
UC Berkeley
UC Berkeley Previously Published Works

Title
Surpassing Humans and Computers with JellyBean: Crowd-Vision-Hybrid Counting
Algorithms.

Permalink
https://escholarship.org/uc/item/4nv258dj

Authors
Sarma, Akash Das
Jain, Ayush
Nandi, Arnab
et al.

Publication Date
2015-11-01

DOI
10.1609/hcomp.v3i1.13234

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4nv258dj
https://escholarship.org/uc/item/4nv258dj#author
https://escholarship.org
http://www.cdlib.org/

Surpassing Humans and Computers with JellyBean: Crowd-
Vision-Hybrid Counting Algorithms

Akash Das Sarma,
Stanford University

Ayush Jain,
University of Illinois

Arnab Nandi,
The Ohio State University

Aditya Parameswaran, and
University of Illinois

Jennifer Widom
Stanford University

Akash Das Sarma: akashds@stanford.edu; Ayush Jain: ajain42@illinois.edu; Arnab Nandi: arnab@cse.osu.edu; Aditya
Parameswaran: adityagp@illinois.edu; Jennifer Widom: widom@cs.stanford.edu

Abstract

Counting objects is a fundamental image processisng primitive, and has many scientific, health,

surveillance, security, and military applications. Existing supervised computer vision techniques

typically require large quantities of labeled training data, and even with that, fail to return accurate

results in all but the most stylized settings. Using vanilla crowd-sourcing, on the other hand, can

lead to significant errors, especially on images with many objects. In this paper, we present our

JellyBean suite of algorithms, that combines the best of crowds and computer vision to count

objects in images, and uses judicious decomposition of images to greatly improve accuracy at low

cost. Our algorithms have several desirable properties: (i) they are theoretically optimal or near-

optimal, in that they ask as few questions as possible to humans (under certain intuitively

reasonable assumptions that we justify in our paper experimentally); (ii) they operate under stand-

alone or hybrid modes, in that they can either work independent of computer vision algorithms, or

work in concert with them, depending on whether the computer vision techniques are available or

useful for the given setting; (iii) they perform very well in practice, returning accurate counts on

images that no individual worker or computer vision algorithm can count correctly, while not

incurring a high cost.

1 Introduction

The field of computer vision (Forsyth and Ponce 2003; Szeliski 2010) concerns itself with

the understanding and interpretation of the contents of images or videos. Many of the

fundamental problems in this field are far from solved, with even the state-of-the-art

HHS Public Access
Author manuscript
Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016
February 01.

Published in final edited form as:
Proc AAAI Conf Hum Comput Crowdsourc. 2015 November ; 2015: 178–187.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

techniques achieving poor results on benchmark datasets. For example, the recent techniques

for image categorization achieve average precision ranging from 19.5% (for the chair

class) to 65% (for the airplane class) on a canonical benchmark (Everingham et al. 2014).

Counting is one such fundamental image understanding problem, and refers to the task of

counting the number of items of a particular type within an image or video.

Counting is important—Counting objects in images or videos is a ubiquitous problem

with many applications. For instance, biologists are often interested in counting the number

of cell colonies in periodically captured photographs of petri dishes; counting the number of

individuals at concerts or demonstrations is often essential for surveillance and security (Liu

et al. 2005); counting nerve cells or tumors is standard practice in medical applications

(Loukas et al. 2003); and counting the number of animals in photographs of ponds or

wildlife sanctuaries is often essential for animal conservation (Russell et al. 1996). In many

of these scenarios, making errors in counting can have unfavorable consequences.

Furthermore, counting is a prerequisite to other, more complex computer vision problems

requiring a deeper, more complete understanding of images.

Counting is hard for computers—Unfortunately, current supervised computer vision

techniques are typically very poor at counting for all but the most stylized settings, and

cannot be relied upon for making strategic decisions. The computer vision techniques

primarily have problems with occlusion, i.e., identifying objects that are partially hidden

behind other objects. As an example, consider Figure 1, depicting the performance of a

recent pre-trained face detection algorithm (Zhu and Ramanan 2012). The algorithm

performs poorly for occluded faces, detecting only 35 out of 59 (59.3%) faces. The average

precision for the state-of-the-art person detector is only 46% (Everingham et al. 2014).

Furthermore, these techniques are not generalizable; separate models are needed for each

new application. For instance, if instead of wanting to count the number of faces in a

photograph, we needed to count the number of women, we would need to start afresh by

training an entirely new model.

Even humans have trouble counting—While humans are much better at counting than

automated techniques, and are good at detecting occluded (hidden) objects, as the number of

objects in the image increases, they start making mistakes. To observe this behavior

experimentally, we had workers count the number of cell colonies in simulated fluorescence

microscope images with a wide range of counts. We plot the results in Figure 2, displaying

the average error in count (on the y-axis) versus the actual count (on the x-axis). As can be

seen in the figure, crowd workers make few mistakes until the number of cells hit 20 or 25,

after which the average error increases. In fact, when the number of cells reaches 75, the

average error in count is as much as 5. (There are in fact many images with even higher

errors.) Therefore, simply showing each image to one or more workers and using those

counts is not useful if accurate counts are desired.

The need for a hybrid approach—Thus, since both humans and computers have

trouble with counting, there is a need for an approach that best combines human and

Sarma et al. Page 2

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computer capabilities to count accurately while minimizing cost. These techniques would

certainly help with the counting problem instance at hand—the alternative of having a

biology, security, medical, or wildlife expert count objects in each image can be error-prone

and costly. At the same time, these techniques would also enable the collection of training

data at scale, and thereby spur the generation of even more capable computer vision

algorithms. To the best of our knowledge, we are the first to articulate and make concrete

steps towards solving this important, fundamental vision problem.

Key idea: judicious decomposition—Our approach, inspired by Figure 2, is to

judiciously decompose an image into smaller ones, focusing worker attention on the areas

that require more careful counting. Since workers have been observed to be more accurate

on images with fewer objects, the key idea is to obtain reliable counts on smaller, targeted

sub-images, and use them to infer counts for the original image. However, it is not clear

when or how we should divide an image, or where to focus our attention by assigning more

workers. For example, we cannot tell a-priori if all the cell colonies are concentrated in the

upper left corner of the image. Another challenge is to divide an image while being

cognizant of the fact that you may cut across objects during the division. This could result in

double-counting some objects across different sub-images.

Adaptivity to two modes—In the spirit of combining the best of human worker and

computer expertise, when available, we develop algorithms that are near-optimal for two

separate regimes or modes:

• First, assuming we have no computer vision assistance (i.e., no prior computer

vision algorithm that could guide us to where the objects are in the image), we

design an algorithm that will allow us to narrow our focus to the right portions of

the image requiring special attention. The algorithm, while intuitively simple to

describe, is theoretically optimal in that it achieves the best possible competitive

ratio, under certain assumptions. At the same time, in practice, on a real crowd-

counting dataset, the cost of our algorithm is within 2.75× of the optimal “oracle”

algorithm that has perfect information, while still maintaining very high accuracy.

• Second, if we have primitive or preliminary computer vision algorithms that

provide segmentation and prior count information, we design algorithms that can

use this knowledge to once again identify the regions of the image to focus our

resources on, by “fast-forwarding” to the right areas. We formulate the problem as

a graph binning problem, known to be NP-Complete and provide an efficient

articulation-point based heuristic for this problem. We show that in practice, our

algorithm has a very high accuracy, and only incurs 1.3× the cost of the optimal,

perfect information “oracle” algorithm.

We dub our algorithms for these two regimes as the Jelly-Bean algorithm suite, as a homage

to one of the early applications of crowd counting1.

1Counting or estimating the number of jellybeans in a jar has been a popular activity in fairs since 1900s, while also serving as
unfortunate vehicle for disenfranchisement (NBC News 2005).

Sarma et al. Page 3

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Here is the outline for the rest of the paper as well as our contributions (We describe related

work in Section 6.)

• We model images as trees with nodes representing image segments and edges

representing image-division. Given this model, we present a novel formulation of

the counting problem as a search problem over the nodes of the tree (Section 2).

• We present a crowdsourced solution to the problem of counting objects over a

given image-tree. We show that under reasonable assumptions, our solution is

provably optimal (Section 3).

• We extend the above solution to a hybrid scheme that can work in conjunction with

computer vision algorithms, leveraging prior information to reduce the cost of the

crowdsourcing component of our algorithm, while significantly improving our

count estimates (Section 4).

• We validate the performance of our algorithms against credible baselines using

experiments on real data from two different representative applications (Section 5).

For readers interested in finer details and detailed evaluations, we also provide an extended

technical report (Sarma et al. 2015).

2 Preliminaries

In this section, we describe our data model for the input images and our interaction model

for worker responses.

2.1 Data Model

Given an image with a large number of (possibly heterogenous) objects, our goal is to

estimate, with high accuracy, the number of objects present. As noted above in Figure 2,

humans can accurately count up to a small number of objects, but make significant errors on

images with larger numbers of objects. To reduce human error, we split the image into

smaller portions, or segments, and ask workers to estimate the number of objects in each

segment. Naturally, there are many ways we may split an image. We discuss our precise

algorithms for splitting an image into segments subsequently. For now, we assume that the

segmentation is fixed.

We represent a given image and all its segments in the form of a directed tree G = (V, E),

called a segmentation tree. The original image is the root node, V0, of the tree. Each node Vi

∈ V, i ∈ {0, 1, 2, …} corresponds to a sub-image, denoted by Image(Vi). We call a node Vj

a segment of Vi if Image(Vj) is contained in Image(Vi). A directed edge exists between

nodes Vi and Vj : (Vi, Vj) ∈ E, if and only if Vi is the lowest node in the tree, i.e. smallest

image, such that Vj is a segment of Vi. For brevity, we refer to the set of children of node Vi

(denoted as Ci) as the split of Vi. If Ci = {V1, …, Vs}, we have Image(Vi) = ⋃j ∈ {1, …, s}

Image(Vj).

For example, consider the segmentation tree in Figure 3. The original image, V0, can be split

into the two segments {V1, V2}. V1, in turn, can be split into segments {V3, V4}. Intuitively,

Sarma et al. Page 4

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the root image can be thought of as physically segmented into the five leaf nodes {V3, V4,

V5, V6, V7}.

We assume that all segments of a node are non-overlapping. That is, given any node Vi and

its immediate set of children Ci, we have (1) Image(Vi) = ⋃Vj ∈ Ci Image(Vj) and (2)

Image(Vj) ⋂ Image(Vk) = ϕ ∀Vj, Vk ∈ Ci We denote the actual number of objects in a

segment, Image(Vi), by TrueCount(Vi). Our assumption of non-overlapping splits ensures

that TrueCount(Vi) = ΣVj ∈ Ci TrueCount(Vj).

One of the major challenges of the counting problem is to estimate these TrueCount values

with high accuracy, by using elicited worker responses. Given the segmentation tree G for

Image V0, we can ask workers to count, possibly multiple times, the number of objects in

any of the segments. For example, in Figure 3, we can ask workers to count the number of

objects in the segments (V3), (V4), (V5), (V6), (V7), (V1), (V2), (V0). While we can obtain

counts for different nodes in the segmentation tree, we need to consolidate these counts to a

final estimate for V0. To help with this, we introduce the idea of a frontier, which is central

to all our algorithms. Intuitively, a frontier F is a set of nodes whose corresponding

segments do not overlap, and cover the entire original image, Image(V0) on merging. We

formally define this notion below.

Definition 2.1 (Frontier)—Let G = (V, E) be a segmentation tree with root node V0. A

set of k nodes given by F = {V1, V2, …, Vk}, where Vi ∈ V∀ i ∈ {1, …, k} is a frontier of

size k if Image(V0) = ⋃Vi ∈ F Image(Vi), and Image(Vi) ⋂ Image(Vj) = ϕ ∀ Vi, Vj ∈ F

A frontier F is now a set of nodes in the segmentation tree such that taking the sum of

TrueCount(·) over these nodes returns the desired count estimate TrueCount(V0).

Continuing with our example in Figure 3, we have the following five possible frontiers:

{V0}, {V1, V2}, {V1, V5, V6, V7}, {V2, V3, V4}, and {V3, V4, V5, V6, V7}.

2.2 Worker Behavior Model

Intuitively, workers estimate the number of objects in an image correctly if the image has a

small number of objects. As the number of objects increases, it becomes difficult for humans

to keep track of which objects have been counted. Based on the experimental evidence in

Figure 2, we hypothesize that there is a threshold number of objects, above which workers

start to make errors, and below which their count estimates are accurate. Let this threshold

be d*. So, in our interface, we ask the workers to count the number of objects in the query

image. If their estimate, d, is less than d*, they provide that estimate. If not, they simply

inform us that the number of objects is greater than d*. This allows us to cap the amount of

work done by the workers-the workers can count as far as they are willing to correctly, and

if the number of objects is, say, in the thousands, they may just inform us that this is greater

than d* without expending too much effort. We denote the worker's estimate of

TrueCount(V) by WorkerCount(V).

Sarma et al. Page 5

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Based on Figure 2, the threshold d* is 20. We provide further experimental verification for

this error model in (Sarma et al. 2015). While we could choose to use more complex error

models, we find that the above model is easy to analyze and experimentally valid, and

therefore suffices for our purposes.

3 Crowdsourcing-Only Solution

In this section, we consider the case when we do not have a computer vision algorithm at

our disposal. Thus, we must use only crowdsourcing to estimate image counts. Since it is

often hard to train computer vision algorithms for every new type of object, this is a scenario

that often occurs in practice.

As hinted at in Section 2, the idea behind our algorithms is simple: we ask workers to

estimate the count at nodes of the segmentation tree in a top-down expansion, until we reach

a frontier such that we have a high confidence in the worker estimates for all nodes in that

frontier.

3.1 Problem Setup

We are given a fixed b-ary segmentation tree i.e. a tree with each non-leaf node having

exactly b children. We also assume that each object is present in exactly one segment across

siblings of a node, and that workers follow the behavior model from Section 2.2. Some of

these assumptions may not always hold in practice, and we discuss their relaxations later in

Section 3.4.

For brevity, we will refer to displaying an image segment (node in the segmentation tree)

and asking a worker to estimate the number of objects, as querying the node. Our problem

can be therefore restated as that of finding the exact number of objects in an image by

querying as few nodes of the segmentation tree as possible. Next, we describe our algorithm

on this setting in Section 3.2, and give complexity and optimality guarantees in Section 3.3.

3.2 The FrontierSeeking Algorithm

Our algorithm is based on the simple idea that to estimate the number of objects in the root

node, we need to find a frontier with all nodes having fewer than d* objects. This is because

the elicited WorkerCounts are trustworthy only at the nodes that meet this criteria. We call

such a frontier a terminating frontier. If we query all nodes in such a terminating frontier,

then the sum of the worker estimates on those nodes is in fact the correct number of objects

in the root node, given our model of worker behavior.

If a node V has greater than d* objects, then we cannot estimate the number of objects in its

parent node, and consequently the root node, without querying V's children. Our algorithm,

FrontierSeeking(G), depends on this observation for finding a terminating frontier

efficiently, and correspondingly obtaining a count for the root node, V0. The algorithm

Sarma et al. Page 6

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

simply queries nodes in a top-down expansion of the segmentation tree, for example, with a

breadth-first or depth-first search. For each node, we query its children if and only if

workers report its count as being higher than the threshold d*. We continue querying nodes

in the tree, only stopping our expansion at nodes whose counts are reported as smaller than

d*, until we have queried all nodes in a terminating frontier. We return the sum of the

reported counts of nodes in this terminating frontier as our final estimate.

3.3 Guarantees

We now discuss the guarantees that our FrontierSeeking algorithm provides under our

proposed model. Given an image and its segmentation tree, let F* be a terminating frontier

of the smallest size, having k nodes. Our goal is to find a terminating frontier with as few

queried nodes as possible.

First, we note that any algorithm needs to query at least k nodes to get a true count of the

number of objects in the given image. This follows trivially from the observation that we

need to query at least one complete terminating frontier to obtain a count for the root node of

the tree. To quantify the performance of our algorithm, we use a competitive ratio analysis

(Borodin 1998). Intuitively, the competitive ratio of an algorithm is a measure of its worst

case performance against the optimal oracle algorithm. Let A(G) denote the sequence of

questions asked, or nodes queried, by our online deterministic FrontierSeeking

algorithm on segmentation graph G. Let |A(G)| be the corresponding number of questions

asked. For the optimal oracle algorithm OPT, |OPT(G)| = k where k is the size of the

minimal terminating frontier of G.

We now state the competitive ratio CR of our FrontierSeeking algorithm AFS in the

following theorem. The proofs can be found in (Sarma et al. 2015).

Theorem 3.1—Let be the set of all segmentation trees with fanout b. We have,

The following theorem (combined with the previous one) states that our algorithm achieves

the best possible competitive ratio across all online deterministic algorithms.

Theorem 3.2—Let A be any online deterministic algorithm that computes the correct

count for every given input segmentation tree G with fanout b. Then, .

3.4 Practical Setup

In this section we discuss some of the practical design challenges faced by our algorithm and

give a brief overview of our current mechanisms for addressing these challenges.

Worker error—So far, we have assumed that human worker counts are accurate for nodes

with fewer than d* objects permitting us to query each node just a single time. However, this

Sarma et al. Page 7

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is not always the case in practice. In reality, workers may make mistakes while counting

images with any number of objects (and we see this manifest in our experiments as well).

So, in our algorithms, we show each image or node to multiple (five in our experiments)

workers and aggregate their answers via median to obtain a count estimate for that node.

We observe that although individual workers can make mistakes, our aggregated answers

satisfy our assumptions in general (e.g., that the aggregate is always accurate when the count

is less than d*). While we use a primitive aggregation scheme in this work, it remains to be

seen if more advanced aggregation schemes, such as those in (Karger, Oh, and Shah 2011;

Parameswaran et al. 2012; Sheng, Provost, and Ipeirotis 2008) would lead to better results;

we plan to explore these schemes in future work.

Segmentation tree—So far, we have also assumed that a segmentation tree with fanout b

is already given to us. In practice, we are often only given the whole image, and have to

create the segmentation tree ourselves. In our setup, we create a binary segmentation tree (b

= 2) where the children of any node are created by splitting the parent into two halves along

its longer dimension. As we will see later on, this choice leads to accurate results. While our

algorithms also apply to segmentation trees of any fanout; further investigation is needed to

study the effect of b on the cost and accuracy of the results.

Segment boundaries—We have assumed that objects do not cross segmentation

boundaries, i.e., each object is present in exactly one leaf node, and cannot be partially

present in multiple siblings. Our segmentation does not always guarantee this. To handle this

corner case, in our experiments we specify the notion of a “majority” object to workers with

the help of an example image, and ask them to only count an object for an image segment if

the majority of it is present in that segment. Once again, we find that this leads to accurate

results in our present experiments. That said, we plan to explore more principled methods

for counting partial objects in future work. For instance, one method could be to have

workers separately count objects that are completely contained in a displayed image, and

objects that cross a given number of segment boundaries.

We revisit these design decisions in Section 5.

4 Incorporating Computer Vision

Unlike the previous section, where we assumed a fixed segmentation tree, here, we use

computer vision techniques (when easily available) to help build the segmentation tree, and

use crowds to subsequently count segments in this tree. For certain types of images, existing

machine learning techniques give two things: (1) a partitioning of the given image such that

no object is present in multiple partitions, and (2) a prior count estimate of the number of

objects in each partition. While these prior counts are not always accurate and still need to

be verified by human workers, they allow us to skip some nodes in the implicit segmentation

tree and “fast-forward” to querying lower nodes, thereby requiring fewer human tasks.

4.1 Partitioning

As a running example, we consider the application of counting cells in biological images.

Figure 4a shows one such image, generated using SIMCEP, a tool for simulating

Sarma et al. Page 8

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

fluorescence microscopy images of cell populations (Lehmussola et al. 2007). SIMCEP is

the gold standard for testing algorithms in medical imaging, providing many tunable

parameters that can simulate realworld conditions. We implement one simple partitioning

scheme that splits any given such cell population image into many small, disjoint partitions.

Applying this partitioning scheme to the image in Figure 4a yields Figure 4b. Combined

with the partitioning scheme above, we can leverage existing machine learning (ML)

techniques to estimate the number of objects in each of the partitions. We denote these ML-

estimated counts on each partition, u, as prior counts or simply priors, du. Note that these

priors are only approximate estimates, and still need to be verified by workers. We discuss

details of our partitioning algorithm, prior count estimation, and other implementation

details later in Section 4.3.

We use these generated partitions and prior counts to define a partition graph as follows:

Definition 4.1 (Partition Graph)—Given an image split into the set of partitions, VP, we

define its partition graph, GP = (VP, EP), as follows. Each partition, u ∈ VP, is a node in the

graph and has a weight associated with it equal to the prior, w(u) = du. Furthermore, an

undirected edge exists between two nodes, (u, v) ∈ EP, in the graph if and only if the

corresponding partitions, u, v, are adjacent in the original image.

Notice that while we have used one partitioning scheme and one prior count estimation

technique for our example here, other machine learning or vision algorithms for this, as well

as other settings provide similar information that will allow us to generate similar partition

graphs. Thus, the setting where we begin with a partition graph is general, and applies to

other scenarios.

Now, given a partition graph, one approach to counting the number of objects in the image

could be to have workers count each partition individually. The number of partitions in a

partition graph is, however, typically very large, making this approach impractical. For

instance, most of the 5–6 partitions close to the lower right hand corner of the image above

have precisely one cell, and it would be wasteful and expensive to ask a human to count

each one individually. Next, we discuss an algorithm to merge these partitions into a smaller

number, to minimize the number of human tasks.

4.2 Merging Partitions

Given a partition graph corresponding to an image, we leverage the prior counts on

partitions to avoid the top-down expansion of segmentation trees described in Section 3.

Instead, we infer the count of the image by merging its partitions together into a small

number of bins, each of which can be reasonably counted by workers, and aggregating the

counts across bins.

Merging problem—Intuitively, the problem of merging partitions is equivalent to

identifying connected components (or bins) of the partition graph, with total weight (or

count) at most d*. Since workers are accurate on images with size up to d*, we can then

elicit worker counts for our merged components and aggregate them to find the count of the

whole image. Overall, we have the following problem:

Sarma et al. Page 9

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Problem 4.1 (Merging Partitions)—Given a partition graph GP = (VP, EP) of an image,

partition the graph into k disjoint connected components in GP, such that the sum of node

weights in each component is less than or equal to d*, and k is as small as possible.

Enforcing disjoint components ensures that no components overlap over a common object,

thereby avoiding double-counting. Furthermore, restricting our search to connected

components ensures that our displayed images are contiguous — this is a desirable property

for images displayed to workers over most applications, because it provides useful,

necessary context to understand the image.

Hardness and reformulation—The solution to the above problem would give us the

required merging. However, the problem described above can be shown to be NP-Complete,

using a reduction from the NP-Complete problem of partitioning planar bipartite graphs

(Dyer and Frieze 1985); our setting uses arbitrary planar graphs, and so our problem is more

general. Thus, we have:

Theorem 4.1 (Hardness)—Problem 4.1 is NP-COMPLETE.

We consider an alternative formulation for the above balanced partitioning problem. Note

that while this reformulated problem is still NP-COMPLETE, as we see below, it is more

convenient to design heuristic algorithms for it.

Problem 4.2 (Modified Merging)—Let dmax = maxu du, u ∈ VP be the maximum

partition weight in the partition graph GP = (VP, EP). Split GP into the smallest number of

disjoint, connected components such that for each component, the sum of its partition

weights is at most k × dmax.

By setting k ≤ d* /dmax in the above problem, we can find connected components whose

prior counts are estimated to be at most d*. Observe that here, although we do not start out

with a segmentation tree, the partitions provided by the partitioning algorithm can be

thought of as leaf nodes of a segmentation tree and our merged components form parents, or

ancestors of the leaf nodes.

Each component produced via a solution of Problem 4.2 also corresponds to an actual image

segment formed by merging its member partitions: if the prior counts are accurate, these

image segments together comprise a minimal terminating frontier for some segmentation

tree. While in practice, they need not necessarily form a minimal terminating frontier, or

even a terminating frontier, we observe that they provide very good approximations for one.

Given the hardness of this modified merging problem, we now discuss good heuristics for it,

and provide theoretical and experimental evidence in support of our algorithms.

FirstCut Algorithm—One simple approach to Problem 4.2, motivated by the first fit

approximation to the Bin-Packing problem (Coffman Jr, Garey, and Johnson 1996), is to

start a component with one partition, and incrementally add neighboring partitions one-by-

one until no more partitions can be added without violating the upper bound, k × dmax on the

sum of vertex weights. We refer to this as the FirstCut algorithm. In practice, however,

Sarma et al. Page 10

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

we find that FirstCut performs suboptimally for several graphs as certain partitions and

components get disconnected by the formation of other components during this process. For

example, consider the partitioning shown in Figure 5.

Suppose partitions A, …, G contain 100 objects each and parameter k = 6. The maximum

allowed size for a merged component is 6 × dmax ≥ 6 × 100. Supposing we start a component

with A, and incrementally merge in partitions B, …, F, we end up isolating G as an

independent merged component. This causes some components to have fewer than k × dmax

objects, which in turn will result in a higher final number of merged components than

optimal.

ArticulationAvoidance Algorithm—Applying our first cut procedure to Figure 5 results

in poor quality components if we merge partitions B … F to A before G. Intuitively, when

adding B to the component containing A, the partition graph is split into two disconnected

components: one containing G, and another containing C … F. Given our constraint

requiring connected components (contiguous images), this means that partition G can never

be part of a reasonably sized component. This indicates that merging articulation partitions

like B, i.e., nodes or partitions whose removal from the partition graph splits the graph into

disconnected components, potentially results in imbalanced final merged components. Since

adding articulation partitions early results in the formation of disconnected components or

imbalanced islands, we implement our ArticulationAvoidance algorithm that tries to

merge them to growing components as late as possible. We merge partitions as before,

growing one component at a time up to an upper bound size of k ×dmax, but we prioritize the

adding of non-articulation partitions first. With each new partition, u, added to a growing

component, we also update our list of articulation partitions for the new graph and repeat

this process until all partitions have been merged into existing components.

We performed extensive evaluation of our algorithms on synthetic and real partition graphs

and found that ArticulationAvoidance performs close to the theoretical optimum;

FirstCut, on the other hand, often gets stuck at articulation partitions, unable to meet the

theoretical optimum. For details of our algorithms, their complexities, and their evaluation

on various partition graphs, we refer the reader to (Sarma et al. 2015).

4.3 Practical Setup

In this section we discuss some of the implementation details of and challenges faced by our

algorithms in practice. Many of the challenges faced in Section 3.4 apply here as well.

Partitioning—The first step of our algorithm is to partition the image into small, non-

overlapping partitions. To do this, we use the marker-controlled watershed algorithm

(Beucher and Meyer 1992). The foreground markers are obtained by background subtraction

using morphological opening (Beucher and Meyer 1992) with a circular disk.

Prior counts—In the example of Figure 4, we learn a model for the cells using a simple

Support Vector Machine classifier. For a test image, every 15 × 15 pixel window in the

image is classified as ‘cell’ or ‘not cell’ using the learned model – see (Sarma et al. 2015)

for more details of this approach. Note that this procedure always undercounts, that is, the

Sarma et al. Page 11

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

prior count estimate obtained for any partition is smaller than the true number of objects in

that partition.

Traversing the Segmentation Tree—While Section 4.2 gives us a set of merged

components, we still need to show these images to human workers to verify the counts. One

option is to have (multiple) workers simply count each of these image components and

aggregate the counts to get an estimate for the whole image. Since some of these image

components may have counts higher than our set worker threshold of d*, our model tells us

that worker answers on the larger components could be inaccurate. So, another option is to

use these images as a starting point for an expansion down the segmentation tree, and

perform a FrontierSeeking search similar to that in Section 3 by splitting these segments

until we reach segments whose counts are all under d*. We compare these two alternatives

in (Sarma et al. 2015) and find that while splitting the merged components could be

beneficial for certain datasets, just our AA algorithm with worker counts on generated

components is sufficient for our biological dataset.

5 Experimental Study

We deployed our crowdsourcing solution for counting on two image datasets that are

representative of the many applications of our work. We examine the following questions:

• How do the JellyBean algorithms compare with the theoretically best possible

“oracle” algorithms on cost?

• How accurate are the JellyBean algorithms relative to machine learning baselines?

• What are the monetary costs of our algorithms, and how do they scale with the

number of objects?

• How accurate are the JellyBean algorithms relative to directly asking workers to

count on the entire image?

5.1 Datasets

Dataset Description—Our first dataset is a collection of 12 images from Flickr. These

images depict people in various settings, with the number of people (counts) ranging from

41 to 209. This is a challenging dataset, with people looking very different across images—

ranging from partially to completely visible, and with varying backgrounds. Furthermore, no

priors or partitions are available for these images— so we evaluate our solutions from

Section 3 on this dataset. We refer to this as the crowd dataset.

The second dataset consists of 20 simulated images showing biological cells, generated

using SIMCEP (Lehmussola et al. 2007). The number of objects in the images ranges from

151 to 328. The computer vision techniques detailed in Section 4 are applied on these

images to get prior counts and partitions. We refer to this as the biological dataset.

Segmentation Tree—For the crowd dataset, the segmentation tree was constructed with

fanout b = 2 until a depth of 5, for a total of 31 nodes per image. At each stage, the image

was split into two equal halves along the longer dimension. This ensures that the aspect

Sarma et al. Page 12

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ratios of all segments are close to the aspect ratio of the original image. Given a segment,

workers were asked to count the number of ‘majority’ heads (as described in Section 3.4)—

if a head crossed the image boundary, it was to be counted only if the worker felt that

majority of it was visible. To aid the worker in judging whether a majority of an object lies

within the image, the surrounding region was shown demarcated by clear lines.

For the biological dataset, bins were generated by our ArticulationAvoidance

algorithm.

Task Generation—The segments/bins, generated as above, were organized randomly into

Mechanical Turk HITs (Human Intelligence Tasks) having 15 images each. The workers

were paid 30¢ for each HIT. Across both datasets, workers provided counts for 2250

segments. Each HIT was answered by 5 workers and then take the median of their

responses as the WorkerCount. We discuss additional experiments on worker behavior, as

well as ones evaluating various answer aggregation schemes beyond median in (Sarma et

al. 2015).

Given the generated segmentation trees, as well as the outcomes of the generated tasks, we

are able to simulate the runs of different algorithms on the two datasets and compare them

on an an equal footing.

5.2 Variants of algorithms

Algorithms for Both Datasets—For the above datasets, we evaluate the following

algorithms:

• FS: our FrontierSeeking algorithm from Section 3;

• OnlyRoot: This algorithm queries only the root node of the segmentation tree, to

test how workers perform without any algorithmic decomposition;

• ML: Machine learning baselines — (a) For the biological dataset, the prior counts

from our machine learning algorithm from Section 4.3, and (b) For the crowd

dataset, a pre-trained face detector from (Zhu and Ramanan 2012);

• Optimal: Given our worker behavior model, a worker's answer is expected to be

accurate only if the number of objects to be counted is < d*. Thus, any algorithm

requires at least questions to count accurately, even if it knows the

exact nodes to query. We call this Optimal since it is a lower bound for any

algorithm given our error model.

Algorithms for Biological Dataset—For the biological dataset, we also evaluate the

following algorithm:

• AA: ArticulationAvoidance algorithm (Section 4.1);

Sarma et al. Page 13

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ground Truth—For both datasets, we denote the true counts of images by Exact. While

the (generated) images in the biological dataset have a known ground truth, the images in

the crowd dataset were evaluated independently and agreed upon by two annotators.

Accuracy—The error of our algorithms is calculated as: .

The percentage accuracy is therefore 100 × (1 – Error). We also use the percentage of

images where TrueCount = WorkerCount as another accuracy metric for the biological

dataset.

5.3 Results

In this section, we describe the results of our algorithms.

How do the JellyBean algorithms (FS and AA) compare with the theoretically

optimal oracle algorithm on cost?

On both datasets, the costs of FS and AA are within a small constant factor–between

1 to 2.5–of Optimal.

Crowd Dataset Optimality—For the crowd dataset, we compare the performance of FS

against Optimal. Averaging across images, the number of questions asked by FS is within

2.3× of Optimal. Further, this factor does not cross 2.75 for any image in the dataset. This

is especially low considering how hard the images in this dataset are.

Biological Dataset Optimality—For the biological dataset, we compare the performance

of FS and AA against Optimal. The average number of questions asked by AA is within a

factor 1.35 of Optimal, which is significantly lower than the 2.3 factor for FS. This

indicates that leveraging information from computer vision algorithms helps bring AA closer

to “oracle” optimality.

How accurate are the JellyBean algorithms (FS and AA) relative to machine

learning baselines (ML)?

On the crowd dataset, FS has a much higher accuracy of 97.5% relative to 70.1%

for ML on the 5/12 images ML works on; for the remaining 7/12 images, ML detects

no faces at all.

On the biological dataset, FS has an accuracy of 96.4%. In comparison, AA

increases the accuracy to 99.87%, returning exact counts for 85% of the images (off

on the rest by counts of 1 to at most 3), while Bio-ML gets only 45% correct (off on

the rest by counts of at least 5).

Crowd Dataset Accuracy—For the crowd dataset, we compare the performance of FS

against ML. On this difficult dataset, ML fails to detect any faces for 7 out of the 12 images

(i.e., making 100% error on 58.3% of the images), and has an average accuracy of 70.1%

on the remaining, demonstrating how challenging face detection can be to state-of-the-art

vision algorithms. In comparison, FS counts people in all these images with an average

accuracy of 92.5% for an average cost of just $1.17 per image. In particular, for the 5

Sarma et al. Page 14

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

images where ML did detect heads, the average accuracy of our algorithm was 97.5%. The

accuracy of FS, which is independent of the domain, demonstrates that crowdsourcing can

be very powerful for tasks such as counting.

Biological Dataset Accuracy—For the biological dataset, FS has an average accuracy of

96.4%. Next, we compare AA to ML, our computer vision algorithm, whose counts and

partitions are input to AA. We observe that out of 20 images, AA gets the correct Exact

count for 17 (85%) of the images, while ML gets only 9 (45%) images exactly correct. To

study the errors further, we plot a histogram of the deviation from the correct counts in

Figure 6a. The x-axis shows the deviation from Exact for an image, and the y-axis shows

the frequency, or number of images for which the count estimated by an algorithm deviated

for a specific x-value. We observe that even though the counts provided by FS are 96.4%

accurate, they deviate by more than 5 for 18/20 images. AA is significantly better – only 3

images deviating by counts of 1, 2, and 3 respectively. In comparison, ML estimate deviates

by at least 5 for 7 images. Thus, AA, which leverages both crowds and computer vision

algorithms, outperforms both FS and ML.

How expensive are the Jellybean algorithms?

On both datasets with hundreds of objects, the algorithms FS and AA return accurate

results at the cost of a few dollars per image. The cost of AA is approximately half

of the cost of FS per object, indicating that “skipping ahead” in the segmentation

tree using information from computer vision algorithms cleverly helps reduce cost

significantly.

Crowd Dataset Cost—In Figure 7 we plot the cost of counting an image from the crowd

dataset using FS against the number of objects in that image. Each vertical slice corresponds

to one image with its ground truth count along the x-axis, and dollar cost incurred along the

y-axis. The cost is of the order of just a few dollars even for very large counts, making it a

viable option for practitioners looking to count (or verify the counts of) objects in an image.

Biological Dataset Cost—The average cost of counting an image from the biological

dataset incurred using AA was $1.6, as compared to $2.7 using FS. The average cost of

counting per object was 0.63¢ for AA and 1.25¢ for FS. This significant reduction (2×) for

AA is a result of our merging algorithm which skips the larger granularity image segments

and elicits accurate counts on the generated components.

How accurate are the JellyBean algorithms (FS and AA) relative to directly asking

workers to count on the entire image (OnlyRoot)?

On the crowd dataset, FS estimates counts with > 90% accuracy on 9/12 images,

relative to 2/12 images for OnlyRoot.

On the biological dataset, FS and AA improve the accuracy by 27% and 30.7% as

compared to OnlyRoot.

Sarma et al. Page 15

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Crowd dataset—We now compare OnlyRoot, i.e., only asking questions at the root,

versus FS. We plot the results in Figure 6b. The x-axis marks the ground truth (Exact)

counts of images, while the y-axis plots the predicted counts by different algorithms. Each

vertical slice corresponds to an image, and each point on the plot corresponds to the output

of an algorithm for a given input image. We find that average accuracy of OnlyRoot is

81.8% as compared to the 92.5% of FS. We observe that splitting the image into smaller

pieces improves counts significantly for most images. As Figure 6b shows, FS estimates

better counts than OnlyRoot for 10/12 images. The two points on the extremes where

Onlyroot yields a better answer result are anomalous due to image-specific reasons – see

(Sarma et al. 2015).

Biological Dataset—For the biological dataset, the OnlyRoot baseline performs poorly,

achieving an accuracy of < 75% for 14/20 images. In comparison, FS counts with an

accuracy of 96.4% for all images. Further, AA has 100% accuracy on 17/20 images as shown

in Figure 6a, indicating that using vanilla crowdsourcing without applying our JellyBean

algorithms can lead to low accuracy.

6 Related Work

The general problem of finding, identifying, or counting objects in images has been studied

in machine learning, computer vision and crowdsourcing communities. We discuss recent

related work from each of these areas and compare them against our approach.

Unsupervised learning—A number of recent solutions to object counting problems

tackle the challenge in an unsupervised way, grouping neighboring pixels together on the

basis of self-similarities (Ahuja and Todorovic 2007), or similarities in motion paths

(Rabaud and Belongie 2006). However, unsupervised methods have limited accuracy, and

the computer vision community has therefore considered supervised learning approaches.

These fall into three categories:

Counting by detection: In this category of supervised algorithms, a object detector is used

to localize each object instance in the image. Training data for these algorithms is typically

in the form of images annotated by bounding boxes for each object. Once all objects have

been located, counting them is trivial (Nattkemper et al. 2002). However, object detection is

an unsolved problem in itself even though progress has been made in recent years

(Everingham et al. 2014).

Counting by regression: Algorithms in this category learn a mapping from image

properties like texture to the number of objects. This mapping is inferred using one of the

large number of available regression algorithms in machine learning e.g., neural networks

(Cho, Chow, and Leung 1999; Marana et al. 1997). For training, images are provided with

corresponding object counts. In such methods, the mappings from local features to counts

are global, that is, a single function's learned parameters are used to estimate counts for the

entire image or video. This works well when crowd densities are uniform throughout the

image – a limiting assumption that is largely violated in real life applications.

Sarma et al. Page 16

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Counting by annotation: A third approach has been to train on images annotated with dots.

Instead of bounding boxes, each object here is annotated with a dot. For instance, in

(Lempitsky and Zisserman 2010), an image density function is estimated, whose integral

over a region in the image gives the object count. Another recent work counts extremely

dense crowds by leveraging the repetitive nature of such crowded images (Idrees et al.

2013).

A common theme across these methods is that they deliver accurate counts when their

underlying assumptions are met but are not applicable in more challenging situations. This

guides us to leverage the ‘wisdom of the crowds’ in counting heterogeneous objects, which

may be severely occluded by objects in front of them.

Crowdsourcing for image analysis—The above considerations indicate the

requirement of human input in the object counting pipeline. The idea of using human inputs

for complex learning tasks has recently received attention; in (Cheng and Bernstein 2015),

the authors present a hybrid crowd-machine classifier where crowds are involved in both

feature extraction and learning. Although crowdsourcing has been extensively used on

images for tasks like tagging (Qin et al. 2011), quality assessment (Ribeiro, Florencio, and

Nascimento 2011) and content moderation (Ghosh, Kale, and McAfee 2011), the

involvement of crowds in image analysis has been largely restricted to generating training

data (Sorokin and Forsyth 2008; Lasecki et al. 2013).

In a recent study of crowdsourcing for malaria image analysis (Luengo-Oroz, Arranz, and

Frean 2012), nonexpert players achieved a counting accuracy of more than 99%. In our

work, we build on this study to propose solutions to the challenges that arise when using

crowds to estimate counts in images across different application settings.

Summary—While there have been many studies on computer vision for counting and

segmentation, either (a) the described settings are stylized or make application-specific

limiting assumptions, or (b) the designed algorithms have relatively low accuracy in

practice. Compared to the computer vision algorithms described, our approach to count

objects is generic—it can be used to count heterogeneous, occluded objects in diverse

images.

7 Conclusions

We tackle the challenging problem of counting the number of objects in images, a

ubiquitous, fundamental problem in computer vision. While humans and computer vision

algorithms, separately, are highly error-prone, our JellyBean algorithms combine the best of

their capabilities to deliver high accuracy results at relatively low costs for two separate

regimes or modes, while additionally providing optimality guarantees under reasonable

assumptions.

Our JellyBean algorithms were shown to (a) be within a 2.75× factor of the best possible

oracle algorithm in terms of cost when operating without computer vision, and within a 1.3×

factor of the best possible oracle algorithm, with average cost reduced by almost half, when

Sarma et al. Page 17

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

operating in concert with computer vision, (b) have high accuracy relative to both computer

vision baselines as well as vanilla crowdsourcing.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback. We acknowledge the support from grants
IIS-1513407, IIS-1422977 and IIS-1453582 awarded by the National Science Foundation, grant 1U54GM114838
awarded by NIGMS through funds provided by the trans-NIH Big Data to Knowledge (BD2K) initiative
(www.bd2k.nih.gov), and funds from Google and Amazon.

References

Ahuja N, Todorovic S. Extracting texels in 2.1 d natural textures. ICCV. 2007; 2007:1–8. IEEE.

Beucher S, Meyer F. The morphological approach to segmentation: the watershed transformation.
Optical Engineering-New York-Marcel Dekker Incorporated-. 1992; 34:433–433.

Borodin A. Online computation and competitive analysis. 1998; 2

Cheng J, Bernstein MS. Flock: Hybrid crowd-machine learning classifiers. CSCW '. 2015; 15

Cho SY, Chow TW, Leung CT. A neural-based crowd estimation by hybrid global learning algorithm.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on. 1999; 29(4):535–541.

Coffman, EG., Jr; Garey, MR.; Johnson, DS. Approximation algorithms for NP-hard problems. PWS
Publishing Co; 1996. Approximation algorithms for bin packing: a survey; p. 46-93.

Dyer M, Frieze A. On the complexity of partitioning graphs into connected subgraphs. Discrete
Applied Mathematics. 1985; 10(2):139–153.

Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A. The pascal visual object
classes challenge: A retrospective. International Journal of Computer Vision. 2014; 111(1):98–136.

Forsyth DA, Ponce J. Computer Vision: A Modern Approach. 2003

Ghosh A, Kale S, McAfee P. Who moderates the moderators?: crowdsourcing abuse detection in user-
generated content. EC. 2011; 2011:167–176. ACM.

Idrees H, Saleemi I, Seibert C, Shah M. Multi-source multi-scale counting in extremely dense crowd
images. CVPR. 2013 IEEE.

Karger DR, Oh S, Shah D. Iterative learning for reliable crowdsourcing systems. NIPS. 2011:1953–
1961.

Lasecki WS, Song YC, Kautz H, Bigham JP. Real-time crowd labeling for deployable activity
recognition. CSCW. 2013; 2013 ACM.

Lehmussola A, Ruusuvuori P, Selinummi J, Huttunen H, Yli-Harja O. Computational framework for
simulating fluorescence microscope images with cell populations. Medical Imaging, IEEE
Transactions on. 2007; 26(7)

Lempitsky V, Zisserman A. Learning to count objects in images. Advances in Neural Information
Processing Systems. 2010:1324–1332.

Liu X, Tu PH, Rittscher J, Perera A, Krahnstoever N. Detecting and counting people in surveillance
applications. AVSS. 2005; 2005:306–311. IEEE.

Loukas CG, Wilson GD, Vojnovic B, Linney A. An image analysis-based approach for automated
counting of cancer cell nuclei in tissue sections. Cytometry part A. 2003; 55(1):30–42.

Luengo-Oroz MA, Arranz A, Frean J. Crowd-sourcing malaria parasite quantification: an online game
for analyzing images of infected thick blood smears. Journal of medical Internet research. 2012;
14(6)

Marana A, Velastin S, Costa L, Lotufo R. Estimation of crowd density using image processing. Image
Processing for Security Applications (Digest No: 1997/074), IEE Colloquium on. 1997:11–1. IET.

Nattkemper TW, Wersing H, Schubert W, Ritter H. A neural network architecture for automatic
segmentation of fluorescence micrographs. Neurocomputing. 2002; 48(1):357–367.

News, NBC. Exhibit traces the history of the voting rights act. 2005. In http://nbcnews.com/id/
8839169/ns/us_news-life/t/exhibit-traces-history-voting-rights-act

Sarma et al. Page 18

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.bd2k.nih.gov
http://nbcnews.com/id/8839169/ns/us_news-life/t/exhibit-traces-history-voting-rights-act
http://nbcnews.com/id/8839169/ns/us_news-life/t/exhibit-traces-history-voting-rights-act

Parameswaran AG, Garcia-Molina H, Park H, Polyzotis N, Ramesh A, Widom J. Crowdscreen:
Algorithms for filtering data with humans. SIGMOD. 2012; 2012:361–372. ACM.

Qin C, Bao X, Roy Choudhury R, Nelakuditi S. Tagsense: a smartphone-based approach to automatic
image tagging. MobiSys. 2011:1–14. ACM.

Rabaud V, Belongie S. Counting crowded moving objects. CVPR. 2006; 20061:705–711. IEEE.

Ribeiro F, Florencio D, Nascimento V. Crowd-sourcing subjective image quality evaluation. ICIP.
2011:3097–3100. IEEE.

Russell J, Couturier S, Sopuck L, Ovaska K. Post-calving photo-census of the rivière george caribou
herd in july 1993. Rangifer. 1996; 16(4):319–330.

Sarma AD, Jain A, Nandi A, Parameswaran A, Widom J. Surpassing humans and computers with
JELLYBEAN: Crowd-vision-hybrid counting algorithms. Technical report, Stanford University.
2015

Sheng VS, Provost F, Ipeirotis PG. Get another label? improving data quality and data mining using
multiple, noisy labelers. Proceedings of the 14th ACM SIGKDD. 2008:614–622. ACM.

Sorokin A, Forsyth D. Utility data annotation with amazon mechanical turk. CVPR Workshops. 2008

Szeliski, R. Computer vision: Algorithms and Applications. Springer Science & Business Media;
2010.

Zhu X, Ramanan D. Face detection, pose estimation, and landmark localization in the wild. CVPR.
2012; 2012:2879–2886. IEEE.

Sarma et al. Page 19

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1. Challenging image for Machine Learning

Sarma et al. Page 20

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2. Worker Error

Sarma et al. Page 21

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3. Segmentation Tree

Sarma et al. Page 22

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4. Biological image (a) before and (b) after partitioning

Sarma et al. Page 23

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5. Articulation Point

Sarma et al. Page 24

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6. Accuracy: (a) Biological Dataset (b) Crowd Dataset

Sarma et al. Page 25

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7. Crowd Dataset: Cost of counting

Sarma et al. Page 26

Proc AAAI Conf Hum Comput Crowdsourc. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

