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Abstract 

The outcomes of intertemporal choices indicate that people 
discount rewards by their delay. These outcomes are well 
described by discounting functions. However, to fully 
understand the decision process one needs models describing 
how the process of decision-making unfolds dynamically over 
time. Here, we validate a recently published attractor model 
that extends discounting functions through a description of 
the dynamics leading to a final choice outcome within and 
across trials. We focus on the decision dynamics across trials. 
We derive qualitative predictions for the inter-trial dynamics 
of sequences of decisions that are unique to this type of 
model. We test these predictions in a delay discounting game 
where we sequentially manipulated subjective values of 
options across all attribute dimensions. Results confirm the 
model’s predictions. We discuss future challenges on 
integrating attractor models towards a general attractor model 
of delay discounting to enhance our understanding of the 
processes underlying delay discounting decisions. 

Keywords: decision making; delay discounting; process 
dynamics, attractor dynamics; hysteresis; neural attractor 
model 

 

Introduction 

Many everyday choices involve options that pose a conflict 

between immediate, but small gains, and delayed, but larger 

or more beneficial gains. This conflict occurs on many time 

scales. For example, you might wonder whether to enjoy 

spending your money now or saving it for a pension. Or you 

might be tempted to take the tasty pizza – which is 

immediately very tasty – instead of the light salad – which 

might be better for your cardiovascular system in the long-

term. In such intertemporal choices (for a review, see 

Frederick, Loewenstein, & O’Donoghue, 2002), humans 

discount the offered gain by the delay of delivery. This 

delay discounting is well described by utility discounting 

models which assume that the greater the delay in delivery 

of a reward, the more the utility of a reward is discounted. 

Hence, these discounting models represent the subjective 

value of a reward as a function of its delay (see Doyle, 2013 

for an overview). While these mathematical models offer a 

good description of the average outcome of the decision 

process – the final choice – they mostly leave open how the 

exact decision process unfolds in time. Decoding this 

process, though, is necessary in order to fully understand the 

way decisions are made. To fill this gap, recent 

developments aim to uncover the process dynamics leading 

to a final decision in delay discounting (Dai & Busemeyer, 

2014; Rodriguez, Turner, & McClure, 2014; Scherbaum et 

al., 2016). Specifically, the attractor model approach  

(Figure 1) has recently been proved useful to uncover the 

process dynamics leading to a final choice outcome on 

different time scales, that is within and across sequential 

intertemporal choices (Scherbaum et al., 2016).  

In this study, we will use the attractor model and the 

experimental paradigm as proposed by Scherbaum et al. 

(2016) to derive and validate qualitative predictions on the 

inter-trial dynamics of sequences of intertemporal decisions. 

More detailed, the attractor model of decision making in 

 

Figure 1: Sketch of possible attractor layouts given different 

values of the control parameter c. This parameter depends 

on the relative difference in subjective value (attractiveness) 

of the options for a subject and hence configures the system 

for each potential combination of SS and LL: An increase in 

attractiveness for the LL option results in a negative control 

parameter which, in turn, increases the depth of the attractor 

representing the LL option (left panel). In contrast, an 

increase in attractiveness for the SS option results in a 

positive control parameter which, in turn, increases the 

depth for the attractor representing the SS option (right 

panel). Inherently, the control parameter c is primarily 

dependent on the values and delays of the presented 

options, but also on a subject’s tendency to discount. Within 

this potential landscape, the current system state (marked by 

a red dot) tends to move to the bottom of the potential wells 

and travels through all intermediate states on its way to a 

stable final choice.  
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delay discounting assumes that the depth of the attractors 

and hence the stability of its end-states is determined by a 

combination of each option’s reward value and delay. By 

varying either both or one of those properties, the depth of 

the attractors can be manipulated. To that end, the depth of 

the attractors represents the relative attractiveness of each 

option, and that is, the respective subjective (discounted) 

value, within the attractor model (Figure 1). Hence, the 

difference in relative attractiveness between the two options 

determines the systems preference towards either option and 

is summarized by the control parameter, which we will call 

c. Figure 1 depicts three kinds of possible attractor layouts 

given three prototypical specifications of c. The attractors 

itself picture stable neural representations of the available 

options. So, the left and right panel of Figure 1 reflect 

almost exclusive activation of one option’s representation, 

and hence illustrate configurations of the system with a 

preference towards one option (c ≠ 0). Accordingly, the 

special case where c = 0 (Figure 1 middle panel) reflects 

varying amounts of concurrent activation in which the 

system has not settled into a decision yet, and hence 

represents a decision in which both options receive an 

identical input and are thus equally attractive. In this special 

case scenario, a neutral starting state would keep the system 

indifferent until slight differences in input (or random noise) 

tips the system to one side or the other, resulting in a more 

or less arbitrary decision which was not driven by the 

systems preference. A major advantage of attractor models 

is that the decision is not only determined by the current 

attractor layout, which is in turn determined by the currently 

offered options, but also through the history of the system’s 

previous decisions (Scherbaum, Dshemuchadse, & Kalis, 

2008; Townsend & Busemeyer, 1989). This is due to the 

genuine assumption that the attractors are formed by the 

offered options and, hence, these attractors are not present 

between trials. The inertia of neural systems causes the 

system to temporally recline in the area where it ended up 

previously—in the vicinity of the vanished attractor 

representing the recent choice—and to relax only slowly to 

the neutral start state under no input. For example, if the 

model chose one option in a first decision trial, it would 

remain in the vicinity of this option’s attractor in the inter 

trial interval. In a second decision trial, it would hence start 

the decision with a bias to the previously chosen option, 

even if this trial comprises the other option being more 

attractive (see Figure 2).  

Scherbaum et al. (2016) used this premise to predict and 

validate hysteresis effects (Tuller, Case, Ding, & Kelso, 

1994), which are also known as path-dependence, in 

intertemporal choice. Hysteresis or path-dependence occur, 

when the decision for one option biases the next decision in 

favor of the same option (see Figure 2). Hence, in a series of 

choices in which the initially unchosen option becomes 

increasingly more attractive (i.e. sequential manipulation of 

the difference in the relative attractiveness), people stick to 

the initially chosen option and switch to the now more 

attractive option much later than they would if their choices 

were unbiased. However, the sequential manipulation of the 

difference in the relative attractiveness was merely 

operationalized by variation of the delay, though the 

attractor model predicts the same hysteresis effects when the 

manipulation is realized through a variation of the reward 

value or even a combination of delay and value. We hence 

hypothesized that the emergence of hysteresis effects is 

independent from the attribute dimension which is used to 

sequentially manipulate the difference in the relative 

attractiveness between both options (intervals, value 

difference, or both together). 

To provide an insight into hysteresis effects in delay 

discounting, we applied the same non-verbal delay 

discounting task as used in the original study. This task 

redresses the problem that in standard intertemporal choice 

tasks the sequential manipulation of reward values or delays 

is simply too obvious (Scherbaum et al., 2016; Scherbaum, 

Dshemuchadse, Leiberg, & Goschke, 2013). In this task, 

subjects collect coins of different reward values with an 

avatar which they move on a checkered playing field by 

clicking with the computer mouse (Figure 3). The playing 

field stays constant across trials—except the options which 

change from trial to trial—and the avatar started each trial 

from the position of the previously chosen option. The goal 

is to collect as much reward as possible in the allotted 

amount of time. In each trial of the task, subjects have to 

choose between two reward options of different magnitude 

(small vs. large) at different distances (near vs. far fields). 

Therefore, this task translates delays into distances, which 

allows for a more implicit sequential manipulation of the 

relative attractiveness of options.  

To implement the sequential manipulation of different 

attributes, we used this task in a modified, two-step 

procedure: In the first part, we measured the individual 

amount of discounting (the measurement block). Based on 

this amount of discounting, we created individually tailored 

sequences of decision to study hysteresis in the following 

part (the manipulation block). We expected the hysteresis 

effect to be present in all variants of sequential 

manipulations.  

 

Figure 2: Inter-trial dynamics in the attractor model. 

Choosing the LL option in a first trial leads to a bias in a 

second trial due to slow relaxation (e.g. inertia) of the system 

state during the inter trial interval (ITI, in this study 1.3 

seconds). 
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Methods 

Subjects 

43 students (65% female, mean age = 22.98 years) of the 

Technische Universität Dresden took part in the experiment 

that lasted approximately 50 minutes. All subjects had 

normal or corrected to normal vision. Three out of 43 

subjects were excluded from any subsequent analysis due to 

individual discounting behavior in the measurement block 

not allowing for a sufficient hysteresis manipulation in the 

manipulation block. Subjects gave informed consent to the 

study and received a 2.50 € show-up fee and the money they 

collected within the experiment (Mean = 3.17, SD = 0.39). 

Apparatus and Stimuli 

The experiment was presented on a 17-inch screen (1280 x 

1024 pixels, 85 Hz). As presentation software, we used 

Psychophysics Toolbox 3 (Brainard, 1997; Pelli, 1997) in 

Matlab 2010b (the Mathworks Inc.), running on a Windows 

XP SP2 personal computer. Responses were carried out by 

moving a high precision computer mouse (Logitech Laser 

Mouse USB). 

Subjects moved an avatar on a playing field divided into 

20 x 20 fields (Figure 3). To move the avatar, subjects 

clicked with the mouse in one of four horizontally or 

vertically adjacent movement fields, as signaled by a white 

border surrounding the fields. On each trial two reward 

options were presented as coins on fields marked with a red 

border: One reward was near but small, the other reward 

was far but large. The two options’ positions were always 

chosen so that the first move into one direction decreased 

the distance to one option but increased the distance to the 

other option. This way, the first move of the avatar already 

represented a clear preliminary decision for one option and 

against the other option.  

For both options, a number posed within each coin 

represented the reward value and the horizontal and vertical 

distance of the reward field to the field of the avatar 

represented the distance of the option. Reward values 

ranged from 1 to 99 credits and distances ranged from two 

to fifteen fields. For better comprehensiveness in the context 

of intertemporal choice, we maintain in the following the 

standard description of the time dimension using “soon”, 

“late”, “delay”, and “interval”, although in our scenario time 

delay is represented by spatial distance. The relation 

between the two reward values can be characterized as the 

ratio of the higher and smaller reward value and will be 

denoted by “difference”. 

Above the avatar (Figure 3) subjects could see the 

remaining time within one block, as well as below the 

collected credits in Euro (1 credit = 1/10 € cent), but only in 

the very moment when either reward was collected. 

Procedure 

Subjects’ task was to collect as much reward as possible 

within the allotted time limit. In each trial, they had to 

choose between two reward options (one soon but small, SS, 

one late but large, LL; see design). They collected the 

selected reward by moving their avatar with the mouse 

across the playing field.  

A trial started with an inter trial interval (ITI) of 1.3 

seconds. Within this interval, the mouse cursor was locked 

in the center of the field containing the avatar. After the ITI, 

the two options were presented. As soon as the two options 

appeared, participants could click on the adjacent movement 

fields to move their avatar towards the chosen option 

(Figure 3). When the avatar reached one option, both 

options disappeared, the value of the selected option was 

added on the collected credits, and the next trial started. 

The experiment consisted of four blocks, with one block 

lasting eight minutes. Between blocks, subjects were 

informed about the credits collected and were instructed to 

rest briefly before the self-paced start of the next block.  

Before the start of the experimental blocks, subjects 

worked through a test block of two minutes to get used to 

the virtual environment, handling of the mouse, as well as 

the range of spatial distances and reward values. 

Design 

The experiment consisted of four blocks with the first block 

(measurement block) being conceptually different from the 

three subsequent blocks as its aim was to measure the 

subjects’ individual discounting behavior. In each of the 

three subsequent blocks (manipulation blocks) we realized a 

unique adaptive hysteresis manipulation constituting an 

interval block, a value block, and a combined block. Each 

subject’s session started with the measurement block 

followed by the manipulation blocks. The sequential 

arrangement of the manipulation blocks was fully varied 

and balanced between subjects. 

In the measurement block, reward values ranged from 11 

to 99 and distances from three to 15. That was given by 

orthogonally varying the intervals (1, 4, 8, and 12 fields), 

the differences (20, 50, 70, 80, 88, 93, 97, and 99%), and the 

delay of the sooner option (2 and 3 fields). Additionally, the 

reward values of the late option were randomly chosen from 

a discrete uniform distribution between 55 and 99 credits. 

The combination of 8 differences, 2 distances of the SS 

options and 4 intervals between the SS and the LL option 

yielded a complete set of 64 trials. We generated 5 such 

 

Figure 3: Detail of the dynamic delay discounting 

paradigm. 
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sets, with a randomized order of trials within each set. The 

measurement block’s time limit ensured that subjects could 

work through the complete design matrix, that is one of 

those 5 sets, at least one time.  

To realize the adaptive hysteresis manipulation, we 

calculated the subjects’ individual discounting curve from 

which we adaptively derived trials compatible to the 

respective hysteresis manipulation (see Results). The 

structure of an adaptive hysteresis manipulation is to 

sequentially change subjects’ preference from the SS 

towards the LL option, or vice versa. In our adaptive trial 

sequences, we aimed to change subjects’ preference in 12 

steps as indicated by the differences between the subjective 

value ratio (SS/LL) in the trials and the indifference points 

(-0.3000, -0.2455, -0.1909, -0.1364, -0.0818, -0.0273, 

0.0273, 0.0818, 0.1364, 0.1909, 0.2455, 0.3000), that is the 

manipulation points.1 It is imperative that a negative 

manipulation point indicates a preference for the LL option 

and a positive manipulation point a preference for the SS 

option. Furthermore, it applies that the higher the absolute 

manipulation point, the more distinct are the relative 

attractiveness of both options. Hence, a manipulation point 

of zero represents no preference, that is the indifference 

point. Please note that the interpretation of the manipulation 

point is analog to the interpretation of the control parameter.  

We then applied this manipulation in three different sub-

blocks. First, in the interval block we consecutively 

increased or decreased the delay of the LL option to the 

avatar while keeping all other factors constant within the 

sequence. For each sequence the delay of the sooner option 

and the reward value of the late option were randomly 

chosen from discrete uniform distributions between 2 and 3 

fields, and 55 and 99 credits, respectively. The reward value 

of the sooner option was randomly drawn from the uniform 

distribution between subjects’ two indifference points at the 

intervals 6 and 7. Furthermore, we varied the direction of 

these sequences (direction = ascending or descending) and 

created eight sequences for each direction. This resulted in 

16 possible sequences, and hence 192 trials. 

Second, in the value block we consecutively increased or 

decreased the reward value of SS option while keeping all 

other factors constant within the sequence. Again, for each 

sequence, the delay of the sooner option and the reward 

value of the late option were randomly chosen. The delay of 

the LL option to the avatar was drawn randomly between all 

intervals at which subjects’ indifference point was 

positioned in such a way that all 12 manipulation points 

were valid, that is, did not exceed 1 or fall below a value of 

0. For each trial within the sequence, the reward values of 

the SS option were then calculated.  Again, we also varied 

the direction of these sequences and created eight sequences 

                                                           
1 For instance, a subject’s indifference point at interval 1 is 0.8 

(see Figure 4). Given a manipulation point of -0.3, the respective 

manipulated trial must yield a subjective value ratio (SS/LL) of 0.5 

at an interval of 1. The same logic applies over all manipulation 

points and intervals.  

for each direction. This resulted in 16 possible sequences, 

and hence 192 trials.  

Third, in the combined block we consolidated the former 

manipulations and varied both the delay of the LL option to 

the avatar and the reward value of the SS option in such a 

way that the manipulation points consecutively increased or 

decreased within the sequence. Again, for each sequence the 

delay of the sooner option and the reward value of the late 

option were randomly chosen. For each trial within the 

sequence, the delay of the LL option was randomly chosen 

from the set of intervals in which the respective 

manipulation point was valid. The reward values of the SS 

option were then calculated.  Again, we also varied the 

direction of these sequences and created eight sequences for 

each direction. This resulted in 16 possible sequences, and 

hence 192 trials. 

In sum, we applied a 2 (direction: ascending, descending) 

x 3 (manipulation type: interval, value, combined) full 

factorial within-subjects design.  

Results 

On average, subjects completed 134 trials (SD = 23) in the 

measurement block. Hence, subjects ran through at least two 

out of five sets of 64 trials. The aim of the measurement 

block was to measure subjects’ individual discounting 

behavior indicated by subjects’ indifference points as 

depicted by Figure 4. As an estimate of the indifference 

point, the point of inflection of a logistic function was fitted 

to the individual choices as a function of increasing value 

 

Figure 4: Subjects’ indifference points in the measurement 

block, depicting the decrease in subjective value of the late-

large option as a function of intervals between the two 

options. Indifference points are the subjective value ratio 

(SS/LL) at which subjects chose indifferently between the 

two options, i.e., the probability of choosing LL over SS is 

50%. Note: Error bars indicate standard errors. The curve 

displays the fitted hyperbolic functions. 
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differences was determined.2 To evaluate subjects’ 

discounting behavior in one parameter, we extracted the k-

parameter by fitting a hyperbolic function to each subject’s 

indifference points over the different intervals. Data 

revealed an average k-parameter of the hyperbolic 

discounting curve with M(SD) = 0.23(0.19), bootstrapped 

95% CI = [0.18, 0.30], indicating a very strong discounting 

behavior. The hyperbolic model had a good fitting 

                                                           
2  The fitting of the logistic regression model was 

performed using the StixBox mathematical toolbox by Anders 

Holtsberg (http://www.maths.lth.se/matstat/stixbox/). The fit was 

based on the model log [
𝑝

1−𝑝
] = 𝑋𝑏, where p is the probability that 

the choice is 1 (SS) and not 0 (LL), X represents value differences, 

and b represents the point estimates for the logistic function. 

performance over all subjects, indicated by a high average 

R², M(SD) = .87(.10).3 

In the manipulation blocks, subjects completed 387 trials 

(SD = 67) on average. Hence, on average, subjects ran 

through 32 hysteresis sequences (SD = 6), consisting 16 

ascending (SD = 3) and 16 descending (SD = 3) sequences. 

The SS option was chosen in 48.37% (SD = 22.19) of the 

trials, indicating only a slight decision bias which was not 

predicted by the model. 

The core prediction of the model was that subjects show 

identical hysteresis effects irrespective of the specific 

hysteresis manipulation, that is, whether the sequential 

manipulation of the attractiveness of both options was 

realized through varying intervals, differences or a 

combination of both. Figure 5 depicts the hysteresis effect 

for each manipulation type. The plots indicate that the 

hysteresis effects are very similar between manipulation 

types, but show the qualitatively best pattern for the interval 

manipulation (Figure 5, panel a). In order to test model’s 

predictions, we conducted a two-factorial Repeated 

Measures ANOVA (direction x manipulation type) on 

subjects’ mean choice. As expected, we solely found a main 

effect of direction (F(1,39) = 17.44, p < .001, η²= 0.31), 

indicating that hysteresis emerged irrespectively of 

manipulation types. Thus, neither the main effect of 

manipulation type (F(2,78) = 3.03, p = .054, η² = 0.07) nor 

the interaction (F(2,78) = 1.22, p = .302, η² = 0.03) were 

statistically significant. In order to focus the analysis on the 

hysteresis effect, that is, eliminating the variance of the 

absolute level of LL choices, we summarized hysteresis 

effects into one hysteresis parameter. The hysteresis 

parameter was given by calculating the differences between 

subjects’ mean choice in ascending and descending 

hysteresis sequences for each manipulation type. An 

additional one-factorial Bayesian Repeated Measures 

ANOVA on the hysteresis parameter revealed that the data 

show substantial evidence in favor of the null hypothesis 

(BF01 = 4.64) claiming that the hysteresis effect does not 

vary systematically between all three manipulation types. 

Therefore, we consider the predictions of the model as 

confirmed.  

Discussion 

In this study, we tested predictions of the attractor model of 

delay discounting in a recent developed non-verbal delay 

discounting paradigm. Our results validated the model in 

such a way that its predictions concerning hysteresis effect 

in delay discounting were confirmed. Specifically, when 

sequentially varying the attractiveness of both options from 

a very strong preference towards the SS option to a very 

strong preference towards the LL option, and vice versa, 

hysteresis effects occur irrespectively of how the 

                                                           
3 The fit of the hyperbolic function was based on minimizing the 

summed squared errors (SSE). R² is defined as the ratio of the sum 

of squares of the regression (SSR) and the total sum of squares 

(SST). Since SST is defined as SSR+SSE, R² is defines by 1-

SSE/SST.  

 

Figure 5: Average hysteresis plots between manipulation 

types. Plots depict subjects’ mean response pattern over 

intervals (panel a) or manipulation points generated by 

variation of rewards only (panel b) and a combination of 

rewards and intervals (panel c).  Note: Error bars indicate 

standard errors. The separate colors indicate whether mean 

responses were derived from ascending or descending 

sequences. The blue line represents descending sequences 

(LLSS). The red line represents ascending sequences 

(SSLL). 
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attractiveness of any option is varied within the sequence. 

Therefore, the current study both replicated and added 

empirical evidence for the validity of the attractor model of 

delay discounting.  

One might object that the predictions of the model were 

merely derived through a qualitative, argumentative manner. 

This is obviously true, but not a weakness of the current 

study. First, concerning the interval manipulation, it was 

already shown that the exact same predictions can be 

derived by means of computational simulation based on a 

competitive neural-network (Scherbaum et al., 2016), hence 

running a computational simulation with the same model 

would not provide any new information. Second, and this 

point is genuine, the model does not allow for reasonable 

separate simulations of all manipulation types. This is due to 

the fact that the model merely uses subjective values for 

each option. The emergence of those subjective values, 

however, is not covered within the model.  

Leaving the emergence of subjective values open the 

model proves to be useful for predicting intra- and inter-trial 

dynamics in delay discounting, when a specific discounting 

function is already given, but it does not explain the 

emergence of discounting functions. This gap has also been 

argued for recently by others, reasoning that intertemporal 

choice consists of two processes (Rodriguez et al., 2014): 

First, the process of delay discounting, and second, the 

process of choice. This gap between the two processes could 

be closed by connectionist models, which have already been 

used to explain how different discounting functions emerge 

by linking discounting behavior with aspects of self-control 

(Scherbaum, Dshemuchadse, & Goschke, 2012).  

The two models provide insights into the dynamics of 

delay discounting and the dynamics of choice, respectively. 

Integrating these two models into one general connectionist 

model of delay discounting could provide insights into the 

interacting process dynamics of preference (delay 

discounting) and choice. Such an integration could therefore 

enhance our understanding of the processes underlying 

delay discounting decisions and, hence, complement our 

knowledge about decision outcomes. 
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