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Abstract

A meshfree approximation is used for both three-dimensional (3D) and
two-dimensional (2D) numerical simulations of dynamic shear band propa-
gation in an impact-loaded prenotched plate. The experiment for this type
of problems was initially proposed and studied by Kalthoff and Winkler
[1987] (the Kalthoff-Winkler problem), and later the experiment was re-
designed, refined, and re-examined by Zhou, Rosakis and Ravichandran
[1996] (the Zhou-Rosakis-Ravichandran problem) and others.

The main contributions of this numerical study are twofolds. First, failure
mode transition and failure mode switching have been observed in numerical
computations. In the intermediate impact velocity range (20m/s < V <
30m/s), the numerical results here (V' = 25m/s) show that there is a failure
mode switch (ductile-to-brittle) phenomenon, i.e. a cleavage crack initiates
from the tip of the dynamic shear band. In the high impact velocity range
(V > 30m/s), the numerical results (V = 33m/s & V = 37m/s) show
that the dynamic shear band penetrates through the specimen without
cleavage type fracture, which is a typical ductile failure mode. That is,
as impact velocity increases, the failure mode of the impact-loaded plate
changes following the direction from brittle-to-ductile. Second, the results
of this simulation show in the first time that there is indeed an autonomous,
self-similar, high strain rate region in front of the shear band tip, which, we
believe, is the driven force for the formation and propagation of a dynamic
adiabatic shear band. In addition, the curved shear band formation observed
in experiment is also accurately captured in the meshfree simulation.
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1 Introduction

In 1987, Kalthoff and Winkler presented and later published their experimen-
tal results on a pre-notched plate subjected high speed impact[9]. In that
experiment, a thin metal plate with two pre-notches is used as the target
specimen, and a cylinder projectile with flat end, after being accelerated by
an air gun to speeds ranging from 10m/s to 100m/s, impacts the specimen
in the region between the two cracks (see Fig. 1). The impact initiates a com-
pression wave in the plate, which generates a mode-II dynamic loading at the
crack tip, and it then produces high temperature rise inside the plate, which
subsequently leads to either fracture, or material instability at the tip of the
pre-notch. There are two major concerns: (1) under which conditions, cleavage
fracture occurs (brittle failure), and under which conditions, material instabil-
ity occurs (ductile failure); (2) if material instability occurs, can it propagate
as dynamic shear band propagation.

It was found ([9]) that when the impact velocity exceeds certain limit Vzp a
crack is initiated from the notch tip and propagates in a direction that forms
a 70° angle with the notch line direction (1). This cleavage type of brittle
failure is somewhat expected based on conventional fracture theory. What
was unexpected is that when the impact velocity exceeds another (higher)
threshold Vsp, the failure mode changes: a shear band is initiated at the
notch tip and propagates through the specimen, which is a purely ductile
failure phenomenon. This change of failure modes with increase of impact
speed has been referred to as failure mode transition.

The experiment has revealed something fundamentally different from con-
ventional thinking. First under extremely high strain rate shear loading, the
material failure seems to be dominated by ductile failure. Second, the failure
mode transition follows the direction of brittle-to-ductile as impact velocity
increases, which is in contrast to the traditional belief, in which it had been
speculated that the material failure mechanism follows the opposite direction
i.e. ductile-to-brittle, as strain rate increases. The double notch impact plate

corresponding author, li@ce.berkeley.edu
w-liu@nwu.edu

rosakis@aero.caltech.edu
haowei@nwu.edu

t-belytschko@nwu.edu

G W N =



notch / crack notch

:!\
/ /
shear band /
V<Ve noteh \ crack V>Ve notch
—_— —

(@ (b)
Fig. 1. The Kalthoff-Winkler problem

experiment, i.e. the Kalthoff-Winkler problem suffers the setback of stress wave
interaction due to two different pre-cracks, and complicates experimental con-
ditions. To improve the accuracy of the experiment, Rosakis and his co-workers
at California Institute of Technology( Mason, Rosakis, and Ravichandran [21],
and later Zhou, Rosakis, and Ravichandran [34]) have systematically studied
the problem; they carefully re-designed the experiment, and used a single
notch plate of a maraging steel C-300 and Ti-6Al-4V alloy as the target spec-
imen, which is referred to as the Zhou-Rosakis-Ravichandran problem. The
main advantage of using a single notch specimen is that it eliminates the
interference of the diffraction wave between notches, which had occurred in
Kalthoft’s original experiment, so that a longer loading can be achieved at
the notch tip, which may help to intensity the physical phenomenon, and
isolate various different factors in the process. By doing so, they found an un-
usaul mode switching phenomenon. In the intermediate range impact velocity
(20m/s < V < 29.6m/s), different from Kalthoff’s results, at first a shear
band initiates from the notch tip, propagates, and is arrested, then suddenly
a cleavage type crack initiates from the arrested shear band tip. This is a
failure mode transition, or switch at a fixed impact velocity; more precisely
speaking, it is a failure mode switch from ductile failure (shear band propaga-
tion) to brittle failure (cleavage fracture). Again, at higher impact velocities
(V > 29.6m/s), they confirmed Kalthoff’s result, i.e. the shear band propa-
gates and penetrates through the specimen without cleavage fracture, which
indicates the dominance of the ductile failure at high strain rate (see Fig. 2 ).

Simulating Kalthoff-Winkler problem, or Zhou-Rosakis-Ravichandran prob-
lem in numerical computations is, nonetheless, less satisfactory. The challenge
here is how to realize the failure mode transition in numerical computation.
The first numerical simulation related to the high speed bullet/plate impact
problem was conducted by Needleman and Tvergaard [26]. To explain the
unusual brittle-to-ductile mode transition observed in experiments, they at-
tributed the factor to the fact that high strain rate loading enhances thermal
softening, which in turn suppresses the build-up of the maximum hoop stress,
and thus the system is more prone to the ductile failure than brittle failure, i.e.,
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Fig. 2. The Zhou-Rosakis-Ravichandran problem

the dynamic shear band propagation prevails over cleavage crack propagation.
Zhou, Ravichandran, and Rosakis [33] simulated the experiment numerically,
and introduced a viscous fluid-type of constitutive equation, to mimic the dras-
tic reduction of shear force carrying capability of shear band. However, both
numerical experiments had not been able to accurately predict to the failure
mode switch/transition. On the other hand, in both finite element computa-
tions [26,33], mesh-dependence effects are reported. The work, [33], is the only
successful simulation so far on dynamic shear band propagation; a shear band
computed is a straight line along the finite element boundary, parallel to initial
pre-notch line. A meshfree simulation was conducted by Belytchko and Tab-
bara [2] using the element-free Galerkin method to simulate the double notch
specimen impact by assuming that it is an elastodynamic process. Recently,
Klein [10] again used the element free Galerkin (EFG) method to simulate the
Kalthoff problem (the double notch specimen), with a hyper-elastic based co-
hesive model — the internal virtual bond (IVB) constitutive model [5]. Both
numerical computations found that a crack initiates from the notch tip at
about a 70° angle as observed in the Kalthoff’s original experiment. Again,
the above mentioned numerical computations could not simulate the failure
mode switch/transition, nor dynamic shear band propagation. Furthermore,
most of the numerical computations conducted so far are two-dimensional,
and some of the important aspects of the physical phenomenon of the prob-
lem have not been predicted, or identified accurately in numerical simulations,
such as failure mode transition/switch, shear band configuration/structure.

The objective of this work is aimed at a comprehensive numerical simula-
tion of the Zhou-Rosakis-Ravichandran problem (single notch problem). It is
aimed at providing an accurate numerical simulation in major aspects of the
physical process, which should includes failure mode transition, failure mode
switch, shear band propagation and configuration, local/global temperature
distribution field, stress distribution, inelastic strain/strain rate distribution,
as well as three-dimensional effects.

From computational standpoint, the meshfree method has been proven to be



superior than conventional finite element methods in numerical simulation of
shear band formation (see: Li & Liu [15], and Li, Hao, and Liu [13]). It is
less prone to the mesh alignment sensitivity, and it has the ability to relief
volumetric locking in displacement based formulation (the advantage in 3-
D simulation is obvious), and in turn, it is easy to implement in explicit
computations, which is very suitable in dynamic simulations.

The arrangement of the paper is as follows: meshfree methods, in particular,
the Reproducing Kernel Particle Method (RKPM) [18,17,19] is reviewed in
Section 2, together, an explicit meshfree Galerkin formulation is outlined. In
this simulation, a thermo-elasto-viscoplastic constitutive model is adopted,
which is the same as used by Zhou et al. [33,35], except here only adiabatic
heating is considered. By doing so, the Pierce’s rate tangent modulus method
[27] is extended to include the adiabatic heating, which are discussed in Section
3. In Section 4, numerical results are presented and discussed.

2 An explicit meshfree Galerkin formulation

There are several meshfree methods currently used in computational mechan-
ics, such as smoothed particle hydrodynamics (SPH) [23], diffuse element
method (DEM) [24], element-free Galerkin (EFG) [1], reproducing kernel par-
ticle method (RKPM) [18,16,20], etc. . The particular meshfree method used
in this simulation is the reproducing kernel particle method (RKPM). A de-
tailed account of the method can be found in Liu, Li, and Belytschko [19] and
Li & Liu [14].

The basic idea of reproducing kernel particle method (RKPM) is to construct
a proper kernel function such that one can approximate the function of interest
through a “reproducing” or “filtering” representation

ug(e) = Rou(e) = [ Koy - 2)u(y)d? &)
Q

where K, (X) := 1/o"K(X/p), p is the dilation parameter that is associ-
ated with the support size of the kernel function, and n is spatial dimension.
The RKPM kernel function is compact supported, and usually very smooth,
K(X) € CN(Q) and N >> 1. Note that a RKPM representation is a spatial
convolution in a strict sense, whereas the finite element interpolation can be
viewed as a spatial convolution only in the sense that the kernel function is
a generalized function. Assume that in the domain {2 there is a valid par-
ticle distribution, A := {1,2,---,---, NP}. Discretizing (1) yields a discrete



convolution, which is defined as

uh(X) = (Ko ¥ w)(X) = 3 Ko( X1 — X)AVuy 2)
I=A

For simplicity, in the rest of the paper, we shall simply denote K,(X;—X)AV;
as Kr(X). Eq. (2) can be viewed as a nonlocal interpolation (or not a “inter-
polation” based on conventional definition). In such “nonlocal interpolation”,
any point in the domain, including particle point, is covered by multiple shape
functions.

We begin with defining and describing the kinematic quantities at finite strains.
Followed the standard convention that x denotes the spatial coordinate of a
material point and X denotes the referential coordinate of that material point,
the displacement of the material point is defined as

u:=x-X (3)

The deformation gradient and velocity field are given by

ox
F:= X (4)

A weak form of the balance of linear momentum can be written as

0%*u
/ P JFTdQ = / poB - 6ud§ + / T . 6udS — / po gz bud  (5)
[ Qo Qo

T'trac

where T is the prescribed traction on the traction boundary, I'*"*, and P
denotes the first Piola-Kirchhoff stress tensor, which can be related to the
Kirchhoff stress tensor as 7 = F - P. For simplicity, the boundary conditions
are specified with respect to the referential configuration,

nP=T", vXer% (6)
u=u’, VXerly% (7)

where I'Y UTY, = 09Qx.
It should be noted that unlike FE approximation, the RKPM interpolant has

a shortcoming: that is its inability to represent essential boundary condition
via boundary value interpolation. Therefore, there is an extra term missing in



the weak form (5)

/ Téudl (8)
ry

because du # 0, V X € I'}. On how to account and estimate this term and
enforce the essential conditions, readers may refer to [15].

Assume that the trial, and weighting functions have the forms

ut(X,¢) = Jg N (X)d;(t) (9)
o

sut(X,t) =3 Nr(X)sd(t) (10)
I=1

The weak form (5) will yield the following discrete equations

a2uh ex in
M = gt — g (11)

The conventional row-sum lumped mass is adopted in the computation, and
the external and internal forces are calculated as follows,

feot — / Ti(X,t)NyeidS + / poBi(X, ) N1(X)e:df (12)
l“trac QO

. aN;

gint— [ pr 90 (13)
[

where e;,1 = 1,2,3 are the unit vector of referential coordinate.

3 Constitutive modelings

In inelastic large deformation, the deformation gradient, F, can be decomposed
as

F = F° . F* (14)

where F¢ describes elastic deformation and rigid body rotation and F*P rep-
resents viscous inelastic deformation. The rate of deformation tensor, D, and



the spin tensor, W, are the symmetric part and anti-symmetric part of spatial
velocity gradient L = F - F~!, i.e.

D+W=F.F!=Fe.Fe~! {Fe.Fw. w1 pe! (15)

by using the fact that F = FeF*»+FeF* and F~! = F*»~'Fe~!, Consequently,
the following decomposition holds

D¢ + DT + We=F¢. Fe! (16)
D + WP=F¢. . Fr-! . pe-l (17)
Note that thermal deformation is always dilatational, and WT = 0.

The general balance of energy rate is formulated in current configuration:

/péda+%[%pﬁ-ud9=/t.vds—/qu (18)
Q 0 N onN

where e is the density of internal energy; t is the flux of mechanical force, or
traction; and q is the heat flux through the boundary.

Considering the rate form of principle of virtual work, we have

d (1. .
/t-de:/o-.DdQ-I—a/Epu-udQ (19)
onN Q Q

And pull-back the rate conservation form into the referential configuration
yields

/poédﬂ - /7- . DdQ) — / JN.F'.§dSs (20)
Qo Qo 9o

in which, the standard volume/area transformations, d2 = Jd§, J = det{F},
ndS = JNF~1dS,, are used, where fi and N are the normal of surface element
for spatrial configuration and referential configuration respectively.

Suppose that the heat flux is driven by temperature gradient. Then

9T _ 9T X 9T .., o g O
q=-—-K —0—)—{——na—x E{—_—K‘?ﬁF =—k-F 5}2(21)

where & is the heat capacitance tensor.



Neglecting thermo-elastic coupling, i.e. T : D¢ = 0, we postulate that a major
part of plastic work will convert into heat (Taylor & Quinney [29]). and using
the specific heat at constant pressure to approximate the specific heat at
constant stress, one can obtain the following balance form via Gauss’s theorem

/ poC,Td0Y = / X7 : DdQ + / Vx(J-F 1k -FT.VxT)dQ (22)
14 \%4 14

where V' C (g, is any subset of {}y. Thus it yields the following strong form

oT
poC,

— =x7:D?P4+Vx(JF ' . k- FT.VxT), VX €Q, (23
P ot

Because the whole impact process occurs within 300 us, the effect of heat
conduction should be a higher order factor. Considering adiabatic heating, i.e.
neglecting heat conduction, we have

oT
poC.

vy = XT D (24)

By doing so, the coupled thermo-elasto-viscoplastic problem is reduced to a
mechanical problem. Eq. (5) suffices as the Galerkin weak formulation of the
problem, and the energy equation (24) is only used in the constitutive update.

A rate form constitutive equation is used

#:= ¢ (D - D - DY), (25)

where the Jaumann rate of Kirchhoff stress, 7v', is defined as

Y=F-Wr+1W (26)
and
1 av,' av‘
D:= D,~,~e,~ Ke;, D,'j = -2— -é—w—- a—xJ (27)
7 1
1,0v; Ov;
W:=I/V,'je,'®ej , W= 5(6.’1: - a—;) (28)
J p

The yield surface of viscoplastic solid is of von Mises type,



R 60',']‘ )
f(o,k) =0 —k=0 (30)
5’2 = 28,']'8,'1’, (31)
.S,.7 = Tilj — Of,'j (32)

1
Ti,j Tij §t7’(‘r’)5,'j (33)

]2
e:= / ~D: D dt (34)

0

A thermo-elasto-viscoplastic material model is adopted (See Zhou et al [33]),
which is described as

7= éo [g(ETT)]m > (35)
(&, T)=00o[l + /€)™ {1 - J[exp(T ;TO) - 1]} (36)

where m is the power index. The thermal rate of deformation, D7, is given as

DT = aT1 (37)
where a is the coefficient of thermal expansion.

3.1 Constitutive Update

The constitutive update follows largely the rate tangent modulus method pro-
posed by Peirce et al. [27], which has been used in the context of thermo-
viscoplasticity by LeMond & Needleman [12,11]. The essence of the rate tan-
gent modulus method is to approximate a function of time in the interval
tn+9 € [tnatn+l]a NS [07 1]’ as

fo:= (1= 0)fn+ fus (38)

Thus, if we choose the predicted velocity field at tn41 as viiY = v, + Ata,,
then it follows that

vo=(1—0)v, + v = v, + Ata, (39)
u=(1—6)u, +0u,y; = u, + Atbv, + 0*At’a, (40)
Lo=vg Vx= (Vo Vx) -Fri (41)

10



D=3 (Lo +Lj) (42)

W, =

(Lo — L7) (43)

For # = 1/2, the predict step, or trial step corresponds to the centeral differ-
ence scheme. Hence, the kinematical variables are known at the configuration

toto.

The main task here is to update the Kirchhoff stress:
Tnel =Tn + ToAt (44)
‘i'g%‘lv'a—l-Wo-Tn-l-Tn'Wg (45)
To accomplish this, one has to first find €, and then 7v'9. Let

g = (L — 0)én + Oénsy (46)

where €,4; is approximated by a first order Taylor series expansion in &, € and

T,

) . 0¢ | . e | . 3 .
urs = &+ At[o= | G0+ 52 | Et 57 |, T (47)
Let
3¢

The same procedure may be applied to other state variables as well,

d;p = é_apn 49
&g =bd?? 50

dOZXO +W0 o, + ay, WZ
Q1 = O, + At

Since pg and ay are unknown, inconsistent approximations are taken pg = p,
ay & @, in the explicit calculation, which shall be elaborated further.

In isotropic hardening

11



hence

e (o ] 3€ N 3E , ., .
T:D? = (1' + —3—tr(1')1) : (557) =55T T =0¢ (54)
Eq. (24) can rewritten as
aT X -
e O 55
0t ponae ( )

Utilizing (55), we propose the following monolithic or simultaneous rate tan-
gent modulus scheme. Let

X60 -

Ty = ¢
6 pono

(56)

Substituting (56) into (47), we have

QE
ol

L 0k . | B .
€n+1=€n+Atn{ ot ge | at gzl (4 &o€o)} (57)

Then substituting (57) into (46) and solving for €, yields

Y é_n 1 66‘
= — Py:D 58
€9 1+§0+H01+£0 6 [ ( )
where
Ho o 3B O€/de __'0(7:/0T ax _
O T 91 +v)  0¢/05 In  09¢/5 In poC, 0
. 3E O¢e/ e 0e/0T |  ax
N ST) " 5505 I " 3%35 b el (59)
P0 = Celas :Ppo N Celas : Pn (60)
O€
& = 05t(5-) Ho (61)

Note that since we don’t know the stress state at the configuration 2,44, in an
explicit update procedure we approximate og by o, in the calculations of Hy,
Py, as well as &. This assumption might be implied in the original derivation
of Peirce [27], nonetheless it never made clear explicitly.

By simple calculation, one will have

12



0 me

Friirs (62)
9¢/0T  ,a\ Og
5265 =) ar (63)
Je/de o\ 0g
52/55 =3 e (64
Subsequently, the Jaumann rate of the Kirchhoff stress is evaluated as
v tan én e X&O
=Cy" : Dy — Py +3Ka~—
Tg=Cy 0 {1+§0}[ o+ XapCpl] (65)
where
Clon g — 5 ___[p 9Py + (31 +2u)aXm 10 Py] (66
0 He(1+§a)[ 6 o+ ( 'u)apon o] (66)

is the adiabatic tangent stiffness, which is not symmetric. Assuming that €
and 0g are available after the stress update, the temperature can then be
updated at each quadrature point as

Tn1 = T + ToAL (67)

where

Ty = €00 68
] pona [’} ( )

It seems to authors that the above adiabatic rate tangent modulus method
has not been published in literature.

8.2 Modeling Fracture and Shear Band

To simulate fracture and crack growth, a simple material damage (erosion)
algorithm is implemented, which is controlled by a maximum tensile stress
criterion. The algorithm works as follows: when the maximum tensile stress at
a material point exceeds a certain limit, we declare that the crack is passing
through that material point, and to approximate the cracking, or fracture
process, we reset the stress components at that material point to zero, the value
of temperature to room temperature, i.e. we basically take out that material
point from the computation. By doing this, some conservation properties of
specimen may be lost, because implicitly the mass is not conserved anymore,

13



and so are the other quantities. However, since there are only small portion
of material being eroded (say less than 0.1 % ), the accuracy of the algorithm
is reasonably good in computations.

In most of numerical simulations of strain localization, shear band formation is
the outcome of a bifurcated solution sought in numerical computations due to
material instability. However, how to simulate the propagation of such material
instability is still an open problem at large, and as mentioned in the beginning,
most of previous numerical simulations fail in simulating the propagation of
shear band formation. The key technical ingradient in such simulations,
we believe, is how to simulate the collapsing state of shear band
formation. And it is found that the stress collapse in the newly
formed localization zone (shear band tip) promotes or triggers the
shear band’s further propagating. To simulate stress collapse state inside
the shear band, a so-called shear band damage model is introduced, which
conforms physicist’s belief that instead of being a bifurcated mathematical
solution shear band is a physical entity, within which there are significant
weakening, or changes in material properties, and it may even be identified
as phase transformation (See Giovanola [7,8]). In this paper, to simulate the
collapsing state of shear band formation, a thermal-viscous Newtonian fluid
damage model proposed by Zhou et al [33] is used, which can describe the
drastic reduction of shear strength in shear band region. To justify employing
such multi-physics model, a detailed discussion shall be carried out in the Part
IT of this work, and the model used here (i.e. Zhou-Rosakis model) is made
in comparison with an earlier model by Freund & Hutchinson [4], which was
used in an analysis of dynamic fracture under high strain rate condition.

1. Cleavage Failure The main advantages of using this simple material dam-
age algorithm is its simplicity. By doing so, one can simulate crack growth
without remeshing, which may save a lot of memory for book-keeping, and
CPU time for solving complex algebraic equations to determine crack’s in-
cremental orientation, as well as update connectivity array (in finite element
calculation). Since the nonlocal nature of meshfree interpolation, the connec-
tivity relation with respect to referential configuration among particles and
quadrature points do need being updated to prevent the particles in the other
side of the crack have interpolating contribution over the crack line. A less
accurate, but efficient way to get around connectivity updating is that once in
a background cell there is one quadrature point is damaged, we then declare
that all the other quadrature points in the same background cell are damaged
as well. The consequence of this approximation is more material points be-
ing eroded, and the crack has a finite width (that is why it may prevent the
crossover interpolation).

Since the specimen is thin (6 mm), the crack morphology observed in the
experiment is always uniform in the thickness direction. Therefore, it may

14



be reasonable to assume that the cleavage fracture toughness in the thermo-
elasto-viscoplastic solid is controlled by the maximum circumferential stress,
or hoop stress within the plane, which conforms with the conventional theory
in brittle fracture (e.g. Erdogan & Sih [3]). In our numerical computation, the
following criterion is used

Omax Z Ocr (69)

where the critical stress is set as 0., = 30¢ (where og is the initial yield
stress). When maximum principle stress reaches 3¢ at a material point (Gauss
quadrature point), we set

T,']'ZO; D;,-:O; T=T0, (70)

2. Shear Band Damage

How to simulate the shear band propagation is still an open subject. This is
a question that is related why shear band can propagates. Initially, there is
a naive notion among some researchers that analogous to crack propagation,
there may be a stress concentration region in front of the tip of strain local-
ization zone, and as external loading continues, the material instability can
proceed automatically in successive fashion. However, as have been shown by
Gioia and Ortiz [6], the stress field near the initial strain localization zone at
the pre-notch tip in a thermo-elastic-viscoplastic material, is somewhat diffu-
sive towards the shear band tip, which has been confirmed by the numerical
analysis done by Needleman [25] for for elasto-viscoplastic material. This ge-
netic “diffusive” stress field in front of the “tip” of strain localization zone
prevent material instability to advance in a successive, or catastrophic suc-
cessive manner. On the other hand, experimental results strongly indicate a
phenomenon of successive/automatic advancement of strain localization zone,
i.e., dynamic shear band propagation. This implies that dynamic shear band
propagation is controlled by the intensity of some other physical quantities
other than stress field.

The only analytical condition available that may be related to the stress col-
lapse is the localization condition of Molinari and Clifton [22]. Gioia and Or-
tiz showed [6] that when Molinari-Clifton condition is met, steady adiabatic
boundary layer collapse into a vortex sheet. Nevertheless, how to efficiently
implement Molinari-Clifton condition in the case of dynamic shear band prop-
agation is still an open problem. It have been speculated for a long time that
that there is an intensified high strain rate zone at the shear band tip [31,30,32]
in the case of high strain rate loading. Moreover, the micrograph of shear band
surface indicates that there is uniform void distribution throughout the shear
band damage zone [34]. It is suggested that dynamic shear band propaga-

15



tion may be a damage evolution process, which is controlled by strain rate.
We believe that it is highly plausible that the magnitude of strain rate could
be a critical measurement of shear band toughness ©, and it is possible that
once the strain rate reaches a certain level, shear band damage occurs irre-
versibly, and the material changes its behaviors inside the shear band damage
zone, and consequently material loss its shear stress carrying capability signif-
icantly. The underline argument here is dynamic shear band propagation is a
type of damage evolution process, though a systematic theory is needed, and
it is still missing !

Following Zhou et al. [33], the ductile failure condition is controlled by the
strain rate
€

(& + €

(71)

Er =€+ (62— €1)

where €;,€; and €, are given parameters. After € reaches &, the damaged
material is assumed to no longer have shear-stress carrying capacity, and it
behaviors like a Newtonian viscous fluid,

T:7[1—J+a(T-T0)] E

5 1_1/1+uD (72)

where 7 is the stiffness parameter, and p is the viscosity.

4 Numerical Results

4.1 Opening discussion

The computations carried out in this work is mainly based on the experiments
conducted by Rosakis and his co-workers at California Institute of Technology,
i.e. the so-called Zhou-Rosakis-Ravichandran problem. The experiment is an
impact test between a single pre-notch plate and a cylinder projectile as shown
in Fig. 3. In this numerical study, two computational configurations have been
used to simulate the specimens with different sizes, which are corresponding
to the two different sets of experiment. The first one is used in the experiment
by Zhou, Rosakis, and Ravichandran [34] (see Fig. 4 (a)), the second one is
used by Pradeep, Rosakis, and Ravichandran [28] (see Fig. 4 (b)). It may
be noted that in the second specimen, there is a 2mm long fatigue crack in
front of pre-notch, which increases the acuity of the original pre-notched crack.

6 the authors here are inclined to discard the notion of using dynamic J-integral
as the measurement of the shear band toughness.
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4.8 Case II: High Speed Impact (V = 33m/s)

When impact velocity exceeds certain limit 7, the cleavage crack mode is sup-
pressed, there is shear band that is initiated from the crack tip, and propagates
through the specimen. Since the impact is due to an unsymmetric collision
between the bullet and plate, the shear band propagates slightly towards the
lower part of the specimen, rather than penetrating through the specimen
parallel with horizontal line, the orientation of pre-notched crack.

By comparing it with the results in mediate range impact, one will observe a
mode failure transition, i.e. from the cleavage type of failure at lower impact
speed to the ductile failure at high impact speed. Meshfree simulations are
accurately validated such failure mode transition.

A sequence of 3D calculations have been displayed in Figure (8) and (9), which
describe the evolution process of shear band propagation. (10)

As reported by Zhou et al (1996a), the experimental results indicates that
the shear band formation is a curved surface. Such shear band morphology
is very difficult to be captured in finite element based simulation, because of
the mesh alignment sensitivity that is inherent in finite element simulations.
Using meshfree methods, such curve shearband formation has been recaptured
in numerical computations.

A 2D view of 3D computations is shown in Figure (10); temperature profiles
are displayed, which is main characterizations of shear band formation.

In 3D computation, a “temperature reflection” phenomenon has been ob-
served. That is before the shear band tip reaches to the lateral surface of
the specimen, the temperature at intersection point of arriving shear band
path and the lateral surface has already rised first, which is similar to the
spalling phenomenon of target/projectile problem, i.e. before the projectile
penetrates the target, fragmentation has already occurred at exit surface. A
plausible explanation for such temperature reflection is that a possible plastic
wave has reached the lateral surface first before shear band’s arriving, and the
free-surface condition amplifies that plastic wave loading, and cause tempera-
ture rising. It should be noted that this phenomenon has been only observed in
3D simulation, and it is the only significant 3D effect that has been observed
in our meshfree computations (see Figure 7).

From Figure (10), one may see that the shear band formation computed by
meshfree method is slightly curved towards the lower half of the specimen,

" In the experiments conducted by Zhou et al (1996a), this critical velocity is 29.6
m/s for C-300 steel with the specific size, geometry of the specimen.
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to severe material strength weakening. Thus, they proposed so-called Newto-
nian fluid damage model to represent shear band’s low shear-stress carrying
capability. We believe that the so-called damage state of the shear band is the
stress collapse state that Wright has referred to [31]. Thus, it is justifiable to
use quasi-fluid model, or purely visco-plastic flow model to mimic damaged
shear band.

It has been found in this numerical simulation that there is autonomous high
strain rate region ahead of the shear band tip. Such autonomous region is
locally self-similar in shape, and has very high strain rate concentration, which
carries and controls the growth and propagation of the adiabatic shear band
(See Fig. 13). It is our opinion that this autonomous, self-similar, high strain
rate concentration, local field in front of the propagation shear band tip plays
a similar role as the autonomous singular stress field at a propagating crack
tip in elastodynamic fracture mechanics, and once the strain rate reaches a
threshold, the stress state in the newly formed localization zone collapse.

Other self-similar, local state variable fields have also been observed, such as
there is a local delta region of oy; in front of shear band tip , and there is
also a low value shear stress, 01, basin moving with the shear band tip, which
have been reported by the finite element simulation conducted by Zhou et al

[33].

The last issue is the shear band length/speed history after the impact. By
comparing to the experiments conducted by Zhou et al [34], the general trend
of both shear band length histories, as well as shear band velocities histo-
ries follow the experiment results. For instance, at high speed impact, within
60m/s, shear band penetrates the specimen. However, based on the numerical
computation at Vo = 35m/s, the highest shear band speed is up to 2000m/s,
up to 60% of the shear wave speed, which has not yet been reported in ex-
perimental observations. In experiments, the shear band speed is only up to
1200m/s, at 38% of the shear wave speed. On the other hand, the measure-
ment depends on the definition of a shear band, i.e. what defines a shear band
? In the measurement of shear length, as well as shear band speed, the current
study adopts two definitions. One of them is choosing the the effective strain
criterion, that is we choose effective strain at 12.5% mark as the threshold of
a shear band; another practical criterion is choosing the temperature rising
(for adiabatic shear band only) above 50°K mark from room temperature, or
50° K mark above ambient temperature as the threshold of shear band. Figure
(15) is produced based on the second criterion.
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5 Concluding Remarks

In this work, a meshfree discretization/approximation has been used in a sim-
ple explicit displacement based formulation to simulate dynamic shear prop-
agation in a pre-notch plate with impact loading,.

The main contributions of this study are: (1) the numerical computation re-
ported here have successfully simulated the failure mode transition/switch that
have been observed in the experiments, and have not been able to simulate in
previous numerical computations. (2) the numerical simulation confirms that
there is a self-similar, autonomous state variable field moving with shear band
tip, as much like as the self-similar, singular stress filed in front of the tip
of a propagating, brittle crack in elastodynamics. Among which, the strain
rate distribution is concentrated in front of running shear band tip, which is
speculated as the primary factor to drive the shear band, or to the shear band
growth. (3) The key to simulate the dynamic shear band propagation is to
assume that adiabatic shear band can propagates only if the newly-formed lo-
calization zone suffers a stress collapse. And we tend to believe that the strain
rate concentration triggers the stress collapse just as the stress concentration
triggers the material fracture.

In addition, we have found that there is crack formed along the interface be-
tween the shear band and matrix without introducing any damage model that
accounts for microvoid growth and coalescence. And also there is a “temper-
ature reflection” phenomenon observed in numerical experiment.
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