
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Modeling musical anticipation : from the time of music to the music of time

Permalink
https://escholarship.org/uc/item/4nv162ms

Author
Cont, Arshia

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4nv162ms
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Modeling Musical Anticipation: From the time of music to the music of time

A dissertation submitted in partial satisfaction of the requirements for the degree
Doctor of Philosophy

in

Music

by

Arshia Cont

Committee in charge:

Shlomo Dubnov, Chair
Alain de Cheveigné
Philippe Manoury
Miller Puckette
Lawrence Saul
David Wessel

2008

Copyright

Arshia Cont, 2008

All rights reserved.

The dissertation of Arshia Cont is approved, and it

is acceptable in quality and form for publication on

microfilm and electronically:

Chair

University of California, San Diego

2008

iii

DEDICATION

!"#$%&'!() *+,-.&'!()
/0123456!78.

$9:3;<=>?@6ABCD5EFGHIJKLMN

!

Dedicated to ones who dedicate...

my parents

Mansoureh Daneshkazemi and Gholamhossen Cont

iv

EPIGRAPH

“I think that the search for a universal answer to the questions raised by musical experi-

ence will never be completely fulfilled; but we know that a question raised is often more

significant than the answer received. Only a reckless spirit, today, would try to give a

total explanation of music, but anyone who would never pose the problem is even more

reckless.”

Remembering the future

LUCIANO BERIO

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . xi

List of Tables . xiii

Acknowledgements . xiv

Vita . xvii

Abstract . xviii

Chapter 1. Introduction . 1
1.1. Approach . 3
1.2. Organization . 5
1.3. Contributions . 7

I From Modeling Anticipation to Anticipatory Modeling 9

Chapter 2. Modeling Musical Anticipation . 10
2.1. Psychology of musical expectation . 11

2.1.1. Experimental Research Scopes . 11
2.1.2. Auditory Learning . 13
2.1.3. Concurrent and Competitive Representations 14
2.1.4. Mental Representations of Expectation 15

2.2. Anticipation Defined . 17
2.2.1. Anticipation in view of Expectation 17
2.2.2. Anticipation in view of Enaction . 18
2.2.3. Anticipation in view of Computation 19

2.3. Models of Musical Expectation . 20
2.3.1. Music Theoretic Models . 21
2.3.2. Automatic Learning Models . 23
2.3.3. Information Theoretic Models . 25

2.4. Modeling Investigations . 29
2.4.1. Imperfect Heuristics and Naive Realism 30

vi

2.4.2. Over-intellectualization of the intellect 33
2.4.3. Scientific pluralism . 34

2.5. Summary . 35

Chapter 3. Anticipatory Modeling . 38
3.1. Anticipatory Computing . 39
3.2. General Modeling Framework . 41

3.2.1. Markov Decision Process Framework 42
3.2.2. Interactive Learning in an Environment 44

3.3. Distinctions of Anticipatory Behavior . 45
3.3.1. Implicit Anticipation . 46
3.3.2. Payoff Anticipation . 47
3.3.3. Sensorial Anticipation . 47
3.3.4. State Anticipation . 48

3.4. Learning Approaches . 49
3.4.1. Reinforcement Learning . 50
3.4.2. Learning Classifier Systems . 51

3.5. Modeling Implications . 52
3.5.1. Information as Available . 52
3.5.2. Interactive and on-line Learning . 53
3.5.3. Multimodal Interaction and Modeling 54

II What to Expect 56

Chapter 4. Music Information Geometry . 57
4.1. General Discussions . 57
4.2. Preliminaries . 60

4.2.1. Information Geometry of Statistical Structures 61
4.2.2. Elements of Bregman Geometry . 63
4.2.3. Exponential Family of Distributions 68
4.2.4. Bregman Geometry and Exponential distributions 70

4.3. Music Information Geometry . 74
4.3.1. Methodology . 74
4.3.2. Data IR . 76
4.3.3. Model IR . 77

4.4. From Divergence to Similarity Metric . 79
4.4.1. Symmetrized Bregman Divergences 81
4.4.2. Triangle Inequality . 82

4.5. Incremental Model Formations . 83
4.6. Discussions . 87

vii

Chapter 5. Methods of Information Access . 89
5.1. Incremental Clustering and Structure Discovery 89

5.1.1. Related Works . 90
5.1.2. Audio Oracle Data Structure . 93
5.1.3. Audio Oracle Learning and Construction 96
5.1.4. Sample Results . 99
5.1.5. Discussions . 102

5.2. Guidage: Fast Query-Based Information Retrieval 104
5.2.1. Research Scope . 105
5.2.2. Related Works . 107
5.2.3. General Framework . 109
5.2.4. Search Domain and Meta Data . 110
5.2.5. Guidage Algorithm . 112
5.2.6. Resynthesis . 116
5.2.7. Sample Applications and Results . 117
5.2.8. Discussions . 127

III How to Expect 129

Chapter 6. Adaptive and Interactive Learning . 130
6.1. Introduction . 131
6.2. Background on Stochastic Music Modeling 133

6.2.1. Memory Models . 134
6.2.2. Approaches to Statistical Learning 139
6.2.3. Approaches to Planning and Interaction 140

6.3. General Discussions . 143
6.4. Active Learning Architecture . 145

6.4.1. Audio Oracles for Memory Models 149
6.4.2. Guidage for Active Selection . 152

6.5. Anticipatory Learning . 154
6.5.1. Competitive and Collaborative learning 155
6.5.2. Memory-based Learning . 157

6.6. Active Learning Algorithm . 158
6.6.1. Model Complexity . 160

6.7. Results and Experiments . 161
6.7.1. Knowledge-Based Interactions . 162
6.7.2. Anticipatory Style Imitation and Automatic Improvisation . . . 168

6.8. Discussions . 174

IV When to Expect 176

viii

Chapter 7. Anticipatory Synchronization . 177
7.1. Introduction . 178
7.2. Background . 180

7.2.1. Score Following Research . 180
7.2.2. Cognitive Foundations of Musical Time 182
7.2.3. Compositional Foundations of Time 183
7.2.4. Probabilistic Models of Time . 185

7.3. General Framework . 188
7.3.1. Anticipatory Multimodal Inference 189
7.3.2. Hybrid Models of Time . 190

7.4. Inference Formulation . 192
7.5. Stochastic model of time in music performance 194

7.5.1. Attentional Model of Tempo . 194
7.5.2. Tempo Agent and Decoding . 198
7.5.3. Survival Distribution Model . 200

7.6. Music Score Model . 201
7.6.1. Basic Events . 201
7.6.2. Special timed events . 202

7.7. Observation Model . 205
7.8. Evaluation . 207

7.8.1. Evaluation of Tempo Prediction . 208
7.8.2. Evaluation over synthesized audio from score 209
7.8.3. Evaluation of real-time Alignment 217

7.9. Discussions . 220

Chapter 8. Towards Writing of Time and Interaction in Computer Music 221
8.1. Background . 223

8.1.1. Computer Music Language Paradigms 223
8.1.2. Practical Status . 227
8.1.3. Compositional Status . 230
8.1.4. Research Status . 235

8.2. Antescofo: A preliminary tool for writing of time and interaction 237
8.2.1. Motivations . 238
8.2.2. General Architecture . 239

8.3. Antescofo: A modular and concurrent synchronizer 241
8.4. Antescofo’s Score Semantics . 244

8.4.1. Event Declarations . 245
8.4.2. Control Commands . 250
8.4.3. Action Declarations . 251

8.5. From the Time of Composition to the Time of Performance in Antescofo 253
8.6. Discussions and Future Directions . 255

8.6.1. Augmenting the Semantics of Interaction 255
8.6.2. Multimodal Coordination . 256

ix

8.6.3. Intuitive Interfaces . 257
8.6.4. Relating to the Community . 257

Chapter 9. Conclusions . 259
9.1. The story so far . 259
9.2. Outlook . 264

V Appendices 268

Appendix A. Supplemental Material for part II . 269
A.1. Properties of Multinomial Manifolds . 269
A.2. Bregman Divergence Symmetrization . 271

A.2.1. Geodesic-walk Algorithm for Multinomial Manifolds 274

Appendix B. Supplemental Material for Part IV . 276
B.1. Derivation of Forward Recursion . 276
B.2. Raphael’s Tempo Inference Model . 277

References . 281

x

LIST OF FIGURES

Figure 3.1. Implicit anticipatory behavior architecture 46
Figure 3.2. Payoff anticipatory behavior architecture 47
Figure 3.3. Sensorial anticipatory behavior architecture 48
Figure 3.4. State anticipatory behavior architecture . 49

Figure 4.1. Signal Processing front-end . 75
Figure 4.2. Incremental class formation schematic diagrams. 85
Figure 4.3. Incremental segmentation results for Beethoven’s Piano Sonata Nr.1 . 86

Figure 5.1. The Factor oracle for string abbbaab. 94
Figure 5.2. The Suffix structure and Suffix Link forest of disjoint trees. 95
Figure 5.3. Audio Oracle sample for Beethoven’s Piano Sonata Nr.1-Mv.1 100
Figure 5.4. Audio Oracle sample for Beethoven’s Piano Sonata Nr.1-Mv.3 101
Figure 5.5. Data Audio Oracle Sample on Bird Utterances 103
Figure 5.6. Audio Oracle Parent/Children structure . 114
Figure 5.7. Model-Guidage sample results . 119
Figure 5.8. GUI for Audio Query over an Audio Database 121
Figure 5.9. Data Guidage sample result on music database 122
Figure 5.10. Data Guidage sample result on speech database 124
Figure 5.11. Data Guidage GUI for mico audio query (1) 126
Figure 5.12. Data Guidage GUI for mico audio query (2) 127

Figure 6.1. Toy Example for comparing musical representation approaches 136
Figure 6.2. Active Learning’s Modes of Interaction diagrams 148
Figure 6.3. Parallel Factor Oracle representational schemes over the Toy Example 151
Figure 6.4. Score Excerpt of J.S. Bach’s Erbarme Dich 163
Figure 6.5. Knowledge-Based Interaction: Pitch contour pattern 164
Figure 6.6. Learned policy visualization for Experiment 1 165
Figure 6.7. Generation of 100 events after Experiment No.1 167
Figure 6.8. Knowledge-Based Interaction: Rhythmic pattern 167
Figure 6.9. Learned policy visualization for Experiment 2 168
Figure 6.10. Generation of 100 events after Experiment No.2 169
Figure 6.11. Style imitation sample result . 172
Figure 6.12. Improvisation Space vs. Original Space 173

Figure 7.1. Parametric Markov Topology . 186
Figure 7.2. General System Diagram . 189
Figure 7.3. Sample Von Mises Distribution on a sine-circle map. 196
Figure 7.4. Phase Correction Function for Tempo Modeling 197
Figure 7.5. Sample state-space topology for basic events 202
Figure 7.6. State-space topology for the TRILL class 203

xi

Figure 7.7. State-space topology for the MULTI class 204
Figure 7.8. Subjective Results for Tempo Prediction Evaluation 210
Figure 7.9. Sample score 1 for tempo experiment . 211
Figure 7.10. Tempo Decoding Evaluation using synthesized score and controlled
tempo . 212
Figure 7.11. Tempo Decoding Evaluation using synthesized score and discretely
controlled tempo . 213
Figure 7.12. Tempo Decoding Evaluation using synthesized score and continu-
ously controlled tempo . 215

Figure 8.1. Antescofo’s general system diagram . 240
Figure 8.2. Antescofo’s Help snapshot in Max/MSP 241
Figure 8.3. Modular Observation in Antescofo . 243
Figure 8.4. Antescofo’s single event score sample and state transition diagram . . 247
Figure 8.5. Antescofo’s TRILL class score sample and state transition diagram . 248
Figure 8.6. Antescofo’s MULTI class score sample and state transition diagram . 249

xii

LIST OF TABLES

Table 2.1. Summary of Margulis (2005) Melodic Expectation Model 23

Table 6.1. Musical attribute parsing toy example . 135

Table 7.1. Dataset Description used for Tempo Prediction Evaluation. 208
Table 7.2. Tempo Prediction Evaluation Results: Error statistics 209
Table 7.3. Tempo Decoding Evaluation . 216
Table 7.4. Evaluation Database Description . 218
Table 7.5. Real-time Alignment Evaluation Results . 219

Table A.1. Summary of Multinomial Manifold Properties 270

xiii

ACKNOWLEDGEMENTS

This thesis is the result of almost a decade of struggle between three continents,

starting from Tehran, Iran (my hometown), to Virginia (USA), and then back and forth

between Paris (France) and San Diego (USA). The main drive during this whole period

has been my extreme passion for contemporary music and the science of music. Obliged

to commence as an engineer, I have undergone a rather unusual pathway to reach where

I stand today, along which the help of many individuals should be acknowledged.

My greatest gratitude goes to my family: My parents Gholamhossein Cont and

Mansoureh Daneshkazemi, to whom I dedicate this thesis, exemplify love and sacrifice

for me. In a decisive period in my life, where I was desperately seeking ways to com-

bine my two passions for music and engineering sciences, they supported me in every

possible way to initiate my migration and continued to do so up to this day. My un-

cle Masoud Daneshkazemi without whose early paternal support once arrived in US, I

could have never arrived where I currently stand. My brother, Rama Cont, who played a

crucial role in my professional and personal life in Paris and without whose initial help

I would have never found my way there. Finally my whole family in Iran, including my

twin sister Mandana, who accompanied me from far during this whole period.

Before the start of this PhD program, I was desperately seeking ways to connect

my research to the world of contemporary music. This was initiated by my migration

from Iran to US, to continue my studies at VirginiaTech and soon turned out to de-

ceptions as research in music, even today in many of our outstanding academia, is not

considered seriously! In spite of this, many individuals helped me to realize this impor-

tant passage in my life. Legendary figures such as Miller Puckette and David Wessel

never ceased to reply to my requests while I was only a desperate undergraduate stu-

dent. I shall never forget their exemplary modesty and willingness for development of

younger generations, which was crucial in my early decisions and surely enough for

many others like me. Dr. David A. de Wolf of VirginiaTech’s ECE department helped

and encouraged me to learn and study music signal processing early on through in-

xiv

dependent research programs. After obtaining my bachelors, almost coincidentally I

ended up in the ATIAM masters at IRCAM, for which I am grateful to Gilbert Nouno

and Gérard Assayag of IRCAM. The intensity and richness of the program, as well as

its integration within one of the most important research and production centers in the

world for computer music put me in a position which was simply a distant dream since

my childhood.

This thesis has been realized as a collaboration between IRCAM and UCSD, and

therefore people who should be greeted for it are twice as usual. During my almost two

years residency at UCSD’s music department I was introduced to the professional world

of contemporary music practices and ideas, for which I am grateful to the whole body

of music department’s faculties and students. To my knowledge, UCSD is among few

places in the world to maintain a utopian image of artistic creation and ideas in its music

department and I was lucky to be part of it. Two individuals directly and indirectly

influenced my thoughts in San Diego: Miller Puckette, deeply influenced my image of

professionalism and the field of computer music. His modesty, despite his sculptural

figure in the field, his straightforwardness and honesty of expressions, sometimes harsh

in spite of himself, helped me clarify my position in the field. And Shlomo Dubnov, with

his extreme courage for abstract and difficult problems, has been thoroughly inspiring

in the course of this work.

Since I was 15, IRCAM has been a utopian dream place for me and the unique

place in the world as a culmination of artistic and scientific collaboration. I am very

grateful to the Real Time Musical Interactions team for hosting me through several

projects during this whole period. An extreme shift in my career occurred when Frank

Madlener, the general director of IRCAM, and Alain Jacquinot, director of productions,

offered me to collaborate on artistic projects in early 2007. Through these projects I

experienced the gap between the world of research, artistic creation, and production,

and learned to fill it in through the collaborative environment that IRCAM is famous

to provide. I was lucky enough to collaborate with Marco Stroppa, resulting in one of

the most important works I have realized up to this date that figures chapters 7 and 8 of

xv

this manuscript. IRCAM brings in a huge body of talented professionals in various field

whose presence have in one way or another contributed to this work: Gérard Assayag

who generously shared his work for this project, Gilbert Nouno, Olivier Pasquet, Rémy

Muller, Nicolas Rasamimanana and more.

Besides formal collaborations, several individuals have provided me the mental

force and courage to undertake this rather abstract project: Composer Philippe Manoury,

through his never ending pleas for advances in computer music research and his extreme

ability for integration of such advances in a compositional setting. Composer Marco

Stroppa, who never gives up his utopian image of composer/thinker and engagement

in the field of computer music, motivated me intellectually all along my work. And at

large, to all composers of music today who maintain our image of “wayfarers” and with

whom I got the opportunity to work with: Pierre Boulez, Jonathan Harvey, and more.

Researcher and artist David Wessel has played a paternal role in the course of this PhD

project to whom I am most grateful. Wessel’s active role and his openness to issues

makes him one of my idols in the field of computer music. Finally, to the whole body of

researchers and artists at IRCAM and most importantly to the hidden actors of this scene

that maintain the synergy alive: Hugues Vinet, Frank Madlener and Alain Jacquinot.

Last but not least, my greatest gratitude with love, goes to Marie Vandenbussche

who accompanied me in every step of this project despite intervals of geographical sepa-

rations. She has traced every word and bit of work that is represented in this manuscript

and I am most in debt to her priceless patience and caring love.

Arshia Cont

Paris, October 2008.

xvi

VITA

2003 B.S. Electrical Engineering, Virginia Tech.

2003 B.S. Mathematics, Virginia Tech. (dual major)

2004 M.S. Acoustics, Signal Processing and Computer Science
Applied to Music (ATIAM).
University of Paris 6/Ircam, Paris, France.

2008 Ph.D., Music
University of California, San Diego, California.

PUBLICATIONS

A coupled audio/tempo model for real-time alignment of polyphonic audio to music
score. Arshia Cont. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2008 (submitted).

Anticipatory Model of Musical Style Imitation using Collaborative and Competitive Re-
inforcement Learning. Arshia Cont, Shlomo Dubnov and Gerard Assayag. In Anticipa-
tory Behavior in Adaptive Learning Systems, Butz et al. (Ed.), pages 285–306, Springer
Verlag, LNAI 4520, June, 2007.

ANTESCOFO: Anticipatory Synchronization and Control of Interactive Parameters in
Computer Music. Arshia Cont. In Proceedings of International Computer Music Con-
ference (ICMC), Belfast, Ireland, August 2008.

Audio Oracle: A New Algorithm for Fast Learning of Audio Structures. Shlomo Dubnov,
Gerard Assayag and Arshia Cont. In Proceedings of International Computer Music
Conference (ICMC), September 2007.

GUIDAGE: A Fast Audio Query Guided Assemblage. Arshia Cont, Shlomo Dubnov and
Gerard Assayag. In Proceedings of International Computer Music Conference (ICMC),
September 2007.

Realtime Multiple Pitch Observation using Sparse Non-negative Constraints. Arshia
Cont. In Proceedings of International Symposium on Music Information Retrieval (IS-
MIR), October 2006.

Realtime Audio to Score Alignment for Polyphonic Music Instruments Using Sparse
Non-negative constraints and Hierarchical HMMs. Arshia Cont. In IEEE International
Conference in Acoustics and Speech Signal Processing (ICASSP), May 2006.

xvii

ABSTRACT OF THE DISSERTATION

Modeling Musical Anticipation: From the time of music to the music of time

by

Arshia Cont

Doctor of Philosophy in Music

University of California, San Diego, 2008

Shlomo Dubnov, Chair

This thesis studies musical anticipation, both as a process and design principle for ap-

plications in music information retrieval and computer music. For this study, we reverse

the problem of modeling anticipation addressed mostly in music cognition literature for

the study of musical behavior, to anticipatory modeling, a cognitive design principle for

modeling artificial systems. We propose anticipatory models and applications concern-

ing three main preoccupations of expectation: “What to expect?”, “How to expect?”

and “When to expect?”. For the first question, we introduce a mathematical framework

for music information geometry combining information theory, differential geometry,

and statistical learning, with the aim of representing information content, and gaining

access to music structures. The second question is addressed as a machine learning plan-

ning problem in an environment, where interactive learning methods are employed on

parallel agents to learn anticipatory profiles of actions to be used for decision making.

To address the third question, we provide a novel anticipatory design for the problem

of synchronizing a live performer to a pre-written music score, leading to Antescofo,

xviii

a preliminary tool for writing of time and interaction in computer music. Common to

the variety of topics presented in this thesis is the anticipatory design concept with the

following premises: that an anticipatory design can reduce the structural and computa-

tional complexity of modeling, and helps address complex problems in computational

aesthetics and most importantly computer music.

xix

Chapter 1

Introduction

The moment we step into a concert hall or start playing music on our favorite

stereo (or multi-channel) system, our expectations about the piece of music come into

play. Today, the role of music expectation in all its forms is widely acknowledged for

forming affective behavior related to psychological and even physiological limbic re-

sponses in our brain and body. Many musical affects such as the sense of surprise,

laughter, frisson, tension and more, have their roots in how our expectations have been

treated with regard to a present musical situation. In other words, expectation implies

some sort of mental representation in which our daily musical experience is constantly

being examined and updated. These mental representations can come from vast and un-

related number of sources: cultural background, music genres, music schemas, veridical

sources and conscious extra-musical attributions. Hanslick (1854) was among the first

advocates of an intellectual view of aesthetic pleasure with regard to music where he

emphasized the importance of the fulfillment (or not) of listeners’ anticipation, with the

tradition being continued to this date culminating in works such as that of Huron (2006)

on the psychology of music expectation.

The role of musical expectations is not all about emotions and physiological

responses but also extends to social and political factors. Adorno (1941) is among the

first to warn about the danger of standardization of our expectations with regards to

1

2

popular music, a point further expanded in a politico-economic stand by Attali stating

that “[music] styles and organization are ahead of the rest of the society” and declaring

music as both a mirror and prophecy of our society (Attali, 1985, Ch. 1).

The role of expectation pertaining to music is not only limited to the act of listen-

ing but also plays a central role in the act of creation, to the point where Meyer (1956)

in his seminal book Emotion and Meaning in Music drew attention to the importance

of expectation, arguing that the principal emotional content of music arises though the

composer’s choreographing of expectation. Explicit cases of this are beautifully exam-

ined and analyzed in Huron’s late book sweet anticipation (Huron, 2006). On a more

musical stance, composer Gérard Grisey in his seminal paper “Tempus ex Machina: A

composer’s reflections on musical time”, puts forward a rather mystical aspect of musi-

cal time which he calls the skin of time:

“We left the areas where the composer’s action still remained effective
(the skeleton of time) to arrive gradually at the point where his actions
as becoming more circumspect, more cautious (the flesh of time). This
action touches mainly on the areas of investigations by psychoacousti-
cians and sociologists. How does the listener organize and structure the
complexity of a sound? How does his memory choose what we perceive?
What roles do his culture and musical education play in his choice? In
what time does this listener live and breathe? So many questions which I
will not try to answer here, since they seem to me to belong more to the
sociologist’s or psychologist’s area of research than the empirical reflec-
tions of a composer” (Grisey, 1987).

One of the main goals of this thesis is to provide computational answers to Grisey’s pleas

inspired by research in music cognition, with a strong aim for approaching a degree of

access to the skin of time for musical and artistic purposes; hence going from the the time

of music to a music of time. To this end, by “time of music” we designate parameters

and models useful to describe the temporal flow of music, and by “music of time” we

imply a more active and creative process by which the temporal structure is harnessed

for musical effect.

Despite its significance, musical expectation has not been given a role worthy of

its cognitive importance in existing computational approaches to computer music and

3

music information retrieval, which mostly favor prediction-driven architectures. This

thesis at its inception brought in the idea to study expectation processes in action and

provide computational frameworks within which it could find life in sound and music

computing systems, whether for analysis, information processing or generation; hence

the idea of modeling musical anticipation where the term anticipation seems to be even

more vague than the term expectation.

1.1 Approach

At the onset of this thesis, we are ought to clarify the notion of anticipation and

present it within a coherent computational context. Literally, anticipation has close ties

with both prediction and expectation. In many computational models of music, model-

ing is mainly on predictions based on gained knowledge from the past and present within

an environment. Prediction, or the act of forecasting, is only a subproduct of conscious

expectation and not the whole story. Throughout this thesis, anticipation is defined as a

marriage of expectation and actions of a cognitive system in its environment. To clarify

matters such as this, we start the thesis by a voyage from the world of music cognition

centered around the psychology of expectation, to the world of computational design.

We clearly define anticipation and differentiate its meaning from that of prediction and

expectation in section 2.2. In our survey in chapter 2, we study models for musical

anticipation within music cognition literature where the issue is treated as natural sci-

ence, and shift our view in the following chapter to anticipatory modeling, more akin

to what Simon (1969) calls artificial sciences in that modeling is a design process that

addresses cognitive behavior. Through this process, we contemplate on the notion of

modeling and pertaining to musical anticipation. Studying evidence and models in the

cognition literature on musical expectations, we question the legitimacy of an aim to

model musical anticipation. After this investigation we change direction by focusing on

models that underlie anticipatory behavior rather than claiming a universal model for

musical anticipation. Within this perspective, anticipation is defined and presented as a

4

design principle for complex musical systems. This underlies our voyage from model-

ing anticipation to anticipatory modeling. We define the latter as a cognitively-inspired

design process to achieve complex anticipatory behavior reported in the music cognition

literature.

Upon this shift of views, the goal of this thesis is to provide anticipatory musical

models that address several important and evident aspects of musical anticipation. We

study anticipatory modeling from three different perspectives, addressing three main

goals of anticipatory behavior, in three different parts of this thesis. In each part we

raise a different problem and propose a different design. Each part addresses a different

literature with its own history and application range. The unifying factor in all disjoint

parts of this thesis would then be anticipatory modeling, supporting our central claim

that through explicit consideration of anticipation in design models complex behavior

emerges with low cost and relatively simple designs.

This thesis inscribes itself in the domains of Computer Music research. Com-

puter music, to be simplistic, is an interdisciplinary field and the culmination of research

and artistic creation. Its aim is to bring in our knowledge of science of music, and other

achievements in other fields, to the world of artistic creation and particularly to music

with the aid of computers. It would be overly limiting to associate computer music

solely with music technology. Like any other field of science, music brings in its own

complexity and horizons into question that comes into harmony with many problems

to be solved within other fields. Therefore, computer music is not a mere application

of other engineering findings within the field of music. On the contrary, we strongly

believe that the complex nature of music could be a key to solve many problems in other

fields such as language and cognition. Our aim, therefore, is to address and provide evi-

dence that our approach can enhance our understanding of several questions in the field

of computer music research. An ultimate goal of this thesis is to refine our current views

on the complexity of interactive environments for computer music and destined for artis-

tic creation. As a consequence, one of the main concerns of this thesis is real-time and

online systems that can both address cognitive complexity and also find use within the

5

interactive arts communities. Therefore, all the models and systems presented in this

thesis are oriented towards real time use, and run incrementally in time.

1.2 Organization

This thesis is organized into four main parts. Part I constitutes our modeling in-

vestigations and voyage from modeling anticipation to anticipatory modeling. We start

this part by reviewing evidence and different views of anticipation pertaining to the mu-

sic cognition and computer music literatures. We confront the two problems of modeling

anticipation and anticipatory modeling separately in chapter 2 and 3. Within this part,

we reverse the problem of modeling musical anticipation to that of anticipatory design

as a cognitively-inspired design process that exhibits anticipatory behavior reported in

the literature. We define anticipatory modeling as a design process that explicitly con-

siders anticipatory behavior. Both notions of anticipation and anticipatory modeling are

defined throughout the two chapters. Chapter 3 clarifies the main methodologies, claims

and design processes that will be explored in the following chapters. Within this frame-

work we emphasize on three main premises of anticipatory modeling as: Information

Access, Interactive and Online Learning, and Multimodal Interactions. In what follows,

we demonstrate anticipatory musical systems that address three main preoccupations of

expectation within three main questions: “What to expect?”, “How to expect?”, and

“When to expect?”.

Part II aims at addressing the “what?” question of expectation which entails

representing and qualifying relevant musical information. We aim at quantification and

qualification of the amount of information in a sequence of music signals. With this

aim, we present a novel framework based on information geometry of statistical mani-

folds combining various literatures such as differential geometry, statistical learning and

signal processing. We expose the preliminary mathematical framework in chapter 4 and

introduce its applications to music or music information geometry in chapter 5. In chap-

ter 4, we revisit concepts commonly used in music information retrieval literature such

6

as divergences, similarity and segmentation from an information geometric standpoint,

and provide a framework for quantifying music information on the fly. This theoretical

framework provides access to musical information and paves the way for two concrete

algorithms introduced in chapter 5 entitled methods of information access. Therein, we

introduce two general algorithms providing access to two different aspects of musical

information and examine them within different common applications in computer music

and music information retrieval systems: automatic audio structure discovery, concate-

native synthesis, and query-by-example over large databases of audio and more.

Part III elaborates our second concern on “how to expect”, formulated as a ma-

chine learning planning problem. Using methods of information access introduced in

the preceding part we introduce an adaptive and interactive learning method that learns

goals and behaviors through interactions with a constantly changing environment. The

goal of this framework, presented in chapter 6, is to grasp environmental and behavioral

regularities and provide them as long-term strategies once used for generation or visu-

alization purposes. We show that the presented algorithm achieves behavioral learning

through knowledge-based interactions and distinguishes itself from existing systems by

its relative simplicity, computational efficiency, and achieving complex behavior when

little data is available.

In part IV, we address the question of “when to expect” in the context of the com-

mon problem of synchronization of a live performance to a symbolic score in computer

music and multimedia art literature. This problem, commonly known as score following

or audio to score alignment, has been widely studied in the computer music literature.

In chapter 7, we introduce a novel anticipatory design based on coupled concurrent and

parallel agents that reduces computational complexity and increases performance pre-

cision as shown throughout the chapter. We then use this proposal in chapter 8 and

show how the availability of structures and information in an anticipatory architecture

enables important first steps in writing of time and interaction in computer music. The

implementation of the system proposed in chapter 8, called Antescofo, has been used

in contemporary computer music productions at IRCAM and has seen performances

7

worldwide.

1.3 Contributions

Contributions of this thesis to the literature can be summarized as follows:

• A formal of definition of anticipation destined for computational models of

sound and music.

• A formal definition of anticipatory design inspired by music cognition and per-

taining to music processing systems.

• A computational framework for quantification and qualification of music infor-

mation and content based on Music Information Geometry (chapter 4).

• An online algorithm for incremental clustering and structure discovery of music

signals (section 5.1).

• A fast and online algorithm for unit selection over large databases of music based

on users’ audio query with applications to content retrieval and concatenative

synthesis (section 5.2).

• An online adaptive and interactive learning framework achieving anticipatory

planning strategies in a constantly changing environment, based on Active Learn-

ing and without human interventions (chapter 6).

• A computational anticipatory framework for automatic style imitation and im-

provisation on symbolic music signals (chapter 6) achieving formal long-term

behavior.

• An anticipatory design for real-time audio to score alignment featuring coupled

audio/tempo agents and capable of decoding real-time position as well as tempo

of the performer for polyphonic music signals (chapter 7).

8

• A preliminary framework and language for writing of time and interaction des-

tined for interactive mixed instrumental and live computer music repertoires

(chapter 8).

Part I

From

Modeling Anticipation

to

Anticipatory Modeling

9

Chapter 2

Modeling Musical Anticipation

At the onset of this chapter, three notions of prediction, expectation and an-

ticipation must be clearly defined in a computational context. Prediction is an act of

forecasting. But the other two, even taking linguistic differences into account, have

been used interexchangeably in the music cognition literature with much more empha-

sis and clarity on expectation. Huron (2006) defines expectation as “a form of mental or

corporeal belief that some event or class of events is likely to happen in the future” or

as a rather general cognitive process, and anticipation as a sub-product of expectation

when the sense of appraisal for the expected future event is high (Huron, 2006, Ch. 15).

Huron’s anticipation is equivalent to what Bharucha calls yearning (Bharucha, 1996) or

music theorist Narmour (1990) has termed implicative. Other literature in music cog-

nition does not help either. For example, Schmuckler (1997) defines expectation as an

“anticipation of upcoming events based on information from past and present”.

This ambiguity is not brought up there to question the scholarship of any of the

cited works but in an attempt to position ourselves at the onset with the difference and

difficulties in defining anticipation in a context useful for computational modeling. But

before attempting any definition, we must look at the rich literature of the psychology

of musical expectations, underlining key facts and pieces of evidence used throughout

this thesis and paving the way for a formal definition of anticipation.

10

11

2.1 Psychology of musical expectation

In this section we briefly look at the psychology of musical expectation, pre-

sented as a “natural science” approach to the perception and cognition of music as pur-

sued by many researchers to model musical expectation in an effort to explain musical

behavior. We begin this review by presenting several areas of experimental research in

cognitive musicology with regard to expectation, with an aim of emphasizing the role of

expectation in many aspects of music research. In sections 2.1.2 and onwards, we look

more closely at some important concepts taken out of the literature which strongly in-

spire the modeling premises and definitions presented in section 2.2 and used throughout

our proposals following part II of this thesis.

2.1.1 Experimental Research Scopes

Research on the psychology of musical expectation is built on both experimental

and theoretical frameworks where the latter is most often the fruit of the former. In this

thesis we are concerned with theoretical implications of musical expectations in order

to motivate design principles that will be introduced in the following chapter. Due to

the centrality of musical expectation in the perception and cognition of music, the range

of experiments is vast and touches many key problems in music cognition. Here, we

briefly introduce some of the experimental setups in music perception literature dealing

with the issue to motivate the upcoming theoretical aspects. For more details the reader

is referred to (Huron, 2006, Chapter 3).

An important area of research dealing with expectancy is studies on systematic

variation in listeners’ judgements when exposed to a musical continuum. The main

finding of these studies is that expectations are predictable from various music theo-

retic and perceptual/cognitive principles of pattern classification (Schmuckler, 1990).

Another similar research paradigm is processing and encoding of music information

among listeners. For example Bharucha and Stoeckig (1986) showed that a target chord

is responded to more quickly and accurately following a harmonically related prime

12

chord, compared to on preceded by a harmonically unrelated chord.

The effect of musical expectation in production and performance of music infor-

mation has also been a subject of experimental research. For example Carlsen (1981)

had listeners sing in response to a continuation of a two-note interval. The time interval

between the two notes as well as the response interval were analyzed for their frequency

of occurrence and the context interval. Results demonstrate that response intervals vary

with context.In another experiment, Schmuckler (1989) undertook experiments on pi-

anists and had them complete different melodic and harmonic-context contours. He

found that performers’ production mirrored expectancy judgements. One criticism of

works done in this field is that the majority of these works study single-event anticipa-

tion in a sequence rather than multi-events. Despite this limitation, these experiments

underly the importance of musical expectation in many musical activities ranging from

performance to listeners’ judgments.

Researchers working on musical memory have also contributed to the debates

and experiments on music expectation. The majority of research in this field has been

dedicated to the importance of tonality in musical memory specially in long-term mem-

ory structures. One candidate model is that expectancy and memory are positively cor-

related; that is, high-expectancy information is better remembered (Bartlett, 1932). An-

other model is the Restorff effect stating that isolating items from background enhances

learning and thus leads to faster access and recall in the memory (Schmuckler, 1997).

The scopes of musical expectation in experimental research is vast and what

came above is just a glimpse of an ongoing effort in the research community. Besides

revealing the importance of expectation in many aspects of music perception, such ef-

forts have helped the emergence of various theories of auditory perception whose key

facets are studied in the coming sections.

13

2.1.2 Auditory Learning

In the music cognition literature, there is still ongoing debate on innate or learned

nature of many auditory phenomena. Huron shows that nature does not have this pre-

occupation. From a biological perspective, there is a clear criterion for which it is best

for a behavior to be instinctive and when it is best for the behavior to be learned. The

determining factor is the stability of the environment. When there is little environmen-

tal change, conditions favor instinctive or innate behavior which are usually fast and

effective. On the contrary, when the environment changes quickly it is best to learn.

Therefore, the difference between instinctive and learned behavior is not that the first

is genetic and the second environmental. Contrary to intuition, learning involves more

genetic machinary than do instinctive behaviors and instincts reflect a longer and more

profound interaction with the environment than does learning. Therefore, the process

of learning is just as much a product of evolution by natural selection as any pre-wired

instinct. This evolved capacity to learn is referred to as the Baldwin Effect (See Huron,

2006, Ch. 4).

But how does auditory learning occur? Over the past half century, experimental

research has shown that we are sensitive to the frequency of various stimuli in our en-

vironments. An example of such research has led to the Hick-Hyman law, which shows

that the reaction-time responses to known and unknown stimuli follow an orderly (loga-

rithmic) law. Said in other words: perception is more efficient for expected stimuli than

for unexpected stimuli.

One of the most important discoveries to this end in auditory learning has been

that listeners are sensitive to the probabilities (or contingent frequencies) of different

sound events and patterns, and that these probabilities are used to form expectations

about the future. In other words, auditory learning is shaped by the frequency of occur-

rence of individual stimuli and groups of stimuli. An important landmark evidence for

this is the work of Saffran et al. (1999) at the University of Rochester. In one of their

experiments, they constructed small musical vocabularies consisting of 3-note figures.

14

Using these figures, they constructed a long (seven minute) sequence that consisted of

a random selection of six figures. Newborn infant were exposed to a continuous suc-

cession of tones for 21 minutes. After this exposure, they were newly exposed to 4

different 3-note sequences and their familiarity ranks were checked (using the head-

turning effects). As a result, infants correctly identified three-note sequences they had

been exposed to. The conclusion was that listeners were simply cuing on simple sta-

tistical properties of various tone sequences. Saffran’s experiment has been recently

replicated by Loui et al. (2006) on adult subjects and using an uncommon tuning system

(to avoid veridical and schematic expectations on familiar patterns among adult listen-

ers), leading to similar observations. Similar observations have also been reported for

reproduction of rhythmic patterns among westerners matching the actual distribution of

such rhythms in western music (Sadakata, 2006).

An important property of auditory learning is that learned mechanisms can be

fallible but still useful. In other words, what happens in the brain is a statistical approx-

imation of the outside world and not the thing itself (See Huron, 2006, Ch. 4). This is in

parts due to how sounds and music patterns are mentally represented in our brain which

is our next topic.

2.1.3 Concurrent and Competitive Representations

Following observations in the previous section, one might ask about the infor-

mation contents of mental representations on which contingencies or statistics are made.

The brain does not store sounds. Instead, it interprets, distills and represent sounds1. It

is suggested that brain uses a combination of several underlying presentations for musi-

cal attributes. A good mental representation would be one that captures or approximates

some useful organizational property of an animal’s actual environment (Huron, 2006,

Ch. 7).
1This point of view is also supported by the Enactive view of cognition whose work is much concen-

trated on visual perception by their rejection of the snapshot photographer view of visual perception in
favor of dynamic flows of continuously varying retinal information (Noë, 2004).

15

But how does the brain know which representation to use? Huron suggests that

expectation plays a major role. There is good evidence for a system of rewards and pun-

ishments that evaluates the accuracy of our unconscious predictions about the world.

Our mental representations are being perpetually tested by their ability to usefully pre-

dict ensuing events, suggesting that competing and concurrent representations may be

the norm in mental functioning (Huron, 2006). This view is strongly supported by the

neural Darwinism theory of Edelman (1987). According to this theory, representations

compete with each other according to Darwinian principles applied to neural selection.

Such neural competition is possible only if more than one representation exists in the

brain. In treating different representations and their expectation, each listener will have a

distinctive listening history in which some representations have proved more successful

than others.

2.1.4 Mental Representations of Expectation

According to Huron, memory does not serve for recall but for preparation. He

addresses the structure rather than content of mental representations and introduces a

taxonomy for auditory memory that constitutes at least four sources of musical expec-

tations as follows (Huron, 2006, Ch. 12):

Veridical Expectation: Episodic Memory is an explicit memory and a sort of autobi-

ographical memory that holds specific historical events from our past. Episodic

memory is easily distorted and in fact, the distortion occurs through repeated

retelling or recollection. Most importantly, our memories for familiar musical

works are episodic memories that have lost most of their autobiographical his-

tory while retaining their accuracy. This sense of familiarity or expectation of

familiar works is refereed to, by Huron (2006) and Bharucha (1993), as Veridical

expectation.

Schematic Expectation: This type of expectation is associated with semantic memory;

another type of explicit memory which holds only declarative knowledge and is

16

distinguished from episodic memory by the fact that it does not associate the

knowledge to any historical past but as stand-alone knowledge. This kind of

memory is most active in first-exposure listening where our past observations

and learned schemas are generalized. These sort of auditory generalizations are

reminiscent of the learned categories characteristic of semantic memory.

Dynamic Adaptive Expectation: Expectation associated with short-term memory is

Dynamic Adaptive Expectation. It occurs when events do not conform with ex-

pectations that have been formed in the course of listening to the work itself.

These expectations are updated in real time especially during exposure to a novel

auditory experience such as hearing a musical work for the first time. Patterns

of repetition, form, and motivic structure are among musical phenomena that are

linked to dynamic expectancy.

Conscious Expectation: All the three types of expectations discussed above are uncon-

scious in origin. Another important class of expectations arise from conscious

reflection and prediction. Such explicit knowledge might come from external

sources of information (such as program notes) or as part of a listener’s musical

expertise, or even arise dynamically while listening to a novel musical work. An

argument for the last type, and most important for this work, is the perception of

musical form during listening.

All these expectation schemes operate concurrently and in parallel. Schematic

expectations are omnipresent in all of our listening experiences. When listening to a

familiar work, the dynamic-adaptive system remains at work – even though the veridical

expectation anticipates exactly what to expect. Similarly, when listening for the first

time to an unfamiliar work, the veridical system is constantly searching for a match

with familiar works. The veridical system is essential for catching the rare moments

of musical quotation or allusion. In short, an anticipatory effect such as surprise is a

result of various types of interactions among these lower-level components of music

expectation cognition. For a thorough discussion see (Huron, 2006, Ch. 12).

17

2.2 Anticipation Defined

Expectations are more than mere representations of our beliefs and their exis-

tence are coupled with their consequent actions and effects. We saw earlier that ex-

pectations entail mental representations, whether partial, accurate or fallible. They are

learned through interactions with a stable or unstable surrounding environment, and en-

tertain our very acts of perception (through evoking attention, appraisal or emotions as

evoked in (Huron, 2006)). In this schema, it would be simplistic to distinguish any ex-

pectancy from its consecutive effects. This is in fact at the core of every experimental

study of expectancies (section 2.1.1). In other words, expectations lead to predictions

which by themselves evoke actions, either physiological, mental, or physical, that in re-

turn of their outcome affect our beliefs and expectations. We study this activism aspect

of cognition pertaining to expectation under the term anticipation. With this introduc-

tion, we provide the following definition for anticipation:

Definition 2.1. Anticipation is an action, that a system takes as a result of prediction,

based on current belief or expectations, including actions on its own internal state or

belief.

We now refine this definition from different perspectives: that of expectation,

enaction and computational design.

2.2.1 Anticipation in view of Expectation

Expectation viewed as a cognitive process is intertwined with both biology and

culture (Huron, 2006, Ch. 1). It is a biological adaptation with specialized physiological

structures and the capacity to form accurate expectation is important for survival among

all species. Culture provides preeminent environments where many expectations are ac-

quired and assessed. When it comes to music, the context for predicting future context is

dominated by the latter but does not exclude the former. From a biological perspective,

the purpose of expectation is to prepare an organism for the future. It is through this

18

preparatory physiological process that we experience arousal or attentional responses

(or the reverse, reduced or inhibit responsiveness). From a phenomenological perspec-

tive, the most interesting property of expectation is that it evokes feelings and emotions.

Huron proposes that emotions are evoked by expectation involving five functionally

distinct physiological systems that underly his ITPRA theory: imagination, tension, pre-

diction, reaction, and appraisal (Huron, 2006, Ch. 1). Each of these systems can evoke

responses independently involving both physiological and psychological changes.

The picture to retain here is that mental representations evoking expectations are

adaptive and in constant interaction with the living environment. Expectations imply

some sort of mental representation or beliefs adapted to the surrounding environment.

These mental representations can be partial and fallible. In all cases, these mental be-

liefs are in constant interaction with the living environment evoking physiological or

psychological actions. Without these interactions, which reflect stabilities and insta-

bilities of our environment, neither can expectations exist nor can we survive as living

beings. Therefore anticipation as defined above, not only constitutes the outcome of

expectation but also expectations themselves, how they are formed, their contents and

whether they exist.

2.2.2 Anticipation in view of Enaction

If expectations are determined by the actions coupled with the environment,

there is essentially no need to separate the representation from the action. In other

words, perception is not a process in the brain but a kind of skillful activity and a mode

of exploration of the environment drawing on implicit understanding of environmental

regularities as depicted in section 2.1.2. This view is shared by the Enactive school

of cognition (Varela et al., 1992; Noë, 2004). Such a view of cognition implies that

perception is an activity of sensorimotor coupling with the environment, advocates the

marriage of action and perception in cognitive studies, and rejects the idea widespread

in both philosophy and science that perception is a process in the brain whereby the per-

19

ceptual system constructs an internal representation of the world. Within this marriage

of action and perception, the (internal) representation is coupled with the sensorimotor

actions which for pure listening takes the form of conceptual understanding (as devel-

oped in (Noë, 2004, Ch. 6)). Therefore, the perceptual presence in absence of accurate

mental representations is assessed by an access controlled by patterns of expectational

dependence with which we are familiar.

In other words, although our mental representations are rooted in empirical ob-

servations, we produce them by means of our active cognitive apparatus instead of pas-

sively processing the structure of the world. Perception is a kind of skillful activity on

the part of an animal as a whole, and constitute active explorations of its environment.

Thus representation consists of future potentialities of interaction with an environment.

The connection of the enactive school of cognition to our work will be further developed

in chapter 3.

2.2.3 Anticipation in view of Computation

The ideas presented above have been exploited in a computational perspective.

In fact, one of the main advantages of definition 2.1 is that it prepares the ground for a

computational framework where the study of the interaction between a system’s belief

of itself or its environment with itself becomes possible. The view is shared by an

emerging field in artificial intelligence and robotics literature on anticipatory systems

(Rosen, 1985, for original definition). Consideration of anticipation in a computational

framework within this definition will be presented and detailed in chapter 3.

Studies of anticipation along the lines of definition 2.1 imply explicit consider-

ation and study of expectation. We therefore continue our review of key elements of the

expectancy literature helpful for modeling anticipation.

20

2.3 Models of Musical Expectation

By modeling musical expectation, researchers aim mostly at a better understand-

ing of the neural correlates in the brain and/or to depict and assess a theory regarding

one among many aspects of musical expectation. In section 2.1.1 we briefly covered

some experiments undertaken on several aspects of music expectation. In this section,

we survey several key theories and models with the aim of a better understanding of the

governing process of musical expectation.

We survey these models in three distinct groups. The first group consists of

researchers mostly emerged from the field of cognitive musicology and music theory

whose main goal in modeling is to assess a musical theory with less attention to a gen-

erative theory of music expectation. This first group has mostly focused on analysis of

music scores with a top-down approach, assessing music theoretical rules that govern

some aspects of musical expectation. The second group are researchers who chose a

bottom-up approach towards the problem and use artificial learning algorithms, to au-

tomatically learn the abstract behavior in listeners’ expectations without much a priori

knowledge of governing rules. The third group has emerged from the field of informa-

tion theory whose focus is on a bottom-up approach with a generative design in mind.

Neither of the models presented here have yet found applications among composers or

computer musicians. A fourth strongly related research direction is the ongoing work

on automatic improvisation and style imitation with strong artistic involvements. We

leave a thorough review of this last group to part III of this thesis, since the notion of

expectation or anticipation is not explicit in that literature despite their strong relevance

to the problem.

The survey below is by no means comprehensive. As an example, there is much

interesting work done on cross cultural aspects of musical expectation (e.g. see Eerola,

2003) which we do not discuss here. Moreover, the number of theories and models not

included in this chapter are many. The main goal of this review is to shed light on the

concept of modeling musical expectation itself and prepare the main thesis of this work

21

on anticipatory modeling.

2.3.1 Music Theoretic Models

Narmour’s Implication-Realization Model

Narmour (1992, 1990) introduced a theory of melody that distinguishes two

kinds of melodic situations: those that are implicative, evoking a strong sense of pre-

dictability, and those that are non-implicative. The theory attempts to describe what

listeners expect when the musical context is strongly implicative or in other works, how

implicative intervals set up expectations for certain realizations to follow. Narmour

(1990) proposes that expectations result from both bottom-up and top-down processes.

Bottom-up processes are independent of a priori knowledge and include principles re-

lating to the size and direction of a melodic process. Top-down processes incorporate

experience as well as the particular history of the piece as it is heard. Narmour’s theory

inspired a great deal of perceptual experimentation on the subject. It has been shown

that the Implication-Realization model of Narmour conform well to listener behavior

(Cuddy and Lunny, 1995) and later studies by Schellenberg (1997) and von Hippel

(2000) showed that the theory could be simplified to just two principles: pitch proxim-

ity and post-skip reversal. On the music theoretic side, Narmour’s model was further

extended by Lerdahl (2001)’s Tonal Pitch Space theory which added stability and mo-

bility factors.

Margulis’ Melodic Expectation Model

In Lerdahl’s Tonal Pitch Space theory, interestingly, some computational frame-

works are provided for quantification of musical tension and other perceptual phenom-

ena, whose parameters are deduced through other quantified and structural material de-

fined in (Lerdahl, 2001). Margulis further extended Narmour and Lerdahl’s theories

in a way that “enables the specification of meaningful connections to listener experi-

ence, rather than employ strings of symbols or draw metaphoric relations” (Margulis,

22

2005). The type of expectation chosen for modeling in Margulis’ work is referred to as

deeply schematic within Bharucha’s taxonomy of veridical and schematic expectation.

In the view of Huron’s taxonomy of expectation structures represented in section 2.1.4,

Margulis models the dynamic adaptive expectation of melodies based on various pitch

information sources. Since Margulis’ model is a recent result of the culmination of

two (and more) sources of literature regarding expectancy models in the music theo-

retic sense, we describe an outline of the model for better understanding of our position

regarding modeling expectation and anticipation.

Margulis’ model considers four main parameters: stability (s), proximity (p),

direction (d), mobility (m) and their hierarchical implementations. Before hierarchical

considerations, all the four parameters are quantitatively defined through numerical ta-

bles. For example, the value of s is taken from a table assigning anchoring strength in a

tonal context. Proximity (p) captures the intuition that listeners expect subsequent events

to be relatively proximate to preceding ones. Direction (d) is a direct outcome of Nar-

mour’s theory describing post-skip reversals for large interval melodic moves, assigning

continuation or reversal quantitatively. A mobility factorm further overcomes problems

with local repetitions where its value is changed from 1 to 2/3. For all parameters, these

quantifications are gathered through interpretation of results of existing experiments and

primarily by consulting “intuition to try to trace sensation of tension to the originating

expectancies” (Margulis, 2005). Within this framework, Margulis shows that a pitch x

is expected to follow a pitch y by an amount z quantified by z = s× p×m+ d before

hierarchical considerations. In order to consider long-term structural dependencies, she

makes use of Lerdahl and Jackendoff (1983) rules to obtain hierarchical segmentations

of the melodic structure with an additional rule. The idea here is to calculate the ex-

pectancy measure introduced above (z) for different hierarchies and consider them all

together through a weighting process. The weights ωi are also assigned through some

fixed rules (e.g. note-to-note ratings receive a weight of 15 and no level with time-span

longer than 6 seconds is allowed). Given this measure of expectancy, Margulis provides

connections with listeners experience summarized in table 2.1 where Em and Er are

23

respectively the amount by which the maximally expected pitch was expected, and the

amount by which the actual realization was expected, both described in (Lerdahl, 2001).

Table 2.1: Summary of Margulis (2005) Melodic Expectation Model

Tension Type Expectancy Source Evaluator
Surprise inverse to expectancy rating 1/

[P
ωi[(si×pi×mi)+di]P

ωi

]
Denial Proportional to implicative denial Em − Er

Expectancy Most-expected continuation Em of next event

2.3.2 Automatic Learning Models

Implicit Learning of Bharucha and Tillmann

While many expectation models rely on a certain theoretically eligible model

for music (e.g. tonality), these models are questionable in their universality and partial

ignorance of auditory learning principles. This comes partly from the fact that expec-

tation is based on past experience and exposure. In the case of tonal music, despite

its complexity, sensitivity to musical structure does not require explicit learning. In

other words, musically naive listeners are constantly exposed in everyday life to the

regularities underlying the music of their culture and thus, they acquire the knowledge

implicitly.

In 1987, Bharucha introduced a neural network system based on a musical hi-

erarchy that would learn tonality and react to unseen situations. The main advantage

in using a neural network architecture, besides simulating neuronal system, is that they

generalize their knowledge domain. His system showed promising results while being

tested on tonal music structures and demonstrated the hierarchical structure of tonal

music learning. However, his model was based on music theoretic constraints; neither

the connections nor their weights resulted from a learning process. In this respect, his

model represented the idealized end state of an implicit learning. Tillmann et al. (2000)

24

took this work a step ahead, by achieving a Self Organizing Map (SOM) architecture

that would gain an implicit knowledge of western pitch regularities through a passive

exposure to musical exemplars. In their experiments, they used a hierarchical SOM in

which the first layer is tuned to octave equivalent pitch classes where the second and

third layers would learn to specialize in the detection of chords and keys respectively.

After learning, they tested the system for similarity ratings, recognition memory, har-

monic expectation, perceiving key and modulations, Krumhansl’s probe-tone ratings

and melodic memory tests (see Tillmann et al., 2000). In each test, they compared their

results with the human data and reported similar results.

Bharucha’s and Tillmann et al.’s works gave groundbreaking evidence for the

implicit learning aspect of auditory learning but did not have aims for computational

models useful for production or control of expectation processes for compositional or

performance purposes.

Berger’s Tonal Expectation Model

Berger and Gang (2000) introduced a computational model for describing the

experience of listening as it unfolds in real-time. Their computational model is based on

recurrent neural networks (RNN) which are capable of capturing processes which are

difficult to formulate by rules and hence, like Bharucha and Tillmann et al. addresses the

problem of implicit learning. In addition to this, RNNs are suitable for modeling (short-

term) temporal processes. After the learning process, the model’s predictions (presented

as the listener’s expectations) are represented in terms of activation strengths of the input

vector element (which consists of vertical pitch classes taken out of a music score). The

predictive error of the system also serves as a degree of realized expectation which

designates the musical affect to be a surprise or not. In (Berger and Gang, 2000), they

detail the architecture and tuning of their system and demonstrate results on Haydn’s

Piano sonata in C major (third movement) along with an analysis of the specific piece,

suggesting that the model simulates real-life listening situations.

25

The interesting point in Berger and Gang’s work is in their use of the system’s

prediction errors to model listening behavior pertaining to musical expectation. Thus,

they effectively make use of the fallibility of models actively learning in an environment.

Moreover, their use of sequential neural networks provides a means to implicitly model

and visualize the influence of several parameters over another (in this specific case,

metric inference and functional tonal harmony).

2.3.3 Information Theoretic Models

Information theoretic approaches to music signals has been historically advo-

cated by Moles (1969) and also by Meyer (1956). Both works and their related follow-up

studies usually convey measures of complexity or uncertainty in music rather than pre-

dictive success of a listening system. Consideration of information theoretic paradigms

in the latter sense is relatively new. Amid this young literature, that of Shlomo Dubnov

is of particular importance for this work and is further expanded and supplemented in

part II of this thesis.

Dubnov’s Information Rate Model

In a series of publications, Dubnov has proposed methods that work directly on

audio signals without assuming any a priori musical knowledge, and applied information

theoretic methods to construct an anticipation measure of spectral observation pertaining

to the information structure of music. Dubnov’s literature is among the first, to the

knowledge of this author, that has explicitly differentiated an anticipation process from

that of prediction or expectation.

To capture the information structure of music signals, Dubnov introduced the

Information Rate (IR) as a transmission process over a noisy time-channel where IR is

defined as the relative reduction of uncertainty of the present when considering the past.

Denoting a time series {x1, . . . , xn} as xn1 , Dubnov shows that Information Rate at time

n is equal to the mutual information carried between the past xn−1
1 and history of the

26

signal up to present or xn1 . With this definition, IR can be interpreted as the amount of

information a signal carries into its future. He further showed that given that X is a

stationary Gaussian process, IR or ρ(x) can be approximated asymptotically in n using

spectral flatness measures of the time signal (Dubnov, Aug. 2004):

ρ(x) = −0.5× log(SFM(x)) or exp(−2ρ(x)) =

[
N∏
i=1

S(ωi)

] 1
N

1
N

N∑
i=1

S(ωi)

(2.1)

where S(ωi) is the power spectrum of xn1 . This measure can be readily estimated over

non-Gaussian linear processes expressed as an AR model (See Dubnov, Aug. 2004). He

further showed the significance of this measure over music signals and natural sounds in

(Dubnov, 2006). However the Gaussian stationary assumption in the signal’s generative

model makes this difficult to apply to general music signals and structures.

To further relax this stationarity assumption and approach real-world situations,

Dubnov (2008) introduced Model-IR by assuming a musically plausible hypothesis

where the signal is stationary in a finite time-frame under a model θk and described

by a joint conditional probability P (x1, . . . , xn|θk). This way, the previous framework

is augmented by considering models that generate signal chunks where the relation of

an observation sequence xn1 to another distribution model defined with parameters θ′ can

be approximated by

P (xn1) ≈ P (xn1 |θ′)
∫

exp(−nKL(θ′||θ))P (θ)dθ

where KL(., .) is the relative entropy or Kullback-Leibler divergence function2. Further

approximations to calculate the entropy and mutual information of the quasi-stationary

time-series lead to the following formulation of IR (See Dubnov, 2008):

ρ(xn1) ≈ 〈ρθ′(xn1)〉P (θ′) + 〈KL(θ′||θ∗)〉P (θ′) (2.2)

where 〈.〉p(θ) indicates averaging following a probability distribution p(θ). Equation 2.2

gives us two factors for estimation of IR on a quasi-stationary signal: the first factor is
2Kullback-Leibler and other information theoretic notions will be explained later in chapter 4. See

also (Cover and Thomas, 1991, Ch. 2).

27

due to the observation (block) being interpreted using a specific model called Data-IR,

and a second factor situates the present model in relation to other models in the model

space, called model-IR.

Dubnov (2008) further shows how to estimate this IR measure over multivari-

ate processes and directly from audio signals. One interesting remark in his practical

estimations of eq. 2.2 is his attempts to evade assumptions of any particular class of

probability distributions over models θk. To estimate the distinguishability of differ-

ent model distributions, he uses the method of types (See Cover and Thomas, 1991,

Ch. 11) using marco-frames or large blocks of signal observations in contrast to the use

of micro-frames for Data-IR calculation.

Dubnov has examined his IR measures on natural sounds and music (including

jazz and classical audio) in (Dubnov, 2006) and has applied these methods in application

to finding repetitive structures of sound and music in (Dubnov, 2008). A comparison of

the measures obtained by IR and listeners’s data on affective and structural aspects of

music is reported in (Dubnov et al., 2006).

Dubnov’s Information Rate models provide a promising framework for decod-

ing of information structures of music with respect to listener’s expectations. Following

Huron’s taxonomy introduced in section 2.1.4, Dubnov’s notion of expectation in the

reviewed model gets close to dynamic adaptive expectation where anticipation is pre-

sented and measured as the action the system takes (or does not take) as a result of

prediction. Dubnov’s model suffers mostly on the detection and formation of structures

considered for the model-IR. To best capture the structural information of an underlying

signal, one has to adapt the block and segment sizes to approach the real IR measures

where these parameters are likely to change from a piece of music to another. The

model does not simulate a real-time listening situation. Despite these facts, Dubnov’s

IR framework provides a promising framework for capturing dynamic expectancies and

also structural information directly correlated to listener’s listening behavior. In part II

of this thesis, we extend and supplement this theory to better address information con-

tent analysis and retrieval.

28

Abdallah’s Information Dynamics Model

Another recent information theoretic approach to music expectation is the work

of Abdallah and Plumbley (2007). In their framework, several information measures

are presented from a model-based observer perspective given a realization of a ran-

dom process and an adaptively-updated statistical model as the process unfolds in time.

Within this structure, expectancy measures can be obtained by measuring information

content between three random processes governing information in the past (Z), present

(X), and the future (Y). Belief over the flow of information can then be represented

by some probability of the realization of the event, for example the probability of the

unfolding time-series X = x, Y = y, Z = z is represented by pxy|z(x, y|z). Within

this framework, expectancy measures can be obtained by applying direct information

theory measures to the three processes. For example, a surprise-based measure can be

obtained as the negative log-likelihood of the present X = x given its past Z = z or

L(x|z) , − log pX|Z(x|z). Similar to Dubnov (2008), they assume that the observer’s

model can vary in time where in this approach, this observation model is represented

by some parameter space Θ whose distinction at another time can be measured using

the regular Kullback-Leibler divergence between the two distributions with different

parameters (See Abdallah and Plumbley, 2007, Sec. 2).

For measure estimations on symbolic music data, Abdallah and Plumbley (2007,

Sec. 3) use simple Markov chains for modeling the random process governing the three

processes explained above parameterized by a transition matrix {aij} ∈ RN×N encod-

ing temporal transitions between states. Their preliminary assumption in doing so is that

the process is stationary and the chain is irreducible in order to compute entropy rates

as a function of transition matrix elements alone. For example, the one surprise-based

measure discussed above would then be reduced toL(St = i|St−1 = j) = − log aij with

St indicating the temporal state of the system at time t. In order to account for the non-

stationarity of real music signals, they assume that the transition matrix is sampled from

a fixed probability density whose parameters evolve over time. For this, they choose

29

a Dirichlet distribution over each column of the transition matrix. The distribution pa-

rameters evolve in time using a fixed mapping of the form θij → βθij/(β + θij) where

β is fixed and set by the authors, and θijs are the parameters of the Dirichlet distribu-

tion. They assess their measures on symbolic scores of (straightforward) monophonic

minimalist repertoire of Philip Glass and show that the ensemble of their measures cor-

respond to structural and expectancy phenomena that can also be extracted from the

music score.

Despite the simple approach, the framework in (Abdallah and Plumbley, 2007)

suffers from a strong a priori assumption of the form of the transition matrix and its

evolution (a Dirichlet process without assessment of the choice). Note that in Dubnov’s

Model-IR framework, such choice is evaded by a careful and intricate use of the method

of types along other estimations. This framework would also suffer in case of high-

order or contextual structural dependencies and (most importantly) variations (which

are common in most music and less common in music of Glass) due to their choice of

Markov chains with simple first-order (or fixed-order) structure. Note that, as mentioned

previously, Dubnov also suffers from a similar problem but he cleverly distinguishes

between macro-frame observations (destined for his model-IR) and micro-frames (for

data-IR) to partially overcome this drawback in modeling. Another important remark

is that Abdallah and Plumbley’s framework has been designed for symbolic (MIDI)

representations of music. No extension to audio is discussed for this framework.

2.4 Modeling Investigations

In the previous section we looked at several key models attempting to explain

or exhibit some aspects of musical expectations. To this aim we looked at the literature

from three different perspectives. Despite their common goal, these approaches differ

drastically in the way they try to achieve expectancy behavior. This is partially due to the

fact that they come from different literatures with different philosophical beliefs towards

the topic. Another reason is different subjective goals in each approach for modeling

30

expectation. Without wanting to get deep into the philosophy of modeling a cognitive

behavior such as expectation or anticipation, there are several important lessons that

arise when such models are to be considered in a computational framework destined for

computer music or music information retrieval purposes. In this section, we undertake

an investigation on the concept of modeling which should pave out the pathway for our

proposal of anticipatory modeling.

2.4.1 Imperfect Heuristics and Naive Realism

In section 2.1.2 we noted that auditory learning and consequent mental repre-

sentations can be fallible. This means that (experienced) listeners are far from perfect

in learning to form accurate expectations about music and thus make systematic errors

in comprehending the organizational features of music. When we learn from the world,

what we learn is selective and imperfect and we are constrained by the problem of induc-

tion in general. Along these lines, Huron notes that the biological goal of expectation is

different from its musical goal. When our expectations about future are based on faulty

heuristics it might lead to potential biological disasters, however, the musical goal of ex-

pectation is to evoke a pleasing or compelling emotional dynamic and it does not matter

if we form inaccurate expectations about future events.

When it comes to modeling cognitive behavior such as expectation, imperfect

heuristics might easily lead researchers to naive realism. Huron (2006, Ch. 6) mentions

this fact as a sobering point for music theorists. Naive realists consider senses as unbi-

ased windows through the real world. For centuries, music theorists have been looking

at music scores with naive realism: considering that the structures seen in notations are

the ones we experience, and what is experienced is what is seen in the notation. The

majority of models presented in section 2.3.1 suffer from this naive realism.

Huron (2006, in ch. 5) gives intriguing examples of such flaws of naive realism

within which the most interesting one is the dilemma of post-skip reversal and melodic

regression as reported in (von Hippel and Huron, 2000). Since at least sixteenth century

31

music theorists have observed that large intervals tend to be followed by a change of di-

rection. Most theorists therefore have concluded that large intervals tend to be followed

by step motion in the opposite direction, referred to as post-skip reversal. Through sta-

tistical analysis of vocal melodies from four different continents, von Hippel and Huron

show that post-skip reversal is rather the result of a less exciting phenomena: regression

towards the mean of a melody’s tessitura. The results suggest that, in the sampled reper-

tories, patterns such as “gap fill”, “registral direction,” and “registral return” (Narmour,

1990) which constitute post-skip reversal are mere side effects of constraints on melodic

tessitura. More interestingly, they set up a quest to see if any composer’s music would

comply with the post-skip reversal framework with only one result: Giovanni Palestrina

a prominent composer of the 16th century. Palestrina’s music exhibit strong evidence of

post-skip reversal and beyond a simple regression-to-the-mean framework. The striking

fact about this result is that Palestrina is responsible for the promotion of the idea of

post-skip reversal in the counterpoint literature.

Another example of naive realism and pertaining to the contemporary music

repertoire is the analysis and presentation of cognitive constraints on compositional sys-

tems by Lerdahl (1988). In this article, the author draws upon several cognitive con-

straints claimed to drive the relationship between a music composition and the act of

listening, presented as relevant concepts from Lerdahl and Jackendoff (1983). He pro-

poses the concept of musical grammars as “a limited set of rules that can generate indefi-

nitely large sets of musical events and/or their structural descriptions.” and distinguishes

between the compositional and listening grammars. Focusing on the music piece “Le

marteau sans maître” of Pierre Boulez, as an example of intricate composition of mid-

twentieth century serialism, he illustrates the gap between the compositional system and

cognized result. He further distinguishes between natural and artificial grammars and

develops a set of 17 “psychologically plausible” constraints on compositional grammars.

He develops his reasoning for cognitive opacity of serialism and draws two aesthetic

claims, and concluding by the following statement:

“The avant-gardists from Wagner to Boulez thought of music in terms

32

of a “progressivist” philosophy of history: a new work achieved value
by its supposed role en route to a better (or at least more sophisticated)
future. My second aesthetic claim in effect rejects this attitude in favour
of the older view that music-making should be based on “nature”. For
the ancients, nature may have resided in the music of the spheres, but for
us it lies in the musical mind. I think the music of future will emerge
less from twentieth-century progressivist aesthetics than from newly ac-
quired knowledge of the structure of musical perception and cognition”
(Lerdahl, 1988).

As bitter as it sounds, Lerdahl is probably right about our cognitive constraints

in perceiving musical structures but we will surely be wrong if we assume that all struc-

tures serve an aesthetic purpose, or that all structures serve some psychological function.

In music theory, naive realism is evident in two assumptions: that the structures we see

in notated music are the ones we experience, and that the structures we experience can

be seen in the notation. Anyone who believes that subjective perception is the same

as objective reality is going towards the path of naive realism (Huron, 2006, p. 371).

These repercussions of naive realism are at the heart of the analysis and conclusions of

Lerdahl. On the other hand, after more than half a century from early avant-garde exper-

iments, there still exists many counterexamples to constraint rules of Lerdahl that have

passed their virtue of history and inscribed themselves in our musical heritage. Early

music of the composer Gyorgy Ligeti is just one example, and computer music at large

is another; both going outwards from Lerdahl’s conception of “nature”. Once again, our

attitude towards such analysis is not all sober. Whether there are constraints that must

be taken into account is not our question. But in formulating ideas, one must not mis-

take ignorance for imagination. Such theoretical failure should not deter theorists from

forming or offering new theories. Empirical failures simply imply a more general cast

for the development of our understanding of human cognition. To this author’s listen-

ing abilities, Schoenberg, Boulez and Mozart wielded the same psychological tools of

expectations despite significant difference in resulted works. The fact that some listen-

ers are able to internalize counter-organizations (such as the ones Lerdahl observes) and

form repertoire-specific expectation is actually a hopeful sign for the future development

33

of music.

2.4.2 Over-intellectualization of the intellect

Is the legitimate exercise of understanding a deliberate act of bringing things un-

der rules? The philosopher Ludwig Wittgenstein elaborates the issue within the realm

of rule-following (Wittgenstein, 1973, Aphorisms 185 − 201). For Wittgenstein un-

derstanding is akin to ability. Understanding a concept is having a skill. One way to

exercise the relevant conceptual skills is in explicit deliberative judgment; but that is not

the only way. According to Wittgenstein it is psychologism to hold that actions can be

rule governed only if the governing rule is explicitly stated in mind. Following a rule is

only one of the different ways for rules to govern what we do. An expert no longer has

any need for such explicit reliance on the rule. He has learned how to act in accordance

with the rule without any need to consult the rule in thought. That does not mean that

the behavior is no longer rule-governed either.

It is to overintellectualize the workings of the intellect to suppose that every ex-

ercise of understanding requires a deliberate act of compilation of an explicitly formu-

lated rule (Noe, October 2005). Such an overintellectualized conception of the intellect

leaves out the possibility that intellectual skills themselves may admit of expertise and

effortless exercise.

In light of these considerations, we tend to reject the widespread idea of reduc-

ing expectancy behavior to rules as a result of naive realism of cognitive observations or

over-intellectualization of induction. These criticisms could draw a sober image of find-

ings pertained to current music theoretic approaches to musical expectations. However,

one can easily question the degree of quantifications and formulated rules for expecta-

tions presented by Margulis (2005) and summarized in section 2.3.1: Is table 2.1 (on

page 23) there to lay out a rule-model governing our melodic expectancies? How do we

follow them? Whence the standards which decide if a rule is followed correctly? Are

they in the mind, along with a mental representation of the rule? Following Wittgen-

34

stein, the very formulation of the questions as legitimate questions with coherent content

should be put to test:

“... no course of action could be determined by a rule, because every
course of action can be made out to accord with the rule. The answer
was: if everything can be made out to accord with the rule, then it can
also be made out to conflict with it. And so there would be neither accord
nor conflict.” (Wittgenstein, 1973, Aphorism 201)

Therefore, similar to the post-skip reversal dilemma, studies on expectation such as the

ones presented in section 2.3.1 could reveal part of the story but not on its entirety. One

could imagine that such behavior or considerations could emerge from our environmen-

tal effects and could be partial and fallible representations common in some listeners. It

is therefore a fallacy to consider these facts as dispositions of our cognitive apparatus.

2.4.3 Scientific pluralism

In Summer 2004 Marvin Minsky and Aaron Sloman, pioneers of Artificial In-

telligence (AI), organized a symposium in St. Thomas, U.S. Virgin Islands, to discuss

designs of architectures for human-level intelligence. In their report, they criticize cur-

rent trends in research where the principal goal of AI is forgotten and instead researchers

have developed special techniques that can deal with small-scaled engineering problems

(Minsky et al., 2004). They indicate that we must develop ways to combine the advan-

tages of multiple methods to represent knowledge, multiple ways to make inferences,

and multiple ways to learn. They call for a “need for synthesis in Modern AI” where we

should not seek a single unified theory to build a machine that is resourceful enough to

have human-like intelligence. The central idea behind their architecture is that the source

of human resourcefulness and robustness is the diversity of our cognitive processes: “we

have many ways to solve every kind of problem so that when we get stuck using one

method of solution, we can rapidly switch to another.” In their proposed architecture,

based on Minsky’s Emotion Machine (Minsky, 2006), when the system encounters a

problem, it first uses some knowledge about problem-types to select some way-to-think

35

that might work. Minsky describes ways-to-think as configurations of agents within the

mind that dispose it towards using certain styles of representation, collections of com-

monsense knowledge, strategies for reasoning and all the other aspects that go into a

particular “cognitive style.” However, any particular such approach is likely to fail in

various ways. Then, if certain critic agents notice specific ways in which that approach

has failed, they either suggest strategies to adapt that approach, or suggest alternative

ways-to-think.

For the purpose of this thesis, we are not interested in the entirety of the proposed

architecture but their abstract view on modeling cognitive behavior and from an AI

standpoint. It is interesting to see how Minsky et al.’s views coincide with what we

have identified as key elements of psychology of music expectations in section 2.1.

Their ways-to-think are the mental representations as depicted by Huron and reviewed

in section 2.1.4 that work competitively and concurrently with the predictive power as a

guide or critic over their collaboration as shown in section 2.1.3.

The main point here is that not only the field of cognitive modeling but also the

engineering part of AI is asking for scientific plurality towards modeling and conceptual

design, a point which will be at the core of this thesis and elaborated in part III.

2.5 Summary

With the aim of clarifying our stance towards cognitive concepts of expectation

and anticipation, we reviewed key beliefs in the psychology of musical expectations

that would constitute the core of any model that regards expectation. For this review, we

relied on Huron’s book in (Huron, 2006) and pinpoint important modeling factors for

addressing anticipatory behavior that can be summarized as follows:

• The determinant factor for learning auditory phenomena is their stability in the

environment.

• Listeners are sensitive to the frequency of appearance of events and sound pat-

36

terns in their surrounding environment, providing strong evidence for statistical

nature of auditory learning.

• Exposure to the environment gives rise to expectations as mental representations.

• Listeners appear to code sound and sound patterns in concurrent and fallible

representations.

• Representations are differentially favored depending on their predictive success

and the unique path of the individual, hinting at the reinforcement and rewarding

effect of expectations in learning and interaction.

We formally defined anticipation as an action that a system takes as a result of

prediction using its belief or expectations including actions on its own internal state or

belief. We examined this view from three different perspectives: that of psychology of

musical expectations, computational frameworks and enaction. We showed conceptu-

ally that study of anticipation in such a framework is not separate from that of expec-

tation and in the conceptual sense, entails the latter. We also hinted at the consistency

of that framework with computational approaches to anticipatory systems which will be

the topic of the coming chapter.

We continued our exploration by studying current key models of musical expec-

tation from three different literatures: music theory, automatic learning and information

theory. Given our observations in the music cognition literature, we favored the lat-

ter two approaches. This was followed by a contemplative discussion on the concept

of modeling and its flaws where we favor more objective methodologies such as auto-

matic learning and information theoretic approaches to music theoretic ones that can

risk naive realism and over-intellectualization of the intellect. We also maintained that

despite these flaws the mentioned music theoretic methods still underlie important as-

pects of our cognitive behavior that must be considered in a pluralistic design along with

other views in order to achieve complex cognitive behavior. We ended our chapter by re-

viewing recent proposals and criticism in the AI literature in favor of scientific pluralism

37

that also underly our view of the psychology of musical expectations.

Through our criticism of modeling, it would be hard to ask what would modeling

anticipation entail? How could it be done or whether it can be done? These questions

would be the core of the next chapter.

Chapter 3

Anticipatory Modeling

What does modeling anticipation entail? Is there a single and unified model that

can describe anticipatory behavior? Whence come the principles unifying such frame-

work? Would that be in the mind along with mental representations of expectations?

This chapter is our attempt to clarify these questions and position ourselves in their

regards.

To address these questions and once again, we question their coherency and

legitimacy. In the previous chapter, namely in section 2.4, we raised concerns about

the very nature of modeling a cognitive behavior such as expectation and anticipation.

We concluded that an attempt to formulate a single and universal model of musical

anticipation would easily retreat to naive realism.

In the literature, there is much emphasis on cognitive models based on causality

or reactive frameworks. In such a view, action is the result of a belief based on the past

and present. This reactive paradigm is universal in the sense that given any mode of

system behavior which can be described sufficiently accurately, there is a purely reac-

tive system which exhibits precisely this behavior. In other words any system behavior

can be simulated by a purely reactive system but this does not mean that the reactive

paradigm is completely adequate for all scientific explanations. A pure reactive view

of the world undergoes the same naive realism discussed in section 2.4.1 between the

38

39

representation of the things and the things-themselves. When it comes to modeling cog-

nitive behavior such as expectation or anticipation, the same argument holds: Given

that we have in our possession an accurate form of interaction between cognitive sys-

tems and their environments, a purely reactive paradigm might be able to explain and

simulate such interactions. However, such attempts would became extremely approxi-

mative due to two main reasons: The fact that all forms of cognitive interactions can in

no way be transcribed, formalized, or assumed as dispositions. And the fact that even

at the disposition of such pure reactive framework, it would not necessarily provide a

scientific explanation of the phenomena itself and nor does it extrapolate to previously

unknown situations. These considerations led Robert Rosen and researchers in AI and

later cognitive sciences to conclude that behaviors are not simply reactive but rather

anticipatory, and attempt to develop a computing framework for anticipatory behavior

called anticipatory modeling.

3.1 Anticipatory Computing

As mentioned in chapter 2, the term anticipation is often used in the literature

to stress a simple lookahead into the future whereas the most important and often over-

looked characteristic of anticipation is the impact of this lookahead on actual behavior.

We proceeded by distinguishing our definition of the term in section 2.2. The basic

premise in our consideration is that expectations are not only useful for predicting the

future but also alter our behavior or our behavioral biases and predispositions according

to predictions or expectations. To distinguish anticipation in regards to definition 2.1

(page 17) from other aspects of cognition, we focus on Anticipatory Behavior defined

as a process, or behavior, that does not only depend on past and present but also on

predictions, expectations, or beliefs about the future (Butz et al., 2003a).

Anticipatory computing has started as an attempt to uncover commonalities of-

ten overlooked in considerations of anticipatory processes (in animals and human be-

havior) and offer useful conceptualizations and interconnections between research dis-

40

ciplines in cognitive systems research. Robert Rosen puts forward one of the first defi-

nitions of an anticipatory system:

Definition 3.1 (Anticipatory System). A system containing a predictive model of its

environment, which allows it to change state at an instant in accord with the model’s

predictions pertaining to a later instant.

In Rosen’s original definition (Rosen, 1985, p. 330), anticipatory systems contain

predictive models of themselves as well as their environments. Inherent to this defini-

tion is the fact that the representation of the environmental states and internal states of

the system are distinct and the system contains an internal representation of the out-

side world to constitute artificial behavior. Following our enactive view of cognition

(section 2.2.2) we reject the dissociation of the internal representation of a system from

the environment itself. An internal representation of a computational system does not

constitute a detailed snapshot view of its environment, nor is it dissociated from its ac-

tions; but is representing the dynamic flow of continuously varying information of the

environment itself (Noë, 2004, Ch. 1)1.An important consequence of such approach is

to lessen the representational burden of the system.

We define anticipatory modeling as the design process for anticipatory systems.

In contrast to modeling anticipation, anticipatory modeling does not attempt to provide

a universal model or framework for anticipatory behavior, but rather to provide models

that anticipate. It considers anticipation as the fore-front design concept in cognitive

systems to achieve complex real-life behavior. Throughout this thesis, we adopt this last

view for our goal of achieving and accessing anticipatory musical systems. We sim-

ply shift our approach from modeling musical anticipation to anticipatory modeling for

computer music by explicit consideration of anticipatory interactions, often overlooked

in system design, as the main concern of modeling.
1An example of such an approach is the animate vision program of Ballard (1991, 2002), that bases

his visual recognition system on gaze control mechanisms and adaptive learning from an environment.
In this approach, instead of building up internal and detailed maps of the environment, the system acts
upon the desired goal at the onset using its available skills, and adapts itself continuously through series
of perceptions and actions in the environment and in real time.

41

Rosen’s definition of anticipatory systems, has inspired various fields of research

such as experimental psychology, theoretical biology, physics and economy and has led

to an emerging literature on Anticipatory Computing. Recently, attempts have been

made in artificial intelligence to integrate anticipatory mechanisms into artificial learn-

ing systems in various frameworks, leading to the creation of an interdisciplinary in-

ternational workgroup named Anticipatory Behavior in Adaptive Learning Systems or

ABiALS in short. Their work has culminated to two collections (Butz et al., 2003c,

2007). The new field has attracted AI researchers as well as cognitive neuroscientists,

and psychologists and created debates among philosophers (e.g. Nadin, 2004; Glasers-

feld, 1998). Therefore, the scope of research in ABiALS varies dramatically from ex-

perimental psychology to logic and engineering AI applications as well as cognitive

neuroscience and pure AI. The efforts of ABiALS has led to a mutual understanding and

transfer of concepts from experimental psychology to engineering applications which

have found life in various fields such as robotics and visual processing.

We review the common frameworks and approaches that constitute the design

philosophy of anticipatory systems for this thesis.

3.2 General Modeling Framework

Following definitions 3.1 and 2.1, we aim at providing a general framework

for anticipatory modeling in the current section. Such a framework should directly

address learning for capturing stabilities of the system’s external environment inter-

actively. Learning thus constitutes artificial beliefs of the system about conditions and

consequent actions in an environment, as well as the dynamics of the environment itself.

One of the frequently used frameworks for such problems in artificial intelligence is the

Markov Decision Process (MDP). One of the main attractions of the MDP framework

is its flexibility and extensibility for different design problems as reviewed below.

From this point on through this thesis, we are officially in the realm of arti-

ficial design. Up to this point and mostly through chapter 2, we looked at modeling

42

anticipation in an effort to explain musical behavior which could be thought of as a nat-

ural science. Anticipatory modeling is more akin to what Herbert Simon would call an

artificial science where modeling is a design process that addresses musical behavior

(Simon, 1969). Through this change of view, many terminologies that we have visited

so far within the realms of cognitive psychology and in connection to living humans

and animals, would change their scope of meaning to that of artificial systems aiming at

modeling such behaviors. Therefore, from this point on, words such as “belief”, “men-

tal representations”, and “observations” reflect their respective functionalities within

artificial systems with their limitations, distinct from their usage within experimental

psychology.

To clarify matters further, anticipatory modeling does not mean that we have

access to the future itself, but to a belief over the states of the system in future. More-

over, the interactive nature of learning in anticipatory systems strongly requires online

systems where data transaction with an environment is done incrementally with no ac-

cess to the future itself. Therefore the word “future” in the following sections, chapters

and captions refer respectively to the belief of a system or mental configurations of the

system towards predicted future states.

3.2.1 Markov Decision Process Framework

Markov Decision Processes (MDPs) provide a simple, precise and relatively

neutral way of talking about a learning or planning agent interacting with its environ-

ment to achieve a goal. As such, MDPs are starting to provide a bridge to biological

efforts to understand the mind (Sutton, 1997) and serve as a conceptual tool contribut-

ing to a common understanding of intelligence in animals and machines. More impor-

tantly for this work, they constitute the basic tool for anticipatory modeling motivated

by psychological evidence on animal behavior (See Butz et al., 2003b, pp. 87− 90).

A Markov Decision Process comprises an agent and its environment, interacting

at all times. At each interaction cycle, the agent perceives the state of the environment st,

43

and selects an action at. In response to actions and in the next time step, the environment

changes to a new state st+1 and emits a scalar reward rt+1. In a finite MDP the states

and actions are chosen from finite sets. In this case the environment is characterized

by arbitrary probabilities (also called transition probabilities) P (s, s′, a) and expected

rewards R(s, s′, a), for each possible transition from a state s to a next state s′ given an

action a.

The MDP framework is abstract and flexible, allowing it be applied to different

problems and in different ways. We make use of this flexibility of MDPs for the two

concrete applications presented in parts IV and III of this thesis. For example, the time

steps need not refer to fixed intervals of real time (as is the case in parts IV); they can

refer to arbitrary successive stages of decision making and acting as is the case in an im-

provisation setting between two musicians (parts III). Actions can be low-level controls

such as time distributions of a musical event (part IV) or high-level decisions such as

generation of musical phrases (part III). States of the system can be determined by low-

level sensations from the environment such as continuous real time audio observations

for an accompaniment system (part IV, or they can be high-level such as symbolic de-

scriptions of music in an improvisation system (part III). Actions might be totally mental

or computational. For example, some actions might control what an agent chooses to

generate (part III), or how it focuses its attention in decision making (part IV).

Extensions of MDP frameworks can be done in a way to reduce the extended

problem back to an MDP. For example, in MDPs the dynamics of the environment are

assumed stationary and Markov, which limit applications to complex problems such as

modeling musical interactions. The most prominent extension of MDPs to the non-

Markov case is the classical approach to partially observable MDPs (POMDPs), in

which the state is not fully observable on each time step and its probability is estimated

according to an observation probability distribution conditioned on inputs from the en-

vironment. It turns out that this probability distribution can itself be treated as the state

of the whole process and then all the classical MDP methods can be applied, albeit in a

larger and more complex state space (Murphy, 2000; Sutton, 1997). Another example of

44

such extension, is hierarchical and modular approaches to decision-making and action

generation using low-level MDPs (e.g. Littman, 1994; Rohanimanesh and Mahadevan,

2002).

In this thesis, we will constantly revisit the stationary and Markov assumptions

of MDPs and in different manners. In part II we provide a state-space representation

(the Audio Oracle) that preserves the state-action representation but extends the basic

Markov assumption to larger context. This is used and further expanded to a hierarchi-

cal framework for automatic generation and planning problems in music of part III. In

part IV, we extend the Markov architecture to semi-Markov occupancies and define an

inference framework conform to MDP learning and decision making.

3.2.2 Interactive Learning in an Environment

In an MDP framework, the agent implements a mapping from states to proba-

bilities of selecting possible actions. This mapping is called the agent’s policy, denoted

πt, where πt(s, a) is the probability that at = a if st = s. The agent’s goal is to max-

imize the total amount of reward it receives over the long run. MDPs were originally

studied under the assumption that the dynamics of the environment (or P (s, s′, a) and

R(s, s′, a)) are completely known.

An anticipatory system is by definition in constant interaction with its environ-

ment in order to form expectations and act according to past and present environmental

contexts and also beliefs about the future. The policy πt of a regular MDP therefore

represents current beliefs that the agent has acquired within its environment. Besides

this implicit state model, an anticipatory agent is equipped with a predictive model Mp

which specifies how the state model changes dependent on possible actions geared to-

wards future. Hence, Mp describes an action-dependent probability distribution of fu-

ture environmental states. A common goal of any anticipatory system is then to learn

an optimal behavioral policy to determine how the system decides what to do, which

actions to execute and possibly when to execute it. This behavioral policy might depend

45

on current sensory input, or generated predictions, the state model or directly on inter-

nal states, or moreover a combination thereof depending on the nature of the problem at

large.

Besides learning optimal policies at each interaction, we do not assume that the

environmental dynamics are known to the system. This requires the system to obtain

these dynamics through interaction episodes with the environment and adapt its belief

to the ongoing context. Specifically within an MDP framework, this entails to acquir-

ing P (s, s′, a) and R(s, s′, a) adaptively through interactions with the environment. The

transition probabilities P (s, s′, a) constitute both the structures of the environment in

terms of information content, and the values pertaining to each state-action transaction;

where both should be ideally adapted online. The reward structure R(s, s′, a) on the

other hand, serve as the feedback of the environment to a previous state-action transac-

tion and is used extensively for belief updates of the system.

Within this framework, learning is then to acquire optimal policies and envi-

ronmental dynamics through interactions with the outside environment. Learning can

be incorporated by allowing modifications of any of the above components over time.

Learning should also be interactive and online to undergo adaptive behavior. There-

fore, the choice of architecture for interaction and learning would determine the type

of anticipatory behavior of the system. Besides the problem of learning policies that is

common to all MDP frameworks, environmental dynamics can be acquired artificially

using different methods. But before reviewing different learning techniques common

to anticipatory modeling, we review several common anticipatory behaviors modeled in

the literature and used throughout this thesis.

3.3 Distinctions of Anticipatory Behavior

Following a generic MDP framework as above, Butz et al. (2003b) distinguish

between four different types of anticipatory behavior mostly destined for animat (i.e.

artificial animal) design literature. To be consistent with this literature, we reiterate

46

these findings here and mostly focus on their design schemes. Some of these schemas

will be later considered for our various designs in parts IV and III of this thesis.

3.3.1 Implicit Anticipation

In most existing designs that consider sensory input and action outputs, predic-

tions about the future are not explicitly considered for influencing the system’s behav-

ioral decision making. This way, the sensory input is directly mapped onto an action

decision possibly combined with internal state information to form some inductive in-

ference. Therefore, in this simple scheme the prediction model Mp and its role for

influencing current decision-making is simply ignored. However, such systems can be

considered as prediction-driven systems in the sense that the action-decision is the result

of an implicit prediction based on current state-action information. Therefore in implicit

anticipatory behavior there is no explicit knowledge about possible future states but it is

anticipatory in the sense that the behavioral architecture is predicted to be effective. The

basic structure of an implicit anticipatory architecture is shown in figure 3.1.

Implicit Anticipation

Present Future

Sensory
Input

Current
State

Previous State
and Actions

Action(s)
State(s)

Figure 3.1: Implicit anticipatory behavior architecture

It is interesting to note that even pure reactive systems are still implicit antici-

patory systems in the sense that the behavioral programs in their codes are implicitly

anticipated to work in their context. A genetic code, for example, is implicitly predicted

(by evolution) to result in successful survival and reproduction. Many existing engineer-

ing systems that make use of POMDP, HMMs and variants enter this category. A typical

47

example of such approach in the literature are current audio to score alignment or score

following systems (see chapter 7).

3.3.2 Payoff Anticipation

If a system considers predictions of possible actions in terms of their payoff val-

ues without any consideration for the arriving states in the environment, it is a Payoff

Anticipatory System. In such systems, the predictions estimate the benefit of each pos-

sible action and bias action decision making accordingly. State predictions have no

influence on the system in this schema. Figure 3.2 sketches the schematic architecture

for payoff anticipation.

Se
le

ct
io

n

Present Future

Sensory
Input

Current
State

Previous State
and Actions

Action(s)
State(s)

a1
a2
a3

...

an

Figure 3.2: Payoff anticipatory behavior architecture

Typical examples of payoff anticipatory systems in computer music literature are

current approaches to automatic improvisation or style imitation systems where gener-

ation is commonly based on selecting the best action among all possible action given

the current state of the system and upon some contextual value for each action (see

chapter 6).

3.3.3 Sensorial Anticipation

Explicit prediction of future states of a system does not need to directly influ-

ence the behavior of a system but its sensory processing (or observation handling in

computational terms). In this scheme, called sensorial anticipation, the prediction of

48

future states and thus the prediction of future stimuli influences stimulus processing.

This scheme requires an explicit predictive model Mp of the underlying processes. This

anticipatory mechanism is shown in figure 3.3

Present

Perceptual
Processes

Future
Sensory

Input

Previous State
and Actions State(s)Action

Decision Action

Predictions

Sensory

Anticipation

Figure 3.3: Sensorial anticipatory behavior architecture

This anticipatory behavior is strongly related to preparatory attention in psy-

chology and results in a predisposition of processing sensory input. This biased sensory

processing could then influence the actual behavior or affect learning in an indirect man-

ner.

Typical examples of sensorial anticipatory schemes in computer music litera-

ture are multinomial processing systems where the predictions on one data source (e.g.

tempo, gesture data) affects the sensory processing or observation module of another

source (e.g. audio onset, pitch). Later in chapter 7, we propose a model along these

lines.

3.3.4 State Anticipation

In the three sketches above, the role of expectation has been implicit in one

way or another. The most explicit way of considering anticipation, where the system’s

behavior is influenced by explicit future state representations is called State Anticipa-

tion. Whereas sensorial anticipation indirectly affects learning and sensory processing,

in state anticipation this influence is direct. The basic property here is that predictions

about, or simply representations of, future states influence actual action decision. Fig-

49

ure 3.4 sketches this architecture.

Present Future

Sensory
Input

Previous State
and Actions

State(s)
Action(s)

Action
Decision

Predictions

Explicit

Anticipation

Current
State

Figure 3.4: State anticipatory behavior architecture

Many existing computer music frameworks can benefit by the extension of their

designs to a state anticipatory system. Automatic improvisation and style imitation

systems are obvious examples where an explicit representation, access and manipulation

of predictive models and interactions within would improve the generative results and

control aspects of their design. This will be the main concern of part III of this thesis.

3.4 Learning Approaches

Anticipatory modeling is heavily based on on-line learning of system parame-

ters and internal models through interaction with an outside environment. The type of

desired anticipatory behavior and also the goals of learning determine the design and

choice of learning approaches. Due to this diversity, the nature of learning algorithms

used and proposed in this literature are vast. Here we summarize the basic concepts of

some of the mainstream machine learning approaches that conform to anticipatory com-

puting literature. Learning in anticipatory models is usually concerned with two main

issues: Learning and updating predictive models and dynamics of the environment, and

learning a behavioral policy for decision making.

50

3.4.1 Reinforcement Learning

The Reinforcement Learning (RL) framework is a considerable abstraction of the

problem of goal-directed learning from interaction. It proposes that whatever the details

of the sensory, memory, and control apparatus, and whatever objective one is trying to

achieve, any problem of learning goal-directed behavior can be reduced to three signals

passing back and forth between an agent and its environment: one signal to represent

the choices made by the agent (the actions), one signal to represent the basis on which

the choices are made (environmental states), and one signal to define the agent’s goal

(the rewards) (Sutton and Barto, 1998). In the standard reinforcement learning model,

an agent is connected to its environment via perception and action.

Reinforcement learning is primarily concerned with how to obtain the optimal

behavioral policy when such a model is not known in advance. The agent must interact

with its environment directly to obtain information which, by means of an appropriate

algorithm, can be processed to produce an optimal policy. Within this view, RL tech-

niques can be categorized into two main groups: Model Based methods learn or update

predictive models (MDP or else) first and then proceed with policy optimization, and

Model-free methods which emphasize on learning policies with no explicit knowledge

requirement of the expected immediate rewards of the state-transition probabilities or

model topologies. To this respect, model-free RL agents are close to payoff anticipatory

agents where there is no explicit predictive model despite the estimated action-payoffs.

In this framework, eventhough the system does not learn a representation of the actual

sensory consequences of an action, it can compare available action choices based on

the payoff predictions. Model-Based RL however, can address the other three distinct

anticipatory mechanisms and specifically state anticipation. The Dyna architecture of

Sutton (1991) is probably the most widely used and one of the first frameworks of this

kind where the agent learns a model of its environment in addition to policies. The ba-

sic premise of the Dyna architecture is its generic form and flexibility for extensions.

Several anticipatory mechanisms can be reached via this approach for example by bias-

51

ing the decision making agent towards the exploration of unknown regions or accessing

specific expectancy patterns in the (memory) model. The design strategy for learning

both the representation and policies are determinant of the type of anticipatory behavior.

RL techniques are mostly studied within Markov Decision Process framework.

However, extensions exist for Semi-Markov Decision Processes where each state has an

explicit waiting time, and for Partially Observable Markov Decision Processes (POMDP)

where the assumption of complete observability of the environment is relaxed. Tradi-

tional RL techniques store state-action values and policies in tabular form which makes

them difficult to scale up to larger problems. To overcome this curse of dimensional-

ity, various methods such as function approximation, hierarchical learning, collaborative

learning and more have been proposed in the literature. For an extensive overview of RL

techniques see (Kaelbling et al., 1996). We will come back to reinforcement learning in

part III of this thesis.

3.4.2 Learning Classifier Systems

Genetic Algorithms (GA) constitute another literature suitable for solving rein-

forcement learning problems. In general, they search in the space of behaviors in order

to find one that performs well in the environment through genetic reproductions and fit-

ness or survival functions. However, their consideration in an interactive environment

where the action’s behavior is highly dependent upon its interaction with an outside

environment is limited due to the very nature of genetic programming. These consider-

ations led John Henry Holland (the father of genetic algorithms) to work on Learning

Classifier Systems (LCS) where he proposed a model of a cognitive system that is able

to learn using both reinforcement learning processes and genetic algorithms (Holland

and Reitman, 1978). Reinforcement values in LCSs are stored in a set (or population)

of condition-action rules (the classifiers). The learning mechanism of the population

of classifiers and the classifier structure is usually accomplished by the means of a ge-

netic algorithm. With this respect, a LCS is a rule-based reinforcement learning system

52

enhanced with the capability to generalize what it learns through genetic algorithms.

There has been several extensions to the original LCS proposal with one specific to

Anticipatory Learning Classifier Systems (ACS) (Butz and Goldberg, 2003).

Due to the fact that learning classifier systems in general assume rule-based

structures and reasoning, and following our extensive discussions in section 2.4, they

will not be considered for this work.

3.5 Modeling Implications

We now draw several important implications of Anticipatory Modeling as they

will constitute the core of the coming chapters and the scientific contributions of this

thesis.

3.5.1 Information as Available

The first premise in any anticipatory design is the representation or encoding

of incoming information into useful representations and enable fast and easy access to

these dynamic memory structures. In an anticipatory system, as noted earlier, the system

is in constant interaction with an outside environment to update its current belief. This

belief constitutes the knowledge of the system of its environment. Therefore the form

of representation of this belief is crucial. In an interactive system that unfolds in time,

this knowledge representation also constitutes the memory of the system with regards to

its past and to the past of its interactions. More importantly it constitutes a special style

of access of the system to the world and in our case takes the form of representations

of the world outside. We noted in chapter 2 that such mental representations in human

cognition are not necessarily accurate and can be fallible. By analogy in computational

modeling, the percept of the system in absence of accurate representations is assessed

by access to the information controlled by patterns of expectational dependence. We

strongly emphasize on accessibility of pertinent information from the environment to

53

the system. During learning and adaptation, comparing predictions with actual environ-

mental consequences, it is important for such a system to have acquainted information

as available and present whenever needed. To take this matter to the extreme, achieving

expectation or anticipation is not a matter of dividing attention to information and not a

matter of attention at all. It is a matter of having skillful access to the associated informa-

tion whenever required. We emphasize again the importance of information availability

as a consequence of its representation by reiterating section 2.2.2 with respect to our

goal of providing musical anticipatory models: If anticipation is the very act and conse-

quence of prediction as in definition 3.1, there is no need to separate the representation

from the action as one encompasses the other. Therefore representation of information

and its availability are at the core of any anticipatory system design.

With this respect, we dedicate the part II of this thesis, and the start of our design

exploration, to the problem of encoding and representing musical information with a

high emphasis on the problem of information accessibility controlled by patterns of

expectancy.

3.5.2 Interactive and on-line Learning

This thesis is en effort to extent computational models for music from reactive

frameworks to anticipatory frameworks. For computational models of cognitive phe-

nomena, one could plausibly design reactive systems with satisfactory results given that

every possible interactions of the living phenomena with its environment are at our dis-

posal in terms of syntactic or declarative laws to be integrated into a reactive design. We

showed at the onset of this chapter that such an approach would be immediately reduced

to approximations and would result to shortcomings on generalization of its knowledge-

domain to unknown situations. To overcome this, we introduced anticipatory modeling

where constant adaptation and learning through an environment are at its very core.

As we mentioned in chapter 2, anticipation in humans is the act of predicting,

reacting and self-adapting in a constantly changing environment and results from the sta-

54

bilities and instabilities of the environment we live in. By analogy in computational de-

sign, learning and adaptation are at the core of an anticipatory system, and like real-life

situations and unlike many engineering approximations, this learning should be on-line,

meaning that it should accept information incrementally as they arrive and in real time;

and interactive, meaning that it is the result of a constant interaction with an outside en-

vironment for comparing and examining predictions with actual consequences. In mod-

eling anticipatory musical frameworks, learning comes to play for obtaining new repre-

sentations and updating existing ones, and also for decision making purposes through

interaction with the environment.

Due to these facts, all the learning algorithms and concepts represented hereafter

are incremental and adapted for real time use. Part II of this thesis is concentrated on

the aspect of learning and updating representations, and part IV and III will concentrate

on two different cases of decision making using anticipatory modeling.

3.5.3 Multimodal Interaction and Modeling

In section 2.1.3 of chapter 2 we showed evidence in the literature that antic-

ipatory behavior is the result of concurrent representations of the same environment

evaluated perpetually by their ability to usefully predict ensuing events. This means that

several representations are at work to encode the same event that might correspond to the

same or several information sources in the environment. Moreover, the competitiveness

of these representations requires an amount of interaction during learning among repre-

sentations. Computationally speaking, these considerations lead to a multimodal inter-

action framework between the ensuing agents and the environment, as well as among

the agents themselves. This multimodal interactivity in its term requires specific antic-

ipatory models in-between agents. Such multimodal interactions are connected to the

very nature of musical interactions and any interactive music system. An example of

such multimodal interaction is the act of listening and following a music score: From an

auditory point of view, when we listen and follow a music score we might be following

55

exact pitch information, pitch contours, registral pitch information, or time informations

such as the rhythmic structure, or pivotal points in the score, or a combination thereof;

or to make it even more realistic, a mental representation such as temporal rhythmic

structures might come to the help of (or prevention of) another fallible representation

such as pitch. A problem such as this is one that can be directly addressed using an

anticipatory framework.

Two case-studies for multimodal interaction and modeling will be presented in

parts IV and III of this thesis.

Part II

What to Expect

56

Chapter 4

Music Information Geometry

What do we actually expect? We saw in chapter 2 that expectations imply some

sort of mental representation of the stabilities of the outside environment. This in return

implies finding ways to discover and represent relevant information in an environment

within a system’s architecture in order to form expectational beliefs. On another level,

in section 3.5.1 we identified Information as available as one of the most important

premises of anticipatory modeling. It constitutes the form of representation of audio and

music information for memory of the system, behavioral learning, and content access

in anticipatory interactions. This part of our thesis is thus dedicated to the problem of

decoding and representation of relevant musical information with an aim of integration

into anticipatory musical system. In this chapter, we focus on a theoretical framework

that enables decoding and representation of musical information, and in the next chapter

we elaborate the problem of information access.

4.1 General Discussions

All music information retrieval and computer music systems deal one way or

another with the information content of music signals, their transformations, or extrac-

tion of models or parameters from this information. A common question that many such

57

58

systems ask at their front-end is what information is presented in the signal and to what

relevancy? Despite its wide use in the literature, classical information theory as put for-

ward by Shannon (1948) has few answers to the representation and fidelity concerns.

As an example, entropy is commonly used to assess a signal’s uncertainty but signals

have uncertainty regardless of whether they have relevant information or not (Sinanović

and Johnson, 2007). When the issue of music complexity is considered, matters come

worst. Pressing shows the inconsistency of basic information theory measures of com-

plexity with regards to the structure of musical patterns (Pressing, 1999). An alternative

choice for quantifying information is by using mutual information which quantifies how

closely the probability functions of a system’s input and output agrees. Previously in

section 2.3.3 we reviewed two proposals for measuring structural regularities in music

based on mutual information. Rate distortion theory and information bottleneck meth-

ods also use this property to assess how well signals encode information mostly with

regards to signal compression (Cover and Thomas, 1991; Tishby et al., 1999).

On these lines, it is quite interesting to look back at some historical notes as the

field of information theory emerged: Warren Weaver, in his introduction to Shannon’s

classic paper, states that while Shannon’s work was the ultimate mathematical theory of

communication, it did not touch the entire realm of information processing notions that

require analysis. Furthermore he developed communication problems on three grounds:

technical, semantic, and influential (Shannon and Weaver, 1949; Sinanović and Johnson,

2007). In this chapter, we draw a framework to address the third aspect of information

processing with regards to music signal: the influential aspect of information as the

effectiveness of music information as it unfolds in time.

On another basis, one of the main goals of music information retrieval (MIR)

systems is to characterize music information in terms of their similarity structures. Most

MIR techniques also rely on geometric concepts for building classifiers in supervised

problems (genre classification, artist identification, query by example etc.) or cluster-

ing data in unsupervised settings (audio search engines, structure discovery etc.). The

considered data sets and their underlying spaces are usually not metric spaces, however

59

in most typical MIR applications a feature-based similarity matrix is computed over

the data which is used as a front-end for further processing. The metric used for each

approach is usually varied among researchers and applications, and include common

metrics such as Euclidean, Mahalanobis and probabilistic distances between feature-

based representations but without any explicit consideration for the underlying geomet-

ric space and whether it constitutes a metric space or not. In this chapter, we provide a

new view of similarity based on influential aspect of information.

Most existing computational music systems bear difficulties when the temporal

aspect of music comes into play and undergo extensive approximation (or elimination)

of temporal resolution for representing music content. For example, a common method

in most MIR systems destined for classification or clustering is the bag of features

method where the time-series information is considered out-of-time (as put in a bag)

and thereafter the relevant information is searched, learned or processed. The frame-

work introduced in this chapter explicitly model the temporality of music information.

This assumption constitutes the only a priori information involved in our framework.

In this chapter, we seek a comprehensive framework that allows us to quan-

tify, process and represent information contained in music signals and structures. This

topic brings in concepts from various literatures: music signal processing, differential

geometry, information theory and machine learning. By this combination, we aim at in-

vestigating the natural geometric structures of families of probability distributions over

music signals that implicitly represent the ongoing information structure of the signal

over time. Within this framework, music information arrives in discrete framed win-

dows over time and occupy statistical points in an information manifold. By translating

concepts such as similarity, clustering, and metric ball trees in an information geomet-

ric framework, we are able to reduce the complexity of several important information

retrieval problems as a consequence of geometrical relations and specially affine duality

of information geometric spaces. To achieve this goal, we revisit common concepts in

music information retrieval (MIR) literature such as similarity in an information geo-

metric context and provide a music information processing framework within this realm

60

called Music Information Geometry. The geometric structure proposed here is based on

general Bregman divergences (Bregman, 1967) and their geometric consequences which

will be introduced shortly. Besides the geometric intuition of the provided information

theoretic framework, this approach has important modeling consequences when con-

sidered within the more general exponential family of probability distributions on the

incoming signals, among which the affine duality is of most importance for this work.

We start the chapter by building up the mathematical preliminaries vital for the

construction of our method and introduce the general notion of information geometry

(section 4.2.1), elements of Bregman geometry (section 4.2.2) and exponential distri-

butions (section 4.2.3). The introduced frameworks along with provided examples, are

essential for a thorough understanding of the music information geometry framework

introduced thereafter. This mathematical framework is tightly related to (Amari and Na-

gaoka, 2000; Nielsen et al., 2007) whereas the machine learning aspects come close to

(Banerjee et al., 2005; Cayton, 2008). Upon the introduction of the mathematical struc-

tures, we introduce a framework for Music Information Geometry that builds upon the

Information Rate measures of Dubnov (2008) (see review in section 2.3.3 on page 25)

and aims at expanding and improving the Model IR measures. We show that our mathe-

matical framework would naturally bring in important aspects of information measures

introduced by Dubnov (2008) and extends the methods by introducing novel access to

information structures of music. In section 4.4 we show how our mathematical struct

would lead to a similarity metric space and provide an information theoretic definition

of similarity. Finally, section 4.5 details our methodology for incremental model forma-

tions in an ongoing music signal with the consequence of segmenting an audio stream

in real-time to chunks of quasi-stationary structures.

4.2 Preliminaries

In this section, we introduce the basic mathematical constructs that form the ba-

sis of our methodology for music information geometry. We start by introducing basic

61

concepts of information geometry (Amari and Nagaoka, 2000) and move on to Bregman

divergences and their geometric properties and continue on by introducing exponential

families and their behavior in a Bregman geometry. Many of the concepts and theorems

here are replicated from their cited references and without proof (except for some key

properties) and the reader is referred to the provided references for the proof of each the-

orem. Some sections are enhanced by examples demonstrating the underlying theorem

in action. Thorough understanding of the given examples are important as they build up

the mathematical construct that constitute our music information geometry framework.

4.2.1 Information Geometry of Statistical Structures

Let us consider a family of probability distributions specified by a vector pa-

rameter p(x, ξ) where ξ is a vector constituting the model parameters of the probability

distribution. This set can be regarded as a manifold under certain regularity conditions

where ξ = (ξ1, . . . , ξn) would be its coordinate system. A manifold, in short, is an ab-

stract mathematical space in which every point has a neighborhood which resembles a

regular Euclidean space but the global structure may be more complicated. By defining

probability distributions on a manifold, each point in our space would then refer to a re-

alization of a family of probability distribution. The manifold has a natural geometrical

structure if the following two invariance principles hold:

1. Geometrical structure is invariant under whichever coordinate system (or param-

eters) used to specify the distributions.

2. Geometrical structure is invariant under rescaling of the random variable x.

A Riemannian manifold in short is a real differentiable manifold S where each

tangent space is equipped with an inner product g in a manner which varies smoothly

from point to point. Amari and Nagaoka (2000) show that the manifold of statisti-

cal structures has a unique Riemannian metric which is given by the Fisher information

measure. For the two conditions above to hold, one needs to define proper affine connec-

62

tions that can in return define various geometric notions such as angle, length of curves,

areas (or volumes), curvatures, gradient of functions and divergence of vector fields.

In differential geometry, an affine connection is a geometrical property which connects

nearby tangent spaces allowing tangent vector fields to be differentiated as functions on

the manifold. With an affine connection, a path between two points of the manifold

establishes a linear transformation (parallel) between the tangent spaces at those points.

Amari and Nagaoka (2000) introduced α-connection (∆α), a canonical form of connec-

tion over an information manifold that further possesses a dual structure (∆∗α) which is

discussed later. Given this, an information manifold can be defined by the Fisher In-

formation as the inner product and also by the type of connection (and consequently its

dual because of the extreme computational interest thereof) as (S, g,∆α,∆
∗
α).

To complete the geometric tools in this context, one needs a distance like mea-

sure between two points (or probability distributions in our context). Such measures,

called divergences, provide the directed (asymmetric) difference of two probability den-

sity functions in the infinite-dimensional functional space, or two points in a finite-

dimensional vector space that defines parameters of a statistical model. A typical ex-

ample of such divergence is the widely-used Kullback-Leibler distance. Furthermore,

Eguchi (1983) shows that a well defined divergence D would also lead to a general con-

struction of the dualistic structure (S, g,∆(D),∆(D∗)) and hence allowing the geometric

structure to be defined directly by the Fisher Information and the given divergence (in-

stead of the affine connection). There is a tight relation between divergences and affine-

connections on a statistical manifold; however, this is not a one-to-one relationship as

there usually exists infinitely many divergences corresponding to a dualistic manifold

structure. Recently, Zhang (2004) introduced a canonical form of affine connection

where α-connection would be one of its special cases, and can deduce many types of

divergence functions which are in common use in engineering applications, including

the well-known Bregman Divergence family (Bregman, 1967). Given these findings,

and within the framework introduced by Zhang (2004), we can easily assume a geo-

metrical structure over probability manifolds S using Fisher Information and Bregman

63

Divergences.

Throughout this section, we assume that a system under measurement generates

families of probability distributions within a dual information manifold (S, g,∆(D),∆(D∗))

where its geometric properties are induced by employing Bregman Divergences. Also,

from hereon the term point is used in an information geometric sense and thus repre-

sents a family of probability distributions that belongs to a probability simplex X ∈ Rd.

As another convention, vector mathematical constructs are notated using boldface char-

acters in contrast to scalar constructs, therefore p is a vector and p is a scalar. We now

introduce the Bregman divergence family and their geometric structures.

4.2.2 Elements of Bregman Geometry

In this section we define Bregman divergences and investigate their geometrical

properties such as duality, Bregman balls, and centroids, and provide important theo-

rems and examples.

Bregman Divergences

Definition 4.1 (Bregman (1967); Nielsen et al. (2007)). For any two points p and q of

X ∈ Rd, the Bregman Divergence DF (., .) : X → R of p to q associated to a strictly

convex and differentiable function F (also called generator function) is defined as:

DF (p, q) = F (p)− F (q)− 〈∇F (q),p− q〉 (4.1)

where ∇F =
[
∂F
∂x1
, . . . , ∂F

∂xd

]
denotes the gradient operator and 〈p, q〉 the inner or dot

product.

One can interpret the Bregman divergnce as the distance between a function and

its first-order taylor expansion. In particular, DF (p, q) is the difference between F (p)

and the linear approximation of F (p) centered at q.

The most interesting point about Bregman family of divergence is that they can

generate many of the common distances in the literature. Several examples follow:

64

Example 1 (Euclidean Distance). For x ∈ R in F (x) = x2, eq. 4.1 would lead to

DF = (p− q)2 or the Euclidian norm.

Example 2 (Kullback-Leibler Distance). For x ∈ d−Simplex (or
d∑
j=1

xj = 1) and

F (x) =
d∑
j=1

xj log xj or the negative entropy,DF would amount to the famous Kullback-

Leibler divergence:

DF (p, q) =
d∑
j=1

pj log(
pj
qj

) = KL(p||q) (4.2)

Example 3 (Itakura-Saito Distance). If X is the power spectrum of x, and F (X) =

1
2π

∫
log(X (ejθ)dθ which is convex on X , then the associated Bregman divergence be-

tween two power spectrums p and q is the Itakura-Saito distance widely used in signal

processing applications:

DF (p, q) =
1

2π

π∫
−π

(
− log

(
p(e(jθ))

q(e(jθ))

)
+
p(e(jθ))

q(e(jθ))
− 1

)
dθ (4.3)

Many other important divergence functions commonly used in the literature can

also be produced using Bregman divergences. Therefore, a common mathematical

framework based on Bregman divergences can have important impact on many engi-

neering applications. Basic properties of Bregman divergence are as follows (Banerjee

et al., 2005):

Property 4.1 (Non-negativity). The strict convexity of the generator function F implies

non-negativity with DF (p, q) = 0 iff p = q.

Property 4.2 (Convexity). DF (p, q) is convex in its first argument p but not necessarily

on the second.

Property 4.3 (Linearity). Bregman divergence is a linear operator i.e. for any two

strictly convex and differentiable functions F1 and F2 defined on X and λ ≥ 0:

DF1+λF2(p, q) = DF1(p, q) + λDF2(p, q)

65

Property 4.4 (Invariance). With a ∈ Rd and b ∈ R given G(x) = F (x) + 〈a,x〉 + b

strictly convex and differentiable on X we have DF (p, q) = DG(p, q).

Property 4.5 (Generalized Pythagoras). For any triple p, q, r of points in X , we have:

DF (p,q) +DF (q, r) = DF (p, r) + 〈p− q,∇F (r)−∇F (q)〉 (4.4)

Dual Structure

One of most important properties of Bregman divergences, due to the strict con-

vexity of F , is their Legendre dual divergence. Let F be a strictly convex and differen-

tiable real-valued function on X . The Legendre transformation makes use of the duality

relationship between points and lines to associate to F a convex conjugate function

F ∗ : Rd → R given by (Rockafellar, 1970):

F ∗(y) = sup
x∈X

[〈y,x〉 − F (x)] (4.5)

The supremum is reached at the unique point where y = ∇F (x). It can be shown that

F ∗ is also convex (Nielsen et al., 2007). From now on, we denote the dual point of x as

x′ = ∇F (x). Due to strict convexity of F , its gradient as well as the inverse of gradient

are well defined. Then the convex conjugate F ∗ is the function X ′ ⊂ Rd → R defined

by:

F ∗(x′) = 〈x,x′〉 − F (x)

We can now introduce the important dual divergence property of Bregman di-

vergences (Notice the inversion of p and q orders in the dual version):

Property 4.6 (Nielsen et al. (2007)). DF ∗ is also a Bregman divergence called the Leg-

endre dual divergence of DF and we have:

DF (p, q) = F (p) + F ∗(q)− < p, q′ >= DF ∗(q
′,p′)

66

In order to obtain DF ∗ one would need to obtain F ∗ from F as F ∗ =
∫
∇−1F .

This integral does not necessarily have a closed-form solution, however the duality for-

mulation of Bregman divergences would become significant when used in conjunction

with exponential family of distributions and in problems with probabilistic frameworks

where going back and forth between the natural parameter space and its convex conju-

gate space is plausible (see section 4.2.3).

Bregman Balls

In analogy to Euclidean geometry, we can define a Bregman ball (or sphere).

Due to the assymetric nature of Bregman divergences, a Bregman ball can be defined

as two counterparts which are right-type or left-type. This dualistic definition also holds

for all other geometric definitions in our framework.

Definition 4.2. A Bregman ball of right-type centered at µk with radius Rk is defined

as:

Br(µk, Rk) = {x ∈ X : DF (x,µk) ≤ Rk} (4.6)

Similarly, the Bregman ball of left-type B`(µk, Rk) is defined by inverting the

divergence relationship in eq. 4.6 to DF (µk,x).

Bregman Centroids

Given a cluster of points, we are often interested in finding the best single repre-

sentative of the cluster. This representative point is the centroid defined as the optimizer

of the minimum average distance for the entire set of points in the cluster. The following

theorem significantly states that the right-type centroid of a set of points X = {xi}ni=1

is independent of the choice of Bregman divergence. We provide its proof due to its

crucial importance.

Theorem 4.1 (Banerjee et al. (2005)). Let X be a random variable that takes values

in X = {xi}ni=1 ⊂ Rd. Given a Bregman divergence DF , the right type centroid of X

67

defined as

cFR = argmin
c

n∑
i=1

1

n
DF (xi, c) (4.7)

is unique, independent of F and coincides with center of mass µ = 1
n

n∑
i=1

xi.

Proof. The minimization above is equivalent to minimizing the function

JF (s) =
n∑
i=1

1

n
DF (xi, s).

Assuming that µ = 1
n

n∑
i=1

xi we can see:

JF (s)− JF (µ) =
n∑
i=1

1

n
DF (xi, s)−

n∑
i=1

1

n
DF (xi,µ)

= F (µ)− F (s)− 〈
n∑
i=1

1

n
xi − s,∇F (s)〉+ 〈

n∑
i=1

1

n
xi − µ,∇F (µ)〉

= F (µ)− F (s)− 〈µ− s,∇F (s)〉

= DF (µ, s) ≥ 0

where equality is reached only if s = µ due to strict convexity of F (See property 4.2).

Therefore, µ is the unique minimizer of JF .

Once again, due to general asymmetry of Bregman divergences, we can define a

left-type centroid by reversing the order of computation in eq. 4.7. In order to obtain the

left centroid cFL , we can now avoid exhaustive computation and easily use the dualistic

structure of our information manifold. Combining theorem 4.1 and property 4.6 we can

easily obtain:

cFL = (∇F)−1(
∑

i = 1n∇F (xi)) = (∇F)−1(cF
∗

R (X ′)) (4.8)

stating simply that to obtain the left-type centroid we calculate the right-type centroid in

the dual manifold X ′ using theorem 4.1 and convert it back to the original space given

that (∇F)−1 exists.

68

Bregman Information

Let X be a random variable following a probability ν that takes values in X =

{xi}ni=1 ⊂ Rd. Let µ = Eν [X]. Then the Bregman Information of X is defined as

(Banerjee et al., 2005):

IF (X) = Eν [DF (X,µ)] =
n∑
i=1

νiDF (xi,µ) (4.9)

Example 4 (Variance). If X ⊂ Rd with uniform probability measure νi = 1
n

, the

Bregman information with squared Euclidean distance as Bregman divergence is just

the variance of samples xi ∈X .

Example 5 (Mutual information). The mutual information I(X;Y) between two dis-

crete random variablesX and Y with joint distribution p(X,Y) is given by:

I(X;Y) =
∑

p(xi)KL(p(Y |xi), p(Y))

which can be expressed in terms of a random variable Zx that takes values in the set

of probability distributions Zx = {p(Y |xi)}ni=1 following the probability measure νi =

p(xi) and using Bregman information,

I(X;Y) =
n∑
i=1

νiDF (p(Y |xi),µ) = IF (Zx) (4.10)

where µ = Eν [p(Y |xi) = p(Y)] and DF is the Kullback-Leibler divergence.

4.2.3 Exponential Family of Distributions

Among different distribution families, the exponential family of probability dis-

tributions are of special importance and have found their way in many pattern recogni-

tion and engineering applications. A canonical definition of exponential family distri-

butions is as follows:

p(x|θ) = exp [< θ,f(x) > −F (θ) + C(x)] (4.11)

69

where f(x) is the sufficient statistics and θ ∈ X represents the natural parameters. F

is called the cumulant function or the log partition function. F fully characterizes the

exponential family while the term C(x) ensures density normalization. Since the sum

(or integral) of a probability density function adds to one, it is easy to show that,

F (θ) = log

∫
x

exp [< θ, f(x) > +C(x)]

showing that F fully characterizes the exponential family. It can be seen that many of the

commonly used distribution families (such as normal, multinomial, Bernoulli etc.) can

be generated by proper choice of natural parameters and sufficient statistics (Banerjee

et al., 2005). As a final definition, we call the expectation of X with respect to p(x;θ)

the expectation parameter given by:

µ = µ(θ) =

∫
x p(x;θ) dx

Duality of natural and expectation parameters

It can be shown (Amari and Nagaoka, 2000) that the expectation and natural pa-

rameters of exponential families of distributions have a one-to-one correspondence with

each other and span spaces that exhibit a dual relationship as outlined in section 4.2.2.

To begin, note that:

∇F (θ) =

[∫
x

f(x) exp {< θ, f(x) > −F (θ) + C(x)} dx
]

= µ

meaning that the expectation parameter µ is the image of the natural parameter θ under

the gradient mapping∇F . Now similar to eq. 4.5, we define the conjugate of F as

F ∗(µ) = sup
θ∈Θ
{(µ,θ)− F (θ)}. (4.12)

Due to the convexity of both F and F ∗, they would be duals of each other and the

following important one-to-one mapping holds between the two spaces:

µ(θ) = ∇F (θ) and θ(µ) = ∇F ∗(µ) (4.13)

70

4.2.4 Bregman Geometry and Exponential distributions

With the introduction above, we are now in a position to consider the geometrical

properties and statistical consequences of a statistical manifold defined on exponential

probability distributions using Bregman divergences. Such a statistical manifold is de-

fined on a d-simplex S where each point is a discrete probability distribution p(x;θ)

belonging to the same exponential family that are in return fully characterized by their

log partition function F as seen in section 4.2.3. In this framework, the geometry is

defined on the natural parameter space Θ.

Bijection with regular Bregman divergences

A natural question to ask at this point is: What family of Bregman divergence to

choose for a given family of exponential distribution? The answer to this question lies

in the important property of bijection between exponential families and Bregman diver-

gences as shown and proved by Banerjee, Merugu, Dhillon, and Ghosh (2005). This

property simply means that every regular exponential family corresponds to a unique

and distinct Bregman divergence and vice versa – leading to a one-to-one mapping be-

tween the two. Due to the importance of this fact and for completeness we reiterate the

main aspect of the theory here:

Theorem 4.2 (Banerjee et al. (2005)). Let p(x;θ) be the probability density function of a

regular exponential family of distribution with F as its associated log partition function.

Let F ∗ be the conjugate function of F . Let θ ∈ Θ be the natural parameter and µ be

the corresponding expectation parameter. Then p(x;θ) can be uniquely expressed as

p(x;θ) = exp(−DF ∗(x,µ))bF ∗(x) (4.14)

where bF ∗(x) is a uniquely determined function.

According to this theorem, the Legendre duality between F and F ∗ ensures that

no two exponential families correspond to the same Bregman divergence i.e. the map-

ping is one-to-one. A similar theorem by Banerjee et al. (2005) assures the existence

71

of a regular exponential family corresponding to every choice of Bregman divergence

(which is not detailed here since in our framework we are more interested in the one

way relationship shown in the above theorem). These findings are crucial for our frame-

work. They simply state that assuming a family of exponential family over our data will

directly provide us with a Bregman divergence that constructs an information manifold

over the geometry of the data and we can take advantage of all the theorems stated so

far.

Example 6 (Multinomial Distribution). A widely used exponential family is the Multi-

nomial distribution:

p(x; q) =
N !∏d
j=1 xj!

d∏
j=1

q
xj
j

where xj ∈ Z+ are frequencies of events,
∑d

j=1 xj = N and qj ≥ 0 are probabilities of

events that sum up to 1. Below, we show that p(x; q) can be expressed as the density

of an exponential distribution in x = { xj}d−1
j=1 with natural parameter θ = {log

qj
qd
}d−1
j=1

and cumulant function F (θ) = −N log(qd) = N log(1 +
∑d−1

j=1 e
θj):

p(x; q) = exp

(
d∑
j=1

xj log qj

)
N !∏d
j=1 xj!

= exp

(
d−1∑
j=1

xj log qj + xd log qd

)
p0(x)

= exp

(
d−1∑
j=1

xj log
qj
qd

+N log qd

)
p0(x)

= exp

(
〈x,θ〉 −N log

(
d∑
j=1

qj
qd

))
p0(x)

= exp

(
〈x,θ〉 −N log

(
1 +

d−1∑
j=1

eθj

))
p0(x)

= exp(〈x,θ〉 − F (θ))p0(x)

with p0(x) independent of θ and the third passage is obtained by using xd = N−
d∑
j=1

xj .

The expectation parameter can then be easily computed as:

µ = ∇F (θ) = [Nqj]
d−1
j=1

72

The Legendre dual F ∗ of F is

F ∗(µ) = 〈µ,θ〉 − F (θ)

=
d∑
j=1

Nqj log qj = N

d∑
j=1

(µj
N

)
log
(µj
N

)
Note that this F ∗ is a constant multiple of negative entropy and thus it is not surpris-

ing that the Bregman divergence bijection of the Multinomial distribution (according to

theorem 4.2) would be constant multiple of the KL divergence (see example 2):

DF ∗(x,µ) = F ∗(x)− F ∗(µ)− 〈x− µ,∇F ∗(µ)〉

= N

d∑
j=1

xj
N

log

(
xj/N

µj/N

)
The above derivations for Multinomial distribution will be later used in this and

the following chapters. Due to this importance the summary of the above derivations for

Multinomial manifold along some additional properties are provided in appendix A.1

on page 269.

Maximum Likelihood

A common goal of many statistical learning methods and applications is to find

the best natural parameters given certain a priori constraints. More specifically, given

a set of points or data in Rd we need to find the maximum likelihood distribution. The

following proposition discusses this issue using what we have observed so far:

Proposition 4.1 (Maximum-Likelihood). The problem of finding the maximum likeli-

hood on natural parameter space is equivalent to the right-type centroid following the-

orem 4.1, and thus equal to the sample mean and independent of the choice of Bregman

divergence.

Proof. Maximum-likelihood problem is often studied using the log-likelihood or simply

the log of the likelihood formulation. In this problem setting we are interested in finding

the optimum θ for a set of independent random variables in the set X = {xi}Ni=1.

73

Using theorem 4.2, minimizing the negative log-likelihood is the same as minimizing

the corresponding expected Bregman divergence of the exponential family distribution,

or for an exponential family distribution pF (x;θ) with log-partition function F ,

min

[
− log

∑
xi∈X

pF (xi;θ)

]
≡ min

∑
xi∈X

DF ∗(xi,µ).

Now, following theorem 4.1 this minimization amounts to the optimal distribution that

has µ = E[X] as the expectation parameter. In other words, the problem of maximum-

likelihood on natural parameter space Θ is reduced to the θ that corresponds to cF ∗R =

µ = ∇F ∗(θ) or θ = ∇−1F ∗(cF
∗

R) (according to eq. 4.13).

Note that estimation of maximum likelihood on natural parameter space by it-

self might lead to complex convex optimization problems which in this formulation is

reduced to a sample mean calculation in the conjugate space thanks to bijection of expo-

nential family distributions with Bregman divergences as well as the dualistic mapping

between expectation parameter and natural parameter spaces.

Generalized Pythagoras theorem

Using our dualistic notation, we can rewrite eq. 4.4 of the generalized pythagoras

formulation in property 4.5 as:

DF (p,q) +DF (q, r) = DF (p, r) + 〈p− q, r′ − q′〉 (4.15)

where the second term on the right 〈p − q, r′ − q′〉 has now a direct geometrical in-

terpretation: It corresponds to the angle between the geodesic (equivalent of lines in

Riemannian manifolds) connecting p to q and the geodesic connecting r′ to q′ in the

conjugate space. Naturally, this term vanishes whenever the two geodesics are orthogo-

nal to each other. In general, if q is the projection of r onto the simplex of p (denoted

here as X) then the right-most term above becomes negative and we gain the triangle-

74

inequality1. This projection is also equivalent to:

q = argmin
x∈X

DF (x, r)

which in return is also equivalent to the maximum likelihood formulation in proposi-

tion 4.1 or theorem 4.1. This observation will become significant when later on we

consider Bregman divergences for similarity distances.

4.3 Music Information Geometry

The main goal of this work is to provide a theoretical framework within which

we are able to capture information qualities and effectiveness. Using the tools intro-

duced in the previous sections, we aim at providing a framework for Music Information

Geometry where information geometries are constructed on-the-fly and their geometri-

cal properties reveal important remarks on their information qualities and effectiveness.

4.3.1 Methodology

Our framework is strongly based on timed structure of music signals. A music

signals is represented as sampled waveforms in time. In most signal processing front-

ends, the signal is represented as overlapping windows of the time-domain signals as a

vectorXti where ti is time (in seconds) of the window center. For simplicity of notation,

we drop the i index hereafter and useXt instead where t ∈ N. A common representation

in most signal processing approaches to music and audio is the frequency distribution

of the time-domain signal Xt as St(ω). This can be obtained by various methods such

as Fourier transforms, wavelet transforms etc. or a feature-space derived from such

representation (or even directly from the time-domain signal). Figure 4.1 shows a simple

diagram of such a signal processing front-end for a simple Fourier transform.

1If X is an affine set, then this term vanishes and gives rise to an equality (See Banerjee et al., 2005,
Appendix A).

75

Figure 4.1: Signal Processing front-end

Given a front-end representation, we are interested in the information geomet-

ric structure of the statistical manifold created by St(ω). The information manifold in

this framework is described by (S, g,∆D,∆D∗) as a dual information manifold using

Bregman divergences (see section 4.2.1).

Evidently, an information geometric framework captures the information pro-

vided in the representational front-end. The framework that will be introduced shortly is

independent of the representational scheme provided to the system and can be adapted

using mathematical constructs if needed. The only assumption made on the represen-

tation is that it can be generated using one of the general families of exponential distri-

butions. The choice of the parametric exponential family depends on the nature of the

problem and can be considered as a priori information and, as stated earlier, provides

choices among most of the distributions commonly used in many engineering applica-

tions. For example, one might prefer using mixtures of normal distributions on a specific

76

set of features for modeling applications of musical genre classification. For our general

framework, we avoid a priori assumptions and try to be as general as possible by consid-

ering a form of representation as close as possible to the frequency spectrum of music

and audio. Without loss of generality, we choose our representational front-end as a

running Constant-Q power spectrum representation of the audio signal geared on a log-

arithmic musical scale (corresponding roughly to notes on a piano) for St(ω) (Purwins

et al., 2001).

To begin our study, we adopt Dubnov’s distinction between (Dubnov, 2008)

Data Information Rate and Model Information Rate where the first assumes a certain

model over the signal and the second situates the on-going signal in relation to other

models in the learned model space.

4.3.2 Data IR

We start our exploration by immediately proving Dubnov’s Data-IR formulation

in equation 2.1 (Dubnov, Aug. 2004) using the information geometry tools provided

so far. The following theorem shows that this measure is equal to a special case of

the Bregman Information as defined in section 4.2.2. As a consequence, this theorem

shows that our information geometric framework would inherit automatically the nice

information measure properties of Dubnov’s measure such as its relevancy to listeners’

expectations (Dubnov et al., 2006) and surprisal structures of natural sounds (Dubnov,

2006).

Theorem 4.3. The Bregman Information corresponding to Itakura-Saito divergence

over a time-series with corresponding power spectra S = {Si(ω)}ni=1 and uniform

probability measure ν is equal to Dubnov Data-IR measure.

77

Proof.

Iφ(S) =
n∑
i=1

νiDF (Si, Ŝ)

=
n∑
i=1

1

2π

π∫
−π

[
− log

(
Si(e

jω)

Ŝ(ejω)

)
+

(
Si(e

jω

Ŝ(ejω)

)
− 1

]
dω

= − 1

2π

π∫
−π

n∑
i=1

νi log

(
Si(e

jω

Ŝ(ejω)

)
dω

= − 1

2π

π∫
−π

log


n∏
i=1

Si(e
iω)[

1
n

n∑
i=1

Si(ejω)

]n
 dω

whereDF is the Itakura-Saito divergence from eq. 4.3. The last equation above is simply

the spectral flatness measure of the power spectra for n framed samples of data as in

equation 2.1 and thus directly equals to Data-IR as put forward in (Dubnov, Aug. 2004).

4.3.3 Model IR

On the same lines as Dubnov (2008), to provide a more realistic framework

and to relax the stationary assumption of Data-IR, we can assume a musically plausi-

ble hypothesis where the signal is stationary in a finite time-frame under a model θk

and described through P (x1, . . . ,xn|θk). To assess this improvement and without loss

of generality, we assume that S is generated by a regular exponential family of distri-

butions pF (x;θ) with natural parameter space θ ∈ Θ, expectation parameters µ, and

log-partition function F . Given the bijection between regular Bregman divergences and

exponential distributions (theorem 4.2), such assumption would automatically provide

us with the associated Bregman divergence and its dual and all the nice tools and prop-

erties introduced in sections 4.2.2 through 4.2.4.

The regular exponential family chosen to represent our statistical manifold is

the multinomial distribution whose Bregman divergence and dual maps have previously

78

been derived in example 6. Multinomial distribution is an exponential family that is

commonly used in image and sound processing over histogram features (such as a nor-

malized frequency distribution) without any dimensionality reduction (N − 1 degree

of freedom for the case |St| = N), practically equal to the directly observed repre-

sentation. Therefore, in this framework, input signals are represented as Multinomial

distributions which are in fact normalized frequency distributions of the power spec-

trum St of the input time-domain signal vector Xt. Appendix A.1 summarizes basic

properties of Multinomial manifolds and provide the conversion to and back from it as

needed throughout this and following chapters.

Within this framework, we assume that a continuous-time music signal consti-

tutes models as quasi-stationary subsets of the continuous audio signal described by a

regular exponential family in a dual Bregman geometry. In other words, models in our

framework correspond to stable subsets of environmental information input to the sys-

tem. By explicit consideration of incremental nature of the continuous signal (as a time-

series), we now define a geometric framework to form these models on-the-fly using an

information geometric framework. We start by an information geometric definition of

models.

Definition 4.3 (Models). Given a dual structure manifold (S, g,∆D,∆D∗) derived on

a regular exponential family formed on data-stream Xk, a model θi consist of a set

Xi = {xk|k ∈ N ,N ⊂ N} that forms a Bregman Ball Br(µi, Ri) with center µi and

radius Ri.

From theorem 4.1, we know that for a set of points Xi, the centroid of the Breg-

man ball above is simply the sample mean. Moreover, once a model is formed with its

corresponding Bregman ball, the equivalence of an incoming point xt to the model can

be easily checked using the ball’s radius and the Bregman divergence of the framework

or xt ∈ Br(µk, Rk) if DF (xt,µk) ≤ Rk where the Bregman ball and divergence are

defined as the regular Bregman ball corresponding to the Multinomial distribution as

derived in example 6 (see also appendix A.1).

79

A natural question to ask at this point is: How do we learn or form these models

over data? If the environment emitting information is fixed and atemporal, then the

problem of learning optimal models over data is equivalent to classical clustering and

variants of hard-clustering for Bregman divergences as proposed in (Banerjee et al.,

2005; Teboulle, 2007). However, due to the continuous-timed nature of music signals,

and our interest in on-line discovery of information structures, we need to find ways to

incrementally learn and form models as the music information unfolds in time. Before

we introduce our incremental clustering method, we need to contemplate on the notion

of similarity as often discussed in the literature, within our framework.

4.4 From Divergence to Similarity Metric

One of the main goals of our information geometric framework is to provide a

mathematically sound framework where divergences can be used as close as possible

to the notion of similarity metrics. In this section we study the loose notion of “de-

gree of similarity” used in pattern recognition literature within an information theoretic

framework. We then attempt to connect this notion to the notion of divergence in our

information geometric framework.

In the field of Music Information Retrieval, Jonathan Foote has much been cred-

ited for promoting and using self-similarity measures for music and audio (Foote, 1997).

The MIR literature on database search, structure discovery, query-based retrieval and

many more, rely on Foote’s general notion of similarity as a basis to compare and

deduct music structures. As mentioned earlier in section 4.1, most of these methods

have the underlying assumption that the employed similarity measures provide metric

spaces while they are not. For example, using a simple Euclidean distance between

audio feature spaces does not assure the triangle inequality (see below) and therefore

equivalence of imaginary structs A and C while A and B, and B and C are similar,

is not guaranteed. In this section, we try to formulate a general information-theoretic

notion of similarity and discuss the necessary conditions for a metric similarity space

80

and study the realization of such notions in our information geometric framework.

We provide a different information geometric notion of similarity. Our theoret-

ical view of subject is similar to (Sinanović and Johnson, 2007). Rather than analyz-

ing signals for their relevant information content, we conceptually consider controlled

changes of the relevant and/or irrelevant information and determine how well the signals

encode this information change. We quantify the effectiveness of the information rep-

resentation by calculating how different are the signals corresponding to the two infor-

mation states. Because the signals can have arbitrary forms, usual choices for assessing

signal difference like mean-squared error make little sense. Instead we rely on distance

measures that quantify difference between the signals’ probabilistic descriptions. The

abstract entities of signals in our framework are models represented by the symbol θ as

discussed before. In this context, the symbol represents the meaning of the information

that signal X encodes and is a member of a larger set of models.

Definition 4.4 (Similarity). Two signals (or models) θ0,θ1 ∈ X are assumed to be

similar if the information gain by passing from one representation to other is zero or

minimal; quantified by dX(θ0,θ1) < ε which depends not on the signal itself, but on the

probability functions pX(x;θ0) and pX(x;θ1).

Now let us look deeper into the distance metric above. In all pattern recognition

applications based on a notion of similarity, a similarity metric is employed for cluster-

ing or classification. Let Ω be a nonempty set and R+ be the set of non-negative real

numbers. A distance or metric function on Ω is a function d : Ω×Ω→ R+ if it satisfies

the metric (in)equalities (Cilibrasi and Vitanyi, 2005):

Property 4.7. d(x,y) = 0 iff x = y

Property 4.8 (Symmetry). d(x,y) = d(y,x)

Property 4.9 (Triangle Inequality). d(x,y) ≤ d(x, z) + d(z,y)

A geometric framework with the distance d(., .) as outlined above, can correctly

cluster its domain into equivalence classes inherent within the definition of d. Our main

81

goal in employing an information geometric framework is to provide a framework where

the definition of divergences on a statistical manifold would come as close as possible to

a metric based on the our definition of similarity above. Considering our methodology

described in section 4.3.1, we propose to use Bregman divergences over a dual statisti-

cal manifold of exponential family functions describing a signal X with the notion of

models interchanged with the symbols in definition 4.4. It is important at this point to

note that Bregman divergences in general are not metrics since properties 4.8 and 4.9

do not generally hold while property 4.7 is equivalent to basic Bergman property 4.1

as shown in section 4.2.2. Despite this inconsistency, our framework with its use of

Bregman divergence is built on models rather than points where each model constitutes

an optimal representation of a cluster of points. This fact allows us to approach the two

missing properties in the following subsections.

4.4.1 Symmetrized Bregman Divergences

We noted earlier that Bregman divergences are not necessarily symmetric. For

these assymetric Bregman divergences, a symmetrized Bregman centroid can be defined

by the following optimization problem on the set P = {pi}ni=1 ⊂ X :

cF = argmin
c∈X

n∑
i=1

DF (c,pi) +DF (pi, c)

2
(4.16)

Nielsen and Nock (2007) show that this optimization problem can be simplified to a

constant-size system relying on the right-type and left-type centroids defined previously.

Their approach generalizes that of Veldhuis and Klabbers (Jan 2003) on symmetrizing

Kullback-Leibler divergence employing convex optimization to solve for the optimal

cF . They provide a new algorithm by extending and simplifying the former approach

by using duality and introducing a simple geodesic-walk dichotomic approximation al-

gorithm. Moreover, their approach is well adapted to problem settings where an expo-

nential distribution with its associated Bregman divergence are assumed. We give a full

account of their algorithm in appendix A.2.

82

Note that to solve eq. 4.16 an optimization scheme is inevitable in contrary to

most literature that define (for example) symmetrized KL divergences as arithmetic or

normalized geometric mean of the left-type and right-type centroids. Both approaches of

Veldhuis and Klabbers (Jan 2003) and Nielsen and Nock (2007) empirically prove this

remark on image and audio processing applications. For our framework, we adopt the

geodesic-walk algorithm of Nielsen and Nock (2007) to solve for an optimal symmetric

Bregman ball, extending our methodology defined previously to symmetrized Bregman

divergences. Therefore, from hereon any occurrence of the word centroid inherently

refers to symmetrized centroids according to eq. 4.16.

Other authors have different approaches in symmetrizing different Bregman di-

vergences but besides the work of Nielsen and Nock (2007), we are aware of no generic

framework for symmetrizing Bregman divergences in general. To cite a few, Johnson

and Sinanović (2001) attempted an alternative symmetrization of KL divergence by in-

troducing the resistor-average distance, via a harmonic mean (instead of the arithmetic

mean above). Our reasoning for choosing the method proposed by Nielsen and Nock is

based on two grounds: First, alternative formulations are based on intuitive averaging

rather than formulating the problem as an optimization problem, and second, the formu-

lation of eq. 4.16 comes close to the famous J-divergence that has been widely applied

to pattern recognition and engineering problems.

4.4.2 Triangle Inequality

The triangle inequality does not generally hold for Bregman divergences. How-

ever, we saw in section 4.2.4 that for three points x, y, and z, we can have

DF (x,y) ≥ DF (x, z) +DF (z,y)

if and only if z = argminq∈X DF (q,y) when X is a convex set containing x. In a spe-

cial case where z is the Bregman centroid over a set of point {xi}Ni=1 in the convex-set

X , the mentioned assumption holds and consequently we have the triangle inequal-

ity. It turns out that the domain of the log-partition function associated to Multinomial

83

distribution for our framework (see appendix A.1) is simply Rd−1 which is convex by

definition. We will see in the next section that during the incremental model formation

process, whenever the triangular inequality is needed to assess equivalent classes, it is

being used within the described situation. It is worthy to note that any future extension

of our methods to other classes of probability distributions should strongly consider and

solve this issue.

4.5 Incremental Model Formations

Using the information geometric framework introduced in section 4.3.1 and in

the context of data-stream analysis (such as music signals), we can devise a simple

scheme to incrementally segment the incoming signals to quasi-stationary chunks de-

fined by a radius R. Besides its direct geometric interpretation, the Bregman ball radius

R defines the maximum information gain around a mean µk that a model (or ball) con-

tains through the given Bregman divergence. To assess the formation of Bregman balls

on continuous data-streams, we assume that this information gain for a given model is a

càdlàg2 function in time. This assumption is a direct consequence of our initial assump-

tion that the signal is stationary in a finite time-frame under a model θk and the flatness

of our information geometry defined through dual Bregman divergences of exponential

families. It also conforms to the intuitive nature of musical information often character-

ized by distinct events with an information onset implying a discontinuity with regards

to the past. This way and in the ideal case, the information gain upon the arrival of each

point is stable (or continuous) within R for an ongoing model θk until a jump is seen at

time t indicating a candidate for a new model, and continuous again after t within the

new model θk+1 until a new model emerges later on.

In an ideal situation, the set of points in a specific model would be a continuous

subset of indexes in N. However, a realistic system should consider outliers which come

from observation noise, environmental noise, silence and more. We call such inputs

2right-continuous with left limits

84

non-events, in contrast to (musical) events that are quasi-stationary over a finite-time

window and define them as follows:

Definition 4.5 (Non-events). In a data-stream Xt = {x1, . . . ,xt}, a non-event is deter-

mined by a non-stationary continuation in information gain defined by R with respect

to the last formed model and a new model candidate. In other words, in a data-stream

analysis with the latest model in Br(µk, R), xt is considered a non-event if one of the

following conditions hold:

 DF (xt,µk) > R

DF (xt+1,µk) ≤ R
or


DF (xt,µk) > R

DF (xt+1,µk) ≥ R

DF (xt+1,xt) > R

(4.17)

Figure 4.2 demonstrates hypothetical diagrams showing three main situations

that can occur upon arrival of information at time t and t + 1. These diagrams are hy-

pothetical since Bregman balls are not necessarily symmetrical and do not demonstrate

a real ball-shape as in figure 4.2a. Figures 4.2c and 4.2d respectively correspond to

the left and right group of equation 4.17 and represent two non-events as outliers and

noise-continuation.

Using this simple segmentation scheme, we can decide whether the informa-

tion arriving at time-frame t belongs to a previously formed model k by examining

DF (xt,µk) against the fixed information gain R or whether it would be a non-event as

defined above. From this simple scheme it is clear that the decision is made with a lag

time of one analysis frame.

Running this simple algorithm on audio streams would result into segmentation

of data X ∈ RD into separate Bregman ball regions represented by their double-sided

centersM ∈ RD and |M| � |X |, that are characterized by their information stability

within an information gain of R from their respective centers. The segmentation result

is therefore dependent on the choice of R. Eventhough our goal here is not to provide

a meaningful segmentation of audio signals, the results of this segmentation are quite

significant and meaningful.

85

(a) A schematic Bregman ball (b) New Class Formation at t

(c) Outlier at t (d) Noise continuation at t

Figure 4.2: Schematic diagrams for incremental class formations using imaginary Breg-

man balls. Points correspond to continuous-time input vectors.

Example 7 (Real-time Music Segmentation). Using the framework introduced in sec-

tion 4.3.1, i.e. using normalized frequency distributions transfered to multinomial fam-

ily of exponential distribution, and applying the simple algorithm above on the Bregman

divergence of Multinomial distribution (see example 6 and appendix A.1) which is the

Kullback-Leibler divergence, we can obtain real-time segmentation of audio streams

corresponding to quasi-stationary models. Figure 4.3 shows the result of an old audio

recording of the first theme of Beethoven’s first sonata3 (with the music score shown in

figure 4.3a) for two different information gain or Bregman ball radius as thresholds of

the segmentation.

In figure 4.3, the absolute value of the audio amplitude along with on-line values

for class memberships or DF (xt, µk) and model onsets are represented over time. It can

be noticed easily that the first 6 segments in both figures 4.3b and 4.3c correspond to the
3Performed by Friedrich Gulda and published by DECCA-Philips Records, Catalog No. 00289 −

475− 6835, Original recording 1950− 58.

86

(a) Music Score of audio test

(b) Segmentation results with R = 0.3

(c) Segmentation results with R = 0.15

Figure 4.3: Segmentation results on the first theme of Beethoven’s first sonata, per-

formed by Friedrich Gulda (1950-58) with different R (information gain) thresholds.

87

first six music events in the music score of figure 4.3a.

It should be mentioned that the final goal of incremental model formation of

our Music Information Geometry framework is not to obtain a segmentation that cor-

responds to musical elements of a music score. The fact that such a phenomena is

observed in this example is a simple byproduct of using the right representational frame-

work where the quasi-stationary model chunks correspond roughly to notes and chords

that reconstruct the musical work.

4.6 Discussions

In this chapter we presented a framework for Music Information Geometry that

emphasizes on the influential aspect of information to decode and represent music in-

formation for further quantifications and qualifications. Our framework is based on in-

formation geometry of statistical structures. In this framework, we assumed that music

information arrives instantaneously and on-the-fly to the system as points on a manifold

of exponential probability distribution and whose geometrical structures are defined by

their associated Bregman divergence. The key theorem in allowing such assumption

is the bijection between Bregman divergences and exponential probability distributions

described earlier. Within this framework, we revisited Dubnov’s Information Rate the-

ory for music signals. We provided an alternative proof of his Data-IR and extended

his Model-IR concept where models are defined as quasi-stationary chunks of audio de-

scribable through a Bregman ball with a fixed radius indicating the information gain or

extent, and varying ball center within each model. We then provided a simple incre-

mental algorithm for model formations in a music signals. This framework allows us

to access relevant information within music streams which will be the topic of the next

chapter.

In an ideal framework, the information radii should be varying much like the ball

centers in the manifold. The basic intuition here is that two models might correspond

to different extent of information and this extent of information is not necessarily fixed.

88

In our incremental model formation algorithm, we basically detect model instantiation

by looking an instantaneous jumps in information novelty, indicated by comparing the

membership of the newly arrived information to the last detected model. This was sim-

ply realized by using a threshold over the information gain. In an ideal framework, to

allow varying information radii, one would prefer looking directly for jumps using dy-

namic stochastic models. This issue should be strongly considered for future expansion

of the proposed methods.

We conclude this chapter by an important remark regarding the validity of the

presented framework with regards to a common practice in the signal processing liter-

ature. It is commonly accepted among researchers to use Kullback-Leibler divergence

as a metric among distributions and in some applications among raw frequency spec-

trums. This latter use has become lately common and has been experimentally vali-

dated by many researchers and for various applications (See for example Stylianou and

Syrdal, 2001). Besides experimental assertions, we clearly showed in this chapter that

Kullback-Leibler divergence is the canonical divergence associated to a statistical man-

ifold of Multinomial distribution. When using KL on normalized spectrum analysis, we

inherently consider them as Multinomial distributions. Therefore, this experimental fact

can be theoretically explained through the bijection of Bregman divergences and ex-

ponential distribution manifolds of Multinomial family of exponential distributions. In

general, KL can be used on any representation of signals that comes close to histograms.

Therefore it is not surprising that another common use of KL in engineering literature

is in image recognition and analysis on image histogram features.

Chapter 5

Methods of Information Access

In this chapter we visit the problem of Information Access and from two differ-

ent view points: representation and retrieval. For the first, we seek a framework capable

of representing temporal regularities of music signals and using the music information

geometric structures described in the previous chapter. Such representational scheme

should give fast access to relevant music entities in long sequences of music and should

quantify to some extent the degree of relevancy of each entity with respect to the overall

structure of music information. For the second, we present a retrieval algorithm over

learned structures of music signals that allows fast access to relevant chunks of a sys-

tem’s memory given a query of audio signals. This method, proposed in section 5.2,

extends traditional query-by-example systems in a way that results can be partial and

could also correspond to a concatenation or re-assemblage of different chunks of the

search domain.

5.1 Incremental Clustering and Structure Discovery

In the previous chapter, we introduced our framework’s model formation as seg-

mentation of data-stream into Bregman Balls with a fixed radius indicating the informa-

tion gain relative to the double-sided centroid of the ball points. As a natural extension,

89

90

one would like to find equivalent segments (or Bregman balls) in the past as the stream

unfolds in time and eventually based on these equivalencies obtain information on the

overall structure of the stream in terms of regularities and repetitions. In other words,

we are interested in obtaining an on-line procedure that can quickly access equivalent

models that have occurred in the past and if possible, find the longest sequence of mod-

els in the past or a combination thereof that comes as close as possible to the ongoing

data-stream. The first problem is usually referred to as clustering and the second as

structure discovery. We are particularly interested in a fast method that can address both

in a single shot.

The method we propose in this paper is based on a finite-state automata used

for string matching and DNA sequences called Factor Oracle (Allauzen et al., 1999).

Factor Oracles (FO) have also been successfully applied to symbolic music sequences

for automatic improvisation and style imitations (Assayag and Dubnov, 2004) and will

be revisited again in part III of this thesis. An extension of Factor Oracle for continuous

data-streams first appeared in (Dubnov et al., 2007) called Audio Oracle. We base our

model on this extension and further enhance it with our information geometric tools

introduced in chapter 4.

5.1.1 Related Works

We start by introducing related works both on the application (audio structure

discovery) and machine learning sides.

Audio Structure Discovery

There has been several attempts in the literature towards audio and music struc-

ture discovery algorithms directly from audio signals. Audio structure learning relies

heavily in most present implementations on signal segmentation and can be viewed from

two main perspectives: model-based approaches that incorporate certain musical or cog-

nitive knowledge into the system in order to obtain structure boundaries, and model-free

91

approaches where the structure is learned directly from the audio itself without any in-

corporation of a priori knowledge of musical structures (Ong, 2007). For this work, we

are interested in a model-free approach without incorporating any a priori rule-based

or musicological knowledge. Among various model-free methods that have been pro-

posed, we also focus our attention on how the temporal structure of an audio stream is

derived given a set of audio features, whether it be a simple similarity matrix (Foote,

2000) or combinations of different audio features (Peeters, 2004; Rauber et al., 2002),

without much concern for the audio representation itself (type of audio features used

etc.).

Chai (2005) has proposed dynamic programming to perform music pattern match-

ing for finding repetitions in music and later discovering the structure of music. The dy-

namic programming scheme provides a score matrix that uses a normalized Euclidean

distance between two multi-dimensional feature vectors. In computing the score ma-

trix, the author uses a finite-window over time. Actual matching alignment occurs by

backtracking over the score matrix and repetitions can be detected by finding local min-

ima. In another approach, Peeters (2004) uses Hidden Markov Models (HMM) and a

multi-pass approach combining segmentation and structure discovery together. In each

pass, different time-order similarity measures are run over audio feature vectors where

the results estimate the number of classes and states for a K-means clustering that pro-

vides early parameters for learning of an ergodic HMM using Baum-Welch algorithm.

In other approaches authors have attempted to learn audio structures by direct cluster-

ing methods such as k-means (Logan and Chu, 2000), Singular-Value Decomposition

(Foote and Cooper, 2003) and more. Note that the mentioned methods are neither on-

line nor incremental, and make use of future information to deduct temporal structures

of underlying audio representation.

In this section, we present an on-line model-free algorithm for audio structure

discovery that is capable of retrieving and representing long-term dependencies in the

signal without using any ad-hoc windowing or Markov order parameterization.

92

Nearest-Neighbour and Tree Structures

On the machine learning side, our method is comparable in its aims to research

on nearest neighbor (NN) clustering methods where given new data, its placement in a

tree structure representing the structured data is searched. These methods are usually

quite exhaustive in nature but because of tremendous practical and theoretical implica-

tions thereof in machine learning and many retrieval schemes, an extensive amount of

research has been devoted to reduce the computational cost and complexity of finding

NNs. KD-trees (Freidman et al., 1977) is among one of the earliest and most popular

data structures for NN retrieval schemes. In such algorithms, a tree structure defines a

hierarchical space partition where each node represents an axis-aligned rectangle. The

search algorithm is then a simple branch and bound exploration of the tree. Metric balls

(as proposed in Omohundro, 1989) extended these methods to metric spaces by using

metric balls in place of rectangles. These search methods use the triangle inequality

(see property 4.9) to prune out nodes and seem to scale with dimensionality better than

simple KD-trees.

In many applications, an exact NN structure and search method is not required

and a close equivalence would be good enough. The structures learned through tree

structures would also seem too exhaustive both in computation and complexity during

search and structure learning. Due to these practical considerations many researchers

have considered approximate NN search methods, leading to significant breakthroughs

such as in (Liu et al., 2005) where metric balls can overlap.

In this work, we are interested in a data structure where retrieval and bucketing

can be done as fast as possible and ideally in linear time and space. Moreover, we

would like this representation to be able to reveal regularities in the data-stream in terms

of repetitions and recombinations to grasp an on-line structure of the overall signal.

Our method is similar in its goals to that of the approximate NN literature on metric

balls but uses a significantly different approach using on-line learning of state-space

structures where the notion of tree structures are inherent but accessible. We introduce

93

our proposed method in the following sections. We first start by formally defining the

structure of Audio Oracle and its structural implications and then move on to algorithmic

construction and learning of the oracle itself.

5.1.2 Audio Oracle Data Structure

Audio Oracle is a fast automaton learning procedure that was motivated by a

similar technique used for fast indexing of symbolic data such as text called Factor Or-

acle (Allauzen et al., 1999). In this section, we study the basic structure and properties

of Factor Oracles as they are basically the same as in Audio Oracles. A sequence of

symbols S = σ1, σ2, ...σn in a Factor Oracle P is learned as a state-space diagram,

whose states are indexed by 0, 1, . . . , n. There is always a transition arrow (called the

factor link) labelled by symbol σi going from state i−1 to state i, 1 < i < n. Therefore,

navigating a FO from state 0 to n would result in generating the original sequence S.

Depending on the structure of S, other arrows will be added to the automaton: Tran-

sitions directed from state i to state j (i < j) that belong to the set of factor links and

are labelled by symbol σk, are denoted by δ(i, σk) = j. And some transitions that are

directed backwards, going from a state i to a state j (i > j) called suffix links, bearing

no label and denoted by SP (i) = j.

The factor and suffix links created during FO learning have direct structural in-

terpretations. A factor link going from state i to j (i < j, labeled with σ`) indicates that

a (variable length) history of symbols immediately before i is a common prefix of the

sequence of symbols leading to j, or in other words {σi−k . . . σi}∪σ` = {σj−k−1 . . . σj}.

A Suffix link in oracle P that points from state m to an earlier state k or SP (m) = k,

models a factor automaton in a sense that states m and k would share the longest suffix

(or history). In other words, a suffix link goes from i to j if and only if the longest re-

peated suffix of s[1 . . . i] is recognized in j. Thus, suffix links connect repeated patterns

of S. Moreover, the length of each repeating factor pointed to by a suffix link can be

computed in linear time and denoted as lrs(i) for each state i (Lefebvre and Lecroq,

94

2000). The following simple example should give an intuitive view of FO structure:

Example 8. The Factor Oracle constructed for the text string abbbaab is shown in

figure 5.1 with transition arrows shown as regular lines and suffix links as dashed. By

following forward transitions and starting at state 0 one can generate factors such as bbb

or abb. Repeated factors such as ab are connected through suffix links. The suffix link

from state 4 to 3 indicates the longest common suffix between the two states (bb in this

case), as well as the suffix link from state 7 to 2 (indicating ab). The factor link labeled

with a from state 3 to 5 indicates that bb is a common prefix the two states etc.

0 1 2 3 4 5 6 7

a
a

b
a

b b b baaa

Figure 5.1: The Factor oracle for string abbbaab.

The fact that suffix links point to the longest repeated suffix between two states

make them particularly attractive for our purpose. Figure 5.2a shows schematically how

maximum length repeated factors are interconnected by suffix links. The thickness of

the lines represents the length of the repeated factor. This length is computed at no

additional cost by the oracle algorithm, and we will see later that it provides a very

important clue in revealing the information structure. Assayag and Bloch (2007) also

show that following each suffix link from the head of a Factor Oracle structure to the

very beginning provides a forest of disjoint tree structures whose roots are the smallest

and leftmost patterns appearing in the trees. A fundamental property of these Suffix Link

Trees (SLT) is that the pattern at each node is a suffix of the patterns associated to its

descendants. This way, SLTs capture all the redundancy organization inside the learned

sequence. Figure 5.2b shows two of the three suffix link trees that come directly out of

the suffix structure of figure 5.2a.

95

SNS0

(a) Suffix Structure Diagram (b) Suffix Link Tree Diagram

Figure 5.2: The Suffix structure and Suffix Link forest of disjoint trees.

Probably the most significant property of FO structures is their inherent variable-

length dependency structure. As mentioned in section 5.1.1, many audio structure dis-

covery algorithms suffer from modeling long-term dependency structures and use hand-

assigned parameters such as time-windows over history, fixed n-gram or Markov orders

in order to grab long-term regularities common in music information. As seen above,

Audio Oracle inherently handles long-term structures and moreover provides disjoint

tree structures that reveal patterns of regularities during the life of an audio stream.

An extension of FO to continuous audio signals was first introduced in (Dubnov,

Assayag, and Cont, 2007) where each audio analysis frame would constitute a state and

the equivalence relationship was replaced by an Euclidean norm with a threshold as met-

ric between different states. Despite significant results, the fact that the Euclidean norm

does not constitute a similarity metrics in the chosen domains resulted in discontinuities

in the results and loss of long-term structural dependencies.

In this work, we extend this approach to our music information geometric frame-

work that explicitly provides a framework for using derived divergences of a statistical

manifold as similarity metrics as shown in chapter 4. Along the methodology of sec-

tion 4.3.1, we present Audio Oracle (AO) within two paradigms: The first considers

a metric ball space where each state constitutes a Bregman balls over pre-segmented

models as introduced in section 4.5 and represented by their double-sided centroid. This

setup, referred to as Model-AO, is quite useful for structure discovery over long (and

realistic) audio streams as the resulting state-space is sparse and correspond to global

96

structure of the audio stream. In the second, called Data-AO, the entities entering the

system are points over a statistical manifold (rather than pre-segmented models). The

main idea behind this separation is that for some applications a fine-grain and detailed

structure is desired which implies a data-based rather than model-based access to in-

formation. A typical case of such application is studying the structure of constantly

varying spectrum sounds (such as natural sounds). Points can be directly derived from

audio observations once the exponential distribution manifold is defined by the user.

Such transition is possible by direct conversion of normalized audio feature representa-

tions (which after normalization can simulate a probability mass function) to our defined

exponential probability distribution. For our chosen framework of Multinomial distri-

bution this conversion is direct (see appendix A.1 for derivations). This conversion is

necessary to obtain the correct metric space as discussed in section 4.4.

5.1.3 Audio Oracle Learning and Construction

The oracle is learned on-line and incrementally. The learning and update algo-

rithm represented here is an extension of the symbolic FO algorithm in (Allauzen et al.,

1999) to the continuous audio domain. The important factor that allows such passage

is the construction of FO over a manifold where similarity measures can be considered

(approximately and closely enough) as metric spaces thus allowing the notion of equiv-

alence classes in the signal domain. The algorithms presented here are thus based on a

pre-defined music information geometry as defined in chapter 4, where the predisposed

exponential distribution provides a symmetrized Bregman divergenceDF (., .) used here

as a similarity metric.

The algorithms for forming Model-AO and Data-AO are the same and differ only

on the type of input entities. For Model-AO, the entering entities are models formed

incrementally as described in section 4.5 represented by their double-sided centroids

µi ∈ Rd, and for Data-AO entities are points of the defined manifold. For each new

entering entity, a new state i is added to the sequence and an arrow from state i− 1 to i

97

is created with label µi (the Bregman ball’s double-sided centroid). The algorithm then

updates the transition structure by iteratively following the previously learned structure

backwards through available factor links and suffix links in order to create new ones

according to their similarities.

Algorithms 5.1 and 5.2 demonstrate psuedo-codes for Audio Oracle construc-

tion. During the online construction, the algorithm accepts Bregman balls centroids as

models or vector points as entities σi coming from an exponential distribution manifold

supplied with its associated Bregman divergence up to time ti, and incrementally up-

dates the Audio Oracle. Algorithm 5.1 shows the main online construction algorithm.

Algorithm 5.1 calls the function Add-Model described in algorithm 5.2 which up-

Algorithm 5.1 On-line construction of Audio Oracle
Require: Audio entities as a stream Σ = σ1σ2 · · ·σN

1: Create an oracle P with one single state 0
2: SP (0)← −1
3: for i = 0 to N do
4: Oracle(P = p1 · · · pi)← Add-Frame (Oracle(P = p1 · · · pi−1),σi)
5: end for
6: return Oracle (P = p1 · · · pN)

dates the audio oracle structure using the latest entity. Similarity between two entities

is assured by using a small threshold ε checking for closeness in terms of information

between two model centroids using the provided Bregman diveregnce. This algorithm

traces the Suffix Link Trees backward and follows their forward transitions to find equiv-

alent models to the new incoming ball. It returns new transition and suffix links as well

as the length of the longest repeating suffix for each state (or LRS) by calling the func-

tion Compute-LRS as described in algorithm 5.3.

The Compute-LRS function of algorithm 5.3 is another incremental algorithm

that traces back the suffix link tree structures in search of continuations that can consti-

tute the longest repeating sequence in the present time that has occurred in the past.

Upon the construction of an Audio Oracle, the overall structure consists of for-

ward arrows δ(i), suffix links Sp(i) and the longest repeating suffix length corresponding

98

Algorithm 5.2 Add-Model function: Incremental update of Audio Oracle

Require: Oracle P = p1 · · · pm with suffix links in SP (i) and transitions in δ(i) for
each state pi; and new vector entity σ

1: Create a new state m+ 1
2: Create a new transition from m to m+ 1, δ(m) = m+ 1
3: k ← SP (m) and π1 ← SP (m)
4: while k > −1 do
5: Set I = {i ∈ δ(k)|DF (σδ(k),σ) < ε}
6: if I == ∅ then
7: Create a transition from state k to m+ 1; δ(k) = δ(k) ∪ {m+ 1}
8: k ← SP (k)
9: π1 = k

10: end if
11: end while
12: if k = −1 (no suffix exists) then
13: SP (m+ 1)← 0
14: else
15: SP (m+ 1)← where leads the best transition (min. distance) from k
16: end if
17: lrs(m+ 1)← Compute-LRS(P, pi1)
18: return Oracle P = p1 · · · pmσ

Algorithm 5.3 Compute-LRS function: Longest Repeating Sequence length calcula-
tion of Audio Oracle
Require: Oracle P = p1 · · · pm+1 with suffix links in SP (i), transitions in δ(i), previous

LRS in lrs(i) and π1

1: π2 ← SP (m+ 1)− 1
2: if π2 == SP (π1) then
3: return lrs(π1) + 1
4: else if π2 ∈ σ(SP (π1)) then
5: return lrs(m) + 1
6: else
7: while SP (π2) 6= SP (π1) do
8: π2 ← SP (π2)
9: end while

10: return max(lrs(π1), lrs(π2)) + 1
11: end if

99

to each state in lrs(i). Each state of the Audio Oracle would then refer either to a Breg-

man ball for Model-AO or individual vector points for the Data-AO. In the case of the

former, the models are formed incrementally over time and consists of the ball’s center

µk and a set of (implicit) points in the original data-stream that can be accessed by their

time-tags tk = {tk1, tk2, . . . , tkN} with N indicating the duration of the corresponding

model in terms of analysis frames and the value of tk1 as the onset time of the model in

the data-stream as shown previously in section 4.5.

5.1.4 Sample Results

Given a learned Audio Oracle structure of a music data-stream, the suffix links

would reveal the repeating structure of the ongoing signal and their corresponding longest

repeating sequence length or lrs. These two simple measures can reveal the structural

regularities of music directly from audio signals, which is crucial in many applications

of music information retrieval. Below we look at sample results for both Model-AO and

Data-AO.

Model-AO Results

Figure 5.3 shows the learned AO structure over Beethven’s first piano sonata as

performed by Friedrich Gulda (recorded between 1950−1958). The three subplots show

the audio waveform, the suffix structure (as pointing the present time (in seconds) to a

past time), and the length of repeating sequence lrs associated to each state respectively.

The suffix (or SFX) subplot should be read as follow: A time t on the x-axis would send

a pointer back to a time t′ (t′ < t) indicating the longest common suffix (in terms of

similarity) between a factor at time t and t′. The corresponding value for t on the lrs

subplot would reveal the length of the detected longest sequence (in terms of number of

states) associated to that state-time.

A close look at the the suffix and LRS structures would reveal a striking relation:

between time 50s and 100s, the suffix links are systematically pointing to times 0s to

100

50s. Consequently, we see monotonically increasing lrs behavior in the same interval.

Such a behavior is the result of exact pattern repetitions. A close look at the symbolic

music score of the piece or simply listening to the audio excerpts reveals the nature of

such behavior: The audio excerpt corresponding to the time interval [50s, 100s] is an ex-

act repetition of the theme of the sonata as indicated in the score by Beethoven. Relations

such as this, but in smaller scale, are numerous in a piece of music. Another example in

the same figure are audio subclips at time interval [150s, 160s] and [180s, 200s] which

are also repeating the first theme with variations (belonging respectively to the devel-

opment and recapitulation sections of a classical sonata form), revealed also in the lrs

structure.

Figure 5.3: Incrementally learned Audio Oracle structure in Beethoven’s Piano Sonate

1-movement 1, interpreted by Friedrich Gulda.

Figure 5.4 shows another example on Beethoven’s first piano sonata, 3rd move-

ment played by the same performer and taken from the same recording. In this example,

we have provided the original structure extracted from simple musicological analysis of

the original music score in terms of structure blocks labeled by A,B and C. As can be

seen in the figure, this particular piece goes through various structural repetitions and

recombinations which are mostly captured by the Audio Oracle structure. We should

note that this analysis is being done on an audio recording of a human performance of

101

the piece of music and therefore repetitions are never exact. Nevertheless, the Audio

Oracle structure still reveals long term dependencies in the overall data-stream.

A A B B C C D D A B

C C

Figure 5.4: Incrementally learned Audio Oracle structure along with the segmented

structure in terms of blocks from the orignal symbolic music score – Beethoven’s Piano

Sonate 1-movement 3, interpreted by Friedrich Gulda.

The Audio Oracle structures for both examples above were calculated using the

framework presented in section 4.3.1, and real-time simulation of Audio Oracle learn-

ing on Constant-Q spectrum of audio with an analysis window of approximately 32

milli-seconds and an overlap factor of 2. The information radius for Incremental Model

Formation algorithm of section 4.5 is set to 0.3 and ε of Audio Oracle learning to 0.1 for

both examples. The analysis in figure 5.3 leads to approximately 13000 analysis frames

mapped onto 650 models and states in the oracle. The example of figure 5.4 leads to

9500 analysis frames and 440 learned models and states. Note that all the algorithms

proposed here are incremental and do not access previous analysis frames in the me-

mory. They only store models (centroids along their indexes) as data arrives. Audio

oracle leaning, as mentioned before, has linear complexity in time and space making it

feasible for real-time calculation and storage of long audio structures.

102

Data-AO results

As mentioned previously, Audio Oracle can also be used in a data setting (i.e.

without model formations and directly on data streams projected on a manifold). Fig-

ure 5.5 shows the Data Audio Oracle calculated over a natural bird utterance with a nat-

ural repetition. The learned Audio Oracle structure is shown in figure 5.5a where each

state has a one-to-one correspondence with an analysis frame (based on Mel-Frequency

Cepstrum as shown in figure 5.5c). The suffix links in figure 5.5a are represented as

dashed-lines and correspond to detected repetitions of the second occurrence of the

bird’s utterance. For this analysis a time-window of 92ms with overlap factor of 2 is be-

ing used along for calculation of Mel-frequency Cepstrum Coefficients as the front-end

for the Multinomial manifold, and using ε = 0.3 during Data-AO learning.

5.1.5 Discussions

In this section, we presented the Audio Oracle algorithm, as an unsupervised and

incremental live algorithm for audio structure discovery. Audio Oracle was built on top

of the Music Information Geometry framework introduced in chapter 4 which ensures

that the divergences used in the algorithm can be considered as a metric space among

other utilities it provides. We further showed that the AO structure inherently gives

access to a forest of disjoint tree structures that represent various regularity patterns in a

stream of audio.

We presented Audio Oracle in two versions: Model-AO where the state-space

structure is learned upon learned models providing sparse and compact representations

of long audio. Our results show that learned Model-AOs show regularity structures that

can also be observed either through listening or by analyzing the music score. Note that

the algorithm does not assume any a priori musical knowledge. In the second version,

we presented Data-AO with an aim of accessing fine-grain micro-structures of contin-

uous audio (without any pre-segmentation), showing some results on natural sounds.

Data-AO will be sufficiently exploited in the next section for retrieval applications.

103

0 1 2 3 4 5 6 7 8 9 13 2010 11 12 14 15 16 17 18 19

(a) Learned Audio Oracle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

Waveform

(b) Sample Audio Waveform – two natural bird utterances

Analysis frame number

M
FC

C
Ab

so
lu

te
 V

al
ue

s

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

5

10

15

20

25

(c) Mel-Frequency Cepstral Coefficients features

Figure 5.5: Data Audio Oracle sample on natural bird utterances.

104

The Audio Oracle’s computational complexity is linear in time and space. Note

that while traditional self-similarity metrics make use of the whole spectrum of an audio

stream against each frame to calculate self-similarity matrices, in Audio Oracle and at

each step the algorithm only calculate the distance of the incoming frame to a limited

and sparse set of previous entities which depends solely the structural regularities of the

audio stream seen up to that point.

Audio Oracle enables fast access to audio content based on their structural sim-

ilarities. These two facts alone, make Audio Oracle very attractive as a front-end for

many music information retrieval applications and probably as a replacement for tradi-

tional self-similarity measures. This idea should be strongly pursued in future research.

5.2 Guidage: Fast Query-Based Information

Retrieval

In the previous section we showed that learned Audio Oracle structures give fast

access to forests of disjoint tree structures where each tree structure models variable-

length patterns of regularities over the whole audio stream pertained to a specific audio

content. Having easy access to these patterns, a natural question to ask is whether we

can use this property in a retrieval framework and bring to the front the subclips (or

combinations thereof) from the memory using a simple query. Also the Suffix Link and

lrs information associated with the running audio can reveal to what extent a newly

arrived chunk of audio is novel given its own past. Furthermore, a natural question to

ask is whether we can obtain a similar measure of information relevancy of an audio

chunk but pertained to an external set of music data rather than the running audio itself.

The two questions raised above share the same technological concerns and an-

swers to them touch many applications in computer music and music information re-

trieval (MIR) literatures. The common grounds in both questions are audio query and

concatenative synthesis systems, while their scopes extend from audio matching, query-

105

by-example, audio-content retrieval, and audio search engines as MIR systems to unit

selection, concatenative texture synthesis, automatic improvisation and style imitation

systems in computer music as well as access to information aspect of audio, external

to the stream itself. In this section, we address the two concerns within one framework

and examine results within retrieval applications of the proposed method. Due to the

extent of the topic, we begin our discussion by looking at the scope of this research and

a general discussion of the proposed method.

5.2.1 Research Scope

Quite often in signal processing applications, whether for search or synthesis

purposes, we are interested in selecting the most proper unit given a context. This prob-

lem is often referred to as unit selection in concatenative synthesis literature and is also

the main concern of information retrieval over sequential data (such as video and music).

In this section, we propose a method called Guidage for efficient retrieval of sequential

information given a query as input. An applicative advantage of Guidage is its capabil-

ity to reassemble subclips or chunks in the search target wherever appropriate in order

to reconstruct the query if exact repetition of the query is not available in the database.

Therefore, Guidage aims at directly solving the unit selection problem common in con-

catenative synthesis and query search problems.

Guidage is a unique combination of two main technologies - concatenative syn-

thesis and audio query - used together in order to achieve audio content-based control

over sound synthesis as well as revealing the relevancy of external data to an audio

query. The system uses a sound source (a query) to create new content from a variety

of sounds over a large database of target sounds. The unique property of the system

is its capability to match variable length clips of the query input to new audio materi-

als, which are used for recombination and concatenation from the target database. The

uniqueness of our approach comes from the fact that the search domain of the algorithm

is not the audio domain itself but a compact state-representation of its internal structure

106

to better handle context-sensitivity and temporal morphologies of sounds. Audio Oracle

structure (in its two forms as presented in the previous sections) constitute the search

domain of our algorithm and acts as meta data. The proposed search procedure is a

fast dynamic programming algorithm specifically designed for Audio Oracle structures

that is capable of matching the query by concatenating factors or subclips in the target

audio. The resulting audio material preserves naturalness and captures temporal mor-

phologies of the input query due to its capability to find longer phrases and flexibility of

the matching criteria, as explained hereafter.

Guidage automatically identifies segments in the target sounds that match parts

of the query. Segments in the query that do not pass a user-defined matching threshold

in the target sound are left silent, resulting in a collection of possible excerpts from the

target database, matching to different portions of the query that are obtainable using a

simple resynthesis algorithm. In other words, the search algorithm guides the resyn-

thesis engine to parts of the target audio pertaining to the query audio and user-defined

search parameters, and allows reassembly of these factors to replicate the given query.

Therefore, on the applicative side Guidage can be looked within two perspectives: An

algorithm for guiding the memory to relevant places in the memory pertained to a query

(hence the origin of the name Guidage). This aspect of the algorithm is quite important

for interactive learning setups such as active learning or reinforcement learning algo-

rithms and will be revisited in part III of this thesis. The second aspect is its capability

to re-assemble the target audio based on guided paths to replicate all or parts of the

original query. This aspect of the proposed method can find immediate applications in

any system where unit selection is of great importance: concatenative synthesis, search

engines and more.

The work presented here touches upon several existing techniques for sound

manipulations: sound texture synthesis, and audio mosaicing on the synthesis side; and

audio matching, query by audio and audio structure discovery on the analysis side. We

therefore begin in section 5.2.2 by reviewing the most relevant works in the literature in

these fields as well as their comparison to the proposed methods. Section 5.2.3 provides

107

the general framework of the proposed algorithm, followed by a discussion and defini-

tion of the meta-data used by the algorithm in section 5.2.4 as today’s large-scale audio

data necessitates. In section 5.2.5 we define the proposed search algorithm Guidage

that uses Audio Oracle structures to find occurences or partial occurences of a given

audio query within search target(s). The resynthesis engine is briefly described in sec-

tion 5.2.6. We then examine the results of the system within two application frameworks

in section 5.2.7: Primarily as information retrieval on long music data using Model-AO

as meta-data and second for fast retrieval of sound textures on large databases of audio.

5.2.2 Related Works

Concatenative Approaches to Sound Synthesis

Concatenative approaches to sound synthesis undergo various definitions and ap-

proaches for treatment of sound recording using re-assemblage of an audio recording or

an external audio corpus. Sound texture synthesis systems (Lu et al., 2004; Hoskinson

and Pai, 2001) try to create new versions of sounds, mostly from natural sources, that

would be similar to the original source without repeating or looping it. The synthesis

engine within this group usually uses short sound grains, or time-frequency represen-

tations, including wavelet multi-scale analysis, to create new sounds that have similar

statistical properties as the original source. Mosaicing usually refers to combination of

larger chunks of sound in a “creative” manner, drawing upon re-mix cultures and other

ways of composing by assembling samples (Zils and Pachet, 2001; Lazier and Cook,

2003). Both of the above might have different levels of control over the generative

process, from uncontrolled manner of creating texture variants to constrained selection

designed to match a compositional design. Concatenative synthesis usually refers to the

use of recordings for audio synthesis driven by non-audio data, such as note sequences

(MIDI) for music or text in the case of speech (Schwarz, 2007). This method mostly

deals with finding the right recorded sounds in order to create a required pitch or pho-

netic sequence, trying to obtain an optimal tradeoff between the length of recopied clips

108

and the amount of editing operations (pitch shifting, time stretching and etc.). Cre-

ative applications of concatenative synthesis usually undergo feature matching on local

or short-term time scales (Sturm, 2004). Other creative applications include granular

synthesis, and iterated non-linear functions, to mention a few.

One of the main drawbacks of most of the creative applications proposed using

these methods is the lack of intuitive control over the produced contents. Some of the

existing systems (Schwarz, 2007; Lazier and Cook, 2003) provide parametric control

interfaces and in the case of the second, an audio content retrieval scheme for access-

ing target specific contents. In this work we present a new and fast way of controlling

audio assemblage by explicitly taking the audio structure and its temporal morpholo-

gies into account by considering Audio Oracle structures as meta-data for the system.

The search algorithm then takes into account this structure and guides the synthesis en-

gine towards sequences within the search target that can replicate the given structure as

query. In Guidage, the level of match or precision versus tolerance in similiarity be-

tween the query source and the candidate targets is controlled by a threshold parameter

corresponding to an information tolerance as a result of applying the algorithm on the

basis of music information geometry and Audio Oracle structures presented in chapter 4

and section 5.1.

Audio Matching

Within the audio matching and query-by-example literature, perhaps the most

relevant system to our work is the Freesound project1 with major focus on short sam-

ples (with mean duration of 3.25 seconds). Within the Freesound project there is a

content-based search capability that describes the microsound structure using audio fea-

ture vectors using a Nearest Neighbor search. On top of the audio structure match is

an ontology based on an English lexical model that accesses labels associated with each

sample and collected using collaborative filtering that enhances semantical capabilities

1http://www.freesound.org

http://www.freesound.org

109

of the results (Cano, 2007).

A more relevant framework to our work is the system described by Casey (2005).

In this approach, spectral dynamics are modeled using a 40-state hidden Markov model

with parameters inferred by machine learning over a large corpus of training audio data.

Time dependence between audio features is modeled by a first-order Markov chain pro-

cess where each state is considered as a generator for feature vectors through a multi-

dimensional Gaussian kernel. In Casey’s terminology, these states are called acoustic

lexemes. Matching can be achieved using the learned HMM and n-gram models to

achieve longer sequences where the author considers n-grams of orders from 1 to 8 for

the specific applications described in (Casey, 2005).

Due to representational advantages of Audio Oracle structures, Guidage does not

undergo any time-dependency limitation as is often the case with n-gram approaches and

there is no limit to the time extent of the samples used during applications. Moreover,

AO structures enable fast access to content-base tree structures that are more efficient

than often exhaustive Nearest Neighbor search algorithms (see section 5.1.1 for a dis-

cussion on this issue).

5.2.3 General Framework

The work presented here is a rather simple dynamic programming search algo-

rithm. But the premise of its success lies within two important assumption: First, that

the musical information is represented and lies within a Music Information Geometric

framework as proposed in chapter 4. And second, that its search domain (audio infor-

mation) is represented not as the audio information itself but its structural information.

Therefore, Audio Oracle structures are used as meta-data of audio information during

search applications as will be discussed in detail in section 5.2.4.

The Guidage search algorithm detailed in section 5.2.5 takes an audio input as

query. It is a fast dynamic programming algorithm that browses all the audio files in

a given database (or their associated metadata) to achieve highest reconstruction of

110

the query audio by concatenating factors or subclips within each audio in the search

database. More precisely, it provides paths over each Audio Oracle structure as a com-

bination of its inherent suffix links and factor links to achieve the longest possible and

coherent (in terms of temporality) similar structural sequence to the query audio. With

this respect, the algorithm can work in the two domains of Audio Oracle as discussed in

section 5.1.3: Model-AO for large audio files assuring scalability of search results, and

Data-AO assuring access to microscopic structural variations of audio information. We

present both aspects within applicative frameworks in section 5.2.7.

The general schema of the Guidage algorithm is modular in the sense that the

user can specify the search criteria that is used in both meta data construction and search

procedure, and moreover a threshold parameter can control the degree of structure sim-

ilarity that the user desires to assess during resynthesis. Since Audio Oracle is indepen-

dent of the input vector presented to the algorithm, the modularity amounts to the choice

of the user in terms of what representation she desires to use as input to the algorithm

as far as correct conversion exist to assure a music information geometry. Using Audio

Oracle structures as meta data would allow us to learn and store Audio Oracles for dif-

ferent sets of audio features that can be easily recalled and changed in the search user

interface and utility of the system. To demonstrate results, we have chosen to experiment

with a limited set of audio features and combinations thereof. In practice, the choice of

signal processing front-end is left to users and researchers interested in expanding the

applicative framework of Guidage.

5.2.4 Search Domain and Meta Data

When dealing with large data bases of audio, and in comparison to retrieval from

small sound sources, two problematic issues arise: Scalability of data and access to a

wide and disparate amount of data. The issue of scalability is of high importance at

our time due to the exponential trend of media data size and specially music data. This

exponential growth in turn affects maintenance and technological life of any system that

111

deals with meta-data containing such information. Within this context, de Cheveigné

defines scalability as the conjunction of two properties: arbitrary resolution, and con-

vertibility between resolutions (de Cheveigné, 2002). Scalability of data becomes even

more important in the context of search algorithms such as ours and specific to music

information because of high degree of variability of musical entities of the same piece of

music represented within different contexts (different performances, styles, instrumen-

tation etc.). The issue of scalable data is not independent from the issue of data access.

Even for an algorithmically fast search methods (that is close to linear time) in the con-

text of a huge audio file, accessing furthest points in the data sequence arbitrarily might

become an important burden. The ideal solution for such situations is to gain access to

extreme data points using some inherent structural and contextual information.

In our proposal, we address both issues discussed above by replacing the audio

information by their Audio Oracle representations as the search domain of the algorithm.

Each model or state in a Model-AO structure represents a stable audio chunk where its

temporal resolution can be variable during retrieval applications and thus scalable. With

this respect, we separate two issues related to scalability of data: temporal scalability

that refers to degrees of difference on time-span of information content, and representa-

tional scalability pertaining to variability of representations of the same audio phenom-

ena. Audio Oracles address the first but neglige the second. This is rather a property of

Audio Oracle than a shortcoming. Audio Oracles do not represent the content but the

influential aspect of the data as it unfolds in time and hence, the structural content of

a specific representational scheme would not naturally be the same on another scheme.

The important factor when using Audio Oracle instead of audio itself with this respect

is its sparse and compact representation of flow of information content. If the tempo-

ral resolution of such content is modified in an alternative representation of the same

audio flow, its information content should ideally stay the same to be recognizable by

both humans and machines as the same phenomena. Also the structural representation

of audio in Audio Oracle provides fast access to extreme sequential placements based

on variable-length content similarities within the data. This way any search algorithm

112

can instantaneously access two extremes in the same flow if they undergo structural

similarities as represented by arrows in an Audio Oracle representation.

In our experiment, we store learned Audio Oracle structures, along with their

corresponding audio features and analysis information in meta data information using

the Sound Description Interchangeable Format (SDIF) (Schwarz and Wright, 2000).

Besides its universal accessibility and interchangeable format, SDIF allows fast and ef-

ficient access to any desired set of analysis frames during execution. Moreover, SDIF

allows personalized type-definitions which are used here to describe Audio Oracle struc-

tures, along parameters that are used during audio re-assemblage once the search algo-

rithm has finished its task.

5.2.5 Guidage Algorithm

We define the problem context for our proposed search algorithm as follows:

Given an audio query and a search target audio file, find an assemblage of sub-clips

within the target audio file that can replicate the audio query. In other words, we are

aiming at reconstructing a new audio similar to the query by concatenating sub-clips of

the target audio file. The search criteria is defined by the user and corresponds to the

type of audio feature set (and its corresponding Audio Oracle representation of targets)

used for analysis and similarity comparison.

The search algorithm proposed here is based on Dynamic Programming, an algo-

rithm paradigm in which a problem is solved by identifying a collection of subproblems

and tackling them one by one, smallest first. Dynamic Programming uses the “answers”

to small problems to help figure out larger ones, until the whole of them is solved. In

the context of our problem, the “small” problem set amounts to finding audio chunks

(or audio analysis frames in this case) in the search target audio file, that are similar to a

corresponding chunk in the query and can be considered the longest possible path and

a continuation of the previously obtained chained based on the Audio Oracle structure

of the target audio. We call this step of the procedure the forward pass. The “larger”

113

problem, then, becomes finding the best path among all recognized that best meets the

search criteria when all the small-set problems are solved. This step is referred to as

backward procedure.

As the algorithm is based on Audio Oracle meta-data, it has two possible usage

based on the type of Model or Data Audio Oracle being used for meta-data. In both

usages, the algorithm rests the same but the definition of sound entities entering the

system differ as described shortly. We refer to these two practices of the algorithm as

Model-Guidage and Data Guidage.

To describe the algorithm in a formal manner, we use the following notations:

Query Audio is represented as Q = {Q1,Q2, . . . ,QN} where each Qi is either the

(user-specified) feature description of the ith time-domain analysis window converted to

a Multinomial distribution to represent points on a statistical manifold for Data Guidage

usage, or models as a result of Model-AO representation of the query audio. Simi-

larly, the search target audio is represented as either its data or model AO vectors in

Y = {Y1,Y2, . . . ,YM} and also by its corresponding Audio Oracle structure data, δ(i)

for factor links and SP (i) for suffix links as before where i ≤M . The algorithm assigns

similarity using a user-defined threshold ε used on the symmetrized Bregman diver-

gence (defined previously in chapter 4) associated to the representation and within the

previously discussed approximate similarity metric space.

The basic functionality of the forward pass of Guidage is as follows: At the

very onset, the algorithm identifies similar states in Y as initial candidates for Q1 us-

ing Bregman divergence and the given threshold ε. This is the only place throughout

the whole algorithm where a single state is tested against the whole target domain. This

procedure results into a set of state-index candidates in Y denoted as I1
1 . From this point

onwards, the goal of the algorithm is to find the longest and best possible continuation

by branching within the Audio Oracle structure of the target. Continuity is assured by

following the structural similarities and spectral morphologies of the target Audio Ora-

cle. To this end, every candidate state in I1
1 is considered as a parent and the similarity

of its children are tested against the next pass in the query or Q2. The children of a

114

state in Audio Oracle are states that either immediately follow the parent through factor

links or follow a neighbor of the candidate on the Suffix Link Tree where the candidate

lives. This relationship is represented schematically in figure 5.6. Testing Q2 against

the children of I1
1 for similarity would lead to I1

2 . This process will continue for each

Qi until there is no possible continuation after I1
k . At this point, either k is equal to N

(or size of the query) meaning that we have browsed the whole query space, or k < N

meaning that the ensembles I1 = {I1
1 , . . . , I1

k} provides various paths to reconstruct

the audio chunk corresponding to the sequence Q1 . . .Qk. In the case of the second

(k < N), the algorithm then restarts but this time atQk+1 (instead ofQ1) until a second

set Ik+1 is obtained and continue this schema until the whole query space is browsed.

Algorithm 5.4 shows the steps taken during the forward pass of Guidage.

...

Figure 5.6: Audio Oracle Parent/Children structure diagram. The parent is represented

as a double-lined state and adopted children with dashed-lines. Directed edges represent

Factor Links and dashed lines the Suffix Links as undirected edges.

Algorithm 5.4 returns the structure I, with N member sets equal to the number

of entities in the query. Within I each group of subsets Ik1 . . . Ik` correspond to a tree

structure determining a path on the Audio Oracle structure of the target (Y) that can re

constitute the audio chunk Qk . . .Qk+`. This tree structure is the result of combining

factor link and suffix link continuations on the target oracle. In the case where the whole

query can not be constructed in one pass, I would contain several tree structures whose

concatenation can reconstruct relative parts of the query where parts can also be empty

(or silent). Therefore, each tree structure correspond to several and many complete or

partial paths that can reconstruct parts or the whole query.

Having I from algorithm 5.4, it suffices to find the best paths among each tree

115

Algorithm 5.4 Forward pass of Guidage

Require: Query Audio Oracle centroids in Q = {Q1,Q2, . . . ,QN}, Search Target
Audio Oracle P given by centroids Y = {Y1, Y2, . . . , YM}, factor links δ(i) and
suffix links SP (i).

1: Initialization: k ← 1
2: while k < N do
3: Initialize the search space as Ik1 =

{
j|DF (Yj,Qk) ≤ ε

}
4: i← k + 1
5: while Iki−1 6= ∅ do
6: Set Iki = ∅
7: for Each state index j in Iki−1 do
8: Set Cj to the index of children of state j
9: Obtain Iki where

Iki = Iki ∪
{
h|h ∈ Cj, DF (Yh,Qi) ≤ ε

}
10: end for
11: i← i+ 1
12: end while
13: if Iki = ∅ then
14: k ← i
15: end if
16: end while
17: return I structures

116

structure to reconstruct the query using the target. This amounts to a simple backtracking

and branching procedure using indexes in sets Iki following the Audio Oracle structure

of the target and the scores of each transition which is equal to the similarity obtained

during the forward pass using the Bregman divergence. Once the best path is obtained,

we can easily reconstruct the audio using a simple concatenative resynthesis as described

below.

5.2.6 Resynthesis

Once a reconstruction path is obtained from Guidage, resynthesis of the search

results amounts to a simple concatenation of the corresponding audio to each state des-

ignated by the path. If the result corresponds to the Data Guidage framework (i.e. using

Guidage on Data-AOs), then the resynthesis is a simple windowed overlap-add algo-

rithm that assures phase continuity of the reconstruction and in accordance with the

signal processing front-end used for the music information geometry framework (see

section 4.3.1). In the case of Model-Guidage, each state in the path corresponds to a

model Yj on the target oracle related to another modelQh through similarity and conti-

nuity. Note that each model in a model-AO by itself corresponds to a set of continuous

points with time indexes indicating analysis time-windows in the original audio. The

number of points within each model is usually different. In a case where model Yj

corresponds to ky points, Qh to kq points, and kq ≤ ky, the described concatenative

procedure can reconstructQh by using the first kq original points from the target audio.

Note that since each model in a model-AO represents quasi-stationary chunks of audio

in terms of information content, textual continuity is more or less assured and controlled

by the threshold parameter used during AO construction. In the case where kq > ky, the

number of points needed to construct the model in the query exceed the ones given by

the model in the target. Here, the quasi-stationarity of models in AO comes to help by

simply recycling the points in the target model to reconstruct the associated query chunk

and assuring phase continuity.

117

5.2.7 Sample Applications and Results

Results of Guidage can be best studied in application frameworks. In this section

we demonstrate these results within several immediate retrieval application frameworks:

One on Model Guidage and two on Data Guidage. The Model Guidage framework al-

lows fast and high-level retrieval over large audio files and using large musical queries

whereas Data Guidage can be used for texture retrieval and access to micro-structures of

sound and audio. The Model Guidage experiment is presented here to provide visualiza-

tion of results of Guidage whereas the other experiments study the applicability of the

algorithm within two sample applications. In one application, an audio query is given

by the user as well as a pointer to a search target folder, and some search parameters.

The application then runs Guidage over the whole database and a Graphical User Inter-

face (GUI) demonstrates ranked search results and visualizes different parameters. In

the second application, an audio query is searched within one given target audio, where

the aim is to reassemble various occurrences of the query in the target file and access

the micro-structure level re-assemblage.

Model-Guidage Sample Results

Here, we examine the result of Guidage in a Model-AO set up where Model-

AO is used as meta-data for both query and target audio. To make our observations

straightforward, we demonstrate a rather simple problem and study the result structure

of Guidage. We run Guidage on Beethoven’s 1st Piano Sonata (first movement) with the

audio query as the first theme of the same piece. We previously demonstrated the Model-

AO of both: The query models were presented in figure 4.3 on page 86, and the Model-

AO of the whole piece was shown in figure 5.3 of page 100. The incremental model

formation algorithm of section 4.5 leads to 37 models (Qis) for the query constituting

around 10 seconds of audio, and the Model-AO of the whole piece has around 650 states

or models (Yis) on over 3.5 minutes of audio. This setup allows us to interpret the

tree structure as the intermediate result of Guidage and easily interprete their musical

118

relevance since the best path in this case is really a self-similarity test. The algorithm

returns the results within less than 2 seconds when run in the MATLAB programming

environment and on a 2.33GHz Intel Core laptop.

Figure 5.7 on page 119 shows the result of Guidage on the described setup by

visualizing the tree structure2 of I and by showing the reconstructed audio on the top,

corresponding to the best path on the tree-graph highlighted by light-gray states. The

tree structure should be read from left to right as the arrows indicate. This experiment

was done using a similarity threshold of ε = 0.3 for Guidage. While the best path

(highlighted as light-gray nodes) correctly identifies the original audio chunk (states 1

through 37), there are several alternative paths that can be chosen to this optimal path

that are musically important to us. Some of the minor paths have been omitted from this

graph to help readability. Parallel to the main path, there is an alternative path consisting

of continuous states 169 to 202. These states correspond to the repetition of this theme

after the exposition of the sonata form as was discussed in section 5.1.4. A third path

consists of states 460 to 511 that more or less maintain their continuity throughout the

tree. This path corresponds to the third repetition of the theme (with variations) in the

beginning of the reprisal of the sonata form. Other sub-paths correspond to partial con-

structions and reappearance of parts of the theme throughout the whole sonata specially

during the development section. Another interesting observation in this example is the

explosion of state choices at particular time-levels of the tree. At time-level 11 (that here

corresponds to light-gray state 11), there are many state candidates as possible continua-

tions representing that particular model. A close look at the corresponding model shows

that it belongs to a particular cadential chord in the theme that re-appears in various

places throughout the piece as an important stylistic element, and hence explains the

explosion of state choices. The same phenomena can be observed for the very last state

that represents another cadential chord.

Every application of Guidage, whether in Model or Data mode, would result

into a tree structure similar to figure 5.7. Besides the importance of the depth of the tree

2Using GraphViz (Ellson et al., 2003).

119

1

2 4
6

1
7
0

5
1
8

4
2

4
5

6
2

6
3

2
2
7

8
3

4
6
1

4
6
9

1
6
9

2
5
0

4
6
0

4
6
2

5
2
1

6
1
4

4
6
3

4
6
8

5
1
7

5
4
9

3

1
7
1

3
3
4

5
1
9

4

1
7
2

3
3
5

5

1
7
3

6

1
7
4

3
3
7

7

1
7
5

8

1
7
6

1
8
9

9

1
7
7

1
9
0

4
9
2

4
9
3

1
0

1
7
8

2
1
0

5
6
0

5
9
4

4
9
3

4
2
8

5
5
2

6
4
5

1
1

1
8
2

1
8
5

5
4
8

5
9
5

6
0
7

6
0
9

4
4

2
0
9

4
6
3

5
5
0

4
2
8

5
5
2

5
5
3

4
2
7

1
2

1
7
9

5
4
0

6
3
4

4
9
4

1
3

1
8
4

4
9
5

1
8
0

1
4

1
8
1

4
9
6

1
5

4
9
7

1
8
2

1
6

1
8
3

1
7

1
8
4

4
9
8

1
8

4
9
9

1
7

1
8
5

1
9

5
0
0

1
8
6

1
8
7

2
0

2
1

1
8
8

5
0
1

2
2

4
9
1

5
0
2

2
1

1
8
9

2
3

2
4

1
9
2

2
5

5
0
5

2
6

1
9
4

2
7

5
0
5

2
6

4
8
5

2
8

1
9
4

4
8
5

4
8
6

5
0
6

5
6
5

1
9
4

5
0
7

2
9

4
8
7

3
0

4
8
9

3
1

3
2

3
3
9

3
3

1
9
8

3
4
0

3
4

1
9
9

3
4
1

3
5

2
0
0

2
0
1

5
1
0

5
1
1

5
5
5

5
5
6

5
6
4

3
6

2
0
0

2
0
1

2
5

3
7

5
1
2

2
0
2

2
0
4

5
1
1

5
5
5

5
6
6

Fi
gu

re
5.

7:
M

od
el

-G
ui

da
ge

sa
m

pl
e

re
su

lts
on

B
ee

th
ov

en
’s

Pi
an

o
So

na
ta

N
r.1

-M
vt

.1
,

us
in

g
th

e
fir

st
th

em
e

as
au

di
o

qu
er

y
–

Sh
ow

in
g

th
e

re
co

ns
tr

uc
te

d
au

di
o

an
d

th
e

tr
ee

st
ru

ct
ur

e
of

th
e

fo
rw

ar
d

pa
ss

w
ith

be
st

pa
th

hi
gh

lig
ht

ed
in

lig
ht

-g
ra

y.

120

(indicating the length of the longest continuation) and the best construction path, all the

information contained in the tree structures reveal structural similarities throughout the

whole search space of the target. Therefore, Guidage provides access to macro-level

as well as micro-level structures of data. This property of Guidage makes it a strong

candidate for many application settings. Below we will look at some sample retrieval

applications.

Data Guidage: Query over an Audio Database

In this section, we demonstrate Data Guidage for query retrieval over databases

of audio. Within this problem, we are aiming at macro-structure and surface results of

Guidage (i.e. the best reconstruction and search depth) with less emphasis on micro-

structures and details of the tree structures. To this aim, we represent results within an

application framework implemented on a Graphical User Interface (GUI) to visualize

results, and control input query, database folder and the threshold ε parameter. The data

(query and database) presented to the system are in Data-AO format, corresponding to

audio analysis frames converted to a Multinomial manifold. The database is presented

to the application through Data AO metadata in SDIF format. The front interface of the

GUI is shown in figure 5.8.

This GUI is designed as follow: At the right of figure 5.8, there are three panels

that separate different functionalities of the application. The first and most important

is the search panel where the user can freely choose the audio query file and a folder

as the search target. In the next step, the user can choose the search criteria that she

intends to perform the algorithm on from a pop-up menu. The list of search criteria is

either (1) loaded automatically from the metadata in case the chosen query is in SDIF

format, or (2) is the list of available features to the system (MFCC, ∆MFCC, pitch),

also open to further expansions. Another parameter that can be controlled by the user

is the similarity threshold or ε used in algorithm 5.4. Pressing the Search button then

performs the algorithm over the whole database assigned by the user. Once the results

121

0 0.5 1 1.5 2 2.5 3 3.5 4
x 105

!0.2

!0.1

0

0.1

0.2
Reconstructed Audio relative to searched audio

0 2 4 6 8 10 12 14 16 18
x 104

!0.1

!0.05

0

0.05

0.1
Reconstructed Audio relative to query

0 2 4 6 8 10 12 14 16 18
x 104

!0.4

!0.2

0

0.2

0.4
Query Waveform

Original
Reconstruction

Figure 5.8: GUI for Audio Query over an Audio Database

are obtained, the result-box at the left of the GUI demonstrates a ranked list of sound

files in the database according to the reconstruction percentage with regards to the audio

query. The best reconstruction for each file is thus the longest sequence that can be

reassembled through resynthesis to achieve similar factors to the audio query. Choosing

each of the ranked results in the result-box reproduces three figures in the middle of

the GUI for visualization and better browsing of the semantical contents that has been

found during the procedure. The top figure shows the chosen target audio waveform

where the found factors within the audio are highlighted in red. The middle figure

shows the query audio waveform and the bottom one shows the concatenative synthesis

of the highlighted factors in the first figure relative to the audio query. A Listening Panel

respectively allows listening to the three described waveforms and an additional Export

Panel allows exporting the resynthesis, if desired by the user, to an external audio file.

To demonstrate the performance of this simple application, we conduct two ex-

periments on two sets of sounds and different queries. All the sounds reproduced here

and more sample results on other data sets are available for audition on the internet3. The

3http://cosmal.ucsd.edu/arshia/index.php?n=Main.Guidage

http://cosmal.ucsd.edu/arshia/index.php?n=Main.Guidage

122

first set corresponds to a database of musical loops and rhythms out of realistic record-

ing sessions taken from the Kontakt Sound Library4. The collection of loops chosen for

the search session amounts to approximately 200Mb of disk space, 140 audio files with

mean duration of 7 seconds. The query used for this demonstration is an African drum

sequence that lasts approximately 4 seconds and non-existant in the search database.

Figure 5.9 shows the 3rd ranked results, corresponding to 47.06% reconstruction and

the produced waveforms out of the GUI described earlier. The search criteria used for

this query session are the MFCC feature vectors with an similarity threshold of 0.3.

0 2 4 6 8
!0.2

0

0.2

Time (s)

(a) Target Audio Waveform and Found Factors (high-

lighted in red/gray)

0 1 2 3 4
!0.4

!0.2

0

0.2

Query Waveform

Time (s)

(b) Query Audio Waveform

0 1 2 3 4

!0.05

0

0.05

Reconstructed Audio relative to query

Time (s)

(c) Synthesized Best result relative to query

Figure 5.9: Data Guidage query retrieval sample result on a drum-loop database

Figure 5.9c shows the resynthesized result audio as the best reassembly of the
4http://www.native-instruments.com/

http://www.native-instruments.com/

123

factors in the target audio (figure 5.9a) to achieve a replication of the query waveform

(figure 5.9b). As mentioned earlier, the silences in figure 5.9c correspond to factors

where no match has been found. Highlighted (red/gray) waveforms in figure 5.9a corre-

spond to factors of the target which are used for concatenative synthesis and indexed

results of Guidage to achieve the waveform in figure 5.9c. Comparing figure 5.9c

and 5.9b, we can see that the algorithm has used factors corresponding to sound ob-

jects in figure 5.9a to achieve a similar rhythmic pattern as in figure 5.9b. Listening to

the synthesized audio (on the provided URL) also reveals the timbral similarity between

the query and result - another reason why this sample has appeared among the top 10

results in a search session over 140 sound files.

The second experiment-set corresponds to speech audio files. This experimental

database corresponds to 10 recordings of theatre actors saying the same phrase in French

with different durations, intonations and emotional intentions taken from Ircam Expres-

sivity Corpus database (Beller et al., 2008). The repeated phrase in French is: C’est

un soldat à cheveux gris. The query is taken out of one of the sound files

and corresponds to the pronunciation of the word Soldat in French. The aim of the

search algorithm here is therefore to find the occurrences of the word Soldat in dif-

ferent phrases despite their variances or to reconstruct the same word by concatenating

different phonemes where linear reconstruction is not possible. The search criteria used

for this query session is a mixture of MFCC feature vectors and their first derivative

(∆MFCC). This choice of audio feature is common among speech recognition systems.

For this sample result, we demonstrate the 9th ranked result among 10, thus towards

the worst, in figure 5.10. The interest in showing “worse” results is to demonstrate the

behavior of the re-assemblage.

Similar to figure 5.9, the three figures within correspond to the query waveform

of the word utterance Soldat (figure 5.10b), the target phrase recording and the used

factors during resynthesis (figure 5.10a) and the resynthesized result in figure 5.10c. The

remarkable result here is that since the intonation and duration of the target audio is quite

different from the original source, the algorithm has reinforced the reconstruction of the

124

0 0.5 1 1.5 2 2.5

!0.5

0

0.5

Time (s)

(a) Target Audio Waveform and Found Factors

0 0.1 0.2 0.3 0.4
!0.2

!0.1

0

0.1

Query Waveform

Time (s)

(b) Query Audio Waveform

0 0.1 0.2 0.3 0.4
!0.4

!0.2

0

0.2

Reconstructed Audio relative to query

Time (s)

(c) Synthesized Best result relative to query

Figure 5.10: Data Guidage query retrieval sample result on a speech database

125

query using different phoneme sequences than the original. More precisely, factors

used during reconstruction (highlighted waveforms in figure 5.10a) correspond to the

/s/ sound in the pronunciation of the word C’est (in French) in the beginning of

the phrase (and not the /s/ sound in Soldat) and partial factors of the spoken word

Soldat as seen in the sub-figure to achieve reconstruction. This observation simply

reveals that among all the tree structures and paths within them that can reconstruct the

first occurrence of the sound /s/, the longest one is the one belonging to that of the

pronunciation of the word C’est (in French).

Data Guidage: Query within Micro Audio Structure

The sample application described in the previous section uses only one result

path among all that is found by the algorithm described in section 5.2.5. Recall that the

tree structure found by Guidage provides many possible paths and sub-paths that might

lead to other concatenations of the target audio entities. In some applications, users

might be interested to focus on the microscopic search results rather than the longest

path result that is represented above. Here, we demonstrate this aspect of the Guidage

by focusing on one audio query and one search target, and visualize all the possible

results obtained by Guidage. Once again, the user has the ability to control search and

audio analysis parameters to a fine-scale control, allowing access to query guided grains

in the target audio.

Figure 5.11 and 5.12 show two snapshots of the application run on the same

query/target pair, but showing the first and second results respectively. Here again, as

before, a Search panel allows the user to choose the audio query and target files as well

as search parameters and analysis parameters (in case an audio file is chosen instead of

pre-formated SDIF meta-data). Clicking on the Search button lists all the results in the

result-box on the left and choosing each result (represented by the reconstruction per-

centage), visualizes the results in two corresponding figures in the GUI. Here, the top

figure corresponds to the target audio waveform, again, where highlighted waveforms

126

correspond to the found factors used during concatenation. The lower figure visualizes

the resynthesized waveform relative to the query waveform (not shown here). The query

used for this demonstration is the same African drum sequence used in our previous ex-

perience and the search target audio is a Live Mambo Congas audio sequence. Audition

of results is possible over the internet5.

Figure 5.11 shows the first result that corresponds to the highest reconstruction

percentage (24.7% here). This is the typical “best” result used in the audio query over

database application. As before, the resynthesized audio has the same timeline as the

query; showing that in figure 5.11, the reassembled sequence corresponds to the original

query audio that appears approximately between samples 40K − 60K or time window

0.9s through 1.4s. A close look at the resynthesized audio and audition of it suggests

that the reconstructed portion imitates the rhythmic structure of the query.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 105

!0.5

0

0.5
Reconstructed Audio relative to searched audio

0 2 4 6 8 10 12 14 16 18
!0.2

!0.1

0

0.1

0.2
Reconstructed Audio relative to query

Original
Reconstruction

Figure 5.11: Data Guidage GUI for Micro Audio Query – First result.

Figure 5.12 shows the 2nd result in the list chosen by the user. This result cor-

responds to 21.1% reconstruction. What is remarkable here is that comparing both vi-

5http://cosmal.ucsd.edu/arshia/index.php?n=Main.Guidage

http://cosmal.ucsd.edu/arshia/index.php?n=Main.Guidage

127

sualized subfigures in figures 5.11 and 5.12, it is clear that (1) the factors used during

re-assemblage and results of Guidage are different. And (2) the resynthesized sequences

correspond to two different timelines of the original audio query (in figure 5.12 between

3− 4 seconds).

0 0.5 1 1.5 2 2.5 3 3.5 4
x 105

!0.5

0

0.5
Reconstructed Audio relative to searched audio

0 2 4 6 8 10 12 14 16 18
!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15
Reconstructed Audio relative to query

Original
Reconstruction

Figure 5.12: Data Guidage GUI for Micro Audio Query – Second result.

These samples along with previous shown experiments in this section should re-

veal the important advantages of using Guidage as well as its aims in retrieval: Fast

access to information structures using external queries both within microscopic and

macroscopic levels of information.

5.2.8 Discussions

In this section, we addressed the question of accessing external data structures

and revealing information relevancy using an audio query. We introduced Guidage as

query guided audio assemblage and provided an algorithm for fast retrieval of audio-

content and resynthesis of retrieved factors as a re-assembly of the target audio. We

presented the algorithm within two frameworks pertained to previously discussed Audio

128

Oracle structures and discussed its aims for temporal scalability and access to huge col-

lections of data structures. The results of the algorithm were demonstrated within three

experiments. We showed how Guidage finds all possible recurrences of sub-factors of

the query by recollection and recombinations of structural chunks of a target audio struc-

ture. We then demonstrated its performance within two sample retrieval applications

emphasizing on the fact that the algorithm accesses both microscopic and macroscopic

levels of structured information. Note that in all shown experiments, and as before, the

algorithm does not have any a priori knowledge of musical structures, and everything

is done through unsupervised and fast discovery of sub-factors which would maintain a

perceptual continuity in the final result. This perceptual continuity is a consequence of

choosing to navigate on the audio structure rather than the audio itself for search pur-

poses. With this choice the temporal morphology of sounds is explicitly put into account

in our retrieval framework. This was possible thanks to the music information geometry

framework that favors the influential aspect of information.

We mostly presented Guidage in an information retrieval framework. But let

us emphasize at this point that the most important factor of Guidage is in enabling fast

access to (disjoint) audio-content and structural information. This factor is essential for

any ancitipatory system that is in constant interaction with its environment to update

mental representations or create new ones.

Speed performance of Guidage depends on the degree of semantic similarity be-

tween the query and search targets. For the experiment described in section 5.2.7 on a

corpus of 140 audio files with total size of 200Mb, Guidage performs in approximately

20 seconds using MATLAB and a 2.3Ghz Mac-Intel machine. In another audio query

over database experiment on natural bird sounds with 244 audio files and over 600Mb

of data, Guidage performs in less than 25 seconds. This suggests some degree of com-

putational scalability of the proposed algorithm when dealing with large corpuses of

audio.

Part III

How to Expect

129

Chapter 6

Adaptive and Interactive Learning in

an Environment

In the two previous chapters we proposed methods to represent some aspects of

music information and showed how they can form mental representation about the un-

derlying structures of information flow within an environment. We also showed various

forms of access to this information that demonstrate regularities of information content

and proposed two algorithms. In this chapter we take one step further and show how

this information can affect the behavior of living agents in a constantly changing envi-

ronment or how these representations could lead to actions based on some expectation

about the environment. Therefore, from this chapter on we are formally in the process

of Anticipatory Design of musical systems.

In chapters 2 and 3 we emphasized the importance of learning both in cogni-

tive aspects of auditory learning pertaining to expectations and computational design.

Leaning in this context is adaptive and online and in constant interaction with a con-

stantly changing environment. The goal of learning is thus to grasp adaptive anticipa-

tory behavior (as defined in chapter 3) and use them latently in decision making situa-

tions. These considerations led us to the definition of Anticipatory Systems in section 3.1

whereafter we studied adaptive learning frameworks, different modeling approaches to

130

131

anticipatory design and learning, and drew the premises of anticipatory design in sec-

tion 3.5. The first premise, Information Availability, was the topic of part II and the two

remainings, Interactive and on-line learning and Multimodal Interaction and Modeling,

are the main concerns of this and the following parts of the thesis.

In this chapter we attempt to address the following questions: How can we for-

mulate an adaptive system with regards to a changing environment? How can such

a system learn adaptive behaviors from environmental regularities that are useful for

future decision making? and How can the system update its mental beliefs faced to

constant changes in the environment and in its own behavior?

6.1 Introduction

We introduce a first attempt towards modeling interactive intelligent musical

systems with regards to the psychology of musical expectations. For modeling these

constraints, we use anticipatory systems where several accounts of musical anticipation

are explicitly modeled. We formulate our approach as a long-term planning problem

between multiple-agents representing the system’s belief on distinct mental representa-

tions of its environment and in constant interaction with the environment. The design

and considerations for such approach is constrained and inspired by cognitive aspects

of musical expectations presented in chapter 2 and follow anticipatory design concept

introduced in chapter 3. We claim that such cognitive modeling of music would con-

stitute complex musical behavior such as long-term planning and generation of learned

long-term formal shapes. We will also show that the anticipatory approach greatly re-

duces the dimensions of learning and allows acceptable performance when little data is

available.

Among existing literature, the one that come closest to the topic of this chapter

is the literature on statistical models of music generation with applications to automatic

style imitation and improvisation. We review this literature in section 6.2. Where most

existing approaches are based on prediction on learned context models with no explicit

132

consideration for planning strategies for action decision making, our approach directly

addresses the problem of learning strategies and separate this important issue from that

of context learning and prediction without excluding them from the learning equations.

We furthermore expand the idea of predictive models to explicit anticipatory models as

discussed in chapter 3.

We formulate the problem of planning in an anticipatory and adaptive learning

framework and provide solutions pertaining to cognitive foundations of musical expec-

tations. Based on this framework we propose an architecture that features reinforcement

and active learning as an interactive module between the system and an outside envi-

ronment. To this end, we divide the problem of statistical modeling of music into three

subproblems: (1) The problem of memory or mental representations of music data for a

system, capable of forming contexts and providing access to structural aspects of music

information wherever appropriate. (2) The problem of interaction with an environment

that guides learning, behavior and updates memories or mental representations. And (3)

that of learning adaptively and interactively in an environment for planning and behavior

learning.

After discussing the state-of-the-art in section 6.2, we provide a general overview

of our framework’s architecture in section 6.3 and proceed by detailing the three main

design components of the framework, leading to a detailed description of our architec-

ture in section 6.6. The interactive learning framework that is introduced in section 6.5

features an active learning framework for memory-based active learning with a compet-

itive and collaborative norm of learning between agents. We conclude this chapter by

examining the performance of the proposed framework within several experiments and

discussing the computational complexity of the proposed framework.

Throughout this chapter, we content ourselves with symbolic representations of

music signals rather than audio signals to simplify demonstration of concepts and exam-

ples in our design. As it will become clear shortly, the representational scheme used for

this purpose is simply the symbolic version of the modules presented before in part II of

this thesis. Thus, in the proposed framework passing from symbolic to signal represen-

133

tations in application simply amounts to replacing the former with the music information

geometry framework presented earlier. We will evoke this issue later in section 6.7.

6.2 Background on Stochastic Music Modeling

Earlier works on style modeling employed information theoretical methods in-

spired by universal prediction. In many respects, these works build upon a long musical

tradition of statistical modeling that began in the 1950s with Hiller and Isaacson’s “Il-

liac Suite” (Hiller and Isaacson, 1959) and Xenakis using Markov chains and stochastic

processes for musical composition (Xenakis, 1971). These early hopes were soon re-

placed by frustration as many of the models following this literature were shown inca-

pable of producing even simple well-formed melodies and led to the shift of research to

hand-crafted algorithms for style imitation such as the ones in (Cope, 2001; Biles, 2003;

gabriel Ganascia et al., 1999). While such ad-hoc approaches have proven to be success-

ful in terms of generative results, they are heavily biased towards their developers and

do not attempt to provide any scientific explanations towards the complexity of musical

behavior (Conklin, 2003). However since 1990s and mostly due to success of statisti-

cal approaches to speech and language, the empirical and statistical research in music

modeling has regained momentum and created an interesting burst of new methods and

literatures that we will review in this section.

Despite differences in modeling and approach, all the models presented here-

after have the following premise in common: They are based on predictive models out

of learned contexts from various musical attributes. In this sense, following our termi-

nology of chapter 3, these systems are Implicit Anticipatory Systems (see section 3.3.1

on page 46) where the role of the predictive model as a feedback to enhance current

decision making is ignored.

Within these three aspects, the memory modeling approach is explicit and of

great importance among all approaches. Despite this coherency among all approaches,

the problems of learning, planning and interaction have been addressed interchangeably

134

and inherently in each design. Learning in all approaches is reduced to formation of me-

mory models or learning associations thereof to form contexts. The problem of planning

is inherent in their different approaches to generation (or deciding on actions) over time.

And consideration of interaction (if any) with external agents have not enjoyed its im-

portance in most designs. We look at different approaches to learning and planning

in sections 6.2.2 and 6.2.3, and after discussing the common interest in memory and

context models.

6.2.1 Memory Models

Probably one of the main reasons that music statistical modeling literature has

emerged lately compared to parallel achievements in speech or language is inherent in

the natural complexity of musical information that bypasses that of speech or language.

The complexity of musical representations has its roots in two basic properties of mu-

sic information: Music information has a natural componential and sequential structure.

While sequential models have been extensively studied in the literature, componential

or multiple-attribute models still remain a challenge due to complexity and explosion in

the number of free parameters of the system. Therefore, a significant challenge faced

with music signals arises from the need to simultaneously and instantaneously represent

and process many attributes of music information. The ability (or inability) of a system

to handle this level of musical complexity can be revealed by studying its means of mu-

sical representations or memory models both for storage and learning. In other words,

the musical representation or memory models in a system determine the level of expres-

sivity that can be achieved by the system, and also at the onset could draw difficulties

or advantages for the problem of machine learning over such representations. The sec-

ond important property of music information modeling is the inherent long temporal

dependencies of music signals. Standard approaches to speech and language process-

ing such as regular Markov models and n-gram models are usually sufficient to model

the short-time context dependencies in the speech or language domains but fail or give

135

approximate results when applied to music for context modeling.

We compare different memory models used and proposed in the literature for

statistical models of music outlined above. We undertake this comparison by analyti-

cally looking at each model’s complexity and its modality of interaction across attributes

which in terms, determine its power of (musical) expressivity. We will be looking

at cross-alphabets (Dubnov et al., 2003; Assayag and Dubnov, 2004; Pachet, 2002),

multiple-viewpoints (Conklin and Witten, 1995) and mixed memory Factorial Markov

models (Saul and Jordan, 1999).

In order to compare these approaches, we use a toy example demonstrated in

Figure 6.1 containing the first measure of J.S. Bach’s two-part invention No. 5 (Book

II). The music score in figure 6.1 is parsed between note onsets to obtain distinct events

through time as demonstrated. In this chapter, we consider discrete MIDI signals as our

representational front-end for model comparisons and for their wide use and recogni-

tion among different systems. For the sake of simplicity, we only represent three most

important attributes, namely pitch, harmonic interval (with regard to a base pitch) and

quantized beat duration of each parsed event as shown in table 6.1. This table represents

15 vector time series It corresponding to 15 parsed events in figure 6.1 where each event

has three components (iµt). Let k denote the number of components for each vector It

and n`s denote the dictionary size for each attribute i`t .

Table 6.1: Music attributes for distinct events of parsed score in Figure 6.1

Event Number It I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

MIDI Pitch (i1t) 0 51 63 62 63 0 65 0 67 67 63 68 68 58 60

Harmonic Interval 0 0 0 0 24 0 0 0 4 5 0 8 6 0 0

Duration (i3t) 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

Cross alphabets

The simplest model used so far for musical representation is cross-alphabet

where a symbol (or dictionary element) in the system is represented as a vector of mul-

136





q = 100

 


       

 

 

   

      

Figure 6.1: Toy Example for comparing musical representation approaches – Parsed

pianoroll presentation (bottom) for the first measure of J.S. Bach’s two-part Invention

No.5, Book II (top)

137

tiple attributes. Therefore cross-alphabet models are computationally cheap but fail

to model interactions among components. To overcome this shortcoming, researchers

have considered heuristic membership functions to obtain contextual dependencies in-

between vector components mostly taken from musicological findings pertained to a

certain style of music (jazz, classical etc.). Such heuristics might make the system de-

pendent upon the style of music being considered or reduce generalization capabilities.

Moreover, as the number of components (or dimensions) increase this representation

becomes less informative of the underlying structure since each alphabet is considered

independent from another. For example, two harmonically related symbols would not be

considered equal in a cross-alphabet representation (if all their individual components

are not equal) unless some harmonic equivalence relationship functions are introduced

into the system (e.g. Assayag and Dubnov, 2004; Pachet, 2002).

In our toy example each symbol of the alphabet is a unique 3-dimensional vector.

Hence, for this specific example there are 15 alphabets since none of them is being

reused despite considerable amount of modal interactions among components and high

autocorrelations within each component.

Multiple viewpoints

Multiple viewpoints model (Conklin and Witten, 1995) is obtained by deriv-

ing individual expert models for each musical attribute and then combining the re-

sults obtained from each model in every possible way. This means that a multiple

viewpoint representation of our toy example in table 6.1 would have three additional

rows for two-dimensional representations of <pitch, harmonic interval>, <pitch, du-

ration>, and <duration, harmonic interval>, and another additional row consisting of

a 3-dimensional representation of the three main elements. At this stage, the model’s

context is constructed and then each individual expert model is trained over music data

to learn specific musical behaviors.

Multiple viewpoint models are more expressive than cross-alphabet models since

138

by combining models we allow modal interactions among components. Moreover, the

system can reach parts of the hypothesis space that the individual models would not

be able to reach. However, the context space is obviously too large and hence, learning

requires huge repertoire of music for training data to generate few musical phrases (Con-

klin and Witten, 1995). In our toy example, with 9 distinct pitches, 6 distinct harmonic

intervals and 2 quantized durations, the state-space of the multiple-viewpoint approach

leads to 9 + 6 + 2 + 54 + 18 + 12 + 108 = 209 elements; simply too many for this short

toy example.

Factorial Markov Models

Mixed Memory models are geared to situations where combinatorial structure

of state space leads to an explosion of the number of free parameters. Factorial Markov

models attempt to model the coupling between components in a compact way. To obtain

a compact representation, we assume that components at each time t are conditionally

independent given the previous vector event at t− 1, or

P (It|It−1) =
k∏
ν=1

P (iνt |It−1)

and that the conditional probabilities P (iνt |It−1) can be expressed as a weighted sum of

“cross-transition” matrices,

P (iνt |It−1) =
k∑

µ=1

φν(µ)aνµ(iνt |i
µ
t−1) (6.1)

where φν(µ)s are positive numbers that satisfy
∑

µ φ
ν(µ) = 1 and measure the amount

of correlation between the different components of the time series. A non-zero φν(µ)

means that all the components at one time step influence the νth component at the next.

The parameters aνµ(i′|i) are n×n are transition matrices and provide a compact way to

parameterize these influences (Saul and Jordan, 1999).

The number of free parameters in eq. 6.1 is therefore upper-bounded byO(k2n2)

139

(where n denote max(ni)
1) and the state-space size is

∏
i ni. In our toy example the

state-space size of the system would then be 9× 6× 2 = 108.

6.2.2 Approaches to Statistical Learning

As stated earlier, in most existing systems statistical learning is reduced to learn-

ing contexts whose predictions could create acceptable actions for a style imitation sys-

tem. Herein we briefly look at these statistical approaches and study considerations

for interaction within each proposal. We leave a discussion on planning strategies (or

action-decision) to the next subsection.

The most prevalent type of statistical model encountered for music are predic-

tive models based on contextual information implying general Markov models (Conklin,

2003). Universal prediction methods improved upon the limited memory capabilities of

Markov models by creating context dictionaries from compression algorithms, specifi-

cally using the Lempel-Ziv incremental parsing (Ziv and Lempel, 1978), and employing

probability assignment according to Feder et al. (1992). Music improvisation is then

accomplished by performing a random walk on the phrase dictionary with appropriate

probabilistic drawing among possible continuations (Dubnov et al., 1998, 2003; Pachet,

2002). Later experiments explored Probabilistic Suffix Tree (PST) (Ron et al., 1996),

and more recently in (Assayag and Dubnov, 2004) using Factor Oracle (FO) (Allauzen

et al., 1999). These works achieved credible musical results in terms of style imita-

tion. Some informal testing suggested that people could not distinguish between real

and computer improvisation for a short period of time (Pachet, 2006). These works

are important for showing that major aspects of music can be captured without explicit

coding of musical rules or knowledge.

The inference and learning structures for Multiple Viewpoint Models (section 6.2.1)

can be categorized as Ensemble Learning algorithms and have had multiple manifesta-

1In the original Factorial Markov models paper, authors assume that the dictionary sizes are all the
same and equal to n (Saul and Jordan, 1999). For the sake of comparison we drop this assumption but
keep n as defined above to obtain the coarse definition in equation 6.1.

140

tions (Pearce et al., 2004; Conklin and Witten, 1995). One advantage of this type of

modeling is the explicit consideration of long-term dependencies during learning by

combining viewpoint predictions for long-term and short-term models (Pearce et al.,

2004). Due to the explosion of parameters, results of learning are hard to visualize and

assess. The generation results for these systems are usually few monophonic bars out

of learning on an entire database of music (e.g. all Bach chorals); and hence not quite

useful for an interactive framework.

Despite the explicit componential representation of Factorial Markov Models,

the correlation factors φν(µ) model only one step dependencies and lack considerations

for long-term behavior, essential in computational models of music. Correspondingly,

authors use this method to analyze correlations between different voices in componen-

tial music time series without considering generation (Saul and Jordan, 1999). However,

as seen previously, these models are strong candidates for a comparative study of repre-

sentational efficiency.

6.2.3 Approaches to Planning and Interaction

Planning refers to strategies that an agent undertakes for action-decision in a

given musical situation or context. It is also directly related, in a musical context, to the

concept of interaction when faced with a constantly moving context (such as music) or

in consideration of live and interactive algorithms with an external flow of music infor-

mation (such as performing with a musician). A major drawback of the above methods

is their lack of responsiveness to changes in musical situations that occur during perfor-

mance, such as dependence of musical choices on musical form or changes in interaction

between players during improvisation (or simply environmental interactions). In all the

systems reviewed above the problem of planning is considered inherently and within

the generative approaches of each method. Following (Conklin, 2003), we can catego-

rize these systems according to their interactive considerations and planning into two

subgroups below:

141

Random walk methods

Once a context model is constructed and learned from the environment, the sim-

plest strategy for generating actions would be to sample a random event from the con-

textual distributions of events at that stage. Within this framework the more expressive

the context model, the better are the generated actions according to the context. This

planning method has been employed by many and mostly by real-time music improvi-

sation systems that require fast and immediate system response (Dubnov et al., 1998,

2003; Assayag and Dubnov, 2004; Pachet, 2002).

In general, these methods are destined to produce actions with overall high prob-

abilities and are hence greedy. Despite the practicality of this method, the musicality

of results can be severely questioned since expectancy frameworks do not entail simply

to most frequented actions. This is where interaction comes to the help of such ap-

proaches by considering a constantly moving context and examining the random walk

method within an evolving memory model being updated as new information arrives

from the environment. While interaction in this context is rather implicit, authors of all

mentioned systems have considered basic heuristics to enhance the random walk strat-

egy introduced above. For example Assayag and Dubnov (2004) consider equivalence

membership functions between cross-alphabets in their memory model to further guide

the random-walk and also by explicit accounts of the memory-model structure under

consideration. Another example is the system in (Pachet, 2002) for PST based impro-

visation where interaction is introduced by combining the Markovian probability with

a fitness function influencing prediction probabilities according to an ongoing musical

context, albeit no consideration for planning or adaptive behavior.

Also, these methods generally suffer from the curse of dimensionality when

more intricate musical representations are to be considered. For this reasons, they mostly

use cross-alphabets as described above with membership heuristic functions to enhance

the musical expressivitiy of their systems pertained to multi-dimensionality of musical

information.

142

Pattern-based sampling methods

The random walk strategies discussed above provide a single-step action at each

stage of generation in hope that the learned context models take care of the variable

length context dependencies desired in music generation. In general, to take account

of the diversity to exhibit creativity, a long-term planning strategy is desired that goes

beyond a single-step decision making, even in presence of strongly structured learned

contexts. Conklin and Witten (1995) present their ensemble learning multiple-viewpoint

model in a pattern-based sampling framework by considering longer time dependencies

(or patterns) within their (exhaustive) context model during decision making. In a later

approach to the same problem, Pearce et al. (2004) combine both short-term and long-

term viewpoint predictions to achieve more coherent pattern-based sampling.

Despite improvements, the employed models suffer from fixed-range or n-gram

models used for pattern retrieval (where parameters are usually fixed by the authors).

Moreover, criticisms of random-walk approach employed by Conklin (2003) applies as

well to these systems where planning is reduced to exploiting the most frequent pat-

terns in the context. In our anticipatory framework, introduced hereafter, planning not

only considers pattern-based structures but also subsequent memory cells whose antic-

ipated future paths would generate an expected pattern without necessarily exploiting

the pattern itself.

The majority of literature on pattern extraction methods of music signals for au-

tomatic generation and improvisation belong to systems following rule-based methods

for planning and improvisation. These approaches are generally inspired from musi-

cological rules governing a certain style of music (e.g. Rolland and Ganascia, 2000).

Another example is the system of Cope (2001) that uses pattern matching techniques

to extract recurrent structures in music scores pertaining to a certain style of music or

composer and using rule-based methods to recombine these pattern to achieve coherent

formal structures during generation.

143

6.3 General Discussions

The complexity of an improvisation process is beyond one’s imagination where

the desired complexity of results makes modeling impossible in terms of computed

structures and hand-crafted logics. Some cognitive science researchers (Pressing, 1987;

Johnson-Laird, 1991) have pointed out the difficulties in formalizing complex tasks such

as music improvisation as problem solving rules and patterns. In particular, Johnson-

Laird questions the pattern-based methods commonly used for many automatic jazz

improvisation systems as follows:

“A common misconception about improvisation is that it depends on ac-
quiring a repertoire of motifs – ‘licks’ as they used to be called by mu-
sicians – which are then strung together one after the other to form an
improvisation, suitably modified to meet the exigencies of the harmonic
sequence. There are even books containing sets of ‘licks’ to be commit-
ted to memory to aid the process” (Johnson-Laird, 1991, p. 292).

Following Johnson-Laird, the “success” of pattern-based methods does not provide a

scientific explanation of the underlying musical complexity of the improvisation pro-

cess, neither does it lead to frameworks for achieving such complexity, and nor does it

undermine the importance of musical patterns.

In our conception and following Simon (1969), the complexity of a structure

is not the result of the complexity of the underlying system but due to the complexity

of its environment. Hence, an architecture that aims at modeling the complexity of an

improvisation system must be adaptive and demonstrate intelligence for learning and

adopting interactions between the agents and the environments when desired. There-

fore, music complexity is left to the environment (instead of the system) and complex

behavior is achieved through machine learning once interaction is being placed with a

complex environment. The framework presented here is a first attempt in modeling such

interactions.

Statistical approaches seem to capture only part of the complex music informa-

tion, but an essential one, needed for computer generations of music sequences, i.e.

144

successfully modeling a relatively short term stylistics of the musical surface. Even

though variable markov length and universal methods improve upon the finite length

Markov approach, they are still insufficient for modeling the true complexity and flex-

ibility of music models. It is well known from musical practice that design of musical

form, even in situations such as free improvisation, require certain degree of planning,

with possibility to judge or assign rewards to different musical choices, regardless of

them being correct in terms of musically syntactical or stylistic rules.

All of the systems reviewed in the previous section are based on predictions out

of a learned context. In this work, we extend this view by considering musical anticipa-

tion and in accord with the psychology of musical expectation. Anticipation, as seen in

section 2.2, is different from both prediction and expectation. As a recall, Anticipation

in our context is the mental realization of possible predicted actions and their effect on

the perception and learning of the world at an instant in time. Hence, anticipation can be

regarded as a marriage of actions and expectations, addressing directly the problem of

planning in our context. In this framework, an anticipatory system is in constant interac-

tion with an outside environment for which, it possesses an internal predictive model. In

an anticipatory system, action decisions are based on future predictions as well as past

inference. It simulates adaptive frameworks in the light of different behaviors occurring

in interaction between the system with itself and/or its environment.

Our proposal is built on top of the simple model proposed by Assayag and Dub-

nov (2004), by augmenting the memory models to accept more complex representational

schemes and by introducing an anticipatory framework that addresses planning strategy

and interaction through active and adaptive learning with an outside environment. The

proposed system in this chapter is both a payoff anticipatory system and state anticipa-

tion system (see section 3.3). It is a state anticipatory system because of explicit use of

prediction and anticipation during both learning and decision making. It is also a payoff

anticipatory system because of the selective behavior caused by the collaborative and

competitive learning and generation discussed later in section 6.5.

145

With this introduction, it would be natural to consider a reinforcement learning

(RL) architecture (see section 3.4.1) for our anticipatory framework as is often the case

with the ABiALS literature (Butz et al., 2003c, 2007). In our proposal, we slightly modify

this view by introducing a more efficient paradigm of learning called Active Learning.

6.4 Active Learning Architecture

The field of machine learning provides various methods for learning regulari-

ties in an environment and extrapolating the acquired knowledge to unseen patterns and

situations in the real world. These algorithms can be generally viewed within two per-

spectives: supervised algorithms where a set of labeled data (in terms of action-cause)

is available and used to learn concepts, and unsupervised learning where manual labels

of data are not available and the algorithm automatically discovers desired concepts (an

example is the Audio Oracle structure discovery algorithm in chapter 5). Besides these

two mainstream categories, there are situations in which unlabeled data is abundant and

labeling is expensive, but the learner itself can choose examples to learn from. This type

of learning is called Active Learning (Monteleoni, 2006). An early landmark research

on this topic is the selective sampling scheme of Cohn, Atlas, and Ladner (1994) which

became the main inspiration for many subsequent works in the field including this work.

Getting back to our goal of modeling interactive and adaptive learning musical

systems, there are two main reasons for considering Active Learning (AL) frameworks:

First, in our discussion in section 2.2.2 on enactive view of music cognition we empha-

sizes the role of sensory-motor engagement in musical experience. The enactive view

of cognition and the link between perception and action (Noë, 2004) is dominated by

concerns with visual experience. If for the sake of simplicity and coherence of this pre-

sentation we set aside the visual and gestural aspects of a music performance, the sense

of an auditory sensory-motor knowledge becomes less obvious than for its visual coun-

terpart. The point here is that perceptual experience is active and thoughtful. Following

Wessel (2006), one can imagine an auditory version of the classic perception action link

146

experiments by Held and Hein (1963) where it is shown that that a kitten with a passive

exploration experiment of an environment has considerable perceptual impairment com-

pared to the one who was actively transacting with the environment. In the context of an

anticipatory learning music system, interaction is nothing but an active exploration and

exploitation of the constantly changing environment where the sensory-motor knowl-

edge takes the form of conceptual understanding (Noë, 2004, Ch. 6). The second and

more technical motivation behind this choice, is the fact that in an interactive setting

and for an agnostic system such as ours with no human intervention, the learner should

have the ability to influence and select its own training data through interaction with

a constantly changing environment; hence the general definition of the active learning

problem. Therefore, learning is an act of auto-organisation in the face of a constantly

changing environment to capture relevant expectancy beliefs.

The Active Learning algorithm presented here has close ties to the Reinforce-

ment Learning (RL) paradigm and is a continuation of a previously presented work

using RL algorithms in (Cont et al., 2007a). The reinforcement learning problem is

meant to be a straightforward framing of the problem of learning from interaction to

achieve a goal. The learner and decision-maker is called the agent. The thing it interacts

with, comprising everything outside the agent, is called the environment. These interact

continually, the agent selecting actions and the environment responding to those actions

and presenting new situations to the agent. The environment also gives rise to rewards,

special numerical values that the agent tries to maximize over time. This way, the model

or agent is interactive in the sense that the model can change through time according

to reinforcement signals sent by its environment. Any RL problem can be reduced to

three signals passing back and forth between an agent and its environment: one signal

to represent the choices made by the agent (the actions), one signal to represent the

basis on which the choices are made (the states), and one signal to define the agent’s

goal (the rewards) (Sutton and Barto, 1998). Learning in RL is performed by simulating

episodes of state-action pairs and updating the policies in order to obtain a maximum

reward towards a defined goal. Note that while the simulation episodes during learning

147

of RL algorithms is a way to solve the burden of unsupervised learning, it does not help

the agents to explore the environment actively and would usually require sufficiently

large amount of time so that all (relevant) states are visited and updated accordingly. In

our Active Learning architecture, we adopt the general RL framework but replace RL’s

reward signals by guides that actively explore the existing knowledge domain and help

to direct learning updates to relevant states in the memory pertaining to the current en-

vironmental context and providing numerical values to their information relevancy. In

an Active Learning framework exploration is enhanced by guiding the learning agents

to the relevant states in the memory given a context where changes are most probable.

In this section, we draw the general Active Learning framework of our method.

An Active Learning framework is thus in constant interaction with an ensuing

environment. Within our framework, we propose two modes of interaction as demon-

strated in Figure 6.2. In the first, referred to simply as Interaction mode, the system is

interacting with an outside environment (a human performer for live machine improvi-

sation, music score(s) for style imitation, etc.) and occurs when external information

is being passed to the system. During the second mode, called self listening mode, the

system is in the generation or action phase and is interacting with itself. During the

interaction mode of figure 6.2a, new environmental information is also presented to the

system which help update memory models of the system.

Our proposed Active Learning architecture resembles a model-based RL dyna

architecture (see section 3.4.1) augmented to multiple collaborative and competitive

agents. Each agent in our framework models a separate mental representation of the

environment and is a learner and decision-maker by its own. Each agent has an internal

memory-model of the environment and adapts itself based on new musical information

and rewards it receives at each interaction. The proposed framework consists of three

main modules each with independent but coherent tasks as follows:

1. Memory Models: Constitute state-space representations of the past knowledge

observed by the system and enable access to previous state-action paths when-

148

Generated
PhraserewardNew Phrase

tr

1tr +

1ts +

ts ta

(a) Interaction Mode

Generated
Phrase

reward
tr

1tr +

ta

(b) Self Listening Mode

Figure 6.2: Active Learning’s Modes of Interaction diagrams

ever desired by active learning or generation modules.

2. Active Selection: Responsible for transactions between the environment and the

improvisation agent. In other words, guiding the agent after each interaction

to relevant state-action pairs stored in previously learned models based on the

current environmental context and assigning reward values.

3. Anticipatory Learner: At each interaction with the environment, anticipatory

values corresponding to each state-action pair (in each model) is learned through

a competitive, concurrent and memory-based learning.

Algorithm 6.1 shows a simplified version of the main interactive cycle of the

Active Learning algorithm. This architecture uses learning cycles with multiple compet-

itive and concurrent agents. Upon the arrival of environmental or interactive sequences,

the system prepares for learning by (1) calculating immediate rewards for stored states

in system’s memory and (2) selecting relevant states for the anticipatory learning pro-

cedure. For this preparatory procedure, responsible for interactivity of the system, we

adopt the Guidage algorithm presented before in section 5.2 and discussed further here-

after. The memory models used for our architecture are based on Audio Oracles as

described in section 5.1. In order to use these models in the context of reinforcement

149

learning, we will view them as a particular case of so called Markov Decision Processes,

described in section 6.4.1.

Algorithm 6.1 Active Learning Interactive Cycle
Require: At each time t: previously learned models (AOt−1), new environmental se-

quence At = {A1, A2, · · · , AN}
1: Obtain active states and guides using Active Selection on At and AOt−1.
2: if we are in Interaction Mode, then
3: Update Models through learning (AOs)
4: end if
5: Perform Competitive, Concurrent and Memory-based Anticipatory Learning

At each interactive cycle between agents and the environment, two instances of

learning occurs: One for updating memory models (or mental representations) of each

agent, and another instance for learning the optimal planning policy for collaborative and

competitive decision making of each agent. The policies learned over action-decisions

of each agent use explicit ancitipatory learning which assigns anticipatory values to

each action evaluating their significance in an infinite future horizon given the current

environmental and internal context. The anticipatory learning module will be discussed

in section 6.5. For the remainder of this section we review Audio Oracles and Guidage

algorithms presented earlier in view of our Active Learning architecture.

6.4.1 Audio Oracles for Memory Models

Representation of musical sequences in our system serves as musical memory,

mental representation of music signals and internal models of the agents. Furthermore,

they provide methods of access to short-term or long-term context whenever required

by the system. A single music signal has multiple attributes and each attribute is a can-

didate for an individual mental representation which collaborates and competes with

others during actions and decision making. The configuration of representation between

these agents have important consequences for information access and also dimensional-

ity of learning algorithms. Following our discussions on the psychology of musical ex-

pectation in section 2.1.3, each agent in our system is independent of the other agents in

150

terms of memory models, representing parallel aspects of the same information source,

but compete and collaborate during decision making according to their ability to use-

fully predict the environment. This collaboration and competition is handled by the

anticipatory learning module discussed in section 6.5. This feature is of great impor-

tance since it reduces the dimensionality of the system during learning, allowing it to

learn efficiently when small data is available.

The representational framework chosen for this aim should automatically learn

the regularities in the environment pertained to its input attribute (and independent from

the nature of the attribute) and also provide fast access to these learned contexts during

policy learning and interactions with the environment. We discussed this issue previ-

ously in part II of this thesis and provided the Audio Oracle algorithm for both learning

and accessing music information in chapter 5. Therefore, for our interactive dyna archi-

tecture of this chapter we adopt the same method but by employing several in parallel

to represent different aspects of the same information. Audio Oracles are independent

from the nature of the input data and incremental in nature. The input sequence can be

either audio signals (as was the case throughout chapter 5) or symbolic data. For the lat-

ter, it only suffices to replace all the divergence similarity thresholding in all mentioned

algorithms by a simple equivalence relationship between two symbols. This symbolic

version of the oracle, in conformance with previous uses, is referred to as Factor Oracle

(FO). As an example, figure 6.3 shows three instances of FO construction over sequen-

tial data of table 6.1 for the toy example of figure 6.1, representing three attributes of

the same sequential data.

Besides their power of structure discovery and fast access, Factor and Audio

Oracles’ states can be considered as emitting actions which are either symbols or data

associated to the factor link or the state itself. This brings in an important property of FO

(and consequently AO) for this work which is their power of generation. Navigating the

oracle and starting in any place, following forward transitions generates a sequence of

labeling symbols that are repetitions of portions of the learned sequence; following one

suffix link followed by a forward transition generates an alternative path in the sequence,

151

0 10.0 2

51.0

3

63.0

4

62.0

7

65.0

9

67.0

12

68.0

14

58.0

15

60.0

51.0

65.0

67.0

63.0 62.0

68.0

6

0.0

563.0 80.0 11

63.0

1067.0

58.0

1368.0 60.065.00.0 67.0 68.063.0 58.0

(a) Pitch FO

0 10.0

5
24.0

9

4.0

10

5.0

12

8.0

13

6.0

24.0

4.0

8.0

20.0

6

0.0

5.0 110.0 6.0 140.0
24.0

4.0

3
0.0

24.0

4.0

4

0.0

24.0

70.0

8

0.0

4.0 8.0 150.0

(b) Harmonic Interval FO

0 14.0

8

8.0 8.0

24.0

9

4.0

8.0

34.0

8.0

44.0

8.0

5
4.0

8.0

64.0

8.0

7

4.0

8.0

104.0 114.0

12
4.0

134.0 144.0 154.0

(c) Duration FO

Figure 6.3: Learned Factor Oracles over pitch, harmonic interval and duration feature

sequences in table 6.1. Each node represents a state, each solid line a factor link and

dashed line a suffix link.

152

creating a recombination based on a shared suffix between the current state and the state

pointed at by the suffix link. In addition to completeness and incremental behavior of

this model, the best suffix is known at the minimal cost of just following one pointer. By

following more than one suffix link before a forward jump or by reducing the number

of successive factor link steps, we make the generated variant less resemblant to the

original. This property is the main reason for the success of FO based methods for

automatic and real-time improvisation systems (Assayag and Dubnov, 2004) even by

employing simple random-walk strategies as stated earlier.

The fact that Audio and Factor oracles can be defined by actions associated to

states allow us to formally define their structure similar to Markov Decision Processes

that are widely used for policy learning. Oracles can then be expressed by state-action

pairs (si, ai) : si ∈ S, ai ∈ A where S and A are sets of all states and actions, and

factor links as deterministic transition functions T : S × A → S . Later on, we will

associate anticipatory values to each state-action pair for better handling of long-term

planning behavior.

6.4.2 Guidage for Active Selection

One of the most frequent approaches to Active Learning is selective sampling

originally introduced by Cohn et al. (1994) where the learner receives unlabeled data,

and request certain labels to be revealed (by an external agent) and hopefully the most

informative ones. In our framework, besides gaining computational efficiency, select-

ing appropriate and relevant states within running memory models (or Audio Oracles)

during an interactive cycle would help evade the rather exhaustive trial-and-error learn-

ing episodes of traditional reinforcement learning frameworks by focusing directly on

states in the memory where change in the anticipatory value is most probable. Besides

selecting sampling of relevant states, at each interactive cycle and during both modes of

interaction (figure 6.2), the agents should be numerically rewarded upon their previous

performance either indirectly as the result of new environmental information that arrives

153

into the system, or directly by examining the system’s own performance regarding its

current context during the self-listening mode.

Therefore, an active selection method for our framework should ideally provide

each (parallel) memory model with a measure of information relevancy and serve as

guides to these relevant states during policy learning. This issue was the main motivation

and point of departure for presenting the Guidage algorithms in section 5.2. Guidage

was used to search for relevant states in an AO structure given an external information

chunk providing the depth or longest achieved reconstruction for each sequence of states

found as its results (see section 5.2.7 and discussions therein). Therefore, we can easily

integrate Guidage into our interactive framework for guiding the learning module to

relevant states in memory models of each agent and also assigning a reward measure as

the longest achieved reconstruction of environmental information within learned context

models of memory structures.

Besides their computational attractions, selective sampling methods might have

the danger of being too greedy, disfavoring many states systematically and leading to

unwanted behavioral learning. In other words, Guidage in a long run might favor most

seen patterns in memory models during interaction over rarely seen ones. While this

feature is conform to our cognitive observations in chapter 2 that expectations are build

on stabilities and regularities of the surrounding environment, it might become trou-

blesome especially during a generation phase by over-emphasizing or over-fitting of a

pattern during learning. We overcome this issue by two important considerations: First,

the reward signals for the self-listening mode of interaction have negative signs. In other

words, the rewards for the interaction mode correspond to a psychological attention

towards appropriate parts of the memory; and rewards for the self-listening mode cor-

respond to a preventive anticipation scheme. This means that while interacting with a

live musician or sequential score, the system needs to be attentive to input sequences

and during self-listening it needs to be preventive so that it would not generate the same

(optimal) path over and over. And second, our anticipatory learning (for both modes

of interaction) extensively makes use of data structures inherent in its memory models

154

to update not only selected states by Guidage but also appropriate contexts that lead to

these states in the current memory. This issue is discussed next.

6.5 Anticipatory Learning

The Guidage procedure described earlier, provides immediate rewards for un-

dertaking different actions for each state in stored memory models depicted as r(si, ai)

where r : S × A → [0, 1]. While these values can provide instant continuations for

a generative process given a context, they simply fail to maintain a coherent context-

based structure in longer time spans. In order to maintain long-term coherency during

generation either a human-operator or an external learning agent is needed to optimize

the temporal context of the generated sequence. The idea behind Anticipatory learning

is to further enhance the knowledge of the system by blending the ongoing immediate

guides with their values in an infinite future horizon.

Given the memory models (Audio or Factor Oracles) presented in section 6.4.1

as state-space decision processes and guides from active selection (or Guidage), Antic-

ipatory Learning procedure aims at finding policies as a mapping probability Q(s, a) :

S × A → [0, 1]. This way the policy can be represented as a matrix Q which stores

values for each possible state-action pair in each memory model.

The policy Q can be learned using the regular Q-learning algorithm frequently

used in Reinforcement Learning literature. In a simple single-agent RL problem and at

each interaction time t, the policy Q is learned through simple value iteration updates

for each state-action pair through learning episodes that are basically simulations of the

system ornamented by updates. These simulation episodes in our context are similar to

a rehearsing musician, bringing to the front relevant past expectations and performing

them over and over until satisfied. During each step of an episodes of Q-learning, the

agent simulates a one-step prediction (st, at) → st+1 and updates the policy for state-

action pair (st, at) by the following factors:

155

1. An infinite horizon predicted reward factor R(s), different from the immediate

reward r(., .), where the idea comes from our interest in the impact of future

predictions on the current state of the system. This value is defined as:

R(st) =
∑

r(st, at) + γr(st+1, at+1) + · · ·+ γmr(st+m, at+m) + · · · (6.2)

where γ is a discount factor and less than one. Equation 6.2 simply simulates

future behavior by an ε-greedy algorithm (or random-walk) over current belief

in Q and estimate the predicted reward than the system would gain by stepping

in state st.

2. A Time Difference update as (max
a′

Q(st+1, a
′)−Q(st, at)),

leading to the simple Q-learning algorithm (Sutton and Barto, 1998):

Q(st, at)← Q(st, at) + α
[
R(st) + γ ·max

a′
(Q(st+1, a

′))−Q(st, at)
]

(6.3)

where α is a fixed learning rate. It is shown that if these training episodes are done in

sufficiently large number of times, spanning all relevant states, the behavior policy Q

converges to the optimal behavior π at each interaction cycle.

In our Active Learning framework we adopt the Q-learning for policy learning

of our Dyna architecture, except that instead of leaving episodes run free simulations of

system behavior we guide the simulations to sampled states as a result of Active Selec-

tion. We also extend this simple framework by (1) integrating collaborative and com-

petitive learning between multiple (parallel) agents that contribute to the same environ-

ment, and (2) by integrating the data structures during learning to achieve memory-base

learning.

6.5.1 Competitive and Collaborative learning

As discussed previously in section 2.1.3, different mental representations of mu-

sic work in a collaborative and competitive manner based on their predictive power to

make decisions. This can be seen as kind of a model selection where learning uses all the

156

agents’ policies available and chooses the best one for each episode. This winning pol-

icy would then become the behavior policy with its policy followed during that episode

and other agents being influenced by the actions and environmental reactions from and

to that agent.

At the beginning of each episode, the system selects one agent using the Boltz-

mann distribution in equation 6.4, with positive parameter βsel, and M as the total num-

ber of agents or attributes. Low βsel causes equi-probable selection of all modules and

vice versa. This way, a behavior policy πbeh is selected competitively at the beginning

of each episode based on the value of the initial state s0 among all policies πi as demon-

strated in equation 6.4. A similar competitive scheme has been previously employed in

(Singh et al., 1994) in the context of Partially Observable Markovian Decision problems.

Pr(i|s0) =
exp(βsel

∑
kQ

i(s0, ak))∑M
j=1 exp(βsel

∑
rQ

j(s0, ar))
, πbeh = argmax

i
Pr(i|s0) (6.4)

During each learning episode, the agents would be following the behavior pol-

icy. For update of πbeh itself, we would use the regular Q-learning algorithm of eq. 6.3

described above but in order to learn other policies πi, we should find a way to com-

pensate the mismatch between the target policy πi and the behavior policy πbeh. Uchibe

and Doya (2004) use an importance sampling method for this compensation and demon-

strate the implementation over several RL algorithms. Adopting their approach, during

each update of πi when following πBeh we use the compensation factor

IS =
Qi(sm, am)

QBeh(s, a)

during Q-learning as depicted in eq. 6.5, where (sm, am) is a mapped state-action pair

of (s, a) in behavior policy to the oracle of attribute i. As before α is the learning rate,

and R(.) as defined in eq. 6.2.

Qi(sm, am) = Qi(sm, am) + α

[
R(sm) + γ · IS ·max

a′
(Qi(sm, a′))−Qi(sm, am)

]
(6.5)

157

This scheme defines the collaborative aspect of interactive learning. For ex-

ample, during a learning episode, pitch attribute can become the behavior policy Qbeh

and during that whole episode the system follows the pitch policy for simulations, and

other attributes’ policies Qi(., .) will be influenced by the behavior of the pitch policy as

shown in equation 6.5.

6.5.2 Memory-based Learning

In the Q-learning algorithm above, state-action pairs are updated during each

episode through an ε-greedy algorithm on previously learned policies and using updated

rewards. This procedure updates one state-action pair at a time. In an ideal music

learning system, each immediate change should also evoke context-related states already

stored in the memory. In general, we want to go back in the memory from any state

whose value has changed. When performing update, the value of some states may have

changed a lot while others rest intact, suggesting that the predecessor pairs of those who

have changed a lot are more likely to change. So it is natural to prioritize the backups

according to measures of their urgency and perform them in order of priority. This

is the idea behind prioritized sweeping (Moore and Atkeson, 1993) embedded in our

learning. In this memory-based learning, priorities are assigned to each state according

to the magnitude of their update and chosen by a threshold θ. This priority measure is

demonstrated in equation 6.6 for a current state s and predicted next state s′.

p← |R(s) + γmax
a′

(QBeh(s′, a′))−QBeh(s, a)| (6.6)

The ensemble of state-actions pairs whose priorities are identified as significant

or p > θ constitute a priority queue list PQ. The priority queue list PQ acts as a stack

memory with a Last-In-First-Out mechanism where pulling the first element out takes

it out of the stack. During prioritized sweeping the state-action pairs in PQ are traced

backwards on the memory model’s state-space structure to undertake more updates and

obtain more priority states recursively.

158

6.6 Active Learning Algorithm

With all the components of our Active Learning architecture visited, we can

now put everything within one framework and detail the previously presented Active

Learning interactive cycle algorithm on page 149. Algorithm 6.2 shows the resulting

algorithm. This algorithm shows the learning procedure within one interaction cycle

between the environment and the system (the interaction mode), or within the system

itself (self-listening mode). This framework brings in previous beliefs of the agents

along previous interactions from memory models AOi and anticipatory policies Qi for

each of the parallel agents into the learning equations. The guides are obtained before

updating memory models and separately for each memory model. The algorithm then

chooses the behavior policy competitively among all available models, and undertake

collaborative memory-based learning as described in the previous section.

Within each interaction cycle, the learning is done over N fixed number of

episodes (line 14 onwards of algorithm 6.2) and specifically on Active States as a re-

sult of our selective sampling method of Guidage. Moreover, to avoid over-fitting we

devised a prioritized sweeping where each active state is traced back in the memory

structure and added to the priority queue stack PQ for update considerations if its pri-

ority measure is important. This scheme assures a compromise between exploration and

exploitation during learning. Moreover, instead of undertaking learning for each model

separately (which is very costly for a high-dimensional interactive setting), we devised

a collaborative learning scheme where corresponding state-action maps of the behavior

policy to other policies are influenced by the updates of the winning behavior at each

episode and through importance sampling as discussed in section 6.5.1.

These considerations greatly reduce computation time and complexity of our

algorithm compared to its RL equivalences, and also to most systems discussed in sec-

tion 6.2. Below we will give an account of model complexity of our algorithm in com-

parison to previously discussed methods.

159

Algorithm 6.2 Active Learning Interactive Cycle (detailed)

Require: At time t: Previously learned memory models AOi
t−1 for all models i, Previ-

ously learned policies Qi(s, a), New sequence At from environment.
1: Initialize priority queue PQ = ∅
2: for All models i do
3: I i ← Guidage(AOi

t−1, A
t) for all models i (algorithm 5.4)

4: Update immediate reward ri(., .) by reconstruction lengths in I i
5: end for
6: if We are in Interaction Mode (figure 6.2) then
7: ∀i, update AOi

t−1 → AOi
t with the new sequence At (algorithm 5.2)

8: end if
9: Choose the behavior policy Qbeh (eq. 6.4)

10: PQ ← Active States in Ibeh
11: s← current state
12: abeh ← ε-greedy over Qbeh(s, .)
13: Execute action abeh → s′, and cumulate future rewards R(s) (eq. 6.2).
14: for N number of trials do
15: p← |R(s) + γmaxa′(Q

beh(s′, a′))−Qbeh(s, a)|
16: if p > θ then
17: insert (s, a) into PQueue with priority p
18: end if
19: while While PQ 6= ∅ do
20: (s, a)← PULL(PQ)
21: Execute a→ s′, and cumulated future rewards R(s)
22: for for all model policies Qi do
23: if Qi 6= Qbeh map (s, a) ∈ AObeh

t → (sm, am) ∈ AOi
t

24: if (sm, am) exists, do Q-learning with importance sampling (Eq. 6.5)
25: end for
26: for all (ŝ, â) predicted to lead to s do
27: R̂← predicted reward on Qbeh

28: p← |r̂ + γmax
a

(Qbeh(s, a))−Qbeh(ŝ, â)|
29: if p > θ then
30: insert (ŝ, â) into PQ with priority p.
31: end if
32: end for
33: end while
34: end for
35: return Learned Behavior Policies Qi

160

6.6.1 Model Complexity

In the architecture introduced above, because of the concurrent and competi-

tive multiple agent structure, each component or attribute is modeled separately and the

state-space size increases linearly with time as k × T coming down to 45 for the toy

example of figure 6.1 (compare to 209 for Multiple Viewpoints of (Conklin and Witten,

1995), and 108 for Factorial Markov Models of (Saul and Jordan, 1999) as shown in sec-

tion 6.2.1). Modal interaction is not considered by directed graphs between components

but rather by influence of each attribute on others through an Importance Sampling pro-

cedure in equation 6.5 as a result of collaboration and competition between agents. This

choice was also motivated by cognitive foundations of music expectation rather than

mere simplicity. The complexity of the system depends linearly on T , nis (or number

of alphabets in each memory model i) and an adaptive environmental factor. This is be-

cause the arrows of the state-space model are inferred on-line and are dependent on the

context being added to previous stored knowledge. We could say that our learning has

an upper-bound complexity of O(nkT) where n = max(ni), but is practically sparser

than this upper bound.

The fact that T is a factor of both state-space size and complexity has advantages

and shortcomings. The main advantage of this structure is that it easily enables us to ac-

cess long-term memory and calculate long-term dependencies, induce structures, and go

back and forth in the memory at ease. However, one might say that as T grows, models

such as Factorial Markov would win over the proposed model in terms of complexity

since ni would not change too much after some time T . This shortcoming is partially

compensated by considering the phenomena of finite memory process. A finite memory

process in our framework is one that, given an oracle with N states and an external

sequence At, can generate the sequence through a finite window of its history without

using all its states (Martin et al., 2004). More formally, this means that there exist a non-

negative number m such that the set {sn ∈ AO : n ∈ N and n ∈ [N −m,N]} would

suffice for regeneration of a new sequence At. This notion is also supported by the fact

161

that music data in general is highly repetitive (Huron, 2006). The parameterm is usually

dependent on the style of music but since our framework adaptively searches for rele-

vant context, we keep it sufficiently large (≈ 200 states) to cover most of the knowledge

domain and to evade over-fitting of earlier memory states in large sequences.

Besides reducing representational complexity. As will be seen shortly, the pro-

posed framework does not need an extensive amount of data for training. Due to the

adaptive nature of selective sampling used during learning, it is basically sensitive to

any relevant context and propagates relevant information throughout all models when-

ever appropriate. We demonstrate these advantages in the following section through

different experiments.

6.7 Results and Experiments

In this section we explore the results and use of the anticipatory Active Learning

framework presented previously. The premise of the framework is its use in interactive

and multi-dimensional settings. Interaction is obtained through continuous information

exchange with an outside environment. The environment in this setting is anything that

lives outside the system itself, and can be a human operator, music information from live

musicians or even sequential data from a given music score. Through these interactions,

the algorithm builds memory models over the data and assigns anticipatory values to

each state-action pertaining to the ongoing context of the interaction.

We demonstrate the performance of our framework in two steps: First, we set

two simple experiments to demonstrate the effect of learning through simple interaction

in order to evaluate belief propagation in between interactions and see the agents in ac-

tion (or in generation) as a result of policy learning. We term these basic experiments

knowledge-base interactions since in each case an outside signal containing external

knowledge is influencing an already established knowledge within existing memory

models. After understanding the basic premises of this interactive learning, we move

on to a more complex musical setting in section 6.7.2 for automatic style imitation or

162

improvisation.

6.7.1 Knowledge-Based Interactions

We demonstrate single-shots of interactive cycles of our Active Learning frame-

work where interaction between the system and the environment is directly controlled.

Our main goal here is to study the behavior change of system after each interactive cycle.

Therefore, we limit ourselves for this setup to simple monophonic melodies. We further

assume that the system disposes some previous knowledge of some music phrases. We

then interact with this knowledge by feeding the system external information and hence

simulating a learning cycles and study the results.

For the two experiments presented here, we consider an excerpt of J.S. Bach’s

solo violin line from Aria Number 39 of Saint Matthew’s Passion as a priori knowledge-

base of the system. The score of the considered fragment is demonstrated in figure 6.4.

We choose a representational scheme similar to the toy example in section 6.4.1. Fea-

tures are extracted out of parsed MIDI signals which are chosen to be <pitch, duration

(beats), pitch contour, ∆ duration> for this experiment. After feature extraction, the

score of figure 6.4 becomes a 136 × 4 table (similar to table 6.1 for the toy example)

with 136 events in time. Similar to section 6.4.1, each of the four musical attributes

are then translated into four Oracles constituting the memory models of four competi-

tive and collaborative agents. Note that the nature of chosen features can be anything

as long as they are discrete sequences and the choices above are just for demonstration

purposes2. The policies of the four agents Qi are also initialized to an equal ε value for

each state-action pair.

At this stage, we are ready to simulate interactive cycles of Active Learning by

hand-feeding patterns into the system. In the two experiments that follow, we will be

interacting with the system through different reinforcement attributes. In a real setting,

the entry of the system consist of multiple-attribute music information. However, for the

2Original MIDI files used for and generated out of these experiments are accessible in the following
URL: http://cosmal.ucsd.edu/arshia/index.php?n=Main.Quals

http://cosmal.ucsd.edu/arshia/index.php?n=Main.Quals

163

Erbarme dich (First 8 bars of solo violin)
Johann Sebastian Bach (From "The Passion According to Saint Matthew")

= 100
2segno

8
12

3 4 tr

5

6

7

8

Figure 6.4: Score excerpts of Erbarme Dich, Aria No. 39 from Bach’s Saint Matthew’s

Passion – solo violin part.

164

sake of observation simplicity in these two experiments we focus on specific attributes

(by skipping model selection) and concentrate on anticipatory learning of algorithm 6.2

and within the self-listening mode (i.e. not updating models).

Experiment 1: Reinforcing patterns

For our first simple experiment, we interact with the system by showing it a

relative pitch pattern as depicted in figure 6.5. This pattern is actually the pitch contour

of the first 6 notes of the second theme in measure 2 of the score of figure 6.4. This

pattern is fed into the system as the environmental sequence At = {−1, 1, 2,−2,−1}.

Since this pattern is only concerned with one particular component (pitch contour), this

attribute becomes the behavior policy of Active Learning algorithm and other policies

are influenced by this behavior through collaboration between agents.

1 2 3 4 5 6
−1

0

1

2

states

P
itc

h
di

ffe
re

nc
e

in
 M

ID
I

Pitch contour pattern

Figure 6.5: Pitch contour pattern used in Experiment 1.

Using the four available memory models and this entry, algorithm 6.2 undertakes

learning and updates the four Qi policies for each agent. For this learning session, we

set N = 20, γ = 0.8, and α = 0.1 as learning parameters of algorithm 6.2. Figure 6.6

shows a snapshot view of learned anticipatory values for all state-action pairs for the

pitch policy. The actions on the y-axis of this figure are sorted MIDI pitch numbers

and the x-axis indexes are 136 existing states in the corresponding Factor Oracle. The

gray-scale values indicate the magnitude of learned values for each state-action pair or

|Q(s, a)|.

165

Pitch Policy

states

ac
tio

ns

20 40 60 80 100 120

88
86
85
84
83
82
81
79
78
76
75
74
73
72
71
70
68
66
0

Figure 6.6: Q matrix for pitch agent after reinforcement of pattern in figure 6.5 using

Active Learning.

Although the pitch contour agent is used during learning as behavior pol-

icy, figure 6.6 show a different agent’s learned policy to emphasize the influential aspect

of collaborative learning. We also chose the pitch agent for visualization since the

contours are detectable by the eye. Following the gray scaled values, some instances

of the original reinforced pattern as well as subsets of the pattern are clearly identifi-

able on the learned policy. But there are other rather irrelevant state-action paths which

are also emphasized during learning. These mediocre valued policies are mainly due to

our memory based anticipatory learning and correspond to paths whose future actions

would guide to the reinforced pattern. Such actions are valuable because their antici-

pated outcome in the long-run would increase the overall reward structure. This simple

fact distinguishes our approach from string-matching or pattern-recognition algorithms

which do not usually consider anticipated outcomes of actions. The policies learned at

each interaction cycle demonstrate anticipatory profiles of different components through

166

time.

To better understand the effects described above, we force the system to generate

100 events using random-walk over the learned policies. For this random-walk gener-

ation, we choose a behavior policy on which random-walk is undertaken and at each

generation step map the behavior policy state-action sequence to subsequent agents to

generate full multiple-attribute music events. We call this simple generative scheme col-

laborative generation. Also, to make our improvisation setting more explorative (and

avoiding repetitions) we undertake this generation in five episodes (20 generation steps

each) and negatively reinforce back the newly generated signals into the system using

our Active Learning framework in between episodes. Recall that this generative mode

of interaction is referred to as self-listening mode (figure 6.2). The generated score is

demonstrated in figure 6.7. A close look at this generated score highlights the domi-

nancy of the pitch pattern that was reinforced during learning.

The goal of generation here is to show the influential aspect of information dur-

ing our Active Learning framework and not the artistic output. A simple comparison of

the score in figure 6.7 and that of figure 6.4 highlights two striking facts: The generation

results are consistent with the reinforced pattern and knowledge added to the system and

also they extrapolate the original knowledge domain (e.g. new pitches appear that do

not exist in the original score) in a consistent manner with the acquired knowledge and

even when little data is available. We will get back to these points in section 6.7.2.

Experiment 2: Accumulating and blending Knowledge

Now imagine that we want to keep the previously acquired knowledge and blend-

in new and different sort of knowledge into the system hoping to maintain what has been

learned previously. In other words, we are interested in the accumulation of knowledge

within different interactive cycles. The Active Learning framework is actually made for

this kind of interaction through time.

For this experiment, we choose the rhythmic pattern in figure 6.8 as a different

167

"Erbarme Diche" after experiment 1
Generated by Active Learning

= 100

8
12

2
3

3

4

5

6 7
3

Figure 6.7: Generation of 100 events after Experiment No.1

source of knowledge than the one used in the previous experiment. This pattern also

appears first at the beginning of measure 5 in the score of figure 6.4.

8
12

Figure 6.8: Rhythmic pattern used in experiment 2.

After the introduction of this pattern, it is obvious that either the duration or its

derivative should be chosen as behavior policy during learning. Choosing the second

will take into account all possible rhythmic modulations available in the memory but we

choose the duration itself since this example is quite short and consistent with rhythm.

As before, we choose the pitch policy to show the result of learning in figure 6.9.

168

Pitch Policy

states

ac
tio

ns

20 40 60 80 100 120

88
86
85
84
83
82
81
79
78
76
75
74
73
72
71
70
68
66

0

Figure 6.9: Q matrix for pitch agent after reinforcement of pattern in Figure 6.8 using

Active Learning.

A visual comparison of figures 6.6 and 6.9 reveals that in the second, some mid-

dle state values have been emphasized while the overall structure of previously learned

policy are maintained. Perhaps a better explanation would be to look at what the system

would generate over time using this new episode of learning. A sample result is demon-

strated in figure 6.10. A close look at the score reveals two dominant structures: The

first occupying almost half of the score until the end of measure 3 is the result of our

recent reinforcement of the rhythmic pattern with pitch contour flavors of the previously

learned knowledge. The second structure starting from measure 4 towards the end has

the same pattern as in figure 6.5.

6.7.2 Anticipatory Style Imitation and Automatic Improvisation

In both experiments above, we saw how our anticipatory learner handles pattern

reinforcements, and accumulation and blending of knowledge on simple signals. The

169

"Erbarme dich" after Experiment 2
Generated by Active Learning

= 100

8
12

2

3

4

5 6

Figure 6.10: Generation of 100 events after Experiment No.2

170

main promise of this chapter is to devise an anticipatory framework that can simulate

complex musical behavior with no a priori knowledge and by direct interactive learning

through an environment. Here, we demonstrate our system in applications to automatic

music improvisation and style imitation as a direct way to showcase complex musical

behavior. Musical style modeling consists of building a computational representation

of the musical data that captures important stylistic features. Considering symbolic

representations of musical data, such as musical notes, we are interested in constructing

a mathematical model such as a set of stochastic rules, that would allow creation of new

musical improvisations by means of intuitive interaction between human musicians or

music scores and a machine.

We devise this experiment as follows: The system is trained on a specific piece

of music by sequentially interacting with the score using full functionalities of algo-

rithm 6.2 and our Active Learning framework. After training, the system turns into a

generative phase and generate a musical piece by composing and also interacting with

its own behavior.

For the representational front-end of this experiment, we hand-picked 3 different

attributes (pitch, harmonic interval and quantized duration in beats) along with their first

difference, hence a total of 6. Upon the arrival of a MIDI sequence it is quantized, cut

into polyphonic “slices” at note onset/offset positions (figure 6.1), and then different

attributes are extracted out of each slice. Slice durations are represented as multiples of

the smallest significant time interval that a musical event would occupy during a piece

(referred to as tatum). This representational scheme is similar to the toy example that

resulted in table 6.1 except that 3 additional rows corresponding to the derivatives of

those are added in. This constitutes our experimental mental representations or agents

of the system. During training, interaction cycles are simulated by feeding the music

score sequentially into the system. By the time these interaction cycles cover all of the

music score, memory models and policies are learned and ready for generation.

There are many ways to generate or improvise once the policies for each attribute

are available. We represent one simple solution using the proposed architecture. At

171

this stage, the system would be in the self listening mode. The agent would generate

phrases of fixed length by undertaking a random-walk on a behavior policy (obtained

from the previous interaction). When following a behavior attribute, the system needs

to map the behavior state-action pairs to other agents in order to produce a complete

music event. For this, we first check and see whether there are any common transitions

between original attributes and, if not, we would follow the policy for their derivative

behavior. Once a phrase is generated, the system runs an interactive learning cycle in

self listening mode but with guides considered as preventive or negative reinforcement.

This generative scheme was also used in the previous experiments and can be regarded

as a collaborative generation.

For this experiment we demonstrate results for style imitation on a polyphonic

piece of music: Two-part Invention No.3 by J.S. Bach. The training phase was run in

interaction mode with a sliding window of 50 events with no overlaps over the original

MIDI score. After this training phase, the system entered self listening mode where

it generates sequences of 20 events and reinforces itself until termination. Parameters

used for this session were α = 0.1 (in eq. 6.5), γ = 0.8 (in eq. 6.2), θ = 0.5 for priori-

tized sweeping threshold, and ε = 0.1 for the epsilon-greedy selection or random-walk

on state-action pairs. Number of episodes (N) simulated during each Active Learning

phase was 20. The generated score is shown in figure 6.11 for 240 sequential events

where the original score has 348. For this generation, the pitch behavior won all genera-

tion episodes and direct mappings of duration and harmonic agents have been achieved

76% and 83% in total respectively leaving the rest for their derivative agents.

While both voices follow a polyphonic structure, there are some formal musico-

logical structures that can be observed in the generated score. Globally, there are phrase

boundaries in measures 4 and 11 which clearly segment the score into three formal sec-

tions. Measures 1 to 4 demonstrate some sort of exposition of musical materials which

are expanded in measures 7 to the end with a transition phase in measure 5 and 6 ending

at a week cadence on G (a fourth in the given key). There are several thematic elements

which are reused and expanded. For example, the repeated D notes appearing in mea-

172

Improvisation Session after learning on Invention No.3 by J.S.Bach

Piano

ª

4

ª ª ª

ª

7

11

ª ª

ª

14

Figure 6.11: Style imitation sample result

173

sures 2 appear several times in the score notably in measure 7 as low A with a shift in

register and harmony in measures 9 and 15. More importantly, these elements or their

variants can be found in the original score of Bach.

Figure 6.12 shows the pitch-harmony space of both the original MIDI and the

generated score. This figure suggests that the collaborative and competitive architecture

has resulted in combination of attributes that do not exist in the original domain.

Figure 6.12: Improvisation Space vs. Original Space

Note that these results are obtained by an agnostic system with no a priori know-

ledge of the musical structures and no human intervention during learning and genera-

tion. The observed results suggest:

• Some degree of formal long-term planning behavior obtained during training

and exercised during generation.

• Achieving anticipatory behavior and learning even in presence of little training

174

data (compared to existing literature).

• Complex behavior within a relatively simple statistical framework as a result of

adaptive and interactive learning with an environment

6.8 Discussions

In this chapter we aimed at addressing how to build and act upon mental ex-

pectations through a simple anticipatory behavior learning framework. In our proposed

framework, an anticipatory learning system is in constant interaction with an outside

environment, updating its memory, beliefs and planning strategies according to the envi-

ronmental context at each interaction cycle. Our aim was to implement adaptive learning

by putting forth the notion of anticipation in learning rather than mere prediction.

Computationally speaking, our system features an agnostic view of its environ-

ment where all beliefs and behavioral actions are learned by observing the ongoing

environment through continuous interactions. We showed that such a framework is ca-

pable of constituting complex musical behavior without a necessarily complex model as

a result of anticipatory adaptations and demonstrated results for style imitation and auto-

matic improvisation. We also showed that the system, through its modular and adaptive

memory models and thanks to the competitive and collaborative learning framework, is

capable of behavior learning when little data is available and generates new context not

necessarily available in the hypothesis domain. These facts make the system a strong

candidate for considerations as an interactive computer music system.

On the cognitive side, the framework presented in this chapter aims at mod-

eling short-term veridical expectations as well as dynamic expectations as defined in

section 2.1.4. We also showed within two experiments how the system brings in previ-

ous knowledge and blends them in with new beliefs. In order to achieve other types of

expectancies such as schematic or long-term veridical expectations, one would need to

bring in compact representations of previous knowledge preferably in syntactic forms

175

into new experience. The idea here is to deduct latent belief structures from current

memory models and store them for future use and access. This idea will be strongly

pursued for future research.

We also showed the proposed framework in application to automatic improvisa-

tion and knowledge-base interactions. We mentioned these results as experiments rather

than paradigms of computer music. The two experiments mentioned in section 6.7.1 are

suggestive of a knowledge-based interaction paradigm for the field of generative com-

puter music. On the artistic considerations, they come close to the idea of controlled or

composed improvisation (Chabot et al., 1986; Dubnov and Assayag, 2005) and stylistic

re-injections (Assayag et al., 2006a) for computer assisted composition. This promising

view of integrating knowledge, interaction and composition should be further pursued

in collaboration with artists and composers.

Part IV

When to Expect

176

Chapter 7

Anticipatory Synchronization

In parts II and III of this thesis we roughly addressed concerns on What to expect

and How to expect and proposed methods to grasp part of the answer to each question.

We showed how anticipatory modeling can help reveal the influential aspects of infor-

mation and provide access to structures over time. We then introduced an interactive and

adaptive active learning framework that help action decisions in an anticipatory genera-

tive setting. In this chapter we turn our attention to the When or timing aspect of musical

expectation. The temporality of music events has in fact been a core of all the models

and methods presented so far but the musical time itself has not still been the center of

attention up to this chapter.

Since music is a timed signal by nature the issue is vast and covers many different

fields in the literature. In this chapter we focus on the problem of live synchronization

which is at the core of many musical activities such as music performance and produc-

tion and subject of extensive research in interactive music systems and cognitive studies

of musical rhythm. Perhaps a better target for this chapter would be the problem of

real-time tempo detection of music signals. Despite our interest, automatic tempo de-

tection is a whole field of research by itself. We therefore reduce the problem to that

of synchronization in a live performance situation and with a live musician where the

computer plays the role of a musician. Moreover, the problem of live synchronization is

177

178

crucial for many interactive music systems and paves the way for musical considerations

of anticipatory systems.

In this chapter we present a different approach to anticipatory modeling for the

problem of live synchronization. We show that our approach provides access to temporal

structures and parameters of music performance in a real-time setting and simplifies de-

sign and computational complexity of the system thanks to anticipatory modeling. Our

approach has important consequences for interactive music systems which we leave for

chapter 8 and focus here on the technical design and performance of the synchronization

problem. In this chapter, we study the most basic and studied form of synchronization

in a musical setting: live audio to score alignment which is also commonly referred to

as score following or automatic accompaniment in the research literature.

7.1 Introduction

Audio to score alignment and automatic accompaniment has a long tradition of

research dating back to 1983. The initial and still the main motivation behind score

following is the live synchronization between a computer with a music score and a

human performer playing the same score with her musical instrument. This can also

be extended to a live computer accompaniment with a human performer, for example

the computer assuming the performance of the orchestral accompaniment while the hu-

man performs the solo part. Another musical motivation is for new music repertoire

and mostly for live electronic performances where the computer assumes the perfor-

mance of a live electronic score that should be synchronous to the human performer in

a realtime performance situation. This synchronism is crucial for live electronic music

repertoire since they mostly use live score-specific processing on the audio input from

the human performer. The overall picture is to bring the computer into the performance

as an intelligent and well-trained musician capable of imitating the same reactions and

strategies during music performance that human performer(s) would undertake in a sim-

ilar situation. In recent years, automatic audio to score alignment systems have become

179

popular for a variety of other applications such as Query-by-Humming (McNab et al.,

1996), intelligent audio editors (Dannenberg, 2007) and as a front-end for many music

information retrieval systems.

Score alignment begins with a symbolic score and an audio input of the same

piece of music where during the alignment process many musical parameters pertaining

to expressivity can also be extracted. The audio input can be a recording of a perfor-

mance or can be entering the system as live, leading to off-line versus live audio to score

alignment algorithms. At this point, we would like to draw a line between two different

views of live versions: A live score follower can be real-time but not necessarily on-

line; thus allowing some latency in detection. For example, the accompaniment system

in (Raphael, 2006) is real-time but allows latency in reporting results with an acceptable

time-resolution for music performance situations.

In this chapter, we present a real-time and on-line audio to score alignment sys-

tems that is also capable of decoding the live tempo (or musical pace) of the perfor-

mance; a parameter which is highly responsible for expressive variations in different

realizations of the same piece. In its design and in comparison to existing systems, the

proposed system encompasses two coupled audio and tempo agents that collaborate and

compete in order to achieve synchrony. Collaboration is achieved through the feedback

of prediction of one agent into the other. The inference engine features a hidden hybrid

markov/semi-markov model that explicitly models events and their temporalities in the

music score. The tempo agent features a self-sustained oscillator based on Large and

Jones (1999), adopted here in a stochastic framework for audio processing. The nov-

elty of the proposed design are two folds: (1) Direct access to temporal structures in

music thanks to the coupled audio/tempo models within a unique inference technique,

and (2) an anticipatory model handling multimodal interactions between agents in dif-

ferent time-scales and featuring an adaptive learning framework, liberating the system

from any need for off-line training. The system gets as input a score representation and

live audio input. The output of the system are the event indexes and real-time tempo

with no need for external training. In practice, the presented system is capable of suc-

180

cessfully decoding polyphonic music signals and has been featured in several concert

performances world-wide.

Our consideration of anticipatory models for the problem of live synchronization

requires an understanding of the state-of-the-arts design of score following techniques,

cognitive and computational models of time as well as important contemplations on

time models as input from the music community. We therefore begin this chapter by

an overview of the literature within these topics in section 7.2.We introduce the general

architecture of our proposal in section 7.3 and provide the general inference framework

thereafter in section 7.4. Sections 7.5, 7.6, and 7.7 detail the two agents and their obser-

vation models. We evaluate the system’s performance in various situations in section 7.8

followed by discussions and conclusions on the proposed approach.

7.2 Background

7.2.1 Score Following Research

Score following research was first introduced independently by Dannenberg (1984)

and Vercoe (1984). Due to computational limitations at the time, both systems relied on

symbolic MIDI inputs rather than raw audio. The problem would then be reduced to

string matching between the symbolic input stream and the score sequence in real-time.

The problem becomes more complicated when expressive variations of the performer,

either temporal or event-specific, comes into play. Underlying systems must have the

tolerance to deal with these variations as well as human or eventually observation errors

in order to keep exact synchrony with the human performer. All these factors made the

problem appealing even on the symbolic level.

In the early 90s with the advent of faster computers, direct use of audio in-

put instead of symbolic data became possible, allowing musicians to use their original

instruments. In this new framework, the symbolic level of the score is not directly

observable anymore and is practically hidden from the system. Early attempts at this

181

period focused on monophonic pitch detectors on the front-end, providing pitch infor-

mation to the matching algorithm under consideration and thus, doubling the problem

of tolerance with the introduction of pitch detection uncertainly which is an interest-

ing problem by itself. An example of this is the system introduced by Puckette and

Lippe (1992) and widely used in computer music community. By mid-90s and parallel

to developments in the speech recognition community, stochastic approaches were in-

troduced by Grubb and Dannenberg (1997) and Raphael (1999b), with the latter based

on Hidden Markov Models and statistical observations from live audio input. Raphael’s

approach was further developed by himself and other authors leading to many variants

(for example in (Orio and Déchelle, 2001; Cont, 2006)). In a more recent development,

Raphael has introduced a polyphonic alignment system where a tempo model based on

dynamic Bayesian networks computes the tempo of the musician based on the posterior

data from the previously introduced Hidden Markov Model (Raphael, 2006).

It is interesting to note that Vercoe’s initial MIDI Synthetic Performer had ex-

plicit interaction with the deducted tempo of the live performer (Vercoe, 1984)1. With

the move to audio systems using pitch detection algorithms tempo was temporarily for-

gotten focusing on string matching techniques and back again with Grubb and Dannen-

berg (1997) where the pitch observations used in the probabilistic model can influence

the running tempo by comparing the elapsed time and the idealized score tempo. Per-

haps the most elaborate and explicit time model that has been used belongs to Raphael

in (Raphael, 2006). Raphael’s design has two (cascaded) stages for decoding of score

position and tempo. The first, comprising Hidden Markov Models deducted from the

score responsible for decoding the position in the score (called the listener) and the sec-

ond, an elaborate Bayesian network which takes this information to deduct the smooth

tempo during the performance. Notably, Raphael uses this tempo in interaction with his

accompaniment system to adapt the time-duration of the accompanying section using

phase-vocoding techniques.

In this chapter, we propose an anticipatory model for the problem of score fol-

1See the historical video at http://www.youtube.com/watch?v=vOYky8MmrEU

http://www.youtube.com/watch?v=vOYky8MmrEU

182

lowing. In our approach, tempo and audio decoding are not separate problems but are

rather tied and coupled together within an anticipatory framework. We will show later

that this approach reduces design complexity, computation and increases robustness and

control of the system. Besides these technical issues, one of the main goals of our de-

sign is to make use of such interactive systems for accessing, controlling and eventually

scripting electronic events directly using our model. For this reason, a thorough under-

standing of the concept of time in music and its modeling consequences is crucial.

7.2.2 Cognitive Foundations of Musical Time

The perception of musical metric structure over time is not merely an analysis

of rhythmic content, rather it shapes an active listening strategy in which the listener’s

expectations about future events can play a role as important as the musical events them-

selves. Therefore, any model for timing synchronisation of musical events should con-

sider the hypothesis that the temporal structure of listeners’ expectations is a dynamic

structure. A primary function of such structure is attentional which allows anticipation

of future events, enabling perceptual targeting, and coordination of action with musical

events.

The above considerations led Large and Jones (1999) to propose a model of me-

ter perception where they assume a small set of internal oscillations operating at periods

that are approximates to those of hierarchical metrical level. Each oscillator used in the

model is self-sustained in the sense that once activated, it can persist even after simula-

tion ceases or changes in significant ways. Meter perception is then achieved by different

oscillators competing for activation through mutual inhibition. Their model also has the

ability to entrain to incoming rhythmic signals. This model has been tested and veri-

fied largely in different experiments with human subjects (Large and Jones, 1999). The

tempo model of our framework, introduced in section 7.5, is an adoption of the internal

oscillator of Large and Jones in a stochastic and continuous audio framework.

On another level, research on brain organization for music processing show

183

strong evidence for dissociation of pitch and temporal processing of music (Peretz and

Zatorre, 2005). This evidence suggests that these two dimensions involve the operation

of separable neural subsystems, and thus can be treated in parallel in a computational

framework.

7.2.3 Compositional Foundations of Time

In most computational music systems that deal with models of time, modeling

concepts are inherited from long studied models available from speech recognition or

biological sequence literatures. Despite their success, these approaches bring in depart-

ing hypothesis and approximations that are not that of musical structures; thus, leading

to imperfect generalization of the underlying design. We believe that for the specific

problem of music information processing such as ours, the best source of inspiration is

the music literature and contemplations thereof on the problem which is the result of

centuries of human intellect. There is no single reference regarding time in the arts and

music. Every composer or artist has dealt with the problem one way or another. We will

not go through all aspects of time and neither do we claim providing a universal model

of time. Here, we briefly introduce the main sources of inspirations for our modeling,

mostly gathered from music theoreticians and composers’ contemplations on the “writ-

ing of time” (Ircam, 2006). These inputs will be later gathered and furthered synthesized

in our considerations for writing of time and interaction of chapter 8.

An ideal score following application should inherently possess the grammar used

in the score of the music under consideration. Looking at a traditional western notated

music score, the simplest way to imagine this is a set of discrete sequential note and

silence events that occupy a certain amount of relative duration in time. The relative

notion of musical time is one of the main sources of musical expressivity which is usu-

ally guided by a tempo often represented in beats-per-minute (BPM). Remaining within

the realms of western classical music notation, we provide two important insights on

temporality of musical events with direct consequences on our model.

184

Temporal vs. Atemporal

An Atemporal (or out-of-time) event corresponds to an object that possess its

own internal temporal structure independent of the overall temporal structures of the

piece of music. The two structures are usually considered independent in music theory.

To conform this distinction with our probabilistic design, we define an Atemporal object

or event as one that posseses a physical space in the score but does not contribute to

the physical musical time of the score. Typical examples of atemporal objects are grace

notes, internal notes of a trill, or typical ornaments in a baroque style interpretation in

western classical notation. While both have physical presence, the individual events do

not contribute to the notion of tempo but their relative temporal appearance in the case

of the grace note, or their overall in-time structure in the case of a trill contribute to the

notion of tempo. Other examples of atemporal objects are events with fermatas or free-

improvisation boxes seen in various contemporary music repertoire. The distinction

between temporal and atemporal events in musical composition is usually attributed to

the composer Iannis Xenakis (Xenakis, 1971).

Striated-time vs. Smooth-time

Striated time is one that is based on recurring temporal regularities while smooth

time is a continuous notion of time as a flow of information. The pulsed-time used in

most western classical music notation is a regulated striated time-flow that uses an in-

ternal musical clock usually driven by a tempo parameter in beats-per-minute. In our

terminology, we distinguish between a striated time-scale where the notion of time is

driven relative to a constantly evolving tempo, and smooth time-scale where the infor-

mation on the microscopic level consists of individual atemporal elements or is defined

relative to a clock-time. Typical example of a smooth-time event in western traditional

notation are free glissandis. It is important to mention that most available classical and

popular music pertain to striated time. The distinction of striated and smooth time in

music scores, despite its evidence, is attributed to the composer Boulez in describing

185

foundations of musical time (Boulez, 1964).

Stockhausen (1957) has shown that in electronic music practices, striated time

and smooth time are snapshots of the same process but with different frequencies under-

lying the compositional foundations of time. In a practical and computational view, we

can still distinguish the two by considering one as a discrete and other as a continuous

process over time.

7.2.4 Probabilistic Models of Time

As of the extreme temporal nature of music, the ability to represent and decode

temporal events constitutes the core of any score following system. In general, a live

synchronization system evaluates live audio inputs versus timed-models of symbolic

score in its memory. Since such systems are promised to operate in uncertain situations

probabilistic models have become a trend in modeling since late 1990s. Within this

framework, the probabilistic model’s goal is to decode temporal dynamics of an out-

side process. Therefore the performance of such model highly depends on its ability to

represent such dynamics within its internal topology. In these problems, any state of a

given process occupies some duration that can be deterministic or not. In such tasks,

we are interested in a probabilistic model of the macro-state duration and sojourn time.

In a musical context, a macro-state can refer to a musical event (note, chord, silence,

trills etc.) given an expected duration. A common way to model time series data in the

literature is by the use of state-space models. A state-space model of a sequence is a

time-indexed sequence of graphs (nodes and edges) where each node refers to a state of

the system over time. Therefore each state has an explicit time-occupancy that can be

used to probabilistically model sojourn time and duration of the events under consider-

ation. In this section, we limit our study to two wide classes of state-space models and

their duration models that cover most existing approaches: Markov and Semi-Markov

processes.

186

Markov Time Occupancy

In a parametric Markov time model, the expected duration of a marco-state j

(events such as notes, chords etc. that occupy time) is modeled through a set of Markov

chains with random variables attached to transition probabilities that parameterize an

occupancy distribution function describing the duration dj(u) where u is the number of

times spent in the marco-state markov chains. Figure 7.1 shows a parametric macro-

state Markov chain topology commonly used for duration modeling. This way, the

macro-state consists of r Markov states and two free parameters p and q correspond-

ing respectively to the exit probability and to the next-state transition probability. The

macro-state occupancy distribution associated to this general topology is the compound

distribution:

P (U = u) =
r−1∑
n=1

(
u− 1

r − 1

)
(1− p− q)u−nqn−1p

+

(
u− 1

r − 1

)
(1− p− q)u−rqr−1(p+ q)

1-p-q 1-p-q 1-p-q 1-p-q 1-p-q

p+qq q q q

p

p
p

p
...

q

Figure 7.1: Parametric Markov Topology

If p = 0, this macro-state occupancy distribution is the negative binomial distri-

bution:

P (U = u) =

(
u− 1

r − 1

)
qr(1− q)u−r

which corresponds to a series of r states with no jumps to the exit state with the short-

coming that the minimum time spent in the macro-state is r. This simplified version has

187

been widely explored in various score following systems where the two parameters r

and q are derived by optimization over macro-state’s time duration provided by the mu-

sic score. For example, Raphael in (Raphael, 1999a, 2004) uses the method of moments

to solve for optimized values whereas Orio, Lemouton, Schwarz, and Schnell (2003)

optimize the parameters on the mean and variance of the duration by assuming a fixed

(usually 50%) variation around the score duration.

As a reminder, a Markov process has the underlying assumption that the evolu-

tion of states in a process are memoryless or conditional on the preset where future and

past processes are considered independent. As we saw in previous chapters, such an

assumption is not necessarily true for music signals however researchers have mostly

adopted Markov processes with approximations.

In the above scheme, the time occupancy of Markov chains are modeled by dis-

crete parameters (p, q, and r). It is also possible to parameterize these time occupancies

by explicit distributions or beliefs over time-models as a function dj(u) for each mico-

state. In general, there is no gain in complexity neither design by using non-parametric

forms such as this within a Markovian framework. However the idea of using non-

parametric time occupancies would become attractive when considered over the macro-

states instead of micro-states, leading to semi-Markov topologies.

Semi-Markov Time Occupancy

In a Semi-Markov model, a macro-state can be modelled by a single state (in-

stead of a fixed number of mico-states) and using an explicit time occupancy or sojourn

probability distribution dj(u) for each state j and occupancy u. Assuming that Si is the

discrete random variable denoting the marco-states at time i from a state space S ⊂ N,

and Tm the time spent at each state m, then St = m whenever
m∑
k=1

Tk ≤ t <
m+1∑
k=1

Tk.

Or in simple words, we are at statem at time twhen the duration models for all states up

tom andm+1 comply with this timing. In this configuration, the overall process is not a

188

Markov process within marco-states but it is a Markov process in-between marco-states.

Hence the name Semi-Markov.

The explicit occupancy distribution can then be defined as follows:

dj(u) = P (St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 2|St+1 = j, St 6= j) (7.1)

where u = 1, . . . ,Mj with Mj the upper bound to the time spent in the macro-state. As-

sociated with the sojourn time distribution, we define a survivor function of the sojourn

time as Dj(u) =
∑

v≥u dj(v).

Semi-Markov models were first introduced by Ferguson (1980) for speech recog-

nition and gained attention because of their intuitive access to temporal structures of

models. Semi-Markov topologies are usually much sparser in computations and more

controllable than their Markovian counterparts. Moreover, they provide explicit access

to time models expressed as occupancy distributions. However, their disadvantage is in

finding suitable forms for dj(u) and integrating them within the probabilistic framework

where sojourn probabilities are usually not stationary functions over time themselves.

7.3 General Framework

The general problem of score following is devised as follows: The system dis-

poses a representation of the music score in advance, that is fed into the system off-

line. The goal of our system is to map the incoming real-time audio stream onto this

representation and decode the current score position, real-time tempo and undertake

score actions (if any). The music score is represented through a probabilistic graphi-

cal model constructed directly from a symbolic music score inspired by observation in

section 7.2.3. Given the probabilistic score representation, the real-time system extracts

instantaneous beliefs or probabilities of the audio stream with regards to states of this

probability model. This is achieved through observers of the system. The goal of the

system is then to integrate this instantaneous belief with past and future beliefs in order

to decode the position and tempo in real-time. Figure 7.2 shows a general diagram of

189

our system.

Observers

Inference & Decoding

Audio Tempo

Audio Streams

Score Position Tempo

Score
Parser

Score

Score
Actions

off-line

real-time

Figure 7.2: General System Diagram

This model has the underlying hypothesis that the audio stream can be totally

generated by the underlying state-space score model. Hence the problem of score fol-

lowing is the inverse of this hypothesis, or to find the most likely state-sequence associ-

ated with observed real-time audio sequence. Due to the nature of this inverse problem,

the underlying state-sequence that generates the audio is not directly observable by the

system and thus hidden. This process of finding the most likely state-sequence in a

hidden process up to the present is referred to as the inference problem.

7.3.1 Anticipatory Multimodal Inference

The inference framework proposed for this architecture is multimodal, taking

care of both continuous audio and tempo parameters and is also anticipatory. It is based

on coupled audio and tempo agents. The two audio and tempo agents collaborate at

190

all times to map the real-time audio input to the most likely state sequence in the score

model. The tempo agent computes on the event time-scale and is based on a cognitive

model of musical metric structure introduced in section 7.2.2 and provides continuous

tempo predictions based on live audio input and the given music score. The inference

scheme computes on the continuous audio time-scale and assigns probabilistic values to

relevant states in the score state-space by combining tempo predictions and continuous

audio observations. The proposed model is a sensorial anticipatory system (see defini-

tion in section 3.3.3, page 47) where the state likelihoods are influenced dynamically by

the predicted tempo, and in return, the tempo agent is directly affected by the decisions

obtained instantly by the system.

7.3.2 Hybrid Models of Time

The probabilistic (and generative) state-space model of the score describes event

types as well as time models of events in the score used during decoding and inference.

For the state-space model of our framework, we propose to use the best of both proba-

bilistic time models presented previously in section 7.2.4 and motivated by observations

on compositional foundations of time in section 7.2.3. Within this framework, we would

like to take advantage of explicit time-models of Semi-Markov chains for Temporal and

Striated-time events, and employ parametric Markov models for Atemporal and Smooth-

time elements in the score. These considerations lead to a probabilistic model based on

Hybrid Markov/Semi-Markov Chains as first proposed by Guédon (2005). Within our

inference framework, this model is hidden as noted above. Below, we provide the defi-

nitions and basics of hidden hybrid Markov/Semi-Markov chains which constitutes the

core of our system’s representation.

To formalize the problem, we assume that the audio stream through time τ or xτ0

(as short for x0, . . . , xτ) is a stochastic process represented by the random variable {Xt},

which is generated by a sequence of states sτ0 through the random variable {St} corre-

sponding to (hidden) states in a hybrid markov/semi-Markov chain constructed from

191

the score. A discrete hidden hybrid Markov/semi-Markov chain can then be viewed as a

pair of stochastic processes (St, Xt) where the discrete output {Xt} is related to the state

process {St} by a probabilistic function or mapping denoted by f where Xt = f(St).

Since this mapping f is such that f(sj) = f(sk) may be satisfied for different j and k,

or in other words, a given output may be observed in different states, the state process

St is not observable directly but only indirectly through the output process Xt. Beyond

this point, we use P (St = j) as a short for P (St = sj) denoting the probability that

state j is emitted at time t.

Let St be a J-state hybrid Markov/semi-Markov chain. It can be then defined

by:

• Initial probabilities πj = P (S0 = j) with
∑

j πj = 1.

• Transition Probabilities

– semi-Markovian state j:

∀j, k ∈ N, k 6= j : pjk = P (St+1 = k|St+1 6= j, St = j)

where
∑

k 6=j pjk = 1 and pjj = 0.

– Markovian state j:

p̃jk = P (St+1 = k|St = j)

with
∑

k p̃jk = 1.

• An explicit occupancy (or sojourn time) distribution attached to each semi-Markovian

state as in equation 7.1:

dj(u) = P (St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 2|St+1 = j, St 6= j) (7.2)

Hence, we assume that the state occupancy distributions are concentrated on

finite sets of time points.

192

• An implicit sojourn distribution attached to each Markovian state j where

P (St+1 = k|St+1 6= j, St = j) =
p̃jk

1− p̃jk
defines an implicit state occupancy distribution as the geometric distribution with

parameter 1− p̃jk:

dj(u) = (1− p̃jk)p̃jku−1 (7.3)

The output (audio) process Xt is related to the hybrid Markov/semi-Markov chain St by

the observation or emission probabilities

bj(y) = P (Xt = y|St = j) where
∑
y

bj(y) = 1.

This definition of the observation probabilities expresses the assumption that the output

process at time t depends only on the underlying hybrid Markov / semi-Markov chain

at time t.

The original formulations of the hybrid network defined above in (Guédon,

2005) are not aimed for real-time decoding, neither anticipatory, and nor multimodal

processing. In the following sections, we extend this framework to our multimodal an-

ticipatory framework.

7.4 Inference Formulation

The solution to the inference problem determines the most-likely state-sequence

Sτ0 that would generateXτ
0 and in return the score position and real-time decoded tempi.

In a non-realtime context, an exact inference can be obtained using a Viterbi type algo-

rithm (Murphy, 2002) that for each time t uses both beliefs from time 0 through τ (re-

ferred to as forward or α variable) and future knowledge from present (τ) to a terminal

state at time T (referred to as backward or β variable). In a score following system that

necessitates on-the-fly synchronization of audio with the music score, using the β or

backward variable of the Viterbi algorithm is either impossible or would introduce con-

siderable delays in the system. In the proposed system, we hope to compensate for this

193

absence of future beliefs through our anticipatory model of audio/tempo coupled agents

and an adaptive forward variable calculation procedure. Here, we formulate a dynamic

programming approach for an adaptive α calculation for a hidden hybrid Markov/semi-

Markov process.

For a semi-Markovian state j, the Viterbi recursion of the forward variable is

provided by the following dynamic programming formulation (see Appendix B.1 for

proof and derivation):

αj(t) = max
s0,...,st−1

P (St+1 6= j, St = j, St−1
0 = st−1

0 , X t
0 = xt0) (7.4)

= bj(xt)×max

[
max
1≤u≤t

({
u−1∏
v=1

bj(xt−v)

}
dj(u) max

i 6=j
(pijαi(t− u))

)]
For a Markovian state j, the same objective amounts to the regular dynamic program-

ming forward calculation for Hidden Markov Models (Rabiner, 1989):

α̃j(t) = max
s0,...,st−1

P (St = j, St−1
0 = st−1

0 , X t
0 = xt0) (7.5)

= bj(xt) max
i

(p̃ijα̃i(t− 1))

Within this formulation, the probability of the observed sequence xτ−1
0 jointly with the

most probable state sequence is argmax
j

[αj(τ − 1)].

In order to compute equations 7.5 and 7.4 in real-time, we need the following

parameters:

• State types and topologies determine the type of decoding and transition prob-

abilities pij . This probabilistic topology is constructed directly from the music

score and is discussed in section 7.6.

• Observations bj(xt) are calculated in from real-time audio (xt) and are discussed

in details in section 7.7.

• The sojourn distribution dj(u) that also decodes and model musical tempo in

real-time, and the upper bound u of the product in eq. 7.4, which are discussed

in section 7.5.

194

• A prior belief (or belief at time zero) as αj(0), which is usually assigned to the

corresponding starting point on the score during a performance.

During real-time decoding, the spatial complexity of the inference algorithm

for this mixture of macro-state model has an upperbound of O(τ
∑

jMj). Since we

are dealing with musical performances and a left-right overall structure in time, this

complexity usually amounts to the use of short homogeneous zones in the topology

during filtering as a window with a fixed span of states positioned around the latest

decoded event.

7.5 Stochastic model of time in music performance

In a western notated music score, time is usually written by values relative to

a musical clock referred to as tempo. Tempo is indicated by number of musical beats

that are expected to occur in minute (or BPM) and accordingly the temporality of events

in the score are indicated by the number of beats that they span in time which can be

fractions of a unit beat. Depicting the beat duration of an event k in the score by `k,

the absolute score location in clock-time Tk given a (global) tempo Ψ can be directly

obtained by the following recursive relationship:

Tk = Tk−1 + Ψ× `k (7.6)

However, in reality and even if an entire piece is depicted with a fixed tempo Ψ, the

tempo variable undergoes various dynamics and changes, responsible mostly for the

expressivity of a musical performance. Therefore our goal here is to infer the dynamics

of the tempo variable through time.

7.5.1 Attentional Model of Tempo

The model we propose here for decoding of the continuous tempo random vari-

able is highly inspired by Large and Jones (1999). Internal tempo is represented through

195

a random variable Ψk revealing how fast the music is flowing with regards to the phys-

ical time. After Large, we model the behavior of such random variable as an internal

oscillator entraining to the musician’s performance. Such internal oscillation can be

represented and modeled easily using sine circle maps. These models have been well-

studied in the literature and can be considered as non-linear models of oscillations that

entrain to a periodic signal and using discrete-time formalism. In this framework, phase

of the sine circle map would be an abstraction of time and the time to pass one circu-

lar period or the local tempo. Using this framework, we represent the tempo random

variable as ψk in seconds/beat and note onset positions as phase values φk on the sine

circle. This way, given a local tempo ψi, the score onset time tn can be represented as

φn = tn
ψi

+ 2kπ where k is the number of tempo cycles to reach tn. For our model,

a phase advance would be the portion of the oscillator’s period corresponding to (tem-

poral) event Inter-Onset-Intervals (IOI). Saying this, if the tempo is assumed fix (ψk)

throughout a piece, then

φn+1 = φn +
tn+1 − tn

ψk
mod +0.5

−0.5 (7.7)

would indicate relative phase position of all events in the music score.

In order to compensate for temporal fluctuations during live music performance,

we would need a function of φ that would correct the phase during live synchronization

and at the same time model the attentional effect discussed previously, thus enabling

perceptual targeting, and coordination of action with musical event. The attentional

pulse can be modeled using a periodic probability density function, the von Mises dis-

tribution which is the circle map version of the Gaussian distribution, as depicted below,

where I0 is a modified Bessel function of first kind and order zero.

f(φ, φµ, κ) =
1

I0

eκ cos(2π(φ−φµ)) (7.8)

where φµ and κ are mean and variance equivalents of the von Mises distribution. Fig-

ure 7.3 demonstrates a realization of this function on the sine-circle map.

Large and Jones (1999) show that the corresponding phase coupling function

(tempo correction factor) for this attentional pulse is the derivative of a unit amplitude

196

3π /2

π /2

π 0

Figure 7.3: Sample Von Mises distribution on a clock-wise sine-circle map, with mean

7π/4 or −π/4 and variance κ = 15.

version of the attentional function, depicted in equation 7.9. Figure 7.4 shows this func-

tion for different values of κ and φµ = 0.

F (φ, φµ, κ) =
1

2π expκ
eκ cos(2π(φ−φµ)) sin 2π(φ− φµ) (7.9)

With the above introduction equation 7.7 can be rewritten as,

φn+1 = φn +
tn+1 − tn

ψk
+ ηφF (φn, φµn , κ) mod+0.5

−0.5 (7.10)

where ηφ is the coupling strength of the phase coupling equation and φµn are the ex-

pected phase position of the nth event in the score according to previous justifications.

Phase coupling alone is not sufficient to model phase synchrony in the presence

of the complex temporal fluctuation. To maintain synchrony, the period (or tempo) must

also adapt in response to changes in sequence rate as follows:

ψn+1 = ψn(1 + ηsF (φn, κ)) (7.11)

Equations 7.10 and 7.11 can recursively update tempo and expected onset posi-

tions upon onset arrivals of temporal events from the inference engine. However, note

197

!0.5 0 0.5
!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

!

Ph
as

e
C

or
re

ct
io

n,
 F

(!
,"

)

"=1
"=3
"=10
"=0

Figure 7.4: Phase Correction function in Equation 7.9

that the phase-time regions where the phase adjustment is most efficient in figure 7.4 are

identical to the region around the mean of the attentional distribution (eq. 7.8) spanned

by its variance κ. Smaller values of κ spread the correction all over the phase domain,

amounting to a wider variance in the attentional function meaning that expectancy is

dispersed throughout the oscillator. For this reason, the parameter κ is usually referred

to as attentional focus. This observation suggests that the values of κ should be adjusted

at each update to obtain the best possible performance. To this end, before each tempo

update, we solve for κ̂ using a maximum-likelihood formulation on the dispersion about

the mean of a sampled population of previously occurred φns. This dispersion is given

by the following equation on the circular map:

r =
1

n

n∑
i=1

cos 2π(φi − φµi) (7.12)

which can be easily calculated recursively in real-time. Having this, the solution for κ̂

198

is shown to be (See Mardia and Jupp, 2000, Section 10.3.1):

κ̂ = A−1
2 (r) where Ap(λ) =

Ip/2(λ)

Ip/2−1(λ)
(7.13)

where Iν(λ) is the modified Bessel function of the first kind and order ν. The solution to

κ̂ in eq. 7.13 is obtained by a table look-up of A2(λ) and using accumulated dispersions

from eq. 7.12 in real-time.

7.5.2 Tempo Agent and Decoding

With the above formulations, we can propose a unified model of temporal fluc-

tuations in a music performance. The tempo agent demonstrated here works in parallel

with the audio decoding and observation. As mentioned earlier, the final outcome of the

system is a result of collaboration and competition between the two. While the audio

agent works on continuous-time level, the tempo agent works on event-time level or in

other words, on inter-onset time scale.

The tempo decoding algorithm we present here is a recursive algorithm based on

above observations and resembles an Extended Kalman Filtering approach (Maybeck,

1979). The Kalman filter estimates a process by using a form of feedback control: the

filter estimates the process state at some time and then obtains feedback in the form of

environmental measurements. The general Kalman filter algorithm then fall within two

steps: Prediction and Correction. The prediction equations are responsible for project-

ing forward (in time) the current state and error estimates to obtain the a priori estimates

for the next time step. The correction equations are responsible for the feedback or in-

corporating the new measurement into the a priori estimate to obtain an improved a pos-

teriori estimate. While general Kalman filters use linear estimators, Extended Kalman

Filters (EKF) assume non-linear estimators (as is our case with the Mises-Von correction

factors).

Algorithm 7.1 shows the two correction and prediction steps for the tempo agent.

The correction procedures make use of the true arrival time of event n or tn and within

199

two steps: In the first, we update the true variance κ needed during updates by accumu-

lating the circular dispersion as in eq. 7.14 which is a real-time approximation of eq. 7.12

by using an accumulation factor ηs which is set to a fixed value. Having corrected the κ

value using table lookup, the algorithm then updates the relative phase position of event

n, by using previous estimations, current measurements and the score phase position.

The prediction step then simply uses the newly corrected phase position of event n or

φn, the score phase position φ̂n and the correction factors to obtain the new tempo pre-

diction for event n + 1. This algorithm is called recursively and upon each arrival of a

measurement from the audio agent.

Algorithm 7.1 Real-time Tempo decoding algorithm
Require: Upon decoding of event n at time tn by the audio agent (measurement), given

score IOI phase positions φ̂n, initial or previously decoded tempo ψn
1: Correction (1): Update κ (variance)

r = r − ηs
[
r − cos

(
2π(

tn − tn−1

ψk
− φ̂n))

)]
(7.14)

κ = A−1
2 (r) (Table lookup)

2: Correction (2): Update φn

φn = φn−1 +
tn − tn−1

ψn−1

+ ηφF (φn−1, φ̂n−1, κ) mod+0.5
−0.5

3: Prediction:
ψn+1 = ψn

[
1 + ηsF (φn, φ̂n, κ)

]
4: return ψn+1

As to the nature of the proposed model, the newly obtained tempo at each step

ψn is a predictive tempo flow that can be used to anticipate future note locations in

time. We use this feature of our model in the next section to obtain the survival function

needed for inference module.

200

7.5.3 Survival Distribution Model

In section 7.4 we introduced the global inference method used for a Hybrid Hid-

den Markov/Semi-Markov model. We also introduced a state-space topology with ex-

plicit time-models with the use of explicit sojourn occupancy distributions dj(u) which

are required to calculate the inference formulation in section 7.4. Here we introduce a

stochastic time process that can derive the survival function needed for inference.

We consider the process underlying the arrival rate of events over a time-period

of musical performance as an Spatial Poisson process with distribution P (N(t) = k)

where N(t) is the number of events that have occurred up to time t characterized as:

P [(N(t+ τ)−N(t)) = k] =
e−λ(t)τ (λ(x, t)τ)k

k!

where λ(x, t) is the expected number of events or arrivals that occur at score location

x and time t. What we are now interested is a process that can underly the arrival time

of the kth event or Tk and from which we can derive the survival function needed for

eq. 7.4 and defined in eq. 7.2. Depicting the real-time as t and tn−1 as the previously

decoded event, the survival distribution is

dj(t− tn−1) = P (Tn > t|Tn−1 = tn−1, tn−1 < t)

= P [(N(tn)−N(tn−1)) = 0]

= exp [−λ(n, t)(t− tn−1)] (7.15)

Now that we have a direct formulation of the survival distribution, it only re-

mains to specify λ(n, t). Note that the expected value of this distribution is 1/λ which,

for event n, is equivalent to its expected duration according to the score and the latest

tempo decoding as demonstrated in section 7.5.1. Therefore,

λ(n, t) =
1

ψn−1`n
(7.16)

noting that sn or the (real-time) decoded local tempo is a function of both time t and

score location n. Combining both equations 7.16 and 7.15 would provide us for the

201

survival distribution to be used along with eq. 7.4 during inference:

dj(t− tn−1) = exp

[
−t− tn−1

ψn−1`n

]
(7.17)

Note that the upper limit of the product u in eq. 7.4 would also be equal to the expected

duration of the corresponding state or ψj`j .

Overall, the tempo agent described in this section provides the sojourn function

dj(u) as well as upper limits of eq. 7.4 adaptively during a real-time performance, as well

as decoding a continuous tempo parameter pertaining to the tempo of the performance

under consideration.

7.6 Music Score Model

Using the inference formulation above, each audio observation is mapped to a

state-space representation of the music score where each event in the score is modeled

as one or more states sj with appropriate characteristics. The state-space in question

would be a hidden hybrid markov/semi-markov model constructed out of a given music

score during parsing. The type of the state (Markov or Semi-Markov), its topology and

associated symbols are decided based on the musical construct taken from the music

score. In this section we describe a set of topologies that were designed to address most

temporal structures in western music notation outlined in section 7.2.3. As a convention,

in the figures that follow, Markov states are demonstrated by regular nodes whereas

Semi-Markov states by double-lines nodes.

7.6.1 Basic Events

A single event can be a single pitch, chord (or set of pitches occurring all at

once), silence or grace note. These events can be either temporal or atemporal (see

section 7.2.3). A timed event is mapped to semi-Markov state whereas an atemporal

event (such as a grace note) is mapped to a Markov state. A semi-Markov state si is

202

described by a set {i, `i, obsi} where i is the event number or discrete location since the

beginning of the score, and `i is its duration expressed as the number beats relative to the

initial score tempo, and obsi are observations or pitch numbers in this case. Figure 7.5

shows a sample graphical score and its equivalent Markov topology after parsing. If

the duration associated with a single event is set to 0.0, it is a sign that the associated

event is atemporal therefore Markovian and are described by {i, obsi}. In the example of

figure 7.5, grace notes are encoded as Markovian states (circles) where timed pitches are

parsed into semi-Markovian (dashed circle) states. In this example, pitches are encoded

using MIDI pitch numbers and a left-right Markov topology is created that is in one-

to-one correspondence with the score. Note that in this example, a dummy atemporal

silence is created in the middle. The parser automatically puts dummy silences between

events where appropriate to better model the incoming audio.

74 72 76 740 0

Figure 7.5: Sample state-space topology for basic events

7.6.2 Special timed events

Many score models for alignment purposes stop at this point. However, music

notation span a large vocabulary where sometimes events are spread differently over

time and interpretations are either varied from performance to performance or are free

at large. This is the case with almost every written music piece that contain events such

as trills, glissandos etc. While studying some of these common irregularities we figured

out that the particularity of such events are in how they are spreaded over time and

how their observations are handled during real-time decoding. We came out with two

simple state topologies that address several classical cases as well as more general ones

203

which are described hereafter. Another motivation for this part of our work, is the use

of our system by contemporary music composers who always seek to expand traditional

notions of music writing.

TRILL Class

As the name suggests, the TRILL class is a way to imitate classical music trill

notation. In terms of modeling, a trill is one in-time event that encompasses several out-

of-time events. Moreover, time-order, time-span and the number of repetitions of these

sub-states are of no importance. For example, a whole-tone trill on a middle C with a

duration of one beat (` = 1), can consist of 4 quarters, or 8 eighths, or 16 semiquavers

etc. of sequences of C and D, depending on the musician, music style or dynamics

of the performance. To compensate for these effects, we consider the TRILL class as

one semi-Markov state si with a given duration, whose observation obsi is shared by

two or more atemporal states. During real-time decoding, the observation of the general

TRILL state is the maximum observation among all possibilities for the incoming audio

frame or: bj(xt) = max
pj
{pj = p(xt|obsji)}. Figure 7.6 shows two musical examples that

can be described using the TRILL class, where the second2 demonstrates a free glissandi

which can also be successfully encoded using the this model.

72 74 66 65.567

Figure 7.6: State-space topology for the TRILL class

2The handwritten music samples are taken out of piece Little-I for flute and electronics by Marco
Stroppa, with kind permission from the composer.

204

MULTI Class

Another situation in music notation, less common than trills but of special inter-

est to us, is continuous-time or smooth time events where the time-span of a single event

undergoes change in the observation. An example of this in western classical notation

is the continuous Glissando or Portamento, described as continuously variable pitch,

where the musical instrument allows such notations (such as Violin, Trombone, human

voice etc.). Moreover, such class of objects would allow matching for continuous data

such as audio and gesture, along with symbolic score notations. To this end, we add one

more class to allow more complex object and temporal encoding. The MULTI class is

similar to the TRILL class with the exception that the symbols defined within its context

are atemporal Markov states that are ordered in time.

In this new topology, a high-level semi-markov state represents the overall tem-

poral structure of the whole object that is mapped to a series of sequential left-right

Markov chains. Figure 7.7 shows a MULTI example for two consecutive notated glis-

sandis.

Figure 7.7: State-space topology for the MULTI class

205

7.7 Observation Model

The inference formulation of section 7.4 attempts to map audio signals as dis-

crete frames xt in time to their corresponding state st in a music score. As mentioned

earlier, in our problem the states are not directly observable by the system and thus are

hidden. The observation probabilities bj(xt) in the inference formulation are thus the eye

of the system towards the outside world and provide probabilities that the observation

vector xt is emitted from state j. In other words, they are the likelihood probabilities

p(xt|sj) which after entering the inference formulation above become posterior beliefs

p(sj|x1, x2, . . . , xt).

In this section we show the model that provides the system with observation

probabilities bj(xt) during real-time inference. In general, the real-time audio enter-

ing system are represented as overlapping windows of fixed length over time. So each

observation vector xt corresponds to a vector of fixed time-span where t refers to the

center of window. In the experiments shown in this chapter, the time window has a

length of 92ms with an overlap factor of 4 as a compromise between frequency and

time resolution of the input.

In a polyphonic music setting, the observation probabilities should reflect in-

stantaneous pitches that are simultaneously present in an analysis window entering the

system in real-time. While polyphonic pitch detection is a hard problem by itself, in

our setting we do not need to push the problem that far since the music score provides

a priori information regarding expected pitches during the performance. So the goal

here is to compute the conditional probabilities p(xt|sj) where each state sj provides

the expected pitches in the score.

For this aim, we choose to represent analysis frames xt in the frequency domain

using a simple FFT algorithm and compare the frequency distribution to frequency tem-

plates constructed directly out of pitch information of each event in the score decoded

in sj . This choice of observation model is natural since musical pitches tend to pre-

serve quasi-stationary frequency distributions during their life-time which corresponds

206

to their fundamental frequencies along with several harmonics. Since we are dealing

with xt and st here as probability distributions over the frequency domain, it is natural

to choose a comparison scheme based on probability density distance, for which we

choose the Kullback-Leibler divergence as shown below:

D(Sj||Xt) =
∑
i

Sj(i) log
Sj(i)

Xt(i)
(7.18)

where Xt is the frequency domain representation of xt or FFT (xt) and Sj is the fre-

quency probability template corresponding to pitches in sj .

Note that this framework resembles our Music Information Geometry framework

of chapter 4. Here again, we are inherently considering FFT vectors and templates

as Multinomial distributions or normalized histograms of frequency distribution. We

saw previously in chapter 4 that the Bregman divergence (or similarity metric) for this

statistical manifold is just the Kullback-Leibler divergence that is restated above.

The formulation above has a direct probabilistic interpretation that favors its use

as the likelihood observation function: If Sj is considered as the “true” frequency dis-

tribution of pitches in sj and Xt as an approximation candidate for Sj , then D(Sj||Xt)

gives a measure up to whichXt can describe Sj and is between 0 and +∞withD(Sj||Xt) =

0 iff Sj = Xt. To convert eq. 7.18 to probabilities, we pass it through an exponential

function that maps [0,+∞]→ [1, 0]:

p(xt|sj) = exp [−βD(Sj||Xt)] (7.19)

where β is the scaling factor that controls how fast an increase in distance translates to

decrease in probability.

In order to construct the “true” frequency distributions of pitches in sj , we as-

sume that a pitch consist of a fundamental and several harmonics representing them-

selves as peaks in the frequency domain. Each peak is modeled as Gaussian centered

on the fundamental and harmonics and their variance relative to their centers on a loga-

rithmic musical scale. For this experiment, we use 10 harmonics over each fundamental

207

with a variance of a half-tone in the tempered musical system which can both be adjusted

if needed by the user.

Note that the likelihood in eq. 7.19 requires normalization of Xt and Sj such

that their would sum to 1. This normalization process undermine the robustness of the

system to low-energy noise. Moreover, there is no single way to model silence or non-

events using a template. For this reason, we influence eq. 7.19 by the standard deviation

of Xt which reflects energy and also noisiness, to obtain bj(xt). A similar method is

also reported in (Raphael, 2006).

7.8 Evaluation

In this section, we provide results of real-time alignment and evaluate them in

various situations. Evaluation of score following systems with regards to alignment was

a topic in Music Information Retrieval Evaluation eXchange (MIREX) campaign in 2006

(ScofoMIREX, 2006; Cont et al., 2007c). In that contest, organizers with the help of the

research community, prepared references over more than 45 minutes of concert situation

acoustic music and defined certain evaluation criteria which we will reuse in this paper.

However, no clear methodology is yet proposed for evaluation of tempo synchronization

which is basically a different topic than the score alignment.

In order to address both tempo and alignment evaluation, we conduct three dif-

ferent experiments. In the first experiment in section 7.8.1 we evaluate the tempo predic-

tive model of section 7.5.2 in a symbolic setting taken out of real performance record-

ings. We then move to the audio world and in section 7.8.2, evaluate the system against

synthesized scores which will allow us to have detailed control over timing and evaluate

both tempo and alignment up to milli-second order. In the section 7.8.3, we test the sys-

tem against real music performances that has been previously checked and referenced

in (Cont et al., 2007c) with some extensions.

208

7.8.1 Evaluation of Tempo Prediction

In section 7.5.2 we presented a simple recursive and online algorithm that pro-

vides tempo predictions of the next event using information up to the real-time. In this

section we evaluate the performance of this predictive tempo model. The only synchro-

nization system that also decodes and represents tempo along score position besides our

proposed method is the on in (Raphael, 2006). We therefore evaluate our system along

with a real-time adoption of tempo decoding of Raphael. Details of Raphael’s model is

presented in Appendix B.2.

This experiment is a basic one-step time-series prediction setup. Each step of

the process is the arrival of an onset from live performance, thus simulating a realtime

situation. The evaluation is done on a database of aligned music performance to score

previously constructed by the author for MIREX Score Following Contest of 2006 (Sco-

foMIREX, 2006). In this experiment, we only use the original MIDI score and the cor-

responding aligned MIDI. Table 7.1 describes the contents of the database used in this

experiment. The two data sets in the database correspond to a classical piece, Bach’s

Violin Sonatas performed by Menuhin and Kremer, and a contemporary piece by Pierre

Boulez, ...Explosante-Fixe..., flute solo sections from Transition V and VII performed

by Ensemble InterContemporain.

Table 7.1: Dataset Description used for Tempo Prediction Evaluation.

Composer Piece No. of Files No. of Events
Set 1 Pierre Boulez Explosante-Fixe 27 1173
Set 2 J.S.Bach Violin Sonatas 12 7422

For the actual experiment, we simulate both systems in a realtime situation where

they are supposed to predict arrival time and tempo of the next event to come. Both

systems start on each file in the database using the initial tempo of the given scores. After

each performance, we compute the difference between predictions and actual arrival

time (in seconds) as error rates.

Table 7.2 shows the evaluation result summary as statistics of the total error on

209

both data sets and for both systems. Statistics of the total error is demonstrated in terms

of mean and standard deviation (in seconds). Results better predictions for the proposed

model than Raphael’s while both undergo acceptable performances.

Table 7.2: Tempo Prediction Evaluation Results: Error statistics (in seconds)

Proposed Raphael
mean std mean std

Set 1 1.61 4.1 -11.8 17.9
Set 2 2.3 7.2 -13.8 11.2

For subjective observation, figure 7.8 demonstrates the results obtained on file#1

of data set 1 (section 01, Transition V, ...Explosante-Fixe...) as a rather fast and short

piece with lots of temporal fluctuations. The prediction error of our model for this

short performance is to the order of 0.045 seconds and thus coincides with the live

performance whereas the original score timing are clearly deviated. This is a result of

on-line adaptation of our system’s parameters (κ). While Raphael’s predictions follow

the temporal flow of tempo, they deviate more and more from the actual performance

due to error propagation during inference and lack of adaptive parameterization.

In practice, Raphael’s variance parameters for the generative tempo and time

models or {σsk , σtk} (see appendix B.2) are adapted beforehand to the performance ei-

ther by off-line learning or hand-tweaking. For the experiments above, we initialized

them to half-life duration of the local tempi and IOI in each score. Therefore, Raphael’s

performance is usually better than what depicted above through pre-adaptation to a con-

cert situation. However, the experiment above showcases the adaptive behavior of our

proposed method. We will look at the adaptive characteristics of our tempo model in the

following section.

7.8.2 Evaluation over synthesized audio from score

In this section, we evaluate the performance of the system against synthesized

audio from a given score. The main reason for separating this procedure from real

210

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

Event number

T
im

e
(s

)

Live Performance
Raphael
Proposed
Score

Figure 7.8: Subjective Results for Tempo Prediction Evaluation: Temporal alignment

results of two systems with the original

acoustic performances is for reassessment of the tempo synchronization. While eval-

uating alignment result is easily imaginable using real and acoustic data, evaluation of

tempo is a hard task. It is generally impossible to ask a musician to perform a given

score using a temporal progression curve up to milli-second precision to be used as a

reference. On the contrary, this is quite imaginable using synthesized audio by arranging

temporal progressions of score events during the synthesis process.

Before defining the experimental setup and showing results, it is important to

undermine several characteristics of the tempo agent described in section 7.5 in terms

of its performance. First, the oscillator model has the underlying hypothesis that tempo

progresses continuously and tempo process adapts or locks into the new tempo progres-

sively. This means that when an abrupt or discontinuous jump occurs in the tempo, the

κ or attentional focus should undergo abrupt change with the tempo random variable

reaching an optimum equilibrium within a few steps. At the same time, when the tempo

211

changes continuously (for example in the case of an acceleration or deceleration), the

agent should be capable of locking itself to the new tempo even if its best performance

is when several equilibrium points exist for the best phase locked result. We study each

case separately. In both experiments, we consider a simple score depicted in figure 7.9

containing 30 notes with a score tempo (or prior) of 60bpm or 1 second
beat

. By synthesizing

this score to audio, we enforce a different tempo curve than the fixed tempo of the score

and feed both the score and synthesized audio into the system and study the results.

Figure 7.9: Sample score 1 for tempo experiment

The synthesis method used here is based on a simple FM synthesis method de-

scribed in Moore (1990). We did not experience any significant difference by changing

the synthesis method regarding the aims and results for this section. For evaluation

on more complex signals (and concretely, real acoustic signals) we refer the reader to

section 7.8.3.

Discrete tempo jumps

We first study the result of one abrupt tempo change in the middle of the score,

jumping from the original down to less than 2/3rd of the original and on one note.

The results are demonstrated in figure 7.10 where figure 7.10a shows the synthesized

waveform with the alignment results where each number tag refers to one of the 30 notes

in the score of figure 7.9. Comparing the left and right portion of this waveform clearly

shows the difference in duration length of each event corresponding to the abrupt tempo

jump. Figures 7.10b shows the tempo synchronization result along with the the real

tempo curve as dashed line on the main left figure and the corresponding κ parameter at

212

each time step on the top, and local estimation error on the right figure. The estimation

error is computed as the difference in milli-second between the real tempo and decoded

tempo both expressed in milli-seconds
beat .

0 5 10 15 20 25 30 35

!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

0.25

0.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time (s)

Audio to Score Alignment result

(a) Waveform and alignment result

0 5 10 15 20 25 30 35
0

5

10

15

!

0 5 10 15 20 25 30 35
40

45

50

55

60

65

BP
M

Time (sec)

decoded
real

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

Es
tim

at
io

n
er

ro
r (

m
s)

Time (s)

local tempo estimation error, µ= 58.1719ms

(b) Estimated and real tempi for acceleration and deceleration in BPM

Figure 7.10: Tempo Decoding Evaluation using synthesized score and controlled tempo

Looking closely at figure 7.10 we can interpret the online tempo adaptation as

follows: On the first event after time 15s, the tempo agent goes into a sudden instabil-

ity leading to the biggest estimation error as depicted in fig. 7.10b on the right. This

instability leads to a sudden change in the κ parameter that controls attentional focus.

Therefore, κ at the onset following t = 15s is quite low meaning that important tempo

correction is necessary. This process continues for almost 5 consecutive events until the

agent finally locks itself around the correct tempo which can be observed by looking at

direct results converging to the real tempo, or by observing the decrease in the estima-

213

tion error, as well as by observing the increase in the adaptive κ parameter reaching its

upper bound (here set to 15). The mean tempo estimation error is 58ms.

We now take a look at another sample, this time by introducing two tempo jumps

during the life of the synthesized score of figure 7.9. Results are demonstrated in the

same format as above, in figure 7.11. Here, the audio starts with a different tempo than

the one indicated by the score prior, so the κ parameter starts low in the beginning until

stability and undergoes change every time the system enters inequilibrium as shown in

figures 7.11b. The mean estimation error in the course of this session is 57ms.

0 5 10 15 20 25

!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

0.25

0.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time (s)

Audio to Score Alignment result

(a) Waveform and alignment result

0 5 10 15 20 25 30
0

5

10

15

!

0 5 10 15 20 25 30
50

55

60

65

70

75

80

BP
M

Time (sec)

decoded
real

0 5 10 15 20 25 30
0

50

100

150

200

250

Es
tim

at
io

n
er

ro
r (

m
s)

Time (s)

local tempo estimation error, µ= 57.8827ms

(b) Estimated and real tempi for acceleration and deceleration in BPM

Figure 7.11: Tempo Decoding Evaluation using synthesized score and discretely con-

trolled tempo

The onset estimation error in both examples above vary between 10ms and 30ms

with no missed note (as is clear from alignment results in figures 7.10a and 7.11a). This

high precision is not a surprise since here we are dealing with simple synthetic sounds

214

with rather stationary spectrums.

Continuous tempo change

In this section we follow the same procedure as before, using the score of fig-

ure 7.9 for synthesis and alignment, but with the difference that the tempo parameter

is continuously changing on each note event instead of abrupt or discrete change. This

experiment is aimed at simulating acceleration and deceleration common in music per-

formance practice. The control function for tempo during the synthesis is set to an

exponential function eγ(n−1) where n is the note event number in the score and γ con-

trols the slope of the change with γ < 0 indicating acceleration and γ > 0 deceleration

over performance time. A partial goal here is to demonstrate the performance of the

system despite the lack of time to reach an equilibrium state which was the case in the

previous experiment.

Before doing a mass evaluation, we visually demonstrate two result sets to get

a better feeling of the performance of our system. Figure 7.12 shows the performance

of the system using acceleration (left) and deceleration (right) schemes with γ = ∓0.04

resulting to a tempo difference of 131bpm and −41bpm respectively. As before, we

are demonstrating the resulting synthesis waveforms and alignment tags in fig. 7.12a,

the real and estimated tempi along with adaptive κ parameters in fig. 7.12b, as well as

tempo estimation error on each event in fig. 7.12c.

Figure 7.12 leads to the following important observations: First, the κ parameter

is constrantly changing over the course of both processes in figures 7.12b. This is normal

since the reference tempo is continuously evolving in both cases. Second, note that

while γ only changes signs in the two cases, the estimation results and the mean errors

are quite different. This phenomena is easy to explain: In the deceleration case (right

portion of fig. 7.12, the difference between the two tempo extremes is about−40bpm but

the time steps between each event (and their respective tempo-phase) is exponentially

increasing, so the system needs more time and steps to reach a better stability point;

215

0 2 4 6 8 10 12 14 16 18

!0.2

!0.1

0

0.1

0.2

0.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 282930

Time (s)

Audio to Score Alignment result

0 10 20 30 40 50 60

!0.2

!0.1

0

0.1

0.2

0.3 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time (s)

Audio to Score Alignment result

(a) Waveforms and alignments for accelerating (left) and decelerating (right) tempi

0 2 4 6 8 10 12 14 16 18
0

5

10

15

!

0 2 4 6 8 10 12 14 16 18
60

80

100

120

140

160

180

200

BP
M

Time (sec)

decoded
real

0 10 20 30 40 50 60
0

5

10

15

!

0 10 20 30 40 50 60
15

20

25

30

35

40

45

50

55

60

BP
M

Time (sec)

decoded
real

(b) Estimated and real tempi for acceleration and deceleration in BPM

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Es
tim

at
io

n
er

ro
r (

m
s)

Time (s)

local tempo estimation error, µ= 56.759ms

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

Es
tim

at
io

n
er

ro
r (

m
s)

Time (s)

local tempo estimation error, µ= 93.4219ms

(c) Estimation error for acceleration (left) and deceleration (right)

Figure 7.12: Tempo Decoding Evaluation using synthesized score and continuously

controlled tempo

216

despite that it follows the original curve correctly. This leads to a bigger estimation

error than the acceleration case, where the phase-steps become smaller and smaller at

each step. This observation is further enhanced by noticing that the estimation error for

the acceleration curve (left of fig. 7.12c) start decreasing after a while which is not the

case for the deceleration case.

The observations above are further enhanced by enlarging the evaluation set by

vayring γ values during synthesis. Table 7.3 shows the same evaluation procedure above

for various values of γ, where the first three columns characterize the synthesized audio

from score in figure 7.9, and the last two columns show tempo and onset estimation

errors in milli-seconds. Here again, we can observe that accelerating equivalences of

|γ| (or γ > 0) have better estimation rates than their decelerating equivalence. The

estimation errors here are the mean over all the events in the score (total of 30 in each

case). The reader might argue that an estimated error of 158ms (reported in the last row

of table 7.3) is not acceptable for a tempo synchronization application. In response, we

argue that the tempo difference associated with this process (281.8bpm) is almost never

experienced in a musical performance setting unless it is stated explicitly in the music

score by a discrete tempo change (combined or not with an acceleration) which would

resolve the case.

Table 7.3: Tempo Decoding Evaluation: Batch results over exponential tempo curves

γ Length (s) ∆S (bpm) Tempo Err (ms) Onset Err (ms)
-0.06 16.0 -49.5 68.22 9.50
-0.05 17.0 -46.0 62.51 9.35
-0.04 19.0 -41.0 56.32 9.73
-0.03 22.0 -34.9 44.02 9.27
-0.02 24.0 -26.4 37.87 9.26
0.02 43.0 47.1 8.13 10.82
0.03 51.0 83.2 44.44 10.34
0.04 61.0 131.4 93.46 9.59
0.05 73.0 195.7 104.68 9.50
0.06 88.0 281.8 158.78 8.69

217

7.8.3 Evaluation of real-time Alignment

In table 7.3, we are also reporting the mean onset error which is the elapsed time

between the detected time of each event and the synthesis reference. These error rates

are extremely low (around 10 milli-seconds) for each fragment. While these results

are highly encouraging, in a real acoustic music situation, the audio signals are much

less stationary than synthesized signals used in the previous section. In this section, we

evaluate the real-time alignment results in the context of acoustic music performances.

In 2006, an international evaluation campaign was organized by the research

community for the evaluation of real-time audio to score alignment algorithm for Mu-

sic Information Retrieval Evaluation eXchange (MIREX) and was reported during the

ISMIR conference in Victoria, Canada on August 2006. During this campaign a gen-

eral consensus was obtained for evaluation metrics and procedures applicable to most

available systems. The agreed procedures as well as documentation of all details and

dicussions are available through the MIREX web-portal (ScofoMIREX, 2006) and in

(Cont et al., 2007c). For the sake of completeness, we briefly describe the evaluation

procedure and metrics used as well as our own addition to the database before showing

results.

Evaluation consists of running the system on a database of real audio perfor-

mances with their music scores where an alignment reference exists for each audio/score

couple. This procedure aims at simulating a real-time performance situation, thus au-

dio frames are required to enter incrementally into the system. More details as well as

calling conventions are accesible in (ScofoMIREX, 2006).

Table 7.4 describes the database used for this evaluation which is a partial copy

of the one in (ScofoMIREX, 2006) plus some additions. Items 1 and 2 are strictly mono-

phonic, item 3 is lightly polyphonic with the appearances of music chords of the violin

from time to time in the piece, while item 4 is strictly polyphonic with up to 4 different

voices happening at the same time. This database contains more than 30 minutes of

referenced audio/score pairs and has been chosen to demonstrate the performance of the

218

system on different musical instruments, and styles (item 1 is in contemporary music

style with unconventional timings) and degree of polyphony. Items 1 to 3 are used in

(ScofoMIREX, 2006) whereas item 4 is aligned using a heavy offline algorithm reported

in (Yeh, 2008) and further enhanced as described in (Yeh et al., 2007).

Table 7.4: Evaluation Database Description

Piece name Composer Instr. Files Prefix Events
1 Explosante-Fixe P. Boulez Flute 7 tx-sy 615
2 K. 370 Mozart Clarinet 2 k370 1816
3 Violin Sonata 1 J.S. Bach Violin 2 vs1- 2019
4 Fugue BWV.847 J.S. Bach Piano 1 RA 225

Once every piece is ran through the system, we obtain a set of event tags i with

their detection times tdi in milli-seconds. The process of evaluation then, is to compare

the results with the previously prepared references for each piece with the same tags i

and alignment times tri . Evaluation metrics are then the number of misses, and corre-

sponding statistics on the offset time oi = tdi − tri between detected time tags and the

associated ones in the reference database. Table 7.5 shows the results of evaluation on

each file in the described database, starting from monophonic scores and going gradu-

ally towards the polyphonic ones. Here FP refers to false positive which are misaligned

events and are parts of the missed events. The Average Offset error is the mean over

the absolute offset values or
∑
i

|oi| where Mean Offset is the regular mean without tak-

ing the absolute value. Given these statistics, the Overall Precision is calculated as the

percentage of total number of events to detect minus the total number of missed notes

whereas the piecewise precision is the mean of the same rate but over individual files.

In (ScofoMIREX, 2006) another metric is proposed pertaining to latency and defined as

the interval between the detection time and the time the event is reported. This metric

was specifically designed for systems that are real-time but are not necessarily on-line;

hence, allowing a delay in reporting the correct alignment. This is the case for example

in (Raphael, 2006). We omit this measure from table 7.5 since our system is strictly

on-line and real-time and thus, this measure is always zero.

219

Table 7.5: Real-time Alignment Evaluation Results

Source Info Offset (ms) Percentage
Filename Events Average Mean STD Missed FP
K370.030 908 188.4 188.4 255.3 7.49% 0.22%
K370.032 908 166.1 166.1 208.9 5.95% 0.22%

s01 88 85.7 85.7 24.8 2.27% 0.00%
s04 76 81.7 81.7 29.0 5.26% 0.00%
s06 108 75.1 75.1 34.6 4.63% 0.00%
s11 63 109.4 109.4 217.4 17.46% 0.00%

t7-s03 90 115.3 115.3 63.9 6.67% 0.00%
t7-s16 98 113.0 113.0 26.2 5.10% 0.00%
t7-s21 92 106.0 106.0 25.4 3.26% 0.00%

vs1-4prs 1604 240.9 240.9 165.0 10.41% 0.00%
vs1-1ada 415 130.1 130.1 106.6 12.53% 1.45%

RA-C025D 225 99.8 99.8 75.3 9.33% 0.00%
Total Precision: 91.49%

Piecewise Precision: 92.47%

Note that since we are in a live performance simulation, meaning that data is fed

incrementally into the system, the system can get lost or get stuck during performance.

The overall high precision rate for each piece shows that this is not the case and the

system has successfully terminated each audio through its end. In overall, the reported

performance in table 7.5 is comparable to other systems on strictly monophonic pieces.

However, we outperform the two other systems in (ScofoMIREX, 2006) on Bach’s Vi-

olin Sonata files which have light polyphonic and here we report a strictly polyphonic

version (for file RA-C025D). The fact that average offsets and mean offsets are always

equal indicate that our system is never early in detection or ∀i : oi ≥ 0. Also note that in

our system, no off-line learning is necessary since all system parameters are constantly

being updated online.

220

7.9 Discussions

In this chapter we presented a new approach to live synchronization of audio with

music scores. The novelty of our approach is its explicit anticipatory model, coupling

audio and tempo into one unique inference framework, and also the fact that it pro-

vides users and interactive systems with decoded real-time tempo of the performance.

We evaluated the system in three different setups. The proposed system is computa-

tionally cheap and easily controllable. It has been implemented within the mainstream

interactive computer music systems (MaxMSP and PureData environments) and has

had successful performances worldwide including its premiere in Japan3, as well as a

performance with Los Angeles Philharmonic4, and more.

Despite its robustness, the design introduced in this chapter provides musicians

and composers with necessary access to temporal processes both within their scores

and enables ways to think of a writing of interaction and time for interactive computer

music. This will be our next topic.

3Performance of ... of Silence of composer Marco Stroppa, for Saxophone and Chamber Electronics,
Shizuoka, Japan, November 2007.

4Performance of Explosante-Fixe of composer Pierre Boulez, LA Philharmonic, Disney Hall, Los
Angeles, 13 and 14 January, 2008.

Chapter 8

Towards Writing of Time and

Interaction in Computer Music

Computer music, through its relative short history compared to our musical her-

itage, has spread itself through various mediums that it is harder than ever to define it in

a coherent context. Through its short history, computer music trends have always been

driven by culmination of mutual research and artistic endeavors. Computer music as

an art medium takes a wide variety of forms from fixed “tape” electronics, to interac-

tive compositions, mixed media (gesture, audio, video etc.) as well as written (scored)

music for electronics and live musicians to improvised performances. Consequently

the research literature within, encompasses a wide range of activities including sound

synthesis, signal processing, physical modeling, information retrieval and interactive

systems.

Despite this variety, all approaches to computer music whether for pure perfor-

mance, transcribed compositions, or pure generation, have strong considerations for mu-

sical representations of ideas in one way or another. With this respect, different practices

of computer music have led to various paradigms of composition evolved from different

computer programming paradigms addressing different views of musical representa-

tions. In return, each specific domain has its own literature concerning representations

221

222

and writings of events and processes. For example, the research in sound synthesis has

given rise to many softwares and semantics for representing and modeling composi-

tional processes (See Bresson, 2007a), interactive compositional systems to a different

set of considerations (e.g. Rowe, 1992), spatial diffusion to distinct considerations for

the writing of spatial events (e.g. Nouno and Agon, 2002), and much more; where each

topic can be a subject of a PhD thesis itself.

In this chapter we are interested in exploring the idea of writing interactive com-

puter music parameters in time. Therefore, we are not directly concerned with specific

techniques in computer music. We simply assume that there exist a set of computer mu-

sic processes with their respective control parameters that can handle desired computer

music actions previously conceived for a compositional or performance setup. Writing

is then to give form to these parameters in time, in terms of composition, and transcribe

them in one way or another, in analogy to the functionality of western music notation

for instrumental music. Moreover, we are interested in the writing of computer music

parameters in interactive settings, with its most obvious form as interaction between a

musician and a machine where the second aims at interpreting its own (pre-composed)

“computer music score” along a human performer in a live performance. Thus, this

chapter is mostly concerned with computer music practices within the realm of mixed

instrumental and electronic music composition where transcription of ideas (in terms of

composition) and their realization in a performance are central to the design. Based on

observations in previous chapters, we introduce a preliminary framework for the writing

of time and interaction in live computer music called Antescofo. In our propositions we

have no claim of universality of methods; but rather provide a practical solution to the

problem of abstracting time and interaction in both writing and performance of scored

live electronic pieces. The focus of this chapter, therefore, is on real time and interactive

computer music systems.

To motivate the subject, we survey the computer music literature and practice

from a computer programming standpoint centered on the notion of interaction, as well

as the practice of scoring interactive parameter and briefly review the stance of the re-

223

search literature on the issue.

8.1 Background

8.1.1 Computer Music Language Paradigms

The practice of computer music today is highly tied with software platforms that

provide environments for expressing computer music processes as computer programs

either in a text-based or visual language. A computer language in general presents an

abstract model of computation that allows one to write a program without worrying

about details that are not relevant to the problem domain of the program. The power of

abstraction of a language is tightly related to the computational paradigm the language

lies upon. The computational paradigm of a language determines the extent to which

abstractions can or can not express desired phenomena. The computational capabilities

of computer languages can be comparatively studied as programming paradigms or fun-

damental style of computer programming (Van Roy and Haridi, 2004). Below we look

at some of the mainstream programming paradigms in computer music and review their

power of expressivity with regard to interactivity1.

In our survey of computer music programming paradigms we often emphasize

on the capability (or absence of) “real time” and “interactive” computability. Both terms

need to be defined in a coherent and computational context. A programming language is

considered real time or interactive if in its computational paradigm, evaluation of proce-

dures can be affected at runtime using external elements to the program. These external

elements can be human-computer interfaces, indeterministic processes conditioned on

an analysis, recognition, or some affectation of data stream into the system, or the like.

Therefore, real time and interactive capability of a programming language in our con-

text has not much to do with fast computation, but rather explicit considerations in the

1The list of available softwares in computer music is exhaustive. Here we just provide some names
that underlie the majority of users in the field.

224

platform’s design for real time scheduling, garbage collections, etc. that enables a min-

imum degree of interaction between the computational paradigm and elements outside

the system. Many of the programming paradigms introduced below and claimed non

real time are actually capable of very basic interactions with an outside element through

various forms of procedural evaluations, but are not inherently designed for real time

or interactive programming or their use in those contexts are limited by the paradigm

under consideration.

Computer Assisted Composition Languages

The dominant programming paradigm in most Computer Assisted Composition

(CAC) packages is functional programming. In this programming paradigm computa-

tion is treated as evaluation of mathematical functions. In a computer music setting,

functions can describe musical processes where a chain of functions, hierarchically set

up in the program, can describe a complex musical process once evaluated. OpenMusic

(OM), Patchworks (Assayag et al., 1999) and Common Music (Taube, 1997) are exam-

ples of this kind of approach with the first two providing a visual environment for musi-

cal compositions and all three based on Common Lisp programming language. Among

these three packages, OM enables object-oriented programming paradigm into its graph-

ical environment by allowing notions of class, inheritance and methods for classes; even

though the majority of its users concentrate on the functional programming aspects. In

this paradigm, there is no notion of real time computation for the expense of providing

rich data-structures and focus on formal structures of music as opposed to processing

of audio. This world is close to ideal from the composer’s point of view whose cre-

ation of musical score is essentially an out-of-time activity. Central to the success of

both OM and Patchwork is the presence of flexible integrated music notation display

packages with a transparent connection between the displayed score and the data un-

derneath, enabling easy transitions between the two media (Puckette, 2004). Despite

their general lack of direct audio manipulations, these platforms have proven to be ideal

225

for controlling sound synthesis engines in off-line mode. In this case, the basic idea is

not to implement the synthesis engine but to handle musical structures visually and then

generate low-level parameters to send to an available outside audio engine (Agon et al.,

2000). Another facility of this paradigm is the notion of evaluation on-demand during

computation where the chain of functionals can be evaluated anywhere in the program,

stopped and reissued; leaving the user with the ability to interact with the computa-

tional process at the expense of loosing the notion of real time computation. The ability

to operate within hierarchies constructed out of users’ abstractions has attracted many

composers to these languages; however, the lack of strong temporal considerations in

the language (in terms of semantics and control) still remains unaddressed.

Music-N languages

Most existing synthesis packages have their roots in the Music language series

introduced early on in the history of computer music by Max Mathews. These languages

are commonly referred to as the Music-N paradigm (Mathews et al., 1969). The cen-

tral concept in Music-N languages is the unit generator or the minimal functional entity

in the language. Traditional unit generators receive input control signals and produce

sound at their outputs and include functionalities such as simple oscillators or envelope

generators. Unit generators can be combined into composite structures called instru-

ments or patches. A Music-N program consist of two main parts: the instrument or

orchestra definition and the score or note list. In the synthesis process the composer

uses a group of sound objects (or instruments) known as the orchestra. This orchestra

is controlled from a score and is defined using a programming language with specific

functions. These functions or modules can be organized and combined in multiple ways

in order to define instruments. CSound2 (Vercoe, 1993) is the most successful and used

reminiscence of the Music-N paradigm today. The abstractions in CSound make writing

signal processing algorithms relatively easy. However there is no facility for intercom-

2http://www.csounds.com/ (free software)

http://www.csounds.com/

226

munication between the pre-scheduled synthesis nodes and real time control input. They

simply affect different variables in the “orchestra” which by itself is controlled by the

union of the two.

Real time languages

SuperCollider3 (McCartney, 1996) is a language for sound and image process-

ing that can be considered as a Music-N paradigm language with extensions to real

time computations. It is a Music-N style language because of its use of unit generators

and other common semantics of Music-N paradigm such as instrument, orchestra and

events. It can run in real time and can process live audio and MIDI inputs and outputs,

with a strong object-oriented programming style. Like Music-N languages it is based

on textual (non-visual) programming but features strong considerations for dynamic

memory allocations and periodic garbage collection that allow live coding or real time

interaction with the code under execution. Particularly, the compositional and synthesis

engines are separated in SuperCollider to allow simultaneous instances of the synthesis

engine through the compositional language via network protocols (Mccartney, 2002). In

late versions of the software, graphical user interfaces can be created for visual controls

but the programming paradigm itself is inherently text-based. With this respect, Super-

Collider goes in the direction favored for performance or real time control of composed

material through live coding.

MaxMSP4 (Puckette, 1991; Zicarelli, 2002) and PureData (Pd)5 (Puckette, 1997),

particular instances of the same model, are probably the most widely used computer mu-

sic environments, and among the richest in the community in terms of integrated mod-

ules for computer music. They are both real time visual programming environments.

Despite other languages which can be safely categorized within a common program-

ming paradigm, Max and Pd evade easy categorization and whether they can be consid-

3http://www.audiosynth.com/ (free software)
4http://www.cycling74.com/ (commercial)
5http://crca.ucsd.edu/~msp/software.html (free software)

http://www.audiosynth.com/
http://www.cycling74.com/
http://crca.ucsd.edu/~msp/software.html

227

ered a programming language has been subject to debates (Desain and Honing, 1993).

However, in their programming practice they can both be considered as Dataflow lan-

guages. In a dataflow program, a process ready for calculation on an unbound variable

waits until the arrival of appropriate stream (instead of quitting with an error). Within

this simple framework, real time calculation is possible by carefully scheduling audio,

control and graphical processes to synchronize calculations laid out in visual patcher

programs. Within this framework, human-computer interaction is possible by connect-

ing live audio or control inputs to live outputs through patcher programs. Despite pro-

gramming flexibility in both environments (which is the key to both softwares’ success),

memory allocation is rather static, and data structures remain simple compared to the

CAC paradigm. Pd employs various workarounds to this problem that makes live script-

ing and more complex data structures available to the platform. Relative early arrivals

of both Max and Pd and their flexible and interactive programming environments have

made them the most widely used platforms within the live electronics communities.

8.1.2 Practical Status

Puckette (the author of both Max and Pd) points out the division in the commu-

nity between the compositional and performative aspects of computer music (Puckette,

2004). This division is partly due to the fact that, as seen above, real time environ-

ments favor computational transactions that go in the direction of performance whereas

CAC environments go in the direction favored by the composers6. In a historical re-

marks on the development of both softwares, Puckette (2002a) notes that Max and Pd

architectures were inspired from the interaction model of a musical instrument with

its performer rather than musical interactions between musicians or a musician with a

composed score. Commenting on this community divide, he further assesses that:

“In its most succinct form, the problem is that, while we have good
paradigms for describing processes (such as in the Max or Pd programs

6We use the term composer here loosely as the musician who writes or transcribes ideas down, whose
product has an independent life than that of the composer and in a written form.

228

as they stand today), and while much work has been done on represen-
tations of musical data (ranging from searchable databases of sound to
Patchwork and OpenMusic, and including Pd’s unfinished “data” editor),
we lack a fluid mechanism for the two worlds to interoperate” (Puckette,
2004).

On the users’ side, and in spite of composers’ more active role in the beginning

of the field, the performers of computer music have been faster to grab ideas in real time

manipulations and adopting them to their needs. Today, with many exceptions, a wide

majority of composed mixed instrumental and electronic pieces are based on simplistic

interactive setups that hinder the notion of interactivity. This fact does not degrade the

artistic value of such works in any sense but underlies the lack of momentum therein for

serious considerations of interactivity among the second group.

Part of this frustration is due to the fact that the writing composer, faced with the

abundance of possibilities in the electronics and in most cases lack of the culture com-

pared to the rich instrumental traditions where she comes from, has extreme difficulties

in abstracting and writing electronic event destined for a performance setting compared

to their habitual facility with instrumental writing. When it comes to scored interactive

pieces two main issues arise: that of scoring electronics and that of performance.

Scoring Interactive Electronics

The common trend to this date for the repertoire of scored mixed pieces is to de-

vise an electronic score separate from the instrumental score into the computer that runs

in parallel with the musician in a live performance and generates (fix or dynamic) elec-

tronics as instructed in the electronic score. The ultimate and common solution to this

date is the use of tagged sequential data-structures for electronic scores (called qlists

in Max and Pd). Such structures store variable/message pairs attached to symbolic time

indexes and scheduled on a milli-second time-base. The symbolic time indexes in this

structure would correspond to synchronization pivots in the instrumental score, destined

for live synchronization. The modularity of environments such as Max or Pd allow co-

229

existence of multiple sound processes in a single patch that can be controlled through the

sequential electronic score. Therefore in practice a qlists (or the like) can store and

address any existing process defined in the electronic patch. This basically constitutes

the writing of electronics in today’s most scored interactive pieces.

Puckette (2002b) has introduced more complex data structures into the Pd envi-

ronment which should facilitate scoring of events with various time scales (continuous

versus discrete). These structures appear as modular graphical objects whose numerical

and graphical properties (such as shape, color etc) are defined by the user. The user has

the ability to edit, import and export the designed data structures. It can then be “played

back” in real time by controlling a tempo parameter. The Pd data structures are similar

in goal to maquettes in OpenMusic (Bresson, 2007b), with the exception that the sched-

uler is real time and hierarchies are not as deep. The main idea behind Pd data structure

environment is then to provide a graphical scoring environment where realization of

electronic pieces within the same tradition of pieces such as Stockhausen’s Studie II, or

Xenakis’s Mycenae-α would be possible.

Performing Live Electronics with Acoustic Musicians

The issue of electronic performance is a vast topic. As before, we concentrate on

the technicalities of the issue for scored mixed instrumental and live electronic pieces.

The issue has much to do with the synchronization between the two scores during a

performance, and the forms of interaction between a live musician and the electronics.

The consensus for interaction between a live music performance and electron-

ics dates back to early experiments of Maderna, Stockhausen and Davidovsky among

others composers through “fixed” or tape pieces where the live performer is responsible

for synchronizing with the electronics using click-tracks or active listening. Later in

mid 1980s, the movement is joined by experiments and repertoire of the so called “real

time electronics”, starting from experiments by Manoury and Boulez, where most often

a score following application is responsible for synchronizing events of the live instru-

230

ments to the pre-written score and triggering the appropriate electronic events (whether

fixed or through live generation). In this latter group, until today, composers have leant

on the idea of a score following application to automate the performance of the elec-

tronics score through synchronization with live performer(s), while some others with

Manoury as a forerunner, immediately recognized and incorporated the possibilities

in writing interactive electronic scores which are realized during the live performance

(Manoury, 1990).

Despite all the advantages that a score following system could bring to the per-

formance of interactive electronic scores, its use has been limited to a small group of

composers. Besides technical difficulties of such systems, this lack of enthusiasm is

also due to the simplistic vocabulary of such systems for music notation (mostly based

on notes, silences and hopefully trills) and no consideration for interaction (rather than

mere triggering) during both writing and performance of electronic events.

8.1.3 Compositional Status

Real time capabilities of computer music softwares have provided means of

interactivity between acoustical instruments and the computer. For this notion to be

compositionally useful, the mode of coordinations between the two during both acts of

composition and performance need to be determined. The most evident scenario for an

interactive coordination is as follows: From time to time, for synchronization or real-

ization needs, a communication window opens between the computer and the voice of

the instrument and closes once the goal, as described by an electronic score, is achieved.

This way the instrument and the computer are assumed as independent processes but

communicating. A simpler scheme would just be the issue of synchronization between

chunks of pre-composed electronics (as audio files) with the live performer where syn-

chronization assures the departure of pre-composed electronics at the right time with the

musician but without much control over the temporality of the process. The two sce-

narios described above are probably a summary of the most frequently used interactive

231

settings in many scored mixed pieces in the repertoire.

In these modes of communication, interaction is reduced to discrete points of

instantaneous reactions, and live electronics consist of the short occasions when the

communication window acts as gates to static processes. The notion of time as well

escapes the electronic process (in both compositional and performative aspects) and re-

duced to simple disjoint temporal pivots. These modes of communications would surely

contribute to the liveliness of music performance and add new horizons for the process

of composition specially compared to mixed pieces with fixed (“tape”) electronics. But

they can in no way come close to the temporality, complexity and abstraction of both

music performance and compositional process of their acoustical counterparts.

Naturally the possibility of creating interactive music systems attracted com-

posers and artists for new experimentations and also integration of these ideas within

their realm of compositions. Within two volumes, Rowe (2004, 1992) demonstrates

how these novel paradigms have affected different practices in computer music. Among

composers exposed to these new possibilities in the 1980s, Philippe Manoury was one

of the earliest who integrated interactive computer music systems into his compositions

and as a compositional process both during writing and live performance. Manoury’s

early formalizations of the problem, in collaboration with Miller Puckette, led to the

birth of the Max programming environment, and were further developed and integrated

by other early composers such as Boulez, Lippe and Settle, and since then is widely

referred to as the real time school of composition.

For our review of this section, we base ourself on earliest and latest thoughts

on practices of real time composition mainly centered around the writings of one of its

pioneers, Philippe Manoury. Our interest in his line of thinking comes from the fact that

early on he attempted to integrate and capabilities of a computer in the long tradition

of composing and performing. This point of departure for computer music does not

limit its practices to traditional norms of music composition but on the contrary puts it

in a coherent style where non-traditional practices of computer music such as interac-

tive composition (Chadabe, 1984), hyperinstrument composition (Machover and Chung,

232

1989), composed improvisations (Chabot et al., 1986) and more could take form as tran-

scribed thoughts well suited for composition and performance. Manoury’s integration

of real time systems in compositional processes, as described in (Manoury, 1990), is

very different from that of CAC, and in a way is a direct consideration of writing of time

and interaction in a real time interactive setup. Interestingly, many of Manoury’s ideas

on writing of time and interaction has haunted the research community for years and

even today, upon technological advances many of them remain unaddressed. Below we

survey some of his main concepts introduced early on in the field and his more recent

pleas and criticisms of the field’s progress, followed by some constructive criticisms of

his real time approach to composition that would shape our motivations for this chapter.

Time of Performance vs. Time of Composition

The core of writing of time and interaction for Manoury is score following. De-

spite the fact that he is one of the advocates of the use of score following technologies

for performance and composition of real time repertoire, his musical demands of this

technology still goes far beyond what the current systems can offer. To integrate real

time processes into his process of composition, he distinguishes two networks of re-

lationships for the time of a score and time of performance. The score follower or

synchronizer is then the oracle that bridges the gap between the two during a live per-

formance with the aim of interpreting scored live electronics in coordination with live

musicians.

The performance or interpretation of a music score is neither deterministic and

nor totally unpredictable. For automatized and “mechanical” processes such as live elec-

tronics, this time becomes a crucial source of variation and constitutes the musicality of

the output. Therefore access to temporal structures during both writing and performance

of musical time is crucial. The richness of our musical heritage that has arrived to us

through notated scores and performances within centuries, obliges us to consider the

passage between the time of the score to that of performance within instrumental prac-

233

tices and find analogies within the world of computer music. Western music notation

is probably one of the most abstract ways of written expression the human kind has

achieved. Even an elaborate music score can hardly describe a bit of the complexity of

its realization. It consists of both absolute and relative values which find their essence

during their realizations. Despite this inherent indeterminacy in music notations, the

subsequent results are consistent without being totally unpredictable or deterministic.

For Manoury the real quest of real time composition is to find analogies of these tempo-

ral abstractions, and passages between the two. To recapitulate in his own words:

We should come up with means of composing electronic music in which,
as analogy to instrumental music, some components are determined be-
forehand, and others variant under what is meant to be expressed (Manoury,
2007)7.

This brings us to his next important theme, the virtual score for real time composition,

and considerations for their realizations.

Virtual Scores and their realizations

A virtual score, in Manoury’s terms, is a musical organization in which we know

the nature of the parameters that will be processed but not their exact outcome at run

time. Some of these abstract values will be fixed and remain fixed during any interpreta-

tion of the piece, and others are expressed relative to an outside environment. The latter

underline the influential aspect of an outside process (live buffering, gesture process-

ing etc.) for the realization of the defined compositional process, and evaluated during

live performance. In this manner, a score is virtual since its existence is dependent on

the music performance with its rich diversity of outcome (Manoury, 1990). It is in-

teresting to note that despite the evident nature of this definition, there is no existing

framework that addresses necessary variability, modularities and abstractness of virtual

scores. Practicalities such as qlists seen before are just approximations to temporal

abstractions and variability that Manoury’s virtual scores would like to achieve. He later

7Translations of texts by Manoury from French by this author.

234

confesses that “The representations of time in current real time systems do not provide

the composer with any symbolic notion close to temporal abstractions in western music

scores. The real time system only knows of absolute time values and it is still impossible

to write with a tempo or relatively assign accelerandos. Surprisingly, all that our real

time systems are aware of is milli-seconds!” (Manoury, 2007).

The idea of virtual score is to bring in both the time of performance and com-

position into considerations during the process of composition. All this, given that the

communication channels between the computer and the musician should ideally allow

simulation of complex interactions such as between two human musicians. In his recent

writings, after almost two decades of experimenting with the idea in practice, Manoury

raises a very interesting subject:

“If it’s possible to construct sound structures endowed by the reactivity
of a music performance, we still perceive a huge resistance for unifying
acoustical time with that of electronics to achieve a common musical
time. An important boundary between the two conceptions of time seems
to be opaque which has something to do with the nature of musical time
in general: [...] The possibility of prediction. [...] A musician takes
control of time within a continuity of gestures and motor controls such
as breathing. He has a clear conscious of the past and the future, and
intervenes memory and most importantly predictions into the process.
We should therefore be able to represent, to the best of we can, the time
of the machine as an image of that of humans” (Manoury, 2007).

This possibility of prediction and access to its behavior and control is one of the central

goals of this thesis and the system proposed in this chapter. In our proposal we take one

step further by postulating the notion of anticipation as the outcome and feedback of

prediction (see definition 2.1 on page 17).

Criticisms

The advent of score following techniques for synchronization of live perfor-

mance with electronic score and control of interactive parameters created a lot of mo-

mentum both in the research and music communities since early 1980s but not without

235

criticism. Among many criticisms directed towards real time electronics school, of par-

ticular interest are the ones by composers Jean-Claude Risset and Marco Stroppa. Risset

argues that “Not only does the use of real time systems bring limitations and difficul-

ties for the durability of the music, but one may even argue that the concept of real

time concerns primarily performance and may be of little relevance to musical composi-

tion” (Risset, 1999). A constructional read of Risset’s paper would point to an important

drawback of existing systems: the lack of compositional interaction during performance.

While this issue is in most parts aesthetical, it has also a great deal to do with a lack of

explicit designs for such matter.

Stroppa’s extensive criticism of real time electronics is accompanied by the com-

poser’s detailed proposal for a Virtual Interpreter (VI) system (Stroppa, 1999). In this

vast proposal, the composer is mostly concerned with temporality of musical events and

different temporal degrees of interaction in computer music spanning from explicit in-

teraction of fixed or live electronic processes with real time detected tempi to continuous

representations of time to allow fine grain tuning of composed electronics to a live per-

formance. It should be noted that Stroppa is among the few composers who advocate

the process of composition through transcription and writing of formal ideas and has de-

veloped a modular library called OmChroma, native to OpenMusic, for the writing and

formalization of sound synthesis processes (Stroppa, Lemouton, and Agon, 2002). In a

way, Stroppa’s Virtual Interpreter proposal comes close to Manoury’s plea for explicit

temporal access in both the score and performance of computer music.

8.1.4 Research Status

Besides the reluctance of most composers to new possibilities of computer mu-

sic, the abundance of computer music modules, softwares, and platforms today has

rather served as a barrier for the composer’s mind for abstraction of his ideas in a formal

way to transcribe his thoughts in the same way he does with instrumental music. A

naive reasoning for this barrier would be to blame it upon a lack of standard vocabulary

236

in electronic music (whether synthesis, analysis and methods of sound manipulations)

as opposed to instrumental music notation. A brief look at the evolution of musical

notation through the last century reveals that such standardization is simply a naive re-

alist view of the complexity of artistic creation. However it is not hard to notice that

within this abundance of technologies, researchers (with exceptions) have almost set

aside the more complex problem of temporal abstraction of the tools and considerations

for interactivity in provided programming paradigms. The computer music research

communities have mostly focused on the tools themselves, improving their efficiencies

both in computation and quality, without much concern for their abstractions and access

in a creative process.

Computer music can always benefit from new realizations of ideas as software

or hardware. But it would be simplistic to say that new tools can systematically ad-

dress existing problems or create new ones. In other words, we have focused on forms

of developments (in terms of computer programming), and have set aside the problems

themselves. A problem such as temporal access in writing and performance of computer

music, is not one that can merely be solved by new tools although clever new paradigms

can eventually address the issue. Therefore problems such as this is a problem of re-

search at the first sight than mere programming.

The research community on the other hand has stayed even today with the en-

thusiasm of augmenting our possibilities for sound design with less attention to complex

issues such as abstractions of such methods through time, music structures and writing

of interaction within computer music processes. Moreover, recent movements such as

Music Information Retrieval research communities have focused on smaller and easier-

to-solve problems mostly concerned with popular and less complex musical structures

for commercial exploitations. This has led to extreme naive realisms when such com-

putational approaches are to be extended to the cultures of the world and our musical

heritage through centuries, not to talk about music composition.

The picture of our research community is not as morbid as the one presented

above. Various researchers have attempted to address complex musical problems such as

237

temporal structure in music with different views and considerable achievements. Prob-

ably the most thought provoking systems on these lines belong to earlier history of

computer music systems. Buxton et al., in the 1970s, implemented a score-editing tool

for electronic sounds destined for real time performance and generation of pre-notated

events (Buxton et al., 1979). The Animal system of Lindemann (1990) is another exam-

ple where the notion of writing of time through complex hierarchical graphical objects

is explicitly considered. However, in both systems consideration of interaction control

is shifted more towards the performer and less to the composer. In a more theoreti-

cal literature, Petri Nets (Allombert and Desainte-Catherine, 2005) and temporal logics

(Marsden, 2007) (with many predecessors not cited here) are proposed for enabling tem-

poral access to musical processes in the symbolic domains. None of such proposals have

found their way into serious computer music productions. We believe that this is mostly

due to the fact that such proposals are inherently based on logics and structures external

to music (biological systems, language etc.) and do not address complex networks of

temporal relations essential to music.

We strongly believe that music along with western musical notations and all its

forms of abstractions, are among the most thoughtful inventions of mankind. A research

that brings in pleas from composers and artists on the lines presented above could not

see the light of day if not undertaken in a collaborative and creative environment where

researchers and artists could elaborate the subject together. The work presented in this

chapter is a first step towards implementing a system for the writing of time and inter-

action in computer music.

8.2 Antescofo: A preliminary tool for writing of time

and interaction

Antescofo is our preliminary attempt to address the writing of time and interac-

tion in a computer music setting. Antescofo became possible through direct collabora-

238

tion with musicians and particularly composer Marco Stroppa. It is an attempt to address

the temporal deficiency of existing systems both on the performance and composition

levels and creating the bridge between the time of composition and that of performance,

for mixed real time computer music.

At its very core, Antescofo is an anticipatory synchronization system and the

one presented in chapter 7. The anticipatory architecture of Antescofo brings in all

the advantages of anticipatory modeling outlined in section 3.5, which musically come

down to modularity of writing in terms of observation handling and time, access to

event structures and timing during writing and performance, bridging the gap between

the time of composition and time of performance, as well as providing a simple language

for scoring both instrumental and electronic events altogether. The anticipatory design

of Antescofo also explicitly addresses Manoury’s plea for temporal prediction during

interpretation of virtual scores.

In this section we underline the motivations and objectives for the implementa-

tion and modeling of Antescofo and outline each aspect of its design and utility in the

following sections.

8.2.1 Motivations

In section 8.1, we outlined the realm of real time composition in computer mu-

sic and from different perspectives. Despite its attractive new possibilities, the field

has failed to attract many composers and musicians, rooted in the divide between the

compositional and performative aspects of computer music. We believe this situation is

partially due to the following constraints, detailed before, in available interactive com-

puter music systems:

1. While the common vocabulary used in instrumental music scores has extensively

expanded, existing score following score vocabularies are extremely limited to

very basic semantics of western traditional notation (notes, trills etc.).

2. The notion of interaction is most often limited to mere triggering of a separate

239

electronic score.

3. There has been limited or no consideration for different temporalities of musical

events, the temporal interaction within and the writing of time involved.

4. The process of composing electronics and the act of performance have been

mostly dealt with separately in existing systems, leaving the important issue of

interpretation solely to the computer music artist.

In its very basic use, Antescofo is a classical score following application that

synchronizes real time audio to a music score (such as MIDI). But it has been designed

in its core to address the following extensions handling both flexible score scripting and

live interactions:

1. to enable concurrent, flexible and user-defined representations of the audio stream

in the score,

2. to concurrently represent and handle different time scales both in compositional

time and recognition (performance) time and enable a flexible writing of time,

3. to provide a score language that handles interaction between the live performer(s)

and electronics both time-wise and process-wise during run-time (i.e. music per-

formance).

8.2.2 General Architecture

The general architecture of Antescofo is that of our anticipatory synchronization

system presented in section 7.3. We replicate the same schema here again in figure 8.1

and recapitulate the concepts within computer music practices. The main difference

here is that the real time inputs are Media Streams (rather than Audio streams) that

reflect the modularity and concurrency of real time observations of Antescofo. This

simply means that Antescofo can synchronize with pure audio, pitch, gesture data, and

240

any other sequential data or combinations thereof that is referenced in the score and

exists for real time processing. This feature of the system is detailed in section 8.3.

Observers

Inference & Decoding

Event Time

Media Streams

Score Position Tempo

Score
Parser

Score

Score
Actions

off-line

real-time

Figure 8.1: Antescofo’s general system diagram

During live performance, Antescofo provides score location as well as real time

tempo. To enable explicit interaction and writing of interactive processes, the score

given to Antescofo can hold actions that correspond to electronic processes living out-

side the system and destined to take place given certain condition and at certain places in

the virtual score. The score semantics of Antescofo for both instrumental and electronic

score are detailed in section 8.4. These semantics have been designed to be minimal

and address temporal access to structures at the time of composition as well as time of

performance.

Antescofo has been implemented for the two mainstream real time programming

environments in computer music, MaxMSP and PureData, and therefore make use of

their expressivity in constructing analysis, synthesis and compositional processes (usu-

ally) out-of-time and controls them in-time at the time of the performance and in real

241

time. Figure 8.2 shows a snapshot of Antescofo’s help file in MaxMSP8. Antescofo is

basically an implementation of the anticipatory synchronization of chapter 7 where the

notion of observation has been extended and time structures made explicitly available

for writing of time and interaction. We will detail each feature in the following sections.

Figure 8.2: Antescofo’s Help snapshot in Max/MSP

8.3 Antescofo: A modular and concurrent synchronizer

The degrees of control of a musician at the time of performance and towards the

score extends that of pitch and sigh-reading of a music score. Pressing (1990) develops

the idea of dimensionality of control as a way of evaluating the interaction between a

player and a performance system. In this article, Pressing summarizes various control

aspects of a music performance from control modalities (discrete, continuous or quan-

tized continuous), control monitoring (one-shot or continuous time), dimensionality of
8The most recent experimental version is accessible through http://cosmal.ucsd.edu/arshia/antescofo/

http://cosmal.ucsd.edu/arshia/antescofo/

242

control (degrees of freedom), physical variables (from pitch to gesture), to psychologi-

cal nature of control. In today’s practices of computer music, various degrees of control

are at use to bridge the gap between the musician and an electronic score extending

from pitch detection to live gesture acquisitions of the musician’s movements and video

analysis (e.g. Camurri et al., 2000; Rasamimanana, 2008). For our purpose, this dimen-

sionality of control should be addressed both at the time of writing and at the time of

performance. The former amounts to enabling flexible writing of events and time and

discussed in section 8.4, and the latter amounts to the ability of the system in real time

to recognize concurrently and modularly different paradigms of writing assigned by the

artists and is discussed in this section.

Antescofo has been carefully designed to address this diversity of control in live

performances. Following the design presented in chapter 7, Antescofo’s window of com-

munication with the outside world is through observations made on real time streams.

Observations enter the system constantly, as they are available, and continuously in

time. Observations also correspond in their nature to the expected events transcribed

in the score. For example, if a composer desires to follow pitches at some point in the

score, pitch observation should be also present among real time observers and if she de-

sires to detect and synchronize with gesture data then the corresponding feature should

be made available during real time execution to the system.

Most score following applications come either with their internal observation

mechanisms or are tuned towards a specific observation module living outside the score

follower itself. For the design of Antescofo, we have decided to make it modular by both

providing internal observation mechanisms and also enabling user-defined observation

inputs. In its basic use, Antescofo is a classical score following application that accepts

a list of pitches (in Hz or MIDI) or pure audio as input to map it to pitch positions in the

score and decode the tempo variable. But for more curious users, Antescofo is able to

accept concurrent observations of different nature. The number of concurrent observa-

tions to the system (which are user-defined and calculated outside Antescofo) and their

code names are defined by the user during object instantiation in Max or Pd. Figure 8.3

243

shows the classical and user-defined appearances of Antescofo instantiation on a Max

window. Here, the creative user of figure 8.3b has attempted to provide four different

concurrent observation to the module by overriding and augmenting the default input

slots by the @inlets command and assigning desired names. In figure 8.3b the user

has attempted to create 4 different observations tagged with names hz, Centroid,

Tombak and MyThing. Antescofo comes with reserved code-names for several clas-

sical built-in observations which are: hz, midi and KL used respectively for pitch

observation using an external pitch tracker, MIDI observation and polyphonic audio ob-

servations. User-defined observations can come from different sources as long as they

are numerical vectors and need not be synchronous. It is essentially easy to augment

this to other types of data types rather than numerical data and it can be done once the

need is initiated.

(a) Classical

(b) User-defined

Figure 8.3: Modular Observation in Antescofo

By assigning concurrent observations, the user is indicating to the system that

244

events corresponding to the same code-names exist within the score provided to the

system. We cover simultaneous and concurrent event representations within the score

semantics in section 8.4.1.

Upon arrival of observation data, Antescofo’s goal is to prepare instantaneous

beliefs about the real time position in a given score, in the same manner as in chapter 7.

The reserved code-name KL is the same as the observation module presented in sec-

tion 7.7. For the rest (including pitch frequency lists in Hz and MIDI pitches), the input

vector is fed through Normal distributions centered on expected values in the score and

instantaneous probabilities are obtained for inference and decoding. Obviously if the

input consists of a vector of values multivariate Normal distributions are employed. The

variance of these Normal distributions (or the diagonal covariance matrix for vector in-

puts) are set to 3% of the expected value (or a semi-tone for pitch related observations),

also controllable by the user through the score (section 8.4.1).

8.4 Antescofo’s Score Semantics

The ultimate goal of Antescofo is the synchronization of a live performance with

a given score and execution of electronic actions within the score. Here we provide

the score semantics of Antescofo for both instrumental and electronic events. When a

score is loaded into the system, a parser constructs the equivalent hybrid Markov/semi-

Markov chain of the sequential events as described in section 7.6 which will be used by

the recognition module. On top of this score model, Antescofo integrates instrumental

score with that the electronics. The electronic events are actions associate to an event

or a region in the score and live locally on a state of the score state-space model. In this

section we focus on the descriptive levels of Antescofo’s score syntax and discuss the

handling of score actions in a live performance in section 8.5.

The score language of Antescofo has been carefully designed to enable import-

ing of common score formats such as MIDI and to be able to easily describe common

classical music repertoire as well as user-defined events coming from different audio

245

observations and with different temporalities. In this section we describe the basics of

Antescofo’s score language with their real-world equivalences and show how the same

syntaxes can define complex unconventional score events and augment conventional

communications between a live performance and live compositional processes. An-

tescofo’s language semantic is designed following the Kernal Semantic approach (Van

Roy and Haridi, 2004). It is basically young and only declarative for the moment. Plans

for extending these semantics are discussed in section 8.6.

Given the coexistence of instrumental events and electronic actions, the seman-

tics of Antescofo can be studied within three main groups: The first are Event Declara-

tions describing instrumental events that are expected to occur during live performance

as observations into the system; and the second are Action Declarations defining elec-

tronic actions associated to each event or region in the score. On another level, users

can control the behavior of the synchronizer during the live performance and specific

to score locations through various Control Commands. We will study each group sep-

arately. Some of the event declaration semantics presented here are essentially the se-

quential models presented before in section 7.6 but are reiterated here for the sake of

completeness.

As a convention for syntax description, a plus sign (+) next to each type should

be interpreted as “one or more of”. A <float> indicates a floating number repre-

senting the notated observations in the score. For pitched events and as a convention,

events would be represented by either MIDI or MIDIcent note numbers and for other

user-defined observations they correspond to whatever the user declares. We demon-

strate our examples here by assuming a traditional pitch-based score. Other types are

represented within <.> signs.

8.4.1 Event Declarations

Events correspond to instrumental actions that are expected to be performed by

a live musician. Events in Antescofo are defined by their contextual characteristics (for

246

example pitch) as well as their temporal structures. The temporal structures used for our

syntax are essentially based on observations in section 7.2.3 on compositional founda-

tions of time, putting a contrast between in-time and atemporal events as well as striated

and smooth temporalities. As before, in the figures that follow a Markov state is demon-

strated by a regular circle and a Semi-Markov state by a double-lined circle.

BPM command

The initial tempo and any tempo change in the score can be encoded by the BPM

command in Beats-Per-Minute.

Single Event

A single event can be a single pitch, silence or grace note if the observation

under consideration is pitch. These events can be either temporal or atemporal (see

section 7.2.3). The usual syntax for a single event is as follows:

<float> <duration> <optional name>

where the duration is expressed as a floating number indicating the number of beats

relative to the initial score tempo. Figure 8.4 shows a sample graphical score, the An-

tescofo equivalent and the state-transition diagram created after parsing. If the duration

associated with a single event is set to 0.0, it is a sign that the associated event is atem-

poral. In this example, pitches are encoded using MIDIcent format and a left-right state

diagram is created that is in one-to-one correspondence with the score. As a convention,

everything that follows a “;” on a line is considered as commentaries.

When extended to non-pitched observations, single events are quasi stationary

objects that span an explicit time-range (if they are in-time) or implicit duration (if atem-

poral).

The <duration> symbol that will appear from now on corresponds to relative

beat duration of an event represented by a floating number or a fixed time in milli-

seconds if followed immediately by a ms symbol.

247

74 72 76 740

; This is a sample score
BPM 60
7200 0.0 ; grace note
7200 1.0 note1 ; regular note
7600 0.0
7400 1.0 note2
0 0.5 ; silence

0

Figure 8.4: Antescofo’s single event score sample and state transition diagram

The <optional name> column that will appear in all syntaxes, refer to op-

tional labels as strings that the user can assign to each event which will be displayed

on the Antescofo GUI window during live execution and can also be used to retrieve

locations in a score using user queries (e.g. during rehearsals).

TRILL Class

As the name suggests, the TRILL class of Antescofo is a way to imitate classical

music trill notation. In terms of modeling, Antescofo’s TRILL is one in-time event that

has several out-of-time events within. Moreover, the order in which these sub-states

appear is not important. Figure 8.5 shows two examples for Antesofo’s TRILL syntax

where the second is taken out of the first measure in Marco Stroppa’s Little-I for flute

and electronics and demonstrates a free glissandi which can be successfully encoded

using the TRILL class in Antescofo. The TRILL class syntax is as follows:

TRILL (+<float>) <duration> <optional name>

CHORD Class

The chord class denotes a single semi-markov (or markov if duration is set to

zero) state that models polyphonic or multidimensional (non-pitched) observations. The

248

; This is a simple trill
BPM 60
TRILL (7200 7400) 1.0 myTrill

; This is also a trill
BPM 60
TRILL (6600 6700 6550) 8.0 myTrill

72 74

66 65.567

Figure 8.5: Antescofo’s TRILL class score sample and state transition diagram

regular syntax for the CHORD class is similar to the TRILL class but translates to only

one state

CHORD (+<float>) <duration> <optional name>

A shortcut for this class (which unifies it with single events) is the representation of

events in a list as follows:

{ +<float> } <duration> <optional name>

MULTI Class

Using the above commands, any classical music piece can be easily parsed or

rewritten in Antescofo’s format. We add one more class to allow more complex object

and temporal encoding. The MULTI class is similar to the TRILL class with the ex-

ception that the symbols defined within it are ordered in time. This new addition to

Antescofo’s score syntax allows decoding of continuous time events such as glissandis

(in western notation). The MULTI syntax is as follows:

249

MULTI (+<float>) <duration> <optional name>

In this new topology, a high-level semi-markov state represents the overall tem-

poral structure of the whole object that is mapped to a series of sequential left-right

Markov chains. Figure 8.6 shows a MULTI example for two consecutive notated glis-

sandis.

; This is a sample for the MULTI class
BPM 60
MULTI (6080 6100 6150 6200) 4.0 First-Gliss
MULTI (6300 6200 6150 6100) 4.0 2nd-Gliss

Figure 8.6: Antescofo’s MULTI class score sample and state transition diagram

The particular power of this class is its ability to encode non-convential and

continuous chunks of data such as gesture, image, audio descriptors and more; hence

augmenting our synchronization module from a traditional (pitch) score following to

gesture following or audio matching. In spite of our systems implementation of this

feature, the biggest dilemma is the inability of current data-flow languages in computer

music (Max and Pd) to store and transact more complex data structures such as matrices.

Due this deficiency, users are obliged to represent multi-dimensional score references

either through binary files (such as SDIF) or by simply inputting all the data in the score!

We are actively searching for solutions to this problem within both environments.

250

8.4.2 Control Commands

Control commands in Antescofo semantic can guide the behavior of the inference

and decoding mechanism of the live synchronizer during live performance. Below are

some of the most frequently used semantics of this group:

VARIANCE

The variance associated with the observers (providing the inference module with

instantaneous probabilities) can be controlled in the score and takes as unit, semi-tones

(for pitched events) or percentage values of the expected score event (for other obser-

vation types) as floating numbers. This is quite useful in several circumstances. For

example, when following audio signals from a flute in a live performance, the tuning

of high pitches might become different than the expected tuning considered in the score

due to warming up of the flute’s body. An increase of the observer’s variance in such

case could save the system and the performance! Also, when dealing with different in-

formation sources of audio, one might want to adapt this percentage to the nature of the

incoming process.

TEMPO ON/OFF

In many cases, the temporal flow of events during live performance is not im-

portant in spite of the temporality of events in time of writing. A typical example of

this case are fermatas in western notation system. In such circumstances, the user can

turn off the collaboration between observation and tempo agents of the synchronizer in

which case synchronization will be solely based on the detection of events without any

explicit timing anticipation and also tempo is not updated. This can be achieved by con-

secutive use of TEMPO ON and TEMPO OFF between commands in the score which

specifies the performance of the system in real time within the given region.

251

The @ Operator

As mentioned in section 8.3, Antescofo is capable of handling multiple repre-

sentations of media streams for recognition and interaction. By default, Antescofo uses

the left-most inlet for all recognition tasks unless specified beforehand by the @ opera-

tor. The string immediately following the @ operator should conform to the code names

created by the user during the object’s instantiation otherwise it would be neglected

during score parsing and an error message would be displayed. Using this feature, the

user can easily switch between various representations and follow the desired aspects

simultaneously in a single score.

8.4.3 Action Declarations

Besides the instrumental section, an interactive computer music piece consist

of a virtual score indicating electronic actions that should be undertaken under certain

circumstances during live performance. As mentioned, traditionally this has been done

by a separate sequencer (such as qlists in Max or Pd) which are synchronized with

a score following system through detected score positions. In Antescofo, electronic ac-

tions can live simultaneously with instrumental events, thus enjoying more transparency,

access to temporal structures, and direct communication with events during both com-

position and live performance. This feature of Antescofo’s score language is constantly

growing in accordance with the needs of the Antescofo’s users notably at Ircam. Be-

low we describe basic commands and discuss other syntaxes under development and

considerations in section 8.6.

FWD commands

An interactive (or fixed) electronic music event might be bound to a single event

in the score. In this case, a sequence of FWD commands with corresponding messages

following the event in Antescofo’s score would do the work. The simple syntax of FWD

is as follows:

252

FWD <symbol> +<message>

FWD <delay> <symbol> +<message>

where <symbol> is the string corresponding to the receiving symbol of an electronic

process in Max or Pd, and +<message> correspond to atom(s) that would be sent to

the symbol at the desired position. The <delay> option if exists, is a floating number

indicating the delayed time value in beats which would delay the clock-time for sending

the message to outside processes using an internal scheduler coupled to the tempo agent.

Optionally, user can employ a ms indicator immediately following this delay value to

assign it a fixed rather than relative value.

FWD commands alone provide all that dominates today’s mainstream interactive

computer music scores within the Max and Pd environments! Nevertheless the simple

addition of delay times as beat values (instead of fixed values) greatly enhances the

expressivity of the language both during writing and live performance. A sequence of

FWD commands with different delays can be viewed as a sequencer with relative timings

to a global tempo parameter.

Priority FWD

It might be the case that electronic actions are not necessarily bound to a single

event but to a specific region in the score. This is a typical case for example during

process initializations or electronic events that cover several measures or longer time-

spans (such as audio playback). For this use, FWD commands are particularly dangerous

since for many reasons during a performance they can be skipped since they are hooked

to a single event and that particular single event can be missed. In such circumstances

the PFWD command can be used which shares the same syntax with FWD, but its action

handling is relative to its position in the score. Whenever that position is passed during

a live performance, no matter if the ensuing even is recognized or not, the PFWD actions

are emitted.

253

Loop FWD

The additional command LFWD (or loop forward) initiates a periodic temporal

process known in the system by its name as follows:

LFWD <name> <period> <symbol> +<message>

Upon triggering, LFWD command sends indicated messages to a symbol in a

periodic manner as defined by its syntax. The period is given in beats and is coupled

with the decoded tempo inside Antescofo. This simply means that the period of the

looped message would change appropriately with the tempo of the musician(s).

Optionally, the period factor can be a list of rhythms in beats which will be

executed circularly and coupled with the tempo, with the following syntax:

LFWD <name> { +<period> } <symbol> +<message>

The KILLFWD command can stop a loop forward by calling the process’ name

anywhere in the score:

KILLFWD <name>

8.5 From the Time of Composition to the Time of Per-

formance in Antescofo

An Antescofo score contains both instrumental events and electronic actions with

their respective temporalities that are either fixed (in traditional milli-second units) or in

relative beat values. The events of the instrumental score can have flexibility of being

in-time, out-of-time, striated or smooth. These simple additions leaves the composer of

interactive computer music score with a flexible writing of time, atleast conform to the

rich vocabulary of music notation tradition up to our time.

During live performance, the musicians interpret the instrumental score, and An-

tescofo in return interprets electronic scores synchronized to musician’s play. At the

254

onset of each interpretive action of the musician, the inference module of Antescofo

decodes the ongoing tempo of the musician and couples this tempo with relative time-

values of actions to be undertaken. In other words, the relative values in the score are

evaluated according to the synchronized tempo and on the synchronized event. To this

respect, Antescofo comprises its own scheduler and timer system for undertaking score

actions. This internal scheduler by itself comprises different notions of time that a score

can describe and constantly updates the temporality of new actions or actions already

scheduled in the timer.

Evaluation of relative notated electronic actions in the score during a live perfor-

mance and in coordination with the interpretation of the instrumental score by a musi-

cian, provides the passage needed from the time of composition to the time of perfor-

mance. This feature allows abstraction of electronic events during the act of writing,

and the ability to imagine them in action at the time of composition in the same way

a composer has the habit of abstracting instrumental events while composing. The as-

sured coordination and synchronization at the event level, also allows the composer to

imagine and plan the interaction between instrumental and electronic events in the same

manner she would attempt planning interaction between two human musicians during

transcription of her work. In other words, the simple passage from the time of compo-

sition to the time of performance in the sense developed here, provides a preliminary

mean to the writing of time and interaction in computer music.

In addition to remote actions in the score, Antescofo’s interface provide several

GUI commands that facilitate live communication between external processes and de-

tected events (see figure 8.2 on page 241). Conventional outputs of the system makes

the integration of the system to old repertoire possible. Several score browsing op-

tions enable rapid recovery and browsing through the score either using event labels,

beat position, or by simply jumping between events, actions or labels. An Anticipated

IOI parameter provides the user with the predicted time-span of the incoming events in

milli-seconds using the internal tempo prediction of the synchronization module. This

parameter has been frequently used, for example, to adjust the playback speed of fixed

255

electronics (audio files) through phase vocoders. This is just to say that even in simple

circumstances such as audio playback, the interaction is more than just “starting to-

gether” but extends itself through the whole temporality of outside processes. Overall,

creative use of Antescofo is completely left to the user.

8.6 Discussions and Future Directions

The system presented in this chapter is a simple example of how anticipatory

computing can enable access and more complex musical behavior by augmenting pos-

sibilities in writing and also live situations for computer music. It also demonstrates

the first steps towards a wider horizon in interactive computer music composition that is

currently being pursued. We started the chapter by providing evidence from the practical

and compositional sides of real time computer music realm and discussed deficiencies

of current real time systems. Antescofo, despite its simplicity, opens up new possibilities

that seem to be evident but surprisingly absent in the field. The commonalities between

Antescofo’s discourse and many of the pleas from composers through their writings as

reviewed in section 8.1.3 is a coincidence which also indicates the necessity of aug-

menting the current score following paradigm. However, this work could not in anyway

be possible without the collaborative environment between researchers, composers, and

computer music designers in which it was realized. Being young, Antescofo has many

ways to improve and extend its current stance.

8.6.1 Augmenting the Semantics of Interaction

Antescofo’s language semantic is basic and young but can however replicate

many computer music pieces that have been realized through the recent years. The birth

of this simple language was not the initial aim of the project (which was to become a tra-

ditional but more powerful synchronization system as demonstrated in chapter 7). But

as more internal variables became explicit, more intuitive and basic musical concepts

256

became possible. Its semantics contain a minimal set of intuitive concepts, and was

designed to be easy for its user to understand and reason in. We defined and designed

this language following a Kernal Semantic approach (Van Roy and Haridi, 2004). For-

tunately, the works and thoughts within computer music demand much more than what

our simplistic semantic can offer and therefore this is just a beginning. To augment

these semantics, conventional use of real time processes in interactive settings should

be studied and unified within a coherent context (without any aim for standardization).

An immediate addition to this semantic would be the addition of conditional semantics.

The most evident scenario to imagine is to condition action behavior on past or present

states of the system (either from outside processes or through recognition). This new

addition by itself brings in the issue of concurrency (in the computer science terms) and

shared-state concurrent models. Currently, Antescofo’s internal scheduler and timers

are threaded concurrently in the system but without sharing states. To enable condi-

tional semantics on actions, their states should be shared. This brings in the idea of

directly enabling the declaration of processes within Antescofo’s semantics, which is

naively present within the LFWD semantic. This issue by itself brings in the issue of

declarative and message-passing concurrencies (Van Roy and Haridi, 2004), and more

importantly the fact that none of the environments Antescofo relies on provide this kind

of transactional processes that could lead to more expressive programming. These are

just subsets of problems that should be considered for any augmentation of Antescofo’s

current semantical power and will be pursued in near future.

8.6.2 Multimodal Coordination

Modularity of Antescofo enables writing and processing of several representa-

tions of media streams at the same time. For the moment, the composer has the option

of using only one representation at each score time for detection and coordination of

actions. Therefore, depite the concurrency of representations during matching between

state boundaries their final coordination is not concurrent. In other words, this situation

257

is equal to following an ensemble of instruments but at each measure synchronizing to a

specific instrument. Another useful scenario then would be to augment this modularity

to ensemble coordinations. This intriguing problem has been previously addressed on

symbolic settings by Grubb and Dannenberg (1994). An extension of Antescofo towards

ensemble coordination without central knowledge and using anticipatory mechanisms

would be another line of future research.

8.6.3 Intuitive Interfaces

The main goal in the implementation of Antescofo was to experiment with the ef-

fects of anticipatory modeling within an artistic and collaborative environment. Having

this done, and while the system enjoys attention of a small but growing user community,

the need for more intuitive score interfaces becomes more apparent. Up to now, we

have neglected the issue and made sure the semantics could easily go back and forth be-

tween other standards (such as MIDI, MusicXML). There has been several attempts by

users to write import and export modules for Antescofo’s score language. Currently, the

commercial NoteAbility graphical score editing environment9 provides export options

to Antescofo’s score language. Besides these attempts which address the comfort of the

user community, an intuitive way of representing Antescofo’s score events and actions

would be to make the internal state-space structures (which are quite sparse and cor-

responding to macro-levels) explicit graphically. This idea will be pursued in a longer

future.

8.6.4 Relating to the Community

The Antescofo project was born and implemented with the sole idea of augment-

ing the current vocabulary of real time computer music environments to the demand of

composers and artists active in the field. While the underlying engineering architecture

and design competes with traditional score following systems (as demonstrated in chap-

9http://www.opusonemusic.net/NoteAbility/index.html

http://www.opusonemusic.net/NoteAbility/index.html

258

ter 7), this project could not have been reached its current status if it was not guided

and inspired correctly by the body of computer music artists and researchers. Antescofo

was first implemented and used for Marco Stroppa’s “... of Silence” for Saxophone

and live electronics10, and to whom it has much in debt for his rare culmination of mu-

sical and scientific knowledge and appreciation for research. The courage of Stroppa

in breaking the boundaries of musical expressions and scientific research in a music

production situation where things can go smoothly without assuming any risks is an ex-

emplary for the future of computer music research. Clear at the onset of this chapter, the

development of ideas for this work has roots in the traditions of realtime electronics lit-

erature within which the composer Philippe Manoury is another exemplary artists who

has never ceased to be curious and never less demanding than his past with regards to

research. The (severe) persistence of Pierre Boulez during test sessions of “Anthèmes

2” for Violin and live electronics with Antescofo also contributed to the robustness of

the system. The relation of Antescofo with the computer music community should be

continued and it should by its terms accept its shortcomings and naivety and deal with

it. A community which hopefully will not cease to question its boundaries and always

questions its own view with regards to sciences, not letting technology forcefully define

her stance.

10World premiered in Shizuoka, Japan in November 2007, and by Claude Delange on Saxophone.

Chapter 9

Conclusions

9.1 The story so far

This PhD project was debuted by the simple intuition that musical expectations

and anticipations play an important role in many aspects of music from analysis to

action-decisions in performance and also artistic creativity. Hence the title of this work

was created and the aim was set to approach models of musical anticipation that could

find use in creative as well as computational aspects of music. While anticipation as a

word is commonly used by musicians, the term turns out to be troublesome within a sci-

entific perspective. Before anything, the word itself with all its vagueness should have

been put into a clear context in order to be considered in a computational framework.

Around the same time this work was begun, two important manuscripts emerged in the

literature that turned out to be crucial for the preliminary investigations of this work:

Sweet Anticipation: Music and the Psychology of Expectation by Huron (2006), and the

first ABiALS book of Butz, Sigaud, and Gérard (2003c). They both provided important

insights about the intuitive idea of this work. The former is centered on the psychology

of musical expectations as mental representations of many important musical phenom-

ena including emotional responses and more, showing how they elucidate and change

many of our beliefs about music. The latter is about designing models that anticipate

259

260

without any central aim to provide a universal model for anticipation where future is not

only the thing we predict but also an important factor in our daily interactions to achieve

complex behavior. The second literature commonly refers to this approach of modeling

as Anticipatory Modeling.

Part I

Part I of this thesis is devoted to the study of both problems above. Chapter 2

reviews the literature on modeling anticipation and gathers evidences and modeling im-

plications out of findings in the music cognition literature. At the onset of that chapter,

we differentiated anticipation from predictions and expectations. We represented antic-

ipation as a marriage of expectation and action in interaction with the system itself as

well as a constantly changing environment. We criticized approaches aiming at provid-

ing a syntactic and universal model of anticipation and through our criticisms, specially

towards models in music theory and melodic expectancies, we reversed our goal from

modeling anticipation to that of models that anticipate or anticipatory modeling. Chap-

ter 3 reviews the literature on anticipatory modeling, defines the term, studies different

existing approaches and underlies important modeling implications. This thesis, there-

fore, does not attempt to seek a universal model of anticipation, but aims at providing

useful models for sound and music computing that anticipate and/or have the concept of

anticipation at the very core of their designs. The models studied throughout the thesis

on the other hand are directly inspired by observations from the psychology of musical

expectations reviewed in chapter 2, put in a computational framework summarized in

chapter 3.

Having set our goal to introduce anticipatory models rather than modeling an-

ticipation, we devoted the rest of the thesis to three main concerns that an anticipatory

system intends to address: What to expect, How to expect, and When to expect. Each

question is detailed in the three proceedings parts of the thesis and models and applica-

tions pertaining to the appropriate question are proposed.

261

Part II

The first and most important premise of an anticipatory framework is the avail-

ability of information both for representational and accessibility purposes. We dedicated

part II of this thesis to these two important aspects of music information. In chapter 4

we presented a framework for Music Information Geometry as a culmination of different

literatures of differential geometry, signal processing, information theory, and machine

learning. We showed how this mixture would lead to information theoretic frameworks

that not only replicate the state-of-the-art research that addresses the same problem, but

also provides easy access, interpretation and control over streams of music information.

This part of the thesis, like the preceding part, has its own story. It is the result of con-

tinuous review and improvement (or failure) of previous works that were presented in

(Cont, Dubnov, and Assayag, 2007b) and (Dubnov, Assayag, and Cont, 2007). The goal

here was set to expand these models to a general framework where music information

could be considered in a similarity metric space. Different experiments and failures led

this work to the field of Information Geometry (Amari and Nagaoka, 2000). Through

this adventure, we revisited concepts commonly used in music information retrieval such

as similarity metrics within a Bregman geometry on exponential distribution manifolds,

where each point of the manifold represents an audio frame analysis. Following the work

of Dubnov (2008), we separated the Data and Model aspects of music information and

showed how the music information geometry framework provides basic access to those

structures. In chapter 5, we introduced two different methods to access audio struc-

tures based on music information geometry. The first, provides two basic frameworks

for online clustering and structure discovery of audio signals by searching structural

regularities and without any external intervention. We called this method Audio Ora-

cle. We showed how Audio Oracles discover and represent structures of audio streams

with the premise of easy access to structural information during retrieval schemes. This

naturally led us to the consideration of Audio Oracles as scalable meta-data in infor-

mation retrieval schemes. This led to the introduction of the Guidage algorithm where

262

given an audio query, and by navigating AO databases, searches the best combinations

in a structure to replicate the query. We demonstrated Guidage over several application

frameworks and discussed how it can also be considered as a front-end for many basic

computer music and music information retrieval applications such as unit selection in

concatenative synthesis, query-by-example, and automatic assemblage.

Part III

In part III and chapter 6, we aimed at learning anticipatory behavior pictured as

learning planning strategies for future decision-making in a constantly changing envi-

ronment. To achieve such reactive and proactive system, learning should then be in-

teractive and adaptive (and as before online). We introduced a framework using the

relatively recent paradigm of Active Learning. In the proposed framework, the system

is in constant interaction with an outside environments through a reward system and an

internal memory. The memory models of the system were chosen as Audio Oracles and

the rewarding structure as Guidage. Learning is then to update the memory models in

each interaction and also obtaining anticipatory values for each action with regards to

the present context. The novelty of our representation is in use of multiple, concurrent

and competitive active learning agents that would learn to act based on beliefs geared

towards future. We showed in section 6.7.1 how these interactions can lead to acquir-

ing knowledge through blending and accumulations of past and new knowledge of the

system through subsequent interactions. The results show that with very little data at

each interaction cycle, the system not only discovers and evaluate useful patterns but

also validates states whose future outcome could lead to valuable outcome. Succession

of interactive learning was demonstrated in section 6.7.2 in automatic improvisation and

style imitation of a piece of music. Results show evidence of long-term planning and

formal long-term structures that are learned implicitly and that correspond to the piece

under consideration. These results probably prove the climax of anticipatory design

premises, that complex behavior can be achieved through a relatively simple design,

263

learning can be done with little data, and without any ad-hoc or a priori knowledge.

Part IV

Part IV investigated how anticipation can come to the aid of timing issues such

as live synchronization. Live synchronization by itself is at the heart of every interactive

computer music system. Synchronization in this concept is to find the position in the

score of a live musician performing the same score, also referred to as score following.

A major goal of an score following application is to use the computer as a replacement

for a human musician accompanying the live performance. Any musician would agree

that in a human-human case an important process responsible for synchronization is the

predictions that each musician makes with respect to instantaneous actions of others

(to which one could add preparatory visual signals). In a Human-Computer Interaction

case, no existing system to our knowledge has considered this important anticipatory

mechanism. In our proposal in chapter 7, we bring in explicit anticipations of tempo to

the help of current decision makings regarding real-time score position. Our sensorial

anticipation design consists of two coupled tempo and audio models within a novel

inference framework that decodes the score position as well as realtime predicted tempo.

We evaluated the performance of both tempo and audio alignment outputs and showed

that the performance not only equals the excellence of existing state-of-the-art systems

but also extends to real polyphonic cases.

The synchronization system proposed in chapter 7 can easily find its way into

standard realtime pieces in the mixed electronic and instrumental repertoire of com-

puter music. At the same time, interactive computer music repertoire that makes use

of the score following paradigm strives for tools destined towards a writing of time and

interaction. In chapter 8 we propose an implementation of our anticipatory synchro-

nization system that makes use of the modeling premises of chapter 3, and in particular

that of multimodal interaction and information access, to approach this desired goal

in computer music practice. Before doing so, we looked at the background of this still

264

young field in computer music, its different practices, research status, and compositional

stance. Among composers’ stance of the problem, we looked at key historical compo-

sitional foundations of realtime electronics as drawn by composer Philippe Manoury in

the 1980s, also his latest pleas as well as constructive criticisms from other composers

notably that of Risset and Stroppa. Many of these criticisms and pleas can be sum-

marized as a call for a solution to the lack of compositional consideration for realtime

manipulations whose domain is dominated in both practice and research by performers

with less considerations for transcription of ideas as scores. Another very important is-

sue common between both Manoury and Stroppa (despite their aesthetical divergences),

is the plea for explicit considerations for musical time, access to its structure and to its

transcription for both compositional and performance purposes of live computer music.

To this end we proposed an implementation of our live synchronization system of chap-

ter 7, called Antescofo, as an extension to the score following paradigm in interactive

computer music. Antescofo extends traditional score following by integrating electronic

actions into the instrumental score, enabling concurrent representations of audio (or me-

dia) streams rather than pitch, and by allowing explicit control over event temporalities

both for compositional and performative aspects of an interactive piece. Antescofo is

enhanced with a simple language semantic for declaring instrumental events as well as

electronic actions. The score semantics of Antescofo gives access to various notions

of time common in contemporary music writing and can simulate most pieces in the

repertoire. Antescofo has been implemented in MaxMSP and PureData programming

environments and has had several performances worldwide so far including the world

premiere of Stroppa’s “... of Silence” in Japan, Boulez’ “...Explosante-Fixe...” in Los

Angeles with LA Philharmonic, and more.

9.2 Outlook

Some of the projects undertaken during this PhD study mark the beginning of

new adventures in both the science of music and also practices of computer music,

265

some clearly underying their future roadmap and some proposing divergent but unifying

perspectives. We overview some important future perspectives for this work:

Music Information Geometry

The new Music Information Geometry framework introduced in chapter 4 has

proven to be particularly general with a promising future. In all applications presented

in this thesis following its definition, we considered Multinomial statistical manifolds

over data. This was quite straightforward in our applicative considerations. An interest-

ing idea would be to extend this framework to sparser statistical representations of the

underlying data (such as mixture models, or probabilistically learned models over data

with reduced dimensions). There is no theoretical barrier for this extension and in prac-

tice it opens the door of its consideration to many music information retrieval problems.

It is envisioned that the geometrical intuition of the framework help more rigorous mod-

eling and results in application it is applied to, as was the case in our studied examples.

We showed how our music information geometry framework helps the discovery

of structural regularities in realtime audio streams. In our simple clustering framework,

we assumed a fixed information gain in model formations over data streams. An imme-

diate improvement would be to make this information radius an adaptive parameter, or

in other words, directly model the jump process responsible for model segmentations in

a data stream. A promising direction for research on this line is the work on financial

modeling with jump processes (Cont and Tankov, 2004). Another evident expansion to

this framework would then be to devise mathematical constructs that actually quantify

the measures of information within found sound structures. This is theoretically im-

mediate but have to be assessed and compared to human measures and compositional

aspects of such measures, which requires a well-defined research plan for the future.

Another promising direction for this research is to make the intuitive aspects of

the basic geometric tools of this framework explicit in computer music applications. It

would be worth to study the actual effect of geometric tools such as rotation, parallel

266

transport, geodesic walks and more on the statistical manifolds of sound and music, and

study their connections to current literatures on music signal processing and computer

music and envision extensions to such methods. This endeavor requires a more detailed

specification of the mathematical constructs of the manifold and will be pursued in the

near future. Our hope is that an information geometric representation of audio signals

would help bridge the gap between the signal and symbolic aspects of sounds and further

help the notion of writing of time and interaction for sound objects.

Active and Interactive Learning of Music Agents

An interesting extension to the Active Learning framework of chapter 6 would

be to integrate it with more realistic anticipatory mechanisms. For example, the Guidage

algorithm used for the rewarding environmental feedbacks, guides the learning agents

to the most probable states based on the current environmental context. While this is

useful during learning, it would be worth to study the inverse or how rarely visited

states can affect information once generated. Such behavioral mechanisms could lead

to generation of surprisal, tension and other affective artifacts.

Applications and integration of the Active Learning framework should also be

further studied in computer music paradigms. In chapter 6 we showed several applica-

tive examples mostly as a proof of concept. The experiments on Knowledge-Based

Interactions in section 6.7.1 showed how an imaginary user can interact and communi-

cate with a learning agent by transfering different forms of knowledge representations.

We also showed the full functionality of the system in case of automatic improvisation

and style imitation in section 6.7.2. The idea of using computers as generative agents

that learn actively through interaction with incoming information is a new trend in the

computer music literature. It puts forth the idea of improvisation as a musical construct

for automatic agents and is commonly referred to as controlled improvisation (Assayag,

Bloch, and Chemillier, 2006a) and hints towards open form computer music composi-

tions. There are basically many questions that need to be addressed once the generative

267

aspect of the algorithm comes into play. Our proposed framework is actually inscribed

in the OMax project at Ircam (Assayag, Bloch, Chemillier, Cont, and Dubnov, 2006b)

and its implementation and use in computer music will be a subject of future studies and

experimentations.

From the time of music to the music of time

The idea of tools that enhance writing of time and interaction is central in in-

teractive computer music, gaining important momentum between computer musicians,

and is strangely absent in the discourse of current research. Antescofo is just a prelim-

inary step and will be much extended along the lines of artistic needs of its users and

by contemplating on existing discourses such as in (Ircam, 2006). Future perspective of

Antescofo was thoroughly discussed in section 8.6 and compromises various directions

such as stepping towards semantics of interaction, multimodal coordination schemes,

and enhancing the current development towards more intuitive interfaces.

One of the main promises of this thesis is to make some cognitive aspects of

musical expectation explicitly available for artistic or computational purposes around

music. To this end, this study considers cognitive aspects of musical time pertaining to

expectations and provide models and concepts that makes these abstract processes avail-

able and controllable. Some of these concerns were originally brought up by composer

Grisey (1987) as the skin of time in music, and we attempted to address some of them

specifically in different parts of this thesis. It goes without saying that this thesis is a

first step for achieving the desired compositional controls over the skin of time and in

addressing the complexity of music. With this respect, we hope to have shown that mu-

sic is a self-sufficient domain for the study of complexity and cognition in time. Further

research employing the empirical reflections of composers is necessary to approach the

fronts of complexity of musical time.

Part V

Appendices

268

Appendix A

Supplemental Material for part II

A.1 Properties of Multinomial Manifolds

Throughout part II of this thesis, we use Multinomial exponential distribution

manifolds for the Music Information Geometry framework introduced in chapter 4 and

used in chapter 5. Due to its importance, here we summarize their important properties

in an information geometric framework and provide the tools that are used throughout

chapters 4 and 5.

Recall that a Multinomial distribution is defined as:

p(x; q) =
N !∏d
j=1 xj!

d∏
j=1

q
xj
j ,

where xj ∈ Z+ are frequencies of events,
∑d

j=1 xj = N and qj ≥ 0 are probabilities of

events that sum up to 1.

In example 6 on page 71 we derived the Bregman divergence, log-partition func-

tion and auxiliary functions for Multinomial manifolds. Due to their importance and use

throughout this thesis, we recapitulate those findings in table A.1 below.

In applications of this manifold to music and audio information, we often need

to go back and forth between the Multinomial manifold points and the original audio

vectors themselves. This is for example the case for calculating symmetrized centroids

269

270

Table A.1: Summary of Multinomial Manifold Properties

Natural Parameters: θ =
(

log
qj
qd

)
j∈[1,...,d−1]

Log-Partition Function: F (θ) = N log(1 +
∑d−1

j=1 e
θj)

Expectation Parameter: µ = (Nqj)j∈[1,...,d−1]

Legendre Dual: F ∗(µ) = N
d∑
j=1

(µj
N

)
log
(µj
N

)

Bregman Divergence: DF ∗(x,µ) = N
d∑
j=1

xj
N

log
(
xj/N

µj/N

)

Cumulant Derivative: ∇F (θ) =

 exp θj

1+
d−1P
i=1

exp θi


j∈[1,...,d−1]

Inverse of∇F : (∇F)−1(η) =

log
ηj

1−
d−1P
i=1

ηi


j∈[1,...,d−1]

271

(in case this centroid is needed in the audio domain). This conversion for Multinomial

distributions is straightforward since they basically represent the original vector itself by

relaxing only one parameter from the original domain. The only constraint for convert-

ing a representational front-end to Multinomial manifold points is that they should rep-

resent probability mass functions or normalized histograms. Assuming this is the case,

a set of n discrete distributions q1, . . . , qn in the d-simplex where qi = (q1
i , . . . , q

d
i),

the conversion to a Multinomial manifold amounts to mapping these probability mass

vectors to the natural parameter of the Multinomial point, leading to a vector θ with

d− 1 elements, as shown below:

θki = log
qki

1−
d−1∑
j=1

qji

(A.1)

For the inverse, that is converting natural parameters to probability mass vectors, the

following equations can be easily emplyed:

qdi =
1

1 +
d−1∑
j=1

(1 + exp θji)

qki =
exp θki

1 +
d−1∑
j=1

(1 + exp θji)

(A.2)

Note that this last conversion is possible only since we use a Multinomial manifold

and is not necessarily possible for other exponential distributions. This is mainly be-

cause Multinomial manifolds are useful when the representational front-end exhibits

histograms and since the Multinomial conversion does not yield any dimensionality re-

duction whatsoever.

A.2 Bregman Divergence Symmetrization

In this section we give a full account of the optimization algorithm for sym-

metrizing Bregman divergences on exponential distribution manifolds as proposed in

272

(Nielsen and Nock, 2007). We first start by outlining the proof of their algorithm and

then provide the algorithm itself pertained to Multinomial manifolds, as used throughout

chapters 4 and 5.

Recall that a symmetrized Bregman centroid is defined by the following opti-

mization problem on the set of points P = {pi}ni=1 ⊂ X :

cF = argmin
c∈X

n∑
i=1

DF (c,pi) +DF (pi, c)

2
(A.3)

They start their approach by simplifying the minimization problem of the above

equation by the following theorem:

Theorem A.1 ((Nielsen and Nock, 2007)). The symmetrized Bregman centroid cF is

unique and obtained by the following simplified minimization:

cF = argmin
c∈X

[
DF (cFR, c) +DF (c, cFL)

]
(A.4)

Proof. The right-type average centroid optimization problem by itself can be reformu-

lated using an auxiliary function

JF (P , c) =
n∑
i=1

(F (pi)− F (c)− 〈pi − q,∇F (c)〉) =
n∑
i=1

DF (pi, c).

Adding and subtracting a factor F (p) where p = 1
n

n∑
i=1

pito the definition of J would

give:

JF (P , c) =

(
n∑
i=1

1

n
F (pi)− F (p)

)(
F (p)− F (c)−

n∑
i=1

〈pi − c,∇F (c)〉

)

=

(
n∑
i=1

1

n
F (pi)− F (p)

)
+DF (p, c) (A.5)

Using Legendre transformation, eq. A.5 can be obtained for the left-type centroid lead-

ing to:

JF (q,P) = JF ∗(P ′, c′)

=

(
n∑
i=1

1

n
F ∗(p′i)− F (p′)

)
+DF (p′, c′) (A.6)

273

From Legendre duality, we know that F ∗∗ = F ,∇F ∗ = ∇F−1 and∇F ∗ ◦ ∇F (q) = q

(see sections 4.2.2 and 4.2.3). Using these properties, it is easy to see that

DF ∗(p′, c
′) = DF ∗∗

(
∇F ∗ ◦ ∇F (c),∇F ∗(

n∑
i=1

∇F (pi))

)
= DF (c, cFL).

And conversely,

DF (p, c) = DF (cFR, c).

Now, replacing the two equations above into equations A.6 and A.5, combining them

and cancelling equal dual terms would leads to:

n∑
i=1

DF (c,pi) +DF (pi, c) =

(
n∑
i=1

1

n
F (pi)− F (p)

)

+

(
n∑
i=1

1

n
F ∗(p′i)− F (p′)

)
+ DF (cFR, c) +DF (c, cFL)

Note that the first two parts of the equation above do not depend on c meaning that the

optimization of the left-term boils down to optimizing DF (cFR, c) + DF (c, cFL). There-

fore, eq. A.3 if proved.

The uniqueness of cF is assured since the right side of eq. A.3 can be rewritten

using duality as,

DF ∗(∇F (c),∇F (cFR)) +DF (c, cFL),

and DF (., .) and ∇F are convex in their first argument by definition, hence admitting a

unique solution.

The solution to the new optimization problem above can be obtained by direct

consideration of geometrical properties of the two centroids. Since this proof is quite

intuitive, we drop the formal proof (as discussed in Nielsen and Nock, 2007, Theo-

rem 3.2) and provide the main intuition here.

Geometrically, the solution to equation A.3 is a single point cF which is equidis-

tant from the two centroids and which lies on the geodesic line connecting the two

274

centroids and hence its tangent vector is orthogonal to the geodesic line itself. With this

simple intuition, cF can then be found as the intersection of the two geometric entities

proposed above. The geodesic connecting cFR to cFL is defined as

ΓF (cFR, c
F
L) =

{
(∇F)−1

[
(1− λ)∇F (cFR) + λ∇F (cFL)

]
, λ ∈ [0, 1]

}
.

And the bisector (or equidistant hyper-plan from the two points) is defined as

MF (cFR, c
F
L) =

{
x ∈ X | DF (cFR,x) = DF (x, cFL)

}
.

Using this fact, Nielsen and Nock provide a simple dichotomic walk over the

geodesic ΓF (cFR, c
F
L) connecting the two sided centroids (yielding a candidate ch) and

evaluate the equidistance property or DF (cFR, qh) − DF (qh, c
F
L), whose sign and am-

plitude provide hints for the direction and value of the next step to take for the new

candidate.

A.2.1 Geodesic-walk Algorithm for Multinomial Manifolds

Algorithm A.1 shows the simple geodesic-walk approximation algorithm for ob-

taining symmetrized centroids for Multinomial manifolds where all the functions used

are introduced in table A.1.

The computational complexity of the algorithm is drastically reduced (compared

to similar approaches that use convex optimization schemes) mostly due to our excessive

use of duality in calculating required parameters as explained before. This algorithm can

be generalized to any other exponential distribution given that functions in table A.1 are

provided for the chosen manifold. The conversion to and back from Multinomial points

are not necessary and can be omitted but we provide them for the sake of completeness

pertained to multiple usages of this algorithm in chapters 4 and 5 of this thesis.

275

Algorithm A.1 Geodesic-Walk Algorithm For Bregman Divergence Symmetrization on
Multinomial Manifolds
Require: n discrete distributions q1, . . . , qn in the d-simplex.

1: Convert to Natural Parameter {θi} space (eq. A.1)
2: Initialization:

θFR =
1

n

n∑
i=1

θi

θFL = ∇F−1(
1

n

n∑
i=1

∇F (θi))

λm = 0 , λM = 1

3: while λM − λm > ε do
4: λ = (λM + λm)/2
5:

θ = (∇F)−1
(
(1− λ)∇F (cFR) + λ∇F (cFL)

)
6: if DF (cFR,θ) > DF (θ, cFL) then
7: λM = λ
8: else
9: λm = λ

10: end if
11: end while
12: Convert the symmetrized centroid in natural space θ to probability mass function if

needed (eq. A.2)
13: return Symmetrized centroid θ or the expected equivalence in the probability mass

domain if needed

Appendix B

Supplemental Material for Part IV

B.1 Derivation of Forward Recursion

To solve for an analytical solution of the inference formulation, we are interested

in the most-likely state-sequence Sτ0 that would generate the outside process Xτ
0 up to

time τ and over the entire state-space {s0, . . . , sJ}. Given this, our goal is to deduct a

recursive and dynamic programming framework for the forward variable or belief of the

system up to time τ . By definition and applying the Bayes formula in chains we have:

αj(t) = max
s0,...,st−1

P (St+1 6= j, St = j, St−1
0 = st−1

0 , X t
0 = xt0)

= max
1≤u≤t

max
i 6=j

P (St+1 6= j, St−u = j, v = 0, . . . , u− 1, St−u = i|X t
0 = xt0)

= max
1≤u≤t

P (X t
t−u+1 = xtt−u+1|St−v = j, v = 0, . . . , u− 1)

P (X t
t−u+1 = xtt−u+1|X t−u

0 = xt−u0)
(B.1)

×P (St+1 6= j, St−v = j, v = 0, . . . , u− 2|St−u+1 = j, St−u 6= j) (B.2)

×max
i 6=j

P (St−u+1 = j|St−u+1 6= i, St−u = i) (B.3)

×P (St−u+1 6= i, St−u = i|X t−u
0 = xt−u0) (B.4)

276

277

The nominator in equation B.1 reduces to
∏u−1

v=1 bj(xt−v) with the assumption that obser-

vations bj are independent. The denominator here is a normalization factor that can be

dropped out in our computation. Equation B.2 is the definition of the sojourn function

dj(u) from section 7.3.2. Similarly equation B.4 is the definition of the semi-Markovian

transition probabilities pij and equation B.3 is the definition of αi at time t− u. Replac-

ing these definitions in the equation and factoring indexes, the recursion then becomes:

αj(t) = max
s0,...,st−1

P (St+1 6= j, St = j, St−1
0 = st−1

0 , X t
0 = xt0) (B.5)

= bj(xt) max

[
max
1≤u≤t

({
u−1∏
v=1

bj(xt−v)

}
dj(u) max

i 6=j
(pijαi(t− u))

)]

B.2 Raphael’s Tempo Inference Model

Raphael (2006) has proposed a system for offline alignment of music audio with

symbolic scores using a hybrid graphical model. The word “hybrid” comes from the

fact that he combines latent discrete variables for score position (acoustic model) with a

latent continuous tempo process (tempo model). The two modules in Raphael’s design

are cascaded and not coupled as is our case. In other places, Raphael uses variants of this

model for real-time alignment or score following. Here we deduct the tempo decoding

model and formulation of Raphael and adopt its realtime version for our experiment in

section 7.8.1.

In this model, tempo is modeled as a time-varying random variable as well as

note-by-note deviations from what the local tempo and printed note lengths in the score

would predict. Depicting Sk as local tempo at note k and Tk as onset time of note k in

the score, this amounts to the following random variables:

Sk = Sk−1 + σk (B.6)

Tk = Tk−1 + `kSk + τk

where `k is the length of note/chord k in the score in beats, and {S1, T1} ∪ {σk, τk} are

independent normal random variables with {σk, τk} having zero mean and controlling

278

local deviations. Actual onset times tk and local tempos sk are assumed as realizations

of the random variables described. Letting s = {s1, · · · , sk} and t = {t1, · · · , tk}

depict actual variables, this model leads to the following Bayesian formulation of the

joint probability density of p(s, t):

p(s, t) = p(s1)p(t1)
k∏
k=2

p(sk|sk−1)p(tk|tk−1, sk) (B.7)

Being a generative graphical model, Raphael chooses the following for each factor

of equation B.7 where N(.;µ, σ2) denotes the univariate normal density function with

mean µ and variance σ:

p(s1) = N(s1;µs1 , σ
2
s1

) (B.8)

p(t1) = N(t1;µt1 , σ
2
t1

) (B.9)

p(sk|sk−1) = N(sk; sk−1, σ
2
sk

) (B.10)

p(tk|tk−1, sk) = N(t1; tk−1 + `ksk, σ
2
tk

) (B.11)

Correct (realtime) alignment of live music performance to score in the above

model amounts to finding the optimal local tempo sk for each event in the score in an

incremental manner and using all the information up to event k. This would automati-

cally predict the next event’s onset time tk+1 using the second equation in eq. B.6. In a

more rigorous way, our goal is to find the most likely configuration of the unobserved

variable ŝk given a set of onset times tk0 = (t1, · · · , tk) and previous observed tempos

sk0 = (s1, · · · , sk) in order to predict tk+1, or

ŝk = argmax
s

p(sk0, t
k
0) (B.12)

If all variables were discrete, equation B.12 would be solvable using traditional dynamic

programming techniques, however, the tempo process s is continuous in this framework.

To overcome this difficulty, Raphael solves equation B.12 in two stages: one for solving

the optimum ŝk at each time step k and other for solving the discrete variable tk which

determines the alignment. Here we review the first process for solving local tempo

279

which is of our primary interest. We suffice it to say that the second stage in Raphael’s

model is a pruning of the search-tree of possible score alignments and using the solution

in the first stage to find the optimum solution (Raphael, 2006).

For each partial path tk0 = (t1, · · · , tk) and sk0 we solve for

p̂tk0 (sk−1) = max
s1···sk−1

p(sk1, t
k
0) (B.13)

For this solution, we consider the fact that all the factors in eq. B.7 were defined as

Gaussian distributions, and thus p(sk1, t
k
0) is an exponential function of the form,

K(sk;h,m, v) = he
−1
2

(sk−m)2/v

Extending this fact into equation B.13, we can solve for

p̂tk0 (sk) = max p̂tk0 (sk−1)p(sk|sk−1)p(tk|tk−1, sk)

= K(sk;hk,mk, vk)

by incorporating equations B.8 to B.11 into equation B.7 and B.13, we will obtain the

following results:

hk =
hk−1

2πσ2
sk
σ2
tk

e
−0.5

(tk−tk−1−`km)2

`2
k
(vk−1+σ2

sk
))+σ2

tk

mk =
mk−1σ

2
tk

+ `k(tk − tk−1)(vk−1 + σ2
sk

)

`2
k(vk−1 + σ2

sk
) + σ2

tk

(B.14)

vk =
(vk−1 + σ2

sk
)σ2

tk

`2
k(vk−1 + σ2

sk
) + σ2

tk

Obviously, using this formulation the maximum of sk occurs at mk and we have solved

for the optimal continuous local tempo.

Note that equations B.14 are suggestive of some sort of dynamic programming

procedure for obtaining sk. Raphael’s original proposal is off-line employs backtracking

for obtaining the optimum tempo path. In the experiments presented in section 7.8.1,

we adopt an on-line version similar to using the forward propagation part of Viterbi for

online decoding.

280

In the procedure described above, parameters {σsk , σtk} are critical for perfor-

mance of the system. They model local tolerance of the system with temporal fluctua-

tions. These values are set a priori and by hand, although a machine learning technique

could find these values easily given some realizations of the given score.

References

Abdallah, S. A., and Plumbley, M. D., 2007: Information dynamics. Technical Report
C4DM-TR07-01, Center for Digital Music, Queen Mary University of London.

Adorno, T. W., 1941: On popolar music. In Studies in Philosophy and Social Science,
volume IX, 17–48. New York: Institute of Social Research.

Agon, C., Stroppa, M., and Assayag, G., 2000: High level musical control of sound
synthesis in openmusic. In International Computer Music Conference. Berlin, Alle-
magne.

Allauzen, C., Crochemore, M., and Raffinot, M., 1999: Factor oracle: A new struc-
ture for pattern matching. In Proc. of Conference on Current Trends in Theory and
Practice of Informatics, 295–310. Springer-Verlag, London. ISBN 3-540-66694-X.

Allombert, A., and Desainte-Catherine, M., 2005: Interactive scores: A model for spec-
ifying temporal relations between interactive and static events. Journal of New Music
Research, 34-4, 361–374.

Amari, S., and Nagaoka, H., 2000: Methods of information geometry, volume 191.
Oxford University Press. Translations of mathematical monographs.

Assayag, G., and Bloch, G., 2007: Navigating the oracle: A heuristic approach. In
International Computer Music Conference ’07, 405–412. Copenhagen, Denmark.

Assayag, G., Bloch, G., and Chemillier, M., 2006a: Improvisation et réinjection stylis-
tiques. In Le feed-back dans la création musicale contemporaine - Rencontres musi-
cales pluri-disciplinaires. Lyon, France.

Assayag, G., Bloch, G., Chemillier, M., Cont, A., and Dubnov, S., 2006b: Omax broth-
ers: A dynamic topology of agents for improvisation learning. In ACM Multimedia
Workshop on Audio and Music Computing for Multimedia. Santa Barbara.

Assayag, G., and Dubnov, S., 2004: Using factor oracles for machine improvisation.
Soft Computing, 8-9, 604–610.

281

282

Assayag, G., Rueda, C., Laurson, M., Agon, C., and Delerue, O., 1999: Computer
Assisted Composition at Ircam: From PatchWork to OpenMusic. Computer Music
Journal, 23(3).

Attali, J., 1985: Noise: The Political Economy of Music. University of Minnesota Press.
ISBN 0816612870.

Ballard, D. H., 1991: Animate vision. Artificial Intelligence, 48(1), 57–86.

Ballard, D. H., 2002: Vision and Mind: Selected Readings in the Philosophy of Percep-
tion, chapter On the function of visual representation. MIT Press.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J., 2005: Clustering with bregman
divergences. Journal of Machine Learning Research, 6, 1705–1749. ISSN 1533-
7928.

Bartlett, J. C., 1932: Remembering. Cambridge University Press.

Beller, G., Veaux, C., and Rodet, X., 2008: Ircamcorpusexpressivity: Nonverbal words
and restructurings. In LREC workshop on emotions.

Berger, J., and Gang, D., 2000: A real-time model of formulation and realization of
musical expectancy. Unpublished.

Berio, L., 2006: Remembering the future. Harvard University Press, the charles eliot
norton lectures edition.

Bharucha, J., 1987: Musact: A connectionist model of musical harmony. In Program of
the ninth annual conference of the Cognitive Science Society, 508–517.

Bharucha, J., 1996: Melodic anchoring. Music Perception, 13, 282–400.

Bharucha, J. J., 1993: Tonality and expectation. In Musical Perceptions, editor R. Aiello,
213–239. Oxford University Press, Oxford.

Bharucha, J. J., and Stoeckig, K., 1986: Reaction time and musical expectancy: Priming
of chords. Journal of Experimental Psychology: Human Perception and Performance,
12, 403–410.

Biles, J. A., 2003: Genjam in perspective: A tentative taxonomy for genetic algorithm
music and art systems. Leonardo, 36(1), 43–45.

Boulez, P., 1964: Penser la Musique Aujourd’hui. Gallimard.

Bregman, L. M., 1967: The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Mathematical Physics, 7, 200–217.

283

Bresson, J., 2007a: La synthèse sonore en composition musicale assistée par ordinateur
: Modélisation et écriture du son. Thèse de doctorat, Université de Paris 6, Paris.

Bresson, J., 2007b: Processus compositionnels et opérateurs musicaux dans ml-
maquette - les outils de traitement du signal. In Journées d’Informatique Musicale.
Lyon, France.

Butz, M., and Goldberg, D. E., 2003: Generalized State Values in an Anticipatory
Learning Classifier System., chapter 16, 282–301. Number 2684 in LNCS. Springer-
Verlag.

Butz, M., Sigaud, O., and Gérard, P., 2003a: Anticipatory behavior: Exploiting know-
ledge about the future to improve current behavior. In Anticipatory Behavior in Adap-
tive Learning Systems, chapter 1, 1–10. Springer-Verlag.

Butz, M., Sigaud, O., and Gérard, P., 2003b: Internal Models and Anticipations in
Adaptive Learning Systems: Foundations, Theories, and Systems, chapter 6, 86–109.
Number 2684 in LNCS. Springer-Verlag.

Butz, M. V., Sigaud, O., and Gérard, P., editors, 2003c: Anticipatory Behavior in Adap-
tive Learning Systems, Foundations, Theories, and SystemsTheories, and Systems,
volume 2684 of LNCS. Springer-Verlag. ISBN 3-540-40429-5.

Butz, M. V., Sigaud, O., Pezzulo, G., and Baldassarre, G., editors, 2007: Anticipa-
tory Behavior in Adaptive Learning Systems, From Brains to Individual and Social
Behavior, volume 4520 of Lecture Notes in Computer Science. Springer. ISBN 978-
3-540-74261-6.

Buxton, W., Patel, S., Reeves, W., and Baecker, R., 1979: The evolution of the sssp
score-editing tools. Computer Music Journal, 3(4), 14–25.

Camurri, A., Hashimoto, S., Ricchetti, M., Ricci, A., Suzuki, K., Trocca, R., and Volpe,
G., 2000: Eyesweb: Toward gesture and affect recognition in interactive dance and
music systems. Computer Music Journal, 24(1), 57–69. ISSN 0148-9267. doi:
http://dx.doi.org/10.1162/014892600559182.

Cano, P., 2007: Content-Based Audio Search from Fingerprinting to Semantic Audio
Retrieval. Ph.D. thesis, University Pompeu Fabra, Barcelona, Spain.

Carlsen, J. J., 1981: Some factors which influence melodic expectancy. Psychomusicol-
ogy, 1, 12–29.

Casey, M., 2005: Acoustic lexemes for organizing internet audio. Contemporary Music
Review, 24(6), 489–508(20). doi:doi:10.1080/07494460500296169.

Cayton, L., 2008: Fast nearest neighbor retrieval for bregman divergences. In Interna-
tional Conference on Machine Learning (ICML).

284

Chabot, X., Dannenberg, R., and Bloch, G., 1986: A workstation in live performance:
Composed improvisation. In International Computer Music Conference (ICMC),
537–540.

Chadabe, J., 1984: Interactive composing: An overview. Computer Music Journal, 8(1),
22–27. ISSN 01489267.

Chai, W., 2005: Automated Analysis of Musical Structure. Ph.D. thesis, Massachusetts
Institute of Technology, MA, USA.

Cilibrasi, R., and Vitanyi, P., 2005: Clustering by compression. IEEE Transactions on
Information Theory, 51(4), 1523–1545.

Cohn, D. A., Atlas, L., and Ladner, R. E., 1994: Improving generalization with active
learning. Machine Learning, 15(2), 201–221.

Conklin, D., 2003: Music generation from statistical models. In Proceedings of Sympo-
sium on AI and Creativity in the Arts and Sciences, 30–35.

Conklin, D., and Witten, I., 1995: Multiple viewpoint systems for music prediction. In
Journal of New Music Research, volume 24, 51–73.

Cont, A., 2006: Realtime audio to score alignment for polyphonic music instruments
using sparse non-negative constraints and hierarchical hmms. In IEEE ICASSP.
Toulouse.

Cont, A., Dubnov, S., and Assayag, G., 2007a: Anticipatory model of musical style
imitation using collaborative and competitive reinforcement learning. In Anticipatory
Behavior in Adaptive Learning Systems, editors B. M.V., S. O., P. G., and B. G.,
volume 4520 of Lecture Notes in Computer Science / Artificial Intelligence (LNAI),
285–306. Springer Verlag, Berlin. ISBN 978-3-540-74261-6.

Cont, A., Dubnov, S., and Assayag, G., 2007b: Guidage: A fast audio query guided
assemblage. In Proceedings of International Computer Music Conference (ICMC).
Copenhagen.

Cont, A., Schwarz, D., Schnell, N., and Raphael, C., 2007c: Evaluation of real-time
audio-to-score alignment. In International Symposium on Music Information Re-
trieval (ISMIR). Vienna, Austria.

Cont, R., and Tankov, P., 2004: Financial Modeling with Jump Processes. Chapman &
Hall.

Cope, D., 2001: Virtual Music. MIT Press, Cambridge, MA.

Cover, T. M., and Thomas, J. A., 1991: Elements of Information Theory. Wiley-
Interscience. ISBN 0471062596.

285

Cuddy, L. L., and Lunny, C. A., 1995: Expectancies generated by melodic intervals:
perceptual judgements of continuity. Perception and Psychophysics, 57(4), 451–462.

Dannenberg, R. B., 1984: An on-line algorithm for real-time accompaniment. In Pro-
ceedings of the International Computer Music Conference (ICMC), 193–198.

Dannenberg, R. B., 2007: An intelligent multi-track audio editor. In Proceedings of
International Computer Music Conference (ICMC), volume 2, 89–94.

de Cheveigné, A., 2002: Scalable metadata for search, sonification and display. In Pro-
ceedings of the 8th International Conference on Auditory Display (ICAD2002), edi-
tors R. Nakatsu, and H. Kawahara. Advanced Telecommunications Research Institute
(ATR), Kyoto, Japan, Kyoto, Japan.

Desain, P., and Honing, H., 1993: The mins of max. Computer Music Journal, 17(2),
3–11.

Dubnov, S., 2006: Spectral anticipations. Computer Music Journal, 30(2), 63–83.

Dubnov, S., 2008: Unified view of prediction and repetition structure in audio signals
with application to interest point detection. IEEE Transactions on Audio, Speech, and
Language Processing, 16(2), 327–337.

Dubnov, S., Aug. 2004: Generalization of spectral flatness measure for non-gaussian
linear processes. Signal Processing Letters, IEEE, 11(8), 698–701. ISSN 1558-2361.
doi:10.1109/LSP.2004.831663.

Dubnov, S., and Assayag, G., 2005: Improvisation planning and jam session design
using concepts of sequence variation and flow experience. In Sound and Music Com-
puting (SMC). Salerno, Italie.

Dubnov, S., Assayag, G., and Cont, A., 2007: Audio oracle: A new algorithm for
fast learning of audio structures. In Proceedings of International Computer Music
Conference (ICMC). Copenhagen.

Dubnov, S., Assayag, G., and El-Yaniv, R., 1998: Universal classification applied to
musical sequences. In Proc. of ICMC, 322–340. Michigan.

Dubnov, S., Assayag, G., Lartillot, O., and Bejerano, G., 2003: Using machine-learning
methods for musical style modeling. IEEE Computer Society, 36(10), 73–80.

Dubnov, S., McAdams, S., and Reynolds, R., 2006: Structural and affective aspects
of music from statistical audio signal analysis. Journal of the American Society for
Information Science and Technology, 57(11), 1526–1536. ISSN 1532-2882. doi:http:
//dx.doi.org/10.1002/asi.v57:11. Special Topic Section on Computational Analysis of
Style.

286

Edelman, G., 1987: Neural Darwinism: The Theory of Neuronal Group Selection. Basic
Books.

Eerola, T., 2003: The Dynamics of Musical Expectancy: Cross-Cultural and Statistical
Approaches to Melodic Expectations. Ph.D. thesis, University of Jyväskylä, Finland.

Eguchi, S., 1983: Second order efficiency of minimum contrast estimators in a curved
exponential family. The Annals of Statistics, 11(3), 793–803. ISSN 00905364.

Ellson, J., Gansner, E., Koutsofios, E., North, S., and Woodhull, G., 2003: Graphviz and
dynagraph – static and dynamic graph drawing tools. In Graph Drawing Software,
editors M. Junger, and P. Mutzel, 127–148. Springer-Verlag.

Feder, M., Merhav, N., and Gutman, M., 1992: Universal prediction of individual se-
quences. IEEE Trans. Inform. Theory, 38(4), 1258–1270.

Ferguson, J. D., 1980: Variable duration models for speech. In Symposium on the Ap-
plications of Hidden Markov Models to text and Speech, 143–179. Princeton, New
Jersey.

Foote, J., 2000: Automatic audio segmentation using a measure of audio novelty. In
IEEE International Conference on Multimedia and Expo (I), volume 1, 452–455.

Foote, J., and Cooper, M., 2003: Media segmentation using selfsimilarity decompo-
sition. In Proceedings of SPIE Storage and Retrieval for Multimedia Databases,
volume 5021, 167–175.

Foote, J. T., 1997: A similarity measure for automatic audio classification. In Proceed-
ings AAAI 1997 Spring Symposium on Intelligent Integration and Use of Text, Image,
Video and Audio Corpora. American Association for Artificial Intelligence.

Freidman, J. H., Bentley, J. L., and Finkel, R. A., 1977: An algorithm for finding best
matches in logarithmic expected time. ACM Trans. Math. Softw., 3(3), 209–226. ISSN
0098-3500. doi:http://doi.acm.org/10.1145/355744.355745.

gabriel Ganascia, J., Ramalho, G., and yves Roll, P., 1999: An artificially intelligent
jazz performer. Journal of New Music Research, 28, 105–129.

Glasersfeld, E. v., 1998: Anticipation in the constructivist theory of cognition. In Pro-
ceedings of the First Computing Anticipatory Systems Conference, 38–47.

Grisey, G., 1987: Tempus ex machina: A composer’s reflections on musical time. Con-
temporary Music Review, 2(1), 239–275.

Grubb, L., and Dannenberg, R. B., 1994: Automating Ensemble Performance. In Pro-
ceedings of the ICMC, 63–69.

287

Grubb, L., and Dannenberg, R. B., 1997: A Stochastic Method of Tracking a Vocal
Performer. In Proceedings of the ICMC, 301–308.

Guédon, Y., 2005: Hidden hybrid markov/semi-markov chains. Computational Statis-
tics and Data Analysis, 49, 663–688.

Hanslick, E., 1854: Vom Musikalisch-Schönen. Leipzig. Translated in 1891 by Gustav
Cohen as: The Beautiful in Music. Indianapolis: Bobbs-Merrill Co., 1957.

Held, R., and Hein, A., 1963: Movement-produced stimulation in the development of
visually guided behavior. In Journal of Comp. Physiol. Psych., volume 56, 872–6.

Hiller, L. A., and Isaacson, L. M., 1959: Experimental Music: Composition with an
Electronic Computer. McGraw-Hill Book Company, New York.

Holland, J. H., and Reitman, J. S., 1978: Cognitive systems based on adaptive algo-
rithms. In Pattern-Directed Inference Systems, editors D. A. Waterman, and H. F.
Roth. Academic Press, New York.

Hoskinson, R., and Pai, D., 2001: Manipulation and resynthesis with natural grains. In
International Computer Music Conference, 338–341. San Francisco.

Huron, D., 2006: Sweet Anticipation: Music and the Psychology of Expectation. MIT
Press.

Ircam, 2006: Colloque international écritures du temps et de l’interaction. In Agora
Festival. Ircam-Centre Pompidou, Paris, France.

Johnson, D., and Sinanović, S., 2001: Symmetrizing the kullback-leibler distance. IEEE
Trans. on Information Theory.

Johnson-Laird, P. N., 1991: Jazz improvisation: a theory at the computational level. In
Representing Musical Structure, editors P. Howell, R. West, and I. Cross, 291–325.
Academic Press, London.

Kaelbling, L. P., Littman, M. L., and Moore, A. P., 1996: Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4, 237–285.

Large, E. W., and Jones, M. R., 1999: Dynamics of attending: How people track time-
varying events. Psychological Review, 106(1), 119–159.

Lazier, A., and Cook, P., 2003: MOSIEVIUS: Feature driven interactive audio mosaic-
ing. In Proceesing of DAFx, 312–317. London, UK.

Lefebvre, A., and Lecroq, T., 2000: Computing repeated factors with a factor oracle. In
Proc. of the Australasian Workshop On Combinatorial Algorithms, 145–158. Hunter
Valley, Australia.

288

Lerdahl, F., 1988: Cognitive constraints on compositional systems. In Generative Pro-
cesses in Music: the Psychology of Performance, Improvisation and Composition,
editor J. A. Sloboda, 231–259. Clarendon Press, Oxford, UK. Reprinted in Contem-
porary Music Review 6:97-121.

Lerdahl, F., 2001: Tonal Pitch Space. Oxford University Press, New York.

Lerdahl, F., and Jackendoff, R., 1983: A Generative Theory of Tonal Music. MIT Press,
Cambridge, MA.

Lindemann, E., 1990: Animal : A rapid prototyping environment for computer music
systems. In ICMC: International Computer Music Conference, editor S. A. et Gra-
ham HAIR. Glasgow, Ecosse.

Littman, M. L., 1994: Markov games as a framework for multi-agent reinforcement
learning. In Proceedings of the 11th International Conference on Machine Learning,
157–163. Morgan Kaufmann, New Brunswick, NJ.

Liu, T., Moore, A. W., Gray, A., and Yang, K., 2005: An investigation of practical
approximate nearest neighbor algorithms. In Advances in Neural Information Pro-
cessing Systems 17, editors L. K. Saul, Y. Weiss, and L. Bottou, 825–832. MIT Press,
Cambridge, MA.

Logan, B., and Chu, S., 2000: Music summarization using key phrases. icassp, 2,
II749–II752.

Loui, P., Wessel, D., and Kam, C. H., 2006: Acquiring new musical grammars: a statis-
tical learning approach. In 28th Annual Conference of the Cognitive Science Society,
1711–1716. Congnitive Science Society, Vancouver, Canada.

Lu, L., Wenyin, L., and Zhang, H.-J., 2004: Audio textures: Theory and applications.
IEEE Transactions on Speech and Audio Processing, 12, 156–167.

Machover, T., and Chung, J., 1989: Hyperinstruments: Musically intelligent and inter-
active performance and creativity systems. In International Computer Music Confer-
ence (ICMC), 186–190.

Manoury, P., 1990: La note et le son. L’Hamartan.

Manoury, P., 2007: Considérations (toujours actuelles) sur l’état de la musique en temps
réel. Etincelle, le journal de la création à l’Ircam.

Mardia, K. V., and Jupp, P., 2000: Directional Statistics. John Wiley and Sons Ltd., 2nd
edition.

Margulis, E., 2005: A model of melodic expectation. Music Perception, 22(4), 663–714.

289

Marsden, A., 2007: Timing in music and modal temporal logic. Journal of Mathematics
and Music, 1(3), 173 – 189.

Martin, A., Seroussi, G., and Weinberger, J., 2004: Linear time universal coding and
time reversal of tree sources via fsm closure. Information Theory, IEEE Transactions
on, 50(7), 1442–1468.

Mathews, M. V., Miller, J. E., Moore, F. R., Pierce, J. R., and Risset, J. C., 1969: The
Technology of Computer Music. The MIT Press. ISBN 0262130505.

Maybeck, P. S., 1979: Stochastic models, estimation and control. Volume I. Academic
Press.

McCartney, J., 1996: Supercollider: a new real time synthesis language. In Proceedings
of the International Computer Music Conference.

Mccartney, J., 2002: Rethinking the computer music language: Supercollider. Computer
Music Journal, 26(4), 61–68. ISSN 0148-9267.

McNab, R. J., Smith, L. A., Witten, I. H., Henderson, C. L., and Cunningham, S. J.,
1996: Towards the digital music library: tune retrieval from acoustic input. In DL
’96: Proceedings of the first ACM international conference on Digital libraries, 11–
18. ACM, New York, NY, USA. ISBN 0-89791-830-4. doi:http://doi.acm.org/10.
1145/226931.226934.

Meyer, L. B., 1956: Emotion and Meaning in Music. Univ. of Chicago Press.

Minsky, M., 2006: The Emotion Machine: Commonsense Thinking, Artificial Intelli-
gence, and the Future of the Human Mind. Simon & Schuster. ISBN 0743276639.

Minsky, M., Singh, P., and Sloman, A., 2004: The st. thomas common sense sym-
posium: Designing architectures for human-level intelligence. AI Magazine, 25(2),
113–124.

Moles, A., 1969: Information Theory and Aesthetic Perception. University of Illinois
Press.

Monteleoni, C., 2006: Learning with Online Constraints: Shifting Concepts and Active
Learning. Ph.D. thesis, Massachusetts Institute of Technology.

Moore, A., and Atkeson, C., 1993: Prioritized sweeping: Reinforcement learning with
less data and less real time. Machine Learning, 13, 103–130.

Moore, F. R., 1990: Elements of computer music. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA. ISBN 0-13-252552-6.

Murphy, K., 2000: A survey of pomdp solution techniques. Technical report, University
of British Columbia.

290

Murphy, K. P., 2002: Dynamic Bayesian Networks: Representation, Inference and
Learning. Ph.D. thesis, UC Berkeley, Computer Science Division.

Nadin, M., 2004: Anticipation: The End is Where We Start From. Lars Mueller Publish-
ers, Baden, Switzerland.

Narmour, E., 1990: The analysis and cognition of basic melodic structures: The
Implication-Realization Model. The University of Chicago Press.

Narmour, E., 1992: The Analysis and Cognition of Melodic Complexity: The
Implication-Realization Model. The University of Chicago Press.

Nielsen, F., Boissonnat, J.-D., and Nock, R., 2007: On bregman voronoi diagrams. In
Proc. 18th ACM-SIAM Sympos. Discrete Algorithms.

Nielsen, F., and Nock, R., 2007: On the centroids of symmetrized bregman divergences.
Arxiv.org.

Noë, A., 2004: Action in Perception. MIT Press, MA.

Noe, A., October 2005: Against intellectualism. Analysis, 65, 278–290(13). doi:doi:
10.1111/j.1467-8284.2005.00567.x.

Nouno, G., and Agon, C., 2002: Contrôle de la spatialisation comme paramètre musical.
In Actes des Journées d’Informatique Musicale, 115–119. Marseille, France.

Omohundro, S. M., 1989: Five balltree construction algorithms. Technical report, Inter-
national Computer Science Institute.

Ong, B. S., 2007: Structural Analysis and Segmentation of Music Signals. Ph.D. thesis,
University Pompeu Fabra, Barcelona, Spain.

Orio, N., and Déchelle, F., 2001: Score Following Using Spectral Analysis and Hidden
Markov Models. In Proceedings of the ICMC. Havana, Cuba.

Orio, N., Lemouton, S., Schwarz, D., and Schnell, N., 2003: Score Following: State of
the Art and New Developments. In Proceedings of the International Conference on
New Interfaces for Musical Expression (NIME). Montreal, Canada.

Pachet, F., 2002: The continuator: Musical interaction with style. In Proc. of Interna-
tional Computer Music Conference. Gotheborg, Sweden.

Pachet, F., 2006: Interactions réflexives: du “c’est marrant” aux machines à flow. In
Actes des recontres musicales pluridisciplinaires, editor Y. Orlarey. Lyon, Grame.

Pearce, M., Conklin, D., and Wiggins, G., 2004: Methods for combining statistical
models of music. In Computer Music Modelling and Retrieval, editor U. K. Wiil,
295–312.

291

Peeters, G., 2004: Deriving musical structures from signal analysis for audio summary
generation: “sequence” and “state” approach. In CMMR, volume 2771. Montpellier,
France.

Peretz, I., and Zatorre, R. J., 2005: Brain organization for music processing. Annual
Review of Psychology, 56, 89–114.

Pressing, J., 1987: Improvisation: Methods and models. In Generative Processes in Mu-
sic: The Psychology of Performance , Improvisation and Composition, editor J. Slo-
boda, 129–178. Oxford University Press.

Pressing, J., 1990: Cybernetic issues in interactive performance systems. Computer
Music Journal, 14(1), 12–25.

Pressing, J., 1999: Cognitive complexity and the structure of musical patterns. In Pro-
ceedings of the 4th Conference of the Australasian Cognitive Science Society. New-
castle.

Puckette, M., 1991: Combining event and signal processing in the max graphical pro-
gramming environment. Computer Music Journal, 15, 68–77.

Puckette, M., 1997: Pure data. In Proc. Int. Computer Music Conf., 224–227. Thessa-
loniki, Greece.

Puckette, M., 2002a: Max at seventeen. Comput. Music J., 26(4), 31–43. ISSN 0148-
9267. doi:http://dx.doi.org/10.1162/014892602320991356.

Puckette, M., 2002b: Using pd as a score language. In Proc. Int. Computer Music Conf.,
184–187.

Puckette, M., 2004: A divide between ‘compositional’ and ‘performative’ aspects of pd.
In First International Pd Convention. Graz, Austria.

Puckette, M., and Lippe, C., 1992: Score Following in Practice. In Proceedings of the
ICMC, 182–185.

Purwins, H., Blankertz, B., and Obermayer, K., 2001: Constant q profiles for track-
ing modulations in audio data. In Proceedings of the International Computer Music
Conference, 407–410. Cuba.

Rabiner, L., 1989: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2), 257–285.

Raphael, C., 1999a: A Probabilistic Expert System for Automatic Musical Accompani-
ment. Jour. of Comp. and Graph. Stats, 10(3), 487–512.

292

Raphael, C., 1999b: Automatic Segmentation of Acoustic Musical Signals Using Hid-
den Markov Models. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 21(4), 360–370.

Raphael, C., 2004: A hybrid graphical model for aligning polyphonic audio with musi-
cal scores. In ISMIR.

Raphael, C., 2006: Aligning music audio with symbolic scores using a hybrid graphical
model. Machine Learning, 65(2-3), 389–409.

Rasamimanana, N. H., 2008: Geste instrumental du violoniste en situation de jeu :
analyse et modélisation. Ph.D. thesis, Université Paris 6 - IRCAM UMR STMS.

Rauber, A., Pampalk, E., and Merkl, D., 2002: Using psycho-acoustic models and self-
organizing maps to create a hierarchical structuring of music by sound similarities.
In Proceedings of the 3rd International Conference on Music Information Retrieval
(ISMIR’02).

Risset, J.-C., 1999: Composing in real-time? Contemporary Music Review, 18(3), 31–
39.

Rockafellar, R. T., 1970: Convex analysis. Princeton Mathematical Series. Princeton
University Press, Princeton, N. J.

Rohanimanesh, K., and Mahadevan, S., 2002: Learning to take concurrent actions. In
Proceedings of the Sixteenth Annual Conference on Neural Information Processing
Systems.

Rolland, P.-Y., and Ganascia, J.-G., 2000: Musical pattern extraction and similarity
assessment. In Readings in Music and Artificial Intelligence, editor E. Miranda, 115–
144. Harwood Academic Publishers.

Ron, D., Singer, Y., and Tishby, N., 1996: The power of amnesia: Learning probabilistic
automata with variable memory length. Machine Learning, 25(2-3), 117–149.

Rosen, R., 1985: Anticipatory Systems, volume 1 of IFSR International Series on Sys-
tems Science and Engineering. Pergamon Press, Oxford.

Rowe, R., 1992: Interactive music systems: machine listening and composing. MIT
Press, Cambridge, MA, USA. ISBN 0-262-18149-5.

Rowe, R., 2004: Machine Musicianship. MIT Press, Cambridge, MA, USA. ISBN
0262681498.

Sadakata, M., 2006: Ritme and Rizumu: studies in music cognition. Ph.D. thesis, Uni-
versity of Nijmegen.

293

Saffran, J. R., Johnson, E. K., Aslin, R. N., and Newport, E. L., 1999: Statistical learning
of tonal sequences by human infants and adults. cognition. In Cognition, volume 70,
27–52.

Saul, L. K., and Jordan, M. I., 1999: Mixed memory markov models: Decomposing
complex stochastic processes as mixtures of simpler ones. Machine Learning, 37(1),
75–87.

Schellenberg, E., 1997: Simplifying the implication-realization model of musical ex-
pectancy. Music Perception, 14(3), 295–318.

Schmuckler, M., 1989: Expectation in music: Investigation of melodic and harmonic
processes. Music Perception, 7, 109–150.

Schmuckler, M., 1990: The performance of global expectations. Psychomusicology, 9,
122–147.

Schmuckler, M., 1997: Expectancy effects in memory for melodies. Canadian Journal
of Experimental Psychology, 51, 292–306.

Schwarz, D., 2007: Corpus-based concatenative synthesis. IEEE Signal Processing
Magazine, 24(1), 92–104.

Schwarz, D., and Wright, M., 2000: Extensions and Applications of the SDIF Sound
Description Interchange Format. In Proceedings of the International Computer Music
Conference. Berlin.

ScofoMIREX, 2006: Score following evaluation proposal. webpage.

Shannon, C., and Weaver, W., 1949: The Mathematical Theory of Communication. Uni-
versity of Illinois Press, Urbana, Illinois.

Shannon, C. E., 1948: A mathematical theory of communication. The Bell System
technical journal, 27, 379–423.

Simon, H. A., 1969: The Science of the Artificial. MIT Press.

Sinanović, S., and Johnson, D. H., 2007: Toward a theory of information processing.
Signal Process., 87(6), 1326–1344. ISSN 0165-1684. doi:http://dx.doi.org/10.1016/
j.sigpro.2006.11.005.

Singh, S. P., Jaakkola, T., and Jordan, M. I., 1994: Learning without state-estimation
in partially observable markovian decision problems. In Proceedings of the Eleventh
International Conference on Machine Learning, editors W. W. Cohen, and H. Hirsch,
284–292. Morgan Kaufmann, San Francisco, CA.

Stockhausen, K., 1957: ... how time passes ... In die Reihe, volume 3, 10–43. English
edition translated by Cornelius Cardew, 1959.

294

Stroppa, M., 1999: Live electronics or live music? towards a critique of interaction.
Contemporary Music Review, 18(3), 41–77.

Stroppa, M., Lemouton, S., and Agon, C., 2002: Omchroma ; vers une formalisation
compositionnelle des processus de synthèse sonore. In JIM 2002. Marseille.

Sturm, B. L., 2004: MATConcat: An Application for Exploring Concatenative Sound
Synthesis Using MATLAB. In Proceedings of Digital Audio Effects (DAFx). Naples,
Italy.

Stylianou, Y., and Syrdal, A. K., 2001: Perceptual and objective detection of disconti-
nuities in concatenative speech synthesis. In ICASSP ’01: Proceedings of the Acous-
tics, Speech, and Signal Processing, 200. on IEEE International Conference, 837–
840. IEEE Computer Society, Washington, DC, USA. ISBN 0-7803-7041-4. doi:
http://dx.doi.org/10.1109/ICASSP.2001.941045.

Sutton, R. S., 1991: DYNA, an Integrated Architecture for Learning, Planning and Re-
acting. In Working Notes of the AAAI Spring Symposium on Integrated Intelligent
Architectures.

Sutton, R. S., 1997: On the significance of markov decision processes. In International
Conference on Artificial Intelligence and Neural Networks (ICANN), 273–282.

Sutton, R. S., and Barto, A. G., 1998: Reinforcement Learning: An Introduction. MIT
Press. ISBN 0262193981.

Taube, H., 1997: An introduction to common music. Computer Music Journal, 21(1),
29–34. ISSN 01489267.

Teboulle, M., 2007: A unified continuous optimization framework for center-based clus-
tering methods. Journal of Machine Learning Research, 8, 65–102. ISSN 1533-7928.

Tillmann, B., Bharucha, J., and Bigand, E., 2000: Implicite learning of tonality: A
self-organizing approach. Psychological Review, 107(4), 885–913.

Tishby, N., Pereira, F., and Bialek, W., 1999: The information bottleneck method. In
Proceedings of the 37-th Annual Allerton Conference on Communication, Control
and Computing, 368–377.

Uchibe, E., and Doya, K., 2004: Competitive-cooperative-concurrent reinforcement
learning with importance sampling. In Proc. of International Conference on Simu-
lation of Adaptive Behavior: From Animals and Animats, 287–296.

Van Roy, P., and Haridi, S., 2004: Concepts, Techniques, and Models of Computer
Programming. MIT Press. ISBN 0-262-22069-5.

295

Varela, F. J., Thompson, E. T., and Rosch, E., 1992: The Embodied Mind: Cognitive
Science and Human Experience. MIT Press, Cambridge, MA.

Veldhuis, R., and Klabbers, E., Jan 2003: On the computation of the kullback-leibler
measure for spectral distances. Speech and Audio Processing, IEEE Transactions on,
11(1), 100–103. ISSN 1063-6676. doi:10.1109/TSA.2002.805641.

Vercoe, B., 1984: The synthetic performer in the context of live performance. In Pro-
ceedings of the ICMC, 199–200.

Vercoe, B., 1993: Csound, A Manual for the Audio Processing System and Supporting
Programs with Tutorials. 1993, MIT Media Labs, Ma.

von Hippel, P. T., 2000: Questioning a melodic archetype: do listeners use gap-fill to
classify melodies? Music Perception, 18(2), 139–153.

von Hippel, P. T., and Huron, D., 2000: Why do skips precede reversals? the effects of
tessitura on melodic structure. Music Perception, 18(1), 59–85.

Wessel, D., 2006: An enactive approach to computer music performance. In Actes des
recontres musicales pluridisciplinaires, editor Y. Orlarey. Lyon, Grame.

Wittgenstein, L., 1973: Philosophical Investigations. Blackwell Publishers. ISBN
0631146709.

Xenakis, I., 1971: Formalized Music. University of Indiana Press.

Yeh, C., 2008: Multiple Fundamental Frequency Estimation of Polyphonic Recordings.
Ph.D. thesis, Université Paris VI.

Yeh, C., Bogaards, N., and Roebel, A., 2007: Synthesized polyphonic music database
with verifiable ground truth for multiple f0 estimation. In Proceedings of the 8th Inter-
national Conference on Music Information Retrieval (ISMIR’07), 393–398. Vienna,
Austria.

Zhang, J., 2004: Divergence function, duality, and convex analysis. Neu-
ral Comput., 16(1), 159–195. ISSN 0899-7667. doi:http://dx.doi.org/10.1162/
08997660460734047.

Zicarelli, D., 2002: How i learned to love a program that does nothing. Com-
put. Music J., 26(4), 44–51. ISSN 0148-9267. doi:http://dx.doi.org/10.1162/
014892602320991365.

Zils, A., and Pachet, F., 2001: Musical Mosaicing. In Proceedings of Digital Audio
Effects (DAFx). Limerick, Ireland.

Ziv, J., and Lempel, A., 1978: Compression of individual sequences via variable-rate
coding. IEEE Transactions on Information Theory, 24(5), 530–536.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract
	Chapter 1. Introduction
	Approach
	Organization
	Contributions

	I From Modeling Anticipation to Anticipatory Modeling
	Chapter 2. Modeling Musical Anticipation
	Psychology of musical expectation
	Experimental Research Scopes
	Auditory Learning
	Concurrent and Competitive Representations
	Mental Representations of Expectation

	Anticipation Defined
	Anticipation in view of Expectation
	Anticipation in view of Enaction
	Anticipation in view of Computation

	Models of Musical Expectation
	Music Theoretic Models
	Automatic Learning Models
	Information Theoretic Models

	Modeling Investigations
	Imperfect Heuristics and Naive Realism
	Over-intellectualization of the intellect
	Scientific pluralism

	Summary

	Chapter 3. Anticipatory Modeling
	Anticipatory Computing
	General Modeling Framework
	Markov Decision Process Framework
	Interactive Learning in an Environment

	Distinctions of Anticipatory Behavior
	Implicit Anticipation
	Payoff Anticipation
	Sensorial Anticipation
	State Anticipation

	Learning Approaches
	Reinforcement Learning
	Learning Classifier Systems

	Modeling Implications
	Information as Available
	Interactive and on-line Learning
	Multimodal Interaction and Modeling

	II What to Expect
	Chapter 4. Music Information Geometry
	General Discussions
	Preliminaries
	Information Geometry of Statistical Structures
	Elements of Bregman Geometry
	Exponential Family of Distributions
	Bregman Geometry and Exponential distributions

	Music Information Geometry
	Methodology
	Data IR
	Model IR

	From Divergence to Similarity Metric
	Symmetrized Bregman Divergences
	Triangle Inequality

	Incremental Model Formations
	Discussions

	Chapter 5. Methods of Information Access
	Incremental Clustering and Structure Discovery
	Related Works
	Audio Oracle Data Structure
	Audio Oracle Learning and Construction
	Sample Results
	Discussions

	Guidage: Fast Query-Based Information Retrieval
	Research Scope
	Related Works
	General Framework
	Search Domain and Meta Data
	Guidage Algorithm
	Resynthesis
	Sample Applications and Results
	Discussions

	III How to Expect
	Chapter 6. Adaptive and Interactive Learning
	Introduction
	Background on Stochastic Music Modeling
	Memory Models
	Approaches to Statistical Learning
	Approaches to Planning and Interaction

	General Discussions
	Active Learning Architecture
	Audio Oracles for Memory Models
	Guidage for Active Selection

	Anticipatory Learning
	Competitive and Collaborative learning
	Memory-based Learning

	Active Learning Algorithm
	Model Complexity

	Results and Experiments
	Knowledge-Based Interactions
	Anticipatory Style Imitation and Automatic Improvisation

	Discussions

	IV When to Expect
	Chapter 7. Anticipatory Synchronization
	Introduction
	Background
	Score Following Research
	Cognitive Foundations of Musical Time
	Compositional Foundations of Time
	Probabilistic Models of Time

	General Framework
	Anticipatory Multimodal Inference
	Hybrid Models of Time

	Inference Formulation
	Stochastic model of time in music performance
	Attentional Model of Tempo
	Tempo Agent and Decoding
	Survival Distribution Model

	Music Score Model
	Basic Events
	Special timed events

	Observation Model
	Evaluation
	Evaluation of Tempo Prediction
	Evaluation over synthesized audio from score
	Evaluation of real-time Alignment

	Discussions

	Chapter 8. Towards Writing of Time and Interaction in Computer Music
	Background
	Computer Music Language Paradigms
	Practical Status
	Compositional Status
	Research Status

	Antescofo: A preliminary tool for writing of time and interaction
	Motivations
	General Architecture

	Antescofo: A modular and concurrent synchronizer
	Antescofo's Score Semantics
	Event Declarations
	Control Commands
	Action Declarations

	From the Time of Composition to the Time of Performance in Antescofo
	Discussions and Future Directions
	Augmenting the Semantics of Interaction
	Multimodal Coordination
	Intuitive Interfaces
	Relating to the Community

	Chapter 9. Conclusions
	The story so far
	Outlook

	V Appendices
	Appendix A. Supplemental Material for part II
	Properties of Multinomial Manifolds
	Bregman Divergence Symmetrization
	Geodesic-walk Algorithm for Multinomial Manifolds

	Appendix B. Supplemental Material for Part IV
	Derivation of Forward Recursion
	Raphael's Tempo Inference Model

	References

