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Abstract

Background: Adjusting for multiple biases usually involves adjusting for one bias at a

time, with careful attention to the order in which these biases are adjusted. A novel, alter-

native approach to multiple-bias adjustment involves the simultaneous adjustment of all

biases via imputation and/or regression weighting. The imputed value or weight corre-

sponds to the probability of the missing data and serves to ‘reconstruct’ the unbiased

data that would be observed based on the provided assumptions of the degree of bias.

Methods: We motivate and describe the steps necessary to implement this method. We

also demonstrate the validity of this method through a simulation study with an

exposure-outcome relationship that is biased by uncontrolled confounding, exposure

misclassification, and selection bias.

Results: The study revealed that a non-biased effect estimate can be obtained when

correct bias parameters are applied. It also found that incorrect specification of every

bias parameter by þ/-25% still produced an effect estimate with less bias than the

observed, biased effect.

Conclusions: Simultaneous multi-bias analysis is a useful way of investigating and

understanding how multiple sources of bias may affect naive effect estimates. This new

method can be used to enhance the validity and transparency of real-world evidence

obtained from observational, longitudinal studies.

Key words: Multi-bias modelling, confounding, information bias, selection bias, parameters, imputed, regression

weight, mis-specification, simulation
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Introduction

Bias analyses are used to quantify threats to validity in

research1 and are essential tools in studies involving

real-world data from the electronic health records (EHR),

claims databases, and registries.2 Methods to account for

bias are constantly being improved3 and typically have in-

volved adjusting for single biases, including simple sensitiv-

ity analysis, Monte Carlo risk analysis, Bayesian

uncertainty assessment and external adjustment formulas,

among others.4–9 These methods can be varied by different

bias parameters, and considerations include whether bias

parameters are fixed or probabilistic and whether the bias

parameters are applied to the data as in a missing data ap-

proach or to the observed estimate as in external

adjustment.

Outside of recent innovations in quantifying the bounds

of the composite contribution of multiple biases on causal

effect estimates,10 the development of methods for the ad-

justment of multiple biases has been comparatively stag-

nant.11,12 An approach in which biases are adjusted

sequentially has been described, but to implement this

method, biases should be adjusted in the proper order (the

reverse of the order in which the biases occurred in the

data generation process).1,13,14 As described by Greenland:

‘One can imagine each correction moving a step from the

biased data back to the unbiased structure, as if hypotheti-

cally “unwrapping the truth from the data pack-

age”’.1,13,14 Since the order of adjustments can influence

the results of a sequential bias analysis, such analyses can

be difficult if the true sequence of biases is unknown or

hard to ascertain. In addition, these adjustments can be

time-consuming and prone to error if many biases are to be

evaluated.

To overcome these problems, we introduce a new

method to adjust for multiple biases of binary variables si-

multaneously. We specifically address uncontrolled con-

founding, selection bias, and exposure misclassification,

although the method also applies to outcome misclassifica-

tion and other, more complex forms of these biases. This

method generalizes the concept of combining inverse prob-

ability of selection weighting (IPSW) with predictive value

weighting, as introduced by Johnson et al.15–17 It relies on

predicting the probability of the missing data (uncontrolled

confounders, misclassified exposure or selection bias) using

the available data and externally obtained information or

assumptions on the effect of these data on that which is

missing (i.e. bias parameters). These predicted probabilities

are then incorporated as simulated values or weights in the

outcome regression. We outline the steps for performing si-

multaneous multi-bias adjustment on any combination of

uncontrolled confounding, exposure misclassification, and

selection bias. We also verify the validity of this method

and explore the sensitivity of effect estimates to mis-

specified bias parameters, through a simulation study.

Methods

Notation and assumptions

The following binary variables are defined: X ¼ exposure,

Y ¼ outcome, C ¼ vector of known confounders, U ¼ un-

known or uncontrolled confounder, X* ¼ misclassified ex-

posure, S ¼ selection. These variables are used to represent

potential multi-bias scenarios, depicted in directed acyclic

graphs (DAGs) (Figure 1). Although this paper specifically

focuses on the simplified bias scenarios in Figure 1, this

method can be generalized to bias adjustment with alterna-

tive or additional causal paths to these DAGs.

Bias can be evaluated in DAGs using the backdoor crite-

rion and other rules.15,18–21 The direct effect of X on Y in

these causal models is distorted by backdoor paths stem-

ming from uncontrolled confounding (X U!Y), infor-

mation bias in the form of exposure misclassification

(X* (X)!Y) and selection (i.e. collider stratification)

bias (X!jSj Y). Values of variables U and X are un-

known and observations with S¼ 0 are missing. An over-

lined variable refers to a variable whose value is assigned

by the investigator to a particular data replicate to perform

regression weighting. In the multi-bias analysis, X and U

Key Messages

• Multi-bias modelling has usually involved the sequential adjustment of uncontrolled confounding, information bias

and selection bias, using knowledge of the sequence in which the biases took place.

• A new approach to bias adjustment allows for multiple biases to be adjusted simultaneously by combining

individual-level data with bias parameters to obtain imputed values or a regression weight.

• In the case of bias parameter mis-specification, this method can still produce reasonable bias-reduced estimates, as

demonstrated by a simulation study.

• Bias parameters can be varied to assess what biases and bias strengths would be necessary to observe a null effect

or other reported effect.
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represent assigned values of exposure and uncontrolled

confounder, and XIMP and UIMP represent imputed values

of exposure and uncontrolled confounder from a single

Bernoulli trial.

Performing simultaneous multi-bias analysis relies on

understanding the equivalence of causal systems repre-

sented as either DAGs or structural equation models

(SEMs). Since the exposure, confounder, and selection

indicator are each binary in this study, they were modelled

using a system of logistic regression models. The exponen-

tiated parameters of these models correspond to covariate-

outcome odds ratios, which are conditional on the other

covariates in the model. For ease of exposition, we ignore

product terms in the logistic regression models, although

the methods described here can accommodate such inter-

action terms in real-world applications. Further, whereas

this study does not specifically address non-binary expo-

sures and confounders, the overall framework of this bias

analysis method remains applicable to non-binary varia-

bles. The multi-bias analysis method in this paper relies on

the causal assumptions of positivity, consistency, the sta-

ble unit treatment value assumption, and exchangeability

given the measured and unmeasured (de)confounders.

Simultaneous multi-bias analysis

Simultaneous multi-bias analysis combines subject-level

data with assumptions about the plausible causal structure

to recreate an unbiased dataset. There are eight steps to

performing this adjustment (Table 1). Steps 1–5 lead to the

calculation of the predicted probabilities of the unknown

or incomplete variables for each subject. After these proba-

bilities are established, the investigator can choose to in-

corporate these probabilities into the data through

imputed values, a regression weight or a combination of

both. Table 1 outlines these steps for bias adjustment in

the presence of uncontrolled confounding, exposure mis-

classification, and selection bias. Supplementary Table S1

(available as Supplementary data at IJE online) similarly

shows these steps under the different combinations of two

biases. We describe these steps below.

First, the investigator can graph the assumed causal

relationships between each variable in the observed

(biased) and desired (non-biased) data as two DAGs.

Statements for the observed and desired joint probabilities

can be expressed for both causal models. Using these two

probabilities, a bias-adjusting conditional probability is

found by the following equation:

bias–adjusting probability

¼ desired joint probability = observed joint probability

This probability derivation is similar to inverse proba-

bility of treatment weighting, where the weight may have a

numerator with the probability of the treatment condi-

tional on previous treatments (that which is desired) and

the denominator would have the probability of the treat-

ment conditional on previous treatments and the bias-

inducing covariates (that which is observed).22

Adjustments for selection bias will include a bias-adjusting

probability whose denominator is equal to the conditional

probability of selection, as seen in single-bias IPSW.15 The

expression is rewritten such that the unknown values (true

exposure, confounder, selection indicator) are conditional

on the known values; see Table 2 for a full example of the

necessary probability manipulations.

The numerator and denominator of the bias-adjusting

conditional probability are then expressed as structural

equation models, specifically logistic regression models. In

the case of both uncontrolled confounding and exposure

misclassification, two separate regression models or a sin-

gle multinomial logistic regression can be used to represent

the conditional probability of the confounder and expo-

sure. In the latter case, the model’s dependent variable cor-

responds to each potential combination of the X, U values.

Regression coefficients for the logistic regression models

for exposure, confounder, and study selection (i.e. bias

parameters) are then externally obtained. Plausible param-

eter values can derive from a variety of sources: previous

Figure 1 Graphs of four potential multi-bias scenarios. • X ¼ exposure, Y ¼ outcome, C ¼ vector of known confounders, U ¼ unknown or uncontrolled

confounder, X* ¼ misclassified exposure, S ¼ selection. • DAG A: uncontrolled confounding and selection bias. • DAG B: uncontrolled confounding

and exposure misclassification. • DAG C: exposure misclassification and selection bias. • DAG D: uncontrolled confounding, selection bias and expo-

sure misclassification
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studies, a validation sub-study, an expert opinion, machine

learning model benchmarking or simply the investigator’s

best estimate. As with all bias analyses, it is important to

clearly communicate the derivation of each parameter and

to consider representing each parameter as a distribution

of values to iteratively sample over instead of just a point

estimate.23 Once these parameters are obtained, they are

combined with the individual-level data to determine the

predicted probabilities of exposure, confounder, and study

selection for each subject.

The investigator may choose an imputation approach or

a weighting approach to incorporate the predicted probabili-

ties of X and/or U. With the imputation approach, the new

value (XIMP and/or UIMP) is simulated via a single Bernoulli

trial for each patient, using the predicted probabilities. In the

weighting approach, subjects are first assigned each potential

Table 1 Steps to performing simultaneous multi-bias analysis (three biases)

Step Uncontrolled confounding,

Exposure misclassification, and

selection bias

1. Determine the observed probability and the desired joint probability Observed:

Pðx�; c; yjS ¼ 1Þ
Desired:

Pðx; y; c;uÞ
2. Divide the desired probability by the observed probability and rewrite in

terms of the unknown values

P x; ujx� ; ycð Þ
PðS¼1jx� ; y; cÞ

3. Rewrite this bias-adjusting probability as corresponding statistical models

(i.e. bias models)

log P X¼1; U¼0ð Þ
P X¼0; U¼0ð Þ

� �
¼ b1;0 þ b1;1X� þ b1;2 Y þ b1;3 C

log P X¼0; U¼1ð Þ
P X¼0; U¼0ð Þ

� �
¼ b2;0 þ b2;1X� þ b2;2 Y þ b2;3 C

log P X¼1; U¼1ð Þ
P X¼0; U¼0ð Þ

� �
¼ b3;0 þ b3;1X� þ b3;2 Y þ b3;3 C

logit P S ¼ 1ð Þð Þ ¼ d0 þ d1X� þ d2Y þ d3C

4. Externally obtain the regression coefficients for the bias models (i.e. the

bias parameters)

5. Using the bias parameters and individual-level data, solve for each

probability for each patient

Option A: Regression weighting

6a. Replicate the data and assign values for exposure and/or uncontrolled

confounder.

In first replicate:

X ¼ 1; U ¼ 1

In second replicate:

X ¼ 1; U ¼ 0

In third replicate:

X ¼ 0; U ¼ 1

In fourth replicate:

X ¼ 0; U ¼ 0

7a. Create individual weights based on the predicted exposure/outcome conditional

probabilities (corresponding to the assigned X and/or U) divided by the condi-

tional probability of selection

When X ¼ 1; U ¼ 1:

Weight ¼ P X¼1; U¼1jx� ;y;cð Þ
PðS¼1jx� ;y;cÞ

When X ¼ 1; U ¼ 0:

Weight ¼ P X¼1; U¼0jx� ;y;cð Þ
PðS¼1jx� ;y;cÞ

When X ¼ 0; U ¼ 1 :

Weight ¼ P X¼0; U¼1jx� ;y;cð Þ
PðS¼1jx� ;y;cÞ

When X ¼ 0; U ¼ 0 :

Weight ¼ P X¼0; U¼0jx� ;y;cð Þ
PðS¼1jx� ;y;cÞ

8a. Perform weighted outcome regression logit P Y ¼ 1ð Þð Þ ¼ x0 þ x1X þ x2U þ x3C

Option B: Exposure/outcome imputation combined with selection weighting

6b. Using the predicted probabilities for X and U, impute values for each by sam-

pling from the binomial distribution

UIMP ¼ Random.binomial(n, 1, P(U¼1))

XIMP ¼ Random.binomial(n, 1, P(X¼1))

7b. Determine the selection weight for each patient 1
PðS¼1jx� ;y;cÞ

8b. Perform outcome regression using the imputed values and selection weight logit P Y ¼ 1ð Þð Þ ¼ x0 þ x1XIMP þ x2UIMP þ x3C

aVariable key: X ¼ exposure, Y ¼ outcome, C ¼ vector of known confounders, S ¼ selection.
bVariable modifiers: X* ¼ misclassified exposure, X ¼ assigned value for the exposure in a data replicate, XIMP ¼ imputed value for the exposure.
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value of exposure and/or unobserved confounder as X and/

or U. Thus, the data are replicated twice (if X or U is miss-

ing) or four times (if X and U are missing), with each repli-

cate containing a different value of the assigned variable(s).

The weight is then assigned according to the value of X and/

or U; if X and/or U ¼ 1, then the weight equals the pre-

dicted probability; if X and/or U ¼ 0, then the weight equals

1—the predicted probability. The selection probability is in-

corporated as the denominator of this weight.

The final logistic regression outcome model therefore

includes: (i) the imputed values, XIMP and/or UIMP, with a

weight equalling the inverse of the predicted probability of

selection; or (ii) the assigned values, X and/or U, with a

weight equalling the predicted probability of exposure

and/or confounder divided by the predicted probability of

selection. In this final model, the exponential of the expo-

sure coefficient (X or X) represents the bias-adjusted odds

ratio of the direct effect of X on Y.

Imputation and weighting serve to reconstruct the data

that would have been observed in the absence of bias,

given the assumptions implicit in the bias parameters. In

the case of selection weighting, observations with a lower

probability of selection are given a greater weight in the

analysis and vice versa, which serves to restore the initial

variable distributions seen in the source population.15 In

the case of weighting with predicted probabilities of expo-

sure and unobserved confounder, subjects are assigned

each potential value of exposure and/or unobserved con-

founder, and the values that are most probable are given

the most weight. Using X and U along with the weights

serves to recreate a dataset in which the correctly classified

exposure and unobserved confounder are both included.5

Simulation study

Aims

A simulation study was performed to demonstrate the

proof-of-concept of the simultaneous multi-bias analysis

method. The study will assess whether the method remains

robust under (i) data with varying bias strengths and

(ii) mis-specification of bias parameters.

Data-generating mechanism

Monte Carlo simulation was used to generate two datasets

of binary variables whose causal relations were based off

the DAG in Figure 1D—the triple bias scenario (Table 3).

Each dataset of nobs ¼ 100 000 patients represents real-

world data used for observational analysis for causal infer-

ence. One dataset has stronger individual biasing paths

(Simulation A) and one has weaker individual biasing

paths (Simulation B). The strengths of these biasing paths

are guided by three parameters: w1, (i) the conditional ef-

fect of the unknown confounder on exposure and outcome

and (ii) the conditional effect of the exposure and outcome

on selection; w2, the log odds of misclassified exposure

when true exposure and outcome are both absent; and w3,

the conditional effect of true exposure on misclassified

exposure.

In Simulation A, w1 ¼ logð2Þ, w2 ¼ �1 and

w3 ¼ logð5Þ. These values were intended to create strong

confounding by U and strong effects of X and Y on selec-

tion. The misclassified exposure could be simulated with a

Bernoulli conditional probability as high as 0.70 (P(X* ¼ 1

jX¼ 1, Y¼ 1)) or as low as 0.27 (P(X* ¼ 1jX¼ 0, Y¼ 0).

Intercepts were selected to keep the conditional probabili-

ties of true exposure, outcome, and selection bound within

(0.12, 0.29), (0.08, 0.33), and (0.50, 0.80), respectively. In

Simulation B, w 1 ¼ logð1:25Þ, w2 ¼ �1:5 and

w3 ¼ logð15Þ. These values were intended to create weak

confounding by U and weak effects of X and Y on selec-

tion. The misclassified exposure could be simulated with a

Bernoulli conditional probability as high as 0.81 (P(X* ¼ 1

jX¼ 1, Y¼ 1)) or as low as 0.18 (P(X* ¼ 1jX¼ 0, Y¼ 0).

Intercepts were selected to keep the probabilities of true

exposure, outcome, and selection bound within (0.12,

0.20), (0.08, 0.24) and (0.50, 0.61), respectively.

The datasets of binomial random variables were simu-

lated and subsequently analysed using R version 3.2.2. To

significantly increase the speed of bootstrapping, multiple

CPU cores were used via parallel processing. The input

seed was ‘1234’; see Supplementary Code for Simulation

(available as Supplementary data at IJE online) to inspect

the R code used for analysis.

Estimands

The estimand ORYX represents the odds ratio for X¼ 1

versus X¼ 0, which would correspond to a causal effect es-

timate in an observational study.

Table 2 Deriving the bias-adjusting probability in the triple-

bias scenarioa

Pðx; y; c;uÞ
Pðx� ; y; cjS¼1Þ Dividing the observed joint

probability by the desired

joint probabilityP
x� Pðx; y; c;u; x�Þ
Pðx� ; y; cjS¼1Þ Law of total probabilityP
x� P x; uð jx� ; y; cÞPðx� ; y;cÞ

Pðx� ; y; cjS¼1Þ Multiplication ruleP
x� P x; uð jx� ; y; cÞPðx� ; y;cÞ

P S¼1jx� ; y;cð ÞP x� ; y;cð Þ
PðS¼1Þ

Bayes rule

P x; ujx� ; ycð Þ
PðS¼1jx� ; y; cÞ Rearrange terms, (optionally)

remove constant (P(S¼1))

aSee Figure 1D for corresponding causal graph.
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Methods

The following logistic regression model (Equation 1) fit

among selected patients (S¼1) represents the ‘real-world’

scenario in which an investigator would model the out-

come without consideration to (i) the values of true expo-

sure and confounder U and (ii) the impact of exposure and

outcome on patient selection:

logitðPðY ¼ 1jX�; CÞÞ ¼ aY þ aYX�X
� þ aYCC (1)

Here the biased ORYX ¼ expðaYX� Þ does not equal the

unbiased ORYX � 2, which is known to be based on the

simulation of Y in both datasets. The analysis assessed the

ability to obtain an unbiased estimate of ORYX using simu-

lated, biased data and simultaneous multi-bias analysis.

The analysis began by identifying the observed (biased)

joint probability, ðX� ¼ x�; C ¼ c; Y ¼ y j S ¼ 1Þ, and

the desired (bias-free) joint probability, PðX ¼ x; C ¼ c;

U ¼ u; Y ¼ yÞ. After dividing the desired probability by

the observed probability, the bias-adjusting conditional

probability was Pðx; u j x�; c; yÞ=PðS ¼ 1 j x�; c; yÞ
(see Table 2 for detailed steps). The numerator was

simplified by the multiplication rule: Pðx; u jx�; c; yÞ ¼
Pðu x; x�; c; yj ÞP x j x�; c; yð Þ and Pðu x; x�; c; yj Þ was

rewritten as Pðu x; yj Þ due to the conditional independen-

cies. The three probabilities for U, X, and S were rewritten

as logistic regression models (Equations 2–4):

logitðPðX ¼ 1ÞÞ ¼ dS þ dSX�X
� þ dSYY þ dSCC (2)

logitðPðU ¼ 1ÞÞ ¼ aU þ aUXXþ aUYY (3)

logitðPðS ¼ 1ÞÞ ¼ bS þ bSX�X
� þ bSYY þ bSCC (4)

Having U, X, and S in the data allowed for the fitting

of these models to obtain the correct bias parameters

which, although impossible in real-world practice, is nec-

essary for proper evaluation of the bias-adjustment

method. To get the 11 parameters, models 2–4 were fit

using data from Simulations A and B. As a reminder,

real-world strategies for obtaining bias parameters do

not involve calculating these parameters from within the

sample data but require obtaining the parameters from

external sources.

The imputation approach was used to incorporate the

predicted probabilities of X and U. XIMP was simulated

via Bernoulli trial using the probabilities obtained from

combining the bias parameters with the individual data for

X*, C, and Y, as in Equation 3. UIMP was simulated via

Bernoulli trial using the probabilities obtained from com-

bining the bias parameters with the individual data for

XIMP and Y, as in Equation 2. The probability of selection

was estimated using the bias parameters and individual

data for X*, C, and Y, as in Equation 4. Last, the logistic

regression outcome model was fit, weighted by the inverse

of the predicted probability of selection (Equation 5):

logitðPðY ¼ 1ÞÞ ¼ /Y þ /YXXIMP þ /YCCþ /YUUIMP

(5)

To account for the uncertainty of Monte Carlo proce-

dures and to obtain the sampling distribution and confi-

dence interval for ORYX, the analysis ran on nsim ¼1000

bootstrap samples. These confidence intervals represent

uncertainty due to random error, but since all the bias

parameters are treated as known, fixed values, these inter-

vals due not quantify any uncertainty due to systematic er-

ror. The median, 2.5th percentile and 97.5th percentiles

from the distribution of nsim ORYX estimates were used for

the point estimate and 95% simulation interval. Each pa-

tient in the bootstrap sample had a value of S¼ 1. Since se-

lection is causally determined by the exposure and

outcome, this approach incorporates selection bias into the

samples.

In real-world applications, an investigator will not

know if the obtained bias parameters are correct, so under-

standing the sensitivity and resilience of ORYX to mis-

specification of the bias parameters is essential. The above

analyses were therefore repeated using different, incorrect

bias parameters to assess changes in ORYX in response to

changes in the bias parameters. The percent mis-

specification of each parameter is defined on a logarithmic

scale; the exponentiated parameter (odds ratio) is multi-

plied by the percent mis-specifiation.

Performance measures

To evaluate how well bias was corrected, exp /YXð Þ ¼
ORYX should approximately equal 2, corresponding to the

bias-free ORYX seen in the derivation of Y (Table 3).

Comparisons of the estimated parameter to the correct

Table 3 Data generating mechanism of binary variables for

two simulated datasets

Variable Description Probability of variable¼1

C Known confounder 0.5

U Unknown confounder 0.5

X Unknown, true

exposure

expitð�2þ logð1:5ÞCþ w1UÞ

Y Outcome
expitð�2:5þ logð2ÞX
þ logð1:5ÞCþ w1UÞ

S Selection expitðw1Xþ w1YÞ
X* Misclassified exposure expitðw2 þ w3Xþ logð1:25ÞYÞ

International Journal of Epidemiology, 2023, Vol. 52, No. 4 1225



value were assessed based on the Bias (2�ORYX) and

RMSE (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ORYXÞ2 þ SDðORYXÞ2

q
).

Results

Both datasets were sampled with replacement over S¼ 1

and fit to Equation 1 to obtain ORYX estimates biased

from uncontrolled confounding, exposure misclassification

and selection bias: Simulation A biased ORYX ¼ 1.46

(95% CI: 1.41, 1.50), Simulation B biased ORYX ¼ 1.54

(95% CI: 1.48, 1.60).

Results from the simultaneous multi-bias analysis are

provided in Table 4. As expected, when correct bias

parameters were used, bias� adjusted ORYX � 2.

Modifying single bias parameters by þ/-25%, while leav-

ing the others at the correct value, seemed to have a mini-

mal effect on ORYX in both simulations, with jBiasj
usually less than 0.1. However, mis-specification of edXY

was particularly impactful in creating bias in ORYX, with

jBiasj between 0.3 and 0.5. Larger bias was observed when

multiple-bias parameters were distorted compared with

single parameter mis-specification.

The sensitivity of ORYX to changes in the bias parame-

ters when all 11 bias parameters were mis-specified by a

common factor was assessed (Figure 2). The degree of mis-

specification and the amount of bias were positively related.

In both simulations, it was found that the odds ratio result-

ing from multi-bias adjustment, in which each bias parame-

ter was mis-specified by þ/-25%, still produced an odds

ratio estimate that better approximated the true effect when

compared with the odds ratio with no bias adjustment.

Discussion

This paper introduced a novel, simultaneous approach to

multiple-bias adjustment and a tutorial on how to perform

this method on any combination of epidemiological biases.

A simulation study using data with an exposure-outcome re-

lationship biased by uncontrolled confounding, selection

bias, and exposure misclassification confirmed that an esti-

mate with near-zero bias was obtained when the correct

bias parameters were applied. The robustness of effect esti-

mates to distortions in the bias parameters was assessed.

Single parameter mis-specification of þ/-25% generally led

to jBiasj < 0.10. In both simulations, it was observed that

þ/-25% mis-specification of all bias parameters produced a

bias-adjusted effect estimate with less bias than the observed

effect estimate with no bias adjustment. Thus, one can be

confident that a biased effect estimate adjusted via simulta-

neous multi-bias analysis with near-accurate bias parame-

ters is more valid than the estimate without bias adjustment,

assuming biases were correctly identified in the DAG.

An obstacle to performing simultaneous multiple-bias

adjustment involves deriving the large number of bias

parameters. Obtaining an accurate parameter estimate can

be a difficult task, particularly when the parameter has sev-

eral variable dependencies. Fortunately, there are many po-

tential strategies an investigator can pursue. Searching for

parameter estimates from the literature or expert opinion

may be applied.14 One should be mindful, however, that

expert opinion is subject to unique bias and influence, even

if sampled in aggregate. A more efficient strategy would be

to use internal or external validation data to inform the

bias parameters.23 For example, a subset of the data may

have information for the uncontrolled confounder or a

better-classified exposure. In this case, models for U and X

may be fitted to the data subset to obtain bias parameters.

A similar approach may be used to obtain the selection

bias parameters if information is present for subjects who

were invited but chose not to participate. Last, more ad-

vanced simulation strategies may be used to avoid having

to reason about the bias parameters backwards (e.g. from

X and C to U).24 All the observed relationships can be

combined with hypothesized effects to simulate a new

dataset. These new data could then be fit to models to ob-

tain the bias parameters. Some of these different strategies

for obtaining bias parameters were applied in adjusting for

exposure misclassification in a study of the effect of

Parkinson’s disease (PD) on cancer.25

It is important to consider that every study inherently

makes assumptions regarding the biases impacting on the

effect of interest.13 Studies without bias adjustment inher-

ently assume that if all models are correctly specified, all

estimates are valid and that the only source of uncertainty

in these estimates is random error. Such assumptions are

generally incorrect. Any attempt to improve on these im-

plausible assumptions is worth the effort of the investiga-

tor. Multiple effect estimates that derive from different

DAGs or different bias assumptions can and should be pre-

sented.23 This transparency allows the reader to under-

stand the resilience of the effect estimate to various bias

scenarios and can also help editors identify key areas of im-

provement.26 It is possible and advisable to incorporate un-

certainty into each bias parameter. Bias parameters may be

represented by probability distributions instead of fixed

values (i.e. probabilistic bias analysis).13,27 This semi-

Bayesian approach allows for the simulation interval of the

effect estimate to incorporate uncertainty due to both ran-

dom error and systematic error.14

It is important to consider other applications of bias

analysis besides attempting to produce the best bias-

adjusted effect estimate with the best bias parameters.

These alternative methods can be used prior to data collec-

tion, to optimize resource allocation by identifying where
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Table 4 Results of parameter mis-specification in multi-bias analysis of simulated data

Simulation A

Mis-specified bias

parameter(s)

Correct

value(s)

Mis-specified

value(s)

% Mis-specification Bias-adjusted

ORYX
a

Bias RMSEb

None – – 0 2.03 (1.96, 2.11) �0.0326 0.0491

ea0 0.80 1.00 þ25 2.04 (1.97, 2.12) �0.0433 0.0568

ea0 0.80 0.60 �25 2.03 (1.95, 2.10) �0.0257 0.0455

eaUX 1.84 2.30 þ25 1.97 (1.90, 2.04) 0.0306 0.0473

eaUX 1.84 1.38 �25 2.13 (2.05, 2.21) �0.1272 0.1329

eaUY 2.01 2.51 þ25 1.98 (1.90, 2.05) 0.0247 0.0446

eaUY 2.01 1.51 �25 2.11 (2.05, 2.19) �0.1135 0.119

ed0 0.08 0.11 þ25 2.02 (1.95, 2.09) �0.0178 0.0392

ed0 0.08 0.06 �25 2.05 (1.98, 2.13) �0.0543 0.0659

edXX� 4.93 6.16 þ25 2.02 (1.95, 2.09) �0.0185 0.0409

edXX� 4.93 3.69 �25 2.04 (1.96, 2.12) �0.0365 0.0531

edXY 2.07 2.58 þ25 2.47 (2.38, 2.56) �0.4680 0.4701

edXY 2.07 1.54 �25 1.58 (1.52, 1.64) 0.4215 0.4226

edXC 1.44 1.80 þ25 2.02 (1.96, 2.10) �0.0242 0.0443

edXC 1.44 1.08 �25 2.04 (1.97, 2.12) �0.0411 0.0553

eb0 1.02 1.28 þ25 2.03 (1.96, 2.10) �0.0302 0.0478

eb0 1.02 0.77 �25 2.03 (1.96, 2.11) �0.0330 0.0499

ebSX� 1.19 1.48 þ25 2.06 (1.99, 2.13 �0.0608 0.0717

ebSX� 1.19 0.89 �25 2.00 (1.92, 2.07) 0.0044 0.0372

ebSY 2.15 2.69 þ25 2.04 (1.97, 2.12) �0.0404 0.0554

ebSY 2.15 1.62 �25 2.03 (1.95, 2.10) �0.0228 0.0434

ebSC 1.04 1.30 þ25 2.03 (1.97, 2.10) �0.0326 0.0483

ebSC 1.04 0.78 �25 2.03 (1.96, 2.11) �0.0333 0.0503

ea0 , eaUX , eaUY 0.80, 1.84, 2.01 1.00, 2.30, 2.51 þ25 1.92 (1.85, 1.99) 0.0781 0.0856

ea0 , eaUX , eaUY 0.80, 1.84, 2.01 0.60, 1.38, 1.51 �25 2.18 (2.10, 2.25) �0.1762 0.1806

ed0 , edXX� , edXY , edXC 0.08, 4.93, 2.07, 1.44 0.11, 6.16, 2.58, 1.80 þ25 2.40 (2.32, 2.48) �0.3958 0.3978

ed0 , edXX� , edXY , edXC 0.08, 4.93, 2.07, 1.44 0.06, 3.69, 1.08, 0.77 �25 1.57 (1.50, 1.65) 0.4250 0.4266

eb0 , ebSX� , ebSY , ebSC 1.02, 1.19, 2.15, 1.04 1.28, 1.48, 2.69, 1.30 þ25 2.06 (2.00, 2.14) �0.0630 0.0734

eb0 , ebSX� , ebSY , ebSC 1.02, 1.19, 2.15, 1.04 0.77, 0.89, 1.62, 0.78 �25 2.00 (1.93, 2.07) 0.0017 0.0362

Simulation B

Mis-specified

parameter(s)

Correct

value(s)

Mis-specified

value(s)

% Mis-specification Bias-adjusted

ORYX
a

Bias RMSEb

none – – n/a 2.01 (1.93, 2.10) �0.0149 0.0466

ea0 0.94 1.18 þ25 2.01 (1.93, 2.10) �0.0108 0.0456

ea0 0.94 0.71 �25 2.01 (1.92, 2.10) �0.0106 0.0483

eaUX 1.20 1.51 þ25 1.99 (1.90, 2.08) 0.0147 0.0475

eaUX 1.20 0.90 �25 2.04 (1.96, 2.14) �0.0447 0.0651

eaUY 1.26 1.58 þ25 1.99 (1.91, 2.08) 0.0082 0.0445

eaUY 1.26 0.95 �25 2.04 (1.94, 2.12) �0.0377 0.0589

ed0 0.04 0.05 þ25 1.98 (1.91, 2.07) 0.0182 0.0448

ed0 0.04 0.03 �25 2.05 (1.97, 2.15) �0.0467 0.0666

edXX� 14.53 18.16 þ25 1.98 (1.90, 2.07) 0.0151 0.0460

edXX� 14.53 10.90 �25 2.03 (1.94, 2.12) �0.0305 0.0563

edXY 1.78 2.23 þ25 2.35 (2.25, 2.46) �0.3546 0.3583

edXY 1.78 1.34 �25 1.63 (1.56, 1.71) 0.3704 0.3724

edXC 1.48 1.84 þ25 2.00 (1.91, 2.07) 0.0044 0.0412

edXC 1.48 1.11 �25 2.03 (1.94, 2.12) �0.0306 0.0555

eb0 0.98 1.23 þ25 2.01 (1.93, 2.10) �0.0093 0.0447

eb0 0.98 0.74 �25 2.01 (1.93, 2.10) �0.0106 0.0454

(Continued)
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additional data would be most impactful in minimizing

bias.28,29 One can also perform the exercise of evaluating

bias strengths that would lead to a null effect estimate or

an effect estimate whose confidence interval includes the

null, as in the E-value.30 By understanding the bias

strengths that would ‘explain away’ the observed effect,

one gets a better idea of how likely the effect is to be non-

null. Existing tools for these analyses have mostly focused

on the case of uncontrolled confounding; corresponding

tools for multiple biases have seen less development.

The multi-bias analysis presented here is limited to bi-

nary exposures and outcomes, but can easily incorporate

other variable types by adjusting the SEM form of the bias

models. Future work should illustrate the application of

this method with other model families and measures of ef-

fect (e.g. risk differences). Guidance on using this method

to adjust for biases in more complex scenarios should be

explicitly laid out; the examples here only evaluated the

case of a single uncontrolled confounder and a single selec-

tion bias mechanism. For example, compared with the

DAGs in Figure 1A or 1D, a different type of selection bias

could result in S caused by U instead of Y, as could be

the case in time-varying exposure or confounder settings.

Last, considering the computational complexity of these

methods, additional work is needed to make simultaneous

bias-adjustment more accessible to researchers across disci-

plines. Analytical tools should be created which can assist

with performing the bias adjustment.

Considering the toolkit of potential methods for bias

analysis, simultaneous multi-bias analysis can serve in an im-

portant niche. In adjusting for the aggregate impact of multi-

ple biases, this method is one of few that account for the

joint impact of these biases. If one is willing to devote the ef-

fort to identify and specify the many necessary parameters

and to make the assumptions underlying these parameters,

simultaneous multi-bias analysis should be the preferred

method. If one wants a simpler method that does a reason-

able job of making this adjustment, an alternative method,

such as bounding the composite bias, may be advised.10

Conclusion

Simultaneous multi-bias analysis is a useful tool to help un-

derstand how multiple biases could affect an observed ef-

fect estimate in observational studies. This new method

Table 4 Continued

Simulation B

Mis-specified

parameter(s)

Correct

value(s)

Mis-specified

value(s)

% Mis-specification Bias-adjusted

ORYX
a

Bias RMSEb

ebSX� 1.10 1.37 þ25 2.03 (1.93, 2.12) �0.0271 0.0539

ebSX� 1.10 0.82 �25 1.99 (1.91, 2.07) 0.0139 0.0461

ebSY 1.29 1.62 þ25 2.02 (1.93, 2.11) �0.0181 0.0491

ebSY 1.29 0.97 �25 2.00 (1.92, 2.10) �0.0023 0.0463

ebSC 1.02 1.28 þ25 2.01 (1.92, 2.10) �0.0094 0.0473

ebSC 1.02 0.77 �25 2.01 (1.92, 2.10) �0.0143 0.0464

ea0 , eaUX , eaUY 0.94, 1.20, 1.26 1.18, 1.51, 1.58 þ25 1.95 (1.86, 2.03) 0.0521 0.0675

ea0 , eaUX , eaUY 0.94, 1.20, 1.26 0.71, 0.90, 0.95 �25 2.03 (1.94, 2.12) �0.0295 0.0551

ed0 , edXX� , edXY , edXC 0.04, 14.53, 1.78, 1.48 0.05, 18.16, 2.23, 1.84 þ25 2.24 (2.16, 2.33) �0.2442 0.2484

ed0 , edXX� , edXY , edXC 0.04, 14.53, 1.78, 1.48 0.03, 10.90, 1.34, 1.11 �25 1.64 (1.55, 1.72) 0.3637 0.3665

eb0 , ebSX� , ebSY , ebSC 0.98, 1.10, 1.29, 1.02 1.23, 1.37, 1.62, 1.28 þ25 2.04 (1.96, 2.13) �0.0437 0.0633

eb0 , ebSX� , ebSY , ebSC 0.98, 1.10, 1.29, 1.02 0.74, 0.82, 0.97, 0.77 �25 2.01 (1.92, 2.09) �0.0064 0.0441

aOdds ratio of the effect of exposure (X) on outcome (Y).
bRoot mean square error.

Figure 2 Multi-bias analysis results in Simulations A and B under mis-

specification of all bias parameters. • ORYX ¼ odds ratio of the effect of

exposure (X) on outcome (Y). • Horizontal lines represent the non-bi-

ased ORYX (2.00), the biased ORYX in Simulation A (1.46) and the biased

ORYX in Simulation B (1.54)
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expands the field of quantitative bias analysis to help

researchers provide high-quality insights into important

public health questions.
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