BioDynaMo64 is another 
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open-source parallel simulator which is 945X faster on the 'epidemiology (medium-scale)' 

benchmark using 72 CPUs on a server compared to a single thread version. Because of the 

demonstrated potential to accelerate cell-based simulation with parallelization, recent research 

has shifted to the graphic processing unit (GPU), which has an intrinsic parallel architecture with 

thousands of computational cores. Ya||a65 is a paralleled agent-based model on GPU. Its extended 

spheroid cell model with spin-like polarities can simulate epithelial sheets and tissue polarity. 

Although Ya||a65 can achieve 10X acceleration compared to CPU-based cell-based simulation 

library Chaste66, their simulation software is not designed for large systems. Simulation of large 

systems using Ya||a65 is limited by its computational complexity of O(N2) for cell-cell interaction. 

CBMOS67 is another GPU-based software that provides a platform to study the effects of force 

functions, ODE solvers, time step sizes, and cellular events in CBMs. CBMOS67 utilizes fast 

GPU vector operations provided by CuPy for efficient calculations and achieves a simulation 

speed 30X faster than their CPU version. Their emphasis, however, is on a better user interface 

for fast prototyping of new models. Its ability to handle large systems is still limited by the 

platform design, e.g., the force calculation time complexity is O(N2) and the GPU memory 

consumption can exceed 16 GB (e.g., NVIDIA Tesla T4) for >104 cells. GPU BioDynaMo68 

upgrades BioDynaMo69 by enabling GPU co-processing. With a GTX 1080Ti GPU, GPU 

BioDynaMo can be 130X faster than the single thread CPU only version BioDynaMo. However, 

GPU BioDynaMo does not solve PDEs on GPU, and its uniform grid method for force 

calculation still needs CPU for linked list maintenance, which significantly limits its real-world 

performance.  
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Therefore, although acceleration of cell simulation using GPU has been demonstrated, the 

potential has not been fully realized. Specifically, the cell-cell interaction has not been fully 

parallelized, and the slow data transfer between CPU and GPU results in significant overhead. In 

this study, we developed a new open-source fast and memory-efficient fully GPU-based hybrid 

simulation software, GPU cell (Gell), to overcome these bottlenecks for large-scale hybrid cell 

simulation. 

 

2.2 Methods 

 

2.2.1 Cell model 

 

2.2.1.1 Cell Cycle and Death 

 

We model five cell phases in Gell. The premitotic, postmitotic, and quiescent phases are for 

living cells, and the necrotic and apoptotic phases are for cell death. The phase transition from 

premitotic to postmitotic and from postmitotic to quiescent are deterministic with a fixed gap 

time, respectively. Meanwhile, the phase transition from the quiescent phase to the premitotic 
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phase and any phase transition from the living cell phase to the dead cell phase are all stochastic 

with a certain transition rate. The respective transition rates are listed in Table 2-1. 

 

Transition 

Rate 

Premitotic 

Phase 

Postmitotic 

Phase 

Quiescent 

Phase 

Apoptotic 

Phase 

Necrotic 

Phase 

Premitotic 

Phase 

 
1
𝑇𝑝𝑟𝑒𝑚⁄  0 0 0 

Postmitotic 

Phase 

0  
1
𝑇𝑝𝑜𝑠𝑡𝑚⁄  0 0 

Quiescent 

Phase 

𝑟𝑝𝑟𝑜(𝑝𝑜𝑥𝑦) 0  𝑟𝑎𝑝𝑜𝑝 𝑟𝑛𝑒𝑐(𝑝𝑜𝑥𝑦) 

Table 2-1 The phase transition rate in the cell cycle model from the left column phase to the top 

row phase. The transition rate for deterministic phase duration is noted as one over the fixed 

phase duration. 

The probability for any stochastic transition α with transition rate ra to take place in a short time 

interval Δt is given by:  

 

𝑃𝑟𝑜𝑏𝛼 = 𝑟𝑎∆𝑡   

Equation 2-1 
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During the quiescent phase, cells maintain their standard volume and remain to be stochastically 

activated for division preparation at the rate rpro(Poxy): 

 

𝑟𝑝𝑟𝑜(𝑃𝑜𝑥𝑦) =

{
 
 

 
 
𝑟𝑝𝑟𝑜_𝑚𝑎𝑥 𝑃𝑜𝑥𝑦 ≥ 𝑆𝑎𝑝𝑟𝑜,

𝑟𝑝𝑟𝑜_𝑚𝑎𝑥
𝑃𝑜𝑥𝑦 − 𝑇ℎ𝑝𝑟𝑜

𝑆𝑎𝑝𝑟𝑜 − 𝑇ℎ𝑝𝑟𝑜
   𝑇ℎ𝑝𝑟𝑜 < 𝑃𝑜𝑥𝑦 < 𝑆𝑎𝑝𝑟𝑜

0 𝑃𝑜𝑥𝑦 ≤ 𝑇ℎ𝑝𝑟𝑜 .

,  

Equation 2-2 

The proliferation rate increases linearly with local oxygen concentration in the given range 

𝑇ℎ𝑝𝑟𝑜 < 𝑃𝑜𝑥𝑦 < 𝑆𝑎𝑝𝑟𝑜, where Thpro is the minimum oxygen partial pressure required for 

proliferation, Sapro is the saturation oxygen partial pressure when the transition rate for 

proliferation reaches the maximum value rpro_max.  

Once activated for proliferation, cells enter the premitotic phase and prepare for division. 

Premitotic cells gradually gain mass/volume, and then divide at the end of this phase and enter 

the postmitotic phase. The division process is mechanically modeled to finish in an instant, and 

the two daughter cells equally inherit half of the parent cell volume and be placed around the 

parent cell center with the displacement xdisp
29.  

 

𝑥𝑑𝑖𝑠𝑝 = ±(𝑅 −
𝑅

√2
3 ) 𝜃  

Equation 2-3 
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Where R is the cell radius of the parent cell, and θ is a three-dimensional random unit vector. The 

postmitotic phase accounts for the duration required for daughter cells to reach mechanical 

equilibrium and grow to be proliferation ready. 

Cell death is activated stochastically for all living cells. The transition rate to enter the apoptotic 

phase is a constant for all cells, 𝑟𝑎𝑝𝑜𝑝,  while the transition rate for necrotic death depends on the 

local oxygen partial pressure Poxy: 

 

𝑟𝑛𝑒𝑐(𝑃𝑜𝑥𝑦) =

{
 
 

 
 0 𝑃𝑜𝑥𝑦 ≥ 𝑇ℎ𝑛𝑒𝑐 ,

𝑟𝑛𝑒𝑐_𝑚𝑎𝑥
𝑇ℎ𝑛𝑒𝑐 − 𝑃𝑜𝑥𝑦

𝑇ℎ𝑛𝑒𝑐 − 𝑆𝑎𝑛𝑒𝑐
   𝑆𝑎𝑛𝑒𝑐 < 𝑃𝑜𝑥𝑦 < 𝑇ℎ𝑛𝑒𝑐

𝑟𝑛𝑒𝑐_𝑚𝑎𝑥 𝑃𝑜𝑥𝑦 ≤ 𝑆𝑎𝑛𝑒𝑐 .

,  

Equation 2-4 

Necrosis happens only when local oxygen partial pressure is lower than the necrosis threshold 

Thnec. The transition rate increases linearly as the oxygen concentration decreases till the 

maximum necrosis rate rnec_max is reached when oxygen partial pressure equals the necrosis 

saturation threshold Sanec. 

All cell components start to shrink for apoptotic death upon entering the phase. While for the 

necrotic phase, early necrotic cells first absorb fluid and swell in the oncosis process, and then 

enter the late necrosis process after the membrane ruptures and start to lose fluid components. 

Modeling of two-stage necrotic death can be critical when studying the microstructures in the 

hanging drop spheroid necrotic center29. Phase transition-related parameters can be found in 
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Table 2, where the listed values are all adopted from the "Ki67 Advanced" model from 

PhysiCell29. 

 

Parameter Biophysical meaning Reference Value 

𝑻𝒑𝒓𝒆𝒎 Duration of premitotic phase 13 ℎ𝑜𝑢𝑟 

𝑻𝒑𝒐𝒔𝒕𝒎 Duration of postmitotic phase 2.5 ℎ𝑜𝑢𝑟 

𝒓𝒂𝒑𝒐𝒑 Apoptosis rate 0.0060 ℎ𝑜𝑢𝑟−1 

𝒓𝒑𝒓𝒐_𝒎𝒂𝒙 Max proliferation rate 0.1176 ℎ𝑜𝑢𝑟−1 

𝑺𝒂𝒑𝒓𝒐 
The oxygen level when the proliferation 

rate reaches maximum 

10 𝑚𝑚𝐻𝑔 

𝑻𝒉𝒑𝒓𝒐 
The oxygen level when the proliferation 

rate drops to zero 

5 𝑚𝑚𝐻𝑔 

𝒓𝒏𝒆𝒄_𝒎𝒂𝒙 Max necrosis rate 0.1667 ℎ𝑜𝑢𝑟−1 

𝑺𝒂𝒏𝒆𝒄 
The oxygen level when the necrosis rate 

reaches maximum 

2.5 𝑚𝑚𝐻𝑔 

𝑻𝒉𝒏𝒆𝒄 
The oxygen level when the necrosis rate 

drops to zero 

5 𝑚𝑚𝐻𝑔 

Table 2-2 Phase transition-related parameters. 
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Following PhysiCell29, we divide the total cell volume V into the fluid volume VF and the solid 

biomass volume VS. The solid biomass volume is further divided into total nuclear volume VNS 

and cytoplasmatic volume VCS. Different cell components have different rates of volume gain 

and loss in different phases. All the volume changes of different cell components are modeled 

using ordinary differential equations (ODEs): 

 

𝑑𝑉𝑖(𝑡)

𝑑𝑡
= 𝑟𝑝,𝑖(𝑉𝑖(𝑡) − 𝑉𝑖

𝑝)  

Equation 2-5 

Where Vi is the volume of component i, rp,i is the volume change rate of component i in phase p, 

and Vi
p is the desired volume of component i in phase p. Specially, the desired  fluid volume of a 

cell is a function of  the current total cell volume V. Related parameters can be found in Table 3, 

adopted from MCF-10A human breast cancer cell line29. 

 

 
Premitotic 

Phase 

Postmitotic 

Phase/ 

Quiescent  

Phase 

Apoptotic 

Phase 

Early 

Necrotic 

Phase 

Late 

Necrotic 

Phase 

𝑽𝑭 0.7502𝑉 0.7502𝑉 0 𝑢𝑚3 𝑉 0 𝑢𝑚3 
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𝒓𝑭 3 ℎ𝑜𝑢𝑟−1 3 ℎ𝑜𝑢𝑟−1 3 ℎ𝑜𝑢𝑟−1 0.67 ℎ𝑜𝑢𝑟−1 0.05 ℎ𝑜𝑢𝑟−1 

𝑽𝑵𝑺 270 𝑢𝑚3 135 𝑢𝑚3 0 𝑢𝑚3 

0 𝑢𝑚3 

 

𝒓𝑵𝑺 0.33 ℎ𝑜𝑢𝑟−1 0.33 ℎ𝑜𝑢𝑟−1 0.35 ℎ𝑜𝑢𝑟−1 0.013 ℎ𝑜𝑢𝑟−1 

𝑽𝑪𝑺 976 𝑢𝑚3 488 𝑢𝑚3 0 𝑢𝑚3 0 𝑢𝑚3 

𝒓𝑪𝑺 0.27 ℎ𝑜𝑢𝑟−1 0.33 ℎ𝑜𝑢𝑟−1 1 ℎ𝑜𝑢𝑟−1 0.0032 ℎ𝑜𝑢𝑟−1 

Table 2-3 Cell volume growth-related parameters. 

2.2.1.2 Cell Mechanics 

 

Cells in Gell are mechanically modeled as elastic balls with varied volumes and center positions. 

Cells adhere to each other while attached and push against each other upon compression. The 

motion of cell i at position xi(t), with velocity vi(t), and with a set Ni(t) of nearby cells can be 

modeled as29: 

 

𝑚𝑖𝑣̇𝑖 = ∑ (𝐹𝑐𝑐𝑎
𝑖𝑗
+ 𝐹𝑐𝑐𝑟

𝑖𝑗
)

𝑗∈𝑁(𝑖)

+ 𝐹𝑚𝑜𝑡
𝑖 − 𝜂𝑖𝑣𝑖  

Equation 2-6  
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Where 𝑣̇𝑖 is the acceleration, Fcca
ij denotes the adhesive force from cell j to cell i, and Fccr

ij 

represents the repulsive force from cell j to cell i. Fmot
i accounts for the force related to cell 

migration. ηivi represents the resistance contributed by the local microenvironment, such as fluid 

resistance and cell-matrix adhesion forces. ηi is a fluid-drag-coefficient parameter and vi is the 

cell velocity.  

The force equilibrates at relatively short time scales relative to the time scale of cell volume 

change and multicellular patterning. Therefore, we can safely apply the zero acceleration 

inertialess condition to Eq (6) and explicitly solve vi by: 

 

𝑣𝑖 =
1

𝜂𝑖
( ∑ (𝐹𝑐𝑐𝑎

𝑖𝑗
+ 𝐹𝑐𝑐𝑟

𝑖𝑗
)

𝑗∈𝑁(𝑖)

+ 𝐹𝑚𝑜𝑡
𝑖 )  

Equation 2-7 

The adhesive force and repulsive force experienced by cell i are modeled as: 

 

𝐹𝑐𝑐𝑎
𝑖𝑗
= {  𝐶𝑐𝑐𝑎 (1 −

|𝑟𝑖𝑗|

𝑅𝐴
)

2
𝑟𝑖𝑗

|𝑟𝑖𝑗|
          𝑖𝑓  |𝑟| ≤ 𝑅𝐴

      0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

,  

Equation 2-8 
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𝐹𝑐𝑐𝑟
𝑖𝑗
= {   −𝐶𝑐𝑐𝑟 (1 −

|𝑟𝑖𝑗|

𝑅𝑅
)

2
𝑟𝑖𝑗

|𝑟𝑖𝑗|
          𝑖𝑓  |𝑟| ≤ 𝑅𝑅

      0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

,  

Equation 2-9 

RR is the maximum repulsive interaction distance that equals the sum of the radius of cell i and j. 

RA is the maximum adhesive interaction distance, which is slightly larger than RR due to the 

deformability of the two cells. Ccca is the cell-cell adhesion parameter and Cccr is the cell-cell 

repulsion parameter. rij is a vector pointing from the center of cell i to the center of cell j. 

Once the sum of the experienced force is calculated for all cells, the velocity of any cell can be 

directly calculated. Cell position is then updated using the second-order Adam-Bashforth 

method: 

 

𝑥𝑖(𝑡 + ∆𝑡) = 𝑥𝑖(𝑡) +
∆𝑡

2
(3 ⋅ 𝑣𝑖(𝑡) − 𝑣𝑖(𝑡 − ∆𝑡))  

Equation 2-10 

2.2.2 Extracellular microenvironment 

 

The tumor is surrounded by a complex ecosystem named tumor microenvironment (TME), 

composed of tumor cells, stromal cells, and other extracellular physical and chemical factors. 

The mutual and dynamic crosstalk between the tumor and tumor microenvironment, together 
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with the genetic/epigenetic change in tumor cells, are two factors that influence the formation 

and progression of the tumor70. In our model, cells can absorb environmental nutrients and 

release biochemical factors into the extracellular fluid. In addition, critical environmental factors 

can also regulate cell behaviors. To simulate the spatio-temporal variation of environmental 

factors during tumor development, we consider a continuous extracellular fluid space and use 

PDEs to describe the secretion, diffusion, uptake, and decay of diffusive substances such as 

oxygen and vascular endothelial growth factor. The continuum environment and the discrete cells 

are explicitly linked. Cell phases, sizes, and positions are treated as static while updating the 

continuous molecular space and vice versa. The equation for any diffusive substance in the 

extracellular fluid domain Ω can be written as71 

 

𝜕𝜌

𝜕𝑡
= ∇ ∙ (𝐷∇𝜌) − 𝜆𝜌 + 𝑆(𝜌∗ − 𝜌) − 𝑈𝜌  

Equation 2-11 

Depending on the problem, the domain boundary ∂Ω can be either Dirichlet or Neumann type. ρ 

is the substance concentration, ρ* is the saturation concentration, D is the diffusion coefficient, λ 

is the decay rate, S is the supply rate, U is the uptake rate.  

In the provided code, the oxygen concentration is the only considered environmental factor and 

discrete cells are the only contributor of oxygen consumption. Cells absorb oxygen from the 

extracellular fluid and regulate their behavior according to local oxygen concentration. The 

oxygen consumption of each cell is modeled as proportional to both the oxygen concentration 
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and the cell volume. With a cartesian grid, for each isotropic voxel i, the total uptake rate of 

oxygen equals the sum of the local cell consumption: 

 

𝑈𝑖 = ∑
𝑉𝑗

𝑉𝑣𝑜𝑥𝑒𝑙
𝑈𝑜

𝑗 𝑖𝑛 𝑖

 

Equation 2-12 

The uptake rate here represents the oxygen concentration decrease rate as a proportion of current 

concentration, Uo is the default oxygen consumption rate of living cells that equals 10 per min. 

Vvoxel is the volume of the given voxel, j is the index of cells inside the voxel, and Vj is the 

corresponding cell volume.  

In the simulation, each voxel's total oxygen consumption rate is first calculated according to the 

position, size, and phase of all the cells. Then the molecular space is updated using the static 

consumption rate map. With the calculated molecular concentration, cells in the discrete model 

could read the local oxygen concentration and carry on their stochastic phase transitions 

according to these values. 

For the numerical processing of the PDE, following BioFVM71, a first-order splitting method is 

first applied to split the righthand side into simpler operators: a supply and uptake operator and a 

diffusion-decay operator. 
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{
 

 
𝜎 − 𝜌𝑛

∆𝑡
= ∇ ∙ (𝐷∇𝜎) − 𝜆𝜎

𝜌𝑛+1 − 𝜎

∆𝑡
= 𝑆(𝜌𝑛+1 − 𝜎) − 𝑈𝜎

 

Equation 2-13 

The supply and uptake operators are handled analytically. The three-dimensional diffusion-decay 

operator is further split into a series of related one-dimensional PDEs using the locally-one 

dimensional (LOD) method. 

 

{
 
 

 
 

𝜂 − 𝜌𝑛

∆𝑡
= 𝜕𝑥(𝐷𝜕𝑥𝜂) −

1

3
𝜆𝜂

    
𝜂∗ − 𝜂

∆𝑡
= 𝜕𝑦(𝐷𝜕𝑦𝜂

∗) −
1

3
𝜆𝜂∗

𝜎 − 𝜂∗

∆𝑡
= 𝜕𝑧(𝐷𝜕𝑧𝜎) −

1

3
𝜆𝜎

 

Equation 2-14 

Discretized using the finite volume method, the updated concentration of each strip of voxels for 

each direction can be obtained by solving Eq (15) using the Thomas algorithm72.  

 

{
 
 

 
 (1 +

1

3
∆𝑡𝜆 +

∆𝑡

∆𝑥2
𝐷) ∘ 𝜂(0,𝑦𝑓,𝑧𝑓) −

∆𝑡

∆𝑥2
𝐷 ∘ 𝜂(1,𝑦𝑓,𝑧𝑓) = 𝜌(0,𝑦𝑓,𝑧𝑓)

𝑛

−
∆𝑡

∆𝑥2
𝐷 ∘ 𝜂(𝑛𝑥−1,𝑦𝑓,𝑧𝑓) + (1 +

1

3
∆𝑡𝜆 + 2

∆𝑡

∆𝑥2
𝐷) ∘ 𝜂(𝑛𝑥,𝑦𝑓,𝑧𝑓) −

∆𝑡

∆𝑥2
𝐷 ∘ 𝜂(𝑛𝑥+1,𝑦𝑓,𝑧𝑓) = 𝜌(𝑛𝑥,𝑦𝑓,𝑧𝑓)

𝑛

−
∆𝑡

∆𝑥2
𝐷 ∘ 𝜂(𝑁𝑥−2,𝑦𝑓,𝑧𝑓) + (1 +

1

3
∆𝑡𝜆 +

∆𝑡

∆𝑥2
𝐷) ∘ 𝜂(𝑁𝑥−1,𝑦𝑓,𝑧𝑓) = 𝜌(𝑁𝑥−1,𝑦𝑓,𝑧𝑓)

𝑛

 

Equation 2-15 
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2.2.3 Implementation Details 

 

Gell is developed using C++ and CUDA (v11.2) with the program's design schematic illustrated 

in Figure 1. There are two major types of data in the simulation, the pre-allocated array of 

structure for cell data management and the isotopically discretized cartesian grid for spatial 

domain-related data, which includes information related to the tumor microenvironment (TME) 

and our Voxel Sorting (VS) method. Once initialized on the CPU, all the cellular and 

microenvironmental data are transferred to GPU memory. From this point, all the following 

computation steps are exclusively handled by GPU to eliminate costly back-and-forth data 

transfer between GPU and CPU.  

 

2.2.3.1 Main Loop 

 

The main simulation loop of Gell consists of three critical computational modules as delineated 

in dashed lines in Figure 1: the Microenvironment Module, the Cell Cycle Module, and the Cell 

Mechanics Module. Each module is responsible for one of the key tasks in the hybrid cell-based 

simulation and is uniquely designed to enable efficient parallelization on the GPU. Further 

details on this these modules will be explored in the following sections. 
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Figure 2-1 Diagram for the program design. In the provided diagram, white cylinders symbolize 

the simulation data, and colored boxes positioned atop this data represent associated operations. 

The abbreviations TME and VS are used to denote the Tumor Microenvironment and Voxel 

Sorting, respectively. The Microenvironment Module, Cell Cycle Module, and Cell Mechanics 

Module are distinctly demarcated with dashed lines in blue, red, and green, respectively. 

 

2.2.3.2 Microenvironment Module 

 

The Microenvironment Module is tasked with managing the diffusive transportation and cellular 

secretion/uptake of environmental factors, such as oxygen. This module is divided into two 

sections: a Supply-Uptake Submodule and a Diffusion-Decay LOD Kernel.  
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The Supply-Uptake Submodule deals with the supply and uptake of microenvironmental factors. 

This process involves two CUDA kernels: a 1D kernel parallelized over the cells to calculate the 

total supply and uptake in each voxel, followed by a 3D kernel parallelized over voxels to adjust 

the factor concentration after supply and uptake. 

The Diffusion-Decay LOD Kernel uses the LOD algorithm to address the diffusion and decay of 

environmental factors. During each diffusion-reaction step, the LOD solver transforms the 

concentration update problem along the three axes into 3*N2 tridiagonal linear systems, each 

with N unknowns. Each parallel thread solves one of these tridiagonal linear systems using the 

Thomas algorithm. The overall computational complexity of each update step is O(Nvoxel). 

 

2.2.3.3 Cell Cycle Update 

 

The Cell Cycle Module is responsible for managing cell proliferation, growth, and death. It is 

divided into two components, the cell cycle kernel, and the cell birth-death submodule.  

The cell growth and phase transition only involve the current cell status as well as the local 

environmental factors. These processes are highly parallelizable and are directly distributed 

across different threads and computed by GPU in the Cell Cycle Kernel. The Cell Birth-Death 

Submodule manages cell proliferation and death, focusing on memory management of structured 

data. By leveraging this submodule, fast simulations can be conducted with only minimal 

additional computation and memory cost for thread competition avoidance. During cell 
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proliferation, the total cell count is atomically updated to enable the addition of new daughter 

cells to the cell array. For cell death, cells earmarked for removal are initially labeled in their 

respective phase update thread, and then collectively deleted from the cell array in a subsequent 

kernel for efficient cell array maintenance. The overall computational complexity of the above-

mentioned processes is approximately O(N). 

 

2.2.3.4 Cell Mechanics Update 

 

N-body interaction simulations can be extremely expensive due to its O(Ncell
2) computational 

complexity. For a large multicellular system with millions of cells, it is computationally 

impractical just to loop over all the cell pairs, even with GPU65,67.  Fortunately, the cell-cell 

mechanical interactions are short-range interactions, making it reasonable to calculate only the 

forces between neighboring cells, thus reducing the computational complexity to O(Ncell). 

PhysiCell utilizes the cell-cell interaction data structure (IDS) method29. A large number of lists 

are created and maintained to record the indices of cells inside each voxel. The force calculation 

for each cell only has to loop over the cells inside its nearest 27 voxels, according to the lists. 

GPU BioDynaMo, with its uniform grid method68, improves memory usage efficiency by 

replacing the cell index list with the linked list. However, maintaining such cell lists or linked 

lists is not GPU friendly. GPU does not allow us to dynamically allocate memory in the thread, 

making it challenging to create lists with dynamic lengths for all mechanical voxels in the IDS 

method. Suppose GPU memory for cell lists is all pre-allocated according to the maximum cell 
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density. In that case, memory usage can be highly inefficient due to the high cell density necrotic 

region. The challenge lies in the maintenance of the linked list for the uniform grid method on 

GPU. Thread locks are required to update the linked list correctly, but the wrapping mechanism 

of CUDA could easily create deadlocks during such processes and pause the program 

indefinitely. 

To realize an efficient cell-cell mechanics computation on GPU, we have developed our Voxel-

Sorting Method. Cells are stored in array-of-structures, and a Morton code is generated for each 

cell according to the i, j, k index of its containing mechanical voxel as a key for sorting. Then a 

fast GPU-based radix sort algorithm73 of complexity O(Ncell) is used to rearrange the cell array 

according to the ascending Morton code value order. After sorting, cells in the same voxel are 

stored contiguously in the GPU memory, and cells in adjacent voxels are stored relatively close. 

Such a contiguous memory layout increases the memory fetch efficiency, especially when groups 

of cells in the same voxel have to be accessed together by the same thread. The array index range 

for cells inside each voxel is easily determined with O(Nvoxel). Figure 2 illustrates the voxel 

sorting method in a 2D scene.   
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Figure 2-2 2D illustrations of voxel sorting method. 

Left: The Morton code maps 2D position to 1D number while preserving the locality of the data 

points. The Morton code is generated by interleaving the binary x and y pixel index values. 

Adapted from74. Right: The force calculation example of a single cell(red). The red circle 

represents the maximum range of cell-cell mechanical interaction whose radius is shorter than 

the side length of voxels. The Force module only needs to loop over the cells in yellow voxels to 

calculate the aggregated force, and the indexes of cells inside these voxels can be easily figured 

out after sorting. As long as the voxel side length is longer than the maximum cell-cell 

interaction distance, each cell's aggregated cell-cell mechanical interaction can be calculated 

efficiently by looping only over cells inside its nearest 27 voxels. Our voxel sorting method 

achieved force calculation time complexity of O(Ncell) and high GPU memory utilization 

efficiency. An additional advantage of our voxel sorting method is memory access efficiency. 

With the cells in the same voxel stored next to each other in the GPU memory after voxel 

sorting, the following 27 times of memory fetch of these cell data can become much more 
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efficient than fully random memory access. After the force calculation, the cell position update 

can be directly parallelized using the aggregated force information. 

This rapid cell-cell interaction simulation method described above is implemented in the three-

step Cell Mechanics Module. The first Morton Encoding kernel determines the order index of 

each cell. Then the second Voxel Sorting Submodule sorts the cells accordingly and determines 

the index range of cells within each voxel. In the last step, the aggregated force and cell 

movements of each cell is calculated by the Cell Mechanics Submodule. 

 

2.2.3.5 Time Scale Considerations 

 

Different biological processes evolve at different time scales: the temporal scale of cell colony 

biology and mechanics is on the order of minutes, while the equilibrium of transport diffusion is 

achieved in seconds29. Because the extracellular environment updates substantially faster than 

cellular evolution, it is computationally inefficient to synchronize the cell simulator and 

extracellular environment simulator updates. Instead, we first fixed cellular properties while 

solving the PDEs for the extracellular environment at a higher frequency and then evolved cell 

phenotype and mechanical interaction at a lower frequency to reduce the simulation cost.  
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2.3 Results 

 

All calculations are tested on a personal computer (with Intel® Core™ i7-7700K CPU, 64GB 

memory, and a NVIDIA® GeForce® RTX 2080Ti graphics card) on 64-bit Windows 10. Tests 

are conducted to determine the optimal block size settings for GPU computation during the 

program development, which have been fixed for later simulations. Specifically, the kernels for 

cell cycle update have a 1D block width of 64, while the 3D kernels for oxygen consumption 

employ a block width of 4. As for the 2D kernels used for LOD calculation, we have adopted a 

small 2D block width of 4 due to the storage requirements of the Thomas algorithm on GPU. 

This algorithm necessitates the storage of a temporary array for each thread, and a small block 

size allows us to store all data on the registers. 

 

2.3.1 Hanging Drop Spheroid  

 

As an in vitro 3D multicellular model, multicellular tumor spheroids (MCTS) possess many in 

vivo tumor features, including cell-cell interaction, hypoxia, treatment response, and production 

of extracellular matrix75,76. Tumor spheroids are widely used for various tumor growth dynamics 

and treatment response studies. Many modeling works have been published to bridge the 

observed spheroid experiment results to mechanistic understandings mathematically. Joshua A. 
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Bull et al.77 developed an off-lattice hybrid spheroid growth model to explore the growth 

dynamics of tumor spheroids and reproduced the migration and internalization of tumor cells 

observed in spheroid experiments78. Kevin O. Hicks et al.79 developed an on-lattice hybrid 

spheroid model using experimentally determined parameters and accurately simulated the cell 

killing after radiation and hypoxia-activated prodrug interventions. 

To compare the computational performance of our simulation framework with existing 

simulation software, we simulated a benchmark problem of hanging drop spheroid growth29. In 

the hanging drop spheroid (HDS) benchmark, a suspended multicellular aggregate is cultured in 

the middle of a growth medium with oxygen supplied through diffusion from the domain 

boundary. All the Gell simulations and PhysiCell simulations share identical simulation settings. 

The simulation started with 2347 cells and evolved to nearly one million cells after 450 hours of 

cultivation. The simulation domain contains one million isotropic voxels with a side length of 25 

μm. Cell mechanics and phase update is calculated every 0.1 minutes, and the diffusion-reaction 

of oxygen in the extracellular fluid is solved every 0.01 minutes. At the end of the simulation, 

Gell and PhysiCell produce nearly identical results, predicting a spheroid radius of 1.87 mm and 

evolving visually identical spheroid structures, including the crack patterns in the necrotic cores. 

These findings suggest that the computation of Gell is accurate, and the use of single precision 

arithmetic has a negligible impact on the simulation result. The evolution of cell numbers and 

spheroid radius over time is shown in Figure 3. The result shows no necrosis development until 

the spheroid reaches a certain radius when oxygen diffusion from the outer rim becomes 

insufficient to support the inner cells. The radius growth curve exhibits a linear shape due to the 
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approximately constant viable rim thickness, which agrees with the simulation result and 

theoretical prediction of PhysiCell29. 

 

 

Figure 2-3 Simulation result analysis of Gell. (a) Whole tumor radius and necrotic core radius 

change over the HDS growth. (b) Number change of total tumor cells and necrotic tumor cells 

over the HDS growth. 

The rendered images of the simulation results are shown in Figure 2-4. There is a clear viable 

rim of actively proliferating cells at the outer shell of the spheroid and a necrotic core in the 

center (Figure 2-4. a). Additionally, the subtle cell-cell mechanical adhesion, crack like 

microstructures successfully emerged in the necrotic core enter. The simulation results of Gell 

agree with PhysiCell and in vitro experiments29.  
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Figure 2-4 HDS simulation result after 450 hours. (a) Cell cluster generated by Gell. (b) 60 μm 

thick central slice of the HDS simulation result shows the microstructure of the necrotic core of 

Gell simulation. (c) central slice of PhysiCell showing identical microstructure. Both spheroids 

have a radius of 1.87 mm. 

Gell completed the entire simulation process in 47 minutes using the personal computer. As a 

comparison, the state-of-the-art CPU-based parallelled simulator PhysiCell used 119 hours for 

the same simulation on the same personal computer. In other words, Gell is 150X faster for the 

cell simulation problem of this scale. 
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Figure 2-5 HDS simulation with altered phenotype. The 60-um thick central slices of simulated 

spheroids with various cellular mechanical properties. All the spheroids start with a small 

cluster of 2347 randomly placed cells, and the cultivation duration is 450 hours. (a) The 

reference spheroid ends up with 0.9 million cells and a diameter of 1.87 mm. (b) Spheroid of 

tumor cells with no swelling during early necrosis, with 0.9 million cells and a diameter of 1.8 

mm. (c) Spheroid of tumor cells with the cell-cell adhesion suppressed, with 1.0 million cells and 

a diameter of 1.97 mm. (d) Spheroid of tumor cells with the cell-cell adhesion enhanced, with 

0.66 million cells and a diameter of 1.53 mm. 

Benefiting from the accelerated computation, we were able to explore the parameter space 

without agonizing pain. We surprisingly found that the crack pattern of the necrotic core has little 

to do with the two-stage necrosis process of tumor cells. The central slice of the spheroid of non-

swelling tumor cells shows almost identical microstructure patterns (Figure 2-5.b). However, this 

system ends up with a slightly smaller size, fewer cells, and a higher overall necrotic debris 

density. This suggests that the swelling process of tumor cells could facilitate spheroid growth by 

pushing the viable cells towards the more oxygenated outer regions. Figure 5.c shows the 

spheroid of tumor cells with the cell-cell adhesion suppressed. The cell-cell adhesion factor Ccca 
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is decreased to one-fourth of the reference value. The weak adhesion discourages the gathering 

of necrotic cells leading to a more scattered distribution of smaller necrotic cell clusters with 

more minor interleaving cracks. Figure 5.d is a spheroid with the cell-cell adhesion enhanced by 

quadrupling Ccca. The strong adhesive force helps form the massive necrotic debris clusters and 

promotes a significantly higher cell density that intensifies the oxygen competition between 

tumor cells and ultimately hinders tumor growth. Such pattern differences in necrotic core 

microstructures that emerged in the simulation are also observed in in vitro experiments 80, as 

shown in Figure 6. Two spheroids of the same melanoma cell line (A2508) form clustered 

(Figure 2-6.a) and scattered (Figure 2-6.b) necrotic cores, respectively. The exact differences in 

cell treatment and mechanisms of pattern formation are not described in the original literature. 

However, our simulations hint that cell-cell adhesion could be an important factor that 

dramatically affects the spheroid morphology, especially the necrotic core microstructure. 

 

 

Figure 2-6 Melanoma cell line spheroids. Two spheroids of the same melanoma cell line (A2508) 

show distinct pattern differences in necrotic core microstructures due to differences in cell 
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treatment. Images are adapted from [33], and treatment details are not mentioned in the original 

literature. (a) A pimonidazole stained spheroid. (b) A Hematoxylin and eosin stained spheroid. 

Adapted from [33] with permission. 

Simulations have the potential to depict a causal and mechanistic path from certain microscopic 

cell properties to the development of qualitative macroscopic morphology and provide insights 

into real-world phenomena. However, it can be very time-consuming to explore the parameter 

space and to improve the models iteratively. Gell could help these studies by dramatically 

increasing the computational speed. 

Besides the baseline HDS simulation task, further comparisons of simulation performance with 

varying initialized cell numbers (Figure 2-7.a) and domain sizes (Figure 2-7.b) suggest that Gell 

is consistently around two orders of magnitude faster than multi-thread PhysiCell on the personal 

computer. For serial PhysiCell using only one thread, Gell can be almost 400x faster (Figure 2-

7.c). The default simulation setting for the performance comparison contains one million 

25×25×25 μm isotropic voxels and one million living cells. Cells are randomly initialized in a 

sphere with a specific cell density. The acceleration ratios of these tests differ from the whole 

HDS simulation because the HDS simulation has a more heterogeneous cell distribution and is 

closer to the equilibrium states after prolonged mechanical interactions. 
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Figure 2-7 Gell simulation speedup with respect to PhysiCell. Gell simulation speedup with 

respect to PhysiCell with varied cell numbers (a), domain voxel numbers (b), and PhysiCell CPU 

thread numbers (c with logarithmic x scale). 

Additionally, Gell can complete the simulation with its maximum memory footprint being only 

one-tenth of that of PhysiCell's without sacrificing accuracy and system complexity (Table 2-4).  

 

 PhysiCell Gell 

Memory Footprint of HDS 

Simulation (MB) 

6360 500 
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Memory Footprint per 

Additional Million Cells 

(MB) 

5384.2 118.0 

Memory Footprint per 

Additional Million Voxels 

(MB) 

742.8 15.38 

Table 2-4 Memory footprint comparison. Memory footprint comparison of Gell and PhysiCell 

per additional million cells and per additional million domain voxels in the HDS simulation task. 

Our model is able to simulate the problem with a much lower memory occupation. 

 

2.3.2 Ductal Carcinoma in Situ  

 

Ductal carcinoma in situ (DCIS) is non-invasive breast cancer that grows within the lumens of 

the mammary duct81. DCIS itself is not hard to treat, but as a precursor to invasive ductal 

carcinoma with a high incidence rate (26.6 per 100000 women82), its development and 

progression raise the interest of many modelers35 83 84 85 86. Following the work of Paul Macklin 

(30), we created a hybrid DCIS simulation example to further illustrate Gell with a more 

complex task. A cluster of tumor cells is placed at the dead-end of a fixed single-opening duct. 

The movement of tumor cells is confined within the tube lumen, and the oxygen is supplied 

through diffusion across the duct wall into the lumen. Breast ducts have a typical radius ranging 
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from 100 μm to 200 μm 84; therefore, we simulated three growth scenarios of ductal carcinomas 

in situ with the respective duct radius of 100 μm, 150 μm, and 200 μm.  

 

 

Figure 2-8 Simulation results of DCIS development. (a) Ductal carcinoma in situ simulation with 

duct radius of 150 μm. (b) Linear DCIS growth under various duct radius conditions. 

With the same cell model as in the HDS simulation and a Dirichlet boundary condition of 7.2 

mmHg oxygen concentration applied to the duct surface, the average rate of DCIS advance for 

ducts of radius 100, 150, and 200 μm is 77.0, 32.7, 19.0 μm/day, respectively. Our simulation 

results show a linear growth speed of DCIS, and the tumor advance rate has an inverse 

relationship with the duct radius, which agrees with the clinical observations and other 

computational studies in 2D35 or 3D87.  
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2.3.3 Performance Testing 

 

2.3.3.1 Individual Module Time Cost 

 

For performance assessment, we first evaluated our simulator with a randomly initiated spherical 

cell cluster with one million cells. The simulation domain contains one million 25 μm-long 

isotropic voxels. The time cost of each module is listed in Table 5. With the entire calculation 

paralleled on GPU, Gell maximizes computational efficiency in all the simulation modules. 

Meanwhile, unnecessary data transfer between CPU and GPU during the simulation is 

eliminated, ensuring a low delay between modules. 

 

Module Time cost per invocation 

Morton code calculation 0.303 ms 

Cell sorting 6.041 ms 

Force calculation 3.613 ms 

Cell movement 0.360 ms 

Reaction-diffusion update 0.542 ms 
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Phase update with birth and death 4.744 ms 

Memory copy between CPU and GPU 0.011 ns 

Others 0.387 ms 

Table 2-5 The execution time cost of each simulation module in Gell. Values are averaged over 

1000 simulation steps with the time step for phase update, mechanics update, and diffusion-

reaction update all set to be the same. Short time such as the time cost of memory copy during a 

simulation, is estimated by comparing a 1000-step simulation with another 2000-step simulation. 

The time cost for initialization and data saving is omitted. 

In the table, the cell-sorting-related process appears to be slow, but in practice, its impact on the 

overall computation is small. Firstly, the cell sorting module is less invocated than many other 

modules. The simulation faces a multiscale problem. The cell phase is updated every few 

simulation minutes, cell motion is updated every few seconds, and the diffusion reaction of 

oxygen is updated more than once per second. In this case, the simulation is approximately 

equally dominated by the cell-motion-related modules and the diffusion-reaction model. 

Secondly, the sorting process accelerates the rest of the calculations. Take the oxygen 

consumption model as an example. This kernel is a part of the reaction-diffusion module that 

calculates each cell's oxygen consumption rate and adds the value to the total consumption rate 

of each corresponding voxel. This kernel works with both unsorted and sorted cell structures. 

Changing from unsorted random memory access to sorted contiguous memory access, this 

module's time cost per invocation is reduced from 0.345 ms to 0.170 ms by 51%. The force 

calculation module is expected to benefit most from the high data fetch efficiency of the voxel 
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sorting method. Because force calculation does not work with unsorted data structures, the speed 

comparison cannot be performed. Nevertheless, the longer time spent on cell sorting benefits the 

overall computation and is a worthy investment. 

 

2.3.3.2 Performance Scaling 

 

Unaffordable memory occupation is another potential barrier for large-scale cell-based 

simulations. Memory efficiency is another design goal to make Gell a suitable software for large-

scale simulations on widely available devices. The GPU memory footprint of the HDS 

simulation with one million voxels and one million cells is limited to 500 MB, and the memory 

occupation increases with the cell number and domain size is linear and slow, as shown in Table 

5. This enables Gell to fit extremely large-scale problems into a modern personal computer 

easily.  

We tested Gell’s ability to handle ultra-large-scale problems with a hypothetical ultra-large 

spheroid model. In reality, the size of hanging droplets is diffusion constrained. Larger in vivo 

tumors inevitably involve angiogenesis and supporting tumor vasculature. However, 

angiogenesis and oxygen transportation simulations are beyond the scope of the current work. 

Instead, we simulate a series of hypothetical huge hanging droplet development problems in a 

huge domain with varying initial cell numbers, each for one hour. As shown in Figure 9, Gell has 

a linear computational cost scaling with the cell number. Simultaneously, the Gell GPU memory 
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footprint peaked at 4392 MB, showing high efficiency in memory and computational source 

usage. This linear time complexity and low memory occupation demonstrate that Gell can handle 

potential ultra-large-scale problems. 

 

 

Figure 2-9 Performance scaling of Gell. Time and memory cost for one hour's mechano-

biological process simulation with varying cell numbers. The domain contains 250×250×250 25 

μm-long isotropic voxels. 

2.4 Discussion 

 

Cell simulation is driven by the need to model larger and more complex digital tumors parallel to 

human tumors containing billions of cells. Simulation of such complex systems has been limited 

by the modeling accuracy of the biology and computational capacities. Existing tools such as 



48 

 

Biocellion63 for such large-scale simulations are close-sourced and require expensive CPU 

clusters. Open source tools, including PhysiCell 29 and BioDynaMo 64 require high-end CPU 

clusters to perform computation in practical time. In theory, GPU is well suited to manage the 

large parallel components of cell simulation. However, due to the differences between GPU and 

CPU architecture, a direct translation of a CPU-based cell simulation code to a GPU-based one is 

not straightforward and can be inefficient. Specifically, global cell-cell interactions have a time 

complexity of O(N2). The non-linear computational cost severely limits the number of cells that 

can be modeled and, subsequently, the size and complexity of the model. To overcome the 

challenge, a neighboring cell list needs to be maintained, which is difficult for GPU memory due 

to its dynamic nature. Besides this challenge, an incomplete translation of computation from 

CPU to GPU requiring frequent data transfer between them can also be rate limiting. As a result, 

the threshold of performing cell simulation to a size that is relevant to the small tissue scale 

remains out of reach for many biological researchers even with modern GPU architecture.  

To overcome these challenges, we employed several novel computational techniques to fully 

leverage the GPU architecture, improve the simulation performance, and minimize memory 

usage.  

As the computational cost of cell-cell interaction rises quadratically with the cell number, we 

developed a GPU-friendly voxel sorting method that handles the short-range cell-cell interaction 

modeling and improves the simulation's memory access efficiency. We also implemented a fully 

GPU-based LOD solver for the spatiotemporal variation of diffusive substance distribution in 

extracellular water. As a result, we optimized the evolution algorithm to achieve linear 

computational complexity O(N) while minimizing the memory footprint. In the numerical 
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implementation, we fully exploited the parallel architecture of modern GPU and different types 

of GPU memory for high computational speed and low memory access overhead. The 

computation is nearly 100% on GPU, thus avoiding slow data transfer between CPU and GPU 

memories.  

Our GPU implementation significantly outperformed CPU methods and led to almost 400X 

speedup over the single thread version of the well-established CPU simulator on a personal 

computer. The acceleration is the highest among existing GPU-powered simulators. The 

acceleration, in combination with the low memory footprint, makes Gell readily available to 

biology researchers. The easy-to-access platform would facilitate the fast prototyping of hybrid 

models and hypothesis testing for large-scale problems. 

As a future research direction, Gell can be scaled to multiple GPUs for larger problems on the 

order of 109 cells. As previously alluded to, simulation of tumor vasculature and other 

scaffolding cells such as the stromal cells and immune cells would be necessary for a 

biologically relevant model. Besides our effort to incorporate these extremely complex biological 

processes for digital tumor twins, we support our peers to join the effort by providing and 

updating Gell as a user-friendly open-source tool. The source code can be found at 

https://github.com/PhantomOtter/Gell. 

 

2.5 Conclusion 
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Large scale cell simulations are valuable for hypothesis generation and testing experimental 

parameters. However, the high computational cost of the simulation using CPU has limited the 

simulation size and practicality. In the current study, we describe a novel GPU cell simulation 

platform Gell to fully leverage the highly parallel nature of GPU. For the first time, we 

demonstrated a GPU-friendly voxel sorting method that reduced the quadratic cell-cell 

interaction computational complexity to be linear. The full GPU implementation avoided 

unnecessary CPU-GPU data transfer overhead. As a result, Gell achieved a 400X acceleration 

and 1-2 order of magnitude reduction in the memory footprint compared to a state-of-the-art 

CPU cell simulation platform, PhysiCell, for the same hanging droplet tumor spheroid and ductal 

carcinoma in situ simulation tasks.  
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3.Chapter 2: Comprehensive 

Hemodynamics and Oxygenation 

Modeling of Real Vasculature 

 

Tumor vasculature plays a crucial role in tumor development and the emergence of tumor 

heterogeneity. Accurate modeling of morphology and functions of the vasculature system is 

essential for understanding the tumor microenvironment and tumor development. This chapter 

analyzes tissue hemodynamic and oxygenation properties based on real vasculature structures 

from both tumor and healthy murine tissue. On top of the matured hemodynamics modeling, we 

present a novel 3D-1D coupled semi-implicit finite difference scheme that can solve the ultra-

large-scale vasculature-based perfusion and oxygenation in real-time, which, to the best of our 

knowledge, was not previously possible, providing a tool for mechanistic understanding of tissue 

perfusion and oxygenation. We robustly solve the steady state oxygenation of various tumor and 

healthy tissue systems under various perfusion conditions and model the time-dependent FLASH 

depletion and recovery kinetics, revealing a marked dependency on tissue type. 
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3.1 Introduction 

 

Vasculature plays a crucial role in supplying tumor development and contributes significantly to 

the heterogeneity observed within tumors. It is the believed that The misshapen, irregular, 

disorganized, and tortuous architecture arising from tumor-induced angiogenesis eventually 

results in the formation of hypoxic voids, necrosis, and an acidic milieu, which are the basis for 

imaging tumor heterogeneity with CT56. 

Functions of vasculature carry profound implications for therapeutic strategies. Vessel perfusions 

are crucial for drug delivery and vasculature-based oxygenation of tumor tissue affects various 

treatment efficacies. Radiation therapy is notably more effective in normoxic regions; it can be 

more than twice as efficacious for well-oxygenated tissue compared to anoxic regions. This 

boosting effectiveness is referred to as the oxygen enhancement ratio (OER)86. FLASH-RT, 

which delivers an ultra-high dose rate for cancer treatment, is observed to produce less normal 

tissue toxicity while maintaining similar tumor control. Although the mechanism behind such 

FLASH effect is unclear, oxygen is believed to play a central role within88.  

In the emerging era of personalized medicine, a thorough understanding of tumor vasculature 

and its function is crucial. This knowledge is vital for comprehending tumors' heterogeneous 

development and predicting their response to treatments, enabling more tailored and effective 

therapeutic strategies. 
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While significant advancements in understanding and modeling perfusion in large vasculatures 

have been made by Secomb et al.—ranging from empirical formulation for in vivo viscosity89 

and discharge hematocrit distribution90 to optimize based vasculature boundary blood pressure 

estimation91—the challenge of oxygenation through large vascular systems remains. Various 

models, such as the Krogh cylinder model92, kernel-based models93, finite element-based 

methods94, and Green’s function-based methods95,96 have been proposed. However, none can 

adequately handle ultra-large-scale real tumor vasculature while balancing computational speed, 

memory usage, and biophysical fidelity. 

To bridge this gap, we have developed a robust, high-performance modeling platform designed 

to enable advanced oxygenation analysis across ultra-large-scale, dynamically coupled 

vasculature-tissue systems. 

 

3.2 Methods 

 

3.2.1 Vasculature Data 

 

We obtained three sets of vasculature data from public sources. Two datasets pertain to tumor 

vasculature, as detailed in97: one from a human colorectal carcinoma (LS174T) xenograft grown 

subcutaneously in 8–10-week-old female immune-compromised nu/nu nude mice for 10–14 
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days, and another from orthotopic GL261 murine glioma tumors developed over 20 days post-

injection into the brains of 8-week-old female C57BL/6 mice. For both tumors, fluorescent 

labeling and perfusion fixation were conducted, followed by tumor resection and optical 

clearing. The transparent tumors were imaged using optical CT, yielding resolutions between 

4.3 μm and 8 μm, varying by sample size. 

The third dataset represents healthy brain tissue vasculature from a 3-month-old C57Bl6 

mouse98. Following immunolabeling and tissue clearing, the right hemisphere was imaged using 

light sheet microscopy at a 1.63-micron isotropic resolution. The caudoputamen vasculature was 

manually segmented, guided by its alignment with the Allen Mouse Brain Atlas99. The 

caudoputamen (corpus striatum) was selected for its critical role in motor control, cognition, and 

emotion within the basal ganglia, its accessible perfusion data for model calibration, and the 

comprehensive coverage of its volume within the hemisphere vasculature data. 

 

3.2.2 Mathematical Representation of Vasculature 

 

In our study, the term 'tubes' is used to describe the small vessel segments required to capture the 

curvature and radius of an entire vessel from one end to the other. The points where these tubes 

connect are called 'nodes'. An 'edge' refers to a complete vessel that starts and ends at either 

bifurcation points or blind ends. Additionally, these bifurcation points and blind ends are 

designated as 'vertices'. The topology of the vasculature network is described as a multigraph 
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𝐺 = {𝑉, 𝐸, 𝑓} as a collection of vertices 𝑣𝑖 ∈ 𝑉 where vessel segments start and end, edges 𝑒𝑘 ∈

𝐸 represents the vessel segments between two vertices, and a function 𝑓: 𝐸 → {{𝑣𝑖, 𝑣𝑗}: 𝑣𝑖, 𝑣𝑗 ∈

𝑉 𝑎𝑛𝑑 𝑣𝑖 ≠ 𝑣𝑗} provides a mapping from edges to the vertices they connect. The vessel vertices 

in our study The maximum degree of vessel vertices should be three considering the cellular 

nature of vessel components, however, due to the imaging resolution limits, the extracted 

vasculature structures from imaging data usually have higher maximum degrees sometimes up to 

ten100. 

 

3.2.3 Blood Flow Hemodynamics  

 

3.2.3.1 In vivo Blood Viscosity  

 

Modeling blood flow within a given large vasculature poses a significant challenge. The Navier–

Stokes equations for the fluid can be difficult and expensive to solve, and the presence of cellular 

components, which deviate the blood's behavior from the homogeneous fluid, particularly in 

micro-vasculatures, makes the problem even more complex. 

An alternative strategy involves assuming Hagen–Poiseuille flow within each vessel segment 

and subsequently adjusting the apparent viscosity using empirical formulas derived from 

experimental data91. This approach has gained widespread acceptance and, to the best of our 
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knowledge, remains the only appropriate method for addressing blood flow in large 

microvascular systems. Therefore, in this study, we embrace this framework for modeling the 

hemodynamics of vasculature. 

Assuming Hagen–Poiseuille flow in the lumen of the vessel segment 𝑒𝑘 where 𝑓(𝑒𝑘) = {𝑣𝑖 , 𝑣𝑗}, 

the blood flow rate 𝑄𝑘 goes: 

 

𝑄𝑘 = 𝐺𝑘 ⋅ (𝑃𝑖 − 𝑃𝑗) 

Equation 3-1 

𝐺𝑘 =
𝜋 ⋅ 𝑅𝑘

4

8 ⋅ 𝜇𝑘 ⋅ 𝐿𝑘
 

Equation 3-2 

Where 𝐺𝑘 is the hydraulic conductance, and 𝜇𝑘 is the apparent viscosity of the blood flowing 

within. 𝑅𝑘 and 𝐿𝑘 stands for the radius and the length of the vessel segment. The reference rat 

blood plasma's apparent viscosity 𝜇0 measured at 37℃ is 1.05 cP90. An additional two-step 

correction is required to account for various vessel diameters and red blood cell (RBC) 

concentration conditions and estimate realistic in vivo apparent viscosity in blood vessels.  

The first correction is for in vitro viscosity that considers the plasma cell-free layer due to the 

centering movement of erythrocytes resulting in lower resistance between flow and tube wall, 

also known as the Fahraeus-Lindqvist Effect101. A. R. Pries et al.102 proposed an empirical 

correction for such an effect based on in vitro glass tube experiments: 
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𝜂𝑣𝑖𝑡𝑟𝑜 = 1 + (𝜂0.45 − 1) ∙
(1 − 𝐻𝑑)

𝐶 − 1

(1 − 0.45)𝐶 − 1
 

Equation 3-3 

𝜂0.45 = 220 ∙ 𝑒−1.3𝐷 + 3.2 − 2.44 ∙ 𝑒−0.06𝐷
0.645

 

Equation 3-4 

𝐶 = (0.8 + 𝑒−0.075𝐷) ∙ (
1

1 + 10−11 ∙ 𝐷12
− 1) +

1

1 + 10−11 ∙ 𝐷12
 

Equation 3-5 

Where 𝐷 is the measured anatomic vessel diameter in microns, 𝜂𝑣𝑖𝑡𝑟𝑜 is the relative apparent 

viscosity and 𝜂0.45 is that of rat blood with discharge hematocrit at a level of 0.45. The term 

discharge hematocrit is defined as the volume fraction of RBCs delivered by the blood flow103. 

The second correction accounts for the endothelial layer (ECL) that observed to substantially 

increase the in vivo blood viscosity104. The effective thickness of the layer 𝑊𝑒𝑓𝑓 can be 

calculated by adding an asymptotic component 𝑊𝑎𝑠 and a biphasic component 𝑊𝑝𝑒𝑎𝑘 with a 

peak90: 

 

𝑊𝑒𝑓𝑓 = 𝑊𝑎𝑠 +𝑊𝑝𝑒𝑎𝑘 ∙ (1 + 1.18 ∙ 𝐻𝑑) 

Equation 3-6 
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𝑊𝑎𝑠 = {

0 𝑖𝑓 𝐷 ≤ 2.4

2.6 ∙
𝐷 − 2.4

𝐷 + 100 − 4.8
 𝑖𝑓 𝐷 > 2.4

 

Equation 3-7 

𝑊𝑝𝑒𝑎𝑘 =

{
 

 
0 𝑖𝑓 𝐷 ≤ 2.4

1.1 ∙
𝐷 − 2.4

10.5 − 2.4
 𝑖𝑓 2.4 < 𝐷 ≤ 10.5

1.1 ∙ 𝑒−0.03∙(𝐷−10.5) 𝑖𝑓 10.5 < 𝐷

 

Equation 3-8 

Then the effective diameter and in vivo relative apparent blood viscosity 𝐷𝑒𝑓𝑓 reads: 

 

𝐷𝑒𝑓𝑓 = 𝐷 − 2𝑊𝑒𝑓𝑓 

Equation 3-9 

𝜂𝑣𝑖𝑣𝑜 = 𝜂𝑣𝑖𝑡𝑟𝑜 ∙ (
𝐷

𝐷𝑒𝑓𝑓
)

4

 

Equation 3-10 

3.2.3.2 Linear System Construction for Blood Flow 

 

With the in vivo viscosity and boundary condition given, a linear system can be constructed by 

applying mass conservation to all the vertices in the vasculature graph.  
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𝐺𝑀 ⋅ 𝑃𝑀 = 𝑄𝑀 

Equation 3-11 

Where 𝐺𝑀 is a sparse symmetric matrix for hydraulic conductance of all vessel segments with  

 

𝐺𝑖𝑗
𝑀 = {

−𝐺𝑖,𝑗                   𝑖 ≠ 𝑗  

∑ 𝐺𝑖,𝑘
𝑣𝑘∈𝑉

           𝑖 = 𝑗  

Equation 3-12 

𝑤𝑖𝑡ℎ 𝐺𝑖,𝑗 = ∑ 𝐺𝑘
𝑒𝑘∈𝐸𝑖,𝑗

 

Equation 3-13 

Where 𝐸𝑖,𝑗 is the set contains all the edges that connect both vertices 𝑣𝑖 and 𝑣𝑗 . 𝑃
𝑀 is the vector 

of blood pressure at vertices, and 𝑄𝑀 is the vector of the blood flow rate of net outflow from 

vertices. By splitting inner vertex and boundary vertex-related terms into different sides of the 

equation, the linear system can be transformed to105: 

 

𝐺𝑖𝑛𝑡
𝑀 ⋅ 𝑃𝑖𝑛𝑡

𝑀 = 𝐺𝑏
𝑀 ⋅ 𝑃𝑏

𝑀 

Equation 3-14 
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𝐺𝑖𝑛𝑡
𝑀  is the submatrix of the hydraulic conductance matrix that contains inner vertex rows, while 

𝐺𝑏
𝑀 only contains boundary vertex rows. With given boundary blood pressure values 𝑃𝑏

𝑀, the 

unknown inner vertex blood pressure 𝑃𝑖𝑛𝑡
𝑀  can be effectively solved using the generalized 

minimum residual method (GMRES)106 

 

3.2.3.3 Phase Separation Effect 

 

The volume fraction of RBCs in blood: Hematocrits have a highly heterogeneous distribution in 

real vasculature, especially in poorly structured tumor vasculatures107, due to the nonproportional 

distribution of RBCs in daughter branches at diverging bifurcations known as the phase 

separation effect108. It is important to obtain an estimation of RBC distribution in vasculature not 

only because of its effect on apparent blood viscosity but also because of its dominating role in 

oxygen delivery. Approximately 98% of the oxygen carried in the blood is bound to hemoglobin 

contained in RBCs, while only 2% is dissolved in plasma and RBC water109. Vessels without 

adequate red blood cells are unable to support the tissue metabolism despite the flow rate.  

In this study, we assume a uniform discharge hematocrit feed of 0.45110 at the vasculature inlet. 

In the downstream bifurcation vertices in the vasculature, we adopted an experimentally 

determined parametric description of the phase separation effect by Pries AR et al.90: 
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𝑙𝑜𝑔𝑖𝑡(𝐹𝑄𝐸) = 𝐴 + 𝐵 ∙ 𝑙𝑜𝑔𝑖𝑡 (
𝐹𝑄𝐵 − 𝑋0
1 − 2𝑋0

) 

Equation 3-15 

𝐴 = −13.29 ∙

𝐷𝛼
2

𝐷𝛽
2⁄ − 1

𝐷𝛼
2

𝐷𝛽
2⁄ + 1

∙
1 − 𝐻𝑑
𝐷𝑝

 

Equation 3-16 

𝐵 = 1 + 6.98 ∙
1 − 𝐻𝑑
𝐷𝑝

 

Equation 3-17 

𝑋0 = 0.964 ∙
1 − 𝐻𝑑
𝐷𝑝

 

Equation 3-18 

𝐷𝑝, 𝐷𝛼 and 𝐷𝛽 are the vessel diameters of the parent vessel and two daughter vessels measured 

in microns. 𝐻𝑑 is the discharge hematocrit of the parent vessel. 𝐹𝑄𝐸 is defined as the fractional 

flow of RBCs into the daughter branch 𝛼 and 𝐹𝑄𝐵 is the corresponding blood flow fraction. The 

RBC distribution at each bifurcation vertex can be calculated as shown above using a bisection 

method. Combining this with a depth-first search (DFS)-like algorithm, the discharge hematocrit 

distribution in the entire vasculature network can be obtained efficiently. 
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3.2.3.4 Virtual Vessels 

 

For vasculature structures extracted from medical images obtained using micro-CT105 or optical 

projection tomograph97, one vascular vertex may connect more than three vessel edges due to the 

resolution limit of the images. To overcome the difficulties of applying the bifurcation RBCs 

flow fraction equations to these vasculature data, we introduced the virtual vessels. For vertices 

with outflow edge numbers bigger than two, we first calculate the RBC fractional flow of each 

outflow edge compared to the virtual vessel combining all other outflow edges. Assuming a 

vertex 𝑉𝑒𝑟𝑒𝑡𝑥𝑣𝑖 connecting to a set of outflow edges ℕ𝑂𝑢𝑡. The virtual  𝐷𝛽 for vessel 𝑖 ∈ ℕ is 

defined as: 

 

𝐷𝛽𝑣𝑖𝑟𝑡𝑢𝑎𝑙
3 = ∑ 𝐷𝑗

3

𝑗∈ℕ𝑜𝑢𝑡\{𝑖}

 

Equation 3-19 

The exponent of three comes from transport cost and transport medium maintenance 

minimization condition for laminar flow, known as Murray’s Law111, which agrees well with 

experimental measurements112Once the fractional flow of RBCs is calculated for each outflow 

edge, the final flow fraction can be obtained after the total flow fraction is normalized to one. 

If multiple inflow vessels also exist, a virtual parent vessel can be introduced: 
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𝐷𝐹_𝑣𝑖𝑟𝑡𝑢𝑎𝑙
3 = ∑ 𝐷𝑖

3

𝑖∈ℕ𝑖𝑛

 

Equation 3-20 

𝐻𝐷_𝑣𝑖𝑟𝑡𝑢𝑎𝑙 =
∑ 𝐻𝐷𝑖 ∙ 𝑄𝑖𝑖∈ℕ𝑖𝑛

∑ 𝑄𝑖𝑖∈ℕ𝑖𝑛

 

Equation 3-21 

Where ℕ𝑖𝑛 is the set contains all the inflow edges for this vertex, 𝐷𝑖,  𝐻𝐷𝑖, and 𝑄𝑖 are the 

diameter, discharge hematocrit, and flow of the parent vessel 𝑖. 

 

3.2.3.5 Iterative Update 

 

Discharge hematocrit levels significantly influence the apparent viscosity of blood in each vessel 

segment, potentially altering the flow patterns within the vasculature system. To tackle the 

interaction between blood flow and discharge hematocrit distribution, we employ an iterative 

approach. This involves solving a linear system for blood flow and conducting vasculature 

traversal for discharge hematocrit until the system reaches convergence. Typically, with a 

physiologically plausible vasculature structure, convergence is achieved with low iteration 

differences within 3-4 iterations. 
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3.2.3.6 Edge Contraction 

 

The node-tube representation of vasculature data effectively captures vascular morphology and 

vessel shape. However, the extensive number of nodes and tubes could significantly complicate 

the computation of blood flows. To improve computational efficiency, we developed a 

corresponding vertex-edge model specifically for hemodynamic calculations within the 

vasculature. This approach leverages the fact that non-leaking edges exhibit consistent flow 

through all constituent tubes, meaning that only the aggregate information of each edge and the 

pressure at its vertices are required to assess perfusion. By applying edge contraction to the 

vasculature, conducting hemodynamic computations on this equivalent vertex-edge model, and 

then mapping the results back to the original node-tube representation, we significantly enhance 

computational efficiency, achieving improvements by orders of magnitude. 

 

3.2.3.7 Boundary Condition Optimization 

 

Large tumor vasculatures contain numerous inlets and outlets on their surface, making the 

experimental determination of the blood pressure at these boundary nodes infeasible. Alternative 

approaches are needed to estimate this missing information. Following the work of Fry et al.91 
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we adopted an optimization-based boundary condition estimation framework, emphasizing a 

physiological distribution of vessel wall shear stress (WSS). The WSS 𝜏𝑤 of a vessel segment 

can be calculated from: 

 

𝜏𝑤 =
𝑅∆𝑃

2𝐿
 𝑜𝑟 

4𝜇𝑄

𝜋𝑅3
 

Equation 3-22 

The objective function for boundary condition optimization is shown below: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿 =
𝑘𝑝

2
∑ 𝑤𝑝𝑘(𝑃𝑘 − 𝑃𝑡𝑎𝑟𝑔𝑒𝑡)

2

𝑘∈𝑁𝑜𝑑𝑒𝑠

+
𝑘𝜏
2

∑ 𝑤𝜏𝑗(|𝜏𝑗| − 𝜏𝑡𝑎𝑟𝑔𝑒𝑡)
2

𝑗∈𝑇𝑢𝑏𝑒𝑠

 

𝑠. 𝑡.  𝑄𝑖 = 0 𝑓𝑜𝑟 𝑖 ∈ 𝐼𝑛𝑛𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 

Equation 3-23 

Entire optimization is constrained by the blood flow mass balance at the vertices. The first term 

determines the main blood pressure across the vasculature and constrains the range of blood 

pressure within, with 𝑤𝑝𝑘 being a weight for nodes depending on the summed length connecting 

to it and 𝑘𝑝 as a universal weighting factor for this pressure term. The second term promotes a 

certain wall shear stress for the edges and prevents a zero-flow solution for the problem, with 

𝑤𝜏𝑗 weights the edge length and 𝑘𝜏 weights the entire second term.  
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The wall shear stress at each vessel is a signed value depending on the flow direction. To 

estimate unknown flow direction in large vascular systems, we utilize an approach akin to 

simulated annealing. This strategy involves repeated optimization of boundary conditions with 

doubled wall shear stress (WSS) weights at each optimization level, and constantly updated flow 

direction estimation along the process. Initially, flow or WSS directions are randomly assigned. 

Multiple optimizations are performed at each weight level, and the flow direction estimation is 

updated according to previous optimization results. The stop criteria to stop or enter the next 

level is the inter-optimization flow direction agreement. The latest optimization result with the 

desired WSS weight is adopted as the final boundary condition estimation. 

 

3.2.4 Intravascular Oxygen Transportation 

 

The oxygen delivery through blood is stored in two forms: one is water-resolved oxygen in 

plasma and cell fluids, and the other one is the oxygen bound to the hemoglobin inside red blood 

cells. The total oxygen flux is a function of blood flow rate, red blood cell fraction, and oxygen 

concentration, writes:  

Oxygen is contained in the blood in two primary forms: dissolved in plasma and cell fluids and 

bound to hemoglobin within red blood cells. The total oxygen flux (OF) depends on the blood 

flow rate (Q), the red blood cell flow fraction (discharge hematocrit), and the oxygen 

concentration, expressed by the equation: 
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𝑂𝐹(𝑄,𝐻𝐷 , 𝑃𝑜𝑥𝑦) = 𝑄 ∙ (𝑃𝑜𝑥𝑦 ∙ 𝑎𝑝𝑙𝑎𝑠𝑚𝑎 + 𝑆𝑜𝑥𝑦 ∙ 𝐻𝐷 ∙ 𝑎𝑟𝑏𝑐) 

Equation 3-24 

Where HD is the discharge hematocrit of the blood and Poxy is the oxygen partial pressure in the 

blood plasma. Soxy is the oxygen saturation of hemoglobin, it is related to oxygen partial pressure 

Poxy through Oxygen-Hemoglobin Dissociation Curve113, which can be described by Hill's 

equation:  

 

𝑆𝑜𝑥𝑦 =
(

𝑃𝑜𝑥𝑦
27 𝑚𝑚𝐻𝑔

)
2.7

1 + (
𝑃𝑜𝑥𝑦

27 𝑚𝑚𝐻𝑔
)
2.7 

Equation 3-25 

The constants 𝑎𝑝𝑙𝑎𝑠𝑚𝑎 = 3 × 10
−5 𝑚𝑙𝑂2/𝑚𝑙/𝑚𝑚𝐻𝑔 and 𝑎𝑟𝑏𝑐 = 0.447 𝑚𝑙𝑂2/𝑚𝑙 represent the 

oxygen solubility in plasma and red blood cells, respectively. In physiological conditions, red 

blood cells can store up to 99% of oxygen, underscoring their critical role in oxygen transport. 

Inspired by the in vivo observation of Kerger et al.114we adopted a flow velocity-dependent 

inflow blood oxygen level writes: 
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𝑃𝑜𝑥𝑦 = 𝑃0 + 𝜈 ∙ 2.5 𝑚𝑚𝐻𝑔 ∙ 𝑠/𝑚𝑚 

Equation 3-26 

Where 𝜈 is the blood velocity at the boundary inlets, and 𝑃0 is a tunable parameter for the overall 

blood oxygen level. 

 

3.2.5 Transvascular Oxygen Transportation 

 

The oxygen supply rate from a vessel segment into the surrounding tissue can be written as115: 

 

𝑆 = 𝐴𝑣𝑎𝑠 ∙ 𝑀𝑇𝐶𝑜𝑥𝑦(𝑃𝑏𝑜𝑥𝑦 − 𝑃𝑤𝑎𝑙𝑙) 

Equation 3-27 

Where 𝐴𝑣𝑎𝑠 is the surface area of the vessel segment, 𝑃𝑏𝑜𝑥𝑦 is the blood oxygen partial pressure 

and is modeled as constant for perfused vessels, and 𝑃𝑤𝑎𝑙𝑙 is tissue oxygen partial pressure at the 

vessel surface. 𝑀𝑇𝐶𝑜𝑥𝑦 is the mass transfer coefficient (MTC) for transvascular oxygen 

release115: 
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𝑀𝑇𝐶𝑜𝑥𝑦(𝐻𝐷) = 17.7𝐻𝐷
2 − 1.07𝐻𝐷 + 0.672 

𝑛𝑙𝑂2
𝑠 ∙ 𝑐𝑚2 ∙ 𝑚𝑚𝐻𝑔⁄  

Equation 3-28 

Contrary to models that treat vessel walls as diffusion surfaces116, incorporating the mass transfer 

coefficient (MTC) enhances computational efficiency by obviating the need for detailed vessel 

surface representation. This approach also achieves closer alignment with in vivo measurements, 

particularly regarding the dependence of discharge hematocrit. 

 

3.2.6 Tissue Oxygen  

 

Oxygen distribution in homogeneous tissue is governed by following equation, considering the 

oxygen diffusion in tissue, the oxygen consumption by tissue, and the oxygen supply through 

perfused vasculature: 

 

𝜕𝑃𝑜𝑥𝑦

𝜕𝑡
= 𝛻 ∙ (𝐷𝑜𝑥𝑦𝛻𝑃𝑜𝑥𝑦) −

1

𝑎𝑜𝑥𝑦
𝑀(𝑃𝑜𝑥𝑦) +

1

𝑎𝑜𝑥𝑦
𝑆(𝑃𝑜𝑥𝑦) 

Equation 3-29 
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Where 𝑃𝑜𝑥𝑦 is the oxygen partial pressure, 𝐷𝑜𝑥𝑦 and 𝑎𝑜𝑥𝑦 are oxygen diffusion coefficient and 

solubility in tissue, respectively. 𝑀(𝑃𝑜𝑥𝑦) is the Michaelis-Menten type tissue oxygen 

consumption, reads: 

 

𝑀(𝑃𝑜𝑥𝑦) =
𝑀𝑚𝑎𝑥𝑃𝑜𝑥𝑦

𝑃𝑜𝑥𝑦 + 𝑃𝑀50
 

Equation 3-30 

𝑃𝑀50 is the critical oxygen partial pressure when the consumption rate reaches half maximum, it 

is usually a small value in the range of 0.5-1 mmHg117. 𝑀𝑚𝑎𝑥 is the maximum oxygen 

consumption rate, which can vary dramatically across cell types118. The baseline resting oxygen 

metabolism rate of the human body, also called the One metabolic equivalent (MET) is 3.5 

mlO2/kg/min119, while that for the human brain can be up to 35 mlO2/kg/min120. For rats, 

according to HM Wiesner121, compared to humans, the baseline body metabolism is much 

higher, but the brain oxygen metabolism rate is similar, reports 24.2 mLO2/kg/min and 1.97 

μmol/g/min, respectively. For brain glioma, due to The Warburg Effect122, its metabolism can be 

significantly lower than that of normal tissue. Daniel Paech et al.123 measured an average 0.23 ± 

0.07 μmol/g/min oxygen metabolism rate for high grade glioma and 0.39 ± 0.16 μmol/g/min for 

low grade glioma.  

According to these literature values, human body metabolism can be approximated at a rate of 

1.5 mmHg/s. We have adopted this value as the oxygen consumption rate (OCR) for the LS174T 
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human colorectal carcinoma xenograft. Considering the metabolic similarities between human 

and mouse brain tissues, we set the OCR for mouse caudoputamen at 20 mmHg/s. For the 

GL261 mouse brain glioma, in the absence of direct reference data, we use the OCR of 4 

mmHg/s, which is based on values reported for human glioblastoma multiforme (GBM). 

 

3.2.7 Vasculature-Tissue Coupling 

 

Accurately coupling vessel perfusion with oxygen release into surrounding tissue presents a 

complex and computationally demanding challenge. Currently, high-performance methods for 

managing large systems are lacking. To address this gap and enable ultra-large-scale vasculature 

modeling, we propose a novel semi-implicit 3D-1D coupled method. This method is optimized 

for high-performance GPU-based modeling and is capable of characterizing time-dependent 

intravascular oxygen transportation and transvascular oxygen release across the vessel wall.  

 

3.2.7.1 Mass Balance of Oxygen 

 

To refresh from the previous discussion, the oxygen flux in the blood can be calculated as: 
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𝑂𝐹(𝑄,𝐻𝐷 , 𝑃𝑏𝑜𝑥𝑦) = 𝑄 ∙ (𝑃𝑜𝑥𝑦𝑏 ∙ 𝑎𝑝𝑙𝑎𝑠𝑚𝑎 +
(

𝑃𝑏𝑜𝑥𝑦
27 𝑚𝑚𝐻𝑔

)
2.7

1 + (
𝑃𝑏𝑜𝑥𝑦

27 𝑚𝑚𝐻𝑔
)
2.7 ∙ 𝐻𝐷 ∙ 𝑎𝑟𝑏𝑐) 

Equation 3-31 

Using 𝑖 as the index for vessel node, and 𝑗 for vessel tube, considering a node with a set of 

inflow tube 𝐽 ∈ ℕ𝑖𝑛,𝑖 and outflow tube 𝐽 ∈ ℕ𝑜𝑢𝑡,𝑖, assuming that confluence blood get well 

mixture and results in homogeneous oxygen partial pressure in the outflow, the blood oxygen 

partial pressure at the node 𝑖 can be calculated by solving the following equation: 

 

∑ 𝑂𝐹 (𝑄𝑗, 𝐻𝐷𝑗 , 𝑃𝑏𝑜𝑥𝑦,𝑗) = 𝑂𝐹 ( ∑ 𝑄𝑗
𝐽∈ℕ𝑖𝑛,𝑖

,
∑ 𝑄𝑗𝐽∈ℕ𝑖𝑛,𝑖

𝐻𝐷𝑗
∑ 𝑄𝑗𝐽∈ℕ𝑖𝑛,𝑖

, 𝑃𝑏𝑜𝑥𝑦,𝑖)

𝐽∈ℕ𝑖𝑛,𝑖

 

Equation 3-32 

The left side of this equation is constant, and the right side is a monotonically increasing function 

for node oxygen tension. This can be efficiently solved by simple bisection method. Notice that 

although oxygen partial pressure at equal in the downstream vessels, the discharge hematocrit 

distribution is heterogeneous due to the phase separation effect. 

The oxygen flux into a downstream vessel 𝐽 ∈ ℕ𝑜𝑢𝑡,𝑖 can be written as: 
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𝑂𝐹𝑖𝑛,𝑗 = 𝑂𝐹 (𝑄𝑗, 𝐻𝐷𝑗 , 𝑃𝑏𝑜𝑥𝑦,𝑖) 

Equation 3-33 

Considering a specific time interval from time 𝑡 to 𝑡 + ∆𝑡, based on the mass balance in the tube, 

the net oxygen released rate from the vessel segment to tissue can be calculated by 

 

𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒 = 𝑂𝐹𝑖𝑛,𝑗
𝑡 − 𝑂𝐹 (𝑄𝑗, 𝐻𝐷𝑗 , 𝑃𝑏𝑜𝑥𝑦,𝑗

𝑡+∆𝑡 ) + 𝐹 (
𝑉𝑣𝑎𝑠,𝑗

∆𝑡
, 𝐻𝐷𝑗 , 𝑃𝑏𝑜𝑥𝑦,𝑗

𝑡 )

− 𝐹 (
𝑉𝑣𝑎𝑠,𝑗

∆𝑡
, 𝐻𝐷𝑗 , 𝑃𝑏𝑜𝑥𝑦,𝑗

𝑡+∆𝑡 ) 

Equation 3-34  

Where 𝑉𝑣𝑎𝑠,𝑗 represents the blood volume of the tube, and the latter two terms account for 

changes in the amount of oxygen stored within this blood volume. Including this blood volume 

term is crucial for ensuring a theoretically sound mass balance. Although this component may be 

negligible in high-perfusion vessels, it becomes essential in low or zero-perfusion scenarios, 

where oxygen transport is predominantly governed by diffusion from surrounding tissues rather 

than by perfusion from parent vessels. Such conditions are commonly observed in functionally 

compromised tumor vasculatures. Incorporating this term not only yields biologically reasonable 

oxygen tension results but also enhances the numerical stability of the simulation. 

Considering a tissue voxel 𝑘 receiving the released oxygen, the mass balance of tissue oxygen 

gives: 
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𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒 =
𝑃𝑜𝑥𝑦,𝑘
𝑡+∆𝑡 − 𝑃𝑜𝑥𝑦,𝑘𝑗

𝑡

𝐾∆𝑡
, 𝐾 =

1

𝑎𝑜𝑥𝑦𝑉𝑣𝑜𝑥𝑒𝑙
 

Equation 3-35 

Where coefficient 𝐾 represents the coefficient of conversion of oxygen volume to tissue partial 

pressure under the specific voxel size setting. 𝑃𝑜𝑥𝑦,𝑘𝑗
𝑡  represents the tissue oxygen level of the 

voxel where the vessel 𝑗 locates, indexed 𝑘𝑗  at time point 𝑡. 

The oxygen release rate is constrained by the mass transfer coefficient and the vessel surface area 

of the tube: 

 

𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒 = 𝑀𝑗 ∙ (𝑃𝑏𝑜𝑥𝑦,𝑗
𝑡+∆𝑡 − 𝑃𝑜𝑥𝑦,𝑘𝑗

𝑡+∆𝑡 ),𝑀𝑗 = 𝐴𝑣𝑎𝑠,𝑗 ∙ 𝑀𝑇𝐶 (𝐻𝐷𝑗) 

Equation 3-36 

We adopted an implicit release rate term for higher numerical stability. M is the release rate 

coefficient for the specific tube. 

From these three equations, the blood oxygen tension at the time 𝑡 + ∆𝑡 can be calculated by: 
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𝑀

1+𝑀𝐾∆𝑡
𝑃𝑏𝑜𝑥𝑦,𝑗
𝑡+∆𝑡 +  𝑂𝐹 (𝑄𝑗 +

𝑉𝑣𝑎𝑠,𝑗

𝑁∆𝑡
, 𝐻𝐷𝑗 , 𝑃𝑏𝑜𝑥𝑦,𝑗

𝑡+∆𝑡 )

= 𝑂𝐹𝑖𝑛,𝑗 +
𝑀

1 +𝑀𝐾∆𝑡
𝑃𝑜𝑥𝑦,𝑘𝑗
𝑡 + 𝑂𝐹 (

𝑉𝑣𝑎𝑠,𝑗

∆𝑡
, 𝐻𝐷𝑗 , 𝑃𝑏𝑜𝑥𝑦,𝑗

𝑡 ) 

Equation 3-37 

The left side is monotonical for 𝑃𝑏𝑜𝑥𝑦,𝑗
𝑡+∆𝑡 , and right side is constant. After solved blood oxygen 

tension with bisection method, the tissue oxygen level can be acquired through: 

 

𝑃𝑜𝑥𝑦,𝑘𝑗
𝑡+∆𝑡 =

𝑀𝐾∆𝑡 ∙ 𝑃𝑏𝑜𝑥𝑦,𝑗
𝑡+∆𝑡 + 𝑃𝑜𝑥𝑦,𝑘𝑗

𝑡

1 +𝑀𝐾∆𝑡
 

Equation 3-38 

The amount of oxygen delivered from vasculature to target voxel is given by: 

 

𝐿 =  
𝑀∆𝑡

1 +𝑀𝐾∆𝑡
(𝑃𝑏𝑜𝑥𝑦,𝑗

𝑡+∆𝑡 − 𝑃𝑜𝑥𝑦,𝑘𝑗
𝑡 ) 

Equation 3-39 

 

3.2.7.2 Vessel Surface Sampling 
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Tumor vasculature exhibits a broad range of vessel diameters, from a few microns to tens of 

microns. To ensure accurate simulation results, it is crucial to completely cover the entire 

circumference of each vessel95. In this work, we adaptively sample multiple random equidistance 

points around the vessel circumference, each representing a part of the vessel surface as an 

independent oxygen source and releasing oxygen to their corresponding tissue voxels. 

The estimation of vessel surface sampling data N is given by: 

 

𝑁 = 𝑐𝑒𝑖𝑙(
2𝜋𝑅𝑘𝑁
𝐿𝑣𝑜𝑥𝑒𝑙

) 

Equation 3-40 

Where R is the vessel radius, 𝐿𝑣𝑜𝑥𝑒𝑙 is voxel length, 𝑘𝑁 is a scaling parameter that controls 

sampling density. Ceil represents the ceiling function that returns the smallest integer value 

greater than or equal to the specified number. In the simulation, we first randomly sample one 

point on the center line of the vessel surface, then create the ret N-1 evenly distributed sampling 

points covering the circumference. The minimum sampling number is set to four to ensure 

adequate surface coverage across any vessel radius conditions.  

The candidate blood oxygen tension calculated from the sampling point n can be acquired from: 
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𝑀

𝑁 +𝑀𝐾∆𝑡
𝑃𝑏𝑜𝑥𝑦,𝑗,𝑛
𝑡+∆𝑡 +  𝑂𝐹 (

𝑄𝑗

𝑁
+
𝑉𝑣𝑎𝑠,𝑗

𝑁∆𝑡
, 𝐻𝐷𝑗 , 𝑃𝑏𝑜𝑥𝑦,𝑗,𝑛

𝑡+∆𝑡 )

=
𝑂𝐹𝑖𝑛,𝑗

𝑁
+

𝑀

𝑁 +𝑀𝐾∆𝑡
𝑃𝑜𝑥𝑦,𝑘𝑗𝑛
𝑡 + 𝑂𝐹 (

𝑉𝑣𝑎𝑠,𝑗

𝑁∆𝑡
, 𝐻𝐷𝑗 , 𝑃𝑏𝑜𝑥𝑦,𝑗

𝑡 ) 

Equation 3-41 

Where 𝑃𝑏𝑜𝑥𝑦,𝑗,𝑛
𝑡+∆𝑡  represent the candidate blood pressure of tube 𝑗 calculated from sampling point 

n for time point 𝑡 + ∆𝑡, 𝑃𝑜𝑥𝑦,𝑘𝑗𝑛
𝑡  represent the tissue oxygen level of the voxel where the 

sampling point 𝑛 locates. The oxygen tension of the corresponding voxel of sampling points is 

directly updated through: 

 

𝑃𝑜𝑥𝑦,𝑘𝑗𝑛
𝑡+∆𝑡 =

𝑀𝐾∆𝑡 ∙ 𝑃𝑏𝑜𝑥𝑦,𝑖,𝑛
𝑡+∆𝑡 + 𝑁 ∙ 𝑃𝑜𝑥𝑦,𝑘𝑗𝑛

𝑡

𝑁 +𝑀𝐾∆𝑡
 

Equation 3-42 

After traversing all the sampling points, the total oxygen release from the tube is calculated 

through: 

 

𝐿𝑁 =  ∑
𝑀∆𝑡

𝑁 +𝑀𝐾∆𝑡
(𝑃𝑏𝑜𝑥𝑦,𝑗,𝑛

𝑡+∆𝑡 − 𝑃𝑜𝑥𝑦,𝑘𝑗𝑛
𝑡 )

𝑛

 

Equation 3-43 
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Then the final blood oxygen level at the time 𝑡 + ∆𝑡 can be calculated based on mass balance 

principles: 

 

𝑂𝐹 (𝑄𝑗 +
𝑉𝑣𝑎𝑠,𝑗

∆𝑡
, 𝐻𝑑, 𝑃𝑏𝑜𝑥𝑦,𝑗

𝑡+∆𝑡 ) = 𝑂𝐹𝑖𝑛,𝑗 + 𝑂𝐹 (
𝑉𝑣𝑎𝑠,𝑗

∆𝑡
, 𝐻𝐷𝑗 , 𝑃𝑏𝑜𝑥𝑦,𝑗

𝑡 ) − 𝐿𝑁 

Equation 3-44 

3.2.7.3 Update Scheme 

 

By iteratively updating the node blood oxygen level information and the tube oxygenation 

information, the vascular system can evolve in a time-dependent manner. The method's design 

focuses on parallelism. For each step, all the nodes or tubes can be updated parallelly with no 

constraint on the update order, making it inherently GPU-friendly. 

 

3.2.8 Implementation 

 

All the code involved is developed in-house using Python. Packages, including SciPy and cvxpy 

(1.3.2), are used to solve linear system and optimization problems in hemodynamics modules. 

And Taichi124 language is used for GPU computation in oxygenation models. A NVidia RTX 

4090 graphics card is used for the simulation. 
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The voxel size in the simulation is 20 microns, which is comparable to the diameters of 

individual cells. The simulation time step is set to be ∆𝑡 = 0.001𝑠. 

For the finite difference method applied to the oxygen diffusion process, the time stop constrain 

is ∆𝑡 ≤ ∆𝑥2 6𝐷⁄ , which equals 0.028s.  

For intravascular transportation in the coupled perfusion-oxygenation module, a physical 

perfusion speed requires a step time ∆𝑡 ≤ 𝑉𝑣𝑎𝑠,𝑗 𝑄𝑗⁄ . This means the update time step should be 

smaller than the shortest flow-through time in the vascular system. A typical scenario involving a 

20-micron vessel length and a flow velocity of 0.5 mm/s translates to a minimum time step of 

0.04 seconds. While tumor vasculature may include a small fraction of vessels with exceptionally 

high flow rates imposing stringent demands on the time step, a time step of 1 𝑚𝑠 is sufficient to 

accurately capture perfusion speeds up to 20 mm/s for a standard 20-micron tube length; for 

faster-flowing tubes, the modeled perfusion speed will be capped at 20 mm/s. Given that our data 

domain is less than one centimeter, failing to account for the part of flow rates exceeding 2 cm/s 

should not significantly impact the overall simulation accuracy. 

For transvascular oxygen transportation, our model employs an implicit numerical scheme that 

inherently does not have a specific time step threshold. However, for optimal numerical 

accuracy, the desired time step is: 

 

∆𝑡 ≤
𝑎𝑜𝑥𝑦 ∙ 𝑉𝑣𝑜𝑥𝑒𝑙 ∙ 𝑁

𝑀𝑇𝐶 ∙ 𝐴𝑣𝑎𝑠
 

Equation 3-45 
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Where 𝑁 is the surface sampling number. This threshold is comfortably achieved in our 

simulations, as the threshold remains above 1 𝑚𝑠 even with 𝑁 = 1, according to the vascular 

data utilized in this study. 

 

3.1 Results 

 

3.3.1 Vascular Structure Characteristics 

 

The rendered vasculature image and the histogram for radius distribution are shown in Figure 3-

1. The colorectal carcinoma tumor is the largest, measuring up to 10.2 mm along its longest axis, 

yet it exhibits relatively sparse vasculature. In contrast, the smaller glioma tumor features a 

higher vessel density and a significant number of large vessels. The caudoputamen, although the 

smallest of the three, boasts the most extensively developed vasculature and the smallest mean 

vessel radius. The glioma tumor presents a considerable number of small-radius vessels, likely 

due to either a large portion of its vascular region being poorly structured with extremely low 

flow or errors from the imaging and vessel structure extraction process. Without knowledge of 

the ground truth, the assessment and correction of the second possibility fall outside the scope of 

this study. 

Detailed statistics for these three tumors are provided in Table 3-1. 



81 

 

 

 

 

Figure 3-1 Rendered vasculature image and respective radius distribution histogram of 

Colorectal carcinoma (LS174T), Glioma (GL261), and Caudoputamen vasculature. The color is 

coded with radius. 

 
LS174T GL261 Caudoputamen 

No. of Tubes 224872 397923 152640 

No. of Nodes 217739 387909 150624 

No. of Edges 24934 41539 8431 

No. of Vertices 17801 31535 6415 
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Domain Size (mm) 10.2 x 7.9 x 4.4 7.2 x 6.1 x 2.8 1.4 x 0.8 x 0.5 

Tumor Volume (mm3) 169.06 54.37 0.328 

Mean Vessel Diameter (μm) 22.64 ± 7.26 23.38 ± 14.76 7.04 ± 2.02 

Vessel Length (m) 4.98 4.14 0.355 

Length density (mm-2) 29.5 76.2 1083.7 

Vessel Surface Density (mm-1) 2.06 5.74 24.07 

Vessel Volume Density (%) 1.28 4.77 4.616 

Branching Length (μm) 199.79 ± 200.28 99.66 ± 69.20 42.15 ± 39.64 

Table 3-1 Information table of vasculature data. 

3.3.2 Hemodynamic Characteristics  

 

The simulation results for coupled discharge hematocrit and blood flow distribution are shown in 

Figure 3-2.  

Boundary pressure conditions are optimized with a mean vascular blood pressure of 40 mmHg 

across all vasculature data sets. The target wall shear stress (WSS) is finely tuned to align total 

tissue perfusion with reference data. For colorectal carcinoma, the simulated tissue perfusion of 

18.65 nl/100g/min closely matches the measured reference of 19 nl/100g/min. Similarly, for 

glioma, the simulated perfusion of 110.58 nl/100g/min aligns well with the observed reference of 



83 

 

110 nl/100g/min. In the absence of direct reference data for caudoputamen, its WSS was 

calibrated in line with that of glioma, reflecting their common origin from mouse brain tissue. 

The modeled caudoputamen perfusion is 110 nl/100g/min, which is high considering a reference 

perfusion of 94 nl/100g/min for the larger encompassing structure of the mouse striatum. This 

discrepancy is acceptable and is partly attributed to the well-known volume dependency of 

perfusion measurements, which tend to yield higher values for smaller tissues due to their higher 

surface-to-volume ratio. Additionally, significant arteriole penetration in the sampled tissue 

likely contributes substantially to the overall perfusion.  
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Figure 3-2 On the left side are Histograms for discharge hematocrit, blood pressure, logarithmic 

wall shear stress for perfused tubes, and logarithmic perfusion for perfused tubes. The criteria 
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for being perfused is 100 um3/s. On the right side are rendered vasculature images that are 

color-coded for blood perfusion. From (a) to (c) displays the property of colorectal carcinoma, 

glioma, and caudoputamen, respectively. 

The details of the statistics are listed in Table 3-2. All three types of vasculatures exhibit a broad 

range of discharge hematocrit distributions. Both tumor samples display a significant fraction of 

tubes with low or zero red blood cell components, indicative of compromised oxygen delivery 

capabilities. A particularly large fraction of tubes with zero hematocrit is observed in the glioma 

vasculature, likely due to its abundance of small vessels with low blood perfusion, and lead to a 

low fraction of red blood cells entering these bifurcation branches. 

In the case of colorectal carcinoma and caudoputamen, blood flow, when represented on a 

logarithmic scale, typically shows a near-normal distribution across both high and low flow 

ranges. However, the glioma vasculature histogram is more spread out, featuring a significant 

number of tubes at higher blood flow values. This pattern may be attributed to its wider range of 

vessel diameters, likely indicating a subregion of interconnected large-diameter vessels. 

 

 
LS174T GL261 Caudoputamen 

Blood Flow 

(nl/min) 

10.55 ±17.31 16.20 ± 56.38 0.60 ± 1.40 
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Blood Velocity 

(mm/s) 

0.39 ± 0.48 0.44 ± 1.04 0.22 ± 0.20 

Wall Shear Stress 

(dyn/cm2) 

6.68 ± 6.51 17.72 ± 24.49 17.78 ± 13.29 

Tissue Perfusion 

(ml/min/100g) 

18.65 110.58 198.66 

Measured Reference 

Perfusion 

(ml/min/100g) 

19 ± 8 110 ± 7 N/A 

Table 3-2 Hemodynamics-related statistics. 

3.3.3 Steady State Oxygenation 

 

Once determined, the blood perfusion and discharge hematocrit distribution will not change 

anymore in the subsequent oxygenation simulation. The Zero-oxygen-flux Neuman condition is 

applied to the tumor boundary, and the tissue and blood volume are initialized to contain zero 

oxygen content when the simulation begins. Steady state is reached within 1 minute for all cases, 

and the simulation time was extended to 2 minutes to secure the reliability of the steady state 

result. With the step of 0.001 seconds, the simulation for each in silico seconds ranges from 1.4 

to 3.6 seconds, representing an almost real-time simulation speed for ultra-large systems with 

tens of millions of voxels and hundreds of thousands of vessel segments.  
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Variation of tissue and blood oxygen level over time in the first minute from zero-oxygen 

initialization to the establishment of steady state oxygenation is shown in Figure 3-3.  

 

Figure 3-3 Establishment of steady state oxygenation from zero-oxygen initialization. Left: mean 

oxygen in the tumor. Right: mean oxygen in the blood. 

The caudoputamen vasculature demonstrates the fastest establishment of tissue oxygenation, 

followed by the colorectal carcinoma vasculature. In contrast, the glioma vasculature shows the 

slowest oxygenation due to its relatively large tumor volume and the presence of large, slowly 

flowing vessels within a complexly interconnected vasculature system, which compromises 

overall perfusion efficiency. 

Details about the simulation speed and steady state oxygen level results are listed in Table 3-3. 

The criterion for hypoxia is 3 mmHg, and that for anoxia is 0.01 mmHg. 

 



88 

 

 
LS174T GL261 Caudoputamen 

Voxel Number 46.87 m 16.67 m 97.68 k 

Tube Number 224872 397923 152640 

Simulation Time per 

Thousand Steps (s) 

2.3 3.6 1.4 

Oxygen Consumption 

Rate (mmHg/s) 

1.5 4 20 

Blood Oxygen (mmHg) 30.9 ± 9.2 50.7 ± 16.1 47.0 ± 9.1 

Tissue Oxygen (mmHg) 14.8 ± 11.3 40.0 ± 16.6 45.4 ± 8.0 

Reference (mmHg) 15 125 30 - 55 126 20 - 60 127 

Blood-Wall Oxygen 

Difference (mmHg) 

0.79 ± 0.96 0.84 ± 1.55 0.84 ± 1.70 

Blood Oxygen Extraction 

Fraction (%) 

10.74 4.30 12.56 

Hypoxic Fraction (%) 22.03 2.81 0.0 

Anoxic Fraction (%) 8.65 1.07 0.0 

Table 3-3 Oxygenation simulation information. 
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The colorectal carcinoma, characterized by the lowest oxygen consumption rate (OCR) and the 

sparsest vasculature, displays the lowest tissue oxygen levels. This is also reflected in the largest 

mean oxygen difference between the blood oxygen tension and the tissue oxygen level. In 

contrast, the glioma, with a moderate OCR and much denser vasculature, shows a smaller blood-

tissue oxygen difference and a low oxygen extraction fraction of only 4.3%. The caudaputamen, 

despite having an OCR several times higher than that of tumor tissues, maintains a high average 

tissue oxygen level thanks to its highly developed vasculature. This efficient oxygen supply 

ensures that no hypoxic regions are present within the tissue. 

Despite the significant variations in blood and tissue oxygen levels across the three tissue types, 

the oxygen tension difference across the vessel wall remains consistently around 0.8 mmHg, 

suggesting a similar oxygen delivery rate per unit surface area across the different tissues. 

The central slice of the tissue oxygen and the histogram of blood and tissue oxygen level are 

shown in Figure 3-4. 
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Figure 3-4 Steady state oxygenation results showing the central slice of tissue oxygen as 

histogram for both tissue and blood oxygen level. 

The central slice image of tissue oxygenation reveals a large necrotic center in the colorectal 

carcinoma, a small fraction of regions with low or zero oxygen tension in the glioma, and a 

homogeneous and high oxygen distribution in the caudoputamen. Additionally, the histogram of 

blood and tissue oxygen levels shows a significant disparity in the colorectal carcinoma due to its 

sparse vasculature. In contrast, the more vascularized glioma tumor exhibits a smaller difference 

between blood and tissue oxygen levels. The most vascularized healthy caudoputamen displays 

minimal differences. 
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3.3.4 Influence of Initial Flow Direction Randomization in 

Boundary Condition Optimization 

 

To explore the impact of randomly initiated flow directions in optimizing blood pressure 

boundary conditions on tumor perfusion and oxygenation, we generated five random boundary 

conditions for the GL261 vasculature. We then analyzed the vasculature's functional properties 

under these conditions. The results of this analysis are presented in Tables 3-4. 

 

Random Flow Direction Initialization for GL261 Vasculature 

Steady State Functional 

Properties 

Sample 

1 

Sample 

2 

Sample 

3 

Sample 

4 

Sample 

5 

Statistics 

Tissue Perfusion 

(ml/min/100g) 

110.58 112.46 107.51 107.56 105.37 

108.70 ± 

2.81 

Blood Velocity (mm/s) 0.443 0.445 0.446 0.439 0.438 

0.442 ± 

0.003 

Wall Shear Stress 

(dyn/cm2) 

17.72 17.66 17.86 17.77 17.66 

17.73 ± 

0.07 
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Tissue Oxygen (mmHg) 40.11 40.17 40.15 39.98 40.09 

40.10 ± 

0.07 

Blood Oxygen (mmHg) 50.80 50.89 50.78 50.63 50.77 

50.77 ± 

0.09 

Table 3-4 Effect of random flow direction initialization on vasculature perfusion and 

oxygenation. 

The specific randomization of initial flow directions during the boundary condition estimation 

step minimally impacts the vasculature's functional properties. The standard deviation for tissue 

perfusion across five random samples is less than 3%, and for tissue oxygenation, it's below 0.01 

mmHg. These stable results underscore the robustness of our comprehensive vasculature 

function estimation method, which performs effectively even without prior knowledge of 

classified arteries and veins within the system. 

 

3.3.6 Influence of Blood Perfusion on Tissue Oxygenation 

 

To assess how blood perfusion influences the final steady-state oxygenation of tissue, a series of 

simulations were conducted on a perfusion-scaled GL261 vasculature. The blood flow rates were 

scaled to range from 25 to 200 ml/100g/min, based on the original hemodynamic characteristics 

estimated from the vasculature system, while keeping the input blood oxygen saturation level 

constant. The effects of varied perfusion are illustrated in Figure 3-5. Figure 3-5 (a) reveals that 
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higher blood perfusion correlates with higher steady-state oxygen levels and a more rapid 

establishment of these levels. Figure 3-5 (b) shows a more detailed heterogeneous tissue oxygen 

distribution, with low perfusion resulting in significantly larger hypoxic regions. Figure 3-5 (c) 

displays a monotonic increase in mean tissue and blood oxygen levels with increased perfusion, 

while the oxygen partial pressure difference across the vessel wall remains relatively stable, only 

increasing from 0.72 mmHg to 0.87 mmHg as perfusion increases from 25 to 200 ml/100g/min. 

Figure 3-5 (d) indicates a negative relationship between blood perfusion and the fraction of 

hypoxic and anoxic tissue regions. Additionally, the blood oxygen extraction fraction 

dramatically decreases as perfusion increases. 
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Figure 3-5 Oxygenation with varied tissue perfusion for GL261 tumor. For three example 

perfusion levels at 50, 100, and 150 ml/100g/min, (a) demonstrates the process of establishing 

oxygen steady state over time and (b) displays the final tissue oxygen level histogram for three 

perfusion levels. For a wider range of perfusion from 25 to 200 ml/100g/min, (c) shows the mean 

steady state tissue oxygen level and the oxygen level difference across the vessel wall, and (d) 

shows the fraction of hypoxic and anoxic regions in the tumor as well as the oxygen extraction 

fraction of the input blood oxygen across the perfusion range. 
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3.3.6 FLASH Oxygen Depletion Dynamics 

 

We model the FLASH depletion by adjusting the tissue oxygen governing equation as: 

 

𝜕𝑃𝑜𝑥𝑦

𝜕𝑡
= 𝛻 ∙ (𝐷𝑜𝑥𝑦𝛻𝑃𝑜𝑥𝑦) −

1

𝑎𝑜𝑥𝑦
𝑀(𝑃𝑜𝑥𝑦) +

1

𝑎𝑜𝑥𝑦
𝑆(𝑃𝑜𝑥𝑦) + 𝐿𝑅𝑂𝐷 ∙ 𝐷𝑟 (𝑡) 

Equation 3-46 

Where 𝐿𝑅𝑂𝐷 is the radiolytic depletion rate at 0.4 mmHg/Gy, adopted from Cui et al.94. 𝐷𝑟 (𝑡) is 

the dose rate function determined by irradiation settings. The oxygen depletion and recovery of 

20 Gy dose delivery at 100 Gy/s is shown in Figure 3-4.  
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Figure 3-6 FLASH depletion and recovery curve for colorectal carcinoma, glioma, and 

caudoputamen respectively. The FLASH radiation at 100 Gy/s of a total 20 Gy dose was 

introduced 1 second after the simulation started. Left: absolute oxygen change in tissue over 

time. Right: absolute oxygen change in blood over time. 

There is rapid oxygen depletion followed by slow recovery agrees with in vivo observation. The 

more extensively developed vasculature led to less oxygen level decrease at the end of the 

FLASH irradiation and faster oxygen recovery afterwards. The oxygen level decreases if it has a 

slower pace than tissue; the minimum oxygen level occurs after the radiation finishes when the 

oxygen supply from perfusion equals the rate of oxygen extraction supplying the FLASH-

depleted tissue. The histogram of tissue oxygen level at the end of FLASH irritation is shown in 

Figure 3-7. The introduction of FLASH irradiation dramatically altered the oxygen distribution 

histogram for all three types of tissue. For colorectal carcinoma xenograft, a dramatic increase of 

anoxia region is observed, similarly for orthotopic murine glioma, although it remains a majority 
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of region highly oxygenated. For healthy murine caudoputamen, the introduction of a dose of up 

to 40 Gy didn’t create any additional hypoxic region due to its high steady-state oxygen level. 

 

 

Figure 3-7 Tissue oxygen level at the end of irradiation, for all three types of tissue. Each figure 

contains three histograms, one for the steady state tissue, one for 20 Gy irradiation, and one for 

40 Gy irradiation. 

The maximum oxygen depletion amount with varying doses at a delivery rate of 100 Gy/s is 

shown in Figure 3-8. The amount of oxygen depletion is compensated by the oxygen supply 

from the blood. With a more vascularized tissue achieves less depletion. Estimation of oxygen 

level drop (green dotted line in Figure 3-8) without considering the blood oxygen supply can 

lead to significant overestimation of the depletion achieved. Furthermore, complete depletion is 

impossible within the normal dose range. 
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Figure 3-8 Maximum tissue oxygen depletion with varying total dose in 100 Gy/s FLASH 

irradiation. Left: Absolute oxygen level at the end of irradiation. Right: Absolute oxygen level 

change compared to steady state at the end of irradiation. A Grey dotted line indicates the 

scenario of oxygen depleting without the oxygen supply from the vasculature. 

Figure 3-9 illustrates the oxygen depletion levels at varying dose rates. A faster delivery rate 

reduces the time available for oxygen replenishment during irradiation, leading to more efficient 

oxygen depletion. At conventional dose rates, this depletion effect is not observed; however, the 

efficiency of depletion dramatically increases with the dose rate and stabilizes at a certain 

threshold. In less vascularized tissues such as colorectal carcinoma, effective oxygen depletion 

can be achieved at relatively lower dose rates of 20 Gy/s. For brain glioma, the threshold is 

around 50 Gy/s, while in extensively metabolizing and vascularized healthy brain tissue, the 

plateau is not reached even at dose rates as high as 400 Gy/s. These findings are consistent with 

the established dose rate threshold for FLASH therapy, which is set at 40 Gy/s 
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Figure 3-9 Amount of oxygen depletion after the FLASH delivery of 20 Gy with varying dose 

rates. Left: Absolute oxygen level at the end of irradiation. Right: Absolute oxygen level change 

compared to steady state at the end of irradiation. A Grey dotted line indicates the scenario of 

oxygen depleting without the oxygen supply from the vasculature. 

3.4. Discussion 

 

While various models have been proposed to simulate tissue oxygenation, none have been 

capable of handling the complexity and size required for this study. The Krogh model92, one of 

the earliest, assumes oxygen diffusion from cylindrical capillaries into surrounding tissue, but is 

limited to modeling only radial diffusion and is suitable only for tissues with zero-order 

metabolism, making it inadequate for areas with complex vascular structures and nonlinear 

metabolisms. Kernel-based methods such as93 have improved upon the Krogh model by allowing 

oxygen diffusion in all directions and accommodating more complex vasculature, but they 
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restrict metabolism modeling to first-order kinetics and do not track intravascular oxygen 

transportation.  

Direct application of Finite Element Method (FEM) or Finite Difference Method (FDM) to the 

vascularized tissue is also a common approach, such as94. However, these methods require 

extensive meshing and computation to capture the geometry making them improper for large 

systems. 

Yunkai Lu et al.116 developed an implicit finite-difference method that is able to track vascular 

oxygen. They use Peskin’s numerical delta function to distribute oxygen from vessel centerlines 

to surrounding voxels, accommodating larger mesh sizes. However, such source distribution does 

not account for vessel radius but is only voxel size-dependent, which could introduce errors in 

the physical behavior of oxygen supply. Moreover, the computational demands of this method—

requiring over two hours to reach a steady state for a few-thousand-element-vasculature—are not 

feasible for our purposes. 

T.W. Secomb95 proposed a Green’s function method for intravascular and tissue oxygen 

distribution, later updating it for time-dependent problems96Convective transport is simulated by 

explicitly computing the displacement of fluid elements through the vessel network during the 

time step. However, due to computational limitations, this method, which involves large 

influence coefficient matrices, is better suited for small-scale studies. 

Our work significantly advances the modeling of time-dependent vascular and tissue oxygen 

dynamics, particularly in tumor vasculatures which exhibit greater variability in perfusion and 

hematocrit distribution than normal tissues. 
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We have developed a method that paralleled the simulation into numerous independent vessel 

tube ODEs and captures the vasculature structure through a paralleled vessel nodes information 

gathering step. This approach fully utilizes GPU capabilities to achieve near-real-time 

computation speeds for ultra-large systems containing tens of millions of voxels and hundreds of 

thousands of vessel segments without additional memory usage. The vasculature-based 

oxygenation simulation at this scale has never been achieved before to the best of the author’s 

knowledge. 

We have introduced a novel semi-implicit 3D-1D coupling method that efficiently manages 

oxygen within the vasculature-tissue coupled system. It implicitly models the oxygen release and 

transport within and across blood vessels and explicitly models oxygen diffusion-reaction in 

tissue using Finite Difference Methods (FDM). This approach strategically designed the 

numerical scheme, optimizing both computational efficiency and numerical robustness across 

highly heterogeneous structural and functional conditions of tumor vasculatures. 

We also apply vessel surface sampling to cover the spatial distribution of tube surfaces as oxygen 

sources, allowing for asymmetric oxygen supply for large vessels that cover heterogeneous tissue 

regions and a larger time step for transvacular oxygen supply. Such multi-source sampling is 

fused into our semi-implicit 3D-1D coupling method, and the mass balance in all the steps is 

explicitly enforced for optimal physiological and physical soundness.  

Enabled by our advanced simulation platform, we successfully conducted comprehensive 

vasculature-based modeling that spans from hemodynamics to vessel-tissue coupled 

oxygenation. Calibrated against literature values, our results reveal stark oxygen distribution 
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heterogeneity within tumors and remarkably homogeneous oxygen levels in healthy brain tissue. 

In poorly vascularized tumors, such as the colorectal carcinoma xenograft, there is a large 

disparity between blood and tissue oxygen levels, which narrows with increased vascularization, 

dropping to nearly sub-millimeter mercury levels in healthy caudoputamen vasculature. Despite 

significant variations in vascularity and tissue metabolism, a consistent mean cross-vessel wall 

oxygen difference of around 0.8 mmHg is observed across all three vasculature types and varied 

tissue perfusions, suggesting a uniform per-vessel surface oxygen release rate. 

We also assessed the effect of random flow direction initialization on tissue perfusion and 

oxygen levels. The perfusion of random samples was found to be stable across different samples 

and the oxygen levels were extremely consistent, with a mean level difference below 0.2%. This 

demonstrates the robustness of the adopted boundary condition estimation method for blood 

perfusion and tissue oxygenation modeling tasks.  

The relationship between tissue oxygen levels and blood perfusion was also studied. Higher 

perfusion leads to a faster establishment of a steady state and higher tissue oxygen levels. Tissue 

oxygen is very sensitive to perfusion levels at the low perfusion range but reaches a plateau at 

high perfusion levels. Additionally, the mean cross-vessel wall oxygen level difference remains 

stable across a wide range of perfusion levels. These findings underscore the importance of 

calibrating tissue perfusion and including explicit intravascular oxygen modeling when 

examining tissue oxygenation. 

In our FLASH depletion modeling, we observed rapid oxygen depletion during irradiation, 

followed by a gradual recovery. The extent of depletion was significantly lower than in vitro 
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scenarios, which lack oxygen replenishment from vascular. Our findings reveal an inverse 

relationship between vascularity and depletion efficiency, underscoring the importance of 

considering vascular oxygen supply when estimating FLASH depletion. The results also suggest 

that achieving complete oxygen depletion is impractical with standard dose ranges due to the 

rapid vascular replenishment, indicating that targeting complete depletion for a FLASH effect is 

not feasible. 

Moreover, we found that depletion levels increased with higher dose rates. The required dose rate 

for effective oxygen depletion varied from 20 to 50 Gy/s across the studied tumor types, aligning 

with traditional definitions of FLASH therapy. However, while dose rates above this threshold 

yielded only marginal gains in depletion for moderately vascularized tissues, in brain tissue, the 

depletion efficiency plateau did not reach even 400 Gy/s. These findings suggest that while 

traditional FLASH dose rates are sufficient for normal tissue, higher rates may be more effective 

in brain tissue. 

 

 

3.5 Conclusion 

 

Our computation model provided a robust, high-performance modeling platform enabling 

advanced steady state or time-dependent analysis of the ultra-large-scale and complex 

dynamically coupled vasculature-tissue system. We demonstrated how well-calibrated functional 
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properties and heterogeneities can be derived solely based on vasculature structure and reference 

baseline oxygen consumption rates and tissue perfusions. Our work helps improve the 

mechanistic understanding of in vivo tissue perfusion and oxygenation and facilitates future 

ultra-large-scale vascularized tumor growth modeling. 
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4.Chapter 3: An Ultra-Large Physics-

Driven Vascularized Tumor Model to 

Interpret Macroscopic Tumor Features 

 

4.1 Introduction 

 

Throughout tumor development, the process of angiogenesis, whereby tumors recruit new 

vasculature from existing vessels, plays an indispensable role in their sustained growth128. 

Without it, avascular tumors that depend solely on metabolite diffusion from surrounding tissues 

cannot grow beyond 0.2~1 mm129 in diameter. The tumor vasculature is also known to be 

morphologically chaotic and functionally impaired compared to normal vasculatures130. These 

characteristics lead to heterogeneous nutrient supply into the tumor microenvironment and 

further contribute to heterogeneous tumor development. The resultant formation of hypoxic 

voids, necrosis, and an acidic milieu, which are the basis for imaging tumor heterogeneity with 

CT56.  

Many computational works have focused on the angiogenesis process during 3d tumor or normal 

tissue development. Abbas Shirinifard131 showed asymmetric tumor cell cluster growth toward 
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vasculature with an agent-based model. Vasileios Vavourakis132 proposed a hybrid model 

combining the continuum tumor with discrete vasculature permitting large tissue deformation. 

Tobias Duswald et al.133 modeled the tumor growth and treatment response in a dynamic tree-

like with an agent-based model using BioDynaMo69. JP Alberding et al.134,135 simulated the 

angiogenesis in the normal cerebral cortex and retina. 

However, aiming at interpreting the macroscopic tumor features of the large heterogeneous 

tumor development with fully functional vasculature coupled driven heterogeneities, no existing 

models could fulfill the need. Therefore, we propose our novel ultra-large physics-driven hybrid 

vascularized tumor model balancing the unbiased ultra-large-scale tumor growth capturing 

internal heterogeneity with the simulation efficiency enabling high throughput simulations. 

In addition, existing models fall short of capturing the macroscopic features of large, 

heterogeneous tumor development, particularly when considering the complexities introduced by 

a fully functional, vasculature-driven heterogeneity. To address this gap, we introduce a 

groundbreaking ultra-large, physics-driven, hybrid vascularized tumor model. Our model 

achieved a balance, capturing the internal heterogeneity of expansive unbiased vascular tumor 

growth, while maintaining simulation efficiency to facilitate high-throughput analyses. 

 

4.2 Methods 
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4.2.1 Overview of Model Design 

 

To model the heterogeneous tumor growth with adequate emphasis on the heterogeneity in tumor 

oxygenation and cellular density while controlling computational costs, we adopted a hybrid 

approach, which combines a continuum model for averaged cell behavior in tissue with a 

discrete model handling the vascular system including its perfusion and development. The 

continuous tissue and discrete vasculature are coupled so that the tissue mechanically deforms 

the vasculature as it grows and controls the angiogenesis process through the release of TAF, and 

the vasculature determines the nutrient supply across the tumorous region. Figure 4-1 shows the 

brief flowchart illustrating the modeling structure. 
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Figure 4-1 Brief flowchart of the model design. The tissue, including the healthy host and tumor, 

is modeled as a continuum, while vasculature is modeled as discrete nodes and tubes. 

Vasculature-based oxygen source distribution is generated from a discrete model and provided to 

the continuum part, while the continuum gives back TAF and tissue deformation information for 

vasculature update. 

In the study, the healthy mouse brain is the reference site for parameters of the healthy host; as 

for the tumor, mouse glioma (GL261) is the reference type. If available, we will prioritize 

adopting literature-reported parameters for these specific sites. The following section details the 

construction of the tissue continuum, biochemical, and vasculature models.  

 

4.2.2 Continuum Tumor Model 
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4.2.2.1 Tumor Mechanics 

 

To account for the large deformation of the tumor and tissue, a finite strain theory is used. The 

function 𝒙 = 𝜒(𝑿, 𝑡) describes that a material point of the tissue (including the tumor and normal 

tissue) in the reference configuration with coordinate 𝑿 moves to a location with coordinate x in 

the current configuration at time t. The vectors 𝑑𝑿  and 𝑑𝒙  in the reference and current 

configurations are related by the deformation gradient, defined as 𝑭 = 𝜕𝒙 𝜕𝑿⁄ . The deformation 

gradient can be decomposed into the growth and elastic parts, 𝑭 = 𝑭𝑒𝑭𝑔, where 𝑭𝑔 is the growth 

component that describes the biological process of growth and 𝑭𝑒 is the elastic component that 

ensures the compatibility of the geometry. Assuming there is no growth in the normal tissue, the 

corresponding growth tensor 𝑭𝑔  of the normal tissue becomes the identity tensor 𝑰 . The 

determinant of 𝑭  represents the volume change 𝐽 = 𝑑𝑒𝑡(𝑭) . Splitting 𝑭  yields the split of the 

volume change 𝐽=𝐽𝑒𝐽𝑔, where 𝐽𝑒 = 𝑑𝑒𝑡(𝑭𝑒) and 𝐽𝑔 = 𝑑𝑒𝑡(𝑭𝑔). 

The constitutive response of the tumor and normal tissue is assumed to be hyperplastic. The 

strain energy density per grown volume 𝑊̅  is described by the Blatz-Ko free energy function, 

which is used for characterizing the porous, foam-like rubber material, which is widely used for 

describing the compressible and nonlinear behavior of tissue and tumor136: 
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𝑊̅ = 𝜙
𝜇

2
((𝐼1

𝑒 − 3) +
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((
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𝑒
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𝑒)𝛽– 1)) 

Equation 4-1 

Where 𝜇 is the shear modulus, 𝐼1
𝑒, 𝐼2

𝑒, and 𝐼3
𝑒 are the invariants of the strain tensor 𝑪𝑒 = 𝑭𝑒𝑇𝑭𝑒, 

given by 𝐼1
𝑒 = 𝑡𝑟(𝑪𝑒), 𝐼2

𝑒 =
1

2
((𝑡𝑟(𝑪𝑒))

2
− 𝑡𝑟(𝑪𝑒 ∙ 𝑪𝑒)) , and 𝐼3

𝑒 = 𝑑𝑒𝑡(𝑪𝑒) . 𝜙  and 𝛽  are non-

dimensional parameters, lower 𝜙 lead to more foam-like behavior and 𝛽 is related to the Poisson’s 

ratio 𝜈 through 𝜈 = 𝛽/(1 + 2𝛽). While tumors are generally stiffer than normal tissue137, there 

are contradictory reports regarding glioblastoma138. In this work, we primarily reference Richard 

Moran et al.139 and James MacLaurin136 for normal brain and glioblastoma mechanical properties, 

respectively.  

The relative cell density 𝑛𝑐 is estimated as the inverse Jacobian of the elastic deformation gradient 

𝐽𝑒 = 𝑑𝑒𝑡(𝑭
𝑒) , the volumetric oxygen consumption rate and TAF release rate will be scaled 

accordingly. 

The strain energy density per initial volume 𝑊 is related to 𝑊̅ through 𝑊 = 𝐽𝑔𝑊̅. The first Piola-

Kirchhoff stress is defined as 𝑷 =
𝜕𝑊

𝜕𝑭
. The Cauchy stress is related to the first Piola-Kirchhoff 

stress via 𝝈 =
1

𝐽
𝑷𝑭𝑇. 

The tissue is assumed to be under mechanical equilibrium and quasi-static deformation. The 

balance of linear momentum in the Lagrangian framework is written as 
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𝜕

𝜕𝑿
∙ 𝑷𝑇 = 0 

Equation 4-2 

4.2.2.2 Tumor Growth 

 

Assuming isotropic growth of the tumor, the growth tensor is expressed as 𝑭𝑔 = 𝜆𝑔𝑰, where 𝜆𝑔 is 

the growth stretch ratio that captures the local tumor mass growth. An evolution equation for the 

growth is given by: 

 

𝑑𝜆𝑔

𝑑𝑡
= 𝜆𝑔 ∙

𝐾𝑔

3
∙

𝑃𝑜𝑥𝑦

𝑃𝜆50 + 𝑃𝑜𝑥𝑦
∙ 𝐻𝑉 

Equation 4-3 

Accordingly, the effective proliferation rate (doubling rate) of viable cells writes: 

 

𝑟𝑝𝑟𝑜 =
𝐾𝑔

𝑙𝑛(2)
∙

𝑃𝑜𝑥𝑦

𝑃𝜆50 + 𝑃𝑜𝑥𝑦
 

Equation 4-4 

The GL261 population doubling time is measured at 20 hours in vitro140. However, for in vivo 

tumors, the acid environment and insufficient oxygen and glucose supply could dramatically 



112 

 

alter the tumor cell proliferation rate141, the typical tumor doubling time is reported to be 2.4 

days142 with a large variation measured ranging from 1.4 to 6.1 days143. Adapting to the reported 

data, we set the baseline maximum growth rate to have a doubling time of one day.  

 

4.2.2.3 Tumor Necrosis 

 

To track the irreversible necrosis transition, we introduce a cell viability indicator 𝐻𝑉. The lowest 

oxygen partial pressure experienced by each material point over its growth is tracked with the 

history variable 𝐻, the corresponding 𝐻𝑉writes: 

 

𝐻𝑉 = 𝑓𝐻(𝐻 − 𝑃𝑁) 

Equation 4-5 

Where 𝑓𝐻 is the Heaviside step function which returns one if 𝐻 ≥ 𝑃𝑁 and zero else wise. The 

tissue will die and stop growing if its 𝐻 goes below the critical oxygen partial pressure for 

necrosis 𝑃𝑁. 

 

Parameter Description Value Unit Reference 
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𝝓𝑯𝒐𝒔𝒕 
Blatz-Ko model 

parameter 

1  

Richard Moran et 

al.139 

𝜷𝑯𝒐𝒔𝒕 
Blatz-Ko model 

parameter 

2  

Richard Moran et 

al.139 

𝝁𝑯𝒐𝒔𝒕 
Host shear 

modulus 

1 𝑘𝑃𝑎 

Richard Moran et 

al.139 

𝝓𝑻𝒖𝒎𝒐𝒓 
Blatz-Ko model 

parameter 

0.2  

James 

MacLaurin136 

𝜷𝑻𝒖𝒎𝒐𝒓 
Blatz-Ko model 

parameter 

4  

James 

MacLaurin136 

𝝁𝑻𝒖𝒎𝒐𝒓 
Tumor shear 

modulus 

2.7 𝑘𝑃𝑎 

James 

MacLaurin136 

𝑷𝑵 

Critical 𝑃𝑜𝑥𝑦 for 

necrosis 

0.1 𝑚𝑚𝐻𝑔  

𝝆 Tissue density 1 
𝑔
𝑚𝑙⁄   

𝑲𝒈 Growth rate 0.693 𝑑𝑎𝑦−1 See text 
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𝑷𝝀𝟓𝟎 

𝑃𝑜𝑥𝑦 at half 

maximum 

growth rate 

10 𝑚𝑚𝐻𝑔 See text 

Table 4-1 Biophysical parameters used in the tumor growth model. 

4.2.3 Oxygen Distribution 

 

4.2.3.1 Oxygen Dynamics in Tumor 

 

Oxygen distribution in homogeneous tissue is governed by the following equation, considering 

the oxygen diffusion in tissue, the oxygen consumption by tissue, and the oxygen supply through 

perfused vasculature: 

 

𝜕𝑃𝑜𝑥𝑦

𝜕𝑡
= 𝛻 ∙ (𝐷𝑜𝑥𝑦𝛻𝑃𝑜𝑥𝑦) −

1

𝑎𝑜𝑥𝑦
𝑀(𝑃𝑜𝑥𝑦) +

1

𝑎𝑜𝑥𝑦
𝑆(𝑃𝑜𝑥𝑦) 

Equation 4-6 

Where 𝑃𝑜𝑥𝑦 is the oxygen partial pressure, 𝐷𝑜𝑥𝑦 and 𝑎𝑜𝑥𝑦 are oxygen diffusion coefficient and 

solubility in tissue, respectively. 𝑀(𝑃𝑜𝑥𝑦) is the Michaelis-Menten type tissue oxygen 

consumption, reads: 
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𝑀(𝑃𝑜𝑥𝑦) =
1

𝐽𝑒

𝑀𝑚𝑎𝑥𝑃𝑜𝑥𝑦

𝑃𝑜𝑥𝑦 + 𝑃𝑀50
 

Equation 4-7 

The Jacobian of the elastic deformation gradient 𝐽𝑒 quantifies tissue volume change, and its 

inverse is employed as an approximation for relative cell density. 𝑃𝑀50 is the critical oxygen 

partial pressure when the consumption rate reaches half maximum, it is usually a small value in 

the range of 0.5-1 mmHg117. 𝑀𝑚𝑎𝑥 is the maximum oxygen consumption rate, which can vary 

dramatically across cell types118. The base line resting oxygen metabolism rate of the human 

body, also called the One metabolic equivalent (MET) is 3.5 mlO2/kg/min119, while that for the 

human brain can be up to 35 mlO2/kg/min120. For rats, according to HM Wiesner121, compared to 

humans, the baseline body metabolism is much higher, but the brain oxygen metabolism rate is 

similar, reports 24.2 mLO2/kg/min and 1.97 μmol/g/min, respectively. For brain glioma, due to 

The Warburg Effect122, its metabolism can be significantly lower than that of normal tissue. 

Daniel Paech et al.123 measured an average 0.23 ± 0.07 μmol/g/min oxygen metabolism rate for 

high grade glioma and 0.39 ± 0.16 μmol/g/min for low grade glioma. Based on these literature 

values, in this work, we adopted a volumetric tumor oxygen metabolism rate 𝑀𝑚𝑎𝑥 𝑎𝑜𝑥𝑦⁄  

ranging from 2 to 4 mmHg/s. The maximum diffusion distance of oxygen from the vasculature to 

tissue can be estimated as144: 
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𝐿𝑑 = (2𝐷𝑜𝑥𝑦𝑎𝑜𝑥𝑦𝑃𝑤𝑎𝑙𝑙 𝑀𝑚𝑎𝑥⁄ )
1
2⁄  

Equation 4-8 

A vessel with a blood oxygen partial pressure at the vessel surface of approximately 40 mmHg 

will yield a diffusion range of around 160 microns.  

𝑆 is the oxygen supply from sufficiently perfused vasculature, the oxygen supply rate of a vessel 

segment can be written as115: 

 

𝑆 = 𝐴𝑣𝑎𝑠 ∙ 𝑘𝑜𝑥𝑦(𝑃𝑏𝑜𝑥𝑦 − 𝑃𝑤𝑎𝑙𝑙) 

Equation 4-9 

Where 𝐴𝑣𝑎𝑠 is the surface area of the vessel segment, 𝑃𝑏𝑜𝑥𝑦 is the blood oxygen partial pressure 

and is modeled as constant for perfused vessels, and 𝑃𝑤𝑎𝑙𝑙 is tissue oxygen partial pressure at the 

vessel surface. 𝑘𝑜𝑥𝑦 is the mass transfer coefficient (MTC) for transvascular oxygen release115: 

 

𝑘𝑜𝑥𝑦(𝐻𝐷) = 17.7𝐻𝐷
2 − 1.07𝐻𝐷 + 0.672 

𝑛𝑙𝑂2
𝑠 ∙ 𝑐𝑚2 ∙ 𝑚𝑚𝐻𝑔⁄  

Equation 4-10 

In computation, a cross-wall oxygen partial pressure difference cap 𝑃𝑐𝑎𝑝 is applied to avoid the 

overestimation of oxygen transportation across the vessel wall due to the limited spatial 

resolution. In our model, only blood vessels with perfusion higher than 100um3/s and discharge 
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hematocrit above 0.05 are considered perfused and capable of supporting the tissue oxygen 

demand; the unperfused vessels are excluded from the oxygen supply. 

 

4.2.3.1 Oxygen Dynamics in Host Tissue 

 

Despite the high degree of microvascular heterogeneity arising from both extrinsic and intrinsic 

factors, control mechanisms in healthy tissue effectively mitigate variations in oxygen supply, 

resulting in a relatively stable and adequate oxygen concentration145. This observation is 

supported by studies such as that by Carreau et al.146, which report low spatial variation in 

oxygen concentration in various healthy organs, including the brain, muscle, and intestinal tissue. 

In light of these findings, and also to avoid the need to explicitly model the healthy tissue 

vasculature, we proposed a dynamic equilibrium oxygen partial pressure distribution in healthy 

tissue governed by: 

 

𝜕𝑃𝑜𝑥𝑦

𝜕𝑡
= 𝛻 ∙ (𝐷𝑜𝑥𝑦𝛻𝑃𝑜𝑥𝑦) −

1

𝑎𝑜𝑥𝑦
𝑀(𝑃𝑜𝑥𝑦) +

1

𝑎𝑜𝑥𝑦
𝑆ℎ(𝑃𝑏𝑜𝑥𝑦 − 𝑃𝑜𝑥𝑦) 

Equation 4-11 

𝑆ℎ represents the oxygen supply from healthy tissue vasculature, the value is selected such that 

the steady state oxygen concentration in normal tissue equals 𝑃ℎ𝑠 : 
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𝑀(𝑃ℎ𝑠) = 𝑆ℎ(𝑃𝑏𝑜𝑥𝑦 − 𝑃ℎ𝑠) 

Equation 4-12 

4.2.4 Discrete Vasculature Model 

 

Adhering to the methodology described in Chapter 2, we use node-tube and vertex-edge 

representations to model tumor vasculature in our vascularized tumor simulations. Recognizing 

that simulated vasculature is not constrained by resolution limits that might cause abnormally 

high vertex degrees, as seen in actual tumor vasculature imaging, we have set the maximum 

degree to three to optimize computational efficiency. 

 

4.2.4.1 Hemodynamics  

 

Following Chapter 2, the same method for hemodynamic calculation is applied to the generated 

vasculature. In vivo viscosity law and phase separation effect is considered, and iterative flow 

and discharge hematocrit update is applied on the vertex-edge vasculature data till convergence. 

 

4.2.4.2 Angiogenesis 
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4.2.4.2.1 Biological Background 

 

Avascular tumors, which rely solely on the diffusion of metabolites from the surrounding 

environment, are generally limited to a growth size of 0.2 to 1 mm129. Sustained tumor 

development necessitates angiogenesis: the formation of new blood vessels from existing 

vasculature that penetrate the cancerous growth to supply nutrients and oxygen.  

Typical sprouting angiogenesis begins with the formation of a sprout, wherein an endothelial cell 

is activated by elevated concentrations of angiogenic factors secreted by hypoxic tissue, thereby 

transforming into a tip cell. This tip cell then actively migrates toward the hypoxic area guiding 

the stalk-cell-proliferation-driven sprout elongation. When two tip cells meet, the two sprouts 

will fuse and create a lumen through which oxygenated blood can flow and supply the hypoxic 

regions147.  

While other factors like fibroblast growth factor, tumor necrosis factor (TNF), transforming 

growth factor (TGF), matrix metalloproteinases (MMPs), and angiopoietins also play roles in 

angiogenesis148, VEGF family remains the critical factors in hypoxia-induced angiogenesis. 

VEGF-A is the most potent blood vessel growth inducer known to date, both necessary and 

sufficient to induce endothelial tip cells149, control the stalk cell proliferation through its 

concentration, and guide the tip cell migration through its concentration gradient as shown by 

Holger Gerhardt et al150. 
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4.2.4.2.2 Continuous TAF Field 

 

In our model, we introduce a single, unitless, homogenized chemical modulator—referred to as 

Tumor Angiogenic Factor (TAF)—to represent essential activities needed for the development of 

vascular networks, particularly those influenced by VEGF-A. 

The concentration of TAF (𝐶𝑇𝐴𝐹) in tissue is governed by: 

 

𝜕𝐶𝑇𝐴𝐹
𝜕𝑡

= 𝛻 ∙ (𝐷𝑇𝐴𝐹𝛻𝐶𝑇𝐴𝐹) + 𝑆𝑇𝐴𝐹 −𝐾𝑇𝐴𝐹𝐶𝑇𝐴𝐹 

Equation 4-13 

Where 𝐷𝑇𝐴𝐹 is the diffusion coefficient of TAF in tissue, 𝜆𝑇𝐴𝐹 is the degradation rate. Following 

JP Alberding et al.134 we model the TAF release from hypoxic tissue as: 

 

𝑆𝑇𝐴𝐹 = {

1

𝐽𝑒
𝐾𝑇𝐴𝐹𝐶𝑚𝑎𝑥 (1 −

𝑃𝑜𝑥𝑦

𝑃𝑇𝐴𝐹
) ∙ 𝐻𝑉   𝑖𝑓 𝑃𝑜𝑥𝑦 ≤ 𝑃𝑇𝐴𝐹

0 𝑒𝑙𝑠𝑒

 

Equation 4-14 

Where 𝐶𝑚𝑎𝑥 is the maximum TAF concentration and 𝐾𝑇𝐴𝐹 is degradation rate. 𝑃𝑇𝐴𝐹 is the tissue 

oxygen partial pressure threshold to initiate the TAF release. The viability indicator multiplied in 

this term reflects the assumption that necrotic tissue is unable to secrete angiogenic factors. 
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4.2.4.2.3 Sprout Activation, Migration, and Anastomosis 

 

The activation of an endothelial cell into a tip cell is modeled as a stochastic process, modified 

from Alberding et al.134 the probability of the sprout formation on a vessel segment with in a 

time interval Δ𝑡 can be written as: 

 

𝑃𝑠𝑝𝑟𝑜𝑢𝑡 = 𝑘𝑠𝑝𝑟𝑜𝑢𝑡𝐿Δ𝑡
𝐶𝑇𝐴𝐹 − 𝐶𝑡ℎ

𝐶𝑇𝐴𝐹50 + 𝐶𝑇𝐴𝐹 − 2𝐶𝑡ℎ
 

Equation 4-15 

Where 𝑘𝑠𝑝𝑟𝑜𝑢𝑡 is the maximal sprout rate per unit length, 𝐿 is the length of the vessel segment, 

𝐶𝑡ℎ is the TAF concentration threshold for sprout formation, and 𝐶𝑇𝐴𝐹50 is the TAF concentration 

at which the probability of sprouting reaches half-maximum. The new sprout is randomly placed 

on the activated vessel segment and has a fixed radius 𝑅𝑠𝑝𝑟𝑜𝑢𝑡. If the environmental TAF is about 

the threshold 𝐶𝑚𝑖𝑔, the stalk cells will be allowed to proliferate resulting in the sprout elongating 

at a constant speed 𝑉𝑠𝑝𝑟𝑜𝑢𝑡 if; otherwise, sprout elongation will come to a halt. Levi B. Wood et 

al.151 found a wide distribution of nascent vessels ranging from 5 to 25 microns, and the spout 

elongation speed ranging from 25 to 75 micros a day, with smaller radius vessels growths faster. 

According to this observation, we assign a tip cell migration speed of 75 μm/day in the model. 
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The directional sprout elongation is controlled by tip cells, which is influenced by three primary 

factors: the previous direction, the local TAF gradient, the anastomosis bias, and the random 

variation. The new migration direction 𝒏𝑛𝑒𝑤 updated from previous direction 𝒏𝑜𝑙𝑑 goes: 

 

𝒏𝑛𝑒𝑤 =
𝒏𝑜𝑙𝑑 + 𝑘𝑇𝐴𝐹 ∇𝐶𝑇𝐴𝐹 ‖∇𝐶𝑇𝐴𝐹‖2⁄ + 𝑘𝑎𝑛𝑎𝒏𝑎𝑛𝑎 + 𝑘𝑟𝑎𝑛𝑑𝒏𝑟𝑎𝑛𝑑

‖𝒏𝑜𝑙𝑑 + 𝑘𝑇𝐴𝐹 ∇𝐶𝑇𝐴𝐹 ‖∇𝐶𝑇𝐴𝐹‖2⁄ + 𝑘𝑎𝑛𝑎𝒏𝑎𝑛𝑎 + 𝑘𝑟𝑎𝑛𝑑𝒏𝑟𝑎𝑛𝑑‖2
 

Equation 4-16 

𝒏𝑎𝑛𝑎 is the vector indicating anastomosis bias and 𝒏𝑟𝑎𝑛𝑑 is a random 3D unit vector for random 

variation. 𝑘𝑇𝐴𝐹, 𝑘𝑎𝑛𝑎 , and 𝑘𝑟𝑎𝑛𝑑 serve as the weights for the TAF gradient term, anastomosis 

bias term, and random variation term, respectively. Adjusted from the work of Secomb et al.152, 

we model the anastomosis bias for an arbitrary tip cell 𝑎 in a form that is both distance- and 

angle-dependent: 

 

𝒏𝑎𝑛𝑎,𝑎 = ∑
𝒓𝛼,𝛽

‖𝒓𝛼,𝛽‖2

(1 −
‖𝒓𝛼,𝛽‖2
𝐷𝑎𝑛𝑎

)(
𝑐𝑜𝑠(𝜃𝛼,𝛽) − 𝑐𝑜𝑠(𝜃𝑎𝑛𝑎)

1 − 𝑐𝑜𝑠(𝜃𝑎𝑛𝑎)
)

𝛽∈𝑆𝑐𝑜𝑛𝑒,𝑎

 

Equation 4-17 

Where 𝛽 refers to other tip cells belonging to the set 𝑆𝑐𝑜𝑛𝑒,𝑎, which includes all the tip cells that 

can be sensed by tip cell 𝛼. The vector 𝒓𝛼,𝛽 points from tip cell 𝛼 to tip cell 𝛽, and 𝜃𝛼,𝛽 

represents the angle between the sprout orientation and 𝒓𝛼,𝛽. A tip cell is 'sensible' by another if 

it can be reached by the filopodia. The majority of filopodia is found to be shorter than 75 micron 
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in in vitro experiments 150, so we set the tip sense length limit 𝐷𝑎𝑛𝑎 accordingly. Meanwhile due 

to forward extending morphology of filopodia, a tip sense angle limit 𝜃𝑎𝑛𝑎 is also applied. When 

two tip cells come within a proximity of no more than the anastomosis threshold 𝐿𝑎𝑛𝑎, their 

migration ceases, and a vessel segment will be placed to connects the two tip cells, thereby 

establishing a lumen for blood perfusion. 

 

4.2.4.3 Vasculature Remodeling 

 

4.2.4.3.1 tissue-induced motion 

 

In our model, the vasculature is embedded within deforming tissue and adapts its shape and 

length accordingly. The movement speed of a vasculature vertex located at position 𝒙 with the 

deformation of tissue can be written as 

 

𝒗(𝒙, 𝑡) = 𝑽(𝜙−1(𝒙, 𝑡), 𝑡) 

Equation 4-18 

Where 𝜙 is the deformation function mapping the material space to world space, and 𝜙−1 is its 

inverse. 𝑽 denotes the velocity of the tissue as defined in material space. Due to the substantial 
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tissue deformation caused by tumor growth, some vessel segments may be stretched to long 

lengths and lose the ability to capture vessel tortuosity. To maintain modeling accuracy, we insert 

extra vertices to ensure that the length of each vessel segment remains approximately 20 

microns. 

 

4.2.4.3.2 Angular Remodeling 

 

In addition to tissue-induced motion, we account for the potential of vessels to move through 

tissue due to longitudinal tension153 154. This mechanism helps to align the branching angles 

closer to 120 degrees, as observed in microvascular networks152. The resultant ‘force’ of vessel 

tensions acting at each network vertex can be modeled as134: 

 

𝐟𝑡 =
(∑𝐷𝑖𝒏𝑖)(∑𝐷𝑖)

∑𝐷𝑖𝐿𝑖
 

Equation 4-19 

𝑖 indexes the vessel segments connecting to the examined vertex, 𝐷 and 𝐿 represent the 

corresponding vessel diameter and length. 𝒏 is the unit vector indicating vessel orientation, 

taking the examined vertex as the starting point. They will migrate if the net force exceeds a 

threshold 𝐹𝑡ℎ: 
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𝒗 = 𝑣𝑏𝑎𝑚𝑎𝑥𝐟𝑡 (1 −
𝐹𝑏𝑎𝑡ℎ
‖𝐟𝑡‖2

) 

Equation 4-20 

Where 𝑣𝑏𝑎𝑚𝑎𝑥 is the maximum velocity, keeping this velocity relatively low is very important 

for the numerical stability of branching angle remodeling. The threshold 𝐹𝑏𝑎𝑡ℎ is included to 

prevent the vasculature from losing its curved structures152. 

 

4.2.4.3.3 Radius Remodeling and Pruning 

 

Functional vasculatures are known to prefer certain wall shear stress (WSS) as a consequence of 

minimizing power required for maintaining the flow volume combined with the power to pump 

the flow. Pries et al.155 found that the WSS of vessel is regulated according to blood pressure 

despite their flow rate, radius, or vessel type. As a reminder, the wall shear stress of a vessel 

segment can be calculated from: 

 

𝜏𝑤 =
𝑅∆𝑃

2𝐿
 𝑜𝑟 

4𝜇𝑄

𝜋𝑅3
 

Equation 4-21 
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Where 𝑅 is the vessel radius, 𝐿 is the vessel length, ∆𝑃 is the blood pressure drop over this 

segment, 𝑄 is the blood flow rate going through, and 𝜇 is the apparent viscosity of blood. The 

WSS regulation is later applied to the estimation of blood flow in the given healthy vasculatures 

structures91, and the vessel remodeling of healthy vasculature152. However, a significant 

pressure-WSS relationship is not observed in the large chaotic tumor vasculatures even when 

boundary pressure is optimized accordingly107. Furthermore, the numerical adjustment of radius 

according to WSS is only effective with fixed flow boundary conditions but numerically unstable 

for pressure-based boundary conditions. Specifically, it tends to encourage the enlargement of 

radius differences between serially connected vessel segments. In our model, we favor the latter 

form of boundary condition, where the boundary flow is not predetermined, and tumor perfusion 

is an emergent functional property from the vasculature structure. 

We propose a novel radius remodeling scheme based on both target WSS and target radius, that 

is table for the pressure boundary condition. The radius adaptation signal 𝑆𝑡𝑜𝑡 is designed to have 

the following properties. First, for vessels with zero flow, their radius will gradually decrease to 

𝑟𝑚𝑖𝑛. Second, for perfused vessels, the higher flow rate will encourage a larger vessel radius post 

adaptation. Third, when vessels reach the reference WSS 𝜏𝑟𝑒𝑓, the adaptation signal will become 

zero. The radius adaptation and adaptation signal are defined as follows: 

 

∆𝑅

∆𝑡
=
𝑆𝑡𝑜𝑡𝑅

𝑇𝑎
 

Equation 4-22 
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𝑆𝑡𝑜𝑡 = 𝑙𝑜𝑔 (
(10𝑛𝑟 − 1)|𝑄| + 𝑄𝑟𝑒𝑓

10𝑛𝑟𝑄𝑟𝑒𝑓
) + 𝑛𝑟

𝑙𝑜𝑔 (
𝑅𝑟𝑒𝑓
𝑅
)

𝑙𝑜𝑔 (
𝑅𝑟𝑒𝑓
𝑅𝑚𝑖𝑛

)

 

Equation 4-23 

Where 𝑇𝑎 is the adaptation time controlling the adaptation rate, 𝑛𝑟 is a weighting factor for both 

the target radius and the flow regularization. 𝑅𝑟𝑒𝑓 is the reference radius and 𝑅𝑚𝑖𝑛 is the 

mnininum radius allowed. The reference flow 𝑄𝑟𝑒𝑓 is calculated on individual vessel based on a 

reference WSS: 

 

𝑄𝑟𝑒𝑓 = 𝜏𝑟𝑒𝑓
𝜋𝑟3

4𝜇
 

Equation 4-24 

The radius adaptation signal 𝑆𝑡𝑜𝑡 is designed in this way so that for vessels with zero flow, their 

radius will gradually decrease toward 𝑟𝑚𝑖𝑛 at a programed speed, while for perfused vessels, the 

radius is positively regulated by its flow and will attempt to approach the reference WSS. In vivo 

measurement of blood flow velocity in mice brain suggests 1 and 5.6 mm/s for capillaries and 

arterioles repectively156, and perfusion calibrated GL261 tumor have a mean WSS around 15 

dyn/cm2 100 and radius around 12 μm.  

The flow-radius relationship curve of a constant WSS of 15 dyn/cm2, and the curve of a constant 

flow velocity at 1.5 mm/s is plotted in Figure 4-2. Their intersection point shows a radius of 12 

μm, which is selected to be the reference radius Rref in our remodeling module. With boundary 
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pressure condition applied accordingly, the environmental host vasculature would be encouraged 

to have a physiological hemodynamic property of WSS, radius, and flow velocity as the 

intersection point. 

 

 

Figure 4-2 The curve for the radius remodeling under various flow conditions. The blue curve 

shows the reference wall shear stress at 15 dyn/cm2, black curve shows the constant flow velocity 

curve at 1.5 mm⁄s, the intersection radius at 12 μm is made the reference radius Rref in radius 

remodeling. 

4.2.4.4 Host Vasculature Initialization 
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The vascularization through angiogenesis requires pre-existing host vasculature to start with. 

Common methods establishing host vasculature includes the cubic grid vasculature131, parallel 

vessels arrays132, and reduced vasculature data containing a few major vessels133. However, 

existing methods can hardly fulfill our need for unbiased tumor growth. The artificial vessel 

arranged as cubic grid or paralleled lines could introduce bias in certain growth direction while 

the density of reduced vasculature could be inadequate for nutrition supply and angiogenesis 

initiation. Ideally, the entire vasculature extracted from normal tissue is preferred for host 

vasculature initialization, however, with the scarcity of data availability and the cost of handing a 

much larger simulation region and vasculature size, makes it currently impractical. As an 

alternative approach, we propose a novel spatially stratified tangent vessel method for host 

vasculature initialization. This method provides a simple and theoretically unbiased vascular 

environment for tumor development and allows for random sampling to further annihilation the 

risk of directional growth bias introduced error in statistical analysis. 

In our model, the initial tumor assumes a spherical shape with a radius 𝑅𝑇𝑢𝑚𝑜𝑟
𝑖𝑛𝑖𝑡 = 150 μm. The 

environmental vasculature surrounding the tumor is organized as tangent lines on an extended 

sphere situated 𝐿𝑆2𝑉
𝑖𝑛𝑖𝑡 = 50 μm  away from the tumor surface. Both the tangent points and vessel 

orientations on the tangent plane are randomly sampled. To mitigate the risk of large vessel-

starved areas, which are not physiologically reasonable in a healthy host, we implement a 

stratification strategy. This involves sampling the tangent points part by part within uniformly 

divided subregions on the surface of the sphere. Each initialized vessel is 6 μm in radius, with a 

total length of 𝐿𝐻𝑜𝑠𝑡𝑉𝑒𝑠
𝑖𝑛𝑖𝑡 = 1000 μm.  
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4.2.4.5 Boundary Blood Pressure 

 

The boundary blood pressure assignment is also crucial for proper perfusion and the downstream 

vessel remodeling estimation. For a static system, convex optimization method considering the 

WSS under a mass conservation constraint91 could be used to estimate the boundary pressure, 

however, the optimization based estimation is impractically expensive for an evolving 

vasculature.  

Tailer to our dynamic development task and the specific host vasculature morphology, we 

introduce a novel location-encoded blood pressure assignment method to determine the inlet and 

outlet blood pressures of the vasculature under significant deformation. This method incorporates 

two key components.  

Distance-to-center-based baseline pressure term: This term adjusts the blood pressure based 

on the distance from the vessel center. This ensures a progressive increase in pressure difference 

between the inlet and outlet as the vessel length extends.  

Angular-position-based pressure variation term: This term introduces a blood pressure shift 

for host vessels with different orientation and facilitates the establishment of appropriate pressure 

gradients within neo-vasculatures connecting different host vessels, especially in the central 

region. 
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For the location-encoded blood pressure assignment method, the initial step involves estimating 

the vessel length based on the position of the inlet or outlet. We assume that throughout the near-

spheroidal tumor growth, for the host vessel ends, their distance to tumor surface and angular 

position with respect to tumor center remains constant. And for other parts in host vasculature, 

their distance to tumor surface do not drop below initial surface to vessel distance 𝐿𝑆2𝑉
𝑖𝑛𝑖𝑡 . Based on 

these assumptions, we introduce another geometric approximation to decompose any host vessel 

into three components: one circular arc component on the extended sphere surface, and two 

tangent line components connecting the vessel ends and the arc.  

The constant host vessel end to tumor surface distance and the constant angle between two ends 

of a host vessel with respect to the tumor center throughout the tumor development is: 

 

𝐿𝑆2𝐸 = √(𝑅𝑇𝑢𝑚𝑜𝑟
𝑖𝑛𝑖𝑡 + 𝐿𝑆2𝑉

𝑖𝑛𝑖𝑡)
2
+ (

𝐿𝐻𝑜𝑠𝑡𝑉𝑒𝑠
𝑖𝑛𝑖𝑡

2
)

2

− 𝑅𝑇𝑢𝑚𝑜𝑟
𝑖𝑛𝑖𝑡  

Equation 4-25 

𝜃𝐸𝐶𝐸 = 2𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐿𝐻𝑜𝑠𝑡𝑉𝑒𝑠
𝑖𝑛𝑖𝑡

2(𝑅𝑇𝑢𝑚𝑜𝑟
𝑖𝑛𝑖𝑡 + 𝐿𝑆2𝑉

𝑖𝑛𝑖𝑡)
) 

Equation 4-26 

Then as the tumor grows, the estimated distance from tumor center to the arc sphere at time t 

goes: 
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𝐿𝐶2𝑉
𝑡 = 𝐿𝐶2𝐸

𝑡 − 𝐿𝑆2𝐸 + 𝐿𝑆2𝑉
𝑖𝑛𝑖𝑡  

Equation 4-27 

Where 𝐿𝐶2𝐸
𝑡  represents the distance from the evaluated vessel end to the tumor center at time t, 

which is the only required variable. The angle between vessel end and the corresponding tangent 

point goes: 

 

𝜃𝐸𝐶𝑇
𝑡 = arccos (

𝐿𝐶2𝑉
𝑡

𝐿𝐶2𝐸
𝑡 ) 

Equation 4-28 

And the total length of the deformed host vessel is written as: 

 

𝐿𝑣𝑎𝑠
𝑡 = 2𝐿𝐶2𝐸

𝑡 (𝜃𝐸𝐶𝐸 − 𝜃𝐸𝐶𝑇
𝑡 + sin(𝜃𝐸𝐶𝑇

𝑡 )) 

Equation 4-29 

Finally, the baseline pressure term goes: 

 

𝑃𝐷2𝐶
𝑡 (𝐿𝑣𝑎𝑠

𝑡 ) = ± 𝜅𝐷2𝐶
𝐿𝑣𝑎𝑠
𝑡

2
+ 𝑃𝑟𝑒𝑓 

Equation 4-30 
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Where 𝑃𝑟𝑒𝑓 is the reference mean blood pressure of the vasculature, 𝜅𝐷2𝐶 is the gradient for 

distance-based blood pressure term, which is determine according to the reference WSS and 

radius of the vasculature. Sign in the first term determines the flow direction which is randomly 

assigned during initialization with a positive gradient for inlet and a negative for outlet.  

The angular position of the vessel end can be calculated as: 

 

𝜃𝐶2𝐸
𝑡 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝒏̂𝐶2𝐸

𝑡 ∙ 𝒛̂) 

Equation 4-31 

𝜑𝐶2𝐸
𝑡 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝒏̂𝐶2𝐸
𝑡 ∙ 𝒚̂

𝒏̂𝐶2𝐸
𝑡 ∙ 𝒙̂

) 

Equation 4-32 

Where 𝒏̂𝐶2𝐸
𝑡  is the unit vector pointing from tumor center to the vessel end, θ is the polar angle 

and φ is the azimuthal angle. 𝒙, 𝒚̂, and 𝒛̂ are unit axis vectors of the cartesian coordinate system. 

The angular-position-based pressure term goes: 

 

𝑃angle
𝑡 = 𝑐𝑎𝑛𝑔𝑙𝑒𝜅𝐷2𝐶

𝐿𝐶2𝐸
𝑡

√2
[cos(2𝜃𝐶2𝐸

𝑡 ) + sin(2𝜃𝐶2𝐸
𝑡 ) sin(2𝜑𝐶2𝐸

𝑡 )] 

Equation 4-33 
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Where 𝑐𝑎𝑛𝑔𝑙𝑒 represents the relative strength of angular variation compared to the baseline 

gradient term. This low-frequency angular term ensures that vessel ends positioned at 

approximately opposite angles share similar pressure variation values. This guarantees 

approximately constant blood pressure gradients for all host vessels throughout their growth. 

 

All the biophysical parameters related to vasculature and oxygenation are listed in Table 4-2. 

 

Module Parameter Description Value Unit Reference 

Oxygen 

𝐷𝑜𝑥𝑦 

Oxygen 

diffusion 

coefficient 

2410 𝜇𝑚2𝑠−1 

Bentley et 

al.157 

𝑎𝑜𝑥𝑦 
Oxygen 

solubility 

38.9 𝑛𝑙𝑂2𝑚𝑙
−1𝑚𝑚𝐻𝑔−1 

Bentley et 

al.157 

𝜌 
Tissue mass 

density 

1000 𝑘𝑔 ∙ 𝑚−3  

𝑀𝑚𝑎𝑥  
Max oxygen 

consumption 

2-4 𝑚𝑚𝐻𝑔 ∙ 𝑠−1 See text 
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𝑃𝑀50 

𝑃𝑜𝑥𝑦 with half -

maximum 

consumption 

1 𝑚𝑚𝐻𝑔 Goldman117 

𝑃𝑏𝑜𝑥𝑦 Blood 𝑃𝑜𝑥𝑦 35.5 𝑚𝑚𝐻𝑔  

𝑃ℎ𝑠 
Steady state host 

tissue 𝑃𝑜𝑥𝑦 
35 𝑚𝑚𝐻𝑔 

Carreau et 

al.146 

𝑃𝑐𝑎𝑝 

Max oxygen 

pressure 

difference across 

vessel wall 

1 𝑚𝑚𝐻𝑔  

Perfusion 

𝜇0 

Apparent 

viscosity of rat 

blood at 37℃ 

1.05 𝑚𝑃𝑎 ⋅ 𝑠 Pries et al.90 

𝑃𝑟𝑒𝑓 
Reference mean 

blood pressure 

40 𝑚𝑚𝐻𝑔  

𝜅𝐷2𝐶  

Gradient for 

distance-based 

blood pressure 

term 

1.8752 𝑚𝑚𝐻𝑔 ∙ 𝑚𝑚−1  
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𝑐𝑎𝑛𝑔𝑙𝑒 

Relative strength 

of angular blood 

pressure 

variation 

2   

TAF 

𝐶𝑚𝑎𝑥 

Max TAF 

concentration 

1   

𝐷𝑇𝐴𝐹 

TAF Diffusion 

coefficient 

20 𝜇𝑚2𝑠−1 

Alberding 

et al.134 

𝐾𝑇𝐴𝐹 TAF decay rate 0.002 𝑠−1 

Adapted 

from 

Alberding 

et al.134 

𝑃𝑇𝐴𝐹  

Tissue 𝑃𝑜𝑥𝑦 

where cells start 

to release TAF 

34.5 𝑚𝑚𝐻𝑔  

Angiogenesis 𝑘𝑠𝑝𝑟𝑜𝑢𝑡 
Maximum sprout 

rate per length 

0.05 𝜇𝑚−1𝑑𝑎𝑦−1  
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𝐶𝑇𝐴𝐹50 

𝐶𝑇𝐴𝐹 for half-

maximal sprout 

rate 

0.33   

𝐶𝑡ℎ 

𝐶𝑇𝐴𝐹 threshold 

for sprout 

formation 

0.01   

𝐶𝑚𝑖𝑔 

𝐶𝑇𝐴𝐹 threshold 

for stalk cell 

proliferation 

0.01   

𝑅𝑠𝑝𝑟𝑜𝑢𝑡 Radius of sprout 6 𝜇𝑚  

𝑉𝑠𝑝𝑟𝑜𝑢𝑡 
Velocity of 

sprout elongation 

75 𝜇𝑚 ⋅ 𝑑𝑎𝑦−1 

Levi B. 

Wood et 

al.151 

𝑘𝑇𝐴𝐹  
Weight for TAF 

gradient 

1   

𝑘𝑎𝑛𝑎 
Weight for 

anastomosis bias 

1   

𝑘𝑟𝑎𝑛𝑑 

Weight for 

random variation 

0.5   
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𝐷𝑎𝑛𝑎 

Maximum tip 

cell sensing 

distance 

75 𝜇𝑚 Gerhardt 150 

𝜃𝑎𝑛𝑎 
Maximum vessel 

sensing angle 

𝜋 3⁄   
Secomb et 

al.152 

𝐿𝑎𝑛𝑎 
Anastomosis 

threshold 

25 𝜇𝑚  

Remodeling 

𝑣𝑏𝑎𝑚𝑎𝑥 

Branching angle 

remodeling 

velocity 

1 𝜇𝑚 ⋅ ℎ−1  

𝐹𝑏𝑎𝑡ℎ 

Branching angle 

remodeling 

threshold 

0.25  

JP 

Alberding 

et al.134 

𝑇𝑠 

Structural 

adaptation 

coefficient 

192 𝑑𝑎𝑦  

𝑛𝑟 

Adaptation 

weighting factor 

for reference 

radius 

4   
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𝑅𝑟𝑒𝑓 
Reference radius 

in adaptation 

12 𝜇𝑚  

𝜏𝑟𝑒𝑓 
Reference wall 

shear stress 

15 𝑑𝑦𝑛 ∙ 𝑐𝑚−2 
Secomb et 

al.91 

Initialization 

𝑅𝑇𝑢𝑚𝑜𝑟
𝑖𝑛𝑖𝑡  

Initial tumor 

radius 

150 𝜇𝑚  

𝐿𝑆2𝑉
𝑖𝑛𝑖𝑡  

Initial tumor 

surface to host 

vasculature 

distance 

50 𝜇𝑚  

𝐿𝐻𝑜𝑠𝑡𝑉𝑒𝑠
𝑖𝑛𝑖𝑡  

Initial host 

vasculature 

length 

1000 𝜇𝑚  

𝑁𝐻𝑜𝑠𝑡𝑉𝑒𝑠
𝑖𝑛𝑖𝑡  

Initial host 

vessel number 

50   

𝐿𝐻𝑜𝑠𝑡
𝑖𝑛𝑖𝑡  

Initial host tissue 

cube length 

4000 𝜇𝑚  

Table 4-2 Biophysical Parameters related to vasculature and oxygenation. 
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4.2.5 Model Implementation 

 

The continuum mechanics of tissue and diffusion-reaction equations of oxygen and TAF are 

solved in COMSOL Multiphysics® (v6.1) using its fully coupled solver, and the vasculature 

development and functional modeling are handled in MATLAB® (R2023b) with in-house 

developed code, the communication between two software is through LiveLinkTM. The step size 

of COMSOL is adaptive and automatically determined by COMSOL, that for vasculature 

development and hemodynamics calculation is 2 hours on MATLAB. Communication between 

two software happens every 12 hours. The implementation details are shown in Figure 4-2. 

 

Figure 4-3 Flowchart for Model Implementation. 
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4.2.6 Tumor Property Map Generation 

 

At the conclusion of the simulation steps, crucial tumor development data are transferred from 

COMSOL to MATLAB. This data, originally in a tetrahedral finite element mesh, is interpolated 

onto a Cartesian grid with isotropic voxels, each 50, 100, or 150 microns in size, using 

MATLAB's 'griddata' function. This process prepares the data for in-depth tumor characterization 

and analysis. Subsequently, comprehensive property maps are generated on this grid and 

analyzed, covering various aspects such as tumor and necrosis segmentation, distributions of 

tissue oxygen partial pressure, cell density, metabolism intensity, hypoxia, proliferation activity, 

as well as voxel-wise distributions of tissue perfusion and blood volume fraction. Direct analysis 

of ground truth property maps that are free from the sign-to-noise ratio, contrast mechanisms, 

and resolution limit allows us to focus on identifying the most informative properties and optimal 

resolution for investigation, potentially providing insights to guide imaging choices and 

development. 

Although the property maps generated for analysis are not meant to mimic medical images but 

are ground truth directly calculated from the simulation results, these properties have the 

potential to be non-invasively imaged in vivo. For instance, cell density might be inferred from 

ADC MRI, which provides information on the extracellular fluid fraction, or from CT scans that 

reflect atomic composition. Tissue blood perfusion and volume could be captured using various 

imaging modalities with contrast agents, while extracellular oxygen levels might be gauged 

through Electron Paramagnetic Resonance (EPR)158 imaging. Tissue hypoxia could be visualized 
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using 18F-Fluoromisonidazole (FMISO) PET159, oxygen metabolism through Oxygen-17 

MRI123, and proliferation rates through [18F]-FLT-PET160. Table 4-3 listed possible modalities 

that could potentially reflect the tumor properties of interest. 

 

Property Map Imaging Modality 

Cell Density CT, ADC MRI 

Oxygen Level EPR158 

Oxygen Metabolism Oxygen-17 MRI 

Volumetric Proliferation Rate [18F]-FLT-PET160 

Hypoxia FMISO159 

Tissue Perfusion Perfusion CT, Perfusion MRI 

Blood Volume Perfusion CT, Perfusion MRI 

Table 4-3 Imaging modalities reflecting tumor properties. 

The cell density map presents a relative estimation of solid tissue mass density, whose voxel 

intensity is defined as: 
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𝐼𝜌 =
1

𝐽𝑒
 

Equation 4-34 

The oxygen metabolism map is calculated as the relative volumetric oxygen consumption rate, 

aligned with the volumetric oxygen consumption rate term in the oxygenation simulation, 

defined as: 

 

𝐼𝑂𝐶𝑅 =
1

𝐽𝑒

𝑀𝑚𝑎𝑥𝑃𝑜𝑥𝑦

𝑃𝑜𝑥𝑦 + 𝑃𝑀50
 

Equation 4-35 

Similarly, the volumetric proliferation activity map measures the proliferation events within a 

voxel: 

 

𝐼𝑝𝑟𝑜 =
1

𝐽𝑒

𝑃𝑜𝑥𝑦

𝑃𝜆50 + 𝑃𝑜𝑥𝑦
∙ 𝐻𝑉 

Equation 4-36 

The hypoxia map in our study is designed to replicate the signal observed in 18F-

Fluoromisonidazole (FMISO) PET imaging. While this map reflects tissue oxygen levels, it 

specifically highlights regions of low oxygenation and deliberately excludes necrotic areas from 

contributing to the signal. Consequently, it offers distinct insights with a particular emphasis on 
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hypoxic yet viable tissue regions. The binding rate of FMISO as a function of oxygen partial 

pressure for living cells is given as54: 

 

𝑘𝑏(𝑃𝑜𝑥𝑦) =
1

𝐽𝑒

𝑘𝑏0𝑃50𝑏
𝑃𝑜𝑥𝑦 + 𝑃50𝑏

∙ 𝐻𝑉 

Equation 4-37 

Where 𝑘𝑏0 is the maximum binding rate at 𝑘𝑏0 = 4.5 × 10
−4 𝑠−1, and 𝑃50𝑏 is the oxygen level 

at the half-maximum binding rate, given as 1.4 mmHg. 

 

4.3 Results 

 

A series of simulations are performed with a range of growth rate and oxygen consumption rate 

parameters, based on literature values. Initialized as a 300-micron-diameter sphere at the center 

of the cubic host tissue, the simulation stops when the tumor volume reaches around 12 mm3. 

Which takes from 12 to 28 days mainly based on growth rate settings. The quantitative and 

qualitative characteristics of the vasculature and the tumor tissue are analyzed and compared. 

Additionally, a set of tumors 12 with random parameters is generated, and a Radiomics model is 

generated to identify features that differentiate the tumor growth rate as well as the oxygen 

consumption rate (OCR). 



145 

 

 

4.3.1 Simulation Results of the Baseline Tumor 

 

The baseline tumor, with a doubling time of 24 hours and an oxygen consumption rate of 3 

mmHg/s, grew from 0.0133 mm3 to 13.064 mm3 over 14 days. This corresponds to an equivalent 

daily growth ratio of 63%, aligning with the fast-growing small in vivo gliomas as documented 

in143, where the observed daily growth ranged from 13% to 63%. The tumor volume growth 

curve, depicted in Figure 4-4 (a), exhibits an exponential trend. In this baseline scenario, the 

tumor does not develop central necrosis, attributed to the early establishment of vasculature 

during the initial tumor growth stages. The quantitative summary of the tumor and tumor 

vasculature is available in Table 4-4. 
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Figure 4-4 (a) The tumor volume growth curve, highlighting the lack of necrosis in this baseline 

case. (b) The tumor vasculature density throughout the growth period. (c) Sequential images 

from top to bottom, presenting tissue oxygen levels and vasculature structure on days 0, 7, 12, 

and 14 respectively. The left column depicts the central slice oxygen partial pressure with a voxel 

size of 100 microns. The white line delineates the tumor boundary. The right column showcases 

the rendered vasculature structure, with vessels color-coded according to their radius. 

Figure 4-4(b) depicts changes in tumor vasculature density, distinguishing between perfused and 

unperfused vessels. Vessel segments with flow below 100 um³/s or discharge hematocrit under 
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0.05 are deemed incapable of oxygen delivery, termed 'unperfused.' These may include nascent 

sprouts awaiting anastomosis or poorly structured self-looping or shunt bypassing vessel regions. 

As the tumor grows, vascular density initially increases, then stabilizes, with the mean density of 

perfused vessels remaining constant and unperfused vessels being progressively pruned. Despite 

a stable global mean vascular density in this plateau phase, oxygen levels remain spatially 

heterogeneous, influenced by local variations in oxygen demand and supply. Figure 4-4(c) 

showcases sequential central slice images of tissue oxygen levels on days 0, 7, 12, and 14, 

alongside rendered vasculature, with oxygen partial pressure data derived by interpolating from 

finite element simulations to 100-micron isotropic voxels. 

Initially, a hypoxic core forms due to limited oxygen diffusion, prompting outward deformation 

of the surrounding vasculature and angiogenesis induced by hypoxia-inducible factors from 

hypoxic cells. Over time, the tumor vasculature evolves into a complex network that, while 

preventing necrosis, fails to maintain uniform physiological oxygen levels throughout the tissue. 

By the conclusion of the simulation, the oxygen tension within the tumor decreased from 35 to 

27.7 mmHg, with a standard deviation of 6.7 mmHg. Notably, oxygen levels dropped to as low 

as 5 mmHg in the tumor's peripheral regions due to increased cell density caused by growth-

induced mechanical compression. In contrast, the tumor's central area exhibited lower cell 

density and, consequently, reduced oxygen demand, attributable to the outward mechanical 

stretching from the rapidly expanding periphery. Figure 4-5(d) illustrates the more substantial 

growth in peripheral tissue compared to the center, resulting in a gradient of cell density across 

the tumor, as detailed in Figure 4-5(e). Other property maps are also illustrated in Figure 4-5, 
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including the hypoxia map, the vessel surface density map that reflects the vessel oxygen source 

density, and the proliferation activity map. 

 

 

Figure 4-5 Central slice of the tumor property maps. The maps illustrate the tissue oxygen level, 

binding rate with hypoxia tracer FMISO, vessel surface density, mass growth ratio, relative cell 

density, and volumetric tumor proliferation activity respectively. 

The entire vasculature structure and the vessel radius distribution are shown in Figure 4-6. Figure 

4-6(a) highlights the tumor vasculature's intricate topology and the diverse vessel sizes, 

showcasing the complexity and heterogeneity of the system. In Figure 4-6(b), a detailed view of 

both the surface environmental vasculature and the internal tumor vasculature is provided. 

Notably, large vascular shunts can be observed connecting the environmental vessels, creating a 
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high flow rate shortcut connection. Which is widely observed in tumor vasculature and could 

harm the perfusion extending toward the tumor inside161. The internal network is characterized 

by its complex interconnections and tortuous pathways, including numerous blind ends. The 

measured vessel tortuosity is 1.152, which matches with the observed GL261 glioma vasculature 

tortuosity of 1.15197. The wide-ranging vessel radius distribution, spanning from 2 to 20 μm, is 

depicted in the vessel radius histogram in Figure 4-6(c), highlighting the heterogeneity within the 

vasculature. This distribution, resembling a normal curve, reflects the naturally emerging pattern 

from the large-scale, interconnected network of perfused vasculature. The mean vessel radius is 

6.5 μm, which falls between the literature-reported GL261 vessel mean radius ranging from 5162 

to 1197 μm.  Figure 4-6(d) illustrates the correlation between vessel radius and flow, aligning 

closely with the expected curve from the radius remodeling formula, indicating a successful 

vessel remodeling process for this extremely complex and inter-affected vascular system. 
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Figure 4-6 Vasculature Morphology and radius distribution. (a) Tumor vasculature, color 

indicating the vessel radius. (b) A focused view of the vasculature, highlighting shunt formations 

on the surface and internal chaotic and tortuous network with a significant number of blind ends. 

(c) Histogram for the vessel radius. (d) Scatter plot of vessel flow-radius distribution. The red 

line indicating the optimal radius under given flow conditions, given by the vessel radius 

remodeling formula. 

Figure 4-7(a) presents the spatial blood pressure distribution across the entire vasculature and its 

corresponding histogram. Notably, a low-frequency spatial variation in blood pressure is 
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observed, with a pressure gradient across downstream tumor vessels emanating from 

environmental vessels, promoting effective tumor perfusion. The discharged hematocrit 

distribution exhibits considerable heterogeneity, with a significant portion of vessels showing 

low discharge hematocrit levels (Hd), typically corresponding to hypo-perfused vessels with 

small radii. This suggests that a substantial part of the vasculature may be incapable of fulfilling 

its role in oxygen transport, underscoring the importance of excluding certain vessels from 

considerations of tissue oxygen supply. 

Figure 4-7(c) displays the spatial distribution of blood flow rate and the histogram of blood flow 

distribution using a logarithmic scale for flow rates. The outer environmental vessels have a 

higher flow rate compared to the tumor internal vasculature and the overall flow distribution is 

highly heterogeneous. The histogram reveals a noticeable second bump in the low-flow range, 

attributed to the numerical errors from the linear solver. However, these anomalously low flows 

are minimal and do not impact the vasculature's functional properties especially for the 

functional part of the vasculature. When vessels with zero discharge hematocrit are excluded, the 

adjusted histogram exhibits a near-normal distribution on the logarithmic flow rate scale. Similar 

small value numerical artifacts are also observed in the logarithmic histogram for wall shear 

stress shown in Figure 4-7(d). The anomaly, characterized by a second bump, vanishes when 

vessels not perfused are omitted from the analysis. Despite this adjustment, the wall shear stress 

in perfused vessels continues to show a broad distribution and significant spatial heterogeneity. 

This phenomenon is consistent with findings from blood perfusion studies in actual tumor 

vasculatures, which demonstrate pronounced heterogeneity in wall shear stress (WSS) despite 
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efforts to optimize blood pressure at the boundaries and achieve a uniform distribution of WSS 

along the vasculature walls. 

 

 

Figure 4-7 Key functional characteristics of tumor vasculature: (a) Histogram of blood pressure 

distribution in the vasculature. (b) Histogram of vessel discharge hematocrit distribution, with 

the red dotted line marking the oxygen supply threshold hematocrit at 0.05. (c) Logarithmic 

histogram of blood flow rates within the tumor vasculature, where the dotted line represents the 

oxygen supply flow rate threshold at 100 um³/s. Vessels with zero hematocrit are excluded from 

the dark blue histogram. (d) Logarithmic histogram of wall shear stress across the tumor 

vasculature. The dark blue histogram excluded unperfused vessels. 

 Simulation Unit Reference 

Maximum Cell Proliferation Rate 1 Day-1  

Oxygen Consumption Rate 3 mmHg/s  

Growth Time 14 day  
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Tumor Volume 13.08 mm3  

Daily Growth Ratio 62.88 % 13%-63%143 

Relative Cell Density 1.05 ± 0.09   

Tissue Oxygen 27.68 ± 6.67 mmHg 15-55126 

Tissue Perfusion 24.22 ± 108.52 ml/g/min  

Vessel Radius 6.46 ± 2.30 μm 597 - 11162 

Vessel Length Density (perfused / total) 79.83 / 136.69 mm/mm3 76.2162 - 21397 

Vessel Surface Density (perfused / total) 4.07 / 5.77 mm2/mm3 5.7162 -7.597 

Vessel Volume Density (perfused / total) 1.79 / 2.23 % 1.997 – 4.8162 

Blood Flow Rate 10.58 ± 59.33 nl/min 16.2162 

Blood Flow Velocity 0.44 ± 1.34 mm/s 0.44162 

Wall Shear Stress 5.56 ± 11.68 dyn/cm2 17.8162 

Vessel Tortuosity 1.152  1.151162 

Branching Length 45.49 ± 55.44 μm 1897 - 99.7162 

Bifurcation Density 1796.87 mm-3 584162 -1000097 

Table 4-4 Quantitative summary of the simulated tumor. 

4.3.2 Tumors with Varied Spouting Rate  

 

Tumor vasculature is a crucial target in cancer therapy, with interventions taking two divergent 

approaches. Vascular disrupting therapy163 focuses on destroying the tumor's vasculature to 

directly damage the tumor itself. Conversely, tumor vasculature normalization164 aims to 

improve angiogenesis, thereby enhancing tumor oxygenation, perfusion, and ultimately, the 

efficacy of treatments.  
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To explore how different angiogenesis rates affect tumor growth, we conducted simulations on 

two samples, altering only the sprouting rate from the baseline tumor model. One sample had its 

sprouting rate reduced by 50%, while the other had a 50% increase. The resulting vasculatures 

from these simulations are depicted in Figures 4-8, and the growth curves of three tumors, as 

well as the tissue oxygen distribution, are shown in Figures 4-9. 

 

 

Figure 4-8 Tumor vasculature with varied angiogenesis. (a) sprouting suppressed. (b) Baseline 

tumor. (c) sprouting enhanced. 

The simulation of the angiogenesis-suppressed tumor revealed a sparser vasculature and a central 

avascular necrotic core. In contrast, the tumor with enhanced angiogenesis showed minimal 

morphological differences from the baseline model. Growth rates and vascular volume densities 

for these tumors are charted in Figure 4-9(a), with the enhanced tumor exhibiting the fastest 

growth and the suppressed tumor the slowest. The vascular volume density curves for the 

baseline and enhanced tumors demonstrate a swift increase in vascularization, followed by a 

stable plateau, while the suppressed tumor's vasculature remains underdeveloped, as indicated by 

a consistent densification trend until the simulation's conclusion. 
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Figure 4-9 Growth curve of tumor vasculature and tissue oxygen histogram. (a): the growth 

curve of the tumor volume and tumor vascular volume density. (b), (c), and (d): Tissue oxygen 

level histogram of tumor suppressed, baseline, and enhanced sprouting rate, respectively. 

The oxygenation histograms in Figures 4-9(c) and (d) display comparable distributions for the 

baseline and enhanced tumors. However, the suppressed tumor presents extensive low-oxygen 

necrosis. Table 4-5 enumerates key characteristics of the tumor tissues and vasculature for the 

three tumor types. There is a discernible positive correlation between angiogenic rate and 

parameters such as tissue oxygen level, oxygen homogeneity, vessel density, and blood 

perfusion. The disparity between the suppressed tumor and the baseline tumor is substantial, 

whereas the difference between the baseline and the enhanced tumor is subtle. suggesting that 

angiogenic capability (relative to tissue growth rate) may reach a saturation point due to self-

regulating mechanisms like TAF concentration-dependent sprouting rates. Thus, tumors with 

inherently poor vascularization might experience more pronounced effects from angiogenic 

modulation, while for normally growing healthy tissue, the effect on angiogenesis can be minor.  

 

  Suppressed Baseline Enhanced 

Tumor Growth Sprouting Scaling 0.5 1.0 1.5 
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Growth Time [day] 14 14 14 

Tumor Volume 

[mm3] 
9.91 13.08 14.22 

Necrosis Volume 

[mm3] 
1.430 0.000 0.006 

Daily Growth [%] 59.7 62.9 63.9 

Tissue 

Characteristics 

Cell density 0.868 ± 0.396 1.050 ± 0.090 1.044 ± 0.116 

Tissue Oxygen 

[mmHg] 
24.0 ± 10.9 27.7 ± 6.7 29.1 ± 5.8 

Vas Vol Density 

[%] 
1.6 ± 3.7 2.2 ± 4.5 2.4 ± 5.3 

Tissue Perfusion 

[ml/g/min] 
22.8 ± 107.0 24.2 ± 108.5 34.4 ± 142.5 

Vasculature 

Characteristics 

Perfused/Total 

Length Density 

[mm/mm3] 

49.3 / 105.6 79.8 / 136.7 81.4 / 131.2 

Perfused/Total 

Surface Density 

[mm2/mm3] 

2.6 / 4.2 4.1 / 5.8 4.4 / 5.8 

Perfused/Total 

Volume Density 

[%] 

1.3 / 1.6 1.8 / 2.2 2.0 / 2.4 

Blood Flow 

[nl/min] 
15.4 ± 85.9 10.6 ± 59.3 15.7 ± 71.8 

Blood Flow 

Velocity [mm/s] 
0.58 ± 1.89 0.44 ± 1.34 0.60 ± 1.62 

WSS [dyn/cm2] 7.0 ± 16.0 5.6 ± 11.7 7.1 ± 13.5 

Branching Length 

[μm] 
69.0 ± 76.9 45.5 ± 55.4 38.2 ± 49.2 

Bifurcation 

Density [mm-3] 
860 1797 2103 

Table 4-5 Summary of tumor samples with suppressed, baseline, and enhanced angiogenesis 

sprouting. 
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4.3.3 Tumors with Varied Metabolism and Proliferation 

 

To assess the effects of tumor growth rate and oxygen demand on development, we performed 

simulations with a range of parameters for 9 fast-growing and 3 slow-growing tumor samples, 

analyzed when the tumor volume reached approximately 12 mm³. The baseline proliferation rate 

corresponds to a 24-hour cell doubling time, with the maximum proliferation rate scaling for the 

fast-growing-tumor of 1.2, equating to a 20-hour doubling time, aligned with GL261 cell 

proliferation rates observed in vitro140. Proliferation rates exceeding this may be considered 

unrealistic. The lowest scaling at 0.5 results in a daily growth ratio of 30%, comparable to low-

proliferation murine GL261 tumors observed in vivo143, where the overall daily growth ratio for 

tumors from below 1 mm³ to around 15 mm³ ranges from 24% to 49%. For fast-growing tumors, 

the oxygen consumption rate (OCR) ranges from 2 to 4 mmHg/s, in line with OCRs measured in 

high-grade gliomas (2.2 mmHg/s) and glioblastomas (3.7 mmHg/s)123. Slow-growing tumors 

have OCRs from 2 to 10 mmHg/s, with the higher rates approximating the oxygen demand of 

normal brain tissue, offering insights into healthy tissue vascularization. Figure 4-10 showcases 

the parameter selection alongside tumor property maps, including cell density, vasculature 

volume fraction, and tissue oxygen levels for each sample. Quantitative summaries of these 

tumors are provided in Table 4-6 and 4-7. 
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Figure 4-10 Parameter Selection and Simulation Results for Tumor Samples at a Volume of 

Approximately 12 mm³. Slow-growing tumors, characterized by a maximum cell proliferation 

time scaling of 0.5 (equivalent to a 48-hour cell doubling time), were simulated with oxygen 

consumption rates (OCR) of 2, 4, and 10 mmHg/s. For fast-growing tumors, with proliferation 

rate scaling of 0.8, 1, and 1.2, three samples were generated for each scaling level with OCRs of 

2, 3, and 4 mmHg/s. Each sample's cell density map, vessel volume fraction map, and tissue 

oxygen level map are displayed, providing insights into the varied tumor behaviors. 

In our simulations, the predominant factor influencing effective tumor growth rates was cell 

proliferation, with tumor oxygen consumption rate (OCR) also playing a role; higher OCRs 

tended to marginally reduce tumor growth rates. 

Fast proliferating tumors were characterized by cell density heterogeneity and necrosis, 

distinguishing them as hallmarks of aggressive growth. Conversely, slow-growing tumors 
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exhibited high homogeneity and lacked necrosis, regardless of OCR. Fast-growing tumors 

displayed significantly higher cell density standard deviations, indicating greater heterogeneity 

even in the absence of necrosis. 

The growth rate inversely affected mean tissue oxygen levels, increasing oxygen heterogeneity. 

However, OCR's impact on oxygen levels and heterogeneity was less pronounced, likely due to 

angiogenesis' self-regulatory mechanisms. 

Central necrosis was primarily triggered by high initial growth rates. In samples with moderate 

proliferation rates (scaled by 0.8 and 1.0), those with lower oxygen demand developed necrosis, 

whereas those with higher demand did not, attributed to the marginally higher effective 

proliferation rates in low OCR samples. This mirrors in vivo observations, where high-grade 

glioblastomas (GBMs) with rapid proliferation and lower oxygen demand are more prone to 

necrosis than low-grade GBMs. In samples with a 1.2 proliferation rate, necrosis occurred 

irrespective of OCR. The extent of necrosis correlated with both growth rate and OCR, with high 

OCR contributing to a steeper oxygen gradient and a thinner viable tissue rim. 

Vascularization was primarily influenced by OCR, with high-demand tumors recruiting more 

vessels to balance angiogenesis and growth, facilitated by tumor angiogenic factors (TAF) 

release. Vasculature density-related metrics, such as vessel density and bifurcation density, were 

almost directly proportional to OCR. Average functional aspects of the vasculature, such as mean 

blood flow rate, vessel radius, and bifurcation length, saw only slight increases in high-demand 

tumors, indicating a nuanced impact of OCR on these aspects. 
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Sample 

Parameters 

Tumor Growth Tissue 

Pro-

Scale 

OCR 

[mmHg/s] 

Tumor 

volume 

[mm3] 

Daily 

Growth 

[%] 

Necrosis 

Volume 

[mm3] 

Cell density 

Tissue 

Oxygen 

[mmHg] 

Vas Vol 

Density 

[%] 

Tissue 

Perfusion 

[ml/g/min] 

0.5 

2 12.34 29.8 0 1.066±0.011 30.94±3.45 1.5±3.4 14.8±61.4 

4 11.93 29.6 0 1.066±0.011 32.27±2.79 3.5±6.0 42.5±134.8 

10 11.93 28.9 0 1.066±0.018 30.97±4.28 7.2±10.3 70.1±168.2 

0.8 

2 12.02 48.7 0.008 1.036±0.147 31.0±4.7 1.9±8.8 23.5±102.7 

3 11.64 50.2 0 1.065±0.024 29.3±5.2 2.2±4.4 20.5±81.5 

4 11.05 49.7 0 1.065±0.028 29.1±4.8 2.8±5.2 28.7±97.6 

1 

2 12.38 62.2 0.889 0.950±0.308 27.2±9.0 1.8±4.1 25.0±123.3 

3 13.08 62.9 0 1.050±0.089 27.7±6.7 2.2±4.5 24.2±108.5 

4 12.67 62.5 0.003 1.054±0.079 25.2±7.7 2.5±5.3 29.8±111.7 

1.2 

2 13.30 77.0 2.104 0.874±0.386 21.7±11.7 1.3±3.4 19.2±101.5 

3 13.04 76.6 1.318 0.908±0.356 24.9±9.5 1.7±4.1 22.4±118.2 

4 11.64 75.0 2.265 0.813±0.443 21.8±11.5 2.0±4.7 22.7±102.8 

Table 4-6 Growth and tissue-related characteristics of 12 tumor samples. 

Sample Parameters Vasculature Characteristics 
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Pro-

Scale 

OCR 

[mmHg/s] 

Radius 

[μm] 

Perfused/Total 

Len Density 

[mm/mm3] 

Blood Flow 

[nl/min] 

Branching 

Length 

[μm] 

Bifurcation 

Density 

[mm-3] 

0.5 

2 6.13±2.76 48.1/83.8 8.7±39.8 55.8±64.7 880 

4 6.77±2.55 125.1/195.5 12.7±56.8 50.0±63.4 2407 

10 7.41±2.33 268.6/353.1 12.1±57.0 37.4±45.2 5939 

0.8 

2 6.02±2.71 65.1/119.9 12.0±60.6 61.8±79.22 1155 

3 6.27±2.45 80.1/133.5 8.8±44.8 48.7±60.4 1648 

4 6.58±2.36 104.6/162.6 10.0±47.3 44.9±54.1 2193 

1 

2 6.09±2.46 59.1/117.0 13.2±70.0 48.4±57.8 1444 

3 6.46±2.30 79.8/136.7 10.58±59.3 45.5±55.4 1797 

4 6.66±2.44 91.0±148.0 12.3±57.0 38.2±47.7 2357 

1.2 

2 5.97±2.40 42.8±93.6 13.7±74.3 48.9±56.2 1116 

3 6.40±2.35 61.0±107.4 13.6±68.1 45.2±52.7 1401 

4 6.72±2.29 70.5±115.6 13.9±65.8 40.6±47.0 1699 

Table 4-7 Vasculature-related characteristics of 12 tumor samples 

4.3.4 Radiomics Analysis of Random Tumor Samples 
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While the table of semantic tumor characteristics allows us to discern differences among various 

types of tumors based on differentiation parameters, such handcrafted analysis captures only a 

fraction of the patterns that emerge during tumor development. An intriguing question arises: 

might agnostic features that characterize heterogeneities more effectively encapsulate the 

differences in tumor biophysical parameters? Conversely, could our mechanistic models, 

grounded in understanding, bridge the gap with radiomics analysis, providing robust, causality-

based insights into key biophysical properties? 

To explore these possibilities, we generated 20 random examples with proliferation rate scaling 

from 0.8 to 1.2 and oxygen consumption rates from 2 to 4 mmHg/s. The randomly generated 

parameter sets are shown in Figure 4-11. For each sample, we generated a set of 3941 features, 

comprising 21 semantic features characterizing vasculature morphology and function and 3920 

predefined agnostic features extracted from tumor maps using PyRadiomics165 mainly 

characterizing tumor heterogeneities. These agnostic features include 14 tumor shape features 

and 558 quantitative features for each of the seven tumor maps. These maps include relative cell 

density, oxygen partial pressure, cell oxygen metabolism rate, hypoxia tracer binding rate, 

vascular volume fraction, blood perfusion, and proliferation activity map. The extensive feature 

set for each map encompasses various features in quantitative analyses—first-order statistics, 

gray level co-occurrence matrix (GLCM), gray level dependence matrix (GLDM), gray level run 

length matrix (GLRLM), gray level size zone matrix (GLSZM), and neighboring gray-tone 

difference matrix (NGTDM)—enhanced by different filters.  
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Figure 4-11 Random proliferation rate and oxygen metabolism rate parameters for a total of 20 

tumor samples. 

4.3.4.1 Correlation Coefficients of Features 

 

To evaluate the correlation between features and key tumor properties, namely the tumor 

proliferation rate (PR) and oxygen consumption rate (OCR), we calculated their corresponding 

correlation coefficients. Features with absolute correlation coefficients exceeding 0.5 are called 

strongly correlated with the biological properties of interest. Given the relatively small sample 

size and the large number of features, there's a potential risk of identifying spurious correlations. 

To assess the severity of this issue, we conducted one hundred repeated correlation coefficient 

assessments between randomly generated tumor properties and extracted tumor features, 

analyzing the feature statistics. 
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The statistics of the correlation coefficients are listed in Table 4-8. 

Features From 

Extracted 

Features 

Strongly 

Correlated 

Features For PR 

Strongly 

Correlated 

Features For 

OCR 

Random 

Assigned 

Property 

Vasculature 

Properties 

21 11 13 0.32 ± 0.72 

Tumor Shape 14 1 0 0.32 ± 1.18 

Tissue Oxygen 

Level Map 

558 345 10 9.5 ± 25.12 

Relative Cell 

Density Map 

558 97 2 5.21 ± 16.38 

Relative Oxygen 

Metabolism Map 

558 392 3 6.57 ± 24.41 

Hypoxia Map 558 346 30 8.01 ± 18.31 

Blood Volume 

Map 

558 322 71 6.32 ± 13.65 

Blood Perfusion 

Map 

558 217 85 7.75 ± 16.22 
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Relative 

Proliferation 

Activity Map 

558 383 17 7.40 ± 24.71 

Total 3941 2110 231 51.4 

Table 4-8 Number of features extracted and the number of strongly correlated features. 

In our analysis, significantly more features exhibit strong correlations with cell proliferation rate 

(PR) than with oxygen consumption rate (OCR). Particularly, features derived from maps 

characterizing tissue oxygen level and hypoxia, relative oxygen metabolism, and relative 

proliferation intensity show stronger correlations with PR. Conversely, features from maps of 

blood volume and perfusion are more strongly correlated with OCR. 

For both PR and OCR prediction tasks, the number of features with strong correlations far 

exceeds those identified with randomly generated properties. This suggests that only a small 

fraction of strong features are potentially spurious correlations and that real tumor biophysical 

information is indeed reflected in the majority of these strong features.  

The distribution of correlation coefficients between features and real tumor properties versus 

random properties presents significant differences, as depicted in Figure 4-12. The histogram of 

feature correlation coefficient with proliferation rate (PR) reveals a substantial number of 

features with very high correlation coefficients, many of which exceed 0.9. In contrast, the 

majority of features show only a weak correlation with oxygen consumption rate (OCR). For 

random properties, the distribution of correlation coefficients is centered around zero, with only a 

very small fraction of features falling into the strong correlation range, and none exceeding 0.7. 
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Figure 4-12 Correlation coefficients between features and tumor properties. Left: with tumor 

proliferation rates; Middle: with oxygen consumption rates; Right: with randomly assigned 

numbers. 

4.3.4.2 Lasso Prediction of Biophysical Properties 

 

Lasso regression was utilized to construct predictive models for two biophysical parameters—

proliferation rate (PR) and oxygen consumption rate (OCR), with the absolute values of the 

coefficients indicating feature importance. Features are normalized before training and leave-

one-out cross-validation is employed to enhance model robustness and alleviate the 

dimensionality issue. Predictive accuracy is depicted in Figures 4-14 and 4-15 for PR and OCR, 

respectively, with the model demonstrating respectable precision for both. The relative root mean 

squared error (RRMSE) for PR prediction is 4.6% and that for OCR prediction is 10.4%. For 
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reference, for the given value range, the prediction simply gives the mean value of all samples, 

resulting in an RRMSE of 11.5% for PR and 19.3% for OCR; the prediction gives a random 

value within the data range will result in a RRMSE of 16.3% for PR and 27.2 for OCR. 

The feature deemed most important by the model is highlighted in the accompanying plot.  

 

 

Figure 4-13 Lasso prediction of sample proliferation rate and the top features involved in the 

prediction. 

For PR prediction, the top features are the 90th percentile value of the original cell density map, 

the Informational Measure of Correlation (IMC) 2 of the Gray Level Co-occurrence Matrix 

(GLCM) calculated from the high-pass wavelet-filtered cell density map, and the complexity of 

the Neighbouring Gray Tone Difference Matrix (NGTDM) calculated from the high-pass 

wavelet-filtered hypoxic map. 
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Figure 4-14 Lasso prediction of sample oxygen consumption rate and the top features involved in 

the prediction. 

In OCR prediction, the features are the perfused vessel length fraction, the small-area low gray-

level emphasis of the Gray Level Size Zone Matrix (GLSZM) calculated from a high-pass 

wavelet-filtered blood volume map, the 90th percentile value of the Laplacian of a Gaussian-

filtered tissue oxygen map, and the vessel bifurcation density. 

 

4.3.4.3 Lasso Prediction with Specific Property Map 

 

To access the information contained in different tumor maps as well as the effect of image 

resolution on prediction performances, we perform LASSO prediction based solely on feature 

extraction from specific property maps at various resolutions. 

 

RRMSE of LASSO Prediction with Partial Features (%) 
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Prediction For PR OCR 

Resolution [μm] 50 100 150 50 100 150 

Vasculature 

Properties 

5.76 6.84 7.32 6.91 7.33 6.84 

Tumor Shape 11.01 10.36 13.71 25.22 20.18 21.83 

Tissue Oxygen Level 

Map 

4.35 6.82 5.60 13.51 14.31 22.48 

Relative Cell Density 

Map 

4.46 4.65 4.07 23.37 21.51 19.65 

Relative Oxygen 

Metabolism Map 

4.48 5.01 4.15 18.00 23.35 27.61 

Hypoxia Map 5.68 6.60 5.99 22.24 30.45 21.23 

Blood Volume Map 4.83 4.51 10.59 16.73 14.14 16.26 

Blood Perfusion Map 6.70 8.06 7.91 23.38 27.33 27.39 

Relative Proliferation 

Activity Map 

5.62 4.67 4.77 16.04 11.91 22.69 

All 5.14 4.59 5.01 9.41 10.36 10.98 

Table 4-9 LASSO prediction results with only features extracted from specific property maps. 
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In general, PR is better reflected in various property maps and inherently has a more noticeable 

effect on tumor patterning than OCR. High resolution is strongly preferred for OCR prediction, 

but for PR, no obvious resolution preference is observed within the studied resolution range. 

 

4.4 Discussion 

 

4.4.1 Model Validation 

 

In this study, we meticulously calibrate our model by aligning microscopic biophysical 

parameters with the available literature, utilizing in vivo measurements from GL261 glioma 

mouse models or, when such data are unavailable, analogous human GBM studies. We focus on 

several key aspects, including the Poisson’s ratio and shear stress for continuum mechanics of 

host and tumor brain tissues; cell proliferation rate and its oxygen dependence for tumor growth; 

in vivo viscosity of mouse blood and the phase separation effect for red blood cell distribution; 

tissue oxygen demand and vessel oxygen mass transfer coefficient for oxygenation; and tip cell 

migration speed, anastomosis sensing range, and reference wall shear stress for vascular 

remodeling. 

For macroscopic tumor features, we selectively calibrate only crucial aspects against available 

data, allowing other features to naturally emerge from the defined microscopic parameters while 
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ensuring they remain within a reasonable physiological range. Such rigidly calibrated 

macroscopic characteristics include effective tumor growth rate, perfused vessel surface area, 

and vessel tortuosity, which cover essential aspects of tumor growth, vascularization, 

oxygenation, and vessel morphology. 

Given the variability and limitations of the available calibration data, which often come from 

different studies or tumor samples, and the sometimes-necessary use of human GBM data or 

empirical formulas from normal mice tissue, we do not rigidly fit every feature to data. For 

example, the mean vessel radius. while GL261 vasculature data97 indicates a mean vessel radius 

of about 11 μm from imaging with a coarse resolution of 5-8 μm—potentially missing many 

smaller vessels and overestimating the mean radius—other studies report a mean radius of 5 

μm162 from smaller GL261 tumors, which might lack larger, highly perfused vessels. In our 

model, we recognize that neither set of available data provides a reliable ground truth for our 

specific scale and resolution. Therefore, we opt not to calibrate the vessel radius against these 

measurements. Instead, we allow the vessel radius to be remodeled based on empirical wall shear 

stress principles. Consequently, the simulated vessel radius naturally falls between the two 

reported values, reflecting a more balanced and empirically grounded approach. 

By adopting this approach, we ensure that our model reflects a reasonable range of tumor 

properties and maintains its scientific integrity without being constrained by the heterogeneity 

and quality issues inherent in tumor data. This strategy allows us to focus more on the qualitative 

relationships between macroscopic features and underlying microscopic biological changes, 

which are crucial for interpreting the complex dynamics of tumor growth and vascular 

development. 
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4.4.2 Result Interpretation 

 

4.4.2.1 Baseline Tumor 

 

Using calibrated microscopic parameters sourced from literature and actual tumor data, we 

simulated tumor development under constraints such as mechanical deformation, blood perfusion 

dictated by vessel structure, and nutrient supply regulated by oxygen transport. This 

methodology enabled the tumor to evolve naturally, exhibiting significant heterogeneities while 

retaining macroscopic characteristics within the physiological norms for tumor properties. 

In our baseline simulation, we achieved groundbreaking modeling of tumor growth on a multi-

millimeter scale, with vasculatures that are morphologically and functionally sound. The tumor 

expanded about one thousand-fold, reaching a volume of approximately twelve cubic 

millimeters, closely mirroring the daily growth rate observed in vivo. The vasculature displayed 

an unbiased and extensively interconnected network, with tortuosity, radius, and density that 

align closely with real GL261 tumor vasculature data. 

Moreover, the vasculature properties demonstrated notable naturally emergent heterogeneities. 

Histograms of vessel radius, blood pressure, logarithmic blood flow rate, and logarithmic wall 

shear stress (WSS) exhibited near-normal distributions. Such distribution patterns may indicate 
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the characteristics of a well-functioning, self-regulated vasculature system. Additionally, we 

noted a decrease in histogram skewness with increased vessel connectivity, suggesting that this 

metric might provide a potential indicator of the functional wellness of the vasculature system. 

We generate several property maps for the analysis of tissue heterogeneities. The property maps 

identified for analysis have the potential to be non-invasively imaged in vivo. For instance, cell 

density might be inferred from ADC MRI, which provides information on the extracellular fluid 

fraction, or from CT scans that reflect atomic composition. Tissue blood perfusion and volume 

could be captured using various imaging modalities with contrast agents, while extracellular 

oxygen levels might be gauged through Electron Paramagnetic Resonance (EPR)158 imaging. 

Tissue hypoxia could be visualized using 18F-Fluoromisonidazole (FMISO) PET159, oxygen 

metabolism through Oxygen 17 MRI123, and proliferation rates through [18F]-FLT-PET160. 

However, these imaging technologies face challenges, including limited signal-to-noise ratios, 

coarse resolution, and complex contrast mechanisms that can obscure the direct measurement of 

the properties of interest. In this study, we bypass the constraints of specific imaging modalities 

and their contrast mechanisms by directly analyzing ground truth properties. This approach 

allows us to focus on identifying the most informative properties for investigation, rather than 

being limited by the capabilities of existing imaging technologies. 

 

4.4.2.2 Sprouting Rate Modulation 
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In our study comparing tumors with suppressed and enhanced angiogenic sprouting, we found 

that increased sprouting rates improved tissue oxygen levels, oxygen homogeneity, vessel 

density, and blood perfusion. Conversely, significant necrosis was observed in tumors with 

suppressed angiogenesis, aligning with expectations for vasculature regulation therapies. 

Notably, there was a marked disparity between the suppressed tumor and the baseline tumor, 

while the difference between the baseline and the enhanced tumor was more subtle. The vessel 

density over time showed that both the baseline and enhanced tumors experienced a rapid 

vascularization phase, with the enhanced tumor displaying a steeper slope before both reached a 

similar plateau in vessel density. In contrast, the suppressed tumor continued to densify its vessel 

network throughout the simulation, indicating an insufficient rate of new vessel formation. 

These findings suggest that angiogenic capability, relative to tissue growth rate, may reach a 

saturation point due to self-regulating mechanisms such as TAF concentration-dependent 

sprouting rates. Consequently, tumors with inherently poor vascularization may exhibit more 

pronounced responses to angiogenic modulation. However, in slowly growing, well-vascularized 

tissues like benign tumors or healthy tissue, the effects of moderate angiogenic modulation—

either upregulation or downregulation—can be minimal. Understanding these dynamics can 

enhance our comprehension of vascular disrupting treatments and tumor vasculature 

normalization therapies, helping to identify scenarios where these treatments are most 

advantageous. 
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4.4.2.3 Role of Cell Proliferation Rate and Oxygen Consumption 

Rate on Tumor Development 

 

By generating an array of tumors with varying proliferation rates (PR) and oxygen consumption 

rates (OCR), we are gaining a mechanistic understanding of the role of these two microscopic 

biological properties in macroscopic tumor development and its heterogeneity. We found that PR 

is the dominating factor for tumor growth rates while OCR marginally regulates tumor growth 

rates. Fast proliferating tumors were characterized by cell density heterogeneity and necrosis, 

while slow-growing tissue exhibited high homogeneity with no necrosis formation, regardless of 

OCR. This may provide insight into why normal tissue is always more homogeneous regardless 

of the wide OCR variation across different organs up to 10 times difference. The formation of 

central necrosis is dominated by the initial tumor growth rate, depending on the race between 

angiogenesis and tissue growth. It is observed that at the medium PR range, the higher PR 

combined with lower OCR is more prone to necrosis formation. This mirrors in vivo 

observations, where high-grade glioblastomas (GBMs) with rapid proliferation and lower oxygen 

demand are more prone to necrosis than low-grade GBMs. For cases that already have necrosis, 

the high OCR will make the viable rim thinner and increase the necrosis area. The vasculature 

density is dominated by OCR, with higher PR marginally decreasing the vessel density, 

highlighting that angiogenesis is a heavily demand-driven, self-regulated process that will 

automatically adjust itself to fulfill the tissue oxygen demand. 
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By analyzing an array of tumors with varying proliferation rates (PR) and oxygen consumption 

rates (OCR), we have deepened our mechanistic understanding of how these microscopic 

biological properties influence macroscopic tumor development and its heterogeneity. Our 

findings indicate that PR is the primary determinant of tumor growth rates, whereas OCR has a 

more marginal impact. Fast-proliferating tumors typically exhibit cell density heterogeneity and 

necrosis, whereas slow-growing tumors show high homogeneity without necrosis formation, 

regardless of OCR variations. This observation sheds light on why normal tissues maintain 

homogeneity despite the substantial OCR differences across various organs, which can vary up 

to tenfold, growth rate is the key. 

The emergence of central necrosis appears to be governed primarily by the initial tumor growth 

rate, influenced by the balance between angiogenesis and tissue expansion. In cases with 

medium PR, tumors with higher PR and lower OCR are more susceptible to necrosis formation. 

This pattern aligns with in vivo knowledge where high-grade glioblastomas (GBMs), known for 

their rapid proliferation and lower oxygen demands, are more likely to develop necrosis 

compared to their low-grade counterparts. Furthermore, in scenarios where necrosis is already 

present, a high OCR tends to thin the viable rim and expand the necrotic area. 

Vasculature density is primarily influenced by OCR, with higher PR slightly reducing vessel 

density. This underscores that angiogenesis is a demand-driven, self-regulating process, within a 

certain range, capable of automatically adjusting itself to meet the oxygen needs of the tissue. 
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4.4.2.4 Radiomics Prediction and Interpretation 

 

To explore the application of Radiomics to capture advanced features beyond these handcrafted 

statistics to inform the underlying biology. We generated 20 tumors with random PR ranging 

from 0.8 to 1.2 and random OCR ranging from 2 to 4 mmHg/s. The risk of spurious correlation 

is estimated through correlation coefficient analysis and is believed not to compromise the 

conclusions in this study. A Lasso regression model was applied for PR/OCR prediction and its 

weight on each feature is acquired as a measurement of the feature importance for the prediction 

task. The Lasso model achieved high performance tested with leave-one-out cross-validation; the 

relative root mean squared error (RRMSE) for PR prediction is 4.6%, and that for OCR 

prediction is 11.5%. With the foundation of mechanistic understanding of the entire process from 

the previous sections, for the first time, we can understand and interpolate what these features 

stand for and why these features are selected. 

For PR prediction, the most influential feature is the 90th percentile value of the original cell 

density map, which aligns with observations from the modeling where a high proliferation rate 

tends to create a high-density viable rim at the tumor periphery. The second-ranked feature is the 

Informational Measure of Correlation (IMC) 2 of the Gray Level Co-occurrence Matrix (GLCM) 

calculated from the high-pass wavelet-filtered cell density map. GLCM quantifies how often 

different combinations of pixel brightness values (gray levels) occur in an image. A higher IMC2 

indicates more complex and detailed texture information in the image, which can suggest more 

randomness or irregularity in texture patterns. A low value of this feature indicates low 
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randomness or irregularity in cell density patterns, which may reflect the large, uniform, acellular 

necrotic region in high PR cases. The third feature is the complexity of the Neighbouring Gray 

Tone Difference Matrix (NGTDM) calculated from the high-pass wavelet-filtered hypoxic map. 

NGTDM focuses on the difference in intensity between a pixel and its neighbors within a 

specified distance. A low value of the complexity of this matrix indicates a low degree of texture 

irregularity of the hypoxia signal, which may indicate a large necrotic region producing a 

uniform zero hypoxia signal. 

In OCR prediction, the most important feature is the perfused vessel length fraction. Higher OCR 

corresponds to higher vessel density stimulated by the tumor's demand, increasing the likelihood 

that the tumor vasculature is better connected through the angiogenesis process, resulting in a 

higher fraction of perfused tumor vasculature. The second feature is the small-area low gray-

level emphasis of the Gray Level Size Zone Matrix (GLSZM) calculated from a high-pass 

wavelet-filtered blood volume map. The GLSZM quantifies the size of homogeneous zones for 

each gray level in an image. Small-Area Low Gray-Level Emphasis (SALGLE) of GLSZM 

measures the proportion of small areas (zones) with low gray levels, emphasizing the presence of 

small regions with low-intensity values within the image. Its positive relationship with OCR 

could be due to the more fractionated avascular regions in higher vessel density tumors, as 

observed in Figure 4-11. The third feature is the 90th percentile value of the Laplacian of 

Gaussian filtered tissue oxygen map, which reflects sharp transitions in tissue oxygen levels. 

This feature is negatively correlated with OCR because, in the relatively low PR range, lower 

OCR tumors are more likely to produce a necrotic core, resulting in a high oxygen gradient 

highlighted by this feature. 
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Beyond interpretability, our study reveals that certain physiological properties inherently have a 

more significant effect on tumor patterning. For example, a difference in PR is easier to identify 

compared to a difference in OCR through tumor property patterning. This provides a better 

understanding of what to expect from genetic alterations. Mutations leading to PR changes are 

more likely to be revealed through Radiomics compared to mutations leading to OCR changes, 

assuming the percentage of property alteration is the same. Future virtual biopsies could focus 

more on these biological properties that lead to more noticeable pattern changes. Furthermore, 

we identified property maps that best reflect the underlying biology. The cell density map and 

oxygen metabolism map work particularly well for PR prediction, while semantic vasculature 

property features and blood volume maps work better for OCR prediction, with generally higher 

imaging resolution preferred for OCR prediction. These findings provide valuable knowledge for 

imaging modality selection for the specific biology of interest.  

In gengeral, our findings highlight the critical role of functional imaging in enhancing tumor 

characterization. The insights from our modeling can inform decisions about which tumor 

properties to focus on and guide the selection of the most appropriate imaging techniques. This 

strategic approach enables a more selective use of imaging modalities, concentrating on those 

that provide the most relevant information. 

 

4.4.3 Advancement from Previous Studies 
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Numerous studies have explored vascularized tumor development, yet they often target different 

objectives and exhibit significant limitations in capturing tumor heterogeneities at the scale we 

are investigating. For example, Abbas Shirinifard131 used an agent-based model to show 

asymmetric tumor cell cluster growth toward vasculature, focusing solely on a small scale. 

Similarly, Tobias Duswald et al.133 developed a dynamic tree-like agent-based model using 

BioDynaMo69, but their approach overlooked crucial processes such as anastomosis in 

vascularization and assumed that nutrients could be supplied through sprouting blind ends 

without considering perfusion. JP Alberding et al.134,135 focused on simulating angiogenesis in 

the normal cerebral cortex and retina with a model that, while fully functional in terms of 

perfusion and oxygen transport, was confined to small-scale problems and excluded tissue 

growth or deformation. The green’s function solver for their model, involving huge influence 

coefficient matrices, renders it unsuitable for scaling up to larger tissue and vasculature sizes. 

Vasileios Vavourakis et al.132 proposed a hybrid model that combines a continuum approach for 

tumor growth with discrete vasculature modeling. While this model does account for 

angiogenesis and perfusion, its parallel vascular arrangement results in unrealistic vasculature 

morphologies and could introduce severe growth biases along the vessel direction, and tissue 

heterogeneity is not characterized in the model. 

In response to these shortcomings, our research has developed a comprehensive model that 

significantly advances the simulation of vascularized tumor growth. This model specifically 

focuses on computational efficiency to reach heterogeneity-informative scales and functional 

accuracy to capture tumor features. Our unique designs or methods to achieve the goal are 

illustrated below. 
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Angiogenesis and vascular functions: Following the methodologies of Secomb et al.152, we 

developed a comprehensive angiogenesis model that includes every stage from sprouting and 

elongation to anastomosis and vessel remodeling. This ensures a proper vasculature. We also 

perform comprehensive hemodynamics analysis to align vascular flow with its morphology and 

allow for subsequent WSS-based remodeling. For efficiency, we assume a homogeneous oxygen 

saturation level across the tissue. As low as 4.3% oxygen extraction fraction was observed on 

medium-size GL261 tumors (53 mm³) in our prior modeling work. This assumption is likely to 

be valid for the smaller (12 mm³) simulated tumors. For computational efficiency, we assume a 

uniform oxygen saturation level throughout the tissue. This assumption is supported by the 

observation of a low oxygen extraction fraction of just 4% in medium-sized GL261 tumors (53 

mm³). We anticipate that low oxygen extraction will hold true for the smaller (12 mm³) tumors 

simulated in this study, simplifying our modeling process while maintaining its accuracy. 

Capped vascular oxygen supply: The coarse mesh that fails to capture the sharp gradient of 

tissue oxygen near the blood vessel wall could overestimate the actual oxygen partial pressure 

difference across the vessel wall. Based on the observation from high-resolution numerical 

modeling of real GL261 vasculature, which reports a mean cross-vessel oxygen difference of 

only 0.8 mmHg, we applied a small cap to limit the oxygen source supply. This approach 

prevents unrealistic oxygen delivery rates without requiring an intensive meshing of the 

simulation domain.  

Dynamically equilibrated host environment: To eliminate the need for explicitly modeling 

healthy tissue vasculature while maintaining a physiologically sound growth environment, we 

propose a novel dynamically equilibrated host environment. This approach assumes a balanced, 
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homogeneous vascular component that supports the host's oxygen demand. This ensures a 

spatially unbiased environmental condition and avoids the abnormally high boundary oxygen 

artifacts associated with Dirichlet boundaries. Such artifacts can lead to abnormal growth 

patterns, hinder peripheral TAF release, and complicate the initiation of angiogenesis from the 

host vasculature. 

Stratified random host vasculature initialization: To avoid potential angiogenic biases 

sourced from improper environmental vessel arrangement, we proposed a novel spatially 

stratified tangent vessel method for initializing host vasculature. In this method, environmental 

vessels are represented as randomly positioned tangent lines at specified distances from the 

tumor surface, with orientations also randomized. The positioning of tangent points is carefully 

sampled in a spatially stratified manner to mitigate the risk of creating overly large vascular 

regions on the surface. This innovative approach ensures a simple yet theoretically unbiased 

vascular environment conducive to tumor development. Its stochastic nature, combined with 

high-throughput modeling, further reduces the risk of biases. 

Dynamically equilibrated host environment: To eliminate the need for explicitly modeling 

healthy tissue vasculature while maintaining a physiologically sound growth environment, we 

propose a novel dynamic host oxygen environment. To eliminate the need for explicitly 

modeling healthy tissue vasculature while maintaining a physiologically sound growth 

environment, we propose a novel dynamic host oxygen environment. This approach assumes a 

virtual homogeneous host vascular that supports the host's oxygen demand and equilibrates at the 

designed oxygen level in the absence of a tumor. This ensures a spatially unbiased environmental 

condition and avoids the abnormally high boundary oxygen artifacts associated with Dirichlet 
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boundaries. Such artifacts can lead to abnormal growth patterns, hinder peripheral TAF release, 

and complicate the initiation of angiogenesis from the host vasculature. 

Location-encoded boundary blood pressure: Alongside the initialization of environmental 

vessels, we have developed a novel location-encoded blood pressure assignment method to 

determine the pressures at the inlets and outlets of host vessels. This method incorporates two 

key components.  

Novel boundary blood pressure condition: For tissues that are continuously growing and 

feature complex networks with hundreds of inlets and outlets, the proper boundary blood flow 

assignment is not feasible without the help of a computationally extensive optimization method. 

Moreover, fixed boundary flow conditions prohibit tissue perfusion as an emergency property 

reflecting vasculature functions. Ee developed a novel location-encoded blood pressure 

assignment method for our vasculature system. To ensure a physiological pressure gradient along 

host vessels throughout the simulation, we included a location-encoded blood pressure 

assignment term that estimates host vessel length and assigns pressure accordingly. To facilitate 

the pressure gradient establishment in daughter vessels bridging the host vessels, another 

angular-position-based variation term is applied to create an overall blood pressure shift of entire 

host vessels according to its random angular orientations. 

Pressure blood boundary condition compatible radius remodeling: For vessel radius 

adaptation, we propose a novel method that aligns with the pressure-based boundary condition. 

While Wall Shear Stress (WSS) based vasculature regulation is a physiological mechanism 

observed in vivo, directly applying this principle for vessel radius remodeling can lead to 
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instabilities due to a positive feedback loop with a pressure-based boundary condition, where 

large vessels progressively enlarge, and small vessels diminish. To mitigate this, we have 

developed a reference radius and WSS-guided remodeling framework. This system still primarily 

utilizes WSS for radius remodeling but introduces constraints to limit deviations from a 

predetermined reference radius. Where the reference radius is determined by the intersection 

radius-flow point of the target WSS and flow velocity curve. This approach ensures a stable and 

functionally appropriate vessel radius distribution throughout the modeling process. 

 

4.4.4 Limitations and Future Directions 

 

Biological systems are inherently complex, and managing such systems requires ongoing effort. 

While we have achieved unprecedented modeling capabilities for heterogeneous, large-scale 

tumor development, our study is still limited in several ways. The scarcity of in vivo data, 

particularly functional data from specific tumor samples, hinders our ability to deepen our 

understanding of tumor behavior and calibrate our models more accurately to capture diverse 

aspects of tumor development. Currently, our simulations are restricted to mouse-scale tumors, 

which do not fully represent the complexity of larger human-scale tumors. Computational 

constraints also limit the size of tumors we can model, the resolution of our simulations, and the 

number of samples we can analyze in high-throughput studies. The solid mechanics model 

struggles to capture the viscoelastic behaviors of tumors that undergo self-rearrangement over 

prolonged periods and exhibit shape instabilities during development. Additionally, our 
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vasculature system models currently employ a threshold-based approach for determining oxygen 

sources, which may be inadequate for simulating tumors larger than a few centimeters, where 

oxygen extraction becomes more significant. 

Future directions involve developing more sophisticated tumor mechanical models that account 

for various plastic and viscoelastic behaviors of tumor deformation and high-performance 

simulation platforms capable of scaling up the simulation to multi-centimeter levels. 

Vasculatures with explicitly modeled intravascular oxygen delivery are also needed for the 

larger-scale model.  

With the advancement of technology in analyzing genetic material, the increasing availability of 

RNA-seq data that reflects gene expression levels in regions of interest opens new opportunities 

for computational modeling in terms of model parameterization and calibration. First, a database 

of the effects of various levels of key gene expression on apparent tumor properties can 

potentially be acquired through microscopic-level-focused experiments. Then, with this RNA-

seq database, patient-specific RNA-seq data could be used to derive simulation parameters, 

enabling the construction of personalized tumor models. 

RNA-seq-based parameterization also provides new calibration opportunities for patient-specific 

model calibration when combined with ex vivo organoids. Cell samples from patients can be 

cultured as organoids, serving as a calibration ground truth for patient-specific models with 

parameters generated from RNA-seq data. Additionally, longitudinal RNA-seq data of the 

evolving tumor could provide valuable insights into colony evolution and mutation occurrence, 
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allowing for the study of colony-resolved modeling that reflects intratumoral genetic 

heterogeneity. 

Treatment outcome prediction will also be included in the future model. With the well-

established baseline tumor and fully modeled biophysical functions, the delivery of drugs 

through the blood, as well as treatment efficiency in differentiated tumor regions with varied 

microenvironments or genetic conditions, can be modeled. The tumor evolution under various 

treatment interventions, including radiation therapy, chemotherapy, immunotherapy, receptor-

targeted therapy, and vasculature-targeted therapy, can be explored with arbitrary treatment 

combinations and plans. By incorporating personalized biophysical and genetic data for model 

parameterization, the exploration of personalized treatment can be significantly facilitated 

through computational modeling while ensuring the entire exploration process can be reasoned 

and trusted. 

 

4.5 Conclusion 

 

In this study, we introduced a hybrid simulation platform that integrates continuum tissue 

dynamics with discrete vasculature modeling for large-scale, vascularized tumor growth 

simulations with comprehensive hemodynamic capabilities. Through innovative vasculature 

conditioning and remodeling strategies, this platform enables unbiased simulations of tumor 
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development to sizes previously unattainable, closely mirroring the biophysical vascular 

properties and tissue growth patterns observed in actual tumors. 

Our study has significant implications for understanding tumor characteristics. By examining the 

influence of cellular proliferation rate (PR) and oxygen consumption rate (OCR) on tumor 

patterning and heterogeneity, we have elucidated the mechanistic links between biophysical 

properties and tumor characteristics. Key findings include the pivotal role of tumor proliferation 

rate in driving necrosis and tissue heterogeneity and the impact of OCR on tissue vascular 

density. Using our platform, we analyzed 20 randomly generated samples to predict PR and OCR 

using Radiomics, based on semantic and agnostic features. The resulting high-performance 

predictive model sees through tumor appearance to identify critical features that uncover 

underlying biological processes. Given the insight from modeling, the rationale behind feature 

selection can be understood, and features can be interpreted. 

Our study advanced our understanding of the complex tumor vasculature and tissue development 

problem and laid the groundwork for integrating computational models with Radiomics, bridging 

the gap between data-driven tumor prediction and fundamental biophysics. This integration 

opens up exciting new avenues for research in personalized medicine and beyond. It provides a 

new paradigm for interpreting tumor features and can help identify tumor property types with the 

highest potential to reveal specific biophysical properties, guiding the development and selection 

of imaging modalities for advanced non-invasive biophysical assessments. 
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