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ARTICLE OPEN

CHRONIC MYELOGENOUS LEUKEMIA

State-transition modeling of blood transcriptome predicts
disease evolution and treatment response in chronic myeloid
leukemia
David E. Frankhouser 1,5✉, Russell C. Rockne 1,5✉, Lisa Uechi1, Dandan Zhao2, Sergio Branciamore1, Denis O’Meally 3,
Jihyun Irizarry 2, Lucy Ghoda 2, Haris Ali 2, Jeffery M. Trent 4, Stephen Forman 2, Yu-Hsuan Fu 2, Ya-Huei Kuo 2,
Bin Zhang 2,6✉ and Guido Marcucci 2,6✉

© The Author(s) 2024

Chronic myeloid leukemia (CML) is initiated and maintained by BCR::ABL which is clinically targeted using tyrosine kinase inhibitors
(TKIs). TKIs can induce long-term remission but are also not curative. Thus, CML is an ideal system to test our hypothesis that
transcriptome-based state-transition models accurately predict cancer evolution and treatment response. We collected time-
sequential blood samples from tetracycline-off (Tet-Off) BCR::ABL-inducible transgenic mice and wild-type controls. From the
transcriptome, we constructed a CML state-space and a three-well leukemogenic potential landscape. The potential’s stable critical
points defined observable disease states. Early states were characterized by anti-CML genes opposing leukemia; late states were
characterized by pro-CML genes. Genes with expression patterns shaped similarly to the potential landscape were identified as
drivers of disease transition. Re-introduction of tetracycline to silence the BCR::ABL gene returned diseased mice transcriptomes to a
near healthy state, without reaching it, suggesting parts of the transition are irreversible. TKI only reverted the transcriptome to an
intermediate disease state, without approaching a state of health; disease relapse occurred soon after treatment. Using only the
earliest time-point as initial conditions, our state-transition models accurately predicted both disease progression and treatment
response, supporting this as a potentially valuable approach to time clinical intervention, before phenotypic changes become
detectable.

Leukemia (2024) 38:769–780; https://doi.org/10.1038/s41375-024-02142-9

INTRODUCTION
Chronic myeloid leukemia (CML) is characterized at the cytoge-
netic level by t(9;22), the Philadelphia chromosome that creates
BCR::ABL [1]. This fusion gene encodes a ligand-free activated
mutant tyrosine kinase that transforms normal hematopoietic
stem cells into leukemia stem cells (LSCs), primitive leukemic cells
capable of initiating and maintaining the disease. While the
advent of tyrosine kinase inhibitors (TKIs) has revolutionized the
treatment of CML by inducing long-term remissions and largely
preventing disease evolution from a chronic phase (CP) into blast
crisis (BC), these drugs often fail to fully eradicate LSCs [2, 3]. Lack
of treatment compliance, drug intolerance or acquired BCR::ABL
mutations or additional genomic “hits”, therefore may result in
disease relapse or progression to BC [4–6]. Thus, while a subset of
patients may eventually discontinue TKIs, most of them remain on
lifetime treatment [7, 8].

Quantification of BCR::ABL fusion transcript levels is diagnostic
and effective at assessing ongoing treatment response but is less
useful for predicting timely disease evolution at the earliest time
points. In recent years, the transcriptome has emerged as a
promising tool for assessing treatment response and predicting
outcome in cancer and leukemia [9, 10]. Gene expression profiling
using high-throughput technologies has enabled comprehensive
analysis of the transcriptome in CML patients and identified gene
signatures that reveal molecular mechanisms of transformation
and treatment response [11, 12]. Recently, Giustacchini et al.
reported on a distinct molecular signature of LSCs that selectively
persisted after TKI treatment [13]. Ross et al. investigated the
transcriptomic landscape of CML patients at diagnosis and during
TKI therapy and identified differentially expressed genes and
pathways associated with cell proliferation, apoptosis, and drug
resistance, thereby predicting treatment response and long-term
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outcomes [14]. Radich et al. explored transcriptomic changes in
CML patients who discontinued TKI therapy and found that
specific gene expression patterns, particularly involving immune-
related genes, could distinguish patients who successfully
maintained treatment-free remission from those who relapsed
[15, 16]. However, these studies are mainly population-based, and
are therefore difficult to apply to predict disease evolution and
treatment outcome for individual patients. To our knowledge, no
recent studies have examined how transcriptomic changes
detected at the earliest time points of disease or at the start of
treatment can accurately predict outcome in individual CML
mouse or human, even before phenotypic changes had occurred.
Here, we applied state-transition theory to model the temporal

dynamics of the CML transcriptome and predict CML evolution
and treatment response [9, 10]. CML is an ideal model to test this
hypothesis as the disease is initiated and initially maintained solely
by BCR::ABL, which is targeted in the clinic by TKIs, a treatment
effective in inducing disease remission, but often not curative. We
showed that the transcriptome of peripheral blood mononuclear
cells (PBMC) from a transgenic CML mouse can be modeled as a
particle undergoing state-transition in a BCR::ABL-transformed
potential landscape. Using this model, we accurately predicted the
trajectories of disease evolution, treatment response, and relapse
of individual mice from the earliest time-point. Furthermore, the
state-transition framework allowed for identification of the
patterns of gene expression that drove leukemogenesis, thereby
connecting the transcriptome state-transition to molecular
mechanisms of disease growth and treatment resistance.

RESULTS
Peripheral blood transcriptome state-transition during CML
development
To investigate the molecular mechanisms of CML initiation and
evolution, we collected PBMC samples from the CP CML mice at
sequential time points after BCR::ABL induction by tetracycline
discontinuation (Tet-off; Fig. 1A). Samples were also collected from
control mice that continued to receive tetracycline (Tet-on) in
order to maintain BCR::ABL suppression. Bulk RNA-sequencing
(RNA-seq) was performed on each PBMC sample. To study the
transcriptomic changes that characterized disease evolution, we
applied a state-transition approach that mapped the time-series
transcriptomes of each mouse into a CML state-space. The
resulting trajectories of each mouse in the state-space were
modeled using a stochastic equation of motion to determine
whether the disease evolution of each mouse could be predicted
based on its initial condition.
To start, the CML state-space was built using Principal

Component Analysis (PCA). Briefly, we performed singular value
decomposition [9, 10] (SVD; see methods) on all expressed genes
(n= 39,927) measured with RNA-seq of the sequentially collected
samples of both control and CML mice. By including all the time-
sequential samples collected from the CML and control mice, we
were able to capture the continuum of transcriptional states that
both spanned the health to terminal states and also included
intermediate disease states. Among all PCs, PC2 (hereafter called
CML state-space) provided the greatest separation between
samples collected from the healthy control mice and those
collected from CML moribund mice. We obtained transcriptome
trajectories of each individual mouse by plotting the time
sequential samples in the CML state-space (Fig. 1B, left panel).
Supporting the ability of the CML state-space to identify distinct

disease states, we demonstrated that among all the PCs, PC2 had
the best correlation with BCR::ABL expression levels. Nevertheless,
the correlation was relatively weak (R2= 0.48; Fig. 1B, right panel;
Table S1), suggesting that BCR::ABL was not the only driver of
transcriptome state-transition. In fact, immediately after tetracy-
cline discontinuation (Tet-off), we observed that the CML mice

began to move through the CML state-space, from the health
state toward disease. Despite BCR::ABL expression not yet being
detectable, it likely influenced disease state changes even at those
lowest, initial levels (Fig. 1C).

CML transcriptome state-transition model predicts disease
evolution
As the CML state-space contained the continuum of the
transcriptomic states from health to disease, we used the state-
space to build a state-transition model that predicted the disease
trajectories of individual mice. These predictions were made by
setting initial conditions for each mouse using only the state-
space location from the first collected time point. The theoretical
framework of this model postulated that changes in the
transcriptome could be modeled as a particle undergoing
Brownian motion in a potential energy landscape using the
Langevin equation [9, 10]. Thus, the solution to the Fokker-Planck

Fig. 1 Time-series peripheral blood transcriptome encodes the
CML state-space. A The experimental design collected time-series
sampling of peripheral blood from four cohorts of mice over
19 weeks. All mice had Tet-inducible expression of the BCR::ABL
fusion gene which resulted in CML when expressed. B Singular value
decomposition (SVD) was performed on the full transcriptome using
all time points from both the CML and control mouse cohorts to
identify the CML state-space (PC2). When plotted against time, the
CML state-space showed sample disease trajectories of each sample
over time (left). PC2 was selected as the CML state-space because it
had the largest separation between control mice and the endpoint
CML samples, and because it had the best linear fit (in blue) with
BCR::ABL expression (right; Table S1). C BCR::ABL expression only
began to increase 4–5 weeks after Tet was turned off (left). Whereas
BCR::ABL expression remained undetectable at week 1 (left inset), the
CML state-space already showed a significant movement toward the
CML disease state (right; p= 0.006).
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(FP) equation corresponding to the equation of motion was used
to predict disease state-transition in the CML state-space.
To understand the system dynamics, we hypothesized that the

CML potential energy landscape could be modeled using a three-
node network that resulted in a tri-stable system (Fig. 2A) [17]. In
this system, BCR::ABL was the input signal that interacted with the
PBMC cell population. The changing PBMCs and the consequent
transcriptome variation created a double negative feedback loop
representing how leukemogenesis dysregulated the transcrip-
tome and how the dysregulated transcriptome affected the
composition (normal vs leukemic) of the cell population.
The transcriptome, represented by the location of the sample in
the CML state-space, was modeled as self-activating progressive
dysregulation of gene networks during leukemia progression [18].
The potential landscape resulting from this system ranges from a
single well centered at the health state (BCR::ABL off) to

three wells representing the most energetically favorable, CML
steady states (BCR::ABL maximum; Fig. 2B). The equations
describing the dynamics of the transcriptome in the CML potential
resulting from this three-node network are described in the
Methods.
To test if the theoretically-derived leukemogenic potential

reliably recapitulated the experimental observations, we consid-
ered the empirical distribution of the CML mouse samples in the
state-space and derived an experimental CML potential (Fig. 2C;
see Methods). The tri-stable CML potential was characterized by
five critical points identified from the kernel density estimator of
the empirical distribution (denoted c1 � c5). We labeled the stable
(minima) critical points as Early state (Es) at c1, Transition state (Ts)
at c3, and Late state (Ls) at c5 (Fig. 2C). The unstable (maxima)
critical points were labeled as Early-Transition state (T-Es) at c2 and
Transition-Late state (T-Ls) at c4; these unstable points represent
the boundaries between stable states. We also used the sample
density of the control mice to determine the location of a Health
state (Hs) labeled ch as the single stationary state and critical point
for the control mice. The samples from the control mice remained
confined to a region of the CML state-space corresponding to the
Health state (Hs) ch. Importantly, the three wells of the
experimentally derived potential directly mapped into those of
the theoretically predicted potential (Fig. 2B, C).
To predict time-to-disease [i.e., the amount of time that elapsed

before the mouse crossed the boundary of the Ls (c5)], we
modeled the location and trajectory of each mouse’s transcrip-
tome in the state-space using the CML potential and the Langevin
equation of motion. We were able to generate predicted
transcriptome trajectories that matched the observed ones using
only the data from samples collected at the first time point
(Fig. 2D). The Fokker-Planck (FP) solution of the Langevin
equation, when solved forward in time, accurately predicted
time-to-disease (Fig. 2E). As all the CML mice died after passing Ls
(c5), we also compared the time-to-disease (defined as the first
crossing of the Ls (c5) critical point) between the observed and the
predicted trajectories. The predicted and observed time-to-disease
curves overlapped and were not statistically different (p= 0.8,
Log-rank; Fig. 2F), and were highly concordant (C-index= 0.75)
demonstrating accuracy of the state-transition model’s prediction.
Of note, one CML mouse never developed disease after Tet-off
and remained healthy (Fig. 2D). Our model predicted that this
mouse would not cross Ls (c5), thereby accurately reproducing the
experimental observation.

State-transition critical points of BCR::ABL potential landscape
defined distinct disease states
In order to identify the transcriptomic drivers of CML state-
transition, we reasoned that samples from different mice must be
compared at equivalent disease states. Since mice developed CML
at different times, we could not simply rely on grouping
transcriptome samples by their collection time point. Thus, we
utilized the samples’ positions in the state-space to group them
into distinct disease states. We then compared gene expression at
each disease critical point disease [i.e., Es (c1), Ts (c3) and Ls (c5)]
with that of control samples at health critical point [i.e., Hs (ch);
Fig. 3A; Fig. S3A; Table S2].
A total of 78 differentially expressed genes (DEGs) were

identified at Es (c1) as compared to Hs (ch). A large proportion
of DEGs (55 out of 78 total DEGs) observed at the Es (c1) state were
unique to this state and were not identified in the other disease
states (Fig. 3B). Among the most upregulated genes, were Ins1
and Ins2 that encode insulin, in addition to Fam177a1 and several
SnRNAs (Table S2). Fam177a1 encodes a protein localized to the
Golgi complex and endoplasmic reticulum but of unknown
function, and when mutated, is associated with developmental
and neurological disorders [19]. Of note, BCR::ABL was not among
the upregulated DEGs at the Es (c1). Among the most

Fig. 2 State-transition model accurately predicts time-to-disease.
A The three node CML network model that produced a tri-stable
systems and captured the features of the transcriptomic CML
potential. B BCR::ABL input signal determined the shape of the CML
potential. When BCR::ABL was off (black), the system had one steady
state at the healthy (ch) state. As the BCR::ABL signal increased, the
potential gained additional steady states. When BCR::ABL signal
reached its maximum, which we used to model CML development
in this experiment, the potential had five critical points which we
labeled c1 � c5. Three of these critical points were steady states
(c1; c3; c5), and the most energetically favorable state (c5) was the
CML disease state. C Using the distribution of samples in the CML
state-space, we empirically constructed the control (left) and CML
(right) potentials. CML potentials were created by fitting distribu-
tions of samples in the CML state-space with kernel densities
(bottom). The polynomials that defined potentials (top) were then
constructed by finding the critical points of the density curves and
using those as the zeros of the derivative of the potential. D Using
only the first (week 0) time point of each sample as an initial
condition, the stochastic equation of motion was solved forward in
time for the CML and control potentials to predict the trajectory of
each sample in the CML state-space (grey lines). E The solution of the
state-transition model was given as a probability density over time
which represented the likelihood of finding a sample in the CML
state-space as time evolves. F To test the accuracy of the state-
transition model predictions, a time-to-disease analysis was per-
formed showing that there was no significant difference between
the predicted and observed trajectories (log-rank p= 0.8) and that
they were highly similar (concordance index= 0.75).
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downregulated DEGs, there were several genes encoding for
collagen and elastin. Compared to Hs (ch), the transition state Ts (
c3) presented with 366 DEGs (Fig. 3B; Table S2). In addition to
BCR::ABL, among the most upregulated DEGs, was Prrt4, encoding
for a protein predicted to be an integral component of the cell
membrane, and the lncRNA Gm6093, predicted to play a role in
cell differentiation [20, 21]. Among the most downregulated DEGs,
we observed collagen and elastin encoding genes, in addition to
Il33. Compared to Hs (ch), Ls (c5) presented with 1860 DEGs
(Fig. 3B; Table S2). In addition to BCR::ABL, among the most
upregulated DEGs, there were Pgk1-rs7, involved in glycolysis, and
Prrt4. Among the most downregulated DEG, there were several
pseudogenes and other genes coding proteins with unknown
function. Of note, 94% of DEGs identified at Ts (c3) were also DEGs
and expressed at higher levels at Ls (c5) (Fig. 3B).
Using gene set enrichment analysis (GSEA), we identified

Hallmark gene sets enriched at distinct disease states (Fig. 3C).
Compared with Hs (ch), we observed that all significantly enriched
gene sets were downregulated at Es (c1). These included Epithelial
Mesenchymal Transition (EMT), Apical Junction, and Myogenesis,
that have been previously associated with malignant

transformation [22–24]. In contrast, compared with Hs (ch), all
significantly enriched gene sets were upregulated in the Ts (c3)
and Ls (c5) (Fig. 3C). Among the most upregulated gene sets, we
found those related to metabolism, angiogenesis, and inflamma-
tion. Of note, while all enriched gene sets at the Ts (c3) and Ls (c5)
were upregulated with respect to Hs (ch), we observed that these
genes sets had higher expression at Ls (c5) compared with Es (c1),
with the exception of Pancreas Beta Cells which was down-
regulated (Fig. S3B).

Eigengene analysis quantifies DEG contribution to CML
development
To quantify the contribution of each DEG to CML development,
we used the CML state-space loading value of each gene which
we defined as CML eigengenes [25]. Located in the second
column of the matrix V� from the SVD procedure that was used to
construct the CML state-space (Table S2), the eigengene value
described the direction and the magnitude of the effect that each
gene had on the sample’s location in the state-space. Thus, by
combining the eigengenes with the expression changes at each
disease critical point with respect to Hs (ch), we quantified the

Fig. 3 Differential expression analysis performed on CML state-space disease states. A The three stable critical points of the CML state-
space (c1; c3; c5) were used to group the CML samples into Early (Es), Transition (Ts), and Late (Ls) disease states based on their location in the
CML state-space. The unstable critical points (c2; c4; dashed lines) were used as the boundaries to define the three disease states. B Differential
gene expression was performed both between the disease states and healthy control state (Hs) and between the disease states. The number
of differentially expressed genes (DEGs) contained in the intersection between the comparisons was used to determine how similar the
disease states were to each other. C Gene set enrichment analysis was performed on the log2 fold change of the healthy vs disease states to
determine which Hallmark gene sets were significantly enriched (between disease states shown in Fig. S3B). The results were summarized by
showing a heatmap of the normalized enrichment score (NES) for all significant pathways (non-significant pathways are in grey) across the
three disease states. The NES score shows the direction of expression change for each gene set. D Using the eigengenes (PC2 loading values)
used to construct the CML states-space, we determined the contribution to CML of each gene that was a DEG in the disease state vs control
comparisons. The CML contribution was determined by combining the eigengene value with the observed expression change for
that comparison (right box). The total contribution for each DEG comparison was indicated by the mean vector (black arrow) of all DEGs in each
comparison. E To visualize the contribution of each significantly enriched gene set, the total CML contribution (mean vector) for each
comparison was plotted for each comparison (missing bars indicate non-significant gene set in that comparison).
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impact of DEGs on disease onset and evolution and categorized
each gene as either a pro- or anti-CML eigengene. A pro-CML
eigengene had either a positive loading value with downregulated
expression or a negative loading value with upregulated
expression; an anti-CML eigengene had either a positive loading
value with upregulated expression or a negative loading value
with downregulated expression (Fig. 3D; S4A). The eigengenes
were then visualized in a 2D space constructed by plotting the
CML contribution vs the PC1 loading value (V1*; Fig. S4A). Of note,
since PC1 was not directly associated with BCR::ABL expression or
CML development, its selection was made simply to map the CML
contribution; any other PC could have been used instead.
The net contribution to CML of the Es (c1), Ts (c3) or Ls (c5)

DEGs was calculated as the vector mean of the vectors
representing individual DEGs (Fig. 3D; Fig. S4B). The DEGs at
Es (c1) had a net anti-CML contribution, while those at Ts (c3) and
Ls (c5) had a net pro-CML contribution. We also calculated the
CML contribution of the significantly enriched gene sets as a
mean vector of all the eigengenes in a given enriched gene set.
All the Es (c1) enriched gene sets had a net anti-CML
contribution (n= 13), whereas all the Ts (c3) and Ls (c5) enriched
gene sets had a net pro-CML contribution (n= 17 and 26
respectively; Fig. 3E; Fig. S4C).
To assess whether the eigengene-based contributions corre-

sponded to phenotypic differences between disease states, we
compared myeloid counts at Es (c1), Ts (c3), and Ls (c5) states. We
observed no myeloid cell growth at Es (c1); this was followed by an
initial expansion at Ts (c3) and further growth at Ls (c5) (Fig. S3D).

The growth of the myeloid population between Ts (c3), and Ls (c5)
was associated with an expansion of the DEGs at Ls (c5) and an
increase in enrichment in many of the shared processes (Fig. 3B;
Fig. S3B). GSEA indicated these genes to be members of
metabolism- and inflammation-related gene sets. In addition,
405 downregulated DEGs were unique to the Ls (c5) state (Fig. S3C;
Table S2). However, over half of the downregulated DEGs were
unnamed genes and failed to be significantly enriched in any
pathway (265 of 405). Nevertheless, the eigengene analysis
showed that all but one of the downregulated Ls (c5) DEGs had
a pro-CML contribution.

Gene expression dynamics identify drivers of CML state-
transition
While we used the state-space critical points as a classifier of
distinct disease states, the continuous state-space coordinates
could also be used to align transcriptomes by their progress
toward CML. By doing so, we created a pseudotime ordering of
the disease, which allowed us to identify the patterns of gene
expression involved in CML transformation. To this end, we used a
correlation-based analysis to identify subsets of genes with similar
patterns of expression during disease evolution (hereafter called
gene “modules”; Fig. S5). At Es (c1), we found no gene modules,
meaning that the DEGs identified at Es (c1) were not co-regulated
at subsequent states (Fig. 4A, left; Fig. S5A). At Ts (c3), we identified
an “increasing module”, meaning that these DEGs were co-
regulated and continued to increase during disease progression
(Fig. 4A, middle; Fig. S5B). At Ls (c5), we identified two gene

Fig. 4 CML state-space aligns samples and identifies transition driver genes. A Using a correlation analysis to identify the DEGs with similar
dynamics during CML development, gene modules were identified for the unique DEGs of the three disease states (Es, Ts, Ls; Fig. S3C, S4A). To
visualize the expression of each detected gene module that had a mean correlation coefficient > 0.25, the mean log-normalized mean-
centered expression of all genes in the module was plotted as function of the CML state-space coordinate for each CML sample. B, C For the
early transition point (T-Es; B) and the late transition point (T-Ls; C) DEGs that were involved in state-transition were identified by correlating
the expression of each DEG with the shape of the potential around each of the transition points (left top; Fig. S6B). To identify the driver gene
processes, the driver genes for each transition point were then extended to their high-confidence interaction partners using STRINGdb
(Fig. S6C). The CML contribution were summarized for the resulting protein-protein interaction networks (left bottom). The processes enriched
by the STRINGdb extended driver genes involved were identified and their CML contribution was calculated (right).

D.E. Frankhouser et al.

773

Leukemia (2024) 38:769 – 780



“modules”, one increasing and one decreasing (Fig. 4A, right;
Fig. S5C).
Different from the increasing gene module observed at Ts (c3),

the increasing gene module at Ls (c5) had non-linear dynamics, as
it presented an inflection point near T-Ls (c4) (Fig. 4A). The
inflection represented the point where the rapid increase of DEG
expression started to slow down and became constant. The
“decreasing” Ls (c5) gene module also had a non-linear expression
curve, with an inflection occurring at approximately T-Ls (c4) and
continued through Ls (c5) (Fig. 4A). It is important to emphasize
that the expression dynamics of the gene modules were not
derived from any critical point information; rather were derived
independently, using only the mean expression of the DEGs and
the CML state-space location of each transcriptome sample. Thus,
it was striking to us that the inflections of the gene modules
occurred almost exactly at T-Ls (c4), an unstable critical point
between Ts (c3), and Ls (c5). The observation of co-regulation at
the unstable critical points led us to hypothesize that these types
of coordinated expression changes could break the equilibrium of
a stable critical point and drive the disease transition from that
stable state of the disease to the next one.
To identify the driver genes of disease transition between two

otherwise stable states, we correlated the expression of individual
DEGs with the shape of the CML potential (Fig. 4B, C; Fig. S6A). For
this analysis, we included all DEGs (n= 3304) resulting from the
comparisons of the stable disease states with the health state (Hs).
We identified 194 DEGs at the T-Es (c2) state and 497 at the T-Ls (
c4) state whose expression followed the CML potential (Fig. S6B).
All but one of the T-Es (c2) genes and all T-Ls (c4) genes had a pro-
CML contribution, which supports the hypothesis that these genes
drove the CML state-transition. Interestingly, only 23 DEGs were
identified as being involved in both T-Es (c2) and T-Ls (c4)

transitions, suggesting that unique and distinct processes likely
drove disease evolution from across the distinct disease states
(Fig. S6B).
To investigate which cellular processes were involved in the

transition between two stable states [i.e., Es (c1) to Ts (c3) and Ts (c3)
to Ls (c5)], we constructed protein-protein interaction networks and
performed pathway enrichment analysis (Fig. S6C). Both T-Es (c2) and
T-Ls (c4) were significantly enriched for protein interactions
(p < 0.0001; 31 and 232 interacting proteins respectively). The T-Es
(c2) transition point was characterized by inflammation and immune
related processes and involved multiple collagen genes (Fig. 4B;
Table S3). T-Ls (c4) transition point was characterized by metabolism-
related processes in addition to inflammation- and immune-related
processes also enriched in T-Es (c2) (Fig. 4C, S6C; Table S3). All
enriched gene sets for both T-Es (c2) and T-Ls (c4) had a pro-CML
contribution, supporting their role in driving disease evolution.

State-space transition predicts treatment response
To investigate how treatment impacted CML state-transition, we
performed time-series experiments using two approaches
(Figs. 1A, 5A, S7A). The first approach made use of the CML
mouse model’s ability to induce and eventually suppress BCR::ABL
expression upon tetracycline discontinuation (Tet-off) and sub-
sequent re-administration (Tet-on); hence we referred to this
treatment as Tet-off-Tet-on (TOTO). The TOTO approach repre-
sented a hypothetical best scenario where a treatment is able to
completely suppress BCR::ABL expression (Fig. S7A). The second
approach consisted of treatment with nilotinib, a TKI used in
clinical practice (hereafter referred to as “TKI”). Because TOTO
suppressed BCR::ABL expression, TKI was assumed to be less
effective than TOTO since it inhibited BCR::ABL at the protein level.
Both Tet-on and TKI treatments were initiated six weeks after

Fig. 5 CML treatment effects determined using CML state-space disease states. A Samples from the TOTO (left) and TKI (center) were
projected into the CML state-space to allow the treatment effects to be compared to the CML disease states (right). B DEGs were identified by
comparing the TOTO post-Rx and both the TKI Rx and post-Rx samples to the controls (Hs). All intersections with 10 or more DEGs are shown
(all intersections shown in Fig. S7B). C After removing the age-related DEGs that were detected when comparing the early vs late control
samples, the CML contribution of the 38 TOTO post-Rx vs controls DEGs were plotted and showed a small overall pro-CML contribution (black
arrow). D The CML contribution of each of the TKI Rx vs control (Hs) DEGs were shown along with the overall CML contribution for all DEGs
(black arrow). E Since the TKI Rx samples returned to a similar CML state-space location, the significantly enriched (adjusted p < 0.0001) GSEA
Hallmark gene sets for the TKI Rx vs transition (Ts) DEGs were determined to identify what processes were affected by TKI treatment.
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Tet-off. In the TOTO group, Tet-on was continued for 12-weeks. In
the TKI cohort, TKI was administered for 4 weeks, and the mice
were followed for the subsequent 12 weeks, for a total of 18-
weeks or until they succumbed to disease, whichever occurred
first.
To determine the effect of each therapy on CML state-transition,

the transcriptome dynamics of mice receiving one of the two
treatments were compared with those of the untreated diseased
and healthy mice at each of the disease [Es (c1), Ts (c3), Ls (c5)] or
health Hs (ch) states respectively (Fig. 5B, S7B; Table S4). In order to
assess post-treatment CML disease states, we used the eigengenes
to project the TOTO and TKI samples into the CML state-space (see
Methods). Supported by an observed relationship between the
number of DEGs and the mean location of sample groups in the
state-space, we used both the number of DEGs and the state-
space to assess transcriptomic similarities or differences (Fig. S7C).
We defined treatment response as movement of the transcrip-
tome in the state-space away from the CML LS (c5) state and
toward Hs (ch), with a complete response being a return to health
[Hs (ch)].
When disease states of TOTO and TKI treated mice were

compared with those of controls, we observed significantly
different results. In the TOTO cohort, we observed a rapid
movement from LS (c5) toward Hs (ch) in the state-space soon
after tetracycline was re-administered. Post-treatment TOTO
samples were tightly distributed around the c2 critical point,
which represented a near-health, newly created stable state in the
treatment transformed potential landscape (Fig. 5A). When treated
mice at c2 were compared to the controls, few DEGs were
identified (Fig. 5A, B). The observed DEGs and enriched gene sets
that were detected by comparing TOTO mice to healthy controls
were similar to those observed as time-related effect in the control
mice alone and therefore, were possibly associated with aging
(Fig. S7D). However, after subtracting out the time-related DEGs,
38 DEGs remained and had a small pro-CML contribution (Fig. 5C),
indicating that once BCR::ABL transformation had occurred, the
transcriptome maintained some leukemic fingerprints even if
BCR::ABL expression is completely suppressed.
Different from TOTO, TKI treatment moved the mouse

transcriptomes more slowly from the initial pre-treatment Ls (c5)
state. These transcriptomes reverted only to Ts (c3) and none of
these mice achieved the response of the TOTO mice (Fig. 5A).
When compared to controls, the TKI treated mice had 1269 DEGs
(Fig. 5B), and a net pro-CML contribution with BCR::ABL the top
pro-CML DEG (Fig. 5D). Using GSEA to compare TKI treatment with
healthy controls, gene sets that were upregulated during CML
remained upregulated during TKI treatment (Fig. 5E) and had an
overall pro-CML contribution (Fig. S7F). Of note, BCR::ABL was the
top ranked pro-CML DEG.

Modeling the effects of TOTO and TKI on the CML potential
We next tested whether treatment could alter the potential
landscape and, in turn, whether the state-transition model could
predict treatment response at the earliest time point after
treatment initiation. We started by identifying which parameters
should be perturbed to recapitulate the state-transition observed
with each of the treatments. To model TOTO treatment, we set the
BCR::ABL signal to zero (S ¼ 0) and introduced a treatment
response parameter γTOTO which modulated the action of the
signal on the transcriptome with γTOT0 ¼ 1:1 (Fig. 6A, left). This
resulted in a potential with a new steady state occurring near the
T-Es (c2) state, the exact location in the state-space where the
TOTO mice mapped post-treatment (Fig. 6A, right). We observed
that both a decrease in BCR::ABL expression and an increase in the
transcriptome sensitivity to BCR::ABL were necessary to derive a
post-treatment potential that matched the observed TOTO
trajectories. Once BCR::ABL signal was set to zero, the modulation
of the single parameter g�ab was sufficient to transform a pre-

treatment tri-stable CML potential (VCML xð Þ) into a system with
only one stable state corresponding to c2 following TOTO
treatment (VTOTOðxÞ). Using the TOTO potential (VTOTOðxÞ), we
then produced simulated TOTO trajectories that matched those
observed (Fig. 6B; Fig. S8).
To model TKI treatment, we reduced the BCR::ABL signal

(BCR::ABL > 0) and introduced a treatment response parameter γTKI
(Fig. 6C left). In contrast to TOTO, the post TKI potential was
produced only when both the BCR::ABL signal was reduced (
S < Smax) and the response rate between the PBMCs and the
BCR::ABL signal was increased, with γTKI ¼ 1:4. The change in this
single parameter was sufficient to transform the tri-stable CML
potential (VCMLðxÞ) into a bi-stable potential with new stable states
at c1 and c3 following TKI treatment (VTKIðxÞ). Importantly, the TKI
model predicted that the only way TKI treated mice could return
to Hs (ch) was if the BCR::ABL level approached zero (Fig. 6C right).
When we used this potential to simulate TKI treatment, we again
observed an accurate prediction of the observed transcriptome
trajectories (Fig. 6D; Fig. S8).

DISCUSSION
We have previously reported that state-transition models can be
used to predict time-sequential transcriptome dynamics and
disease evolution in biological systems such as murine acute
myeloid leukemia (AML) [9, 10, 18]. Constructing a state-space to
model biological transitions can capture changes produced by
genetic, epigenetic, or microenvironmental perturbations on the
transcriptome, which simultaneously deregulate multiple biologi-
cal processes in order to generate a phenotype such as the
leukemic transformation observed here [26–29]. We have pre-
viously shown that micro-RNA and protein abundance (proteomic)
data can also be used to create a state-space and characterize
state-transitions [10, 30]. Using a transgenic CP CML mouse model
that recapitulated the human disease, we report here the
application of state-transition theory to interpret the temporal
transcriptomic changes involved both in CML development and in
treatment (where CML is “reversed”) to accurately predict
outcome and treatment response.
We demonstrate the feasibility of predicting state-transition

dynamics and time to disease using the time-sequential
transcriptomic data collected from a murine model of CML. Our
results show that the movement of the blood transcriptome in the
state-space could be modeled as that of a particle undergoing
Brownian motion in a leukemogenic potential defined by stable
and unstable critical points. We hypothesized that BCR::ABL
creates a leukemogenic potential that arises due to the action of
BCR::ABL on both the PBMCs and the transcriptome. We also
derived a CML potential landscape based on the position of the
critical points derived from the observed distribution of the CML
mouse transcriptomes in the state-space. The theoretically and
experimentally derived landscape potentials were qualitatively
identical and could be used to predict the trajectory of disease
development over time. We showed that at the earliest time
points, the CML state-space was more sensitive at detecting the
disease state transition than the BCR::ABL expression itself.
Furthermore, we showed that our state-transition model predicted
transcriptome trajectories that matched well the observed ones
utilizing only the transcriptomic state derived from data collected
at the first time point after Tet-off BCR::ABL induction.
The biological features that characterized the distinct disease

states were inferred from the analysis of DEGs obtained by
comparing gene expression at each of the CML critical points with
the control health state. Because the SVD decomposed the gene
expression into linear combinations of orthogonal basis vectors,
we were able to assess the contribution of individual genes, DEGs,
or entire Hallmark gene sets to CML initiation and growth.
Although the SVD can produce artifacts when applied to time-
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series data, we observed no oscillations or artifacts; moreover, we
observed a strong correlation between state-space trajectories
and BCR::ABL expression as an immunophenotypic marker of
disease, supporting our interpretation of the principal component
as a transcriptomic state-space [31]. We observed that the Es (c1)
state was largely characterized by anti-CML DEGs that resisted
CML development whereas the Ts (c3) and Ls (c5) disease states
were characterized by pro-CML DEGs associated with the move-
ment of state-transition toward the late disease state. In other
words, the anti-CML contributions present only at Es (c1), were
suggestive that at this early state of the disease, the transcriptome
changes opposed BCR::ABL-driven disease development, whereas
the pro-CML contribution as observed at Ts (c3) and subsequently
at Ls (c5) suggested that transcriptome changes at these points
overwhelmed any initial anti-leukemic force and contributed to
disease evolution.
Interestingly, while we noted that genes involved in inflamma-

tion and angiogenesis were enriched at both Ts (c3) and Ls (c5), we
also observed upregulation of genes involved both in glycolysis
and oxidative metabolisms at Ls (c5), suggesting an increase in the
bioenergetic demand in the state of highest growth [5, 32, 33].
Studying the changes in the expression of individual DEGs, we
also discovered that groups of co-regulated genes (i.e., gene
modules) that increased or decreased concurrently. Some of these
gene modules displayed non-linear expression trends with
inflection points that mirrored the shape of the CML potential at

the unstable critical points T-Es (c2) and T-Ls (c4). Therefore,
we hypothesized that they were likely the major drivers of
transition between two stable disease states. Among others,
metabolic processes were involved in the transition between Ts
(c3) and Ls (c5), suggesting that the increased metabolic demand
was one of the possible causes of the transition to the final state of
the disease, when maximum leukemic growth was observed.
Importantly, we also applied the state-transition model to predict

response to therapy. To this end, first we treated CML mice in Ls (c5)
with TOTO, which resulted in complete suppression of BCR::ABL. We
showed that TOTO brought the system rapidly back close to Es (c1),
without reaching it. In fact, TOTO-treated mice remained at a new
stable critical point TOTO (c2), with a small number of pro-CML
DEGs. Thus, it is likely that once the system is altered, some
fingerprints of BCR::ABL transformation remain, despite complete
suppression of the fusion gene. Importantly, using only the initial
time point and treatment start date, our potential model accurately
predicted treatment response and post-treatment dynamics.
In contrast, TKI treatment returned the transcriptome only to Ts

(c3). Once TKI treatment was completed, the transcriptome rapidly
returned to Ls (c5) and mice had disease relapse. This mimics a
possible trend observed in those patients that are either not
compliant to the treatment and need to stop due to intolerable
side-effects or have developed TKI resistant disease that evolves to
a blast phase. While the model accurately predicted TKI
trajectories, it also predicted that with administration of higher

Fig. 6 State-transition model predicts CML treatment dynamics. A The model for the TOTO cohort was modified from the CML model to
include turning off the BCR::ABL input signal and increasing the γTOTO term in the model (left). As the input BCR::ABL signal was decreased in
this model, the potential transforms from a tri-stable CML potential (red curve) to a potential with one state that has minimum energy at the
unstable transition critical point c2 (teal curve; right). B Using the TOTO potential, sample trajectories were predicted by solving the stochastic
equation of motion forward in time using the first time point as an initial condition. C The model for the TKI cohort was modified to reduce
the BCR::ABL signal and increase the γTKI term in the model (left). The TKI potential (purple) lies between the CML (BCR::ABL max) and the
BCR::ABL off potentials. The model showed that the healthy state (Hs) could only be achieved as an energetically favorable state while on TKI if
the BCR::ABL signal approached zero. D Using the TKI potential, sample trajectories were predicted by solving the stochastic equation of
motion forward in time using the first time point as an initial condition.
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dose or more effective TKIs, the system may potentially return to
the healthy state, Hs (ch). However, the optimal dosage of TKI
compatible with the return to health may not be attainable in vivo
[34]. Although the treatment response parameters between TOTO
and TKI may not be directly compared, it is interesting that the
treatment response effect for TOTO (γTOTO) was higher than that
for TKI (γTKI) suggesting that the suppression of BCR::ABL gene
with tetracycline had a greater positive impact on the transcrip-
tome than BCR::ABL protein inhibition by TKI.
In summary, we show here that state-transition dynamical

models can predict disease evolution and treatment response in a
murine model that recapitulates human disease. It is possible
therefore that this approach could be applied to other -omic data
types and translated into the clinic as an assay to predict disease
evolution and treatment response at the earliest time points, even
before phenotypic changes will occur.

METHODS
Mouse model
Inducible transgenic SCLtTA/BCR::ABL mice of B6 background were
maintained on tetracycline (tet) water at 0.5 g/L. Tet withdrawal (tet-off)
results in expression of BCR::ABL and generation of a CML-like disease in
these mice with a median survival of approximately 10 weeks after
induction of BCR::ABL, which recapitulates human CP CML. Six to eight
week old male and female SCLtTA/BCR::ABL mice were randomly divided
into 4 groups: control (Tet on, n= 3 mice), CML (Tet off, n= 6 mice), Tet
Off-Tet On (TOTO; Tet off 6 weeks then Tet on for 12 weeks, n= 4 mice),
TKI [Tet off 6 weeks then TKI (Nilotinib, 50 mg/kg, oral gavage, daily)
treatment 4 weeks, n= 7 mice]. Blood was collected from these mice
weekly, i.e., before BCR::ABL induction (t= 0) and weekly after induction up
to 18 weeks (t= 1 to 18) or when the mouse developed leukemia and
became moribund, whichever event occurred first.

RNA-seq sequencing, data processing and analysis
For each mouse, peripheral blood samples were accrued for all timepoints
before for RNA extraction. Total RNA was extracted from whole blood
using the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany); quality and
quantity were estimated using a BioAnalyser (Agilent, Santa Clara, CA).
Samples with a RIN > 4.0 were included. Sequencing libraries were
constructed using the KapaHyper with RiboErase (Kapa Biosystems,
Wilmington, MA), loaded on to a cBot system for cluster generation, and
sequenced on a Novaseq 6000 (Illumina) with paired end 100-bp for
mRNA-seq to a nominal depth of 40 million reads. To mitigate batch
effects, samples were assigned to flow cells such that treatments were
approximately evenly represented across runs and samples from the same
mouse shared a run. Image processing and base calling were conducted
using Illumina’s Real-Time Analysis pipeline.
Raw sequencing reads were processed with the nf-core RNASeq pipeline

version 3.7 [35]. Briefly, trimmed reads were mapped using STAR to the
GRCm39 reference (Genbank accession GCA_000001635.9) amended with
the human BCR::ABL1 fusion gene sequence (Genbank accession
EF158045.1) using GENCODE annotation Release m28 [36]. Each library
was subjected to extensive quality control, including estimation of library
complexity, gene body coverage, and duplication rates, among other
metrics detailed in the pipeline repository [35]. Transcript abundance was
estimated across genomic features using Salmon and merged into a matrix
of pseudocounts per million transcripts (TPM) per gene for each sample
[37]. BCR::ABL1 transcript abundance was measured by counting reads that
spanned the fusion boundary. Surrogate variable analysis was used to
check for confounding experimental effects [38]. None was apparent (data
not shown); however, for all comparisons, sex was used as a covariate in
differential expression analyses using the default setting of DESeq2 and
counts generated by tximport using the Salmon abundance estimation
[39]. The RNA-seq dataset is submitted to the Gene Expression Omnibus
and assigned accession number GSE244990.

State-space construction
To construct the CML state-space, we performed singular value decom-
position (SVD) on all expressed genes in the transcriptome (n= 39,927),
which we defined as all genes expressed in at least one sample. By

including all time points of the time-series peripheral blood samples in
both the control and the BCR::ABL expressing CML mice, we both captured
the full transcriptional system and spanned all intermediate disease states
(Fig. 1B). The SVD is a dimensionality reduction technique that produces
low rank approximations of the input data, called principal components
(PCs), that capture sources of variation in the original data set (Fig. S1B).
Among the principal components, we found an axis on the PC1 vs PC2
plane to be the component with the best separation between the control
and CML endpoint samples. To align this axis with the y-axis, we found the
rotation angle that made the linear fit line of all control samples parallel to
the x-axis. After applying a 37.8° rotation to the PC1 vs PC2 plane, we
identified the rotated PC2 to be the principal component that best
encoded CML development. We determined this based on two criteria: 1) it
had the largest separation between the control samples and the endpoint
samples for the CML mice; and 2) it demonstrated the best correlation with
both BCR::ABL expression (abundance and log-normalized) and the
myeloid population in the CML mice (Fig. S1A; Table S1). Therefore, we
defined PC2 as the CML state-space. When we plotted PC2 against time for
all samples, the CML state-space provided disease trajectories for each
mouse (Fig. 1B). Despite being low, the correlation with BCR::ABL was by
far the best for the CML state-space compared to all other PCs (R2= 0.48;
Table S1). Although PCA can be misinterpreted when applied to time-
series data with temporal correlations, we are confident in our application
and interpretation here because of the correlation with BCR::ABL
expression, phenotypic disease manifestation, and the absence of
oscillations or other artifacts in the PCs [31, 40]. This is due to the
orthogonality of the control (tet on) and CML (tet off) mice transcriptome
endpoints and dynamics, which enable an orthogonal decomposition of
the data and identification of the leukemia signal from the background/
noise.
Using the expression of the same genes used when performing SVD to

construct the state-space, the projection of the TOTO and TKI treatment
cohorts was performed as follows: the treatment expression values XT ,
were multiplied by the state-space loading values, V , and the inverse of the
eigenvalues, Σ�1 (Fig. 3B). The second column of the resulting treatment
cohort PC matrix, UT , represented the coordinates of the treatment
samples in the CML state-space.

Mathematical model
The three compartment mechanistic model used to generate the CML,
TOTO, and TKI potentials is adapted from Dey and Barik 2021 [17]. Using
the double negative feedback loop B (DNFL-B) circuit framework, BCR::ABL
concentration is modeled as the signal (S) acting on PBMC cells (A) and the
corresponding observable variation in the transcriptome (B), as

dA
dt

¼ GA S; Bð Þ � kAA

dB
dt

¼ GB A; Bð Þ � kBB

where GAðS; BÞ and GBðA; BÞ are rate functions relating the concentration of
the signal to the cell and transcriptional states as

GA S; Bð Þ ¼ gA;S�B�H
� Sð ÞH� Bð Þ þ gA;SþB�H

þ Sð ÞH� Bð Þ
þ gA;S�BþH

� Sð ÞHþ Bð Þ þ gA;SþBþH
þ Sð ÞHþðBÞ

and similarly for GBðA; BÞ, see Dey and Barik 2021. The functions H� and Hþ

are switching Hill functions given by

H� xð Þ ¼ 1

1þ x
x0

� �n

and Hþ xð Þ ¼ 1� H�ðxÞ. The parameters are as stated in Dey and Barik
Table S2 for the DNFL-B circuit model.
The effective potential V xð Þ for the system is given by integrating the

effective force of the signal (S) on the cells (A) and observable
transcriptome (B) as

F B; Sð Þ ¼ GB G0
A S; Bð Þ; B� �� kBB

Where G0
A is the steady state rate of A dA

dt ¼ 0, so that

V B; Sð Þ ¼ �
Z B

0
GB G0

A S; xð Þ; x� �� kBx
� �

dx

D.E. Frankhouser et al.

777

Leukemia (2024) 38:769 – 780



is a function of the state variable B, which in our case is the state-space
coordinate corresponding to PC2, which parametrically depends on the
signal, or BCR::ABL expression level S.

Mean squared displacement analysis
Mean squared displacement (MSD) was calculated for each mouse from
their CML state-space trajectories vs time (Fig. S2A). The MSDs of each
experimental group was fit to a linear model and the slope of the line was
used to estimate the diffusion coefficient (β) used in the state-transition
model (Fig. S2B).
The MSD at a time t is given as MSD ¼ hjxðtÞ � xmj2i, where x tð Þ is the

position of trajectory from the simulation by a treatment model and xm is
the CML state-space trajectory of the mouse model. The MSD was
calculated for each mouse for each time point t, and the average MSD for
all time points was evaluated by changing the coefficient of treatment
force γ and post-treatment diffusion coefficients β. The MSDs were
examined within the range of γ for 0:1 � γ � 2:0 and β for
0:001 � β � 0:1, and the combination of values of γ and β that has the
minimum MSD was selected. The search ranges of parameter, β, was
empirically estimated from the average slope of linear regression to CML
and control mouse data. The upper bound of γ was determined by the
convergence of trajectories of the simulation.

DEG expression dynamics
Expression dynamics were investigated by performing hierarchical
clustering on the correlation matrixes produced using all CML mouse
time points for each of the unique Early, Transition, and Late DEGs. Genes
with similar expression dynamics (gene modules) were determined by
selecting cutting the dendrogram to obtain clusters and then selecting for
clusters that had a median correlation coefficient greater than 0.25
(Fig. S5A–C). For each gene module, the expression dynamic plots were
created by calculating the mean of the log-normalized mean-centered
expression for each CML sample and then plotting that value vs the CML
state-space coordinate of the sample (Fig. 4A).

Transition point driver genes
To identify which genes had expression dynamics that were most similar to
the inflection points of the CML potential, we used the following approach
(Fig. S6A). First, we included all DEGs obtained by comparing CML disease
state vs both healthy (ch) and other CML disease states in the analysis.
Second, we defined each transition point by selected the CML samples that
were located near the T-Es (c2) (CML state-space coordinates= [c1; c3]) or the
T-Ls (c4) (CML state-space coordinates= [c3; c5]). Finally, we performed both
a correlation analysis and linear regression separately for the T-Es (c2) and the
T-Ls (c4) transition points between the log-normalized mean-centered
expression and the value of the potential at the corresponding CML state-
space of each sample. The driver genes for each transition point were those
genes with a correlation coefficient greater than 0.5 and a linear regression
significance of p < 0.05 (Fig. S6B). To identify the processes that were
involved at each transition point, we used STRINGdb protein-protein
interaction database to extend the driver genes to all high-confident
(interaction score > 900) interaction partners (Fig. 4B, C) [41]. Using the
drivers plus their interaction partners, EnrichR gene set enrichment analysis
was performed on the Hallmark gene sets to identify the significantly
enriched transition point processes (Fig. 4B, C) [42, 43]. Since the T-Ls
network was quite large and included a number of enriched gene sets, we
identified the comprising subnetworks and performed EnrichR on each
subnetwork to better resolve the involved processes (Fig. S6C)

TOTO and TKI treatment simulations
We integrated treatment into the state-transition treatment model by

modeling the treatment as a force that affects both the potential (F
*

) and
internal energy of the particle, or the diffusion rate (~R). The equation of
motion for the transcriptome particle is then given by the Langevin
equation as

dXt ¼ �∇Up þ F
*� �

dt þ
ffiffiffiffiffiffiffi
2 R
*

q
dBt;

where the position of the particle in the CML potential is denoted by Xt ,
and Bt is a Brownian stochastic process that is uncorrelated in time
Bi ; Bj
	 
 ¼ δi;j .

The corresponding probability distribution p x; tð Þ at time t is given by a
Fokker-Plank (FP) equation including the treatment force F

*
and diffusion

vector R
*

as follows:

∂

∂t
p ¼ ∂

∂x
�∇Up þ F

*� �
pþ R

* ∂2

∂x2
p:

We described the Tet-off CML potential as
∇Up ¼ a x � c1ð Þ x � c2ð Þ x � c3ð Þ x � c4ð Þ x � c5ð Þ, with critical points c1,
c2, c3, c4 and c5 as identified in the state-space. The state-transition
potential Up was mapped to the potential VCMLðxÞ using the critical points
in the state-space as follows.
For TOTO treatment, the CML and normal state-transition potentials

approximated those generated by the network model as

∇Up�TOTO�CML ¼ a x � c1ð Þ x � c2ð Þ x � c5ð Þ � VTOTOðxÞ;

∇Up�TOTO�normal ¼ a x � c2ð Þ � VðxÞ:

The transformation from CML to normal was therefore given as

∇Up�TOTO ¼∇Up�TOTO�CML �∇Up�TOTO�normal

¼aðx � c2Þ x2 þ c1 c5 � xð Þ � c5x � 1
� �

:

The TOTO treatment started by reintroducing Tet at t= 6 until the study
endpoint, therefore, the treatment force, ~FTOTO , and diffusion vector ~RTOTO
were given as follows:

~FTOTO ¼ γTOTOH t � tTet�onð Þ∇Up�TOTO;

~RTOTO ¼ β�1 þ β�1
Tet�on � β�1� �

H t � tTet�onð Þ:

The parameter γTOTO represents the treatment strength, H is the
Heaviside step function and tTet�on is the timing when Tet treatment
started.
For TKI, the CML and normal potentials were approximated using critical

points and midpoints between c1 and c5 based on the observations from
the network model given as follows:

∇Up�TKI�CML ¼ a x � c1ð Þ x � c2ð Þ x � c5ð Þ � VTKIðxÞ;

∇Up�TKI�normal ¼ a x � c1ð Þ x � c2ð Þ x � c3ð Þ � VðxÞ:

The transformation from CML to normal for TKI treatment was therefore
given as

∇Up�TKI ¼ ∇Up�TKI�CML �∇Up�TKI�normal ¼ aðc3 � c5Þðx � c1Þðx � c2Þ

The TKI treatment was introduced from t= 6–9, incorporating the
nilotinib half-life, λ [44]. The treatment force for TKI, ~FTKI , and ~RTKI , were
defined as the following,

~FTKI ¼ γTKI exp �λf t � tTKI�offð ÞH t � tTKI�offð ÞgH t � tTKI�onð Þ∇Up�TKI;

~RTKI ¼ β�1
TKI þ β�1

TKI�on � β�1
TKI

� �ðH t � tTKI�onð Þ � H t � tTKI�offð ÞÞ
þ β�1

TKI�off � β�1
TKI

� �
H t � tTKI�offð Þ:

In the model, the transition from a normal potential to a CML potential
was approximated using three critical points using c1, c2 and c5 as
∇Up�CML ¼ a x � c1ð Þ x � c2ð Þ x � c5ð Þ, and ∇Up�normal ¼ a x � c1ð Þ x � c5ð Þ.
A FP equation was solved to generate the probability density in the

state-space for each treatment, TOTO, TKI, and CML using the state-
transition potentials. The FP equation for the TOTO system is given by

∂

∂t
p ¼ ∂

∂x
�∇Up�TOTO�CML þ~FTOTO

� �
pþ~RTOTO

∂2

∂x2
p

For TKI, the FP equation is given by

∂

∂t
p ¼ ∂

∂x
�∇Up�TKI�CML þ~FTKI

� �
pþ~RTKI

∂2

∂x2
p
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and

∂

∂t
p ¼ � ∂

∂x
∇Up�CMLpþ β�1

CML
∂2

∂x2
p

for the CML system. The probability density and trajectories at a given time
were quantified by solving each FP solution with the initial condition given
by the data at the initial time point Table S5.

Time to disease prediction
To compute the probability of disease progression, we integrated the
solution of the Fokker-Planck equation beyond the critical point c5 over
time as

P½c5jt� ¼ 1�
Z 1

c5

Z t

0
pðx; τÞdxdτ

where p x; tð Þ is the solution to ∂
∂t p ¼ ∂

∂x ð�∇Up þ F
*Þpþ R

*
∂2

∂x2 p with initial
conditions given by the PC2 values at time t= 0 of the CML (tet-off)
samples. The continuous curve given by P½c5jt� was then evaluated at the
sample observation timepoints, corresponding to 1-week intervals. The
observed time to disease was given by the timepoint at which the CML
state-space trajectory crossed the c5 critical point and was computed for
each mouse. The predicted and observed time to disease curves were
compared using the log-rank test (p= 0.88). As an additional statistical
test, we applied the concordance index (C-index= 0.747) to show that
the predicted time to state-transition was concordant with the observed
[45, 46].

Early vs late control analysis
An analysis comparing the early (first five time points) vs late (last five time
points) control samples was performed to determine how the samples
changed over time since they were observed to move downward in the
CML state-space (Fig. S7D; top). The total CML contribution of the 118 DEGs
identified showed a small pro-CML contribution in the late controls
(Fig. S7E; bottom left). The significantly enriched Hallmark gene sets from
GSEA were very similar to those identified when the TOTO post-Rx were
compared to all Hs samples (Fig. S7E; bottom right). Because of the small
observed pro-CML effects observed in this analysis that could be due to
aging processes in the mice over the course of the experiment, the TOTO
post-Rx DEGs were controlled for aging by removing the DEGs observed
from the early vs late control analysis.

CODE AVAILABILITY
All code used to analyze and model the data and to generate figures and tables are
available at: https://github.com/cohmathonc/CML_mRNA_state-transition.

REFERENCES
1. Cortes J, Pavlovsky C, Saußele S. Chronic myeloid leukaemia. Lancet (Lond, Engl).

2021;398:1914–26.
2. Goldman JM, Melo J V. Targeting the BCR-ABL tyrosine kinase in chronic myeloid

leukemia. N. Engl J Med. 2001;344:1084–6.
3. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of

a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive
cells. Nat Med. 1996;2:561–6.

4. Zhang B, Zhao D, Chen F, Frankhouser D, Wang H, Pathak K V, et al. Acquired miR-
142 deficit in leukemic stem cells suffices to drive chronic myeloid leukemia into
blast crisis. Nat Commun. 2023;14:1–21.

5. Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, et al. Targeting
mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic
myeloid leukemia stem cells. Nat Med. 2017;23:1234–40.

6. Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells:
targeting therapeutic implications. Stem Cell Res Ther. 2021;12:1–27.

7. Mahon FX, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al. Discontinuation
of imatinib in patients with chronic myeloid leukaemia who have maintained
complete molecular remission for at least 2 years: the prospective, multicentre
Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11:1029–35.

8. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, et al. Safety
and efficacy of imatinib cessation for CML patients with stable undetectable
minimal residual disease: results from the TWISTER study. Blood.
2013;122:515–22.

9. Rockne RC, Branciamore S, Qi J, Frankhouser DE, O’Meally D, Hua WK, et al. State-
transition analysis of time-sequential gene expression identifies critical points
that predict development of acute myeloid leukemia. Cancer Res.
2020;80:3157–69. https://doi.org/10.1158/0008-5472.CAN-20-0354.

10. Frankhouser DE, O’Meally D, Branciamore S, Uechi L, Zhang L, Chen YC, et al.
Dynamic patterns of microRNA expression during acute myeloid leukemia state-
transition. Sci Adv. 2022;8:1664.

11. Janowski M, Ulańczyk Z, Łuczkowska K, Sobuś A, Rogińska D, Pius-Sadowska E, et al.
Molecular changes in chronic myeloid leukemia during tyrosine kinase inhibitors
treatment. focus on immunological pathways. Onco Targets Ther. 2022;15:1123.

12. Iezza M, Cortesi S, Ottaviani E, Mancini M, Venturi C, Monaldi C, et al. Prognosis in
chronic myeloid leukemia: baseline factors, dynamic risk assessment and novel
insights. Cells. 2023;12:1703.

13. Giustacchini A, Thongjuea S, Barkas N, Woll PS, Povinelli BJ, Booth CAG, et al.
Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in
chronic myeloid leukemia. Nat Med 2017;23:692–702.

14. Ross DM, Pagani IS, Irani YD, Clarson J, Leclercq T, Dang P, et al. Lenalidomide
maintenance treatment after imatinib discontinuation: results of a phase 1 clin-
ical trial in chronic myeloid leukaemia. Br J Haematol. 2019;186:e56–e60.

15. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B, et al. Gene expression
changes associated with progression and response in chronic myeloid leukemia.
Proc Natl Acad Sci USA. 2006;103:2794–9.

16. Radich JP, Hochhaus A, Masszi T, Hellmann A, Stentoft J, Casares MTG, et al.
Treatment-free remission following frontline nilotinib in patients with chronic
phase chronic myeloid leukemia: 5-year update of the ENESTfreedom trial. Leu-
kemia .2021;35:1344–55.

17. Dey A, Barik D. Potential landscapes, bifurcations, and robustness of tristable
networks. ACS Synth Biol. 2021;10:391–401.

18. Hari K, Harlapur P, Saxena A, Haldar K, Girish A, Malpani T, et al. Low dimen-
sionality of phenotypic space as an emergent property of coordinated teams in
biological regulatory networks. bioRxiv 2023.02.03.526930 https://doi.org/
10.1101/2023.02.03.526930 (2023).

19. Alazami AM, Patel N, Shamseldin HE, Anazi S, Al-Dosari MS, Alzahrani F, et al.
Accelerating novel candidate gene discovery in neurogenetic disorders via
whole-exome sequencing of prescreened multiplex consanguineous families. Cell
Rep. 2015;10:148–61.

20. Shen R, Soeder RA, Ophardt HD, Giangrasso PJ, Cook LB & Author C. Identification
of long non-coding RNAs expressed during early adipogenesis. OnLine J Biol Sci
Orig Res Pap. https://doi.org/10.3844/ojbsci.2019.245.259 (2019).

21. Zhou JD, Zhang TJ, Xu ZJ, Deng ZQ, Gu Y, Ma JC, et al. Genome-wide methylation
sequencing identifies progression-related epigenetic drivers in myelodysplastic
syndromes. Cell Death Dis. 2020;11:997.

22. Oshi M, Yan L, Kunisaki C, Endo I & Takabe K. Association of enhanced epithelial-
mesenchymal transition signature with tumor microenvironment, angiogenesis,
and survival in gastric cancer. 41, e16002 https://doi.org/10.1200/JCO.2023.41.
16_suppl.e16002 (2023).

23. Takahashi H, Oshi M, Yan L, Endo I, Takabe K. Gastric cancer with enhanced apical
junction pathway has increased metastatic potential and worse clinical out-
comes. Am J Cancer Res 2022;12:2146.

24. Greaves D, Calle Y. Epithelial mesenchymal transition (EMT) and associated
invasive adhesions in solid and haematological tumours. Cells. 2022;11:649.

25. Alter O, Brown PO, Botstein D. Singular value decomposition for genome-Wide
expression data processing and modeling. Proc Natl Acad Sci USA.
2000;97:10101–6.

26. Li CM, Klevecz RR. A rapid genome-scale response of the transcriptional oscillator
to perturbation reveals a period-doubling path to phenotypic change. Proc Natl
Acad Sci USA 2006;103:16254–9.

27. Ponnapalli SP, Miron P, Miskimen KLS, Waite KA, Sosonkina N, Coppens SE, et al.
AI/ML-Derived whole-genome predictor prospectively and clinically predicts
survival and response to treatment in brain cancer. 117–8 https://doi.org/
10.1145/3624062.3624078 (2023).

28. Tran I, Vargas A, Wilkins R, Pizzillo I, Tokoro K, Afterman D, et al. Abstract 6689: Whole
genome cell-free tumor DNA mutational signatures from blood for early detection of
recurrence of low stage lung adenocarcinoma. Cancer Res. 2023;83:6689.

29. Patel VN, Gokulrangan G, Chowdhury SA, Chen Y, Sloan AE, Koyutürk M, et al.
Network signatures of survival in glioblastoma multiforme. PLOS Comput Biol.
2013;9:e1003237.

30. Vu L, Garcia-Mansfield K, Pompeiano A, An J, David-Dirgo V, Sharma R, et al.
Proteomics and mathematical modeling of longitudinal CSF differentiates fast
versus slow ALS progression. Ann Clin Transl Neurol. 2023;10:2025–42.

31. Shinn M. Phantom oscillations in principal component analysis. Proc Natl Acad
Sci. 2023;120:e2311420120.

32. Qiu S, Sheth V, Yan C, Liu J, Chacko BK, Li H, et al. Metabolic adaptation to
tyrosine kinase inhibition in leukemia stem cells. Blood. 2023;142:574–88.

D.E. Frankhouser et al.

779

Leukemia (2024) 38:769 – 780

https://github.com/cohmathonc/CML_mRNA_state-transition
https://doi.org/10.1158/0008-5472.CAN-20-0354
https://doi.org/10.1101/2023.02.03.526930
https://doi.org/10.1101/2023.02.03.526930
https://doi.org/10.3844/ojbsci.2019.245.259
https://doi.org/10.1200/JCO.2023.41.16_suppl.e16002
https://doi.org/10.1200/JCO.2023.41.16_suppl.e16002
https://doi.org/10.1145/3624062.3624078
https://doi.org/10.1145/3624062.3624078


33. Zhang B, Zhao D, Chen F, Frankhouser D, Wang H, Pathak KV, et al. Acquired miR-
142 deficit in leukemic stem cells suffices to drive chronic myeloid leukemia into
blast crisis. Nat Commun 2023;14:5325.

34. Wang Z, Jiang L, Yan H, Xu Z, Luo P. Adverse events associated with nilotinib in
chronic myeloid leukemia: mechanisms and management strategies. Expert Rev
Clin Pharmacol. 2021;14:445–56.

35. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core
framework for community-curated bioinformatics pipelines. Nat Biotechnol.
2020;38:276–8. https://doi.org/10.1038/s41587-020-0439-x.

36. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast
universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

37. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and
bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.

38. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The SVA package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics. 2012;28:882–3.

39. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-
level estimates improve gene-level inferences. F1000Research. 2015;4:1521.

40. Elhaik E. Principal Component Analyses (PCA)-based findings in population
genetic studies are highly biased and must be reevaluated. Sci Rep. 2022;12:1–35.

41. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING
database in 2021: customizable protein–protein networks, and functional char-
acterization of user-uploaded gene/measurement sets. Nucleic Acids Res.
2021;49:D605–D612.

42. Kuleshov M V, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al.
Enrichr: a comprehensive gene set enrichment analysis web server 2016 update.
Nucleic Acids Res. 2016;44:W90.

43. Xie Z, Bailey A, Kuleshov M V, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene
set knowledge discovery with enrichr. Curr Protoc. 2021;1:e90.

44. Pushpam D, Bakhshi S. Pharmacology of tyrosine kinase inhibitors in chronic
myeloid leukemia; a clinician’s perspective. DARU, J Pharm Sci. 2020;28:371–85.

45. Ponnapalli SP, Bradley MW, Devine K, Bowen J, Coppens SE, Leraas KM, et al.
Retrospective clinical trial experimentally validates glioblastoma genome-wide
pattern of DNA copy-number alterations predictor of survival. APL Bioeng.
2020;4:026106.

46. Gittleman H, Sloan AE, Barnholtz-Sloan JS. An independently validated survival
nomogram for lower-grade glioma. Neuro Oncol. 2020;22:665–74.

ACKNOWLEDGEMENTS
Research reported in this publication was supported in part by Robert and Lynda
Altman Family Foundation and included work performed in the integrative genomics
core and biostatistics and mathematical oncology Shared Resource supported by the
National Cancer Institute of the National Institutes of Health under grant number
P30CA033572 and grant U01CA250046. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National Institutes
of Health.

AUTHOR CONTRIBUTIONS
GM, BZ, RCR, and Y-HK were involved in conceptualization of research. DZ and BZ
carried out experiments. DEF, RCR, LU, SB, and DO performed computational analysis
and interpretation. DEF, RCR, and GM wrote the manuscript. DEF and RCR share first
authorship. BZ and GM share last authorship. All authors contributed to and
approved the final version.

FUNDING
Open access funding provided by SCELC, Statewide California Electronic Library
Consortium.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41375-024-02142-9.

Correspondence and requests for materials should be addressed to David E.
Frankhouser, Russell C. Rockne, Bin Zhang or Guido Marcucci.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

D.E. Frankhouser et al.

780

Leukemia (2024) 38:769 – 780

https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41375-024-02142-9
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	State-transition modeling of blood transcriptome predicts disease evolution and treatment response in chronic myeloid leukemia
	Introduction
	Results
	Peripheral blood transcriptome state-transition during CML development
	CML transcriptome state-transition model predicts disease evolution
	State-transition critical points of BCR::ABL potential landscape defined distinct disease�states
	Eigengene analysis quantifies DEG contribution to CML development
	Gene expression dynamics identify drivers of CML state-transition
	State-space transition predicts treatment response
	Modeling the effects of TOTO and TKI on the CML potential

	Discussion
	Methods
	Mouse�model
	RNA-seq sequencing, data processing and analysis
	State-space construction
	Mathematical�model
	Mean squared displacement analysis
	DEG expression dynamics
	Transition point driver�genes
	TOTO and TKI treatment simulations
	Time to disease prediction
	Early vs late control analysis

	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




