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ABSTRACT OF THE DISSERTATION

Modeling and Design of Radio Frequency Magnetic Devices

Based on Equivalent Circuit Representation of Spin Dynamics

by

Qian Gao

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Yuanxun Wang, Chair

Magnetic materials offer a unique combination of properties such as non-reciprocity, high

permeability, broad tunability, strong frequency dispersion, and nonlinearity. These char-

acteristics made them uniquely valuable in various linear RF devices such as inductors,

circulators, isolators, phase shifters, filters, and antennas. Nonlinear RF magnetic devices

such as frequency selective limiters and signal-to-noise enhancers have also received signifi-

cant attention lately. Leveraging on the recent advances in the fabrication of thin film and

thick film magnetic materials, many traditional RF magnetic devices can now be integrated

on-chip, which opens up ways to supply high-quality factor passives on-chip that are lacking

in existing semiconductor-based integrated circuit (IC) process. This dissertation delves into

the modeling and design of RF magnetic devices through equivalent circuit models derived

from micromagnetic theory. These models provide concise and intuitive representations of

the linear and nonlinear spin dynamics and spin wave propagations within RF magnetic

materials.

The research demonstrates the efficacy of these equivalent circuit models by apply-

ii



ing them to various RF devices, including ferrite-loaded strip lines, small antennas, and

frequency-selective limiters (FSLs). These models have shown high accuracy in predicting

device performance, aligning well with full-wave simulations and empirical data. A signifi-

cant focus is placed on millimeter-wave resonators and filters using M-type barium hexagonal

ferrite, with operational frequencies reaching up to 45 GHz. These devices are optimized

for better energy coupling and exhibit promising potential for millimeter-wave applications.

This dissertation significantly advances the understanding and application of RF magnetic

devices, laying a robust foundation for future innovations.
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CHAPTER 1

Introduction

1.1 Background and Motivation

The significance of magnetic materials has been recognized by ancient civilizations for nu-

merous centuries. By the 12th century, the Chinese already used lodestone, also known as

magnetite (Fe3O4), in compasses for navigation. However, it wasn’t until the 1930s that con-

temporary ferrites were thoroughly investigated for their magnetic, structural, and electronic

properties [1]. Following that, the advancement in magnetic materials has been remarkable,

with each new development quickly overtaking the previous.

Unlike most substances, ferrite materials are insulating magnetic oxides that exhibit both

high permeability and moderate permittivity across a wide frequency range, from DC to mil-

limeter waves. Their low eddy current losses render them unparalleled in electronic applica-

tions, particularly in power generation, conditioning, and conversion. These characteristics

also make them uniquely valuable in microwave devices by virtue of their non-reciprocity,

high permeability, broad tunability, strong frequency dispersion, and nonlinearity [2],[66]

[67]. In contrast to dielectric material, where the permittivity constant is a scalar, the per-

meability of RF magnetic material is usually a tensor in its linear regime, expressed as an

asymmetrical matrix. Yet, each entry in the matrix varies as a function of frequency and

biasing field. At high RF power, the magnetic material can be easily driven into a nonlin-

ear regime that exhibits increased dissipation, drifting of resonant frequency generation of

harmonics, etc. At the microscale, electromagnetic waves in the magnetic material are often
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coupled with spin waves supported by exchange coupling in quantum mechanics. This brings

researchers’ interests to both the modeling and application of the material.

1.1.1 RF Magnetic Devices

Due to the unique properties brought by magnetic materials, they have been employed for

various linear RF devices such as inductors [3], circulators [4]-[7], isolators [8], phase shifters

[24], filters [9]-[13],[70], and antennas [14]-[17],[69]. Nonlinear RF magnetic devices such

as frequency selective limiters and signal-to-noise enhancers have also received significant

attention lately [18]-[26]. Leveraging on the recent advances in the fabrication of thin film and

thick film magnetic materials, many traditional RF magnetic devices can now be integrated

on-chip, which opens up ways to supply high-quality factor passives on-chip that are lacking

in existing semiconductor-based integrated circuit (IC) process [27].

1.1.1.1 Antennas

Ferrites can be loaded to small dipoles (small loops) to optimize the electrically-small an-

tenna (ESA) design. In the early 1970s, leading antenna engineers such as Rumsey [28]

and DeVore [29] began exploring electronically scanned arrays in the context of ferrite rod

antennas. They independently derived formulas for the radiation efficiencies of electrically

small, ferrite-loaded loop antennas using field analysis and circuit modeling, respectively.

Their findings suggested that using low-loss ferrites with a small-loss tangent could lead to

high efficiency in ESAs. However, the lack of suitable ferrites for radio frequencies (RF) at

that time reduced interest in ferrite rod ESAs. More recently, it has been shown in studies

[30] and [31] that ferrites, even those with a high loss tangent, can still achieve high radia-

tion efficiency in ESAs. This efficiency results from the high permeability of the material,

whether complex or real, which prevents energy from penetrating the interior of the antenna

and thus lowers its radiation quality factor (Q). Currently, most ESAs that use permeable
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materials are constructed from bulky, unbiased ferrites [31]-[34], which maintain roughly

constant permeability across frequencies but typically have single-digit relative permeability

at RF. Meanwhile, biased ferrites, known for their strong ferromagnetic resonance (FMR),

have been widely used in RF circulators, isolators, filters, and tunable matching circuits.

In some recent works [35]-[37], these biased ferrites have been employed in radiators, where

the FMR of ferrite slabs or films is used to precisely adjust the matching frequencies of

structurally resonant antennas like slots loops, and patches.

Specifically, the work referenced in [73] introduced an ESA design to achieve high radi-

ation efficiency using a miniaturized and conformal antenna platform equipped with ferrite-

thin films. When oriented perpendicularly, these films are biased in-plane to enhance the

strong ferromagnetic resonance (FMR) behavior. Ferrite thin films differ from their bulk

counterparts by offering high in-plane permeability and elevated FMR frequencies due to

out-of-plane demagnetization effects, making them ideal for ESAs operating at radio fre-

quencies (RF). Low-loss thin film magnetic materials such as Yttrium Iron Garnet (YIG)

and Iron Gallium Boron (FeGaB) have demonstrated in-plane relative permeabilities ranging

from several hundred to a thousand.

Figure 1.1: Prototypes of the thin-film ferrite loaded ESA: (a) the FMR enhanced ESA, (b)

the FMR enhanced ESA with the LNA; (c) a standard small loop probe. Courtesy of [73].
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The prototype of the aforementioned antenna is shown in Fig. 5.4. Compared with

traditional ferrite-loaded antennas[31]-[34], it has several advantages. Firstly, the material’s

strong ferromagnetic resonance (FMR) predominantly dictates the antenna’s resonant fre-

quencies, making them largely independent of its structural dimensions. This characteristic

allows simpler designs and smaller sizes in electronically scanned arrays (ESAs). Addition-

ally, the resonant frequencies of ESAs can be widely adjusted by altering the DC biasing

field. Secondly, the material’s high permeability near the FMR point increases the input

impedance of the ESA, aiding in impedance matching with other system components via

the standard 50 Ohm interface without the need for extra matching circuits. Lastly, the

ferrite material in the antenna enhances radiation efficiency by lowering the radiation Q, as

it effectively prevents energy from being stored inside the antenna.

1.1.1.2 Filters

• YIG Filters

Microwave filters and oscillators that can be electronically tuned over a frequency range

of a decade frequently utilize ferromagnetic resonance (FMR) in magnetic materials such

as single crystals of Yttrium Iron Garnet (YIG). YIG-based devices are extensively used

in testing equipment, radar, and electronic warfare (EW) systems due to their superior

electronic tuning capabilities compared to other options like varactors, ferroelectrics, and

microelectromechanical systems (MEMS). The narrow FMR linewidth of YIG, typically

measured in Oersteds, facilitates high-quality resonators with an unloaded quality factor of

5000 at 10 GHz [38]. The FMR resonance frequency adjusts linearly with the magnetic

field, following the relationship f = γH, where γ is the gyromagnetic ratio (2.8 MHz/Oe).

Research detailing magnetically tunable microwave bandpass and band-stop filters using

single-crystal YIG resonators has been published in references [39] and [72], respectively,

with a thorough discussion on YIG resonators and filters provided in [10].
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Figure 1.2: Coupling structure for a single-stage YIG sphere filter. Courtesy of [38].

The coupling mechanism for a single-stage filter is depicted in Fig. 5.5, featuring two

orthogonal coupling loops encircling a YIG sphere. The radius of these loops determines the

resonator’s external coupling, with the smallest practical sizes constrained by the onset of

magnetostatic wave (MSW) resonances. Currently, digitally controlled filters and oscillators

capable of tuning across multiple octaves or even decades in frequency are commercially

available. Recent advancements have concentrated on reducing the size of these components,

enhancing compatibility with existing packaging technologies, and facilitating integration

into more complex assemblies [38].

• BaM Filters

Recently, there has been a critical need to extend current microwave magnetic devices into the

millimeter wave range to exploit the frequency spectrum further. Two important strategies

have evolved to boost the operating frequency. One is to use high-4πMs ferromagnetic metals

to replace the low-4πMs YIG ferrites. It has been demonstrated that using metallic thin

films allows for the practical development of notch or band-stop [40] and bandpass filters [41].

The second strategy is to use low-loss hexagonal ferrites. The hexagonal ferrites have built-in

high anisotropy fields and can provide a self-biasing for mm-wave applications in the 30–100

GHz range. Recent simulations have demonstrated the feasibility of hexagonal ferrite-based,

stripline-type, mm-wave filters and phase shifters [42]. Experimentally, [43] demonstrates a

prototype mm-wave notch filter based on a BaM slab with in-plane anisotropy. The device
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(a) (b)

Figure 1.3: (a)Structure and field configuration for a BaFe12O19 (BaM) ferrite-based notch

filter. (b) Transmission profiles for ten different fields, as indicated. Courtesy of [43].

is compatible with monolithic integrated circuits. The demonstration uses a stripline device

geometry, as depicted in Fig. 5.6(a). The BaM slab has an in-plane uniaxial anisotropy field

of 17 kOe. This anisotropy field facilitates the operation of the filter over 51–54 GHz for an

external field range of 1500–2700 Oe, as shown in Fig. 5.6(b).

In addition to notch filters, bandpass filters using hexagonal ferrites have also been

demonstrated based on coupled waveguides [44]-[46]. In [44], M. Sterns et al. presented

a novel tunable bandpass filter based on open-ended fine lines. Hexagonal ferrite spheres are

used as resonators to cover a tuning frequency range from 39 GHz to 68 GHz. The measured

insertion loss of the filter varies from 5.3 dB to 7 dB, with a typical 3 dB bandwidth between

300 MHz and 400 MHz. The stacking of two waveguides achieves off-resonance isolation of

about 60 dB. Fig. 5.7 shows different views of a CAD model of the proposed coupling struc-

ture. It consists of two finlines separated by an iris. The cross-section of the filter arms has a

staged profile to carry the substrates, which can be seen in Fig. 5.7 c). The fins must have an

electroconductive connection to the housing to avoid parasitic modes. An indium solder has

been used to connect the fins on the substrate to the channel walls. The spheres are placed

directly on the substrate in the middle of a circular clearance in the metallization. The

multi-slot iris is carefully designed to couple two resonator spheres while maintaining good

6



Figure 1.4: CAD model of the proposed coupling structure. a) 3D-view, b) side-view and c)

cross-section of a finline. Courtesy of [44].

Figure 1.5: Comparison between measured and simulated resonance curves. Courtesy of

[44].
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off-resonance isolation. A comparison between a measured and a simulated resonance curve

at 60GHz is illustrated in Fig. 5.8. A similar structure using shielded co-planar waveguides

(CPW) is presented in [46].

1.1.1.3 Limiters

EW systems are required to work in a high-signal density environment, and receivers and

signal processors are easily overloaded. A frequency-selective limiter (FSL) can be placed at

the receiver front-end, attenuating strong signals without simultaneously attenuating other

weaker signals. Most microwave FSLs utilize the frequency-selective nature of a magnetized

ferrite. Above a critical RF magnetic-field level, the spin precession angle can increase no

further, and coupling to higher-order spin waves grows exponentially. Energy is efficiently

coupled to spin waves at approximately one-half the signal frequency and then into lattice

vibrations (heat) in the ferrite. This mechanism has been analyzed in [86].

Ferrite FSLs have been implemented across various transmission line structures. For

instance, non-resonant striplines built directly on single-crystal YIG films are capable of

functioning over octave bandwidths [24]. In these devices, the insertion loss below the

threshold is governed by the conventional conduction loss of the transmission line and the

dielectric losses in the ferrite, which are typically minimal. Additionally, another variety

of FSL utilizes the nonlinear excitation of spin waves in structures designed to propagate

magnetostatic waves (MSWs). These devices have low limiting thresholds, reaching down to

-30 dBm[47]. A detailed discussion on FSLs will be presented in Chapter 4.

1.1.1.4 Enhancers

A closely related nonlinear device is the signal-to-noise enhancer (SNE), which serves the

opposite function of an FSL. At low signal levels, the SNE absorbs most of the signal energy.

However, when signal levels are high, the absorption mechanism becomes saturated, allowing
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(a) (b)

Figure 1.6: (a)A schematic in HFSS with a ferrite sphere embedded inside the substrate.

(b) Parameters to specify for ferrite materials in HFSS.

a larger portion of the signal to pass through. Like the FSL, this effect is frequency selective,

enabling the SNE to attenuate low-level signals such as broadband noise while permitting

strong, coherent signals to pass through with relatively minimal attenuation. The SNE

employs MSWs in a thin-film structure [48] and was originally developed for use in frequency

memory loops. Among its commercial applications, the SNE has notably enhanced detection

sensitivity in DBS TV receivers [49].

1.1.2 Modeling of RF Magnetic Devices

Although ferrites have been utilized to construct various RF devices, their complex nature

poses significant challenges to modeling such devices accurately and computationally effi-

ciently. The state-of-art modeling and design tools are described in the following sections.

1.1.2.1 Full-Wave Modeling

Full-wave modeling tools such as the High-Frequency Structure Simulator (HFSS) [50] solve

Maxwell’s equations based on Polder’s permeability tensor. In Fig. 5.9(a), a schematic plot

with a ferrite sphere embedded inside the substrate is shown. Fig. 5.9(b) lists the material
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properties of ferrites that the user can specify, including relative permittivity, magnetic

saturation, Delta H, and its measured frequency. The relative permeability value is not

meaningful because HFSS will replace it with Polder’s permeability tensor. The advantage of

HFSS is that it can solve ferrites in a linear regime, making it a good candidate for designing

linear RF magnetic devices like filters and antennas. However, it can neither model the

nonlinear property of the magnetic material nor include spin waves where exchange coupling

is involved. What’s more, to model the spin waves inside magnetic materials precisely, the

meshing density has to be greater than that of the EM wave meshing density due to the

fact that the spin waves’ wavelength is smaller by more than an order of magnitude of the

EM wavelength at the same frequency. Thus, the execution time for the simulator is usually

tremendous.

1.1.2.2 Micromagnetics Modeling

Micromagnetics modeling is a computational approach used to study and predict the be-

havior of magnetic materials at the microscopic scale. This method is particularly valuable

in understanding the complex interactions and dynamics of magnetic domains and domain

walls within ferromagnetic and ferrimagnetic materials. Common micromagnetics simula-

tors such as OOMMF or MuMax [51]-[55] solve the nonlinear Landau-Lifshitz-Gilbert (LLG)

equation (equation of motion for electron spins inside ferrite materials) [56] at the micron

scale, where magnetostatic approximation can be applied to model the dipole-to-dipole cou-

pling and exchange coupling. The computational domain (the magnetic material) is divided

into small cells, with the LLG equation solved numerically for each cell to simulate the time

evolution of the magnetization across the entire material. Yet, computationally, it is no

longer affordable in practical microwave devices when the scale of those interactions reaches

millimeters, and the full-wave electrodynamic interactions must be considered.
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1.1.2.3 Behavioral Modeling

Recently, behavioral modeling of FSLs was proposed, which treated FSLs as general nonlinear

systems with memories and used mathematical models to predict their performance [57]. The

mathematical model achieved good accuracy with moderate computation complexity, yet the

physics of FSLs was obscured, and therefore, the model is not generalizable. Furthermore,

despite the great success these modeling efforts have achieved in their respective domains

of applications, the intuitive understanding of the physics in magnetic material is often

overshadowed by the complexity of the mathematics.

1.1.3 Equivalent Circuit Modeling

With the limits and challenges of various existing modeling tools, building equivalent circuit

models is advantageous because they can include magnetic materials’ nonlinearity, non-

reciprocity, and dispersive properties. Moreover, circuit simulators are intrinsically stable

compared with micromagnetic simulators. In the 1960s, P. S. Carter et al. [101] proposed a

gyrator/inductor model to represent the coupling of two coils through a YIG sphere. That

model, however, did not define the circuit parameters based on the material parameters, nor

did it include the resistors to represent the Gilbert damping in magnetic material. Later on,

some equivalent circuits for other RF magnetic devices are exploited. Ferrite-core inductors,

for example, play a significant role in electromagnetic noise suppression. Techniques for

extracting equivalent circuit parameters, such as series resistance, inductance, and parasitic

capacitance, are presented in [61]. This modeling approach also helps characterize ferrite

materials’ effective permeability. Similarly, the analysis of multi-element MRI coils benefits

from advanced simulation techniques that integrate 3-D electromagnetic and RF circuit tools

[62]. This integration facilitates accurate and efficient coil design, optimizing performance

while ensuring safety through precise SAR mapping. In addition, [63] develops an RF circuit

model for single-walled carbon nanotubes (SWNTs), considering both DC and capacitively
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contacted geometries. The nanotube is modeled as a nano-transmission line with distributed

kinetic and magnetic inductance and distributed quantum and electrostatic capacitance. The

complex, frequency-dependent impedance is calculated for various measurement geometries.

This model helps understand the electrical properties of SWNTs at high frequencies and

has applications in determining the switching speed of nanotube-based electronic devices.

Regarding nonlinear Rf magnetic devices, some empirical circuit models for FSLs have also

been demonstrated in [58, 59, 60]. However, the major problem with these circuit models is

that they had circuit parameters derived to match specific experimental results. As a result,

the models were only applicable to specific devices.

This thesis aims to develop and utilize equivalent circuit representation of ferrite materials

to facilitate a better understanding and design of RF magnetic devices. The advantages of

the proposed circuit modeling are the following:

• Physics-Based: We want to develop a series of equivalent circuit models that can

represent the dynamic spin precession physics and the propagation of spin waves in

magnetic material for both linear and nonlinear cases. These circuit models will be

derived rigorously from the micromagnetics theory, i.e., LLG equation [56]. Yet they

describe the impact of material parameters, such as the biasing field, the saturation

magnetization, and the material shapes on the spin precessions concisely and intu-

itively.

• Computationally efficient: The micromagnetic simulator needs to discretize the

magnetic material so that the single unit dimension is close to the lattice constant,

normally in the nanometer range. Hence, they can only compute very small dimensions

up to 100 nm. The micromagnetic simulator cannot compute practical RF magnetic

devices in millimeter dimensions. On the other hand, the full-wave simulator is only

capable of performing linear simulations with a great computation cost. Compared

with them, the circuit model can balance computation accuracy and efficiency. In
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other words, the discretized circuit unit can cover a dimension around 100 times the

lattice constant to reduce the number of discretized cells while still exhibiting a good

performance inside a frequency band of interest. Besides, some simplification can also

be done to accelerate the simulation further. Readers are encouraged to refer to Section

3.4.2, Section 4.4, and Appendix A for details.

• Stability: Utilizing a circuit simulator such as Keysight ADS to construct our circuit

model, the model will be stable by the internal algorithm used by the simulator.

• Scalability: The models can also be scaled according to physical dimensions and be

combined with other equivalent circuit models of practical devices, such as transmission

lines and antennas, to create a complete equivalent circuit model of these RF magnetic

devices.

• Design-Friendly: The model will aid the design of different RF magnetic devices.

1.2 Thesis Outline

In this dissertation, we discuss the modeling and design of RF magnetic devices using an

equivalent circuit representation of spin dynamics. Below is a summary of each chapter.

Chapter 2 explores the quantum mechanical underpinnings of magnetism, focusing on the

behavior of electron spins in ferrimagnetic materials. The discussion includes the derivation

of the equation of motion for spinning electrons under an external magnetic field and the

classifications of magnetic materials. The chapter also introduces and elaborates on key

concepts like the Landau-Lifshitz-Gilbert (LLG) equation and different types of magnetic

fields, providing a foundation for understanding the dynamic behaviors of magnetization in

ferrimagnetic materials.

Chapter 3 develops equivalent circuit models to represent the dynamic spin precession

and the propagation of spin waves in magnetic materials. The models are derived from the
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LLG equation and aim to translate the micromagnetic behaviors into a circuit framework,

which allows for intuitive understanding and easier simulation using standard circuit simula-

tors. The chapter details linear and nonlinear models and validates them through practical

RF device simulations, enhancing the understanding of ferrite-loaded RF components like

antennas and transmission lines.

In Chapter 4, frequency-selective limiters (FSLs), crucial in protecting RF receivers from

high-power signals, are modeled using physics-based equivalent circuits. The models inte-

grate dynamic spin precession with spin wave propagation theories to simulate the interaction

between electromagnetic and spin waves within these devices. This chapter also details the

modeling processes for different types of FSLs. It validates the models through compar-

isons with measured data, establishing a robust framework for designing FSLs that function

effectively across varying signal strengths and frequencies.

Chapter 5 focuses on designing and modeling millimeter wave resonators and filters using

hexagonal ferrite spheres. It presents an equivalent circuit model for these resonators. This

chapter also elaborates on the design process, including calibration techniques and integrat-

ing these resonators into bandpass filters. Experimental validations confirm the efficacy of

the proposed designs in achieving desired resonant frequencies and bandpass phenomenon,

marking a significant advancement in the application of ferrite materials in high-frequency

domains.

Chapter 6 summarizes the thesis and points out future research directions.
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CHAPTER 2

Micromagnetic Theory

2.1 Equation of Motion for a Spinning Electron

From quantum mechanics theory, the origin of magnetism is understood as the orderly mo-

tions of electron spins in magnetic materials. Depending on the reaction to the external field,

the magnetic material can be classified into various categories: paramagnetic, diamagnetic,

ferromagnetic, and ferrimagnetic [66, 67]. In the following discussion, we will limit our in-

terest to ferrimagnetic material, in which the induced magnetic moment will align with the

external magnetic field and increase the total magnetic flux in the material, as shown in Fig.

2.1. In addition, the ‘ferrite’ is short for ferrimagnetic material.

Figure 2.1: The influence of external magnetic field on the magnetic dipole in ferrimagnetic

material.

An illustration of a spinning electron under an external magnetic field is shown in Fig.

2.2. When a magnetic bias field
−→
H0 = ẑH0 is present, a torque will be exerted on the

15



Figure 2.2: (a) Spinning magnetic dipole moment and angular momentum vector for a

spinning electron. (b) Plot of total magnetization versus applied field.

magnetic dipole:

T⃗ = M⃗ ×
−→
B0 = µ0M⃗ ×

−→
H0 = −µ0γs⃗×

−→
H0 (2.1)

And torque is equal to the time rate of change of angular momentum:

T⃗ =
ds⃗

dt
=

−1

γ

dM⃗

dt
= µ0M⃗ ×

−→
H0 (2.2)

Rewriting equation (2.2) results in the equation of motion (EoM) for the electron spin pre-

cession [69]:

dM⃗

dt
= −µ0γM⃗ × H⃗ (2.3)

where M⃗ is the magnetic dipole moment, H⃗ is the total magnetic field, µ0 is the free space

permeability and γ is the gyromagnetic ratio of the electron. The equation of motion can be

generalized to describe the dynamic behaviors of magnetization in magnetic material, with

M⃗ now defined as the magnetization vector at a given observation location and H⃗ as the total

effective magnetic field at the location which consists of an applied field, demagnetization

field, anisotropic field, and exchange field according to their different physics origins [66] [67]

[68]. In other words,

H⃗ = H⃗appl + H⃗demag + H⃗anis + H⃗ex (2.4)
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Figure 2.3: Internal and external magnetic fields for a thin ferrite film.

The detailed origin of each effective magnetic field is included in the following sub-sections.

It’s important to note that the thermal fluctuation field is omitted in this context due to

its relative weakness compared to the four aforementioned fields. However, the presence of a

thermal field is crucial for the functionality of nonlinear RF magnetic devices like frequency

selective limiters (FSL) [70][71], which require noise input to initiate spin wave oscillations.

• Applied Field

The applied field stems from Maxwellian principles. It refers to an external incident field.

For example, a DC-applied field can be generated from an electromagnet, where coils are

used to generate a DC bias field for ferrite applications. On the other hand, an RF-applied

field can be generated from some transmission line structures, which serves as a perturbation

on top of the DC bias field under the assumption of small signal analysis. The direction of the

RF-applied field is usually perpendicular to the DC-applied field for applications in ferrite

resonators, filters, and antennas [72][73]. However, there are cases when these two fields are

in the same direction, like in frequency-selective limiters (FSLs) [70][71].

• Demagnetization Field

The demagnetization field reflects the interactions between magnetic dipoles within the ma-

terial, specifically dipole-to-dipole interactions. Conventionally, in micromagnetics at scales
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Figure 2.4: Demagnetization factors for some simple shapes

smaller than 10 micrometers, the demagnetization field is simplified as magnetostatic in-

teractions, though it can be more accurately described through electrodynamics at larger

scales.

Another way to understand the demagnetization field is through the boundary conditions

at the surface of the ferrite [69]. For example, consider a thin ferrite film whose out-of-plane

direction is along the biasing axis (Z-axis), as shown in Fig. 2.3. Because the external field

Hext is normal to the thin film, continuity of the normal component of B (Bn) at the surface

gives

Bn = µ0Hext = µ0(Hint +Ms) (2.5)

Hence, the internal magnetic field Hint is

Hint = Hext −Ms (2.6)

This shows that the internal field is less than the external field by an amount equal to the

saturation magnetization.
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In general, the internal field, whether alternating current (AC) or direct current (DC), is

influenced by the ferrite sample’s shape and its alignment relative to the external field, and

can be expressed as

H⃗int = H⃗ext −N · M⃗ (2.7)

where N is defined as the demagnetization factor for that direction. Effectively, demagneti-

zation fields can also be defined from demagnetization factor to be

H⃗demag = −N · M⃗ (2.8)

A summary of demagnetization factors for some simple structures is shown in Fig. 2.4. Note

that the Nx, Ny, and Nz values correspond to the respective axis definition in the figure.

• Anisotropy Field

The anisotropy field and exchange field have atomic origins [66][67]. The anisotropic field

emerges from spin-orbit coupling, directing the spins towards specific crystallographic axes

of the material. It is the external magnetic field that must be applied to a magnetic material

to align all the magnetic moments in the direction of the hard axis, which is the axis along

which it is most difficult to magnetize the material. Essentially, it quantifies the strength

of the magnetic field required to overcome the material’s inherent anisotropy and fully align

the magnetic moments against the anisotropy’s preferred orientation.

• Exchange Field

The exchange field arises from the exchange interaction, a quantum mechanical phenomenon

that leads to the coupling of magnetic moments within the material. This interaction is the

result of the overlap between the electron wave functions of adjacent atoms or ions [74].

• Saturation Magnetization
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When an external static magnetic field is applied to a ferrimagnetic material, the magnetic

moments in Fig. 2.1 start to align with the field. As the strength of the applied field increases,

more and more of these moments align until a point is reached where further increases in

the magnetic field strength do not lead to an increase in net magnetization. This point is

known as the saturation magnetization, or Ms. A sample plot for such a transition is shown

in Fig. 2.2 (b).

In other words, the conservation of magnetization holds [74], i.e.,

Ms =
√
M2

x +M2
y +M2

z . (2.9)

Hence, if treating the magnetization as a vector in the Cartesian coordinate, there is a limit

on the amplitude for the magnetization vector. For most RF and microwave applications, a

magnetic material such as ferrite is operated under a strong DC biasing field that saturates

the material in one direction. This is to prevent the formation of domains in magnetic

material and energy loss associated with the rotation of domains under the influence of

the RF field. The DC biasing field can be applied externally with a coil or a permanent

magnet. It can also be applied by the internal anisotropic field of the material, which is

called self-biased.

2.2 Landau-Lifshitz-Gilbert (LLG) Equation

When loss of the material due to the damping of the spin precession is considered, the

equation of motion in equation (2.3) can be modified by including a damping term, resulting

in the Landau-Lifshitz-Gilbert (LLG) equation [56],

∂M⃗

∂t
= −µ0γM⃗ × H⃗ +

α

Ms

M⃗ × ∂M⃗

∂t
(2.10)
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where α is Gilbert’s damping constant and Ms is the saturation magnetization of the mate-

rial. Expanding the LLG equation to its scalar form yields,

∂Mx

∂t
= −µ0γ (MyHz −MzHy) +

α

Ms

(
My

∂Mz

∂t
−Mz

∂My

∂t

)
∂My

∂t
= −µ0γ (MzHx −MxHz) +

α

Ms

(
Mz

∂Mx

∂t
−Mx

∂Mz

∂t

)
∂Mz

∂t
= −µ0γ (MxHy −MyHx) +

α

Ms

(
Mx

∂My

∂t
−My

∂Mx

∂t

)
.

(2.11)

Note that the LLG equation is a nonlinear equation that involves the product of magne-

tization vector and magnetic field.

2.2.1 Linear Form of the LLG Equation

With magnetocrystalline anisotropy and exchange coupling ignored, the magnetic field inside

a ferrite can be expressed as

H⃗ = H0ẑ +Hxx̂+Hyŷ, (2.12)

where H0 is the applied DC biasing field and Hx, Hy are RF magnetic fields. For some RF

applications that focus on the small-signal performance of the ferrite material, a small-signal

assumption can be made:

|Hx| ≪ H0, |Hy| ≪ H0 (2.13)

Mz =Ms (2.14)

Substituting equations (4.7) and (4.8) to (4.6), the linearized LLG equation can be derived

in the following form:

∂Mx

∂t
= −µ0γ (MyH0 −MsHy)− α

∂My

∂t
(2.15)

∂My

∂t
= µ0γ (MxH0 −MsHx) + α

∂Mx

∂t
(2.16)

∂Mz

∂t
= 0. (2.17)
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Transforming equations (4.9) and (4.16) into the frequency domain yields,

jωMx = − (ω0 + jωα)My + ωmHy (2.18)

jωMy = (ω0 + jωα)Mx − ωmHx (2.19)

where ω is the operating angular frequency, ω0 = µ0γH0 and ωm = µ0γMs are the angular

frequency equivalents of the effective biasing field and the saturation magnetization.

2.2.2 Polder’s Susceptibility Tensor

The solution of the above linearized LLG equation for unbound ferrite can be easily obtained

by solving equations (2.18) and (2.19), which yields a frequency dispersive, anisotropic sus-

ceptibility tensor, [
My

]
=

 χxx χxy

χyx χyy

 Hx

Hy

 (2.20)

where,

χxx = χyy =
(ω0 + jαω)ωm

(ω0 + jαω)2 − ω2
=
ωm

ω0

ω2
0 + jαωω0

ω2
0 − (1 + α2)ω2 + 2jαωω0

(2.21)

χxy = −χyx =
jωωm

(ω0 + jαω)2 − ω2
=
ωm

ω0

jωω0

ω2
0 − (1 + α2)ω2 + 2jαωω0

(2.22)

χxx, χyy, χxy, χyx are called Polder’s susceptibility tensor which is often used by RF and

microwave engineers [69]. When loss is ignored, the susceptibility tensor can be simplified

to the following,

χxx = χyy =
ω0ωm

ω2
0 − ω2

:= X (2.23)

χxy = −χyx =
jωωm

ω2
0 − ω2

:= jκ (2.24)

Susceptibility tensor characterizes the response of a material’s magnetization to an applied

magnetic field. According to equations (2.21) and (2.22), the susceptibility starts from an

initial value of ωm/ω0 at around the DC and reaches a resonance peak around the frequency

ω0.
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(a) (b)

Figure 2.5: |χxx| for (a) unbounded ferrite and for (b) thin-film ferrite with

H0 = 900Oe, 4πMs = 1750Guass, α = 0.007.

2.2.3 Ferromagnetic Resonance (FMR)

The ferromagnetic resonance (FMR) frequency is defined as the frequency when the sus-

ceptibility peaks. In a ferromagnetic resonance experiment, the resonance condition is met

when the frequency of the oscillating field matches the natural precession frequency of the

magnetization, indicating a strong response of the magnetization to the oscillating field. In

other words, the natural precession frequency is set by the DC biasing field, and an oscil-

lating field, i.e., an RF field, serves as a perturbation or excitation to the spin precession.

It is worth noticing that the FMR setup is still within the small-signal assumption scenario,

where the DC biasing field is much larger than the RF fields. They are perpendicular to

each other according to equation (2.36).

The FMR frequency is an important material property and is also dependent on the

strength and direction of the bias field.
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Figure 2.6: FMR frequency for (a)thin film biased in the plane, (b) out of the plane, and (c)

sphere.

2.2.3.1 FMR Frequency for Unbounded Ferrite

For unbounded ferrite, the angular FMR frequency ωr is given by

ωr = ω0. (2.25)

Fig. 2.5 (a) plots the absolute value of χxx versus frequency for an unbounded (infinitely

large) ferrite according to equation (2.21). The DC bias field is 900Oe, resulting in ω0 =

µ0γH0 = 1.58e10/s. The FMR frequency fr = ω0/(2π) = 2.52GHz, which corresponds to

the peak frequency for |χxx|.

2.2.3.2 FMR Frequency for Thin Film Ferrite Biased Out-of-Plane

For ferrite plates or thin films whose out-of-plane direction is along the biasing axis (Z-axis),

a demagnetization field is applied in the opposite direction of the biasing which reduces

the effective biasing field in the material to (H0 −Ms), as shown in Fig. 2.6(b). Polder’s
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susceptibility tensor can be obtained in the same form by simply substituting the relation

ω0 = µ0γ(H0−Ms) in equation (2.21) and (2.22). Consequently, the FMR frequency is given

by

ωr = ω0 = µ0γ(H0,ext −Ms). (2.26)

2.2.3.3 FMR Frequency for Thin Film Ferrite Biased in-Plane

For ferrite plates or thin films with an in-plane biasing in the Z-axis and out-of-plane direction

in the Y-axis, the demagnetization field becomes part of the RF field, as shown in Fig. 2.6(a).

Because Nx = Nz = 0, Ny = 1 for thin films, the internal RF magnetic field is related to the

applied RF magnetic field by:

Hy = Hy,appl −My (2.27)

Hx = Hx,appl. (2.28)

Substituting equations (2.27) and (2.28) to equations (2.18) and (2.19), the linearized

LLG equation thus becomes,

jωMx = − (ω0 + jωα)My + ωm (Hy,appl −My) (2.29)

jωMy = (ω0 + jωα)Mx − ωmHx,appl (2.30)

When an external RF magnetic field is applied only to the X-axis, the resulting magnetization

susceptibility is given by,

χxx =
Mx

Hx,appl

=
ωm

ω0

ω2
r + jαωω0

ω2
r − (1 + α2)ω2 + jαω (2ω0 + ωm)

(2.31)

where ωr is the thin film FMR frequency, which is given by,

ωr =
√
ω0 (ω0 + ωm) . (2.32)

Fig. 2.5 (b) plots the absolute value of χxx versus frequency for a thin film ferrite accord-

ing to equation (2.31). Similarly, the DC bias field is 900Oe, and a saturation magnetization
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of 4πMs = 1750Gauss is assumed. The theoretical FMR frequency can be calculated using

equation (2.32), which gives fr = ωr/(2π) = 4.32GHz. Obviously, it also corresponds to

the frequency where the χxx peaks. Comparing equation (2.32) to (2.25), it is evident that

the FMR of the thin film ferrite is much higher than that of the unbound ferrite, when

ωm ≫ ω0. The initial susceptibility and the shape of the susceptibility dispersion remain

similar for both cases. This implies that the in-plane biased thin film ferrite may be more

appropriate for RF and microwave applications due to the lower required biasing field to

reach a high FMR and, thus, a higher initial permeability.

2.2.3.4 FMR Frequency for Arbitrarily Shaped Ferrite

The FMR frequency for arbitrarily shaped ferrite is given by Kittel’s equation when the

Z-axis is assumed to be the bias direction [69]:

ωr = ω =
√

(ω0 + ωmNx) (ω0 + ωmNy). (2.33)

The ω0 and ωm are defined as follows:

ω0 = µ0γH0,effective = µ0γ(H0,ext −NzMs +Ha) (2.34)

ωm = µ0γMs (2.35)

In practice, it is convenient to substitute µ0γ = 2π · 2.8MHz/Oe. And Ha is the anisotropy

field.

2.3 Ferrite Material Properties

Table 3.1 summarizes some key material properties of several kinds of ferrites. Hexaferrite,

spinel ferrite, and garnet ferrite are all types of ferrimagnetic materials, but they differ in

their chemical composition, crystal structure, and magnetic properties [67]. Hexaferrites, or

barium hexaferrites, are characterized by their hexagonal crystal structure. Spinel ferrites
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Table 2.1: Ferrimagnetic material properties[67]

Material Abbr
Landé

g-factor

4πMs

(Gauss)

Anisotropy

field (Oe)

Coercive

field (Oe)

Hexaferrite BaFe12O19 BaM 1.87 4000 17460 1935

SrFe12O19 SrM 4320 16000 6635

Ba4Zn2Fe36O60 Zn2U 4223 10038 2580

Spinel MgFe2O4 MgFO 2.06 2150 173 1.8

MnFe2O4 MnFO 2.20 4000 5400 196

CoFe2O4 CFO 5370 6800 1566

Garnet Y3Fe5O12 YIG 2.00 1750 82

have a cubic crystal structure with the general formula AB2O4, where ”A” is a divalent metal

ion (such as Fe, Ni, Mn, Mg, Zn, etc.) and ”B” is a trivalent metal ion (usually Fe). Garnet

ferrites, more commonly known as rare-earth iron garnets, have a complex cubic lattice

structure with the general chemical formula of 3Fe2O3 ∗ 5X2O3, where ”X” represents a

rare-earth element such as yttrium (Y) or gadolinium (Gd). Yttrium iron garnet (YIG,

Y3Fe5O12) is a well-known example.

A brief explanation for each parameter is included below.

• Landé g-factor: The Landé g-factor is a factor used in quantum mechanics and

atomic physics to describe the magnetic moment of an atom, ion, or molecule in terms

of its angular momentum. It is influenced by factors such as the type of ferrite (e.g.,

spinel, garnet), the distribution of metallic ions in the crystal lattice, and the interac-

tions between those ions. Considering only the electron’s spin magnetic moment (and

neglecting orbital contributions), the g-factor is theoretically exactly 2. In practice, it

is also approximated to be 2 for most materials.

• Saturation magnetization: Saturation magnetization for ferrite refers to the max-
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imum magnetization that a ferritic material can achieve when subjected to a large

external magnetic field. Beyond this point, even if the magnetic field intensity is in-

creased, there will be no significant increase in the material’s magnetization. This

occurs because all the magnetic moments in the ferrite have become aligned with the

external field. In addition, it should be noted that both Ms and 4πMs are the symbols

for saturation magnetization. The unit for Ms is emu/cm
3 (electromagnetic units per

cubic centimeter) in the CGS (centimeter-gram-second) system. When converting to

the SI (International System of Units) system, where the unit of magnetization is A/m

(amperes per meter), 1emu/cm3 corresponds to 103A/m. The unit for 4πMs is Gauss

in the CGS system, and 1Gauss corresponds to 103/(4π)A/m in the SI system.

• Anisotropy field: The anisotropy field, often denoted as Ha, is the external magnetic

field that must be applied to a magnetic material to align all the magnetic moments in

the direction of the hard axis. In Table 3.1, hexaferrite has a much larger anisotropy

field compared with other kinds of ferrite materials. This property facilitates the

potential for high-frequency applications because the large anisotropy field can raise

the FMR frequency to the millimeter-wave band.

• Coercive field: The coercive field Hc for a ferrite material refers to the intensity of

the external magnetic field that must be applied in the opposite direction to reduce

the magnetization of the ferrite to zero after it has been magnetized to saturation. In

other words, it’s the measure of the resistance of the ferrite to becoming demagnetized.

2.4 Spin Wave

Spin waves can be understood from multiple perspectives. From the wave perspective, spin

waves can be understood as electromagnetic (EM) waves that propagate inside ferrimagnetic

materials, affected by the material properties and biasing fields. From the particle perspec-

tive, spin waves are also known as ’magnons’, which represent collective excitations within
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an ordered array of spins in ferrimagnetic materials. For both perspectives, it is common

to describe spin waves from the dispersion relationship [74]. In this section, the dispersion

relation is derived from the wave perspective. Readers are encouraged to read Chapter 5 of

[74] for more details.

2.4.1 Dispersion Relation Without Exchange Coupling

Under magnetostatic approximation, Maxwell’s equations become:

∇× H⃗ = 0

∇ · B⃗ = 0

∇× E⃗ = jωB⃗

(2.36)

where B⃗ = [µ]H⃗ = µ0([U ] + [χ]). The susceptibility tensor is defined in Section 3.3.2 to be

[χ] =


χxx χxy 0

χyx χyy 0

0 0 0

 =


X −jκ 0

jκ X 0

0 0 0

 (2.37)

The constants X and κ are defined in equations (2.45) and (2.46).

Substituting equation (2.37) to (2.36) and representing H⃗ = −∇ψ, Walker’s equation is

derived:

(1 +X)

[
∂2ψ

∂x2
+
∂2ψ

∂y2

]
+
∂2ψ

∂z2
= 0. (2.38)

The solutions of Walker’s equation are commonly referred to as magnetostatic modes.

Assuming plane wave propagation, the dispersion relationship can be solved fromWalker’s

equation to be

ω =
[
ω0

(
ω0 + ωm sin2 θ

)]1/2
(2.39)

where θ is the angle of propagation with respect to the bias direction. Note that this

dispersion relation is independent of the magnitude of k, which indicates that plane waves

at this frequency ω can have any wavelength. This phenomenon is plotted in Fig. 2.7
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(a), where both θ = 0 and θ = 90o are considered. For intermediate propagation angles,

the frequency will lie between these two extremes. It is worth noticing that this frequency

degeneracy in the magnetostatic approximation is removed by considering the effects of either

finite sample boundaries or the exchange interaction, as discussed below.

2.4.2 Dispersion Relation With Exchange Coupling

With exchange coupling, the effective magnetic field includes an additional exchange mag-

netic field, i.e.,
−−→
Heff = H⃗ +

−−→
Hex (2.40)

The exchange magnetic field is proportional to the spatial differentiation of the magnetization

vector, i.e.,
−−→
Hex = λex∇2M⃗ (2.41)

where λex is the exchange constant (λex = 3∗10−16m2 for YIG). In other words, the exchange

field arises when the magnetization vector inside a ferrite is not spatially uniform, where

adjacent magnetization vectors are interacting with each other.

To quantify the effect of exchange coupling, the susceptibility tensor needs to be inverted

to express H⃗ in terms of M⃗ .

Rewriting equation (2.20) gives Mx

My

 =

 X jκ

−jκ X

 Hx

Hy

 (2.42)

where X = ω0ωm

(ω0)2−ω2 and κ = ωωm

(ω0)2−ω2 .

Expanding equation (2.42) leads to

Mx = XHx + jκHy (2.43)

My = −jκHx +XHy (2.44)
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(a) (b)

Figure 2.7: (a)Magnetostatic wave dispersion relations without exchange for propagation

parallel (0-degree) and perpendicular (90-degree) to the applied bias field. (b)Magnetostatic

wave dispersion relations with exchange for propagation parallel (0-degree) and perpendicular

(90-degree) to the applied bias field. λex = 3e−16, H0 = 1000Oe, 4πMs = 1750Gauss.

Solving equations (2.43) and (2.44) and substituting the expressions for X and κ gives

the following relation between H⃗ and M⃗ : Hx

Hy

 =
1

ωm

 ω0 jω

−jω ω0

 Mx

My

 := [Aop]

 Mx

My

 (2.45)

With exchange coupling, equations (2.18) and (2.19) are modified to include additional

terms, and become the following:

jωMx = − (ω0 + jωα)My + ωm(Hy +∇2My) (2.46)

jωMy = (ω0 + jωα)Mx − ωm(Hx +∇2My) (2.47)

Solving equations (2.46) and (2.47) leads to a different relation between H⃗ and M⃗ : Hx

Hy

 =
1

ωm

 ω0 − λexωm∇2 jω

−jω ω0 − λexωm∇2

 Mx

My

 := [A′
op]

 Mx

My

 (2.48)
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Assuming plane wave propagation, ∇2 can be replaced by (−k2), where k is the propagation

constant of the spin wave. Hence, equation (2.48) becomes Hx

Hy

 =
1

ωm

 ω0 + λexωmk
2 jω

−jω ω0 + λexωmk
2

 Mx

My

 := [A′
op]

 Mx

My

 (2.49)

Since the exchange term λexωmk
2 appears everywhere with ω0, the effects of exchange can

be easily added to the previous magnetostatic plane wave analysis by replacing ω0 with

ω0 + λexωmk
2. The dispersion relation (2.39) thus is modified to be

ω =
[
(ω0 + λexωmk

2)
(
(ω0 + λexωmk

2) + ωm sin2 θ
)]1/2

(2.50)

where a is the lattice constant (a = 1.2nm for YIG) and k is the propagation constant. Note

that exchange coupling has restored a one-to-one correspondence between frequency w and

propagation constant k.

The dispersion relation with exchange coupling is plotted in Fig. 2.7 (b). Compared with

Fig. 2.7 (a), several observations can be made:

• The exchange coupling has restored a one-to-one correspondence between ω and k.

• The exchange coupling has facilitated a higher frequency signal to propagate inside the

ferrite material.

• The exchange coupling changes the dispersion dramatically only when k is large. This

is attributed to the fact that λex is small.
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CHAPTER 3

Equivalent Circuit Model for Spin Precession and Spin

Waves

This chapter will derive the linear and nonlinear equivalent circuit model based on the LLG

equation. The linear circuit equivalence is a two-port model representing the X and Y-

direction excitation of the spin units when the ferrite is biased in the Z-direction. When one

of the ports is terminated due to the demagnetization effect of the thin-film ferrite material,

the two-port circuit model will reduce to a parallel RLC circuit whose resonance frequency

is the same as the FMR frequency. Afterwards, two examples are utilized to demonstrate

the validity of such a linear RLC model. The first example is the short-circuited microstrip

line loaded with thin-film ferrite. The second example is the electrically small loop antenna

loaded with thin film YIG that operates at FMR frequency. The circuit model can predict

the antenna’s radiation efficiency and input impedance.

3.1 Field to Circuit Transformation

The rationale for representing the behavior of magnetic material with equivalent circuit mod-

els is established based on Maxwell’s equations. Faraday’s law indicates the electromotive

force, a form of voltage, is the time rate change of the magnetic flux. Similarly, current can

be related to a magnetic field through Ampere’s law. To illustrate this concept, one may

consider a cubic cell within an unbound volume of ferrite shown in Fig. 3.1.1. The cell has

dimensions of ∆x,∆y, and ∆z along the X, Y, Z axes. The DC biasing field is applied to the
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Figure 3.1: A cuboid cell in ferrite where the correspondence of field variables (H,M) to the

circuit variables (I, V ) is established.

Z-axis. Applying Faraday’s law, the electromotive force around the perimeter of the surface

∆y×∆z denoted by V x is related to the X-component of the dynamic magnetization vector

by,

V x = µ0
∂Mx

∂t
∆y∆z (3.1)

On the other hand, the current flowing crossing the X-axis, either toward the Y or the Z-axis

must have a contribution from the x-component of the Maxwellian magnetic field according

to Ampere’s law. This contribution can be denoted by,

Ix = Hx∆x (3.2)

Equations (3.1) and (3.2) are called field-to-circuit transformations. Equivalent circuits for

magnetic materials can thus be defined between the voltage and current.

3.2 Linear Equivalent Circuit Models

3.2.1 Equivalent Circuit Model for a Biased Magnetic Material Cell

For a small biased cuboid cell, the magnetization and magnetic field can be assumed to be

uniform. Decomposing M⃗ into its three components yields

M⃗ =Mxx̂+Myŷ +Mz ẑ ≈Mz ẑ ≈Msẑ (3.3)
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For finite dimension ferrites, the internal magnetic field H⃗ is different from the external

magnetic field due to demagnetization, i.e.,

H⃗ = Hxx̂+Hyŷ +Hz ẑ

= (Hxe −NxMx) x̂+ (Hye −NyMy) ŷ + (Hze −NzMz) ẑ.
(3.4)

Assuming the bias field is applied in the Z-direction,

Hze = H0 (3.5)

Applying field-to-circuit transformations for all magnetization and magnetic field compo-

nents, the linearized LLG equations (4.9) and (4.16) can now be rewritten as circuit equa-

tions,

Ix = −Vy
Zg

+

∫
Vxdt

Lx

+

∫
Vxdt

Ldx

+
Vx
Rx

(3.6)

Iy =
Vx
Zg

+

∫
Vydt

Ly

+

∫
Vydt

Ldy

+
Vy
Ry

(3.7)

with Zg, Lx, Ly, Ldx, Ldy, Rx and Ry defined as follows,

Zg = µ0ωm∆z = µ2
0γMs∆z

Lx = µ0
Ms

H0

∆y∆z

∆x

Ly = µ0
Ms

H0

∆x∆z

∆y

Ldx =
µ0yz

(Nx −Nz)x

Ldy =
µ0xz

(Ny −Nz) y

Rx = µ0
ωm

α

∆y∆z

∆x
=
µ2
0γMs

α

∆y∆z

∆x

Ry = µ0
ωm

α

∆x∆z

∆y
=
µ2
0γMs

α

∆x∆z

∆y

(3.8)

The ωm is defined in the same way as in the previous Chapter:

ωm = µ0γMs (3.9)
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Figure 3.2: Equivalent circuit derived for a biased magnetic material cell representing its

linear, dynamic, and non-reciprocal magnetization behavior.

Considering the left-hand sides of the equations (3.6) and (3.7) as incident currents Ix

and Iy, the four terms on the right-hand side can be considered as currents flowing into

an inductor ILx or ILy (ILdx or ILdy) and a resistor IRx or IRy and a gyrator IGx or IGy,

respectively. It is evident that equations (3.6) and (3.7) represent a two-port circuit with

each of the ports loaded by a resistor and two inductors while the two ports are coupled

through a gyrator, as shown in Fig. 3.2. Zg is the impedance of the gyrator, Lx, Ly, Ldx,

Ldy, Rx, and Ry represent the values of the loaded inductors and resistors for both X-port

and Y-port. The physical meaning of each circuit component is summarized below:

• Lx and Ly: Increase of the magnetic flux brought by the magnetic material in the X-

and Y-direction, respectively.

• Ldx and Ldy: Demagnetization effects due to shape anisotropy.

• Rx and Ry: Damping loss in the ferrite material.

• Zg: The use of a gyrator in the equivalent circuit is to model the non-reciprocity of

the magnetic material and the sign of the gyrator determines the right-hand rotation

characteristics of the spin precession.
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Figure 3.3: A thin film ferrite material with in-plane dimensions ∆x×∆z and out-of-plane

dimension ∆y. A DC bias field is applied in the Z direction and an RF magnetic field is

applied in the X direction.

Note that a similar gyrator/inductor model was proposed in [70] to represent the coupling

of two coils through a YIG sphere. That model, however, did not define the circuit parameters

based on the material parameters, nor did it include the resistors to represent the Gilbert

damping in magnetic material.

3.2.2 Equivalent Circuit Model for Thin-Film Magnetic Material

Thin film magnetic materials are commonly used in RF magnetic devices by virtue of their

planar structure and easy assembly. Hence, it is important to derive the equivalent circuit

model for them. Fig. (3.3) shows a schematic plot for a piece of thin-film ferrite that is

biased in-plane at Z-direction. Besides the DC bias field H0,ext, an RF magnetic field serves

as an excitation for the spin precession. In general, the RF magnetic field can be in arbitrary

directions. However, a stronger interaction happens when the RF field is perpendicular to

the DC biasing field, i.e., in the X-direction as shown in Fig. 3.3.

Substituting Ny = 1 for thin-film ferrite, the circuit elements values’ are derived from
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Figure 3.4: Equivalent circuit model for thin film magnetic material biased in-plane and

excited at both X and Y directions.

equation (3.8) to be the following,

Zg = µ0
2γMs∆z

Lx = µ0
Ms

Ho

∆y∆z

∆x

Ly = µ0
Ms

Ho

∆x∆z

∆y

Ldy =
µ0∆x∆z

∆y

Rx =
γµ0

2Ms∆y∆z

α∆x

Ry =
γµ0

2Ms∆x∆z

α∆y

(3.10)

Note that Ldx becomes effectively open-circuited and is not included in Fig. (3.4).

With the RF magnetic field in the X-direction only, the two-port circuit model can be

further simplified to a one-port circuit looking from the X-direction, as shown in Fig. 3.5.

The parallel connected Ly and Ldy are transformed through the gyrator to form a capacitor

Cx. On the other hand, the Ry is transformed to form a different resistor R
(2)
x . Hence,

the equivalent circuit for X-port becomes a parallel RLC resonator. Assume the damping
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Figure 3.5: Equivalent circuit model for thin film magnetic material biased in-plane and

excited only in the X-direction.

constant α ≪ 1, and the corresponding RLC values can be found.

Lx = µ0
Ms

Ho

∆y∆z

∆x

Cx =
Ly∥Ldy

Z2
g

=
1

µ0 (ωm + ω0)ωm

∆x

∆y∆z

R
(2)
x =

Q2Z2
g

Ry

≈ µ0
ωm (ωm + ω0)

αω0

∆y∆z

∆x

Rt
x = Rx∥R(2)

x = µ0
ωm (ωm + ω0)

α (2ω0 + ωm)

∆y∆z

∆x

(3.11)

, whereQ is the quality factor of Y-port inductor, i.e., Q = Ry/ω (Ly∥Ld) = (ωm + ω0) /(αω).

Note that the resonant frequency for such RLC resonator is given by ωr = 1√
LxCx

=√
(ωm + ω0)ω0, which is the same as the FMR frequency for thin-film in-plane biased ferrite.

3.2.3 Validation of Linear Equivalent Circuit Models

3.2.3.1 Stripline Resonator

For longitudinally biased microstrip or strip lines loaded with ferrite films or substrates, a

complete equivalent circuit can be obtained by modifying that of the nonmagnetic microstrip

or strip line. As shown in Fig. 3.6, the nonmagnetic transmission lines can be modeled by

the well-known series inductor and shunt capacitor ladder circuits. Assuming that the width

of the microstrip is much greater than its thickness so that a parallel plate model applies,
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Figure 3.6: (a) LC ladder circuit equivalence of non-magnetic transmission line (b) The

series L, shunt C unit cell is modified by adding a parallel RLC tank for equivalent circuit

of magnetic transmission line with biased ferrite substrate

Figure 3.7: (a) A shorted circuited strip line with a width of 100um, length of 0.5mm sand-

wiched by two 3um thick YIG films that are longitudinally biased, simulated in HFSS. (b)

ADS setup for comparison between the S-parameter derived from HFSS and the analytically

derived equivalent circuit model.

the values of the LC components are given by, L0 = µ0
∆y∆z
∆x

C0 = ε∆x∆z
∆y

(3.12)

Assuming the magnetic field within each segment of the transmission line is uniform, and

the current flowing on the strip line is longitudinal I, it is not difficult to prove that Ix = I.

∆x,∆y, and ∆z are respectively the width, thickness, and length of this segment.
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Figure 3.8: Input impedance comparison as a function of frequency between HFSS simula-

tions (red line) and prediction of circuit model (blue line). (a) Input resistance (b) Input

reactance.

Fig. 3.7 shows a stripline structure with a length l of 0.5mm and width w of 100um,

sandwiched by two d = 3um thick YIG films. The transmission line is short-circuited at one

end and excited at the other end.

From the circuit perspective, the structure can be represented by a parallel RLC tank that

represents the FMR, in series with the inductor Lo that represents the original transmission

line inductance. Note that the transmission line can be represented by a single inductor

when it is shorted and l << λ.

The values for the parallel RLC tank (Rm, Lm, and Cm) are rigorously derived from the

equation (3.11) by substituting the physical dimensions of the structure. In other words,

Lm = µ0
Ms

Ho

ld

(2 ∗ w)
Cm =

1

µ0 (ωm + ω0)ωm

(2 ∗ w)
ld

Rm = µ0
ωm (ωm + ω0)

α (2ω0 + ωm)

ld

(2 ∗ w)

(3.13)

The reason for multiplying a factor of two for the width w in the equation (3.13) is that the

magnetic field line circulates through both the top YIG layer and the bottom YIG layer,
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Figure 3.9: A single turn loop antenna loaded with thin film YIG biased longitudinally as

shown.

making two ferrite inductors in parallel from the circuit perspective.

The structure is simulated in HFSS and its input impedance is compared to that of the

RLC plus inductor model as shown in Fig. 3.8. The impedance result shows very good

agreement, where the HFSS prediction is plotted against the result of the circuit model.

Both the resonant frequency and its linewidth are correctly predicted by the circuit model.

3.2.3.2 Thin Film YIG loaded Electrically Small Loop Antenna

Electrically small loop antennas are among the simplest antennas. As the radiation resis-

tance of a single-turn loop is usually small, multiple turns are often introduced to obtain

an impedance that matches standard electronics. The increase of the radiation resistance

through winding, however, often comes at the price of increased Ohmic resistance and para-

sitic capacitance. It is proposed in [73] to use the high-Q FMR of thin film YIG to increase

the input impedance of a single-turn loop. The proposed antenna is a single-turn strip

wrapped around a thin film YIG substrate, as shown in Fig. 3.9. The ferrite substrate is a

3.08um thick YIG film epitaxially deposited on a 500um thick GGG substrate. Its length

and width are 6mm and 5mm, respectively. The conducting loop is designed to be at the

same width of 6mm. A DC magnetic bias field H0 of 36 Oersted (2865 A/m) parallel to the
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(a) (b)

Figure 3.10: Equivalent circuit models for electrically small loops (a) without ferrite (b) with

ferrite (FMR). Courtesy of [10].

current flow is assigned. The FMR-enhanced electrically small loop is designed to operate

at around 0.7 GHz. What needs to be emphasized here is that this antenna is extremely

small in its electrical size, with its largest physical dimension at approximately 1/60 of its

operating wavelength. To better understand the role FMR played, equivalent circuit models

are derived for electrically small loop antennas first without and then with the thin film

ferrite. The model of the loop without ferrite is established based on the first-order (TE1)

spherical wave model developed by Chu [75] so that the stored energy (parasitics) and the

radiation of the lossless electrically small loop can be precisely captured.

As shown in Fig. 3.10 (a), the inductance L represents the inductive energy stored in

the loop antenna. The radiation resistance Rrad is placed at a different branch in parallel

to this inductor. An Ohmic resistance Rohm is in series with the lossless circuit model to

include the power dissipated on the conducting loop structure. It should be noted that in

the model shown in Fig. 3.10 (a), an inductance Lf is also added in front of Rohm to model

the parasitic effect of the feeding lines. For the loop antenna with the loading of the thin

film ferrite, similar to what is done in the previous Section, the ferrite can be represented

by the insertion of a parallel RLC tank, in series with the loop inductor L as shown in Fig.

3.10(b), as the magnetic flux of the biased thin-film YIG generates an EMF in addition to

that of the original air loop inductance.
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(a) (b)

Figure 3.11: Input resistance (a) and reactance (b) with and w/o FMR enhanced: HFSS vs

circuit Model. Courtesy of [10]

Figure 3.12: Radiation efficiency with and w/o FMR enhanced: HFSS vs Circuit Model.

Courtesy of [10]

The value of RLC elements can be approximately obtained with equation (3.11) by

treating the entire antenna as a cuboid ferrite cell with dimensions ∆x=3.08um, ∆y=6mm,

and ∆z=5mm as indicated in Fig. 3.9. After some optimization, the equivalent circuit model

presented in Fig. 3.10(a) fits well with the full-wave simulation results of the electrically small
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loop without ferrite. By just inserting the parallel RLC resonator into the circuit without

altering the other parameters, the equivalent circuit model then predicts the behavior of

the ferrite-loaded electrically small loop very well, which implies the parallel RLC model

represents the role of the ferrite or FMR.

A comparison of the simulated input impedances between the circuit model prediction

and HFSS full-wave simulations is shown in Fig.3.11. The comparison can also be extended

to the prediction of radiation efficiency in Fig.3.12. Good matches between the circuit

model and the full-wave simulation results for both with and without ferrite cases have been

observed. The simulation results show that the input impedance rises from 1 Ohm to 118

Ohm after the loading of ferrite The radiation efficiency of the antenna has also experienced

a factor of 10 increase from 0.0013% to 0.013% at the FMR frequency of 0.7GHz.

3.3 Nonlinear Equivalent Circuit Model for Spin Precession

The nonlinear equivalent circuit model for spin precession basically applies the field-to-circuit

transformation to the nonlinear LLG equation rather than linearized LLG equations,

dM⃗

dt
= −µoγM⃗ × H⃗ +

α

Ms

M⃗ × dM⃗

dt
(3.14)

where M⃗ is the magnetization at any point inside the ferrite, H⃗ is the internal magnetic

field, α is the damping constant of ferrites, and Ms is the saturation magnetization.

Similarly, decomposing M⃗ into its three components gives

M⃗ =Mxx̂+Myŷ +Mz ẑ (3.15)

Unlike the linear case where Mz = Ms can be assumed when biased in the Z-direction,

the coupling among Mx, My, and Mz are considered:

M2
x +My

2 +Mz
2 =Ms

2. (3.16)
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For finite dimension ferrites, the internal magnetic field H⃗ is different from the external

magnetic field due to demagnetization, i.e.,

H⃗ = Hxx̂+Hyŷ +Hz ẑ

= (Hxe −NxMx) x̂+ (Hye −NyMy) ŷ + (Hze −NzMz) ẑ.
(3.17)

From Ampere’s law, the currents are related to the magnetic fields by

Ix = Hxe∆x, Iy = Hye∆y, Iz = Hze∆z (3.18)

From Faraday’s law, the voltages are related to the time-changing rates of magnetic flux

densities by

Vx =
dϕx

dt
, Vy =

dϕy

dt
, Vz =

dϕz

dt
(3.19)

In addition, the magnetization is related to the magnetic flux in each direction, where

∆x, ∆y, and ∆z are the physical dimensions of a ferrite cuboid.

Mx =
ϕx

µ0∆y∆z
,My =

ϕy

µ0∆x∆z
,Mz =

ϕz

µ0∆x∆y
(3.20)

Substituting (3.16) - (3.20) to (3.14), the vector LLG equation is reduced to scalar circuit

equations by combining the x and y components from each side.

Ix = − ∆x∆y

µ0γϕz∆z
Vy +

∆xHze

µ0∆y∆zMz

∫
Vxdt+

(Nx −Nz)x

µ0∆y∆z

∫
Vxdt

− α∆x

γµ2
0Ms∆y∆z

·
(
ϕx

ϕz

dϕz

dt
− Vx

)
≈ − ∆x∆y

µ0γϕz∆z
Vy +

∆xHze

µ0∆y∆zMz

∫
Vxdt+

(Nx −Nz)∆x

µ0∆y∆z

∫
Vxdt+

α∆x

γµ2
0Ms∆y∆z

Vx

= −Vy
Zg

+

∫
Vxdt

Lx

+

∫
Vxdt

Ldx

+
Vx
Rx

(3.21)
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Figure 3.13: Three-port spin unit circuit model with X-port and Y-port corresponding to

perpendicular pump directions, Z-port corresponding to parallel pumping direction (biasing

direction).

Iy =
∆x∆y

µ0γϕz∆z
Vx +

∆yHze

µ0∆x∆zMz

∫
Vydt+

(Ny −Nz)∆y

µ0∆x∆z

∫
Vydt

− α∆y

γµ2
0Ms∆x∆z

×
(
ϕy

ϕz

dϕz

dt
− Vy

)
≈ ∆x∆y

µ0γϕz∆z
Vx +

∆yHze

µ0∆x∆zMz

∫
Vydt+

(Ny −Nz)∆y

µ0∆x∆z

∫
Vydt+

α∆y

γµ2
0Ms∆x∆z

Vy

=
Vx
Zg

+

∫
Vydt

Ly

+

∫
Vydt

Ldy

+
Vy
Ry

(3.22)

Iz =

∫
Vzdt

Lz

+

∫
Vzdt

Ldz

. (3.23)

A three-port spin unit is constructed through field-to-circuit transformations as shown

in Fig. 3.13. The currents following into each port have four contributions by virtue of the

parallel circuit connection. The circuit elements values are derived as follows. Note that the
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gyrator impedance Zg and the inductances Lx, Ly, Lz are nonlinear because their values are

not constants but depend on the actual current flowing through each port. On the other

hand, the demagnetization inductors Ldx, Ldy, Ldz and loss resistors Rx, Ry are linear.

Zg = µ2
0γ

MsIz√(
ILx

∆x

)2

+

(
ILy

∆y

)2

+

(
Iz
∆z

)2

Lx = µ0
Ms√(

ILx

∆x

)2

+

(
ILy

∆y

)2

+

(
Iz
∆z

)2

∆y∆z

∆x

Ly = µ0
Ms√(

ILx

∆x

)2

+

(
ILy

∆y

)2

+

(
Iz
∆z

)2

∆x∆z

∆y

Lz = µ0
Ms√(

ILx

∆x

)2

+

(
ILy

∆y

)2

+

(
Iz
∆z

)2

∆x∆y

∆z

(3.24)



Ldx =
µ0∆y∆z

(Nx −Nz)∆x

Ldy =
µ0∆x∆z

(Ny −Nz)∆y

Ldz =
µ0∆x∆y

Nz∆z

Rx =
γµ0

2Ms∆y∆z

α∆x

Ry =
γµ0

2Ms∆x∆z

α∆y

(3.25)

The three-port spin unit quantifies the interaction between magnetization caused by dy-

namic spin precession and magnetic fields by creating a circuit equivalence. Derived from the

nonlinear LLG equation, it is a general spin precession model that can be incorporated with

various RF magnetic devices. Most importantly, it has the circuit elements values directly

related to material properties, i.e., Ms, α, Nx, Ny,Nz, ∆x, ∆y, and ∆z. Consequently, the

spin unit is generalizable not only for different ferrite materials but also for the same ferrite

material with different shape anisotropies. The reader is also encouraged to compare the
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Figure 3.14: ADS simulation with the proposed circuit model for a YIG sphere in comparison

with an LLG equation solver coded in MATLAB. The spherical geometry has demagneti-

zation coefficients (Nx = Ny = Nz = 1
3
). (a) MATLAB-simulated trajectories of X (black)

and Y (red) magnetization components vs time. (b) MATLAB-simulated trajectory of the

Z-magnetization component vs time. (c),(d),(e) MATLAB (black) and ADS (red) trajecto-

ries for X, Y, and Z magnetization components respectively.

nonlinear circuit model with the linear model and verify that the nonlinear model will be

reduced to the linear model under the small-signal assumption.
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3.3.1 Validation of the Nonlinear Circuit Model

3.3.1.1 YIG Sphere

Two examples are used to validate the proposed circuit model. The first example assumes

a YIG sphere that is magnetized in the Z-direction. The internal biasing field is set to

80 Oe (6366 A/m). An external RF field of 0.8 Oe (63.7 A/m) at the FMR frequency of

224 MHz is added in the X-axis to excite the YIG sphere, which increases the transverse

magnetization and causes the reduction of the longitudinal magnetization. The simulation

results are displayed in Fig. 3.14, showing that the X and Y magnetization components rise

at the Larmor precession frequency of 224 MHz and reduce the longitudinal magnetization

versus time. The comparison concluded that the ADS circuit model provides an accurate

prediction of the large signal behavior of spin precession, which is almost identical to that

of the LLG equation solver.

3.3.1.2 YIG Thin Film

The second case is a YIG thin film that is biased in one of its in-plane directions with the

Y-axis pointing out of the film plane. The biasing field is applied, and the RF excitation is

introduced in the same way as the first example. Due to the out-of-plane demagnetization,

the precession is dominantly limited to in-plane with its X component of magnetization

much greater than its Y component that oscillates at the precession frequency given by

equation (2.32), which is 1.07 GHz. In addition to the magnitude reduction, the longitudinal

magnetization oscillation at twice the FMR frequency is observed. The 3-port circuit model

shown in Fig.3.13 is constructed by substituting Nx = Nz = 0, Ny = 1 to equation (3.25).

Note that only Ldy will remain. Simulation results with both the MATLAB LLG solver and

ADS circuit model display the expected trend as shown in Fig.3.15 and the agreement is

again perfect. It should also be noted in Fig.3.15 that the Z component of magnetization,

in addition to decaying, displays an oscillation behavior at the second harmonic of the
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Figure 3.15: ADS simulation with the proposed circuit model for a YIG thin film in com-

parison with an LLG equation solver coded in MATLAB. The thin film has demagnetization

coefficients (Nx = Nz = 0, Ny = 1). (a) MATLAB-simulated trajectories of X (black) and

Y (red) magnetization components vs time. (b) MATLAB-simulated trajectory of Z-mag-

netization component vs time. (c),(d),(e). MATLAB (black) and ADS (red) trajectories for

X, Y, and Z magnetization components respectively.

precession frequency. Again, this is predicted by the LLG solver and the ADS circuit model.

A similar but simpler, two-port version of the equivalent circuit model for thin films was

derived in [76] which describes the in-plane spin precession through analogy to the motion of

a pendulum. The three-port model presented here is more complete and can be universally

applied to materials with different shapes.
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3.4 Circuit Model for Spin Waves

3.4.1 Magnetostatic Waves

Magnetostatic waves are approximations of electromagnetic waves within the magnetostatic

limit, which applies when the scale of consideration is much shorter than the wavelength

of electromagnetic waves in a non-dispersive medium. Under such an approximation, the

displacement currents in Maxwell’s equations are ignored. When only magnetic fields of

Maxwellian origin are considered, the lossless form of the LLG equation has been expressed

through the relation between H⃗ and M⃗ in the equation (2.45). Rewriting equation (2.45) to

write demagnetization fields explicitly, it becomes the following, Happl
x

Happl
y

 =
1

ωm

 ω0 jω

−jω ω0

 Mx

My

−

 Hdemag
x

Hdemag
y

 (3.26)

Considering a plane wave propagating in the Y-Z plane in an infinite biased ferrite, the

demagnetization field representing the dipolar coupling is the solution of the source-less

Maxwell’s equations, which are approximated to be ∇× H⃗ = 0,∇ · B⃗ = 0. The solution is, Hdemag
x

Hdemag
y

 =

 0 0

0 − sin2 θ

 Mx

My

 (3.27)

where θ is the angle between the directions of the wave propagation and the DC bias field.

The magnetostatic waves are then described by, Happl
x

Happl
y

 =
1

ωm

 ω0 jω

−jω ω0 + ωm sin2 θ

 Mx

My

 (3.28)

Setting the applied magnetic field to zero, a non-trivial solution of magnetization exists only

when the determinant of the matrix in equation (3.28) is zero. This yields the dispersion

relation, which is called Walker’s equation,

ω =
[
ω0

(
ω0 + ωm sin2 θ

)] 1
2 . (3.29)
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Figure 3.16: Equivalent circuits for waves traveling in an unbound, biased ferrite (a) a plane

wave traveling perpendicular to the biasing direction (b) with magnetostatic wave approx-

imation applied (c) with exchange coupling included (d) with exchange coupling included,

and RLC tank transformed to shunt to ground.

If the plane wave’s H-field is polarized in the X-direction and it is traveling toward the

Y-axis, applying θ = π
2
and assuming Happl

y =0 in equation (3.28) leads to

Happl
x =

ω0 (ωm + ω0)− ω2

ωm (ωm + ω0)
Mx (3.30)

The previously derived equivalent circuit in Fig.3.5 can thus be used to represent such a plane

wave as shown in Fig.3.16 (a). Applying the magnetostatic approximation means neglecting

the displacement currents, i.e. the shunt capacitances in the circuit model, which results in

the equivalent circuit in Fig.3.16 (b). It is evident that the resonant frequency of the structure

in Fig.3.16 (b) does not depend on the phase distribution among the different unit cells,

which implies a k-independent dispersion as shown by equation (3.29). This independence,

however, no longer holds when spin waves with exchange coupling are considered.
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3.4.2 Exchange Spin Waves

As discussed in Chapter 2, the exchange effect can be added to the dispersion relation by

replacing ω0 with ω0 + λexωmk
2. The dispersion relation (2.39) thus is modified to be

ω =
[
(ω0 + λexωmk

2)
(
(ω0 + λexωmk

2) + ωm sin2 θ
)]1/2

(3.31)

When ka is small, the following relation holds:

1− cos ka ≈ (ka)2

2
(3.32)

Hence,

ωmλexk
2 ≈ 2ωmλex(1− cos ka)/a2 (3.33)

Substituting equation (3.33) to (3.31), it becomes

ω =

(
ω0 + ωm

2λex
a2

(1− cos(ka))

) 1
2
(
ω0 + ωm

2λex
a2

(1− cos(ka)) + ωm sin2 θ

) 1
2

(3.34)

Expanding the above equation with θ = π/2 and ignoring the high-order terms, one yields,

cos(ka) = 1− ω2 − ω0 (ω0 + ωm)

2ω0 + ωm

a2

2ωmλex
(3.35)

It is reasonable to represent this relation by coupling inductors as shown in Fig. 3.16 (c).

The value of the exchange coupling inductor can be determined by forcing the circuit model

to exhibit the same dispersion relation as shown in the equation (3.35). Assuming no external

RF magnetic field is applied, the voltages across the different RLC tanks are independent of

each other with the exception of coupling through the transformers. Therefore, the circuit

model representing the magnetization portion in Fig. 3.16 (c) is transformed into the one

in Fig. 3.16 (d) where the RLC tanks are shunted to the ground. The dispersion relation

can now be easily determined with the periodic structure theory using the ABCD matrix

method [69], as,

cos(kd) = 1− 1

2ω2LcCm

+
Lc

2Lm

(3.36)
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Figure 3.17: Comparison of dispersion curve calculated from spin wave theory by (3.34) to

the ones calculated from the periodic circuit in Fig. 3.16 with 1.2 nm (d/a = 1) and 100 nm

thickness (d/a = 83) for each unit using (3.36). Courtesy of [76].

where d is the distance between each unit, which should be set to the same value as the

lattice constant a to replicate the dispersion relation in the equation (3.35). Under this

condition, the expression for the coupling inductance Lc is given by,

Lc =
d2

λexωm

ω0 (ω0 + ωm)

2ω0 + ωm

Lm (3.37)

The equivalent circuit depicted in Fig. 3.16(d) is now complete and can be used to predict

the dispersive behavior of the spin wave. Similar periodic circuit models have been used to

represent other types of linear or nonlinear waves [77] [78]. The dispersion relation formulated

in the equation (3.36) is plotted in Fig. 3.17 and it is evident that k-independency no longer

holds for high-k or short wavelength waves, where it corresponds to a frequency much higher

than the ferromagnetic resonance frequency.

One practical concern is since the lattice constant a is at nanometers, modeling the

entire dispersion curve with a periodic circuit model described by (3.35) and (3.36) would

require d = a and an overwhelmingly large number of unit cells must be used to represent a

millimeter long magnetic material structure.

However, if one aims at replicating only the bottom portion of the dispersion curve, a
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much coarse spatial discretization may be used as the distance resolution d determines the

maximum spin wave frequency the circuit model can cover. Fig.3.17 compares the analytical

spin wave dispersion relation derived from equation (3.34) to the curve derived from the

periodic circuit with (3.36) on different ratios of spatial resolution d versus lattice constant

a. When the spatial resolution in each resonator (RmLmCm parallel circuit) is close to the

lattice constant (e.g., 1.2 nm), the circuit model can include high-frequency spin waves.

When the thickness resolution is much coarser than the lattice constant (e.g., 100 nm), the

circuit model shows a cut-off frequency without capturing the higher-frequency spin waves.

Yet the lower frequency end of dispersion is still well represented. This implies that the

computational complexity can be much reduced using coarser spatial discretization if only

the long wavelength spin waves or those with frequencies close to the FMR are of interest.
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CHAPTER 4

Modeling of Frequency-Selective Limiters (FSLs) With

Physics-Based Equivalent Circuits

4.1 Introduction of Frequency-Selective Limiters (FSLs)

Power limiters are widely recognized devices that protect RF receivers from extremely high

interfering signals. Traditional power limiters utilizing PIN diodes have been extensively

documented in the literature [94, 95]. However, such limiters cannot discriminate the received

signals at different frequencies. When a strong signal causes the limiter to turn on, all signals

in the receiver are attenuated by the same amount as the strong signal. To overcome this

issue, [96] proposed a nonlinear filter design consisting of a passive bandstop resonator loaded

with a non-linear Schottky diode. In addition, RF-MEMS-based frequency-dependent power

limiters (FDPL) were reported in [98, 100], where RF MEMS switches are combined with

band-pass filters to create a power limiter that limits output RF power to specific levels based

on frequency bands. The concept of using RF MEMS switches in frequency-dependent power

limiter applications is based on the fact that RF MEMS switches can self-actuate under high

RF power levels. The power level at which the switch actuates can be adjusted by controlling

the applied DC actuation voltage.

Moreover, adaptive interference cancellation [99] techniques have also been exploited.

These techniques use signal processing to identify and cancel out interfering signals, using

algorithms that subtract the interference from the received signal.

Several research groups have explored the use of ferrite in power limiter applications
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[24, 21, 71, 79, 23].

A thorough comparison of different limiting techniques is included below:

(1) Diode Limiters:

• Mechanism: Utilizes PIN or Schottky diodes to protect receivers from high-power

signals.

• Advantages: Well-studied, effective at reducing power through nonlinear resistance

changes.

• Disadvantages: Can attenuate desired signals along with unwanted ones, reducing

overall sensitivity.

(2) Nonlinear Limiters:

• Mechanism: Employs nonlinear components like GaAs Schottky diodes in bandstop

resonators for frequency-selective limiting.

• Advantages: Provides frequency-selective power limiting, high level of power limiting

(over 30dB) with low insertion loss (<2dB).

• Disadvantages: Complex design, intermodulation distortion can occur when multiple

signals are input

(3) RF-MEMS Limiters:

• Mechanism: Utilizes RF MEMS switches that self-actuate under high RF power levels,

integrated with band-pass filters.

• Advantages: High linearity, low power consumption, very high isolation, and very low

insertion loss. It can be made tunable by adjusting the actuation voltage.
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• Disadvantages: New technology requires precise control of actuation voltage and higher

complexity in design and manufacturing.

(4) Adaptive Interference Removal:

• Mechanism: Typically employs algorithms and signal processing techniques to remove

or mitigate interference dynamically.

• Advantages: Flexible, can adapt to varying interference conditions, and does not rely

on hardware modifications.

• Disadvantages: Requires computational resources, introduces processing delays, may

not be applicable in real-time systems, and effectiveness depends on the accuracy of

the interference model.

(5) Ferrite-Based Limiters:

• Mechanism: Uses the nonlinear properties of magnetic spin waves in magnetized ferrites

(e.g., YIG) to dissipate high-power signals.

• Advantages: Can achieve high power dissipation at specific frequencies; provides linear

and low-loss response at low power levels; short time delay on a range of microseconds

to attenuate high-power signals; easy implementation.

• Disadvantages: Bulkier compared to diode and MEMS-based solutions.

In fact, most microwave FSLs are built with magnetic materials that have intrinsic nonlin-

earities. One candidate for such magnetic material is the yttrium iron garnet (YIG) [66].

A typical FSL device is illustrated in Fig. 4.1 (a), where a YIG thin film is grown on a

gadolinium gallium garnet (GGG) substrate under the coplanar waveguides (CPW). The

external static magnetic field is applied in the plane of the YIG film and parallel to the RF

magnetic field created by the CPW.
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(a) (b)

Figure 4.1: (a) Schematic of a CPW-FSL with the bias field parallel to the RF field. (b)

Input signal spectrum and output signal spectrum when two-tone signals pass through the

FSL. One jammer has a power greater than the FSL threshold, while the signal power is

below the FSL threshold.

The power spectrum of a typical FSL is shown in Fig. 4.1 (b). When a small signal of

interest goes through the FSL with a large-signal interferer, the FSL attenuates only the large

signals above its threshold while letting the weak, useful signal pass without attenuation.

Despite the fact that ferrite-based FSLs have been commercially available for a long

time, the modeling of such devices remains challenging due to the complex nature of ferrite

materials. The underlying principles for FSLs include 1) dynamic spin precession; 2) spin

wave propagation; 3) coupling between electromagnetic (EM) waves and spin waves; and

4) field nonuniformity. The explanations for each operation mechanism are summarized as

follows:

1. Dynamic spin precession: The magnetic properties of ferrites are attributed to the

magnetic moments generated by spinning electrons. Under external magnetic fields, the
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magnetic moments will exhibit precessional motion. Such interaction is governed by the

Landau-Lifshitz-Gilbert (LLG) equation[56]. In addition, the natural spin precession

frequency, i.e., ferromagnetic resonance (FMR) frequency fr, determines the operation

frequency for magnetic devices.

2. Spin wave propagation: the power-limiting effect of FSLs is caused by the excitation

of spin waves at f/2, which carries away the EM wave power at f [83, 84]. The lowest

operation frequency for FSLs is 2fr, where fr is the FMR frequency. However, FSLs

also attenuate high-power signals above 2fr. Such broadband behavior originates from

the dispersive nature of spin waves [74].

3. Coupling between electromagnetic (EM) waves and spin waves : Spin waves are gener-

ated when EM waves propagate in the longitudinal direction. The power is transferred

to lattice vibrations and eventually lost in heat[85]. Such coupling is nonlinear as only

a high-power RF signal generates spin waves, while a low-power RF signal passes the

transmission line unaffected by the ferrite [86, 87].

4. Field nonuniformity : the RF magnetic field provided by a CPW is spatially nonuni-

form[88]. Specifically, the magnetic fields near the corner of the conductor are much

stronger than those at the center. Hence, in CPW-FSLs, the spin waves near the cor-

ner are excited earlier. CPW structures have been used to excite higher-order spin

wave modes by virtue of such nonuniformity in magnetic filters[89]. For FSLs, the field

nonuniformity will affect their power threshold and insertion loss.

These intrinsic operation mechanisms can be used to explain the behaviors of FSLs

qualitatively, but building theoretical models for FSLs has been challenging due to the

complex nature of magnetic materials. Full wave simulators such as Ansys HFSS solve

Maxwell’s equations for magnetic materials in linear regime [50]. However, they do not

incorporate the nonlinear property of magnetic materials that contributes to the power-

limiting effect of FSLs. The models based on micromagnetics, on the other hand, solve
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the nonlinear LLG equation. However, they are only suitable for smaller device dimensions

in µm scale [90, 91]. Recently, behavioral modeling of FSLs was proposed, which treated

FSLs as general nonlinear systems with memories and used mathematical models to predict

their performance [92]. The mathematical model achieved good accuracy with moderate

computation complexity, yet the physics of FSLs was obscured, and therefore, the model is

not generalizable.

4.2 Modeling Procedure of FSLs

4.2.1 Modeling Dynamic Spin Precession

Since FSLs utilize the nonlinearity of ferrite materials, the nonlinear equivalent circuit, as

shown in Fig. 3.13 for spin precession, has to be constructed. The physical discretization, i.e.,

∆x, ∆y, and ∆z, depends on the device’s field profile. In other words, we want to discretize

the ferrite materials such that the magnetic field can be considered uniform inside a ferrite

cuboid. The detailed discretization mechanism is delineated in the following sections.

4.2.2 Modeling Spin Wave Propagation

Exchange spin waves are oscillations of magnetization within magnetic materials caused

by exchange coupling that has a quantum mechanics origin[74]. Fig. 4.2 illustrates its

propagation with Mx changing along the thickness direction. The thickness d is divided into

multiple (Nd) ∆d, with each w × l × ∆d ferrite cuboid represented by a single three-port

spin unit. Exchange coupling is represented by an inductor Lc added between the X-ports

of adjacent spin units, whose value is given by combining (3.13) and (3.37):

Lc =
l∆d3

w

µ0 (ω0 + ωm)

λex (2ω0 + ωm)
, (4.1)

where ω0 = 2π× 2.8× 106 ×H0, ωm = 2π× 2.8× 106 ×Ms, and λex = 3× 10−16m2 for YIG.
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Figure 4.2: Illustration of spin wave propagation along the thickness direction and the cor-

responding circuit model with inductor Lc added between three-port spin units.

4.2.3 Modeling the Coupling Between EM Waves and Spin Waves

As discussed in the previous section, a three-port spin unit quantifies dynamic spin precession

in three dimensions. Later on, these circuit equivalence can be incorporated with external

circuitry to form a complete circuit for RF magnetic devices. Note that during the previous

derivation, the bias magnetic field is assumed to be in the z direction. Hence, if the RF

magnetic field lies in the z direction as well, i.e., parallel pumping, Z-port should be connected

to the external circuitry. On the other hand, if the RF magnetic field lies in x or y directions,

i.e., perpendicular pumping, the corresponding X-port or Y-port should be connected to the

external circuitry. The former is the ideal situation for FSLs, as shown in Fig. 4.1, with the

RF field in the same direction as the bias field. However, in practical FSL devices, the bias

field may have a small angle with respect to the z direction due to form factor constraints.

As a result, the thin ferrite film will also be partially perpendicularly pumped. Hence, both

cases will be discussed in this section.

4.2.3.1 Parallel Pumping

In Fig. 4.1, the electric field only has a y component, and the magnetic field only has a

z component under the quasi-TEM approximation[69]. During propagation, the EM wave
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Figure 4.3: Equivalent circuit for parallel pumping with Nd spin units cascaded with one

transmission line inductor.

couples to the spin wave through Z-ports of three-port spin units, as shown in Fig. 4.3.

Considering exchange spin wave propagation along the thickness, there are Nd spin units

within one parallel pumping section. Hence, the total voltage drop V2 is the summation of

voltage drop at the individual spin unit, i.e., ∆V2 i. Vy (x0) and Vy (x0 +∆x) are the voltages

at two adjacent nodes when the EM wave travels along x direction from x0 to x0+∆x. Iz is the

current flowing through the center conductor. L0 and C0 are the inductance and capacitance

of the transmission line. Their values are given by C0 = ε∆z∆x
∆y

and L0 = µ0
∆y∆x
∆z

.

Kirchhoff’s circuit laws can be verified through Maxwell’s equations:

−∂Hz

∂x
= ε

∂Ey

∂t
(4.2)

∂Ey

∂x
= −∂Bz

∂t
(4.3)

Bz = µ0 (Hz +Mz) . (4.4)
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Applying field-to-circuit transformations Ey = − Vy

∆y
, Hz =

Iz
∆z

, (??) and (4.4) become:

∂Iz
∂x

= ε
∆z

∆y

∂Vy
∂t

(4.5)

µ0

(
∂Hz

∂t
+
∂Mz

∂t

)
=

1

∆y

∂Vy
∂x

. (4.6)

Equation (4.5) satisfies Kirchhoff’s current law (KCL) at the node Vy (x0 +∆x). On the

other hand, (4.6) satisfies Kirchhoff’s voltage law (KVL) because the voltage drop at the

spin unit is caused by time-changing magnetic flux in z direction:

V2 =

Nd∑
i=1

∆V2−i =

Nd∑
i=1

dϕz−i

dt
(4.7)

Mz =
ϕz

µ0∆x∆y
=

∑Nd

i=1 ϕz−i

µ0∆x∆y
(4.8)

V1 = L
∂Iz
∂t
. (4.9)

Substituting (4.7), (4.8) and (4.9) into (4.6) and multiplying both sides by xcyc, it becomes

V1 + V2 = Vy (x0 + xc)− Vy (x0), (4.10)

which is exactly KVL.

Hence, the loading of thin-film ferrite can be represented by cascading spin units with

transmission line inductors. When the RF power is low, the RF signal should be able to

pass through the device unaffected by the spin units because the excitation of spin waves

only happens at high power levels. Using the circuit diagram in Fig. 4.3, low RF power

corresponds to a small RF magnetic field, i.e., small Iz. In this case, the magnetic moments

in the ferrites are saturated by the bias magnetic field in the z direction as well. As a result,

M ≈ Mz ≈ Ms is a constant. Hence, the ∂Mz

∂t
term in (4.6) will become zero, causing V2 to

be zero. As a result, the equivalent circuit reduces to the transmission line lumped-element
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model because the spin units are short-circuited. In this case, the EM waves will not couple

with spin waves, as expected. When the RF power becomes larger, the spin wave oscillation

fueled by the RF field results in a large change in Mz, which will induce a voltage drop in

the transmission line, and the EM wave power will be lost in the FSL device.

4.2.3.2 Perpendicular Pumping

As discussed before, FSLs should operate under parallel pumping conditions. However, in

practice, the bias magnetic field may have a small angle θ with the RF magnetic field due to

the requirement of form factors. As a result, if we decompose the RF magnetic field, there

will be an effective RF field perpendicular to the bias field, whose value is Hrf sin θ. The

schematic of perpendicular pumping is illustrated in Fig. 4.4.

From the FSL measurement, this perpendicular component of pumping does not affect

the FSL nonlinearity but just contributes to the out-of-band FMR absorption. As a result,

it’s convenient to simplify the nonlinear three-port spin unit in its linear case, which becomes

a parallel RLC resonator with values given in (3.11):
Lx = µ0

Ms

Ho

∆y∆z

∆x

Cx =
1

µ0 (ωm + ω0)ωm

∆x

∆y∆z

Rx = µ0
ωm (ωm + ω0)

α (2ω0 + ωm)

∆y∆z

∆x
.

(4.11)

Note that the resonant frequency for such RLC resonator is given by ωr = 1√
LxCx

=√
(ωm + ω0)ω0, which is also the FMR frequency for a thin-film in-plane biased ferrite. In

addition, the physical meanings for ∆x, ∆y, and ∆z differ from those of parallel pumping

cases. For example, from Fig. 4.1, ∆x lies along the length direction while ∆z lies in the

width direction for the CPW-FSL. However, in Fig. 4.4, ∆x lies in the width direction while

∆z lies in the length direction. Hence, these different physical scalings must be handled

during simulations.
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Figure 4.4: Schematic of a thin-film ferrite with a non-zero bias angle, causing perpendicular

pumping with effective RF magnetic field in x direction and bias field in z direction

Figure 4.5: Equivalent circuit model for perpendicular pumped thin-film ferrite.

Similar to the parallel pumping case, the RLC resonator is connected to the transmission

line lumped-element model to represent the loading of ferrite, as shown in Fig. 4.5. The

transformer T is used to quantify the effect of perpendicular pumping by setting T = sin(θ),

where θ is the angle between the RF field and the bias field. When θ = 90◦, the entire RLC

resonator is coupled to the transmission line, representing pure perpendicular pumping. On

the other hand, when θ = 0◦, the RLC resonator does not affect external circuitry.

Kirchhoff circuit laws can also be verified through Maxwell’s equations and are given

below. From Fig. 4.4, the effective magnetic field lies in x direction and the electric field lies

in y direction. Hence,

−∂Hx

∂z
= ε

∂Ey

∂t
(4.12)

∂Ey

∂z
= −∂Bx

∂t
. (4.13)
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Applying field-to-circuit transformations, (4.12) and (4.13) become the following:

∂Ix
∂z

= ε
∆x

∆y

∂Vy
∂t

(4.14)

1

∆y

∂Vy
∂z

=
µ0

∆x

∂Ix
∂t

+
1

∆y∆z
V2. (4.15)

By inspection, (4.14) satisfies Kirchhoff’s current law (KCL) by setting the transmission

line capacitance C0 = ε∆x∆z
∆y

. Equation (4.15) satisfies Kirchhoff’s voltage law (KVL) using

the definition of TL inductance V1 + V3 = L0
∂Ix
∂t

= µ0
∆y∆z
∆x

∂Ix
∂t
.

After substituting and multiplying both sides by ∆y∆z, (4.15) becomes

V1 + V2 + V3 = Vy (z0 +∆z)− Vy (z0), (4.16)

which satisfies KVL.

4.2.4 Modeling Field Nonuniformity

The field distribution of a CPW line is spatially non-uniform. Such nonuniformity can

be visualized and quantified by examining the magnitude of magnetic fields throughout the

cross-section of a CPW line. As shown in Fig. 4.7 (a), a CPW line is on top of a YIG thin film

buffer. Note that the YIG buffers have the same electric properties and physical dimensions

as YIG thin films, which represents the fact that these regions will later be occupied by YIG

to build an FSL. From this schematic plot, the magnetic field is nonuniform both in the

conductor width direction and in the substrate thickness direction. In the width direction,

the magnetic field is concentrated near the edges of the center conductor. In the thickness

direction, the magnetic field becomes smaller as the thickness goes deeper.

Such nonuniformity can be quantified by generating the z components of the magnetic

fields, i.e., mag(Hz) from HFSS. Fig. 4.6 plots the strengths of Hz when the observation

points are near the center conductor (in blue) and farther away from the center conductor
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Figure 4.6: Strength of the magnetic field along the z direction when the observation points

are near the center conductor (in blue) and farther away from the center conductor (in

orange).

(in orange). The width of the center conductor is 58 um, and we can clearly identify a much

larger magnetic field strength near the edges of the center conductor, i.e., z ± 29um.

The nonuniformity will affect the performance of FSLs when the CPW line is loaded with

thin-film YIG. This is because electron spins at different locations will experience different

magnetic fields. For example, the electron spins near the edges of the center conductor

will receive much larger RF field perturbation, so the spin waves in that region will be

excited earlier compared with other regions. Hence, to predict the performance of CPW-

FSLs precisely, such nonuniformity has to be considered.

This section addresses the two-dimensional nonuniformity by dividing the substrate re-

gion and creating an inductor array associated with it. As shown in Fig. 4.7, the substrate

under the center conductor is divided into six sub-regions. Within each region, the magnetic

field H and magnetic flux ϕ are assumed to be uniform. The equivalent circuit for such

division is illustrated in Fig. 4.7 (b)∼(d). Originally, the CPW line inductance is a single
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Figure 4.7: Schematic of the magnetic field distribution at the cross-section of the CPW

line, The substrates are divided into six regions. Within each region, the magnetic field and

magnetic flux are assumed to be uniform. (b) Equivalent circuit for transmission line induc-

tance when only width division is considered, and width + thickness division is considered.

L0. Assume the current flowing through it is I0, and the voltage change across it is V0.

Later on, we divide the substrate region along the width direction, and three inductors are

introduced, each corresponding to one sub-region. According to Ampere’s law,

Ij = H1j × wj, j = 1, 2, 3. (4.17)

Hence, these three inductors L1, L2, and L3 will have different current flows because the

H field values are different. As a result, they are connected in parallel. Then, on top of

the width division, we apply thickness division so that six inductors are introduced in total.

Suppose the voltage drops at inductors L11 and L21 are V11 and V21. According to Faraday’s
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Figure 4.8: Complete circuit model for the 5*4 inductors array.

law,

V0 = V11 + V21 =
d (ϕ11 + ϕ21)

dt
=
dϕ11

dt
+
dϕ21

dt
. (4.18)

Consequently, L11 and L21 should be connected in series because their voltage drops add

together to form the total voltage drop from the center conductor to the ground. As a

result, an inductor array is formed. The detailed steps to calculate individual inductor

values are listed in the following section.

4.2.4.1 Calculate Average H-field H̄ij in Each Physical Region

The definition of inductance is the magnetic flux linkage versus the current. Since the mag-

netic flux is linearly proportional to the magnetic field, different magnetic fields correspond

to different inductors. In Fig. 4.7, six divisions are illustrated for better visualization. The

actual realization, however, used 40 physical divisions, with 10 in width and four in thickness.

Since the magnetic field is symmetric along the width direction (the field at the left corner is

the same as the field at the right corner), 10 physical width divisions can be merged by pairs

to create a five-by-four inductor array, as shown in Fig. 4.8. Within each region, average

H-field H̄ij is calculated from the HFSS simulation, where i = 1, 2, . . . , 4 is the thickness
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division index and j = 1, 2, . . . , 5 is the width division index.

4.2.4.2 Calculate Current Flow Ii in Each Branch

According to Ampere’s law, I =
∫
H⃗ · d⃗l. Under the quasi-TEM approximation, the RF

magnetic field created by the CPW line is parallel to the conductor width direction, so H⃗

and d⃗l are in the same direction. Hence, different widths and different magnetic fields will

multiply together to create different currents flowing through the center conductor, i.e., I1,

I2, and I3 in Fig. 4.7. When there are five divisions along the width, the corresponding

currents can be calculated using

Ij = H1j × wj, j = 1, 2, . . . , 5, (4.19)

where H1j is the magnetic field below the center conductor.

4.2.4.3 Calculate Inductors’ Ratios for Width Divisions

As discussed earlier, inductors divided along the width should be connected in parallel. For

parallel-connected inductors, the current flows are inversely proportional to the inductances:

Im
In

=

∑
i Lin∑
i Lim

, (4.20)

where i is the index for thickness divisions.

4.2.4.4 Calculate Inductors’ Ratios for Thickness Divisions

Contrary to the width division, inductors divided along the thickness should be connected

in series with the ratios determined by the magnetic-flux ratios:

Lmj

Lnj

=
ϕmj

ϕnj

=
Hmj × dm

Hnj × dn
, (4.21)

where j is the index for width divisions, dm and dn are the thickness for different divisions,

Hmj and Hnj are average H fields magnitude in sub-regions.
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Figure 4.9: Complete circuit model for the 5*4 inductors array.

4.2.4.5 Calculate Individual Inductances

Having obtained the inductances’ ratios both in the width direction and the thickness di-

rection, we can calculate their values using the fact that the total inductance should recover

the original CPW line inductance L0, as shown in Fig. 4.8. The individual inductances are

listed in the following section.

4.2.4.6 Insert Parallel Pumping and Perpendicular Pumping Spin Units

As discussed in section 5.2.3, the interaction between ferrites and transmission lines can

be modeled by cascading three-port spin units with transmission line inductors. When the

CPW line inductor is divided into a two-dimensional array, such cascading can be performed

element-wise, as depicted in Fig. 4.10. Because both parallel pumping and perpendicular

pumping can happen in CPW-FSLs, parallel pumping spin units and perpendicular pumping

RLC resonators are cascaded with sub-inductors. For each spin unit, its length (∆x), width

(∆z), and thickness (∆y) are specified according to the physical divisions,i.e., ∆x = ∆l and

∆y = ∆d.
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Figure 4.10: Complete circuit model for the inductors array with spin units. For linear

S-parameters simulation, the nonlinear spin units are replaced by linear RLC resonators

described in Fig. 4.5.

What needs special attention is that the widths of the spin units should not be equal to

the physical widths, i.e., w1, w2,. . . w5. Instead, we should assign ‘effective widths’ that

reflect the magnetic field information in that region. According to (4.19), the effective width

of the magnetic field line is larger, further away from the center conductor because the field

is smaller. With a uniquely defined current, the effective width can be calculated using

zc(ij) =
Ij

Hıj

. (4.22)
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Figure 4.11: Stripline FSL device structure that shows spin wave oscillations launched along

the thickness direction under the excitation of the RF wave traveling in the transmission

line. Courtesy of [76].

4.3 Model Validation

This section confirms the proposed circuit models with measurements from commercially

available stripline FSL [76] and CPW-FSL [93]. For stripline FSL, the magnetic field distri-

bution can be assumed to be uniform at the device’s cross-section. Hence, field nonuniformity

is not a major concern, so the model is simplified. For CPW-FSL, on the other hand, a com-

plete model with field nonuniformity has to be used to achieve a good agreement between

simulation and measurements.

4.3.1 Stripline FSL

The bottom half of a stripline FSL structure is illustrated in Fig. 4.11, which shows an

RF wave traveling toward the longitudinal direction excites spin wave oscillations along

the thickness of the YIG substrate. Fig.4.11 also shows a possible discretization strategy

for modeling, which divides the transmission line into multiple segments in its longitudinal

direction. For each segment, the current passing through the stripline feeds the RF energy

to the oscillation of the spin waves along the thickness direction through the nonlinear spin

precession model presented in Chapter 3, while the propagation of the spin waves between

the two thickness boundaries can be represented by the spin wave equivalent circuit in
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Figure 4.12: Proposed circuit model in the form of multiple segments of LC transmission

line model where a nonlinear spin unit is inserted into each LC unit. Each nonlinear spin

unit consists of a large group of nonlinear spin precession models, which are coupled to each

other through a series inductor representing exchange coupling.

Fig.3.16(d).

The resulting equivalent circuit for the entire FSL device is thus yielded, as depicted in

Fig.4.12, which consists of an LC ladder network that represents the transmission line but

with the insertion of the nonlinear spin unit into each LC unit. The Z-ports are also excited

by a common RF current representing the RF magnetic field under the center strip, which

is approximately uniform over the cross-section of the stripline.

Such a model is used to predict the performance of a commercially available stripline FSL

device presented in [76]. The stripline is 25 um wide, and the conductor is sandwiched by

two layers of 100 um thick, 200 um wide single-crystal YIG. The total length of the stripline

FSL is 38 mm, and the bias field applied is 100 Oe (7.96 x 103 A/m) in parallel with the
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RF field. The circuit model uses 5 divisions in the longitudinal direction and 500 divisions

in the thickness direction. The circuit parameters are chosen based on (3.24), (3.25), and

(3.37).

The dimension parameters are defined as follows. ∆z as the width of the ferrite, which

is 200um, ∆y or d as the thickness of each division in the thickness direction and with an addi-

tional factor of 1
2
to include the upper half of the stripline area, which is 100um/500/2=100nm.

∆x is the division in the longitudinal direction, which equals 38mm/5 = 7.6mm. The YIG is

assumed to have a saturation magnetization 1750 Oe (1.39× 105A/m) and a Gilbert damp-

ing constant of 5× 10−4. The entire circuit can be implemented in ADS and simulated with

either transient simulations or envelope simulations. The damping resistors in the circuits

are assumed to be thermal resistors, and their thermal noise excites the oscillation of spin

waves powered by the RF field through the nonlinear spin precession.

The following four metrics are used to characterize the performance of the FSL device.

(1) Limiting threshold. FSL devices start to attenuate the incoming RF signal when its

power is above a certain threshold. This threshold is determined by the linewidth of the

YIG material and the strength of the magnetic field, which is often controlled by the width

of the center strip. (2) Power-dependent insertion loss. The attenuation level to the strong

signal in FSL is nonlinear and depends on its power. Signal with higher power receives

greater attenuation. (3) Delay time. FSL devices require a certain amount of energy to be

established in the spin waves before they start to attenuate the incoming RF signal, which

leads to a delay in the power-limiting action. This delay time depends on the input power

level. (4) Frequency selectivity. The power-limiting mechanism of the FSL device is the

coupling of the RF energy of the strong signal to the half-frequency spin wave oscillations

in the material, which results in a significant energy loss to the strong signal. A weak signal

that co-exists with the strong signal but at a different frequency should not correlate with the

spin wave oscillations. It will thus not be attenuated in an ideal material with no damping.

However, due to the damping of the spin precessions in real material, a certain correlation
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Figure 4.13: Fig.4.12 Simulated results for the stripline FSL device with the proposed circuit

model, comparing to the measured results on the four metrics (a) Insertion loss vs. input

power at 3GHz. (b) Insertion loss vs. frequency at four different power levels. (c) Delay

time before the power limiting effect appears (d) Frequency selectivity when a strong signal

presents at 3GHz. Courtesy of [76].

may be formed when the weak signal frequency is close to the strong signal frequency, which

causes absorption of the weak signal. Frequency selectivity characterizes how narrow the

absorption band the strong signal creates to the weak signal.

The predicted results with the circuit model for the above four performance metrics are

plotted in Fig.4.13 (a)-(d) and compared with the experimental results presented in [76].
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Table 4.1: Simulation Inductors’ Values

/L0 /L0 /L0 /L0

L11 1.50 L21 1.23 L31 5.94 L41 1.73

L12 0.73 L22 0.97 L32 4.60 L42 1.31

L13 0.76 L23 1.41 L33 6.57 L43 1.81

L14 0.22 L24 0.54 L34 2.02 L44 0.52

L15 0.10 L25 0.29 L35 1.80 L45 0.45

Very good agreement is observed for all four metrics, which confirms the effectiveness of the

proposed model.

4.3.2 CPW FSL

The complete circuit model in Fig. 4.10 is implemented in the Advanced Design System

(ADS) to simulate a CPW-FSL device provided by a third-party manufacturer. The total

length of the CPW-FSL is 38 mm, and the center conductor width is 58 µm. The external

bias field is applied by permanent magnets with H0 = 352 Oe, yielding a FMR frequency at

2 GHz with Ny = 0.95, Nz = 0.05 and Ms = 1750Oe. The conductors are sandwiched by

two layers of 100 µm single-crystal YIG, making the effective width 116 µm. This is because

the magnetic field lines will circle the top and bottom YIG thin films, doubling the widths

of the YIG films. Experimental results including S-parameters, insertion loss, time delay,

IM spectrum, and frequency selectivity are used as references and compared with simulation

results from ADS to validate the proposed circuit model.

4.3.2.1 Simulation Setup

The discrete inductors’ values used in the circuit model are summarized in Table 4.1. They

are derived according to the simulated magnetic field distribution from Ansys HFSS and
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Table 4.2: Simulation Effective Widths

/w /w /w

zc11 0.0345*2 zc21 0.1264*2 zc31 0.3141*2

zc12 0.0725*2 zc22 0.1639*2 zc32 0.4179*2

zc13 0.0696*2 zc23 0.1133*2 zc33 0.2923*2

zc14 0.3144*2 zc24 0.3809*2 zc34 0.8802*2

zc15 0.5176*2 zc25 0.5467*2 zc35 1.0560*2

(4.19)∼(4.21). The values for the transmission line (TL) inductance and capacitance are

also extracted from Ansys HFSS to be L0 = 0.87nH and C0 = 0.49fF for one FSL unit

of length 1.52 mm. We can verify that the combination of these inductors will recover the

original TL inductance. In other words,

∑
i

Li1

∥∥∥∥∥∑
i

Li2

∥∥∥∥∥∑
i

Li3

∥∥∥∥∥∑
i

Li4

∥∥∥∥∥∑
i

Li5 = Lo. (4.23)

Table 4.2 summarizes the effective widths for the spin units according to (4.22). They

are normalized to the CPW conductor width (58 µm). Each zcij is multiplied by a factor of

two to represent the double-layer effect. It is worth noting that the effective width is smaller

for the spin units at the larger magnetic field region, i.e., zc11, compared with that of the

spin units at the smaller magnetic field region, i.e., zc31.

Table 4.3 lists other simulation parameters. Notably, the damping constant α and the

effective bias fields are made different for broadband simulations. The rationale for such

changes are given in the Appendix. Apart from these changes, all other simulation param-

eters are defined from the physical device structure. For example, the length for one spin

unit is 38mm/N = 1.52mm, where N is the number of divisions along the length. The

thicknesses for the spin units, on the other hand, relate with the physical thickness by the

number of divisions along the thickness Nd. Note that this division is in addition to the

division d1 ∼ d4 based on the field profile.

80



Table 4.3: Other Simulation Parameters

Symbol Meaning Value

Ms Saturation magnetization 1750Oe

α1 Damping constant @4GHz 9.8× 10−4

α2 Damping constant @5GHz 8.9× 10−4

α3 Damping constant @6GHz 8.0× 10−4

H0 External bias field 352Oe

H02 Effective bias field @ 5GHz 475Oe

H03 Effective bias field @ 6GHz 613Oe

θ Angle between the bias field and the RF field 9◦

N Number of units divided in length 25

Nd Number of units divided in thickness 5

d1 thickness of divided regions 11∼15 2.5 µm

d2 thickness of divided regions 21∼25 7.5 µm

d3 thickness of divided regions 31∼35 90 µm

d4 thickness of divided regions 41∼45 100 µm

w1 width of divided regions 11∼41 2 µm

w2 width of divided regions 12∼42 4 µm

w3 width of divided regions 13∼43 4 µm

w4 width of divided regions 14∼44 18 µm

w5 width of divided regions 15∼45 30 µm

xc spin unit length 38/N = 1.52mm

Continued on next page
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Table 4.3: Other Simulation Parameters (Continued)

yc1 spin unit thickness for d1 2.5/Nd=0.5 µm

yc2 spin unit thickness for d2 7.5 µm

yc3 spin unit thickness for d3 90 µm

zc spin unit effective width From Table II

L0 TL inductance for one FSL unit 0.87 nH

C0 TL capacitance for one FSL unit 0.49 fF

Nx Demagnetization factor in x direction 0

Ny Demagnetization factor in y direction 0.95

Nz Demagnetization factor in z direction 0.05

4.3.2.2 Comparison Between Simulation and Measurements

• Small Signal S-parameters

The comparison between small signal simulated S-parameters and measurements are shown

in Fig. 4.14 from 1 GHz to 8 GHz. A broadband match is indicated in S11 because the

characteristic impedance of the CPW line is designed to match 50 ohm port impedance.

From the S21 plot, the FMR absorption starts at around 2 GHz. The absorption from 3 GHz

to 4 GHz, on the other hand, is attributed to the excitation of magnetostatic waves, which

will be included in future publications.

• Large Signal Insertion Loss

The large signal insertion loss of the CPW-FSL device was obtained from the decibel value of

the output power over the input power. The comparisons between the measurement results

and the simulation results at 4 GHz, 5 GHz, and 6 GHz are shown in Fig. 4.15(a). With a

bias field of H0 = 254 Oe, the FMR frequency is 2 GHz, so the FSL power absorption starts
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(a) (b)

Figure 4.14: Small signal (a) S11 (b) S21 comparison between measurement, circuit simula-

tion, and full wave simulation from 1 GHz to 8 GHz.

at 2 × fr = 4 GHz. Higher frequency, on the other hand, excites higher-order spin waves

propagating along the periodic circuit in Fig. 4.2.

The comparisons between the measurement results and the simulation results are shown

in Fig. 4.15(a). The simulation results have a good match with the measurement results,

showing a power threshold of 0 dBm, 5 dBm, and 8 dBm for 4 GHz, 5 GHz, and 6 GHz

excitations, respectively.

Specifically, the comparison between the uniform model and nonuniform model is shown

in Fig. 4.15(b). The red dotted line is the simulation results without considering field

nonuniformity, i.e., the model in [76] where a single L0 is used. The blue solid line, on the

other hand, is the simulation results considering field nonuniformity, i.e., the model in Fig.

4.10 where the inductor array is used. By considering field nonuniformity, the softening of

the power threshold can be predicted because the spin units are excited nonuniformly.

• Time Delay

In FSLs, the buildup of spin wave oscillations requires time, which leads to a certain time
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(a) (b)

Figure 4.15: (a) Comparison of insertion loss between measurement results and simulation

results with input power sweeping from -10 dBm to 20 dBm at 4 GHz, 5 GHz, and 6 GHz.(b)

Comparison of insertion loss between measurement and simulation results with and without

considering field nonuniformity. The input power sweeps from -10 dBm to 20 dBm at 4 GHz.

delay before the device attenuates a large signal. Such time delay can be quantified by

measuring voltage waveforms at the output of the FSL device. The measurement set-up is

shown in Fig. 4.16, where a 4 GHz signal is generated by a Tektronix Arbitrary Waveform

Generator (AWG) 7112C with a 12 Gs/s DAC sampling rate. Afterwards, the signal is

connected to a power amplifier (PA) to provide high-power signals to the FSL device. The

output of the FSL is then connected to the digital oscilloscope with a 100 Gs/s sampling rate

to capture the output voltage waveforms. The comparison of voltage waveforms is shown

in Fig. 4.17. Initially, at time t = 0, the high-power signal passes through the FSL device

unaffected by the YIG film, causing a large output peak voltage. After some time, however,

the power-limiting effect shows up, and the output voltage peak-to-peak value becomes

smaller because the signal power is lost in the YIG film. In addition, when the input power

becomes larger, the delay time becomes shorter. The time delay for Pin=12 dBm was 0.85

µs, while the time delay for Pin=16 dBm was 0.65 µs. A close match between simulation
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Figure 4.16: FSL transient measurement set-up.

(a) (b)

Figure 4.17: Comparison of voltage waveforms at 4 GHz at the FSL output between mea-

surement (dotted red lines) and simulation (solid blue areas) with input power to FSL of (a)

12 dBm and (b) 16 dBm.

and measurement results indicates that the proposed circuit model can predict the transient

response of the FSL device in addition to the steady-state response, i.e., insertion loss.

• Intermodulation (IM) Spectrum

Due to the nonlinear nature of the FSL device, intermodulation (IM) tones will be generated

when more than one frequency tone is present at the input, with at least one above thresh-

old[24]. A sample signal spectrum at the output of the device is shown in Fig. 4.18, where

two tones are present, with f1 at 3.997 GHz and f2 at 4.003 GHz. The two signals have

different powers, with P1 =10 dBm and P2 =-12.6 dBm. According to Fig. 4.15, the power
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Figure 4.18: IM spectrum comparison between simulation (blue lines) and measurement (red

dots) when P1=10 dBm at 3.997 GHz and P2=-12.6 dBm at 4.003 GHz.

(a) (b)

Figure 4.19: IM3 power comparison between simulation (dashed lines) and measurement

(solid lines) when (a) P1=P2 sweeps from 0 dBm to 10 dBm, with f1=3.997 GHz and

f2=4.003 GHz (b) P1 sweeps from 0 dBm to 10 dBm at 3.997 GHz and P2=-12.6 dBm at

4.003 GHz..

threshold at 4 GHz is around 0 dBm, making f1 an above-threshold signal. As a result,

IM tones are generated at the output. Specifically, third-order IM tones are generated at

2∗f1−f2 =3.991 GHz and 2∗f2−f1 =4.009 GHz. The comparison between simulation and
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Figure 4.20: Frequency selectivity comparison between simulation (blue dashed line) and

measurement (black solid line) when P1=10 dBm at 4 GHz and P2=-10 dBm sweeps from

3.95 GHz to 4.05 GHz.

measurement indicates that the circuit model is capable of predicting the IM tone’s power

levels to a certain degree.

Fig. 4.19 shows more results with input power level sweeping. For example, Fig. 4.19(a)

shows the third-order intermodulation (IM3) tones power comparison at different frequencies

between simulation (dashed lines) and measurement (solid lines) when P1 sweeps from 0 dBm

to 10 dBm at 3.997 GHz and P2 remains to be -12.6 dBm at 4.003 GHz. On the other hand,

Fig. 4.19(b) shows the output power comparison with equal-power input tones. In other

words, P1 = P2 sweeps from 0 dBm to 10 dBm. In this case, stronger IM3 tones are generated

because the two signals are over-threshold. The discrepancies between the simulation results

and the measurement might be attributed to the inhomogeneous bias field in the device that

is hard to quantify in the current device setup.

• Frequency Selectivity

Frequency selectivity reflects FSL’s capability to limit a large signal without affecting a small
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Figure 4.21: Justification of the asymmetry in the frequency selectivity plot. IDC ext is the

external DC current, and IDC int is the internal DC current.

signal nearby if the frequency separation is a few tens of MHz. This behavior is measured

and simulated by fixing an over-threshold (10 dBm) signal at 4 GHz while sweeping a below-

threshold (-10 dBm) signal from 3.95 GHz to 4.05 GHz. A comparison of small signal

insertion loss between the simulation and measurement is shown in Fig. 4.20. It’s worth

noticing that the maximum absorption occurs slightly higher than the large signal frequency

at 4 GHz. This shift of frequency and the asymmetry of the small signal insertion loss is

believed to be caused by the reduction of the DC demagnetization field caused by large spin

wave amplitudes [74]. To be specific, the internal bias field is related to the external bias field

by Hi = H0 − NzMz. With small RF excitation, Mz ≈ Ms. However, when the RF power

becomes larger, Mz < Ms because of the increase of spin precession angle. Consequently,

the internal bias field becomes larger, resulting in a higher FMR frequency. In the circuit

perspective, as shown in Fig.4.21, the external bias current IDC ext is shared between Ldz and

Lz, where Ldz is related with Nz according to (3.25) and Lz is a nonlinear inductor. With

higher power, Lz becomes smaller, causing a greater IDC int. This shift of FMR frequency to

a higher end accounts for the observed asymmetry in Fig.4.21. This phenomenon has also

been reported in [70] and [94]. The fact that the demagnetization in all dimensions has been

included in the three-port spin model provides the modeling capability of such asymmetry.
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Table 4.4: Computation Time With Different Simulators

Simulators
Linear

simulation

Nonlinear

simulation

HFSS
> 20 hrs for the entire device;

2 hrs for 1/8 of the device
Not capable

ADS with circuit in [76] 10 secs 7 hrs

ADS with circuit in [93] 10 secs 2 hrs

4.4 Model Evaluation: Computation Time

A comparison of computation time with different simulators is included in Table 4.4. For

linear simulations, the circuit simulator takes significantly less time than the full-wave sim-

ulator Ansys HFSS [50]. In practice, only 1/8 of the entire device is simulated in HFSS to

extract the field profile. On the other hand, the computation time for nonlinear simulations

depends on the total number of spin units. For the circuit in [76] (for a stripline-FSL), 500

divisions are created in the thickness direction and five in the length direction, resulting in

2500 spin units in total. For the circuit in [93] (for a CPW-FSL), 35 spin units are included in

one FSL unit, with 25 FSL units connected in the length direction. Hence, there are 875 spin

units, resulting in a shorter simulation time with even better simulation accuracy with field

nonuniformity considered. The number of thickness divisions is smaller with Nd = 5 because

broadband simulation is mainly facilitated by changing effective bias fields and damping con-

stants. Otherwise, Nd is directly related to the highest frequency the circuit can simulate.
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CHAPTER 5

Modeling and Design of Millimeter Wave Resonators

and Filters Based on Hexagonal Ferrite

5.1 Background and Motivation

As discussed in Chapter 1, magnetic resonators and filters based on ferromagnetic resonance

(FMR) have been demonstrated since the 1960s [101, 102] through embedding YIG spheres

in a waveguide structure. They can achieve broader frequency ranges than electrical filters

and mechanical filters because the tuning is directly related to the FMR frequency of the

ferrite material, which changes both its effective inductance and capacitance at the same

time.

Recently, there has been a critical need to extend current microwave magnetic devices

into the millimeter wave range to exploit the frequency spectrum further. Two important

strategies have evolved to boost the operating frequency of the magnetic filters. One is

to use high-4πMs ferromagnetic metals to replace the low-4πMs YIG ferrites. It has been

demonstrated that using metallic thin films allows for the practical development of notch

or band-stop [40] and bandpass filters [41]. The second strategy is to use low-loss hexag-

onal ferrites. The hexagonal ferrites have built-in high anisotropy fields and can provide a

self-biasing for mm-wave applications in the 30–100 GHz range. Recent simulations have

demonstrated the feasibility of hexagonal ferrite-based, stripline-type, mm-wave filters [42].

Experimentally, [43] demonstrates a prototype mm-wave notch filter based on a BaM slab

with an in-plane uniaxial anisotropy field of 17 kOe, which facilitates the operation of the
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filter over 51–54 GHz for an external field range of 1500–2700 Oe. The device is compatible

with monolithic integrated circuits. In addition to notch filters, bandpass filters using hexag-

onal ferrites have also been demonstrated based on coupled waveguides [44]-[46]. In [44], M.

Sterns et al. presented a novel tunable bandpass filter based on open-ended fin lines. Hexag-

onal ferrite spheres are used as resonators to cover a tuning frequency range from 39 GHz to

68 GHz. The measured insertion loss of the filter varies from 5.3 dB to 7 dB, with a typical

3 dB bandwidth between 300 MHz and 400 MHz. The stacking of two waveguides achieves

off-resonance isolation of about 60 dB. A multi-slot iris is carefully designed to couple two

resonator spheres while maintaining good off-resonance isolation. A similar structure using

shielded co-planar waveguides (CPW) is presented in [46].

Despite these continuous research interests, several factors hinder the design of mm-

wave magnetic resonators or filters. Firstly, there is no systematic way of design, and full-

wave simulators are heavily relied on to tune device parameters. Secondly, no performance

metrics are used to evaluate the device performance based on different coupling structures.

Thirdly, the waveguide-based design in [44]-[46] is bulky in size, with potential room for

better integration of bulk BaM crystal spheres.

This section discusses the modeling and design of BaM resonators and filters based on

the equivalent circuit representation. It expands from the state-of-the-art magnetic filter

design in the following aspects:

• A systematic way is proposed to design mm-wave BaM resonators and filters. The res-

onator is optimized for a good energy coupling coefficient and then coupled to construct

a bandpass filter.

• A performance metric for BaM resonators is proposed using an equivalent circuit model,

which quantifies the efficiency of coupling between electromagnetic (EM) waves and

spin precession. A discussion on the effects of different device parameters on coupling

factors is included.
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• The design procedure for a bandpass filter through coupling several BaM resonators is

delineated.

• A planar printed-circuit-board-based design of BaM resonators and filters is fabricated

and measured. A comparison between measurement results and simulation results

validates the proposed design procedure.

• A Small device form factor is achieved, with an effective resonator of 1.1 mm × 1.5

mm and bandpass filter of size 9 mm × 2.4 mm.

5.2 Modeling and Design of Resonators Built With BaM Sphere

Using sphere-shaped resonators offers significant benefits due to the direct linear relationship

between the resonant frequency ωr and the external bias field H0,ext, which is given by

ωr = µ0γ(H0,ext +Ha) (5.1)

whereHa represents the anisotropic field strength and is in the same direction as the bias field

H0,ext. In this section, the modeling of BaM sphere resonators is included, and device metrics

are proposed to quantify the resonator design with different transmission line structures.

5.2.1 Equivalent Circuit Representation of BaM Sphere Resonators

A hexagonal ferrite sphere has a diameter d and is biased in the z-direction, whose anisotropy

field Ha aligns with external bias field direction H0,ext. Hence, Ha can be treated as part

of the bias current in the circuit model constructed in Chapter 3, Fig. 3.2. An RF mag-

netic field Hrf is applied in the X-direction, provided by a transmission line. The two-port

gyrator circuit equivalence is modified from Fig. 3.2 to become as shown in Fig. 5.1, with

the corresponding circuit elements’ value. Note that the volumetric effect of the sphere is

included in a scaling factor π/6, as discussed in [64].
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Figure 5.1: Two-port equivalent circuit model for the barium hexagonal ferrite sphere biased

in z direction.

Zg = µ2
0γMsd

π

6
(5.2)

Lx = µ0
MS

H0,ext +Ha

d
π

6
(5.3)

Ly = µ0
MS

H0,ext +Ha

d
π

6
(5.4)

Ldx = µ0
dπ

(Nx −Nz) 6
= O · C ·

(
Nx = Nz =

1

3

)
(5.5)

Ldy = µ0
dπ

(Ny −Nz) 6
= O · C ·

(
Ny = Nz =

1

3

)
(5.6)

With a transmission line excitation, the RF magnetic can be assumed to be in the X-

direction. Hence, the two-port circuit model can be simplified to one-port, as shown in Fig.

5.2. Specifically, Ly is transformed from Zg to become Cm:

Cm =
Ly

Zg
2
=

1

µ0ω0ωm

6

dπ
(5.7)

And the resonance frequency is given by:

ωr =
1√

LmCm

= ω0 = µ0γ(H0,ext +Ha) (5.8)

which corresponds with the FMR frequency for a ferrite sphere according to Kittle’s equation.
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Figure 5.2: One-port equivalent circuit model for the barium hexagonal ferrite sphere.

Figure 5.3: HFSS schematic of a BaM resonator. (a) 3D view.(b) Side view. A microstrip

line of width 0.2mm is excited on the left side and grounded on the right side. The BaM

sphere is inserted inside a blind via near the grounding vias.

5.2.2 Modeling of a Transmission Line loaded BaM Sphere Resonator

5.2.2.1 Device Schematic

A transmission line is necessary to excite the BaM sphere resonator. Specifically, the mi-

crostrip line is known to have a uniform field distribution inside the substrates, making it a

good candidate for FMR mode excitation. A proposed design schematic is shown in Fig.5.3,
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where a microstrip line of width 0.2 mm is set on top of the Rogers 4003C substrate of

thickness 0.51mm. It is excited through a lumped port on the left-hand side and grounded

through three vias on the right-hand side. The extra feeding length of the microstrip line

facilitates the connection of end-launch connectors during PCB fabrication. This feeding line

is not part of the resonator structure and will be de-embedded using the Thru-Reflect-Line

(TRL) technique [101].

The BaM sphere is placed next to the shorted end of the microstrip line inside a blind

cylindrical via with radius r = 0.2mm and thickness hvia = 0.4mm. The blind via is greater

than the BaM sphere to facilitate easy assembly and allow the sphere to rotate freely inside

the via when the bias field is applied for its self-alignment between the anisotropy field and

the bias field. By doing this, no manual alignment is needed during the fabrication process.

5.2.2.2 Equivalent Circuit Model for the Resonator

Figure 5.4: Equivalent circuit model for the transmission line loaded ferrite resonator.

The complete circuit model for the transmission line loaded ferrite sphere resonator be-

comes as shown in Fig.5.4. The feeding part is a microstrip line of length Lf in this case,

while it can also be any S-parameter box output from the TRL calibration. The effective
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resonator comprises several sections of the LC ladder network, with parallel RLC resonators

representing the BaM sphere inserted in between. Another section of the transmission line

represents the grounding parasitics. At the effective resonator region, the transmission line

(a) (b)

Figure 5.5: Illustration of magnetic flux and transmission line inductance (a) without ferrite

sphere. (b) with a ferrite sphere. The equivalent ferrite resonator ∆Lm,∆Cm,∆Rm is

inserted into one branch of the transmission line inductor.

inductor Lo is divided into two parallel-connected sub-inductors (k1L0, k2L0) to reflect that

the BaM sphere is only present inside the substrate, the bottom half of the microstrip line. In

other words, not all magnetic flux is enclosed by the BaM sphere, with a certain air portion.

The detailed reasoning of such division is similar to the CPW-FSL modeling, as delineated

in Chapter 3. With a microstrip line, the magnetic field can be assumed to be uniform along

the width direction. Hence, the transmission line inductance L0 can be divided into two 2L0,
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Figure 5.6: Comparison of Re(Zin) and Imag(Zin) of the entire structure between HFSS

simulated results (red lines) and ADS circuit results (blue lines) when there is no BaM

sphere.

as shown in Fig. 5.5 (b), representing the substrate and air flux, respectively.

5.2.2.3 Validation of the Equivalent Circuit Model

The proposed circuit representation can be validated against full-wave simulations for the no-

ferrite and with-ferrite cases. For the no-ferrite case, a comparison of Re(Zin) and Imag(Zin)

is shown in Fig. 5.6. The transmission line inductance at the effective resonator region is

extracted to be L0 = 0.24nH. The transmission line capacitance C0 is calculated by C0 =
L0

Z2
0
,

substituting Z0 = 120Ohm for a line width of 0.2 mm. In addition, it is worth noticing that

the transmission line itself yields multiple resonances with Lf = 9.3mm.

With the ferrite resonator added, parallel RLC resonators are distributively connected

to the transmission line, as shown in Fig.5.4. The values of ∆Lm and ∆Cm are calculated

rigorously from equations (5.6) and (5.7). Specifically, an internal effective field of 13333

Oe is applied in the Z-direction during simulation, which in practice consists of both an

external bias field and an internal anisotropy field. Substituting d = 300µm, H0,ext +Ha =

13333Oe +Ms/3, and Ms = 4600Oe to (5.6), the theoretical Lm is calculated to be 60 pH,
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Figure 5.7: Comparison of Re(Zin) and Imag(Zin) of the entire structure between HFSS

simulated results (red lines) and ADS circuit results (blue lines) when there is a BaM sphere.

with a theoretical FMR frequency of 41.2 GHz. Since two parallel RLCs are inserted in a

distributed fashion, each resonator should yield half of the theoretical Lm inductance. In

other words, ∆Lm = 1
2
Lm = 30pH.

A comparison between full-wave and circuit model simulation results with the sphere

resonator is included in Fig.5.7. With the addition of the BaM sphere, The simulation

results in terms of real(Zin) and imag(Zin) match roughly between full-wave simulation

and circuit model. The remaining discrepancies may be because the sphere is not excited

uniformly in simulation, while equations (5.6) and (5.7) assume a uniform excitation.

5.2.2.4 TRL Calibration of the Feeding Part

The ferrite resonator is fed through a feed-in line. In simulation, it is a microstrip line of

length Lf . In the experiment, it combines a connector and a microstrip line, which adds

to additional losses and phase shifts. Hence, it is essential to de-embed the feed-in line’s

effect to see the effective resonator’s real response, which is the orange portion in Fig. 5.4.

Here, the Thru-Reflect-Line (TRL) technique [101] is adopted. The calibration procedure

is illustrated in Fig.5.8, and the HFSS schematic is shown in Fig.5.9. Specifically, three
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Figure 5.8: TRL calibration setup.

Figure 5.9: TRL calibration setup in HFSS.

sets of measurements (through, reflect, and line) are performed, generating three sets of

S-parameters: [T ],[R], and [L]. The ‘Through’ measurement means two symmetrical feeding

parts are connected, and the S-parameter [T ] is obtained. ‘Reflect’ measurement means the

reference plane between two feeding parts is left open or short, with a reflection coefficient ΓL.

In this case, it is open. The corresponding S-parameter [R] is obtained. ‘Line’ measurement

means the reference plane between two feeding parts is connected using a transmission line

with length l and a characteristic impedance Zo = 50Ohm. The S-parameter [L] is obtained.

Using the signal flow graph approach, the S-parameters of the feeding parts [S] are related
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Figure 5.10: Plot of (a) Re(Zin) (b) Imag(Zin) (c) dB(S11) of the entire resonator.

Figure 5.11: Plot of (a) Re(Zin) (b) Imag(Zin) (c) dB(S11) of the effective resonator after

feed-in deembedding.
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to [T ], [R], [L] by the following equations:

T11 = S11 +
S22S2

12

1−S22
2

T12 =
S12

2

1−S22
2

R11 = S11 +
S12

2ΓL

1−S22ΓL

L11 = S11 +
S22S12

2e−2γl

1−S22
2e−2γl

L12 =
S12

2e−2γl

1−S22
2e−2γl

(5.9)

Solving equation (5.9) leads to the following expressions for feed-in S-parameters:

eγℓ =
L2
12+T 2

12−(T11−L11)
2±

√
[L2

12+T 2
12−(T11−L11)

2]
2
−4L2

12T
2
12

2L12T12

S22 =
T11−L11

T12−L12e−γℓ

S11 = T11 − S22T12

S2
12 = T12 (1− S2

22)

ΓL = R11−S11

S2
12+S22(R11−S11)

(5.10)

Note that the choice of sign for eγℓ can be determined by the requirement that imaginary

parts of γ be positive or by knowing the phase of ΓL to be within 90 degrees (for an open

connection for the ’reflect’ measurement). After feeding part de-embedding, the effective

resonator response in terms of Re(Zin), Imag(Zin), and dB(S11 is included in Fig. 5.11. We

can notice the difference between the effective resonator and the whole structure, as plotted

in Fig. 5.10 (a) - (c) for comparison. After feed-in line de-embedding, the transmission

line resonances are shifted further away from the frequency band of interest, and the ferrite

resonance at 41 GHz can be seen clearly in Fig. 5.11 (a) and Fig. 5.11 (b). On the other

hand, the S-parameter plots are similar for both cases, with the dip corresponding to the

FMR frequency.

5.2.2.5 Energy Coupling Factor

Common performance metrics should be defined to quantify and characterize the perfor-

mance of ferrite resonators built with different structures. In surface acoustic wave (SAW)
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Figure 5.12: Equivalent circuit model to define coupling factor.

and bulk acoustic wave (BAW) resonators, an important design metric is the ’energy cou-

pling factor,’ defined as the ratio between the internal resonator capacitance Cm and the

external electrode capacitance C0 [103, 104]. Similarly, the energy coupling factor in the fer-

rite resonator system can be defined as the ratio between ferrite inductance Lm and external

transmission line inductance L0. In other words,

c =
Lm

Lo

. (5.11)

Specifically, the equivalent circuit representation is illustrated in Fig. 5.12 for the mi-

crostrip line structure described earlier. Due to fabrication limits, the transmission line

length at the resonator region can not be well represented by a single inductor. On the other

hand, several sections of the LC ladder network have to be cascaded with several PRLC

units representing ferrite to form an entire circuit equivalence. Note that Fig. 5.12 is an-

other form of Fig. 5.4. In Fig. 5.4, the PRLC is in series with one branch of transmission

line inductance to reflect the physics of the structure. In Fig. 5.12, the PRLC is in series

with the LC ladder network to extract the coupling factor. Obviously, the values for ∆L
′
m,

∆C
′
m, and ∆R

′
m in Fig. 5.12 should not be the same as ∆Lm, ∆Cm, and ∆Rm in Fig. 5.4

102



Table 5.1: Parameter value in Fig. 5.12

∆R
′
m ∆L

′
m ∆C

′
m L

′
0 C

′
0 c

100Ohm 2.1e−12H 7.1e−12F 1.3e−10H 9.028e−15F 1.6%

due to different circuit topology. The values are of ∆L
′
m, ∆C

′
m, and ∆R

′
m are summarized

in Table 5.1.

A coupling factor of 1.6% is yielded for the current design. From equation (5.11), we

can identify some design considerations that would affect the coupling factor. Firstly, the

transmission line inductance L0 is directly related to its length, thickness, and line width. To

fully contain the sphere inside the substrate, the substrate must be thicker, which is 0.51 mm.

This thickness effectively increases the inductance of the grounding via. Secondly, the sphere

does not occupy the entire closed flux region, as shown in Fig. 5.5. Hence, its contribution

to the overall inductance is obscured. A better design can improve the current coupling by

optimizing the excitation structure or using planar material for a closed flux. In addition, it

is worth noticing that the feeding part doesn’t affect the coupling factor because it can be

de-bedded. However, the grounding inductance will affect the coupling factor because it’s

part of the resonator design.

5.3 Modeling and Design of Bandpass Filters Built With BaM

Spheres

With the design of a resonator, it is convenient to move forward to the design of a filter by

coupling several resonators together. Both bandstop and bandpass filters can be realized,

and the process for designing a bandpass filter is delineated in the section.
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Figure 5.13: Design parameters to optimize the resonator. dvia is the diameter of grounding

vias. Lres is the length of the transmission line at the effective resonator region. wres is the

width of the transmission line. hsub is the substrate thickness. Lf is the length of the feed-in,

but it doesn’t affect the effective resonator performance.

5.3.1 Optimize Resonator Topology for a High Coupling Factor

The coupling factor defined in the previous section indicates how efficiently energy can be

coupled to excite resonances in ferrites through the excitation of electromagnetic waves.

When coupling several resonators to build a filter, the coupling factor will affect the filter

insertion loss at the passband. Hence, it is desirable to optimize the resonator topology for a

good coupling factor before proceeding to the filter design. Fig. 5.13 shows several physical

parameters that can be optimized. dvia is the diameter of grounding vias. Lres is the length

of the transmission line at the effective resonator region. wres is the width of the transmission

line. hsub is the substrate thickness. Lf is the length of the feed-in, but it doesn’t affect

the effective resonator performance. The best design with fabrication considerations in mind

yields a coupling factor of 1.6% when wres = 0.2mm, Lres = 0.6mm, dvia = 0.5mm, and

hsub = 0.51mm. The effects of device parameters are included below.
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Table 5.2: Effect of conductor width

wres ∆R
′
m ∆L

′
m ∆C

′
m L

′
0 C

′
0 c

0.2mm 100Ohm 2.0e−12H 7.1e−12F 1.3e−10H 9.028e−15F 1.5%

0.6mm 60Ohm 8e−13H 1.84e−11F 8.25e−11H 1.391e−14F 1.0%

1.0mm 50Ohm 6e−13H 2.44e−11F 6.65e−11H 1.977e−14F 0.9%

1.4mm 30Ohm 4e−13H 3.67e−11F 5.65e−11H 2.558e−14F 0.7%

(a) (b)

Figure 5.14: Effect of (a) conductor width and (b) grounding vias’ diameter on the coupling

factor.

5.3.1.1 Effect of Conductor Width

The center conductor width wres affects both the ferrite inductance ∆L′
m and the transmis-

sion line inductance L′
o. Table 5.2 summarizes the inductors’ values, and the corresponding

coupling factors are plotted in Fig. 5.14(a). From Table 5.2, both ∆L′
m and L′

o decrease with

the width increasing. The former is because the ferrite sphere occupies a smaller percentage

of the magnetic flux with the width increasing. From Fig. 5.5(b), Lm will be obscured

when β > α, leading to a smaller ∆L′
m. The latter is because the transmission line yields

a smaller characteristic impedance and self-inductance when wres increases. The resulting
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Table 5.3: Effect of grounding vias’ diameter

dvia ∆R
′
m ∆L

′
m ∆C

′
m L

′
0 C

′
0 c

0.25mm 100Ohm 2.0e−12H 7.1e−12F 1.3e−10H 9.028e−15F 1.5%

0.20mm 100Ohm 2.1e−12H 7.1e−12F 1.35e−10H 9.41e−15F 1.5%

0.15mm 100Ohm 2.1e−12H 7.1e−12F 1.395e−10H 9.688e−15F 1.5%

0.10mm 100Ohm 2.1e−12H 7.1e−12F 1.595e−10H 1.108e−14F 1.3%

0.05mm 100Ohm 2.1e−12H 7.1e−12F 1.945e−10H 1.351e−14F 1.1%

coupling factor, on the other hand, increases as wres decreases. It is worth noticing that a

similar conclusion arrived in [46], where a high-impedance CPW line is used to couple energy

effectively to the BaM sphere. The data in Table 5.2 is generated with a grounding vias’

diameter dvia=0.25mm based on microstrip line excitation.

5.3.1.2 Effect of Grounding Vias’ Diameter

The grounding vias act as an inductor whose inductance is primarily dominated by their

diameters dvia. With an equivalent circuit representation shown in Fig. 5.12, this extra

inductance will be added on top of the transmission line inductance and affect the effective

air inductance for the resonator, i.e., L′
0. Table 5.3 and Fig. 5.14 (b) show the influence of

via diameters on the coupling factors. The coupling factor decreases with the via diameter

decreasing because of a greater L′
0. The data in Table 5.3 is generated with a conductor

width wres=0.2mm based on microstrip line excitation.

5.3.1.3 Effect of Transmission Line Topology

Transmission line topology also plays an important role in the coupling factor. A CPW line

is used as an example. Fig. 5.15(a) shows the 3D view of the CPW line resonator under the

same biasing field in the Z-direction. Fig. 5.15 (b) shows the top view, and it can be seen
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(a) (b)

Figure 5.15: (a) 3D view and (b) top view of the CPW line resonator.

Table 5.4: Effect of transmission line topology

Topology ∆R
′
m ∆L

′
m ∆C

′
m L

′
0 C

′
0 c

MLIN 100Ohm 2.0e−12H 7.1e−12F 1.3e−10H 9.028e−15F 1.5%

CPW 30Ohm 8e−13H 1.86e−11F 9.95e−11H 1.345e−14F 0.8%

that the BaM sphere is placed near the short end. Table 5.4 compares the extracted circuit

parameters for the microstrip line (MLIN) and CPW line (CPW) when the conductor width

wres is fixed at 0.2mm. The transmission line inductance L′
0 is smaller for the CPW case

under the short grounding path. However, the ferrite inductance ∆L′
m is also smaller since

the magnetic field is concentrated near the conductor plane, which does not interact with

the sphere as much, which is embedded inside the substrate. The resulting coupling factor

c is also smaller for the CPW case.

A resonator design using BaM films under IC technology can potentially exceed a coupling

factor of 5%, and the details are included in Appendix B and [106].
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Figure 5.16: Tune input impedance of the resonator by adding another transmission line

with length Lt and width wt.

(a) (b)

Figure 5.17: Input impedance of (a) the effective resonator. (b) after adding a transmission

line or capacitor.

5.3.2 Add Tuning Transmission Line or Capacitor

Due to the small coupling factor, the transmission line inductance has a great impact on the

ferrite resonator. In other words, the input impedance of the effective resonator, i.e., Zin1 in

Fig. 5.16, does not look like that of a parallel RLC resonator. On the other hand, microwave

filter theory requires that several RLC resonators be coupled together. Hence, action must

be taken to ’eliminate’ the effect of the transmission line inductance L0, at least in a narrow

108



(a) (b)

Figure 5.18: Magnitude of the input impedance of (a) effective resonator (b) after adding a

transmission line or capacitor.

frequency band.

As shown in Fig. 5.16, an extra transmission line of length Lt and width wt is added

to the effective resonator with design parameters fixed from the previous step. The input

impedance of the effective resonator is denoted as Zin1, while the input impedance after

adding this extra transmission line is denoted as Zin2. Fig. 5.17 illustrates the effect of

this additional transmission line on the circuit equivalence. When Lt >
λ
4
, where λ is the

electromagnetic wavelength inside the substrate, the transmission line behaves as a capacitor,

i.e., Ctune. One can also construct a real capacitor rather than using a transmission line.

Either way, this addition Ctune is chosen to form a series resonance with L0 at the FMR

frequency, as shown in Fig. 5.17 (b). In this way, the effect of L0 is eliminated near the

resonance.

Fig. 5.18 compares the magnitude of input impedance, i.e., mag(Zin1) and mag(Zin2).

We can identify thatmag(Zin2) resembles that of a PRLC resonator near its center frequency

of 42 GHz. Another intuitive understanding of such impedance conversion is that the extra

line length Lt is chosen such that Lt + Lres = λ
2
. This way, the input impedance of the
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Figure 5.19: HFSS schematic of a two-pole bandpass filter.

Lt + Lres transmission line is near zero at center frequency. When the ferrite is present, it

adds to the zero impedance to behave as a parallel RLC circuit. In simulation, Lt and wt

are tuned to be Lt = 1.4mm and wt = 0.4mm.

5.3.3 Couple Resonators with Quarter-Wavelength Transmission Lines

After tuning Lt and wt, the resonator branch is fixed. Then, two resonators can be coupled

together through an admittance inverter to form a two-pole bandpass filter. Here, a quarter-

wavelength transmission line acts as the admittance inverter, i.e., Lf2 in Fig. 5.19. In fact,

due to layout limits, the electrical length of Lf2 is
3
4
λ rather than 1

4
λ, while the effect remains

the same. The feed-in line from the two ports has length Lf and width Wf , affecting the

filter response. In practice, an initial value for Lf and Wf can be obtained from a circuit

simulator like ADS. Then, these parameters are optimized in full-wave simulation HFSS to

yield a good bandpass filter response. A sample bandpass filter response from the simulation

is shown in Fig. 5.20. A narrow passband at 41.5GHz is obtained with the following device

parameters: Lf = 2.6mm, Wf = 0.2mm, Lf2 = 3mm, and Wf2 = 0.1mm. We obtain a

passband insertion loss (IL) of 5 dB, a 3-dB bandwidth of 260 MHz, and an out-of-band
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Figure 5.20: Simulated bandpass filter response S11 and S21.

rejection of 35 dB.

5.3.4 Finialize Design Layout

Fig. 5.21 shows the finalized device layout. Compared with Fig. 5.19, it adds some extra

feed-in line to allow for the device measurements with end-launch connectors. The feed-

in line is designed to have a 50 Ohm characteristic impedance and corresponding tapers

are also included. The through vias on the side of the board serve two functions. Firstly,

they allow for the assembly of end-launch connectors at the edge. Secondly, they serve as

alignment to integrate a fixture containing permanent bias magnets. The BaM spheres are

contained in the blind via, marked in yellow. Similar to the resonator case, the feed-in can

be de-embedded from the TRL calibration kits shown in Fig. 5.22.
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Figure 5.21: Finalized device layout for the filter.

Figure 5.22: Layouts for the TRL calibration kits to obtain the feed-in S-parameter.

5.4 Measurement Results

5.4.1 Resonator

The proposed design of the BaM resonator is sent to an outside PCB manufacturer [105]

for fabrication, and the front side and back side of the PCB after fabrication are shown in
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(a) (b)

Figure 5.23: (a) Front side of the fabricated PCB resonator. (b) Back side of the fabricated

PCB resonator.

Figure 5.24: Assembly of the resonator with the bias magnet NdFeB, embedded inside a

3D-printed fixture.

Fig. 5.23. The BaM sphere is inserted inside the blind via, shown in Fig. 5.23(b). Fig.

5.24 shows the testing fixture with the end-launch connector and a 3D-printed part with an

NdFeB bias magnet embedded inside.

The complete measurement setup is shown in Fig. 5.25. The resonator is a one-port de-

vice, while two-port measurements have been performed to calibrate the feeding line through

the TRL technique, where two 1.85mm end-launch connectors are connected to the fabri-
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Figure 5.25: Measurement setup.

(a) (b)

Figure 5.26: dB(S11) of the structure with and without the BaM sphere, showing an FMR

frequency at (a) 42GHz and (b) 45GHz.

cated TRL kit. An N5247A PNA-X Microwave Network Analyzer is used to characterize

the device’s performance.

The measured resonator responses in terms of dB(S11) are shown in Fig. 5.26. The
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blue curves are the response when no BaM sphere is inserted inside the blind via, while the

orange curves are the response when the BaM sphere is inside the blind via. By changing

the separation between the external bias magnet and the PCB board, a resonant frequency

tunability can be achieved, where Fig. 5.26(a) exhibits an FMR frequency of 42 GHz and

Fig. 5.26(b) exhibits an FMR frequency at 45 GHz.

5.4.2 Filter

(a) (b)

Figure 5.27: dB(S11) and dB(S21)of the bandpass filter of (a) the entire structure and (b)

the de-embedded structure (effective filter).

Fig. 5.27 (a) shows a measured bandpass filter response. The de-embedded response

after TRL measurements is shown in Fig. 5.27 (b) with a center frequency of 41.5 GHz. The

passband insertion loss is 12 dB before de-embedding and 6 dB after de-embedding. The 3

dB bandwidth is around 240 MHz.

A comparison between simulation results and measurement results is shown in Fig. 5.28.

Apart from the main resonance mode at 41.5 GHz, high-order magnetostatic modes, empha-

sized by the smaller dips in S11 plot, can also be seen, and a close match between simulation

and measurements is observed. The radiation and conduction losses cause the S11 discrep-
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(a) (b)

Figure 5.28: (a) Comparison of dB(S11) between simulation from HFSS and measurements.

(b) Comparison of dB(S21) between simulation from HFSS and measurements.

ancy during measurement.

5.5 Conclusion

This chapter has comprehensively explored the modeling and design of millimeter-wave res-

onators and filters based on hexagonal ferrite materials. The key motivations for this research

stem from the need to extend the capabilities of current microwave magnetic devices into the

millimeter-wave range, which holds promise for a wide array of high-frequency applications.

The chapter began by discussing the background and the critical need for advancements

in magnetic resonators and filters. It was highlighted that traditional methods using YIG

spheres have limitations in the frequency range and performance, thus driving the exploration

of alternative materials like hexagonal ferrites. These materials offer higher anisotropy fields

and lower losses, making them suitable for millimeter-wave applications.

A systematic design approach was introduced, optimizing resonators for better energy

coupling coefficients. The equivalent circuit model for BaM sphere resonators was detailed,
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providing a theoretical foundation for the design process. This model allows for accurate

resonator performance predictions by incorporating hexagonal ferrites’ unique properties.

The design and modeling of bandpass filters were also covered, demonstrating how mul-

tiple resonators can be coupled to achieve the desired filtering characteristics. The chapter

included practical aspects of the design, such as layout considerations and the use of TRL

calibration for accurate measurement and de-embedding of feeding line effects.

Experimental results validated the proposed designs, showing good agreement with sim-

ulation results and highlighting the effectiveness of the design methodology. The fabricated

devices exhibited desirable characteristics such as high coupling factors, small form factors,

and tunable frequency responses, confirming the potential of hexagonal ferrite-based res-

onators and filters in millimeter-wave applications.

In conclusion, this chapter lays the groundwork for future innovations in millimeter-wave

magnetic devices. The proposed models and design techniques provide a robust framework

for further research and development, aiming to push the boundaries of what is achievable

with magnetic resonators and filters in high-frequency regimes.
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CHAPTER 6

Conclusion

In this dissertation, we have explored the modeling and design of RF magnetic devices

utilizing an equivalent circuit representation of spin dynamics. The comprehensive studies

and innovations presented have significantly enhanced the understanding and capabilities

in this field, leading to new methodologies for applying RF magnetic devices in various

technologies.

6.1 Summary of Contributions

The thesis commenced with an investigation into the quantum mechanical foundations of

magnetism, particularly focusing on electron spins within ferrimagnetic materials. From

these foundational theories, we developed several robust equivalent circuit models that effec-

tively translate micromagnetic behaviors into an intuitive circuit framework. These models

encompass both linear and nonlinear cases, thereby broadening their applicability to various

RF magnetic devices.

Subsequent chapters demonstrated the practical implementation of these models in the

design and simulation of frequency-selective limiters (FSLs) and millimeter wave resonators

and filters. The physics-based equivalent circuits integrated dynamic spin precession with

spin wave propagation theories, enhancing the understanding of interactions between elec-

tromagnetic and spin waves within these devices. Furthermore, the design of millimeter wave

resonators using hexagonal ferrite spheres marked a significant advancement, showcasing the
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models’ effectiveness through experimental validations, which confirmed their accuracy and

utility.

6.2 Future Research Directions

While this research has taken substantial strides in the modeling and design of RF mag-

netic devices, the evolving nature of technology and materials science presents continuous

opportunities for further exploration. Future work could focus on:

• Scalability and fabrication: Addressing challenges related to the scalability of the pro-

posed models and their adaptation to industrial manufacturing processes.

• Enhancing model accuracy: Further refinement of the equivalent circuit models to

include two-dimensional propagation of magnetostatic waves, i.e., forward / backward

volume waves.

• Exploring new materials: Investigating the use of emerging magnetic materials that

may offer better performance or unique properties for specific applications.

6.3 Concluding Remarks

The research conducted in this dissertation has laid a strong foundation for the enhanced

understanding and application of RF magnetic devices. The developed equivalent circuit

models serve as a tool for better design and bridge a significant gap in the intuitive under-

standing of complex magnetic behaviors at the microscale. It is hoped that the insights and

methodologies developed herein will inspire further research and innovation in the field of

RF magnetic devices.
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Appendix A

Simplify Periodic Circuit for Broadband Simulation of

CPW-FSL

As pointed out in Table 4.3, the damping constants and effective bias fields used for broad-

band simulations are made different. The derivations are included in this section.

The modeling of exchange coupling spin waves requires another division along the thick-

ness direction in addition to the original thickness division for field nonuniformity. As a

result, broadband simulation with periodic circuits will be much more time-consuming com-

pared with the model without considering field nonuniformity.

To reduce computation time, we can simplify the periodic circuit with Lc added between

adjacent spin units (RLC resonators in the linear case), as shown in Fig. A.1 (a). Several

observations are made while the signal propagates along this periodic circuit. First, when

the signal frequency is the same as the resonant frequency of parallel resonators, voltage

polarities across Lc are the same. Hence, Lc is effectively open-circuited, having no impact

on the circuit. As a result, Nd resonators can be combined into a single resonator at this

particular frequency. On the other hand, at the cutoff frequency, which is the highest signal

frequency that can propagate through this periodic circuit, voltage polarities across Lc are

opposite. Therefore, the middle of Lc is effectively grounded. As shown in Fig. A.1 (b), an

effective Lc/4 is in shunt with the original resonator due to the grounding and the parallel

connection of two Lc/2. Consequently, the circuit can also be simplified to form a single

RLC resonator in Fig. A.1 (c). For these two frequencies, no thickness division is needed,

and the computation time can thus be significantly reduced. The modified RLC values at
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(a)

(b)

(c)

Figure A.1: (a) Equivalent circuit for exchange spin wave propagation perpendicular to the

bias direction with exchange inductor Lc. (b) The equivalent circuit at the cutoff frequency,

where Lc/4 is effectively in shunt with the original RLC resonator. (c) Equivalent circuit at

cutoff frequency where Nd resonators are merged into one resonator.

the cutoff frequency are listed below:

R′
x = Nd ×Rx = µ0

ωm (ωm + ω0)

α (2ω0 + ωm)

(Nd × yc)zc
xc

L′
x = Nd ×

(
Lx∥

Lc

4

)
C ′

x =
Cx

Nd

=
1

µ0 (ωm + ω0)ωm

xc
(Nd × yc)zc

.

(A.1)
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Note that due to the addition of the Lc/4, the resonant frequency of the RLC resonator

increases, which is the cutoff frequency. Moreover, the quality factor also changes to be

Q = ωrR
′
xC

′
x =

√
(ωm + ω0)ωm

α (2ω0 + ωm) .
(A.2)

As a result, broadband simulation can be performed by adjusting the resonance frequency

and quality factor of the RLC resonators through changing effective bias fields and damping

constants. For each frequency higher than 4 GHz (2fr), Lc is chosen to provide a cutoff at

that particular frequency. The resulting H0 and α are summarized in Table 4.3.
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Appendix B

BaM Resonators With Self-Biased Films

B.1 Device Structure

(a) (b)

Figure B.1: (a) Schematic of the ridge stripline ferrite resonator. The signal inputs from

the top pad and its magnetic field will affect the top and bottom BaM films (in blue). The

anisotropy field Hani lies in the z direction. (b) Side view of the resonator structure. The

substrate thickness is dsub, and the ferrite thickness is dferrite.

The physical construction of the ferrite resonator based on thin-film BaM is shown in Fig.

B.1. It consists of three parts: the actual resonator underneath the blind via, the feeding

via plus the transmission line, and the grounding vias.

123



(a) (b)

Figure B.2: (a) Equivalent circuit model for the entire structure consisting of the feeding

part, the TL-loaded thin-film ferrite, and the ground vias. (b) Comparison of the real part of

input impedance and imaginary part of input impedance between HFSS simulation results

(blue curves) and ADS circuit simulation results (red curves).

B.2 Equivalent Circuit Model

The complete circuit model for the entire resonator structure can thus be constructed as in

Fig. B.2(a), where the Lo2 represents the inductance brought by the grounding vias, while

Lo1 represents the transmission line inductance within the resonator itself. In other words,

Lo1 can be engineered by designing a transmission line structure. For example, the ridge-

strip line structure produces smaller Lo1 compared with a conventional strip line of the same

length and width because the effective thickness of the substrate becomes smaller. On the

other hand, Lo2 can be reduced by introducing more grounding vias with greater diameter.

The detailed values of Lo1 and Lo2 are listed in the next Section.

B.3 Effect of Design Parameters

The ridge strip line structure in Fig. B.1(a) is implemented and simulated in HFSS, where

BaM thin films of thickness dferrite are placed on top of 100 um thick sapphire wafers.

The BaM film has a magnetization saturation Ms = 3700Gauss ∆H = 300Oe measured

at 60 GHz. A static magnetic bias field models its anisotropy magnetic fields inside with

H0 = 1286000A/m to set the FMR frequency at 50 GHz. Through vias are created to feed
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Figure B.3: Plots of coupling factors versus (a) grounding via diameter, (b) conductor width,

(c) substrate thickness, and (d) ferrite thickness. The blue curves are coupling factors with

grounding parasitic, while the red dotted curves assume perfect groundings.

the signal from the top of the device and ground the trace after ferrites. Fig. B.1(b) is the

side view of the structure, where the blind vias effectively move the ground planes closer

to the ferrite film to increase energy coupling factor compared with conventional strip line

structure.

The equivalent circuit model was extracted following the procedure described in the

previous section. The influencing factors on the coupling factor c are described in this

section.
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B.3.1 Effect of Grounding Vias’ Diameter

Fig. B.3(a) shows the influence of via diameters on the coupling factors. With the via

diameter increasing, the coupling factor also increases by virtue of a smaller Lo2. The dotted

line is the coupling factor with perfect grounding, i.e., assuming Lo2 = 0. Though it’s

not achievable with the current limit on the device form factor, it emphasizes the effect

of the grounding parasitic on the design process. The data in Fig. B.3(a) is generated

with ferrite thickness dferrite=5um, conductor width wcond=0.12mm and substrate thickness

dsub = 100um.

B.3.2 Effect of Conductor Width

Both Lm and Lo1 decrease with the width increasing, while Lo2 stays relatively constant

since it is mainly contributed by the grounding vias, whose diameter is fixed to be 50um

for all these cases. Fig. B.3(b) calculates and plots the resulting coupling factors. Like Fig.

B.3(a), the curve with perfect grounding (Lo2 = 0) is also plotted for comparison. The data

is generated with ferrite thickness dferrite = 5um and substrate thickness dsub = 100µm.

B.3.3 Effect of Substrate Thickness

Besides grounding vias’ diameter, substrate thickness also affects the coupling factor by

changing Lo2. Of course, the thinner substrate has less parasitic, i.e., smaller Lo2. Specif-

ically, the coupling factors are simulated for dsub = 100µm and dsub = 50µm cases and

plotted in Fig. B.3(c). The other parameters are fixed to be ferrite thickness dferrite = 5µm,

wcond = 0.064mm, and Dvia = 50µm.
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B.3.4 Effect of Ferrite Thickness

ferrite thickness dferrite affects ferrite inductance Lm. In addition, when dferrite changes, Lo1

also changes because Lo1 is the transmission line inductance corresponding to the dferrite

region. In general, though, coupling factor c increases as dferrite increases, as depicted in

Fig. B.3(d). Notably, the coupling factor with perfect grounding reaches as large as 10%

when dferrite = 10µm. The other simulation parameters are dsub = 50µm, wcond = 0.064mm,

and Dvia = 50µm.

B.4 Fabrication Procedure

Figure B.4: Proposed fabrication procedure of BaM resonators built with self-biased thin

film.

Fig. B.4 illustrates the proposed fabrication of BaM resonators with thin films. The

substrate material is sapphire for the BaM film to be deposited. Firstly, blind vias and

through vias are drilled on the bare substrate. Conventionally, etching machines have to

be used for such via formation. However, because the ratio between the via opening versus

the substrate thickness is small (50um/100um), such etching is challenging, provided that

sapphire is a ‘hard’ material. Hence, we devised a novel way of etching vias utilizing laser
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Figure B.5: Vias after laser drilling.

Figure B.6: BaM films through PLD growth. (a) PLD machine. (b) BaM film of thickness

250 nm with c axis as shown. (c) Measured hysteresis loop of the BaM film. Courtesy of

Prof. Mingzhong Wu’s group.

machines. The laser parameters are fine-tuned to create blind vias and through vias with

well-defined shapes.

Fig. B.5 shows some figures of the substrate’s top and bottom sides after laser drilling.

Blind vias are formed because they can only be seen from the top side of the substrate.

After laser drilling, BaM films have to be grown on the substrate and confined to the

blind via region. To do this, our collaborator from Prof. Mingzhong Wu’s group needs to

deposit films over the entire substrate and then use photolithography to lift off the area that

is not of interest. Fig. B.6 shows a sample BaM film through PLD (Pulsed Laser Deposition)

and the corresponding hysteresis loop. The film exhibits a strong hard axis (along the c-
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Figure B.7: BaM films electric measurements from Prof. Mingzhong Wu’s group. (a) Trans-

mission S21. (b) Resonant frequency versus applied field. (c) Extracted linewidth.

Figure B.8: Copper sputtering to fill the vias. (a) Samples during sputtering with sapphires

attached on a carrier silicon wafer. (b) Figures under a microscope after sputtering. (c)

Measure the electric resistivity after sputtering.

axis). Fig. 14 shows more measurements in terms of S21. Based on the measured resonant

frequency and applied field, the anisotropy field is extracted to be 16.1 Koe. The linewidth

is around 1 kOe.

After BaM film growth, copper sputtering is performed to connect both sides electrically.

Fig. B.8(a) shows some sample sapphire substrates after sputtering. They are attached to a

carrier silicon wafer and have been sputtered twice (on top side and bottom side). Fig. B.8
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Figure B.9: Lithography recipe.

Figure B.10: Figures of patterns on both sides of the substrates after lithography.

(b) is a figure of the sapphire under the microscope after sputtering. Fig. B.8 (c) shows the

process of testing the resistivity of the via by connecting the chip to a multimeter. If the

copper successfully goes inside the drilled vias, the measured resistivity would be very low

(less than one Ohm). In practice, we got a DC resistance of 0.6 Ohm, demonstrating our

approach’s feasibility.

After copper sputtering to fill the vias, photolithography forms patterns on both sides

of the chip. A detailed recipe for such a process is again fine-tuned and experimented with

more than five times to ensure a good pattern. Fig. B.9 summarizes the optimal recipe, and

Fig. B.10 shows the patterns on both sides of the chip. One can identify that such patterns
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are similar to the ones shown in the schematic plots (Fig. B.4, step 4).
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