
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Real-Time Sub-Meter Vehicle Positioning: Low-Cost GNSS-Aided INS

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Farzana S. Rahman

June 2020

Dissertation Committee:

Dr. Jay A. Farrell, Chairperson
Dr. Matthew J. Barth
Dr. Amit K. Roy-Chowdhury



Copyright by
Farzana S. Rahman

2020



The Dissertation of Farzana S. Rahman is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I would like to express my deepest appreciation towards everyone who has contributed, directly or

indirectly, to the realization of my PhD thesis.

I would like to express my sincere gratitude towards my supervisor, Professor Jay A.

Farrell, who supported and encouraged me, provided me with guidance, and kept my spirits up

all through my PhD journey at University of California Riverside. His vast knowledge and deep

thinking has helped me to develop as a matured engineer. I could not have imagined having a better

advisor and mentor for my PhD study.

Besides my advisor, I would like to thank the rest of my thesis committee: Professor

Matthew Barth, and Professor Amit K. Roy-Chowdhury for their support in developing this thesis.

During my PhD, I was fortunate enough to work with Professor Barth in one of my projects. His

expertise, guidance and motivation helped me a lot in conducting that research. I also had the

opportunity to attend Professor Roy-Chowdhury’s courses that have provided me with excellent

understanding about the basics of image processing and computer vision.

I would like to thank all of my colleagues at the Control and Robotics lab UCR, who

have helped me with my research and also made my time at the School so enjoyable. In particular,

I would like to thank Dr. Felipe Oliveira Silva for his technical support and constructive input

with regard to this research. I would like to thank Dr. Paul Roysdon, Dr. Elahe Aghapour, Dr.

Mohammad Billah, Zeyi Jiang, Jean-Bernard Uwineza, Wang Hu and Ashim Neupane for all the

stimulating discussions in the last four year.

Last but not the least, I would like to thank my parents for their inspiration and continuous

support to pursue my PhD. My indebtedness for their sacrifice can not be expressed in words. I am

iv



grateful to my sister Mushfika Rahman for her never-ending love and support. Most importantly, I

wish to thank my loving and supportive husband, Jawadul Bappy, who gave me perpetual inspira-

tion. I also like to thank my mother-in law, father-in-law and sister-in-law for their guidance and

motivation.

v



To my parents.

vi



ABSTRACT OF THE DISSERTATION

Real-Time Sub-Meter Vehicle Positioning: Low-Cost GNSS-Aided INS

by

Farzana S. Rahman

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2020

Dr. Jay A. Farrell, Chairperson

Many applications, including connected and autonomous vehicles, would benefit from

navigation technologies that reliably achieve sub-meter position accuracy. Real-time submeter

Earth-referenced positioning accuracy has the potential to be achieved with high reliability on mov-

ing vehicles by using Global Navigation Satellite Systems (GNSS) if common-mode ranging error

correction information is communicated to the vehicles. For successful commercial implementation,

such correction information must be delivered on continental or global scales. The communication

latency must be small enough to not significantly affect performance. The main focus of the study

is to investigate the feasibility to achieve sub-meter positioning accuracy with low-cost GNSS re-

ceiver and Inertial Measurement Unit (IMU) sensor. The thesis is divided into two phases based

on their common-mode compensation approach. The first phase considers Local Area Differen-

tial GNSS (LADGNSS) approach and the second phase investigates Wide Area Differential GNSS

(WADGNSS) method.

The first part of this project presents a local differential correction computation method-

ology designed to be robust to latency and studied position estimation accuracy as a function of dif-
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ferential correction latency for both stationary and moving receivers [121, 122]. This performance

was robust to latency up to 600 seconds. Two algorithms incorporated the local differential cor-

rection approach defined in [122]. The Position, Velocity, Acceleration (PVA) approach used only

DGNSS data with a Kalman filter. The Inertial Navigation System (INS) approach used DGNSS

and inertial measurement data within an extended Kalman filter(EKF). The study showed that both

approaches achieved performance exceeding the Society of Automotive Engineering (SAE) J2945

specification (1.5 meter horizontal accuracy and 3.0 meter vertical accuracy at 68%) [12] with PVA

achieving 1 m horizontal accuracy at 90% and 2 m vertical accuracy at 95% and the INS approach

using a consumer-grade IMU achieved 1 m horizontal accuracy at 98% and 2 m vertical accuracy at

95% [125].

The second phase of this project investigates methods for implementing DGNSS correc-

tions on a continental scale, to study the achievable accuracy. The overview includes discussion

of WADGNSS, the models that it incorporates, the modeling agencies, and the existing data and

model sources. The paper presents a Precise Point Positioning (PPP) aided INS design and ana-

lyzes navigation performance as a function of IMU quality. This paper considers GNSS PPP with

Least Square (LS), PVA and EKF for static and only EKF for dynamic condition. The experimental

results demonstrate positioning accuracy that surpasses the SAE specification using PPP corrected

single frequency, single constellation GNSS measurements along with a consumer-grade IMU sen-

sor. Experiments performed in this project (see Section 5.2.2) have demonstrated horizontal position

accuracies of 1.35± 0.48, 1.19± 0.41, and 0.47± 0.26 using PPP PVA and demonstrated horizon-

tal position accuracies of 0.81 ± 0.21, 0.52 ± 0.25, and 0.43 ± 0.186 using PPP INS for stationary

dataset. Horizontal and vertical position accuracies (see Section 5.2.3) are 0.80 ± 0.40 and 2.32 ±
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1.14 with PPP INS respectively for dynamic condition.

This study focuses on single frequency, single constellation results. The availability of

multiple constellations and multiple frequencies per constellation will facilitate estimation and com-

pensation of ionospheric error, accommodation of outliers, and accommodation of multipath. It will

also greatly increase the number of available measurements and the likelihood that the user has avail-

able a set of satellites with appropriate geometry to reliably achieve the performance specification.
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Chapter 1

Introduction

1.1 Background

The introduction of satellite navigation is one of the greatest technological innovations.

The development of Global Navigation Satellite Systems (GNSS), started a new and exciting era

in positioning, navigation, and timing at the end of the twentieth century. Estimates of position,

velocity, and time have become available instantaneously and inexpensively. Since its inception in

the late 1970s, GNSS has revolutionized positioning and navigation along with geodesy, geospatial

science and technology. Although the primary intention of the system was for military purposes,

researchers soon recognized the versatility of this system. There are a myriad of civilian applications

such as vehicle, air and marine navigation, machine guidance/control, search and rescue, mapping

and tracking, precision farming, and land surveying where GNSS can be utilized.

Over the last several decades, GNSS have become dominant for personal and vehicular

navigation. GNSS [20, 108] have been reliably used to achieve positioning accuracy of about 10

m for twentieth century. A new generation of applications (e.g., autonomous vehicles, connected
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vehicles, driver’s assistance, Blind Spot Warning (BSW), smart parking, and connected eco-driving,

High Speed Differential Warning (HSDW) etc.) are placing much stricter specifications on position

accuracy and reliability for navigation systems than was previously required [16, 25, 75, 84]. The

FHWA, state DOTs, and auto manufacturers are investigating connected and autonomous highway

vehicle applications which will benefit from real-time, ECEF position estimates accurate to sub-

meter level at 99% probability. Pilot projects are ongoing in at least three locations [25,75,84]. The

objectives include improving roadway network safety and throughput, while decreasing emissions

impact.

Although started earlier, GNSS only became fully operational in 1995 and selective avail-

ability, which restricted the quality of the signal for civilian use, was ended in 2000. GNSS receivers

receive coarse/acquisition codes from the satellite and compare them with its own signal to provide a

distance from the receiver to the satellite, called the pseudorange. The pseudorange measurement is

corrupted with several errors. The most well-known methodology to compensate these error terms

is called relative or Differential GNSS (DGNSS). DGNSS can be of two major types: (a) Local Area

Differential GNSS (LADGNSS) and (b) Wide Area Differential GNSS (WADGNSS). LADGNSS

positioning technique involves a minimum of two receivers are required for positioning. One is

referred as a base station receiver set up, while the other receiver acts as a rover receiver, which

coordinates are needed to be determined. Base station positions are known precisely and both the

receivers are required to simultaneously observe the same set of satellites. The errors common to

receivers in same vicinity (i.e. satellite orbit, satellite clock, ionospheric delay, tropospheric delay

etc.) are similar and have temporal and spatial correlation. Commonly cited single frequency pseu-

dorange LADGNSS position accuracy levels are 1-3 meters [37, 53, 140]. The lower end of this
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range approaches the sub-meter specification, if this accuracy can be achieved with sufficient relia-

bility and if it is not sensitive to DGNSS correction communication latencies. Navigation systems

achieving these accuracy and reliability specifications have been demonstrated in [121]. For a na-

tional scale of implementation, topics of interest include: communication physical layers, network

design for real-time applications, position error sensitivity to communication latency, and estimation

algorithms to achieve the accuracy specification.

The concept of LADGNSS has been utilized over the last two decades. The accuracy

of relative positioning is also constrained by the baseline length. As the baseline length increases,

the correlation between errors decreases. This limits the accuracy of the positioning solutions.

Therefore, the implementation of LADGNSS corrections are not feasible for continent scale. That is

why a great part of localization technology focuses on Wide Area Differential GNSS (WADGNSS)

based receiver navigation application. There are several methods to compute and communicate

WADGNSS corrections for stand-alone rover position estimation (e.g. Virtual Reference Stations

(VRS) [93], Satellite Based Augmentation System (SBAS) [145], Precise Point Positioning (PPP)

etc.).

In the late 1990s, the construction of Continuously Operating Reference Station (CORS)

networks around the world led to the computation of precise satellite orbit and clock corrections.

These corrections made high accuracy point positioning using a single GPS receiver possible. This

novel positioning technique is known as Precise Point Positioning (PPP) [154]. The concept of

PPP [8] was first introduced to obtain high accuracy for single GNSS receivers using precise data

products (i.e., atmospheric models, precise satellite orbit and clock, satellite hardware biases) de-

rived from external sources. Most often, such PPP approaches use undifferenced ionosphere-free
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code and carrier phase observations from dual frequency receivers [89, 142, 154], where centimeter

accuracy is achievable when carrier phase ambiguities can be resolved. The original PPP results

were only feasible in post-processing due to latency in the required PPP data products [18, 57]. For

on-vehicle applications, real-time results are needed without long ambiguity convergence times.

Various organizations (e.g. International GNSS Service (IGS), European Space Agency (ESA), Na-

tional Oceanic and Atmospheric Administration (NOAA), Federal Aviation Administration (FAA))

use networks of GNSS stations, to provide one or more components of the PPP correction in real-

time. These real-time data products enable users to compute common-mode error-free code and

phase measurements for estimating online receiver location without any nearby reference station.

Inertial navigation is a well understood and widely used technology for rover position-

ing. With recent significant progress in microelectromechanical systems (MEMS) technology, re-

search interest in the application of low-grade IMU to navigation has been growing. IMU is a

self-contained system and independent of any external signal. However, if a navigation system uses

only IMU, errors in position and attitude are accumulated due to IMU errors as time passes. Since

MEMS IMU usually has large errors, errors in position and attitude can grow very rapidly. Thus,

current low-grade MEMS IMU alone offers short-term stability, but unsuitable for long-term reli-

able rover navigation. IMU accuracy is well studied as a function of aiding sensor availability and

can easily be computed while the system is in operation. Using the complementary properties of

GNSS and IMU, a navigation system can be constructed from the integration of both sensors that re-

sults in long-term stability and reliability. This method is known as GNSS-aided Inertial Navigation

System (INS).

The main advantage of Inertial Navigation System (INS) is the estimation of the full

4



vehicle state (position, velocity, acceleration, attitude and angular rate) continuously at high rates.

The benefit of the integrated approach is not only limited to high rate rover state information but also

for performance maintenance for GNSS signal outages and outliers. In open areas where signals

from GNSS satellites are not interrupted, frequent measurement updates are available and the rapid

error growth in INS with MEMS IMU may not be of great concern. One interesting research area

in the navigation application, is the investigation of inertial sensor performance degradation with

GNSS measurement outage periods.

1.2 Related Works

Vehicle positioning by standard GNSS and LADGNSS [45, 47, 49, 63, 92, 141] are both

very well researched areas. Real-life challenges in LADGNSS positioning are sensitivity of position

error to baseline separation and communication latency. In selective availability (SA) era there were

many investigations to characterize sensitivity to LADGNSS correction latency [50, 90, 104]. Due

to the design of SA, as intended, the correction error and hence the position error grew rapidly

over tens of seconds. Until recently [121, 126], the literature lacked studies of real-time position

estimation accuracy versus correction latency in the post-SA era. The literature presents extensive

position estimation theory, estimation algorithms, and experimental results that illustrate alternative

modeling choices and their impact on performance and reliability, for example [5, 7, 29, 132, 133].

WADGNSS is another rover positioning concept, utilized to compensate for GNSS mea-

surement errors. One significant feature of WADGNSS branch is the PPP algorithms. This is one

of the major focus of this research study. In previous works, PPP results were only feasible in

post-processing due to latency in the required PPP data products [18, 57]. In current time, many
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organizations (i.e. IGS, JPL etc.) are working on providing real-time PPP corrections. There-

fore, studies regarding real-time PPP implementation can be found. Krzan [91], Nguyen [113], El-

sobeiey [44] and Liu [100] all present real-time PPP implementations using IGS Real-Time Service

(IGS-RTS) products. The ionospheric delay is compensated by computing iono-free code and phase

measurement from dual frequency signals. Although, many works mention IGS-RTS real-time PPP

implementations, majority of the studies utilize dual-frequency code and phase measurements. Due

to cost constraint in consumer markets, our focus is on single frequency positioning. Very few ex-

amples have been found to showcase IGS-RTS performance using real-time single frequency (SF)

PPP methods. Among these few illustrations, Elsheikh [43] claims to achieve 60 cm accuracy using

single frequency multi-GNSS code and phase measurement for moving platform.

Real-Time PPP (RT-PPP) approaches using corrections from other sources have also been

proposed. Gao and Chen [56, 58], for instance, has developed a single frequency (SF) RT-PPP

algorithm using JPL’s precise orbit and clock products. Their work compensates for ionosphere

error by combining code and carrier phase measurements. The carrier phase ambiguity reso-

lution convergence time is 2-4 hours which is too long for automotive applications. Bree and

Tiberius [87, 146, 147] uses real-time precise orbit and clock correction from REal-TIme CLock

Estimation (RETICLE) service, which has been developed at the German Space Operations Center

of the German Aerospace Center (GSOC/DLR). The predicted global ionospheric maps (GIM) and

predicted Differential Code Bias (DCB) from the Center for Orbit Determination (CODE) in Bern

are used in order to realize real-time SF-PPP. Their reported accuracies are 0.30 m and 0.71 m for

stationary and moving platform respectively. The algorithm uses code and phase measurements

with convergence time of 180 epochs.
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The PPP corrections utilized in this study, consist of real-time precise orbit, clock from

IGS-RTS [66], ionosphere parameters from US-TEC [55] and predicted satellite hardware bias

(DCB) from CODE. The troposphere error is corrected using UNB3M model [48, 96]. The al-

gorithm utilizes single frequency pseudorange and Doppler measurement from GPS constellation

only.

For the last decade, many reliable and accurate GNSS aided INS implementations are

found in literature for ground vehicle applications (e.g. car, freight) [127, 135, 144, 145]. GNSS

and INS integration with LADGNSS correction is widely discussed in the literature [49, 123, 126,

140,149]. Recent years have displayed some illustrations of GNSS-aided INS systems compensated

with PPP correction. This particular integration approach is referred to as PPP-INS [36, 43, 100].

GNSS and inertial sensor integration has been accomplished by a variety of methods: Extended

Kalman Filter (EKF) [9, 51]; complementary Kalman filtering [67]; Unscented KF (UKF) [153];

and, Extended Particle filter (EPF) [3]. Use of Doppler improves positioning accuracy on moving

platforms by measuring velocity [5, 7, 132, 133]. A less well understood benefit of the Doppler

measurement is that it enhances the degree-of-observability of the multipath states. This topic with

a simple example is discussed in [121]. A tightly coupled Precise Point Positioning (PPP) approach

is presented in [102] using an EKF algorithm. Smoothing approaches for trajectory estimation are

presented in [99, 148].

1.3 Main Contribution

The main focus of this study is the feasibility of sub-meter positioning accuracy with real-

time PPP-corrected single-frequency GNSS receiver integrated to consumer-grade inertial sensors.
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The contributions of this study can be categorized into two sections: (a) Local area differential

approach (b) PPP approach.

LADGNSS Approach:

Specific topics of interest for LADGNSS approach are:

• Theoretically expected pseudorange accuracy; measurement model and common-mode error

compensation approach.

• Discussion about the differential correction latency compensation approach (see Section 3.1.1

and 3.1.2) and the state estimation algorithms used herein.

• Approaches for accurately estimating the state of a moving platform is presented in Section

5.1.7. Section 5.1.9 shows experimental results that demonstrate meter-level positioning per-

formance that is robust to correction latency. Because this study focuses on robustness to

communication latency, the experimental data sets were selected under open sky conditions.

The performance demonstrated herein would not extend to urban canyon conditions where

the challenges arise from non-line of sight measurement effects and the lack of satellites.

PPP Approach:

The contributions for PPP are included herein:

• Detailed methodology for PPP correction computation approach is presented in Section 3.4;

• Stochastic noise characteristics of different inertial sensor grades and the resulting noise effect

in rover positioning;
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• The extent to which state estimation algorithms can achieve the position accuracy and reli-

ability specifications currently envisioned for driver assistance, connected vehicle, and au-

tonomous vehicle applications [12] using consumer-grade PPP-INS system; The results are

mentioned in Section 5.2.2 and 5.2.3.

• The discussion about feasibility of positioning accuracy for moving platform is presented in

Section 5.2.4.

This article focuses on consumer applications, such as the automotive market, where low cost time-

to-first-fix, and reliability is a primary drivers. Motivated by low cost, we focus on single-frequency

(i.e., GPS L1) receivers. Given single-frequency receivers, carrier phase ambiguity would be unre-

liable and could take significant time whenever lock is lost; therefore, our focus is on methods that

use only pseudorange and Doppler.

All methods presented herein apply in theory to other frequencies and constellations. At

present, the PPP data is only available for GPS; therefore, this paper only considers GPS. Avail-

ability of phase measurements could greatly improve positioning accuracy if L1 integer ambiguities

could be reliably estimated [140] or if convergence times of float estimates of integers could be

(greatly) reduced [26].
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Chapter 2

GNSS Background

This section introduces notation and GNSS measurement models. GNSS receivers pro-

vide three measurements: pseudorange, carrier phase, and Doppler. At present, on inexpensive

commercial receivers, these signals are available only on a single frequency referred to as L1. In

the near-future, low-cost consumer receivers are expected to provide additional measurements from

multiple constellations (e.g., GPS, GLONASS, Galileo, BeiDou) and at multiple frequencies (i.e.,

L1, L2, and L5 for GPS). The methods discussed herein generalize to multiple frequencies and con-

stellations. Additional frequencies and multiple constellations will further enhance performance.

For example, measurements at multiple frequencies will improve estimation of ionospheric delay.

Multiple constellations and multiple frequencies will greatly increase the number of measurements

allowing attenuation of multipath and outlier effects. This study focuses on users with access to L1

pseudorange and Doppler measurements from the GPS constellation. Availability of phase mea-

surements could also greatly improve positioning accuracy if L1 integer ambiguities could be reli-

ably estimated [140] or if convergence times of float estimates of integers [26] could be (greatly)
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reduced. Additional information on various GNSS system along with their measurement and cor-

rection model can be found in [21, 45, 49, 109, 118].

2.1 Notation

To clearly distinguish between models and computations, this article will use two differ-

ent symbols. The symbol =̇ indicates that the equation is a model. Models are used to analyze,

understand, and physically interpret measurements, often with the goal of designing algorithms to

estimate quantities that are of interest (e.g., position). The symbol = indicates that an equation

represents an actual algorithmic calculation.

When it is necessary to represent the actual, measured, and computed versions of a vari-

able, x will represent the actual value, x̃ will represent the measured value, x̂ will represent the

computed or estimated value. Vector and matrix variables will be printed in bold font. For exam-

ple, ps represents the actual position vector for satellite s while p̂s represents the position vector for

satellite s computed from the available ephemeris data.
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2.2 GNSS Measurement Model

GNSS receivers track signals from satellites to provide pseudorange, phase and Doppler

measurements. For the GPS system, the dual frequency measurement models are:

ρ
s
r,L1 =̇ R(pr, p̂s)+ ctr + cbrL1,ρ +Ms

r,ρ1 +η
s
r,ρ1

−cts +Es
r + Is

L1 +T s− cbs
L1,ρ , (2.1)

ρ
s
r,L2 =̇ R(pr, p̂s)+ ctr + cbrL2,ρ +Ms

r,ρ2 +η
s
r,ρ2

−cts +Es
r + Is

L2 +T s− cbs
L2,ρ , (2.2)

φ
s
r,L1 =̇ R(pr, p̂s)+ ctr + cbrL1,φ +λL1Ns

r,L1 +Ms
r,φ1 +η

s
r,φ1

−cts +Es
r − Is

L1 +T s− cbs
L1,φ , (2.3)

φ
s
r,L2 =̇ R(pr, p̂s)+ ctr + cbrL2,φ +λL2Ns

r,L2 +Ms
r,φ2 +η

s
r,φ2

−cts +Es
r − Is

L2 +T s− cbs
L2,φ . (2.4)

λDs
r,L1 =̇ hs

r · (vr−vs)+ cBr− cBs +η
s
r,D1 (2.5)

λDs
r,L2 =̇ hs

r · (vr−vs)+ cBr− cBs +η
s
r,D2 (2.6)

where ρ represents pseudorange and φ represents carrier phase. The subscript r counts over the

number of available receivers. The superscript s counts over the number of available satellites. The

symbols L1 and L2 indicate the two GPS carrier frequencies and λL1 and λL2 are the corresponding

carrier signal wavelengths. The symbols Ns
r,L1 and Ns

r,L2 represent the L1 and L2 integer ambiguities

that arise from carrier phase tracking. The desired information from these measurements is the

range between the receiver position pr and the satellite location ps

R(pr,ps) = ‖pr−ps‖. (2.7)
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Es
r = R(pr,ps)−R(pr, p̂s) (2.8)

Ephemeris error Es
r arises because the actual satellite position ps is not the same as the satellite

position p̂s computed from the ephemeris data. where the line-of-sight vector from satellite s to

receiver r is

hs
r =

pr−ps

|pr−ps|
. (2.9)

In a perfect vacuum the range would equal the product of the time-of-travel and the speed-of-light in

a vacuum. Because the underlying measurement is the time-of-travel of a signal sent by the satellite

and detected by the receiver, the timing measurement is corrupted by the receiver clock bias ctr, the

satellite clock bias cts, and signal path delays within the receiver cbr f and satellite cbs
f , where f is

either L1 or L2. The symbols vr and vs represent the receiver and satellite antennae velocity vectors,

cBr and cBs are the receiver and satellite clock drift rates. For the remaining terms: Is
f represents

ionospheric delay for frequency f , T s represents tropospheric error, Ms
r represents multipath error,

and ηs
r,∗ ∼ N (0,Rs

∗) is white random noise affecting the measurement, ∗ is may be replaced by

“ρ1”, “ρ2”, “φ1”, “φ2”, “D1” or , “D2”. The error terms Is
f and T s arise because the signals travel

through the Earth atmosphere, not a perfect vacuum.

The portions of this paper that discuss estimation of the information necessary to compute

GNSS corrections will assume availability of a continent-wide (or global) network of high-quality

receivers and antennae, at locations known to centimeter or better accuracy, that are recording both

pseudorange and carrier phase measurements on (at least) two frequencies.

The portions of this report that are concerned with position estimation assume a consumer

grade antenna and receiver that provides pseudorange and Doppler on a single frequency. All ex-

perimental results herein use data only from GPS. Performance would be enhanced by using data
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Table 2.1: Standard GNSS error budget [55, 66, 96].

Source Error Budget, m
Ephemeris error 2

Satellite clock offset 2
Ionospheric time delay 3-7

Tropospheric error 1
Receiver noise 0.2

Multipath effect 1-2
UERE, rms 4-8

Horizontal Position Error, rms (HDOP = 1.5) 6-12

from multiple GNSS’s [34] or from multiple frequencies [105]. In this report, the user is considered

a low-cost GNSS receiver. The user’s measurement model of L1 measurements mentioned in eqns.

(2.1),(2.3) and (2.5).

2.3 GNSS Measurement Errors

The L1 pseudorange measurement has 9 types of errors, (see [92], and Sections 1.2-1.3

of [140]). They can be classified into two categories:

• Common-mode errors (ephemeris, satellite clock bias, ionosphere, troposphere, satellite hard-

ware bias) are common to all receivers in the same vicinity. In eqns. (2.1–2.4) the symbols

representing these common-mode errors are in the second line of each equation.

• Noncommon-mode errors (receiver clock bias, receiver hardware bias, multipath, receiver

noise) are different for each receiver.

Table 2.1 summarizes typical magnitudes for the various range error sources for standard GNSS,

without differential corrections. The resulting horizontal position estimation accuracy does not
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achieve the desired specifications. Differential correction approaches (local DGNSS, network DGNSS,

or PPP) aim to reduce the effects of the common-mode errors [10, 11, 47, 141] on the position esti-

mates.
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Chapter 3

DGNSS Correction Approach

This section discusses the DGNSS technique to compensate for GNSS common-mode

errors and delineates various issues that must be addressed toward achieving sub-meter position

accuracy and robustness to communication latency.

3.1 LADGNSS Correction

All DGNSS approaches use at least one base station with a high quality receiver and

antenna located at a mechanically stable and known location pb. Due to the base station antenna

location being stationary and known, the DGNSS approach can estimate corrections for roving

receivers, enabling significant enhancement in rover position estimation accuracy, assuming that the

corrections can be communicated to the rovers in a time-effective manner. Quantification of “time

effective” requires an understanding of the sensitivity of position accuracy to correction latency.

DGNSS can be implemented on local, regional or global scales. The standard local ap-

proach [47, 141] is described in Section 3.1.1. Regional and global approaches utilize a network of
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GNSS receivers. The measurements from the network are combined to estimate correction infor-

mation that is broadcast to users, such that each user can reconstruct a local correction [46, 83].

The collection of data from remote base receivers, computation and verification of correc-

tions, and communication of corrections to users result in latency ` between the time-of-applicability

t0 and the time that it is actually used t0 + `. Robustness to communication latency is critical.

A primary goal of this study is to evaluate the sensitivity of positioning accuracy to com-

munication latency. For the purpose of this study, it is sufficient to utilize local corrections.

3.1.1 Standard Local DGNSS Corrections

The L1 pseudorange measurement model for base station is:

ρ
s
b =̇ R(pb, p̂s)+ ctb + cbbL1,ρ +Ms

b,ρ1 +η
s
b,ρ1

−cts +Es
b + Is

L1 +T s− cbs
L1,ρ , (3.1)

The local base station position pb is known to centimeter accuracy, so that its error is neglected

herein. At time t the base station algorithm computes

c̃s = ρ
s
b−R(pb, p̂s)− ct̂b + ct̂s (3.2)

where ρs
b is the base pseudorange measurement, R(pb, p̂s) = |pb− p̂s|, p̂s and ct̂s are the satellite

position and clock bias computed from ephemeris data, and ct̂b is an estimate of the base receiver

clock bias.

The model for c̃s is

c̃s=̇Is
L1 +T s +Es

b− cδ ts− cbs
L1,ρ + cδ tb + cbbL1,ρ +Ms

b +η
s
b (3.3)
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where Es = R(pb,ps)−R(pb, p̂s) is satellite ephemeris error, cδ ts = cts− ct̂s is residual satellite

clock bias and cδ tb = ctb− ct̂b is residual receiver clock bias. Note that all of the terms on the

right-hand side of eqn. (3.3) are unknown. The goal is that the broadcast correction should allow

accurate prediction of the rover’s common-mode error

Is +T s +Es
b− cδ ts,

while being minimally influenced by the base station noncommon-mode error

Ms
b +η

s
b.

Eqn. (3.3) shows that c̃s contains both common and noncommon-mode errors; therefore, additional

processing is desirable.

3.1.2 Approach to Decrease Multipath and Latency Effects

This section discusses a local base station algorithm first presented in [122] that is com-

patible with the RCTM standard [11].

Each noncommon-mode error source is correlated over only a few minutes whereas the

common-mode error sources are correlated over several hours. Due to this frequency separation,

various forms of low-pass filtering should attenuate the affects of the noncommon-mode errors.

Before filtering, it is useful to consider the ionospheric delay. When the ionospheric delay

rate is high, a low-pass filtered correction would lag the present value of c̃s(t). The ionospheric

delay has trends that are largely predictable using satellite data available at each base and rover.

Therefore, the predictable portion of these terms is removed prior to filtering and added back into

the filtered results.
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Let Îs represents the ionosphere delay computed using Klobuchar model parameters sent

in the navigation message. Subtracting this predicted ionospheric delay (and an estimate of the base

clock ct̂b) produces the new computed variable

d̃s = c̃s− Îs− ct̂b. (3.4)

The model for d̃s(t) is

d̃s =̇ δ Is +T s +Es− cδ ts

+cδ tb +Ms
b +η

s
b (3.5)

where δ Is=̇Is− Îs. The first line of eqn. (3.5) contains the desired signal for the corrections. These

signals have very small changes in rate over long periods of time (i.e., many minutes). The second

line of eqn. (3.5) contains the noncommon-mode errors. The first term is not critical. As long

as the same value ct̂b is subtracted for all satellites in eqn. (3.4), then only the magnitude of the

corrections and the value of the rovering receiver’s clock estimate will change. A well-designed

base station is situated away from or above reflective surfaces and uses a high-quality antenna to

minimize multipath effects. The base multipath error Ms
b typically has a correlation time of minutes

and is assumed to be zero mean over many minutes. The measurement noise ηs
b changes rapidly

and is zero mean over several minutes. Therefore, to also attain the ability to predict corrections at

future times, the form of low pass filter that we select is line fitting.

At time t0, the line at0 +bt0(t− t0) is fit to the data

{
d̃(t) for t ∈ [t0−L, t0]

}
.

The correction parameters [at0 ,bt0 , t0, IODE] are communicated from the base to the rover arriving

at the rover at some time after t0. The parameter IODE ensures that the base and rover use the
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Figure 3.1: DGNSS correction c̃ (blue) and computed ionospheric delay Îs(t) (green).

same issue of ephemeris data. Figures showing example base station calculations are included in

the Appendix of [122]. The differential correction in eqn. (3.6) is designed to be robust to latency

and base station multipath error.

3.1.3 Example Computed Corrections

This section illustrates the DGNSS correction approach described in Section 3.1 using an

example set of data. The blue points in Fig. 3.1 show the DGNSS corrections c̃ as computed using

eqn. (3.2). The model corresponding to c̃ is defined in eqn. (3.3). An estimate Îs of the first term

(i.e., Is) is computable from ionosphere model parameters communicated in the satellite data and is

plotted as the green line in Fig. 3.1.

The blue curve in Fig. 3.2 is the ionospheric-free DGNSS correction, d̃, formed using
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Figure 3.2: Ionospheric-free correction d̃(t).

eqn. (3.4) and has the model described in eqn. (3.5). While the slope of c̃ was approximately 3

mm/sec, the slope of d̃ is reduced to approximately 1.5 mm/sec.

Over long periods of time (e.g., hours), d̃ will not be linear due to the rising and setting of

the satellite causing the signal to traverse paths through different portions of the ionoshpere that vary

in length and time of day. See Fig. 3.3. Alternative, over very short intervals of time, line fitting

might fit either the random noise or multipath effects without providing useful predictive capability

of future common-mode errors. For L greater than a few multiples of the multipath correlation time,

multipath effects will be attenuated and the line fit should have useful predictive capabilities. In

Fig. 3.4 the blue dots again show d̃. The red line shows the line fit to d̃(t) for t ∈ [t0−L, t0] for

t0 = 500 and L = 500. On the interval t ∈ [t0−L, t0], the line follows the general trend of the data
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Figure 3.3: Ionospheric-free correction d̃(t) for long period of time

Figure 3.4: Line fit to ionospheric delay free correction.
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Figure 3.5: DGNSS correction raw data c̃ and computed correction ĉ(t; t).

without following the random noise or multipath. For t > to, the line fit predicts the general trend

of d̃(t). The prediction accuracy will decease (as expected) as (t− t0) increases. Fitting the line to

d̃ provides the parameters t0, at0 and bt0.

Finally, the correction ĉ(t; t), as computed using eqn. (3.6), is shown as the green line in

Fig. 3.5 along with the original data (blue dots).

3.1.4 Rover Common-mode Error Compensation

For any time t ≥ t0, the rover computes the correction as

ĉ(t; t0) = at0 +bt0(t− t0)+ Îs(t). (3.6)

The estimated ionospheric delay Îs(t) is computed using the same procedure as at the base station

(i.e., Klobuchar model and parameters from the navigation message).
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For position computations, the rover uses the DGNSS correction compensated pseudor-

ange measurement:

∆ρ
s
r (t; t0) = ρ

s
r,L1(t)− ĉ(t; t0). (3.7)

The symbol ρs
r,L1 symbolizes the rover pseudorange measurement mentioned in eqn. (2.1). The

correction communication latency is l = (t− t0). Subsequent sections will study the effect of this

latency on positioning accuracy, showing robustness for several hundred seconds of latency. Even

in the ideal case where `= 0, the base and rover receiver are not synchronized. Each receiver makes

its measurements according to its own clock.

The DGNSS compensated pseudorange model corresponding to eqn. (3.7) is

∆ρ
s
r (t; t0) =̇ R(pr(t), p̂s(t))+ ctr(t)+ cbrL1,ρ (t)− cδ tb(t)− cbbL1,ρ (t)+(ĉ(t; t)− ĉ(t; t0))

+Ms
r(t)+η

s
r (t), (3.8)

where ĉ(t; t) represents the actual common mode errors in the rover pseudo-range measurement at

time t. The term e(t, `) = (ĉ(t; t)− ĉ(t; t0)) accounts for the error in prediction of the common-mode

errors due to communication latency.

3.1.5 Double-Differenced Rover Measurement Models

The DGNSS correction approach compensates common-mode errors affecting the pseu-

dorange measurement. The receiver clock biases can be eliminated by double differencing (See

Section 8.8.3 in [49]). In double-differencing, one differential satellite measurement is deducted

from all the others. This operation removes clock bias errors at the cost of one fewer measurement

for position (or state) estimation and causing the noise on all double-differenced measurements to

be correlated.
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The DGNSS compensated measurement model from eqn. (3.8) reduces to the below

stated form

∆ρ
s
r =̇R(pr, p̂s)+ ctrb + es(`)+Ms

r +η
s
r , (3.9)

where ctrb = ctr + cbrL1,ρ − cδ tb− cbbL1,ρ and the time index t has been omitted for simplicity.

For the results herein, the pivot satellite (s = sp) will be the one with the highest elevation

angle. The double-differenced pseudorange measurement dρs
r is computed as

dρ
s
r = ∆ρ

s
r −∆ρ

sp
r . (3.10)

The corresponding measurement model is

dρ
s
r =̇R(pr, p̂s)−R(pr, p̂sp)+des(`)+dMs

r +dη
s
r , (3.11)

where des(`) = es(`)− esp(`), dMs
r = Ms

r −Msp
r and dηs

r = ηs
r −η

sp
r . The measurement model has

both time-correlated multipath and white measurement noise processes, plus the effects of correc-

tion latency.

The Doppler measurement model for rover from eqn. (2.5), after using the ephemeris data

to remove hs · v̂s and cBs, is

λDs
er
=̇ hs ·vr + cBr +η

s
r,D1. (3.12)

The double-differenced Doppler measurement is computed as

λdDs
r = λDs

er
−λDsp

er , (3.13)

which yields the measurement model

λdDs
r =̇ (hs−hsp) ·vr +dη

s
r,D1. (3.14)

where dηs
r,D1 = ηs

r,D1− dη
sp
r,D1 is the white Doppler measurement noise that is correlated between

satellites.
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3.2 Continent Scale DGNSS Approaches

To enhance the accuracy of GNSS receiver position estimation, the user can compensate

the common-mode errors using correction information from external sources. At least three ap-

proaches exist to acquire this information: corrections from a local reference station can be directly

applied (Local Area DGNSS); GNSS measurements from an array of reference stations could be

used to estimate corrections for the local users (Network or Wide Area DGNSS); or, correction

information estimated by national or global agencies could be used to construct corrections for the

local user (Precise Point Positioning). These methods are discussed in more detail in the following

subsections.

3.2.1 Local Area DGNSS Reference Station Network

Local Area DGNSS (LADGNSS) [118,140] uses a reference GNSS receiver near the area

of operations to compute a correction that is the sum of the common-mode errors at the reference

location. This correction is communicated to roving receivers within a distance D of the reference

location for which the correction is deemed to be accurate. This approach works well even for a

large number of roving vehicles, each within distance D of the reference station, but does not scale

well to large areas.

Let L and W represent the length and width of the continent-sized region for which the

corrections are intended to apply. The number of required base stations would be on the order of( L
D

)(W
D

)
. For example, for the lower forty eight US states L = 2802 and W = 1650 miles. Depend-

ing on the value selected for D, between 475-1850 base stations would be required. Each station

would need to be robustly built, the antenna location surveyed, power and data communications
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installed, and the entire network maintained. The corrections from each station for each satellite

would need to be communicated to the master station. If the communication medium provides a

data stream across the continental US, then corrections from all reference stations for all satellites

would be communicated to all users, who would then use the appropriate correction for the satellites

in view at their location.

Such a network of GNSS receivers to implement a continental scale set of local correc-

tions is not an efficient use of resources. It is also not reliable in the sense that the loss of any

reference station would eliminate corrections applicable to the surrounding region. An alternative

approach is discussed in the next section. It makes more efficient use of data, allowing a smaller

network, and provides opportunities for enhanced integrity and reliability.

3.2.2 Network DGNSS

Wide-area DGNSS (WADGNSS) systems are designed to cover large, continent-sized

regions [46, 76, 78–81, 83, 106]. They rely on data from a network of GNSS receivers dispersed

across the region exploiting the spatial and time correlation characteristics of GNSS common-mode

errors.

The WADGNSS concept includes a network of reference (or monitor) stations dispersed

across the region of interest, one or more master stations (central processing sites), communication

of data from the reference stations to the master station(s), and a data link to provide corrections

from the master station(s) to users. Each reference station includes one or more GNSS receivers that

measure pseudorange and carrier-phase for each frequency of the broadcast signals from all visible

satellites. This data is provided to the master station(s). Wide-area DGNSS (WADGNSS) attempts

to attain submeter-level position accuracy over the large region while using a fraction of the number
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of reference stations that a LADGNSS would require to attain the same accuracy within the same

coverage region. The general approach, described in more detail in Appendix 7.1, is to parameterize

and estimate models for each component of the common-mode pseudorange error.

Satellite Ephemeris and Clock Error. The underlying cause of the ephemeris error in eqn. (2.8) is

the satellite position error vector (ps− p̂s) that can be modeled by three parameters per satel-

lite. Different reference stations are affected by different projections of this satellite position

error vector onto their satellite line-of-sight vectors. Given four or more widely separated

ground stations whose antenna positions are accurately known, accurate satellite position and

clock error estimates can be achieved by combining the concept of a reverse-GNSS solu-

tion [22, 82] with sophisticated models to describe the motion of the GNSS satellites over

time [27]. Such modeling is a standard method used for orbit determination for many satellite

systems, including in the ground network for each GNSS constellation [76].

Ionospheric Delay. With multi-frequency measurements, each receiver at each epoch acquires one

measurement per satellite of the slant ionospheric delay at the ionospheric pierce point for

that satellite. Combining these slant delay measurements from all satellites and all base sta-

tions allows estimation of the parameters of an ionospheric vertical delay model [46, 106].

These vertical delay model parameters are broadcast to the user. The user equipment then

computes a vertical ionospheric delay correction for each visible GNSS signal. The vertical

delay correction is mapped into a slant delay correction based upon the elevation angle for

each visible satellite.

Tropospheric Delay. Tropospheric delays are typically addressed through models (e.g., UNB3

[31], or Black’s model [19]) employed at both the reference stations and the roving receiver.
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Along with the items mentioned above the WADGNSS approach must calibrate various satellite and

receiver hardware biases, and validate signal integrity.

3.2.3 Precise Point Positioning

Precise Point Positioning (PPP) methods are designed to utilize such wide-area network

GNSS data products to compute more accurate user positions, without having to install and main-

tain a GNSS receiver network, master station, and estimation algorithms. Originally PPP methods

were designed for post-processing using delayed network data products [8, 18, 154]. As these data

products have become available in real-time, the interest has shifted to real-time PPP [30,60,91,95,

101, 147].

After receiving parameters for the various error models, computing per satellite correc-

tions, and applying all these corrections to its own pseudorange and phase measurements, the

WADGNSS user equipment computes user position [76]. Approaches exist both for single and

two frequency users.

3.2.4 WADGNSS Modeling Agencies

There are various organizations using networks of GNSS stations that provide one or more

component of the WADGNSS correction.

International GNSS Service (IGS): IGS is a data service designed to enable high precision posi-

tioning using GNSS. Centimeter accuracy has been demonstrated using integer-resolved car-

rier phase measurements from multi-frequency receivers [56, 88]. IGS uses data from about

300 permanent, continuously-operating reference stations distributed around the world [88].

IGS also has voluntary collaboration (for data sharing) with more than 200 organizations
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(e.g., JPL) in more than 80 countries. IGS provides differential corrections via the Internet in

RTCM Space State Representation (SSR) message format [66]. It is fully functional for GPS

and nearing full functionality for GLONASS.

Federal Aviation Association (FAA): FAA has established 38 base stations distributed over the

continental US (CONUS) [140]. FAA was responsible for establishing an GPS augmentation

system suitable for North-American users. Their existing correction service, called WAAS,

is delivered to users via geostationary satellites that also provide additional ranging signals.

European Space Agency (ESA): ESA is responsible for establishing another GNSS augmentation

system. ESA has established 40 ground stations across Europe, Africa and North America

[140]. The ESA correction called EGNOS is delivered to users via geostationary satellites.

National Oceanic and Atmospheric Admin. (NOAA): NOAA is responsible for providing a near

real-time ionospheric Total Electron Content (TEC) map for CONUS users. Approximately

60 base stations were installed and maintained by the agency to provide a data source for their

system [13].

The described agencies provide DGNSS corrections accessible by public entities free of cost. There

are also private agencies (e.g., Jet Propulsion Lab (JPL), Trimble) that provide their own functioning

WADGNSS services for a user fee.

To illustrate the issues and challenges related to WADGNSS model parameter estimation

the elements of one approach are described in Appendix 7.1.
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3.2.5 Existing WADGNSS Services

Numerous agencies have been working to establish network DGNSS services for almost

30 years [46, 78–83, 106]. The established services can be categorized into two groups based on

their communication channels: geostationary satellites or internet.

Satellite Based Augmentation Systems SBAS is the generic name for any augmentation system

that has implemented WADGNSS using satellites as communication channels [97, 140]. This aug-

mentation service can provide ranging, integrity and correction information for users in different

geographical locations. Some versions of SBAS are described below.

Wide Area Augmentation Service (WAAS): WAAS was developed by the US FAA to provide

correction data for the GPS system [140]. The WAAS system is established based on two

segments: (a) Ground segment, and (b) Space segment. The ground segment consists of

all reference stations installed in CONUS and Hawaii. The reference station data is sent to

the Master stations which compute the corrections and send them to Ground Uplink Stations

(GUS), which then transmit to four satellites for rebroadcast to the users.

European Geostationary Overlay Service (EGNOS): This service was developed by ESA specif-

ically for users with multi-GNSS receivers [140]. It provides correction services for the GPS,

GLONASS and Galileo systems. The system has two segments: (a) ground segment with 40

base stations in Europe, Africa and North America, and (b) space segment with 3 geostation-

ary satellites.

Multi-functional Satellite Augmentation Service (MSAS):

This service was developed in Japan. It has 4 ground stations in Japan, Hawaii and Australia
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and 2 geosynchronous communication satellites [134].

Starfire: This is a private fee-based correction service. The system was developed by John Deere’s

NavCom and precision farming groups.

There are additional augmentation services that are not yet fully functional, including:

• GPS Aided Geo Augmented Navigation System (GAGAN) under development by India.

• System for Differential Corrections and Monitoring (SDCM) under development by Russia.

Internet Based Augmentation System There are agencies working on computing network DGNSS

services to be distributed via the Internet. For example, IGS has been working since 1994 to estab-

lish a real-time, precise GNSS positioning service [88]. The DGNSS correction would be delivered

in RTCM SSR format [66], which consists of many message types containing information about

precise orbit, clock, ionosphere, and satellite hardware biases.

3.3 WADGNSS Implementation

This section describes data sources, methodology, and performance analysis related to

implementing a WADGNSS service.

3.3.1 Data Sources

A major issue in the implementation of a WADGNSS network is the reliable real-time

collection of GNSS data from multi-frequency receivers well-distributed across the USA.

Various private organizations (e.g., Trimble, JPL) have established and maintained an

array of reference stations across the country, but the data from these reference stations are not
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accessible by public users. Alternatively, some public organizations (e.g., NOAA) have spatially

distributed reference stations, but real-time free access is limited to only a few reference stations.

Other public organizations (e.g. Plate Boundary Observatory (PBO), Scripps Orbit and Permanent

Array Center (SOPAC)) provide freely accessible real-time data, but their spatial distribution does

not currently cover the entire CONUS.

Table 3.1 summarizes information related to a few examples of available sources for ref-

erence station data in the CONUS. All the sources listed as public (including all NOAA sites) allow

delayed downloading of data for post-processing.

Table 3.1: Summary of Real-time Reference Station Networks.

Entities Access Free Coverage
PBO Public Y West coast

NOAA Public Y Limited
Private N USA

FRPN Public Y Florida
Trimble Private N USA

JPL Private N Global

For an entity that desires to communicate real-time WADGNSS to automotive user there

are various available approaches:

1. Compute its own WADGNSS information using data from:

(a) an entirely new network of reference stations installed and maintained by the entity or

its contractor;

(b) existing free sources; or

(c) existing sources that charge a fee.
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2. Collaborate with entities that already computed the components of WADGNSS corrections to

distribute them through alternative communication channels.

Option 1 requires development of talent, methods, and algorithms. It also requires selection of a

real-time reference station data delivery approach and may also run into intellectual property issues.

Option 2 allows an entity with a well established expertise in data communications to focus on

that strength, avoids intellectual property issues, avoids the need to acquire raw GNSS reference

data in real-time, and relies on the well developed expertise of others for the estimation of model

parameters.

3.3.2 WADGNSS Implementation Strategies

Given reference station data, WADGNSS modeling entities estimate model parameters for

the three-dimensional ephemeris error and clock offset for each satellite, plus ionospheric time delay

model parameters that can be communicated to user receivers in real-time. The algorithms may also

estimate various additional quantities: reference receiver clock error, tropospheric delay, hardware

biases, and carrier phase integer ambiguities. These quantities are not communicated to the user

in real-time. The reference receiver clock error and integer ambiguities are nuisance parameters

that must be estimated to achieve the specified accuracy in the desired model parameters, but are

not themselves useful. The hardware delays are very slowly changing (4.23e−4 ns/day or 0.13

mm/day), so they can be communicated at low rates (e.g., every 10 days).

The process can be summarized as follows: 1) reference stations at known locations col-

lect GNSS pseudoranges and carrier phases (if available) from all satellites in view; 2) observations

or processed observations (e.g., ionospheric-free pseudorange and ionospheric delay measurements
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Table 3.2: Summary of WADGNSS Strategies.

Number Number
Strategy User reference Requirements

Freqs. Freqs.
A 1 1 More reference stations than B and C
B 1 2 Fewer reference stations than A

More expensive user equipment
C 2 2 Fewer reference stations than A

(if available)) are sent to the master station; 3) the master station computes a state vector that in-

cludes the desired model parameters; 4) the model parameters are transmitted to users; 5) users cal-

culate corrections using the model parameters and tropospheric model, then apply the corrections

to their measured observations, resulting in improved navigation accuracy. Various WADGNSS

techniques have been proposed in the literature [14, 22, 78–81, 103].

WADGNSS technique can be categorized according to the number of frequencies required

for users and reference stations, which has implications for the estimation algorithm at the master

station [81]:

• Strategy A: This approach allows both the reference stations and users to employ single-

frequency receivers. Because the reference station is single frequency it cannot provide iono-

spheric time measurements. This strategy uses an ionospheric model (e.g. Klobuchar model)

to estimate and remove a portion of the ionospheric time delay from the reference station

measurements prior to they are used by the master station. The master station estimates the

three-dimensional ephemeris error vectors, the satellite clock errors and the reference receiver

clock errors in one large filter using only the (ionospheric corrected) pseudorange measure-

ments from all reference stations. The convergence time of the master station filter is stated
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as 2-4 hrs [81]. To use Strategy A for position estimation, requires the user to have an iono-

spheric model or Total Electron Content (TEC) map from another source. Position estimation

accuracy is not stated in [81].

• Strategy B: This method requires the reference stations to use dual-frequency receivers, while

the users can employ single-frequency (or two-frequency) receivers. With two frequencies,

the reference station can construct measurements of ionospheric delay. Using these iono-

spheric delay measurements, allows a large estimation problem to be split into two smaller

problems. Estimation of the vertical TEC map parameters using ionospheric delay mea-

surements is one process. Estimation of the three-dimensional ephemeris error vectors, the

satellite clock errors, and the reference station receiver clock errors is a separate process [81].

Relative to Strategy A, Strategy B has a lower computational load, uses fewer reference sta-

tions, and provides an vertical TEC map. For a rover using L1 carrier smoothed pseudorange

measurement, [118] demonstrates position accuracy of 1.1 m.

• Strategy C: This method requires both reference stations and users to utilize dual-frequency

receivers. In this case, ionospheric parameters do not need to be estimated in the master

station, and as a result, only three-dimensional ephemeris error vectors and satellite clock

errors are estimated. Compared to Strategy B, Strategy C has smaller computational load.

It achieves the best accuracy among the aforementioned strategies, as this method removes

ionospheric delay completely [80]. For a rover using L1 and L2 carrier smoothed pseudorange

measurements, [81] demonstrates position accuracy of 0.71 m.

While Strategy C has the best reported accuracy and reduced computational load, the

current project focuses on users with single frequency receivers.
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Table 3.3: Local and Wide-Area Differential GNSS error budgets.

Error LADGNSS Error WADGNSS Error Model
Type Budget, m Budget, m Source

Ephemeris 0.4 0.05 IGS
Satellite clock 0.2 0.09 IGS

Ionospheric delay 0.5 0.40 USTEC
Tropospheric 0.3 0.05 UNB3M

Satellite hardware bias N/A 0.9 CODE
Receiver noise 0.2 0.20

Multipath 0.1 0.10
UERE, rms 0.8 0.48

Therefore, one implementation of Strategy B is reviewed and described extensively in

Appendix of [124].

3.3.3 Related Issues and Error Budget

A comparison of the user equivalent range error (UERE) that a user can achieve using

Local or Wide-Area DGNSS is summarized in Table 3.3 [118]. The first column is the error type.

The second column shows the stated accuracy to which each common-mode error type can be

compensated using LADGNSS [118]. The third column shows the reported accuracy to which the

WADGNSS model states the common-mode error can be corrected. The model source is listed in the

fourth column. The accuracy stated for the orbit and clock corrections is from [30]. The accuracy

stated for the ionospheric model (i.e., vertical TEC) is from [13]. The accuracy stated for tropo-

spheric model is from [96]. The noncommon-mode errors’ (multipath and receiver noise) nominal

values are obtained from [118]. Multipath error varies as a function of environment (e.g. urban,

rural, open sky, obstructed view) and vehicle motion platform (stationary and moving). Receiver

noise differs for both receiver and measurement type.
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The UERE is converted to a horizontal position error by multiplication by the horizontal

dilution of positions (HDOP), which for GPS with at least 6 satellites in view typically ranges from

1-2. Therefore, based on the last row of Table 3.3, rms horizontal position error is predicted to be

0.8 - 1.6 m for LADGNSS and 0.48 - 0.96 m for WADGNSS.

3.4 Real-time PPP Approach

Many entities (IGS, JPL, WAAS) have investigated and established WADGNSS sys-

tems [46, 79–81, 106, 110]. Various services now provide real-time access to the products of their

WADGNSS: TEC maps, satellite position and clock corrections, and satellite inter-frequency biases.

These services enable real-time Precise Point Positioning (PPP).

This appendix discusses data sources and methods for computing: satellite orbit correc-

tions and precise ephemeris; satellite clock corrections; ionospheric corrections; tropospheric cor-

rections; and satellite hardware bias corrections. It also summarizes reported accuracy for each.

Table 3.4: IGS product for precise satellite orbit and clock correction:

Product
Communicaton period Accuracy

latency
Orbit Sat. Clock Orbit Sat.Clock

Real-time 5-60 sec 5 sec 5.0 cm 300 ps 25 sec
Ultra-Rapid (Predicted Half) 15 min 15 min 5.0 cm 3 ns predicted
Ultra-Rapid (Observed Half) 15 min 15 min 3.0 cm 150 ps 3-9 hrs

Rapid 15 min 5 min 2.5 cm 75 ps 17-41 hrs
Final 15 min 30 sec 2.0 cm 75 ps 12-18 days

Satellite and Clock Orbit Corrections. Satellite ephemeris/orbit error is the difference between the

satellite’s true position ps and the position p̂s computed using ephemeris data. This error develops is

due to uncertainty in the gravitational model, inaccuracy of the orbit representation and inadequately
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modeled surface forces on the satellites (e.g., solar radiation, particles of the Earths atmosphere and

air drag).

Although GPS satellites have stable atomic clocks, all clocks drift relative to each other.

The main distinction of higher quality clocks is that they drift more slowly, yet it is not possible

to maintain synchronization of the satellite clocks with GPS time, which results in satellite clock

biases. The navigation message provides parameters to predict the clock biases ct̂s(t), but there will

still be residual clock biases cδ ts(t) that range from 1-3 meters.

3.4.1 Satellite Orbit

IGS has been working on establishing precise orbit and clock correction service since

1990. Currently the service provides multiple versions of these corrections. Table 3.4 provides a

description of the different data products for orbit and clock corrections. It includes communication

period, reported accuracy, and latency information.

Computation

The satellite position p̂s(t) and velocity vectors ˙̂ps(t) in ECEF frame are computed from

the broadcast ephemeris. For the IGS-RTS service, the satellite orbit correction parameters δO0 and

rate δ Ȯ0 are provided in Antenna Phase Center coordinates (i.e., APC frame) along with a reference

time t0 every 60 seconds. Given these items, the correction computation involves four steps [66]:

1. The satellite orbit correction parameters δO0 and rate δ Ȯ0 are provided every 60 seconds

along with a reference time t0. The orbit correction at any time t is computed as

δO(t) = δO0 +δ Ȯ0 (t− t0). (3.15)
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In APC-frame, the vector δO =

[
δOr δOa δOc

]>
has radial, along-track, and cross-track

components.

2. The radial er, along ea, and cross-track ec unit vectors in the ECEF frame are computed as

ea =
˙̂ps

‖ ˙̂ps‖
, ec =

p̂s× ˙̂ps

|p̂s× ˙̂ps|
, er = ea× ec. (3.16)

3. The orbit correction δO(t) is transformed from APC frame to ECEF frame as

δps(t) =
[

er ea ec

]
δO(t). (3.17)

4. The precise orbit p̂sp is computed as

p̂sp(t) = p̂s(t)−δps(t). (3.18)

After the computation of precise orbit p̂sp(t), it can be used in two ways that are nearly the same.

First, for a user with access to the receiver navigation code, the precise satellite location can be

used for computing the estimated range R(p̂r, p̂sp) = ‖p̂r− p̂sp‖ and satellite-to-receiver unit vector.

Second, for a user supplying corrections to a receiver, the receiver will still use p̂s, the ephemeris

portion of the corrections Êsp would be

Êsp =
(p̂u− p̂sp)

‖p̂u− p̂sp‖
(p̂s− p̂sp) (3.19)

where p̂u is the approximate user location.

3.4.2 Satellite Clock

IGS-RTS data products provide satellite clock corrections using three polynomial param-

eters (ac0 , ac1 , ac2) and the message reference time is t0. As shown in Table 3.4, these parameters
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are sent every 5 seconds. The correction at time t is computed using the following equation [66]:

cδ ts(t) = ac0 +ac1(t− t0)+ac2(t− t0)2. (3.20)

The clock correction cδ ts(t) is computed in meters. The equation for the precise satellite clock ctsp

is

ctsp(t) = cts(t)+ cδ ts(t). (3.21)

3.4.3 Ionosphere Delay

The amount of ionospheric delay incurred by a GNSS signal depends on the number of

free electrons or ions existing along the signal path. This measure is referred to as the Total Electron

Content (TEC) which is measured in Total Electron Content Units (TECU’s), where 1 T ECU =

1× 1016 T EC means there are 1× 1016 electrons in a 1m2 cylinder around the signal path. This

delay is dependent on the frequency of the carrier signal; therefore, it can be measured and removed

by a user with a multi-frequency receiver. In a network GNSS approach measurements from across

the network can be combined to calibrate a TEC map, as described in Appendix 7.1. A single

frequency receiver cannot calibrate the ionospheric delay itself, but can incorporate ionospheric

models from external sources.

Data Sources and Reported Accuracy. Table 3.5 summarizes a few example ionospheric

delay map products [30]. The table includes reported accuracy, sampling period, map resolution

and product latency. Some frequently used ionospheric delay products are:

• Klobuchar Model: The ionospheric delay model that is available to all GPS users as part of

the broadcast navigation message is the Klobuchar model [86]. The modeling effort included
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Table 3.5: Ionospheric Delay Map Products.

Reported Broadcast Resolution Resolution
Product accuracy, interval Latency longitude, latitude,

TECU deg deg
IGS Final Product 2-8 2 hours 11 days 5 2.5
IGS Rapid Product 2-9 2 hours ≤ 24 hours 5 2.5

US-TEC 2.4 15 min Real-time 1 1

an assessment of expected accuracy versus the number of coefficients. The broadcast model

uses 8 coefficients to achieve for 50% correction accuracy goal. Increasing this number of

coefficients would only remove 70% to 80% RMS of the ionospheric effects.

• Global Ionosphere Maps (GIM): GIM represents a tool to monitor global ionospheric pat-

terns. It provides the instantaneous snapshots of the global TEC distribution [106]. This

product was developed by IGS Ionosphere Working Group (Iono-WG) established on May

1998. Currently four IGS Ionosphere Associate Analysis Centers (IAACs) provide data to

generate GIMs on a daily basis. GIM produces a 2-dimensional ionosphere TEC map that

corresponds to a 450 km ionospheric shell height. The IGS final GIMs are provided in Iono-

sphere Map Exchange (IONEX) format.

• US Total Electron Content (US-TEC): USTEC is a service that distributes a TEC map for

the USA. The product was developed through a collaboration between the Space Weather

Prediction Center (SWPC), the National Geodetic Survey (NGS), the National Centers for

Environmental Information (NCEI), and the Global Systems Division (GSD) [13, 55].
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Methodology

For single-frequency real-time users in North America, US-TEC is the most suitable iono-

spheric delay product. US-TEC (and other services) provides vertical TEC values for a uniform grid

of point locations at a specified broadcast interval which can extend from minutes to hours (see Table

3.5). The user computes a TEC value for its specific location by interpolating between the provided

values in both space and time [42]. Linear temporal interpolation is sufficient. Spatial interpolation

can be performed in different ways. Given the values of the vertical TECU values at the grid points,

linear spatial interpolation approaches take the form of eqn. (7.12):

T̂ ECv(ps
pu
) = w((ps

pu
) ÎG. (3.22)

This interpolation is based on the pierce point ps
pu

, which the user computes using the satellite and

receiver locations [119]. The discussion in Appendix 7.1 includes an example distance weighted

approach. Spatial interpolation provides the vertical total electron count at the pierce point, which

is converted to slant delay using eqns. (7.1) and (7.8):

Îs
L1 =

40.3
f 2
L1

F(ψs
r ) T̂ ECv(ps

pr
) (3.23)

The factor F(ψs
r ) is the ionospheric obliquity factor

F(ψs
r ) =

1
sin(ψs

pr
)
=

√
1−
[

re cos(ψs
r )

re +hm

]2

(3.24)

where ψs
r is the elevation angle for satellite s at receiver r, ψs

pr
is the local elevation angle at the

pierce point pp, re is the average radius of the Earth, and hm is the height of the maximum electron

density (assumed herein to be 350 km).
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Table 3.6: Tropospheric Delay Model Accuracy.

Model UNB UNB3M EGNOS IGGtrop
Accuracy (cm) 6-10 5.4 5.7 4.4

Location North America North America Europe Global

3.4.4 Troposphere Delay

The troposphere is the lowest layer of the atmosphere extending to about 50 km above

the surface of Earth. It is a non-ionized and non-dispersive medium, so usage of multiple frequency

measurements cannot eliminate tropospheric delay. This delay is affected by satellite elevation

angle, receiver altitude, atmospheric temperature, pressure and humidity. The tropospheric delay

can be divided into two parts: the dry/hydrostatic part and the wet part. About 90% of the total

tropospheric delay is contributed by the dry component and 10% by the wet component.

Methodology

Standard tropospheric delay models for satellite measurement T s have the form:

T s = ds
dry Ms

dry + ds
wet Ms

wet . (3.25)

The symbols ds
dry and ds

wet are the tropospheric Zenith Path Delay (ZPD) caused by the dry and wet

components, respectively. The symbols Ms
dry and Ms

wet are the mapping functions that convert the

ZPD dry and wet components from zenith (or vertical) to slant delays based on satellite elevation at

the user location.

Literature and Reported Accuracy: The literature contains a variety of ZPD models,

for example: Hopfield [72], Saastamoinen [129]. These models depend on various atmospheric

parameters: receiver altitude, temperature, pressure, and humidity. Therefore, local sensors (e.g.,
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barometer, hygrometer, thermistor) are necessary to compute tropospheric delay accurately from

these models. In addition to tropospheric ZPD, there are also many mapping functions to com-

pute slant tropospheric delay: Chao [28], Herring [17], Lanyi [94], Davies [32] and Niell mapping

functions [114].

Recently, several entities have proposed newer hybrid tropospheric models combining a

ZPD model and mapping function [96, 152] that do not require additional sensors; instead, addi-

tional lookup tables are provided for computing typical atmospheric parameters (i.e., temperature,

pressure and humidity) for a specific location at a specific date and time. Example models are:

UNB [96], UNB3M [48], EGNOS [77], and IGGtrop [98]. Different characteristics of these models

are summarized in Table 3.6, based on information from [152].

Description of UNB3M: For this research project, the UNB3M model was selected as

it is specifically designed for users in North America. The UNB model has been developed by

researchers of University of New Brunswick, Canada [96]. The model consists of the Saastamoinen

zenith delay model, the Niell mapping functions, and a look-up table to compute predicted values

for temperature, pressure and water vapor pressure varying with respect to date, time, latitude and

height. UNB3M model is the modified version of UNB model. In this model, instead of water

vapor pressure the look-up table contains relative humidity. The model computes dry and wet delay

components using look-up table values and Niell mapping functions.

3.4.5 Satellite Hardware Bias

The measurement models in eqns. (2.1-2.4) and the WADGNSS approach is Appendix

7.1 did not account for delays due to satellite hardware that may be different for code, phase, or
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different frequencies. These delays, referred to as satellite hardware biases or Differential Code

Biases (DCB), can be as large as 12 nanoseconds. This bias are constant unless there is a satellite

hardware substitution. The biases can be estimated in a network WADGNSS approach or can be

downloaded from various sources.

Data Sources: Two sources for the DCB parameters are:

• The Crustal Dynamics Data Information System provides the DCB in MGEX data format.

The file can be found at the URL: “ftp://cddis.nasa.gov/gnss/products/bias/”.

• IGS-RTS provides the DCB as a message in RTCM format [91].

Methodology: For the L1 C/A pseudorange measurement the satellite DCB cbs
L1,ρ is:

cbs
L1,ρ =−TGD + ISBC1,P1 (3.26)

where ISBC1,P1 is the delay of L1 C/A signal with respect to L1 P signal and TGD is the group

delay parameter in the navigation message. The group delay represents the time difference from

generation to transmission of the P signal.

3.4.6 PPP Compensated GNSS Measurements

The PPP approach described herein, converts the common-mode error information into a

correction for the L1 pseudorange measurement of satellite s:

k̂s
r = Êsp− ct̂sp + Îs

L1 + T̂ s− cb̂s
L1,ρ , (3.27)

suitable for the users location. The PPP common-mode error correction terms are:

• Precise orbit correction Êsp that is computed from IGS-RTS using eqn. (3.19).
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• Precise satellite clock correction ct̂sp that is computed from IGS-RTS using eqn. (3.21).

• Slant ionospheric delay for L1 users Îs that is computed from USTEC’s TEC map using eqn.

(3.23).

• Slant tropospheric delay T̂ s is computed from the UNB3M model using eqn. (3.25).

• Satellite hardware bias for the L1 user cb̂s that is computed from CODE using eqn. (3.26).

Then, the common-mode error compensated pseudorange measurement ρ̂s
r is computed as follows:

ρ̂
s
r = ρ

s
r,L1− k̂s

r, (3.28)

The measurement model for ρ̂s
r is:

ρ̂
s
r =̇R(pr, p̂s)+ ctr + cbrL1,ρ +F(ψs

r )Av +Ms
r +δη

s
r,ρ . (3.29)

The symbol Av represents the residual vertical atmospheric delay after PPP compensation. The

obliquity coefficient F(ψs
r ) is defined in eqn. (7.9). Because the atmosphere pierce points for all

in-view satellites are within 10 degs of the rover zenith point. The error term δηs
r,ρ is:

δη
s
r,ρ =̇η

s
r,ρ +δks

r. (3.30)

where δks
r is the residual common-mode error remaining after PPP correction compensation.

3.4.7 Single-Differenced PPP Measurement Model

PPP corrections compensate for the common-mode errors that affect the pseudorange

measurement. The receiver clock biases can be eliminated by single differencing (See Section 8.8.3

in [49]). In single-differencing, one satellite, called the pivot satellite, has its PPP-compensated
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measurement subtracted from all the others. This operation removes clock bias errors (i.e., two

states from the model) at the cost of one fewer measurement per epoch and causing the noise on all

single-differenced measurements per epoch to be correlated.

For the results herein, the pivot satellite (denoted as sp) will always be chosen as the one

with the highest elevation angle. The single-differenced pseudorange measurement ∆ρs is computed

as

∆ρ
s = ρ̂

s
r − ρ̂

sp
r . (3.31)

The corresponding measurement model is

∆ρ
s=̇R(pr, p̂s)−R(pr, p̂sp)+F(ψs

r )Av−F(ψ
sp
r )Av +dMs

r +dη
s
r,ρ , (3.32)

where dMs
r = Ms

r −Msp
r and dηs

r,ρ = δηs
r,ρ − δη

sp
r,ρ are the residual time-correlated multipath and

white measurement noise.

Single-differencing of the Doppler measurement is computed as

λ∆Ds = λ D̂s
r−λ D̂sp

r , (3.33)

which yields the measurement model

λ∆Ds =̇ (hs
r−hsp

r ) ·vr +dη
s
r,D. (3.34)

where dηs
r,D = ηs

r,D−η
sp
r,D is the white Doppler measurement noise that is correlated between satel-

lites.

Define the vector of two measurements per satellite at epoch k as:

zs
k = hs(xk)+η

s
k , (3.35)
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with

zs
k =

∆ρs
k

∆Ds
k

 and hs(xk) =

R(pr, p̂s
k)−R(p, p̂sp

k )+(F(ψs
r )−F(ψ

sp
r ))Av

(hs
r−hsp

r ) ·vr


where receiver antenna position pr and velocity vr will be sub-vectors of the state vector x. The

measurement noise is ηs
k ∼N (0,Rz) with

Rz =

Rs
p +Rsp

p 0

0 Rs
D +Rsp

D

 .
The vector of measurements at epoch k corresponding to the model in eqn. (3.35) concatenates

the measurements per satellite: zk = [z1
k , . . . , zm

k ]
> with h(x) = [h1(x), . . . , hm(x)]>, where m is the

number of available GNSS measurements minus one.
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Chapter 4

IMU Measurement

An IMU consists of two triads of perpendicularly mounted inertial sensors: (a) gyro-

scopes and (b) accelerometers. The accelerometers measure platform acceleration relative to an

inertial frame-of-reference, resolved in the accelerometer frame-of-reference (i.e., along the ac-

celerometer sensitive axis). The gyros measure the platform angular rate relative to the inertial

frame-of-reference, as resolved in gyro frame (i.e., along the gyro sensitive axis). The gyro mea-

surements are transformed into the platform frame using the (usually) constant calibration matrix.

The platform frame gyro measurements are processed to maintain the platform-to-navigation frame

rotation matrix. Finally, the platform-to-navigation frame rotation matrix is used to transform the

accelerometer measurements into the navigation frame where they are processed to determine navi-

gation frame velocity and position. For designing an optimal estimator, the measurement and noise

model of these sensors should be studied extensively.
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4.1 Measurement Model

The measurement model of accelerometers and gyroscopes are:

ub
g=̇ω

b
ib + zg. (4.1)

ub
a=̇ab

ib−gb + za. (4.2)

The term ub
g denotes the gyroscope measurement and ωb

ib is the angular rate in body frame respec-

tively. The term ub
a denotes accelerometer measurement, ab

ib is the acceleration and gb denotes local

gravity vector in body frame respectively. In the above equation, zg and za represent stochastic

errors. This implementation assumes

zg=̇bg + γg. (4.3)

za=̇ba + γa. (4.4)

The error term bg is the gyroscope bias and γg is a Gaussian white noise with PSD σ2
γg

. The ac-

celerometer bias is denoted by ba and γa is a Gaussian white noise with PSD σ2
γa

. The specific force

is defined as:

fb
ib=̇ab

ib−gb. (4.5)

The sensor bias (bg and ba) can be adequately modeled as first order Gauss Markov process for

implementation:

ḃg=̇λgbg + εg (4.6)

ḃa=̇λaba + εa (4.7)

where εg and εa are Gaussian white noise process with PSD of σ2
bg

and σ2
ba

respectively, and λg and

λa are the time constant parameters of the correlated noise of the sensors.
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4.2 Sensor Error Model

The data fusion system that combines the IMU and aiding sensor data will be able to

achieve improved performance by real-time calibration if it incorporates an IMU error model in

state-space form. The PSD and time correlation parameters of the aforementioned IMU sensor’s

stochastic noise can be found either in the manufacturer’s technical specification sheet or it can be

extracted from the Allan Standard Deviation (ASD) plot. The manufacturer may itself provide an

ASD plot [54]. This section reviews the Allan Variance and its relationship to the power spectral

density.

4.2.1 Allan Variance

The Allan Variance is a well-known time domain analysis technique, which was originally

developed to study the frequency stability of oscillators [6, 15]. Due to its relative simplicity, it has

been successfully adopted to model IMU stochastic errors [1, 2, 35, 69, 107, 111, 120, 136, 151].

Let D = {ũi}L
i=1 be a (detrended) set of specific force (or angular rate) data, measured at

a constant sampling interval T for a stationary IMU. At each time instant ti ∈ [T,2T, . . . ,(L−n)T ],

form a group (cluster) of n consecutive data points (beginning at ti). The duration of each such

cluster is τ = nT . For each such n-point cluster, compute the average value ūi(τ) =
1
n ∑

n
j=1 ũi+ j.

The equation to compute the AV, as the average of the (L−2n) cluster differences for each specific

value of τ , is [1, 6],

σ
2
u (τ) =

1
2(L−2n)

L−2n

∑
i=1

[ūi+n(τ)− ūi(τ)]
2 (4.8)

The AV is computed for values of the cluster time τ ranging from T to LT/2.

Since some IMU’s (especially those that are high-grade) provide the integral of specific
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force (or angular rate), denoted as θ̃i, we may alternatively define ūi(τ) as

ūi(τ) =
θ̃i+n− θ̃i

τ
(4.9)

Substitution of eqn. (4.9) in eqn. (4.8) yields,

σ
2
u (τ) =

1
2τ2(L−2n)

L−2n

∑
i=1

(θ̃i+2n−2θ̃i+n + θ̃i)
2 (4.10)

which is an alternative formula for estimating the AV [1].

4.2.2 PSD and Allan Variance

The AV is related to the two-sided power spectral density by [1],

σ
2
u (τ) = 4

∫
∞

0
Su( f )

sin4(π f τ)

π f τ
d f . (4.11)

There is no inversion formula for eqn. (4.11) (e.g., see [138]).

When the power spectrum is represented as a power series in frequency f , it has the form,

Su( f ) = · · ·+N2 +
B2

2π f
+

K2

(2π f )2 + · · · , (4.12)

Table 4.1: Dominant Errors in Consumer Grade IMU’s

Noise type Coef.
Allan Variance PSD

(Coef.) unit
Acc: (m/s2)2 Acc: m2/s3

Gyro: (deg/s)2 Gyro: deg2/s
Ang./Vel. Acc: m/s3/2 N2

τ
N2

random walk, N Gyro: deg/s1/2

Bias Acc: m/s2 2B2ln2
π

B2

2π finstability, B Gyro: deg/s

Rate/Accel. Acc: m/s5/2 K2τ

3

(
K

2π f

)2

random walk, K Gyro: deg/s3/2
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where only the terms that are of interest herein have been kept. These relate to the dominant errors

in consumer grade IMU’s. Assuming that each of these three types of errors are mutually indepen-

dent, each can be modeled by its own state-space process with its own independent driving noise.

However, it is impossible to exactly replicate the term B2

2π f with a finite-dimensional state-space

model because its power spectrum is not an even function of s = j2π f .

4.2.3 Continuous-time State Space Models

This section considers the development of continuous-time state-space models able to

reproduce (approximately) the power spectral density of eqn. (4.12) and ASD plots. The overall

model will have the form,

z(t) = zN(t)+ zB(t)+ zK(t). (4.13)

where zN(t), zB(t) and zK(t) are the IMU stochastic errors associated with coefficients N, B, and

K, respectively. Herein, a general model is described as stochastic error, For accelerometers and

gyroscopes, notations will be za and zg respectively instead of z.

4.2.4 Angular/Velocity Random Walk Errors: zN(t)

The term N2 in eqn. (4.12) is constant as a function of frequency f which corresponds to

the power spectrum of white noise [23]. Therefore,

zN(t) = ωN(t) (4.14)

where ωN(t) is white Gaussian random noise with power spectral density QN . When N is known,

QN can be computed using Table 4.1,

QN = N2. (4.15)
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In the literature and on manufacturer specifications, this type of error is called angular random walk

error for gyros and velocity random walk error for accelerometers. Applying the transformation in

eqn. (4.11) to SzN ( f ) = N2 yields error variance [1],

σ
2
zN
(τ) =

N2

τ
or σzN (τ) =

N
τ1/2 . (4.16)

4.2.5 Rate/Acceleration Random Walk Errors: zK(t)

The term K2

(2π f )2 = K
s

K
s∗
∣∣
s= j2π f in eqn. (4.12) corresponds to a linear system with transfer

function H(s) = 1
s that is driven by input ωK(t). The output of this linear system is zK(t). The

state-space model for zK(t), corresponding to this linear system is,

żK(t) = ωK(t), (4.17)

where ωK(t) is white Gaussian noise with power spectral density

QK = K2. (4.18)

In the literature and on manufacturer specifications, this type of error is called rate random walk

error for gyros and acceleration random walk error for accelerometers.

Given eqns. (4.18) and (4.17), the PSD of zK(t) is,

SzK (2π f ) =
(

H(s)H(s∗)
∣∣∣
s= j2π f

)
K2 =

K2

(2π f )2 , (4.19)

which has the desired form corresponding to eqn. (4.12). Using eqn. (4.11) on SzK ( f ) = K2

(2π f )2 ,

yields error variance [1],

σ
2
zK
(τ) =

K2τ

3
or σzK (τ) = K

√
τ

3
. (4.20)
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4.2.6 Bias Instability: zB(t)

The error term zB(t) corresponding to SzB( f ) = B2

2π f is generally referred to, in the liter-

ature, as the bias instability (or flicker noise) [1, 2, 69, 120]. The remaining challenge is to find a

finite-dimensional state-space model that is able to regenerate σ2
zB
(τ) to suitable accuracy. Various

approximation methods have been suggested in the literature, using state-space models of various

dimensions. These include first-order Gauss-Markov [35, 64, 69, 120, 131, 151] and higher-order

autoregressive models [107,111,136]. The important trade-off is that, as the dimension of the state-

space model increases, the fidelity of the approximation increases, but so does the required real-time

computational load of the state estimation algorithm. To exemplify the idea, the next section con-

siders a first-order Gauss-Markov model, which represents exponentially correlated noise, to model

the bias instability error.

4.2.7 Gauss-Markov Error Model

A first-order continuous-time Gauss-Markov model has the following model [23, 52, 59],

żB(t) =−µBzB(t)+ωB(t) (4.21)

with,

µB =
1
TB

, where TB > 0. (4.22)

The symbol TB represents the correlation time of the process. The symbol ωB(t) represents a white

driving noise with power spectral density QB. A first-order scalar Gauss-Markov process can be

used (approximately) to model the flat portion (i.e., bias instability) of the ASD plot as follows. If

the manufacturer only provides the values of B and TB, the PSD is
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QB =
2B2 ln(2)

π(0.4365)2 TB
. (4.23)

the state-space model of eqn. (4.21) is completely specified. If instead, the manufacturer provides

the ASD plot, then the analyst can first select TB so that 1.89TB lies near the flat portion of the ASD

plot.

4.3 INS Propagation Error Model

The INS integrates the (bias compensated) IMU measurements through the vehicle kine-

matic model to propagate the vehicle state through time at the IMU measurement rate [49,74,143].

This section briefly presents the INS kinematic and error models.

The navigation equations in the Earth-centered Earth-fixed (ECEF) frame are:
ṗe

v̇e

Ṙe
b

=̇


ve

Re
bfb

ib−2Ωe
ieve +ge

Re
bΩb

eb

 (4.24)

where pe,ve denote the rover position and velocity state resolved in ECEF frame, Re
b represents

the rotation matrix transforming a vector from the body frame b to ECEF frame, Ωe
ie is the skew-

symmetric matrix of earth rotation rate ωe
ie. The local gravity vector is ge where

ge = Ge(pe)−ΩieΩiepe (4.25)

The term Ge is the gravitational acceleration that is a function of rover position pe. Finally, Ωb
eb is

the skew-symmetric matrix version of the rotation rate vector

ω
b
eb = ω

b
ib−Rb

eω
e
ie (4.26)
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The mechanization eqns. (4.24) is integrated to obtain the position, velocity, and attitude.

The assumption is that the initial conditions of the vehicle states are known. There are many ways

a system designer can initialize these states. The details of the mechanization equations and state

initialization methods can be found in [49, 70, 71, 127].

Detailed derivatives of the first-order approximations of error state model can be found

in [49, 65, 71, 100]. The linearized form of the mechanization eqns. (4.24) describes the INS error

state propagation: 
δ ṗe

δ v̇e

ρ̇e

=̇


δve

Geδpe−2Ωe
ieδve +Fe

ibρe−Re
bγa

−Ωe
ieρe +Re

bγg

 . (4.27)

where δpe and δve indicate the error in position and velocity respectively, ρe indicates the angle

error for rover attitude, Fe
ib is the skew-symmetric matrix computed from fe

ib, where fe
ib = Re

bfb
ib. The

term Ge is the linearized error model for the local gravity vector ge (See eqn. (11.15) and (11.16)

of [49]).

Ge =−GM[
1

((pe)T pe)
3
2

I− 3

((pe)T pe)
5
2

pe(pe)T ] (4.28)

where G is the universal gravitational constant and M represents mass of the earth.

The accelerometer and gyroscope bias state error propagation equations:δ ḃg

δ ḃa

=̇
λgδbg + εg

λaδba + εa

 (4.29)

4.4 INS Full Error State Model

Tight integration architectures of INS and GNSS are well-known and widely used in

navigation application [38, 49]. The state vector for PPP-INS is slightly different than that of a
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LADGNSS-aided INS. In the LADGNSS setup, all common-mode errors are adequately compen-

sated whereas, in SF-PPP the system has to accommodate for residual atmospheric delays. In PPP-

INS, the state vector has to be augmented with an extra error state for vertical atmospheric delay.

4.4.1 DGNSS-INS Full Error State

The state vector for DGNSS-INS is then,

x(t)=̇[pT ,vT ,qT ,bT
a ,b

T
g ]

T ∈ℜ
16 (4.30)

The symbol q ∈ IR4 represents the attitude quaternion. The state is integrated through time using

eqn.(4.24) and the IMU data and corrected using an EKF. The full error state model can be obtained

by combining eqns. (4.27) and (4.29) of Section 4.3.



δ ṗe

δ v̇e

ρ̇e

δ ḃg

δ ḃa


=̇



0 I 0 0 0 0

δge −2Ωe
ie Fe

ib 0 0 0

0 0 −Ωe
ie 0 0 0

0 0 0 λgδbg 0 0

0 0 0 0 λaδba 0





δpe

δve

ρe

δbg

δba



+



0 0 0 0

−Re
b 0 0 0

0 Re
b 0 0

0 0 I 0

0 0 0 I





γa

γg

εg

εa


(4.31)
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where I and 0 denote identity and zero matrices with 3× 3 dimension respectively. The symbol 0

symbolizes zero matrix with 3×1 dimension.

4.4.2 PPP-INS Full Error State

The full state vector for PPP-INS is then,

x(t)=̇[pT ,vT ,qT ,bT
a ,b

T
g ,Av]

T ∈ℜ
17 (4.32)

The symbol Av ∈ IR1 represents residual vertical atmospheric delay. The state is integrated through

time using eqn.(4.24) and the IMU data and corrected using an EKF. The full error state model can

be obtained by combining eqns. (4.27) and (4.29) of Section 4.3.



δ ṗe

δ v̇e

ρ̇e

δ ḃg

δ ḃa

δ Ȧv



=̇



0 I 0 0 0 0

δge −2Ωe
ie Fe

ib 0 0 0

0 0 −Ωe
ie 0 0 0

0 0 0 λgδbg 0 0

0 0 0 0 λaδba 0

0̄ 0̄ 0̄ 0̄ 0̄ 0





δpe

δve

ρe

δbg

δba

δAv



+



0 0 0 0 0

−Re
b 0 0 0 0

0 Re
b 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 1





γa

γg

εg

εa

εAv


(4.33)
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where 0̄ is zero matrix with dimension of 1×3. The residual atmospheric delay Av is modeled as a

random walk process and its driving noise is denoted by εAv .

61



Chapter 5

Experimental Results

This section includes descriptions of the data set that will be used for analysis, metrics

to understand the quality of the available GNSS data, metrics for assessing algorithm performance,

the employed algorithm, acquired data set, performance analysis of the aforementioned DGNSS-

PVA, DGNSS-INS and PPP-INS algorithm and effect of sensor (i.e. IMU, GNSS) measurement

quality in rover positioning. The main purpose is to analyze the algorithm’s ability to achieve either

SAE specification [12] or yet, a one-meter horizontal positioning accuracy requirement for moving

platform using L1 real-time PPP GPS data. For generation of results, this section describes the

position estimation algorithms used for the performance analysis herein. The main references can

be found in [49, 122, 124].

5.1 DGNSS based Position Estimation

This paper considers the problem of state estimation, where the main points of interest

are whether meter level position estimation accuracy can be reliably achieved and the sensitivity of
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that accuracy to correction latency. The experimental analysis includes two scenarios: stationary

and moving.

The PVA approach will be used for both the stationary and moving data. For both sets of

data, the same model parameters will be used, which are tuned for an automotive motion scenario.

For the PVA model, state estimation is performed using the linear Kalman filter (KF) [24, 49].

The differential corrections are designed to remove common-mode errors, receiver clock errors are

accommodated by double differencing, and multipath is modeled as a state.

The INS approach is only implemented for the moving data. For the INS approach, state

estimation is implemented by an extended Kalman filter [49]. The description of both algorithms of

DGNSS are described.

5.1.1 Time Propagation Models

Two approaches to temporal propagation of the state are considered. The position, ve-

locity, and acceleration (PVA) approach of Section 5.1.1 only uses GNSS measurements, while the

INS approach of Section 5.1.1 also incorporates inertial measurements.

PVA model

The PVA rover state is

x = [p>,v>,a>,Mr]
> ∈ IRns , (5.1)

where ns = 9+m. The symbols p, v, a ∈ IR3 represent the position, velocity and acceleration

vectors. The analysis herein augments the standard PVA state vector [24, 49, 122] with a vector of

multipath states Mr ∈ Rm.
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The discrete-time PVA rover state is assumed to propagate as

xk
.
= Ψxk−1 +Γωk−1, (5.2)

where xk = x(tk), tk = kT , where T is the time between measurement epochs, ωk ∼N (0, Qd), and

the matrices of the discrete-time state-space model are:

Ψ=

ψv 0

0 ψM

 , Γ=

Γv 0

0 ΓM

 , and Qd =

Qdv 0

0 QdM

 .
The PVA model assumes that the acceleration vector is constant for all t ∈ [tk−1, tk], and that its value

is accurately modeled as a first-order discrete-time Markov process between measurement epochs.

The parameters of the acceleration Markov process are assumed to be time-invariant.

The PVA state estimate is time-propagated as

x̂−k =Ψx̂+k−1, (5.3)

where the superscript ‘–’ and ‘+’ denote the values just before and after incorporating the GNSS

measurements at time k. The error state covariance matrix is time-propagated as

P−k =ΨP+
k−1Ψ

>+ΓQdΓ
>. (5.4)

GNSS receivers allow the user to select T over a wide range from 0.02 seconds to infinity.

The tradeoff is that the validity of the PVA model improves for smaller T , but the assumption of

GNSS white measurment noise becomes more valid as T increases. In this article, T = 1 second.

The main trade-off in the PVA approach is that there is no optimal set of model param-

eters uniformly applicable over all epochs. Nevertheless, the designer must choose a set of model

parameters. For epochs over which the selected model is accurate, the PVA approach will perform
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well, perhaps even optimally. Over other epochs, the performance may deteriorate. Herein, the

model parameters of the PVA and multipath states are tuned for a moving platform with moderate

acceleration correlated over a few seconds. The details of the model and its parameters (Ψ, Γ and

Qd) are explained in Appendix B of [122].

INS model

The INS rover state is

x = [p>,v>,q>,b>a ,b
>
g ,Mr]

> ∈ IRns . (5.5)

where ns = 16+m and m is the number of GNSS satellites available.

The symbols p, v, ba, bg ∈ IR3 represent the ECEF position, velocity, accelerometer bias

and gyro bias vectors, while q ∈ IR4 is the attitude quaternion, and Mr ∈ IRm is the multipath bias

state vector with one element per satellite.

The kinematic model for the continuous-time propagation of the vehicle state has the

form:

ẋ(t) = f (x(t),u(t)) (5.6)

where the specific form of the function f can be found in many references, e.g., [49]. The vector

u ∈ IR6 denotes the IMU sensor measurements: specific force vector and angular rate vector.

The IMU measurements occur in discrete-time with sample period τ � T . The IMU

discrete-time measurements are modeled as

ũ(τk,i)
.
= u(τk,i)+bu(τk,i)+ωu(τk,i) (5.7)

where ωu(τk,i) ∼ N (0,Q) and the sensor bias vector bu = [b>a , b>g ] is modeled as a first-order

Markov process. Let τk,i = tk + iτ where i = 0, . . . , fsT , tk = kT are the GNSS measurement times,
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and fs =
1
τ
. Over any interval [tk−1, tk], when the context is clear, this notation will be simplified to

τi. In this notation, xk,i means x(τk,i), which may be simplified to xi.

Time propagation of the INS state is the numeric integral of

˙̂x(t) = f (x̂(t), û(t)) (5.8)

in discrete-time, which is denoted as

x̂i = φ(x̂i−1, ûi−1) (5.9)

where ûi = ũi− b̂u and

φ(xi−1,ui−1) = xi−1 +
∫

τi

τi−1

f (x(τ),u(τ))dτ.

Many algorithms are available for the numeric integration [33].

The error propagation model between two IMU time samples can be written as:

δxi
.
=Φiδxi−1 +γiωi (5.10)

where δxi = xi − x̂i, ωi ∼ N (0,Qd), and Φi =
δφ
δx |xi−1,ũi−1 is the discrete-time INS error state

transition matrix. The derivations are in [49, 122, 128].

Due to τ � T , eqn. (5.9) is iterated many times between consecutive GNSS measure-

ments. The iterated application of eqn. (5.9) starts for i = 0 with x̂(τk−1,0) = x̂+k−1, which is the

state estimate after incorporating the GNSS measurements at epoch k−1. The iterated application

of eqn. (5.9) is denoted as

x̂−k = φk(x̂+k−1,Uk−1) (5.11)

where Uk−1 = {ũ(τi) for τi ∈ [tk−1, tk]} denotes the set of IMU measurements over the GNSS epoch.

The result of the iterated numeric integration by (5.9) is the prior x̂−k for the extended Kalman filter

measurement update at tk.
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The INS error covariance matrix is propagated at high sampling rate that can be described

as below

P−k =ΦkP+
k−1Φk +Qdk (5.12)

where the derivation and detailed discussion of Qdk and Φk are beyond the scope of this article, but

can be found in Section 2 and 3 of [128].

5.1.2 Measurement Update Model

For both the PVA and INS approaches, the prior state at time tk will be corrected using the

double-differenced pseudorange and Doppler measurements as defined in Section 3.1.5.

The model for the measurement vector zs
k = [dρs

rk
, λdDs

rk
]> for satellite s at tk is

zs
k
.
= hs

d(xk)+ns
rk, (5.13)

where hs
d(xk) represents the differentially corrected pseudorange and Doppler differenced with the

measurements for the pivot satellite, as defined in eqns. (3.32) and (3.34):

hs
d(xk) =

R(pk, p̂s
k)−R(pk, p̂

sp
k )+Ms

r(tk)

(hs
k−hsp

k ) ·vk

 and ns
rk =

dηs
rk

dεs
rk



The noise vector ns
rk ∼N (0,Rdd ) with Rdd =

Rs
p +Rsp

p 0

0 Rs
d +Rsp

d

 , where cross satellite corre-

lation introduced by the double-difference is ignored.

Using eqn. (5.13), the measurement residual is computed as

dzs
k = zs

k−hs
d(x̂
−
k ).

By employing the first-order Taylor series expansion, the linearized measurement model is:

dzs
k
.
= Hs

dk
δxk +ns

rk (5.14)
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where the measurement or observation matrix is referred to as Hs
dk

. The measurement matrix can be

described as below

Hs
dk
=

(hs
k−hsp

k ) 0l1 0l2 es

0l1 (hs
k−hsp

k ) 0l2 0l3

 , (5.15)

with es ∈ R1×m being sth row of the identity matrix and 0l j being the zero vector in R1×l j . For

PVA l2 = 3, while for INS1 l2 = 9. Both case have l1 = 3 and l3 = m. Accumulating all satellite

measurements dzs
k into vector zk yields:

dzk = Hdk δxk +nk (5.16)

where dzk = [dzs
k]|s=1:m is a vector in R2m and Hdk = [Hs

dk
]|s=1:m is a matrix in R2m×ns , and m+ 1

denotes total available satellite measurements.

5.1.3 Outlier Accommodation

The data for the analysis was collected on a moving platform in real life circumstance.

The trajectory had trees and buildings nearby, thus the measurements may suffer from some outliers.

Therefore, outlier accommodation must be included.

Outlier detection is implemented by applying a Neyman Pearson (NP) test [112] to each

element of the measurement residual vector zk. Residuals are only used in the KF/EKF if they

pass the test dzs
k ≤ γo σ s

zk
where symbol σs

zk
is the residual standard deviation as computed by the

KF/EKF and γo is a user-defined threshold.

1The INS error state has one less dimension than the INS state because the quaternion has four elements while its

error representation only requires three elements [49].
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5.1.4 Experimental Data Description

The experimental data were acquired using a consumer-grade, single-frequency GNSS

receiver (u-blox M8T). The data were saved and post-processed so that multiple algorithms can be

compared using identical data. All state estimation results are produced using only pseudorange

and Doppler data. Phase measurements were not used for state estimation.

In real-time applications, base station data would be obtained and used to compute the

DGNSS correction parameters [at0 ,bt0 , t0, IODE]. These correction parameters would be commu-

nicated to vehicles by any convenient radio link using the RTCM standard [11] and the NTRIP

protocol. Our experiments use typically cell phone data channels. Most FHWA and state DOT pilot

projects us dedicated short-range radios (DSRC). For this particular experiment, because we wanted

to implement and compare multiple algorithms, the data was saved to a hard disk. The value of L

used in the computation of the correction parameters was L = 500. This value of L was selected

to be about four times the expected base pseudorange multipath correlation time. The DGNSS

corrections c(t; t− `) will be used at time t to study the impact of the latency `.

Stationary Data

The duration of the experiment is 3000 seconds. The stationary rover has a GNSS receiver

connected to an antenna at a surveyed location on the top of a campus building. The base station

was at ESRI with a baseline separation of 14.5 km.
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Moving Data

This experimental hardware includes two GNSS receivers and one IMU. Both receivers

are connected to the same consumer grade antenna (Antcomm ANN-MS-0-005). One receiver is a

single frequency u-blox M8T (consumer grade) and the other is dual frequency NOVATEL OEMV2

(survey grade). The dataset length is 1300 s. The M8T single-frequency GNSS receiver provides

data for the state estimation using both PVA and INS. The IMU sensor used for this experiment is

an NV-IMU 1000. The UCR base station was used with a baseline separation of 6 km.

During data acquisition, the hardware is mounted on a sedan that is driven repeatedly

along a multi-block section of an urban street. To focus on performance as a function of communi-

cation latency, the street was selected to have only with low buildings and trees adjacent to the street.

Therefore, the sky is open, not an urban canyon. The section of street has three stop lights. The

trajectory involves two U-turns, one at each end. Therefore, the trajectory involves acceleration and

turn rates typical for urban trajectories, which may exceed the variation predicted by the PVA model

parameters for short time durations, followed by other trajectory sections where the near constant

velocity travel in a lane yields conservative motion relative to that predicted by the PVA model.

5.1.5 Ground Truth Trajectory: Dynamic

Ground truth trajectory estimation was performed in post-processing using a Maximum

a Posteriori smoothing algorithm [148]. This algorithm used the two-frequency pseudorange and

integer-resolved, carrier phase GNSS data from the OEMV3 and IMU to achieve centimeter accu-

racy. This ground truth trajectory and OEMV2 data are only used to assess the accuracy of the state

estimation results that used the single frequency u-blox M8T.
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Figure 5.1: Correction error defined in eqn. (5.17) versus latency for three satellites.

5.1.6 Correction Sensitivity to Latency

The correction error due to communication latency l, as defined after eqn. (3.8), is

ec(k, l) = |ĉ(k;k)− ĉ(k;k− l)|, (5.17)

where ĉ(k;k) is the correction with no latency and ĉ(k;k− l) is the correction with latency of l

epochs. Both corrections are computed using eqn. (3.6). Statistics related to ec(k, l) are computed

by averaging over k = 1, . . . ,Nd .

Fig. 5.1 shows the mean plus and minus the standard deviation of ec(k, l) versus l for three

satellites. For each fixed value of l and each satellite, the mean and standard deviation of ec(k, l) are
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computed from experimental data by averaging over (Nd − `) epochs where Nd = 3000. Fig. 5.1

shows that the correction error ec(k, l) remains less than one meter for over 600 seconds.

5.1.7 Position Estimation Scenarios

The following subsections report positioning accuracy for three estimation scenarios:

1. Stationary PVA is the (9+m) state PVA model with a Linear KF to estimate the state de-

fined in eqn. (5.1) using double-difference pseudorange and Doppler measurements when the

platform is stationary. This data set is outlier free, so a NP test is not required. Label this

scenario by a = 1.

2. Moving PVA is the (9+m) state PVA model with a Linear KF to estimate the state defined in

eqn. (5.1) using double-difference pseudorange and Doppler measurements. It used the NP

outlier rejection criteria with γo = 1. Label this scenario by a = 2.

3. Moving INS is an (16+m) state INS model with an EKF to estimate the state defined in

eqn. (5.5) using double-difference pseudorange and Doppler measurements. It used the NP

outlier rejection criteria with γo = 1. Label this scenario by a = 3.

Additional information on the selection of the model parameters are included in the Appendix of

[122].

Each algorithm is used to process the set of measurements (k = 1, . . . ,Nd) as if they were

occurring in real-time (i.e., incrementally) to estimate the state vector at each time k, using correc-

tion ĉ(k;k− l) from eqn. (3.6) for a given value of the latency l.
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5.1.8 Accuracy Metrics

Due to our interest in vehicular applications, we separately analyze horizontal and verti-

cal accuracy. Therefore, the main metrics used for comparison of algorithms are the norm of the

horizontal position error:

ea
h(k, l) =

∥∥∥∥∥∥∥∥
1 0 0

0 1 0

(pg(k)− p̂a
r (k, l))

∥∥∥∥∥∥∥∥ . (5.18)

and the vertical position error:

ea
v(k, l) =

[
0 0 1

]
(pg(k)− p̂a

r (k, l)) . (5.19)

The symbol p̂a
r (k, l) denotes the position estimated at time k, latency l and algorithm a. The symbol

pg(k) denotes the antenna’s ground truth position as discussed in Section 5.1.4. Eqns. (5.18-5.19)

assume that the position vector has been transformed into a locally level frame-of-reference.

5.1.9 Positioning Accuracy

Fig. 5.2 show histograms of en
hk,l

as defined in eqn. (5.18) for latency l = 0 for each

scenario summarized in Section 5.1.7.

Table 5.1 and 5.2 summarize various measures of positioning accuracy for latency l = 0

Table 5.1: Horizontal Positioning Performance with l = 0.

Scen. Mean Std. Dev Max
Prob.

eh < 1m eh < 2m
1 0.33 0.16 0.91 99 100
2 0.46 0.34 1.70 90 100
3 0.39 0.18 1.10 98 100
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Figure 5.2: Histogram of horizontal position error en
hk,l

defined in eqn. (5.18) with l = 0 for Scenario 1 (Top), Scenario 2

(Middle), Scenario 3 (Bottom).

for horizontal (eh) and vertical (ev) error, respectively. Column 1 shows the scenario number a.

Column 2 displays the mean position error. Column 3 contains the standard deviation of the position

error. Column 4 shows the maximum value of the position error. Column 5 reports the percentage

of samples that have a positioning error less than a specified accuracy. Row 1 shows the Scenario 1

results over Nd = 3000 seconds. Rows 2-3 show the statistics for the moving data using Scenarios

2 and 3 over Nd = 1300 seconds.

Table 5.2: Vertical Positioning Performance with l = 0.

Scen. Mean Std. Dev Max
Prob.

ev < 2m ev < 3m
1 0.59 0.38 1.65 100.00 100.00
2 0.98 0.70 4.40 95.00 98.00
3 0.93 0.52 3.20 97.00 99.80
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For the stationary case (a = 1), the PVA-KF approach tuned for vehicular motion is a

conservative model, meaning that the variation of the modeled acceleration exceeds the actual ac-

celeration. This scenario achieves meter level horizontal position accuracy for 99% of the samples.

For the moving case (a = 2), the PVA-KF approach yields a position error distribution

with wider variation than for the stationary data set. This is expected due to the fact that in Scenario

2 the platform has a wider range of acceleration. Nevertheless, the PVA approach achieves meter

level horizontal position accuracy at 90%.

For the moving case (a = 3), the INS-EKF approach yields a position error distribution

with statistics similar to that for the stationary data set. This is expected because it is the purpose

of the INS to remove the motion that is predictable based on the IMU data. After doing so, the

INS error model has small eigenvalues, yielding slowly changing error states that are relatively

independent of the vehicle motion. The double-difference GNSS aided INS approach with multipath

states achieves one meter accuracy at 98% and two meter accuracy at 100%, thereby exceeding the

SAE standard [12].

5.1.10 Position Estimation: Sensitivity to Latency

The experiment is repeated for each scenario for latency values l = 0, . . . ,900 seconds.

For the stationary case (a = 1), with Nd = 3000. For the moving cases (a = 2, 3), with Nd = 500.

For each scenario a and and each latency l, this produces the position sequence p̂a
k,l for k = 1, . . . ,Nd .

For each of the three scenarios, Fig. 5.3 illustrates the effect of the DGNSS correction

latency l on the GNSS position accuracy as measured by ea
hk,l

defined in eqn. (5.18). For each

graph, the black curve shows the mean of ea
hk,l

. Each point on the graph is also marked with a

one-standard-deviation error bar that is indicated in blue.
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Figure 5.3: Horizontal position error vs latency. Scenario 1 (Top). Scenario 2 (Middle). Scenario 3 (Bottom).

All three figures show that position estimation accuracy is insensitive to communication

latency in the sense that one meter accuracy at the 1−σ level is achievable for latency exceeding

500 sec.

5.2 PPP based Position Estimation

This study considers the problem of state estimation for meter-level accuracy achievement

using real-time PPP method. The experimental analysis is performed for moving scenarios. The

INS approach is only implemented for the moving data. For the INS approach, state estimation is

implemented by an extended Kalman filter [49]. The description of PPP-INS algorithm is described
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herein.

The time propagation model for PPP-INS is mentioned in Section 4. The state vector is

first introduced in eqn. (4.32). The kinematic equations for error state vectors are found in eqns.

(4.24-4.29). The full state error covariance propagation equation is mentioned in eqn. (4.33).

5.2.1 PPP Compensated Measurement Update Model

EKF state update equations are described herein. Based on eqn. (3.35), the measurement

residual can be computed as

dzs
k = zs

k−hs(x̂−k ). (5.20)

Employing the first-order Taylor series expansion, the linearized measurement model is:

dzs
k
.
= Hs

kδxk +η
s
k . (5.21)

For the pair of satellites s and sp, the measurement matrix Hs
k is

Hs
k =

(hs
r−hsp

r ) 03 09 F(ψs
r )−F(ψ

sp
r )

03 (hs
r−hsp

r ) 09 0

 . (5.22)

Where 03 and 09 denote zero matrices with 1× 3 and 1× 9 dimensions respectively. The term

F(ψs
r )−F(ψ

sp
r ) is the obliquity factor difference that can be computed using eqn. (7.9).

Accumulating all satellite measurement residual dzs
k into a vector dzk yields:

dzk
.
= Hkδxk +ηk (5.23)

where dzk ∈ R2m, and Hk is a matrix with 2m rows.
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5.2.2 Stationary Experimental Results

This section presents experimental results for positioning performance using the three

PPP algorithms defined in Section 5.2.2. A goal is to analyze the ability to satisfy a one-meter

accuracy specification.

Position Estimation Algorithms

Section 5.2.2 will study performance using three algorithms:

PPP-LS: This defines the state vector as

x(t) = [pT , tr,Av]
T ∈ℜ

5

and solves each epoch of data separately using Least Squares (LS) with L1 PPP pseudorange

measurements. These results are point-wise, without any filtering.

PPP-PVA: This defines the state vector as

x(t) = [pT ,vT ,aT ,Av]
T ∈ℜ

10

and estimates the state using a linear Kalman Filter (KF) with single-differenced (between

satellites) PPP L1 pseudorange and Doppler measurements.

PPP-INS: This defines the state vector as

x(t) = [pT ,vT ,qT ,bT
a ,b

T
g ,Av]

T ∈ℜ
17

and estimates the state using an extended Kalman Filter (KF) with single-differenced (be-

tween satellites) PPP L1 pseudorange and Doppler measurements. The IMU data is artifi-

cially generated to have the characteristics of a consumer-grade IMU (i.e., ADIS16360) (see

appendix of [125]).
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Each algorithm processes the set of GNSS measurements (k = 1, . . . ,Nd) incrementally, as if they

were occurring in real-time, to estimate the state vector at each time k. The state variable sv is a

vector with one element per satellite. This state is augmented to account for multipath and residual

atmospheric errors.

The symbol p̂a
k denotes the position estimated at time k for algorithm a, where a = 1 for

PPP-LS, a = 2 for PPP-PVA, and a = 3 for PPP-INS.

Stationary Datasets

The experimental analysis will use L1 pseudorange and Doppler measurements. Carrier

phase measurements were not directly used because integer resolution is not reliable for single-

frequency receivers and the float solution require tens of minutes to converge.

To evaluate the consistency of the PPP results, experiments were performed using spatially

separated datasets. Each dataset is from a stationary reference antenna for which the ground truth

position is known. Table 5.3 summarizes key information about each dataset. The first column

displays the name of the reference station in the CORS network, which will also be used as the

name of the dataset. The second column states the general location of the reference station. The

third column states the receiver brand and model. The fourth column states the antenna type brand

and model. The fifth column states the length of the dataset in seconds. All of these datasets were

acquired using ftp in Rinex 2.11 format for the same time: date-March 12, 2019 and time-7:00 pm

in Pacific time-zone. The PPP data to compute real-time corrections was acquired from the sources

listed in Table 3.3 for the same date and time. The 200 Hz IMU data for the PPP-INS algorithm was

artificially generated to have consumer grade sensor characteristics (see the Appendix B of [125]).
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Table 5.3: Dataset Description.

Base Location Receiver Antenna Data
Station Name Type Length, s
BRMU Bermuda LEICA JAVRINGANT 3600

GRX1200GGPRO DM + None
HNTP Maryland LEICA LEIAX1202GG 3040

GRX1200GGPRO + None
QUIN California JAVAD ASH701945E M 3100

TRE 3 DELTA + SNOW

Positioning Accuracy

Fig. 5.4 shows histograms of ea
hk

as defined in eqn. (5.18) for the three datasets described

in Section 5.1.4 and for each algorithm defined in Section 5.2.2. Each column shows the histogram

of a given algorithm for all three datasets. Each row shows the histogram of all three algorithms

for a given dataset. The performance improves as the algorithm improves (INS is better than PVA

which is better than LS).

Table 5.4: Positioning Performance of the Algorithms Defined in Section 5.1.8.

(a) Horizontal Error Statistics for BRMU

dataset.

Scenario Mean Std. Dev Max
Prob. of ea

hk,0

< 1m < 2m
1. LS 1.86 0.21 2.61 0 77
2. PVA 1.35 0.48 2.16 34 89
3. CG-INS 0.81 0.21 1.88 82 100

(b) Vertical Error Statistics for BRMU dataset.

Scenario Mean Std. Dev Max
Prob. of ea

vk,0

< 2m < 3m
1. LS 2.85 2.33 5.41 31 39
2. PVA 4.18 0.87 6.56 0 10
3. CG-INS 5.51 1.26 8.04 0.08 0.08
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(a) Horizontal Error Statistics for HNTP dataset.

Scenario Mean Std. Dev Max
Prob. of ea

hk,0

< 1m < 2m
1. LS 1.67 0.49 2.50 6 65
2. PVA 1.19 0.41 2.24 45 96
3. CG-INS 0.52 0.25 0.98 100 100

(b) Vertical Error Statistics for HNTP dataset.

Scenario Mean Std. Dev Max
Prob. of ea

vk,0

< 2m < 3m
1. LS 1.37 0.51 2.40 85 100
2. PVA 1.70 0.47 2.67 70 100
3. CG-INS 0.03 0.63 1.21 100 100

(a) Horizontal Error Statistics for QUIN dataset.

Scenario Mean Std. Dev Max
Prob. of ea

hk,0

< 1m < 2m
1. LS 0.73 0.34 1.60 74 100
2. PVA 0.47 0.26 3.19 96 100
3. CG-INS 0.43 0.18 0.83 100 100

(b) Vertical Error Statistics for QUIN dataset.

Scenario Mean Std. Dev Max
Prob. of ea

vk,0

< 2m < 3m
1. LS 4.12 2.60 8.47 30 37
2. PVA 0.80 1.02 4.05 93 99
3. CG-INS 0.84 0.61 2.71 95 100

Statistics quantifying the performance of each algorithm are summarized in Table 5.4.

Each row of tables corresponds to one of the datasets listed in Table 5.3. The left column of tables

contains statistics for the horizontal position error. The right column of tables contains statistics for

the vertical position error. The statistics in each table are as follows. Column 1 shows the algorithm

number a and name. Column 2 displays the mean norm of the position error. Column 3 contains

the standard deviation of the norm of the position error. Column 4 shows the maximum value of the

norm of the position error. Columns 5 and 6 report the percentage of samples for which the norm
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of the positioning error is less than the accuracy specified in the column header.

Both the histogram and the tables show that, for the HNTP and QUIN datasets, the INS

results exceed the SAE specification [12]. The INS, which has more information, performs better

than LS and PVA approaches. The INS performance is expected to carryover to datasets for moving

platforms, because the job of the IMU/INS is to remove the mean motion of the platform. The

performance of the PVA approach may be distinct for each moving platform dataset, depending on

the extend to which the platform motion matches the design assumptions of the PVA estimation

approach [123].

5.2.3 Dynamic Experimental Results

This section includes descriptions of the data set that will be used for analysis, metrics

to understand the quality of the available GNSS data, metrics for assessing algorithm performance,

the employed algorithm, acquired data set, performance analysis of the aforementioned PPP-INS

algorithm and effect of sensor (i.e. IMU, GNSS) measurement quality in rover positioning. The

main purpose is to analyze the algorithm’s ability to achieve either SAE specification [12] or yet, a

one-meter horizontal positioning accuracy requirement for moving platform using L1 real-time PPP

GPS data.

Data Acquisition and Ground Truth Trajectory

For data acquisition, the hardware was mounted on a sedan that was driven repeatedly

along a multi-block section of an urban street (Columbia Ave. near the intersection with Iowa

Avenue in Riverside, CA) with low buildings and trees adjacent to the street. The trajectory encom-

passes two U-turns, one at each end, and therefore also includes acceleration, deceleration and turn
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rates typical for urban trajectories. The experiment lasted 40 minutes. The experimental data were

saved for post-processing so that algorithmic analysis could be performed.

The PPP information, required to compensate the common-mode errors was collected

from external sources. The satellite orbit, clock model parameters were collected from IGS-RTS

using the BNC software. The ionospheric delay model parameters were obtained from US-TEC [55]

real-time data. Tropospheric error was corrected using the UNB3M model [96]. Satellite hardware

bias was obtained from CODE service.

The on-vehicle experimental hardware included two GNSS receivers and one IMU. One

receiver was a single frequency u-Blox ZED-F9P (consumer grade) and the other was a dual fre-

quency NOVATEL OEMV2 (survey grade). Both receivers were connected to the same Antcomm

ANN-MS-0-005 antenna. The ZED-F9P single-frequency receiver provided GNSS data that is used

for PPP GPS state estimation. The OEMV2 provided data that was used to establish the ground-truth

trajectory. The IMU sensor was an NV-IMU 1000.

Ground truth trajectory estimation was performed in post-processed, using a Maximum

a Posteriori (MAP) smoothing algorithm [148]. It used the OEMV2 two-frequency pseudorange

and integer-resolved, carrier phase GNSS data and NV-IMU 1000 data to estimate the ground truth

trajectory with centimeter accuracy. This ground truth trajectory and OEMV2 data are only used to

assess the accuracy of the state estimates achieved using only the IMU and consumer-grade ZED-

F9P receiver.

GNSS Data Quality Metrics

For state estimation by PPP GPS aided INS, an important item to consider is the quality

of the PPP GPS data versus time. Relevant factors include the number and geometry of the satellites
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available to the receiver and the quality of the range measurements as affected by local factors (e.g.,

multipath, foilage). To assess these items we consider the following quality indicators.

Geometric Dilution of Precision (GDOP) quantifies the geometry of the user-to-satellite

line-of-sight vectors at time instant k [20, 109, 142]. GDOPk is computed as

GDOPk =
√

trace(AT
k Ak)−1 (5.24)

where Ak is the matrix constructed by stacking the vectors [hs
r, 1] from all available satellites, where

hs
r is defined in eqn. (2.9). Larger GDOP values indicate worse geometric diversity and larger

covariance of the Least Squares position error covariance matrix.

At each GPS epoch for which there are at least five satellites available, the L1 PPP cor-

rected pseudorange measurements defined in eqn. (3.28) will be solved using iterated nonlinear

least squares to estimate the vector x=̇[pT
r ,ctr,Av]

T ∈ℜ5 where pr ∈ℜ3, ctr ∈ℜ1 and Av ∈ℜ1 de-

note rover position, receiver clock bias and residual vertical atmospheric delay. At each GPS epoch

for which there are only four satellites available, the vector is defined as x=̇[pT
r ,ctr]T ∈ ℜ4 where

residual vertical atmospheric delay is dropped.

At the conclusion of the PPP least squares (PPP-LS) process at epoch k, the measure-

ments residual rs
k for s = 1, . . . ,m indicate the extend to which LS adjustment of x̂k was able to

match the set of measurements at that epoch. Each |rs
k| indicates the degree to which that measure-

ment conformed to the measurement model, given the full set of measurements. One indicator of

the quality of a set of m measurements is the risk rk computed as

rk =
1
m

m

∑
s=1
|rs

k|. (5.25)

The symbol m indicates the number of available measurements at epoch k.
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Table 5.7: IMU sensor noise parameter.

Sensor Acc. Acc. Gyro. Gyro.
Type Na Ba Ng Bg

TG 0.001 0.0002 0.0033 0.0006
CG 0.010 0.0010 0.0333 0.0042

NV-IMU 1000 0.003 0.0003 0.0011 0.0006
Unit m/s3/2 m/s2 deg/s1/2 deg/s

The PPP-LS state estimates are point-wise, without any filtering. The above risk quan-

tification is computed using PPP-LS residuals, not INS residuals, to allow each epoch to be as-

sessed independently of other epochs. While small risk does not necessarily indicate a good set of

measurements (i.e., it may be possible for LS to find an estimate to perfectly fit four low quality

measurements), large risk rk does indicate that something is wrong with the set of measurements

available at epoch k.

IMU Sensor Parameters and Noise Corruption

The PPP-INS implementation uses IMU data. Authors tend to grade IMU sensors into five

different categories, according to their accuracy and price: (a) marine (b) navigation (c) intermediate

(d) tactical and (e) consumer or automotive. Among all these categories, ground vehicle applications

generally use tactical to consumer-grade IMU sensors [65]. Thus, this paper’s discussion focuses

on the latter.

Table 5.7 shows different IMU grades and their typical random-walk N and bias insta-

bility B parameters [65]. The first and second rows represent tactical and consumer-grade IMUs

respectively. The last row describes the on-board sensor’s (NV-IMU 1000) specifications. In Table
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Table 5.8: Selected IMU sensor parameters.

Parameter Na Ba Ng Bg

IMU1 0.004 0.0004 0.003 0.0006
IMU2 0.007 0.0007 0.016 0.0025
IMU3 0.011 0.0010 0.033 0.0042
Unit m/s3/2 m/s2 deg/s1/2 deg/s

5.7, subscript ‘a’ refers to accelerometers and subscript ‘g’ to gyroscopes. The noise coefficients of

NV-IMU 1000 indicate that its accelerometers lie in between tactical and consumer-grade and the

gyroscopes can be labeled as tactical-grade.

Three different sensor specifications were selected for this experimental Section to show-

case the effect of IMU quality in algorithm performance. They were labeled as IMU1, IMU2 and

IMU3 and their parameters are presented in Table 5.8. In current setup, IMU3 was considered as a

consumer-grade sensor for both accelerometer and gyroscope. These sensors data were generated

by corrupting NV-IMU 1000 data with additive stochastic errors derived from Table 5.8 specifi-

cations. ASD plots of these sensors (IMU1, IMU2 and IMU3) are presented in Fig. 5.5 and 5.6.

For delineating these ASD plots, state space model based stochastic errors were computed with

parameters from Table 5.8. The details of error generation methodology are described in [54].

Positioning Performance

Figure 5.7 shows two histograms of ea
h(k) as defined in eqn. (5.18).The top figure is

generated using IMU1 sensor and the bottom one, using IMU3. The plots are generated using

Nd = 2400 epochs.

Tables 5.9 and 5.10 summarize various measures of positioning accuracy for horizontal
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Sensor Mean Std. Dev Max Prob. of ehk

m m m < 1m < 1.5m < 2m
IMU1 0.79 0.40 2.88 70.6 94.5 99.3
IMU3 0.80 0.41 2.89 71.0 94.5 99.4

Table 5.9: Horizontal Error Statistics.

Sensor Mean Std. Dev Max Prob.
m m m evk < 2m evk < 3m

IMU1 2.32 1.14 5.26 36.2 75.5
IMU3 2.32 1.13 5.29 36.4 75.2

Table 5.10: Vertical Error Statistics.

(eh) and vertical errors (ev), respectively. Column 1 indicates the IMU grade used in the algorithmic

implementation, column 2 displays the mean position error, column 3 contains the standard devia-

tion, and column 4 shows the maximum value. Columns 5 and 6 report the percentage of samples

that have a positioning error less than the accuracy specified in the column header.

The results in Table 5.9 and 5.10, show that the accuracy of the investigated sensors

(consumer- and tactical-grade IMUs) satisfy the SAE J2945 specification. Moreover, the perfor-

mance of both sensors proved to be similar for this particular dataset. Therefore, regardless of the

IMU quality PPP-INS results are comparable. Performance divergence might only become more

apparent for larger epoch periods or in situations where GNSS measurements became unavailable

for longer periods of time (10s of seconds). This discussion is further investigated in Section 5.2.4.

5.2.4 IMU Data Quality Analysis

The divergence in performance between different IMU grades becomes more apparent

over time periods of longer duration between update epochs. Therefore, in this section, PPP GPS

epoch period is varied from 5 to 60 seconds. For each value of T, the analysis performs a Monte
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Carlo experiment with M = 40 iterations. For one iteration, a sample of IMU noise is produced and

scaled for IMU1, IMU2 and IMU3 (same noise sequence, different scaling).

In this demonstration, two experiments have been conducted. Each experiment was di-

vided into two trials. In trial T1, only accelerometer was perturbed with additional stochastic error.

In trial T2, only gyroscope additional error is enforced. In Monte Carlo Experiment 1, at t = KT ,

the state and covariance were updated using ground truth information. In Monte Carlo Experiment

2, at t = KT , an EKF based state update method was utilized to estimate state and covariance. In

each trial, the first 700 seconds of the aforementioned dataset was utilized. The rover horizontal

position error was computed at 200 Hz frequency. Therefore, the mean of the horizontal position

error was computed with 140000 samples for each update period of every Monte Carlo run.

In Section 4.9.3 of [49], the error variance of the vehicle position state is described as

Pp(t) = (Pp0 +Pv0t
2 +Pb0

t4

4
)+(σ2

γa

t3

3
+σ

2
ba

t5

20
) (5.26)

The first three terms of the above mentioned equation (Pp0 , Pv0 and Pb0) are the error variances of

position, velocity and accelerometers bias state after GNSS observation update. The remainder two

terms σ2
γa

and σ2
ba

are the stochastic noise of IMU sensors mentioned in Section 4.1. In Experiment

1, first parenthesis enclosed terms of eqn.(5.26) becomes zero after each epoch update. Therefore,

position error is affected by only the second parenthesis enclosed terms of eqn.(5.26) which is the

IMU sensor stochastic noise. For Experiment 2, the terms related to the state vector of eqn.(5.26)

gets updated using GNSS measurement. As a result in Experiment 2, position error is affected by

both IMU sensor noise as well as update measurement quality.

Figures 5.8 and 5.9 show the mean horizontal position error for trials T1 and T2 of Exper-

iment 1 respectively. Fig. 5.10 shows the rover positioning performance of Experiment 2 with both
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trial results plotted together. Solid lines are used for demonstrating accelerometer performance and

dashed lines indicate gyroscope accuracy in these figures. The blue, red and green indicate IMU1,

IMU2 and IMU3 respectively.

In Figs. 5.8 to 5.10, the mean horizontal position error increases with the increase of

the update period. Fig. 5.8 and 5.9, in particular, show that, average sub-meter positioning is

maintained up to 35 seconds and 2 meter accuracy for 42 seconds. For Experiment 2, the CG

sensors (green curve) sustain sub-meter accuracy up to 17 seconds for accelerometers but only 8

seconds for gyroscopes.

From these results it can be summarized that achievement and sustenance of meter-level

accuracy is mostly dependent on the GNSS update frequency and measurement quality; In other

words, positioning performance is more dependent on GNSS availability and measurement quality,

than on IMU grade. Additionally, and as expected, rover performance proves to be affected more

adversely by gyroscopes quality rather than by accelerometers quality.
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(a) LS for BRMU dataset (b) PVA for BRMU dataset (c) INS for BRMU dataset

(d) LS for HNTP (e) PVA for HNTP (f) INS for HNTP

(g) LS for QUIN (h) PVA for QUIN (i) INS for QUIN

Figure 5.4: Histogram plots of the horizontal position error for the datasets described in Table 5.3.
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Figure 5.5: ASD plots of accelerometers mentioned in Table 5.8 (blue, red and green indicates IMU1, IMU2 and IMU3

respectively)

Figure 5.6: ASD plots of gyroscopes mentioned in Table 5.8 (blue, red and green indicates IMU1, IMU2 and IMU3

respectively)
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Figure 5.7: Histogram of horizontal position error ea
hk

defined in eqn. (5.18) for PPP-INS using IMU1 (Top) and IMU3

(Bottom) sensors.

Figure 5.8: Mean of horizontal error vs update period for T1 of Exp1. Blue, red and green indicate sensor IMU1, IMU2

and IMU3 respectively.
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Figure 5.9: Mean of horizontal error vs update period for T2 of Exp1. Blue, red and green indicate sensor IMU1, IMU2

and IMU3 respectively.

Figure 5.10: Mean of horizontal error vs EKF update period. Blue, red and green indicate IMU sensor 1, 2 and 3

respectively. The solid lines show accelerometer (T1) and dashed lines indicate gyroscope (T2) performance.
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Chapter 6

Conclusions

Successful commercial implementation of Connected Autonomous Vehicle (CAV) appli-

cation involves low-cost sensors, real-time corrections, data communication services, sensor infor-

mation incorporation and reliable estimation algorithms.

The article provides a DGNSS correction algorithm able to compensate latency, short-

term communication interruption, and lost packets. The article also provides estimation algorithms

able to use the DGNSS corrections to exceed the SAE specifications. The PVA and INS methods

herein both augment one multipath state per satellite and use Doppler measurements along with

pseudorange. The research described in this article demonstrated that: (1) with suitable algorithmic

processing, positioning performance is insensitive to correction latency up to 500 s; and (2) horizon-

tal position estimation accuracy is achievable at the submeter level for over 98% of samples. The

data sets used herein were urban, but had a relatively open view of the sky. They were not acquired

in urban canyon type settings. The performance demonstrated herein would not be achievable in

urban canyons using GNSS alone; instead, to maintain positioning accuracy, alternative sensors
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would be required.

This paper also focused on assessing the factors that affect the ability to achieve meter-

level vehicle positioning accuracy with consumer-grade sensors, real-time Precise Point Positioning

(RT-PPP) correction services and integration of Inertial Measurement Unit(IMU) with Global Nav-

igation Satellite System(GNSS) measurement.

The paper presented and discussed: GNSS and IMU sensor measurement models, DGNSS

correction latency computation methodology, RT-PPP correction computation methodology, atmo-

spheric error models suitable for North America users, description of a real-time PPP implementa-

tions and demonstration of sub-meter positioning performance accuracy for moving platforms in a

challenging environment. The investigated PPP-INS algorithm achieved mean horizontal position

error of 0.79 m with standard deviation of 0.40 m. The horizontal position was accurate to 1.0 m

accuracy at 71% and 2 m at 99.4%. The vertical position accuracy was accurate to 3 m at 75.5%

of probability. This performance metrics met the SAE J2945 specification, proposed for intelligent

automotive applications. Sub-meter accuracy was maintained up to 8 seconds of epoch period in an

Extended Kalman Filter (EKF) setup for consumer-grade IMU.

The concluding remarks of this study are: rover positioning performance depends on PPP

correction accuracy and IMU and GNSS sensor quality. GNSS data affected with outliers and signal

outage, degrade positioning accuracy. Rover performance is quite similar for IMU sensor qualities

when the update period is limited to one second. However, as the update period increases, their

errors start to become distinguishable. Another remarkable observation is that rover performance is

affected more adversely by gyroscope stochastic errors than by accelerometers.

Incorporation of other GNSS constellations (GLONASS, Beidou, GALILEO) along with
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robust outlier detection algorithm will improve rover’s positioning performance. Implementation of

PPP for multi-constellation systems and the utilization of innovative measurement selection algo-

rithms [4] are two important topics for future research.
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Chapter 7

Appendix

7.1 WADGNSS Correction Estimation

The appendix discusses an example approach for the implementation of Strategy B as

defined in Section 3.3.2. The approach is strongly motivated by [46,81] which document a precursor

study leading to WAAS.

WADGNSS Reference Station Processing. Receiver r provides code and carrier phase measure-

ments for each satellite s and frequency f . These measurements are, respectively denoted by φ s
r, f

and ρs
r, f where the value of f is either L1 or L2. The models for these measurements are given by

eqns. (2.1–2.4). The second line of each equation contains the common-mode errors which should

be removed by differential processing. All the error terms enter all four equations in an identical

manner with the exception of the ionospheric terms. Also, the number of unknown quantities can be

reduced by noting that the two ionospheric delay terms Is
L1 and Is

L2 in these four equations are both

related (to first-order) to the slant total electron count (TEC) along the signal pathway from satellite
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s to reference station r by the equations

Is
L1 =

40.3
f 2
L1

T EC and Is
L2 =

40.3
f 2
L2

T EC. (7.1)

Therefore, the ionospheric delay will be compensated by estimating a parameterized function that

maps to T EC, which is then used to compute Is
L1 and Is

L2 using eqns. (7.1).

One set of strategies [46,62,73,115,116,130,139,150] starts by separating the T EC from

the other portions of eqns. (2.1–2.4) while also reducing the effects of noise and multipath. Some

articles [39, 117, 137] propose employing the Hatch filter [68]. The approach of Enge et al. [46]

builds on an idea from [61] by using changes in the carrier measurements to estimate changes in the

pseudorange and ionosphere. The changes in carrier measurements

δφ
s
r, f (n) = φ

s
r, f (n)−φ

s
r, f (n−1) (7.2)

remove the need to estimate the (constant) carrier integer ambiguities which cancel in the time dif-

ference as long as there is no loss of phase-lock. The symbol f signifies the measurement frequency

which can be L1 or L2. This dual-frequency carrier-smoothing filter is based on the following

observation equation,



ρ̃s
r,L1

δφ s
r,L1

ρ̃s
r,L2

δφ s
r,L2


=̇



1 0
40.3
f 2
L1

0

0 1 0 −40.3
f 2
L1

1 0
40.3
f 2
L2

0

0 1 0 −40.3
f 2
L2





ρ̄s
r

δ ρ̄s
r

T ECs
r

δT ECs
r


+ν

s
r (7.3)

where

ρ̄
s
r = R(pr,ps)+ ctr− cts +T s (7.4)
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and νs
r is a noise vector that accounts for the cumulative effects of multipath and receiver noise,

which are both assumed to be zero mean and uncorrelated. The quantity δ ρ̄s
r in the right-hand side

of eqn. (7.2) is the change in ρ̄s
r between two consecutive epochs n and n−1:

δ ρ̄
s
r = ρ̄

s
r (n)− ρ̄

s
r (n−1) (7.5)

The ρ quantities on the left-hand side (i.e., ρ̃s
r,L1 and ρ̃s

r,L2) are the calibrated measurements after the

receiver and satellite hardware bias estimates have been removed:

ρ̃
s
r,L1 = ρ

s
r,L1− cb̂rL1,ρ + cb̂s

L1,ρ (7.6)

ρ̃
s
r,L2 = ρ

s
r,L2− cb̂rL2,ρ + cb̂s

L2,ρ . (7.7)

Alternative approaches to estimate the ionosphere time delays in the presence of receiver and satel-

lite hardware biases are described in [62, 73, 115, 116, 130, 139, 150].

For each satellite, eqn. (7.3) is used as the measurement equation for either least squares

or a simple Kalman filter designed to attenuate the effects of noise and multipath. The state vector

for each filter includes: ρ̄s
r , δ ρ̄s

r , T ECs
r , and δT ECs

r .

The symbol T ECs
r in eqn. (7.3) represents the slant TEC for receiver r and satellite s. This

is the cumulative delay experienced by the signal on its non-vertical path through the ionosphere,

which is unique for each satellite and receiver. The ionospheric delay map will model the vertical

TEC at the ionospheric pierce point of the signal. The conversion of vertical to slant TEC is

T ECs
r = F(Es

r ) T ECv(ps
pr
) (7.8)

by use of the ionospheric obliquity factor F(Es
r )

F(Es
r ) =

1
sin(Es

pr
)
=

1√
1−
[

re cos(Es
r )

re +hm

]2
(7.9)
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where Es
r is the elevation angle for satellite s at receiver r, Es

pr
is the local elevation angle at the

pierce point ps
pr

, re is the average radius of the Earth, and hm is the height of the maximum electron

density (assumed to be 350 km). After the slant ionospheric delays for all satellites in view for the

reference station have been smoothed and converted to vertical delay estimates, they are sent to the

master station for further processing.

The symbol ρ̄s
r in eqn. (7.3) represents the iono-free smoothed pseudorange estimate.

This quantity must be compensated for tropospheric delays before being used to estimate the satel-

lite clock and satellite position error vector. The tropospheric delay is a function of elevation angle,

pressure, temperature and humidity (see Chapter 1 of [118]) . The literature provides many models

for tropospheric delay estimate [72, 96, 129, 152]. One of these models (e.g. UNB3M [96]) is im-

plemented and used to compensate the ρ̄s
r for the predictable portion of tropospheric effects. After

compensating for the atmospheric (i.e., ionospheric and tropospheric) delays, smoothed pseudor-

ange are sent to the master station.

WADGNSS Master Station Algorithms. The master station accumulates the data from all base

stations for all satellites. It then assembles a vector of the vertical TEC’s that it uses to estimate the

TEC map as a function of the pierce point ps
pr

. Separately it assembles a vector of the atmospheric-

free smoothed pseudoranges that it uses to estimate the satellite clock and position error vectors.

Estimation of Ionospheric TEC Grid Map: Each reference station’s computed TEC is
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organized as a vector:

ĨS
r =



T ECr(ps1
pr
)

T ECr(ps2
pr
)

...

T ECr(psM
pr
)


(7.10)

In this document, for simplicity of notation, we assume that there are total M satellites in view from

all reference stations.

The master station receives the TEC vectors ĨS
r from N reference stations, so r = 1, . . . ,N.

This reference station data is concatenated to form a large measurement vector,

ĨS =



ĨS
r1

ĨS
r2

...

ĨS
rN


=̇IS + ε

S (7.11)

which is interpreted as the true ionospheric delay vector IS plus a measurement error vector εS. The

vector of measurements ĨS will be used to maintain a vertical TEC map function.

The vertical TEC map is constructed using a grid of vertical TEC values denoted by the

vector IG [40, 41, 85]. The value of the k-th element of IG represents the vertical TEC at a pierce

point ppk . The set of points {ppk}K
k=1 forms a regular grid. The vertical TEC at an arbitrary pierce

point pp within the geographical extent of the grid points is computed as a linear function of the

values at the grid points:

T ECv(pp) = w(pp)IG (7.12)

where w(pp) is a vector of weights. The k-th element of the weight vector wk = [w(pp)]k shows

how much the vertical TEC value [IG]k at the k-th grid point ppk contributes to the value of the TEC
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at the desired pierce point pp.

The elements of w(pp) = [w1, . . . ,wK ] should satisfy a few constraints. The first constraint

is that ∑
K
i=k wk = 1, so that eqn. (7.12) interpolates the value for T EC(pp) from the TEC values at the

grid points. A second constraint is that when pp = ppk the vector w(ppk) should be all zero except

for a single one as the k-th element. This causes T EC(pp) to evaluate to match the k-th element

of the vector ÎG. A third constraint is that the k-th element [w(pp)]k should decrease smoothly as

dk = ‖pp− ppk‖ increases. This results in a smooth interpolation between the grid point values. One

example choice of the weighting function is the inverse distance approach [46], where the weights

are selected as

ak = 1/dk and wk =
ak

∑
K
i=1 ai

which requires special treatment for the case where dk = 0.

The vector of measurements ĨS defined in eqn. (7.11) will be used to estimate the TEC

values at the grid points (i.e., IG). The i-th element of ĨS corresponds to a pierce point ppi . For

accurate estimation of the TEC map, this set of pierce points should be well distributed throughout

the geographic region defined by the grid points. Using eqn. (7.12) allows calculation of a weight

matrix W with rows defined by w(ppi) such that the measurements relate to the grid values as

ĨS=̇WIG + ε
S. (7.13)

The value of wi,k = [W]i,k is the element in the i-th row of the k-th column of matrix W, which

represents the interpolation weight from the k-th grid point at the i-th pierce point.

If the spatial distribution of the pierce points results in the matrix W being full column

rank, then eqn. (7.13) could be solved as

ÎG=̇(WT W)−1 WT ĨS. (7.14)
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Alternatively, either constraints could be added to ensure that a unique and smooth solution exists

or eqn. (7.13) could be used as the measurement equation for a Kalman filtering approach to allow

information accumulation and noise reduction over time [22].

Estimation of Satellite Orbit and Clock Corrections: The satellite orbit and clock correc-

tion vectors are estimated by the master station using the atmospheric-free smoothed pseudorange

vectors from all reference base stations.

Based on eqn. (7.4), the atmospheric-free smoothed pseudorange between reference sta-

tion r to satellite s is

ρ̄
s
r =̇R(pr,ps)+ ctr− cts +ws

r. (7.15)

This measurement is based on the actual satellite position, not the computed satellite position using

on the ephemeris data. These two items are related to each other by ps = p̂s + δps where p̂s is the

calculated satellite location and δps is satellite position error vector.

The range can be equivalently represented as a dot product

R(pr,ps) = es
r · [(p̂s +δps)−pr]

= es
r ·δps + es

r · (p̂s−pr) (7.16)

where es
r =

pr−ps

‖pr−ps‖ is the unit vector from satellite s to reference station r; and ws
r is the atmospheric-

free smoothed pseudorange estimation error. Since the quantity (p̂s−pr) is known for the reference

sations, it can be removed by defining a new variable

ys
r = ρ̄

s
r − es

r · (p̂s−pr). (7.17)
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Combining the above equations yields the measurement model

ys
r=̇ es

r ·δps + ctr− cts +ws
r. (7.18)

where r = 1, . . . ,N counts over reference stations and s = 1, . . . ,M counts over GNSS satellites.

The master station will estimate the vector

x =

[
δpT BT bT

]T

, (7.19)

where for δps ∈ℜ3

δp =

[
(δp1)T (δp2)T . . . (δpM)T

]T

∈ℜ
3M,

B =

[
ct1 ct2 . . . ctM

]T

∈ℜ
M,

b =

[
ct1 ct2 . . . ctN

]T

∈ℜ
N .

Using this definition of x and eqn. (7.18), the vector of measurements for the mr satellites at refer-

ence station r, denoted as yr, can be organized as

yr =̇

[
Er −Ir 1r

]
x+wr. (7.20)

The matrix Er ∈ ℜmr×(3M) is compose of rows that are all zeros, with the exception that in each

row, where the i-th row corresponds to ysi
r , the row vector esi

r will be in the columns corresponding

to δpsi . The matrix Ir ∈ ℜmr×M is composed of rows that are all zeros with the exception that in

the i-th row corresponding to ysi
r there is a one in the column corresponding to ctsi . The matrix

1r ∈ℜmr×N is composed of rows that are all zeros with the exception that in each row there is a one

in the column corresponding to ctr. For example, if reference station r = 3 was receiving satellites
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1 and 4, then

E3 =

 (e1
r )

T 0 0 0 Z3(M−4)

0 0 0 (e4
r )

T Z3(M−4)

 ,

I3 =

 1 0 0 0 ZM−4

0 0 0 1 ZM−4

 ,

13 =

 0 0 1 0 0

0 0 1 0 0

 ,
where Zp ∈ℜ1×p is a row vector with all zeros. The matrix 13 consists of all zeros except the third

column that is 1.

Concatenating the measurements from all the reference stations provides a measurement

equation of the form

y=̇ Hx+w (7.21)

where

y =



y1

y2

...

yN


, H =



E1 −I1 11

E2 −I2 12

...
...

...

EN −IN 1N


, and w =



w1

w2

...

wN


.

The master station can solve eqn. (7.21) by a variety of methods (e.g., batch least squares).

If there are more measurements than unknowns in the WADGNSS network, the system of equations

is over-determined. The least squares solution is

x̂ = (HT H)−1HT y. (7.22)
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It is also possible through suitable parameterizations to extract information from multiple epochs of

data using recursive least squares or Kalman filter methods.

WADGNSS Reference Network Design Constraints: In (7.21), if m represents the mini-

mum number of satellites available per base station, then there will be at least N m measurements

and 4M+(N−1) unknowns1. To achieve an over-determined set of equations requires

N m≥ 4M+(N−1) (7.23)

Therefore, at least

N ≥ 4M−1
m−1

reference stations are required. For M = 32 and m = 6, at least N = 26 reference stations would be

required. In addition, the reference stations must be geographically distributed such that the matrix

H is full column rank and well-conditioned.

1The (N−1) appears instead of N because clock errors can be estimated only relative to a fixed reference. Therefore,

one of the values can be set to an arbitrary value such as zero.
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