
UCLA
UCLA Electronic Theses and Dissertations

Title
Enabling Heterogeneous Computing for Software Developers

Permalink
https://escholarship.org/uc/item/4nw121pn

Author
Lau, Jason

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4nw121pn
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Enabling Heterogeneous Computing for Software Developers

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Jason Lau

2024



© Copyright by

Jason Lau

2024



ABSTRACT OF THE DISSERTATION

Enabling Heterogeneous Computing for Software Developers

by

Jason Lau

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Jingsheng Jason Cong, Chair

The slowing of CMOS technology scaling mismatches the ever-increasing demand for

computational power, leading to a rise in the use of heterogeneous systems, which pair

scalar processors such as CPUs with specialized accelerators like FPGAs and GPUs. These

systems enable continued performance and efficiency scaling for specialized tasks while

retaining limited generality. This restricted generality inherent in heterogeneous platforms

requires specialized knowledge of hardware architectures and low-level programming

models, posing a substantial barrier to software developers.

This dissertation addresses the challenges software developers face in leveraging het-

erogeneous computing resources, particularly FPGA acceleration. We identify three major

limitations: limited programmability support in domain-specific resources, difficulty in

achieving high performance and efficiency, and time-consuming porting across diverse

computational architectures. We present novel approaches and tools to bridge the gap

between high-level software development and efficient hardware implementation, making

heterogeneous computing more accessible to a broader range of developers.

In this dissertation, we introduce Heterosys, an end-to-end optimization framework

simplifying heterogeneous hardware development. It decouples algorithmic descrip-

tions from underlying fabrics and offers layout-driven and architecture-driven design

ii



generation, bridging the gap between high-level designs and hardware details.

The frontend of Heterosys is HeteroRefactor, which combines dynamic invariant

analysis, automated refactoring, and selective offloading. HeteroRefactor optimizes

software kernels onto accelerators for common-case inputs while maintaining correctness

through CPU fallback mechanisms. HeteroRefactor automatically refactors software

code to make it FPGA-compatible and hardware-friendly, reducing chip resource usage

through bitwidth optimization and floating-point precision tuning.

From the individual synthesizable hardware kernels, Adroit optimizes them using

a static approach to identify data and control broadcasts. It analyzes data and control

dependencies in the source code and reports, trading off clock-cycle latency for higher

frequency. By optimizing the FPGA architecture generated by high-level synthesis tools,

Adroit relieves software developers from needing to understand the underlying fabric.

As the backend, Heterosys composes multiple kernels into an optimized FPGA system

using RapidIR, a comprehensive infrastructure for high-level physical synthesis opti-

mizations. RapidIR integrates coarse-grained floorplanning with high-level pipelining,

supporting hierarchical composition of heterogeneous designs from diverse sources. It au-

tomates the exploration of various physical optimization strategies, freeing programmers

from designing device-specific hardware layouts for each target device.

Our research demonstrates substantial performance improvements across diverse

applications and benchmarks, including genomic sequencing and large language model

accelerations. Our FPGA optimization techniques achieve operating frequency improve-

ments of 30% to over 100% compared to state-of-the-art EDA tools, resource requirement

reductions of 21% to over 90%, and 51% code reduction in porting between platforms.

This dissertation contributes a comprehensive set of methodologies and tools that

significantly lower the barriers to entry for heterogeneous computing, particularly FPGA

acceleration. By abstracting away much of the hardware complexity, our work paves

iii



the way for broader adoption of heterogeneous acceleration in software development

practices, potentially driving research innovation and performance improvements across

a wide range of applications and industries.

iv



The dissertation of Jason Lau is approved.

Miryung Kim

Anthony John Nowatzki

Glenn D. Reinman

Jingsheng Jason Cong, Committee Chair

University of California, Los Angeles

2024

v



Peace for all.

vi



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Limited Programmability Support in Domain-Specific Resources . . 4

1.1.2 Difficulty in Achieving High Performance and Efficiency . . . . . . 5

1.1.3 Time-Consuming Porting Across Diverse Architectures . . . . . . . . 5

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contribution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 HeteroRefactor: Dynamic Analysis and Automated Refactoring . . . 9

1.3.2 Adroit: Architecture-Driven Optimization for Implicit Broadcasts . 10

1.3.3 RapidIR: Infrastructure for High-Level Physical Synthesis . . . . . . 11

1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Heterogeneous Computing Architecture . . . . . . . . . . . . . . . . . . . . . 16

2.2 Heterogeneous Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 FPGA High-Level Synthesis Compilers . . . . . . . . . . . . . . . . . 20

2.2.2 Challenges in FPGA HLS Compilers . . . . . . . . . . . . . . . . . . . 22

2.2.3 Other Heterogeneous Compilers . . . . . . . . . . . . . . . . . . . . . 24

2.3 Challenges for Software Developers . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Case Study: Large Language Model Accelerator . . . . . . . . . . . . . . . . 32

2.4.1 Pointer Usage and Memory Management . . . . . . . . . . . . . . . . 32

2.4.2 Recursion and Algorithm Adaptation . . . . . . . . . . . . . . . . . . 33

vii



2.4.3 Data Representation and Precision . . . . . . . . . . . . . . . . . . . . 35

2.4.4 Architecture-Specific Optimizations . . . . . . . . . . . . . . . . . . . 37

2.4.5 Adaptation and Portability Challenges . . . . . . . . . . . . . . . . . 39

2.4.6 Other Out-of-Scope Optimizations . . . . . . . . . . . . . . . . . . . . 40

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.1 Improving Programmability . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.2 Improving Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.3 Extensible Optimization Framework . . . . . . . . . . . . . . . . . . . 49

3 Dynamic Analysis and Automated Refactoring . . . . . . . . . . . . . . . . . . . 54

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Recursive Data Structure Transformation . . . . . . . . . . . . . . . . 60

3.2.2 Integer Bitwidth Optimization . . . . . . . . . . . . . . . . . . . . . . 67

3.2.3 Floating-Point Precision Optimization . . . . . . . . . . . . . . . . . . 71

3.2.4 Selective Offloading with Guard Check . . . . . . . . . . . . . . . . . 74

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.3 Results for Recursive Data Structures . . . . . . . . . . . . . . . . . . 77

3.3.4 Results for Integer Optimization . . . . . . . . . . . . . . . . . . . . . 81

viii



3.3.5 Results for Floating-Point Optimization . . . . . . . . . . . . . . . . . 84

3.3.6 Overhead and Performance Analysis . . . . . . . . . . . . . . . . . . 86

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Architecture-Driven Optimization for Implicit Broadcasts . . . . . . . . . . . . 93

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Problem Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.1 Data Signal Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.2 Synchronization Control Signal . . . . . . . . . . . . . . . . . . . . . . 101

4.2.3 Pipeline Control Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.1 Broadcast-Aware Scheduling . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 Synchronization Logic Pruning . . . . . . . . . . . . . . . . . . . . . . 107

4.3.3 Skid-Buffer-Based Pipeline Control . . . . . . . . . . . . . . . . . . . 110

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.2 Broadcast-Aware Scheduling in Genome Sequencing Acceleration . 116

4.4.3 Synchronization Logic Pruning and Pipeline Control Optimization . 121

4.4.4 Combined Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

ix



5 Infrastructure for High-Level Physical Synthesis Optimizations . . . . . . . . . 131

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.1.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.1.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.1 Architectural Complexity of Modern FPGAs . . . . . . . . . . . . . . 136

5.2.2 Limitations of Current Approaches . . . . . . . . . . . . . . . . . . . 138

5.2.3 The Need for High-Level Physical Synthesis . . . . . . . . . . . . . . 138

5.2.4 Challenges in Real-World Physical Layout Optimization . . . . . . . 140

5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.2 Progressively Refined Intermediate Representation . . . . . . . . . . 145

5.3.3 Practical Utility Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3.4 Composable Transformation Passes . . . . . . . . . . . . . . . . . . . 156

5.3.5 Framework Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4.1 Support for Diverse High-Level Synthesis Inputs . . . . . . . . . . . 167

5.4.2 Multi-Floorplan Exploration . . . . . . . . . . . . . . . . . . . . . . . 169

5.4.3 Parallel Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.4.4 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6 Discussion and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

x



6.1 Case Study 1: Synthetic Design . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.1.1 Software Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.1.2 Optimizations with HeteroRefactor . . . . . . . . . . . . . . . . . . . 182

6.1.3 Optimizations with Adroit . . . . . . . . . . . . . . . . . . . . . . . . 184

6.1.4 Optimizations with RapidIR . . . . . . . . . . . . . . . . . . . . . . . 186

6.1.5 Results and Performance Analysis . . . . . . . . . . . . . . . . . . . . 190

6.2 Case Study 2: Large Language Model . . . . . . . . . . . . . . . . . . . . . . 192

6.2.1 Benchmark Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.2.2 Optimization Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.2.3 End-to-End Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.3 Case Study 3: Genome Sequencing . . . . . . . . . . . . . . . . . . . . . . . . 197

6.3.1 Background and Challenges . . . . . . . . . . . . . . . . . . . . . . . 198

6.3.2 Parallelization Approach . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.3.3 Application of Heterosys Framework . . . . . . . . . . . . . . . . . . 202

6.3.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.1 Dissertation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

xi



LIST OF FIGURES

1.1 Schematic illustration of the Versal ACAP platform. . . . . . . . . . . . . . . . . 2

1.2 System overview of the Heterosys framework, integrating HeteroRefactor,

Adroit, and RapidIR to facilitate end-to-end optimization for heterogeneous

systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 The architecture of a heterogeneous system, Versal VCK190 as an example. . . 17

2.2 Modern FPGA devices integrate diverse heterogeneous computing and com-

munication resources on multiple dies, complicating physical layout optimiza-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Overview of a typical FPGA HLS flow. . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Fan-out data signals and fixed architecture templates of the pipeline stall

signals in the LLM design [CZD24], potentially degrading operating frequency. 39

2.5 The physically-aware hierarchy of the LLM FPGA accelerator [CZD24]. . . . . 40

3.1 HeteroRefactor’s overall framework. . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Original source code implementing the linked list memory management (left)

and HeteroRefactor-transformed version (right). . . . . . . . . . . . . . . . . . . 64

3.3 Original source code implementing the linked list pointer access (left) and

HeteroRefactor-transformed version (right). . . . . . . . . . . . . . . . . . . . . . 65

3.4 Original source code implementing the recursive linked list function call (left)

and HeteroRefactor-transformed version (right). . . . . . . . . . . . . . . . . . . 68

3.5 Original FP kernel code using float: l2norm from KNN (left) and HeteroRefactor-

transformed version with low-precision (right). . . . . . . . . . . . . . . . . . . 73

xii



3.6 Operating frequency comparison between hand-optimized and HeteroRefactor-

optimized versions on different typical input data sizes. . . . . . . . . . . . . . 79

4.1 HLS-generated architecture showing data broadcast in unrolled loop. . . . . . 99

4.2 HLS-generated architecture showing data broadcast to distributed memory. . . 100

4.3 HLS-generated architectures showing synchronization broadcasts in a single

logical function coupling two sets of unrelated FIFOs. . . . . . . . . . . . . . . . 102

4.4 HLS-generated architectures showing synchronization broadcasts between

multiple logical functions each proceeds only when all functions are completed.103

4.5 HLS-generated architecture showing pipeline control broadcast. . . . . . . . . 104

4.6 Comparison of Vitis HLS estimated delay, our calibrated delay, and raw

experimental delay for different operators. . . . . . . . . . . . . . . . . . . . . . 106

4.7 Optimized control-pruned architecture corresponding to Figure 4.3. . . . . . . 108

4.8 Example code showing dataflow synchronization. . . . . . . . . . . . . . . . . . 109

4.9 Optimized control-pruned architecture corresponding to Figure 4.4. . . . . . . 109

4.10 Example code showing parallel module synchronization. . . . . . . . . . . . . . 110

4.11 Skid-buffer-based pipeline control architecture. . . . . . . . . . . . . . . . . . . 111

4.12 Multi-level skid-buffer-based pipeline control. . . . . . . . . . . . . . . . . . . . 112

4.13 An operation chain with broadcast operators identified by Adroit. . . . . . . . 119

4.14 Calibrated delay estimation of Adroit and frequency improvement achieved

by Adroit’s architecture-aware scheduling with different broadcast factors. . . 120

4.15 Achieved frequency of Jacobi kernels in different iteration counts with different

pipeline control strategies, original design vs. optimized by Adroit. . . . . . . 123

4.16 Bitwidth of the passed data between stages. . . . . . . . . . . . . . . . . . . . . 123

4.17 High-level code for the stream buffer example. . . . . . . . . . . . . . . . . . . . 125

xiii



4.18 Achieved frequencies of the stream buffer design with different combinations

of Adroit’s optimizations compared to the original design. . . . . . . . . . . . . 126

5.1 FPGA HLS accelerator design for large language models (LLM) before and

after physical optimizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Layout of modern FPGA devices, highlighting architectural complexities not

considered in HLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 HLPS for the first three stages of the LLM design [CZD24]. . . . . . . . . . . . 139

5.4 LLM accelerator design optimized with and without RapidIR, highlighting

challenges in optimizing complex mixed-source FPGA implementations. . . . 142

5.5 RapidIR’s overall architecture, consisting of the intermediate representation

(IR, blue), utility plugins (green), and transformation passes (red). . . . . . . . 144

5.6 Feedforward interfaces are pipelined using flip-flop registers, and handshake

interfaces are pipelined with an almost-full FIFO and registers. AFull indicates

that the FIFO is almost full, preventing overflow due to flip-flop latency. . . . . 147

5.7 Pblocks for VP1552, RapidIR virtual device description, and inferred resource

and die-crossing wire capacity by RapidIR plugins. . . . . . . . . . . . . . . . . 148

5.8 Part of the LLM’s IR and corresponding block graph. . . . . . . . . . . . . . . . 149

5.9 Interface pragmas in Verilog mapping ports with the m_axi_ prefix to hand-

shake interfaces and bundle ports with the same prefix (e.g., m_axi_AW). Suf-

fixes VALID and READY indicate port roles, while any other suffixes denote

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.10 RapidIR’s passes applied to the LLM accelerator example. . . . . . . . . . . . . 157

5.11 Snippet of the interface rules for Dynamatic in RapidIR. . . . . . . . . . . . . . 168

5.12 Relationship between resource distribution, wirelength, and frequency for the

LLM design on VHK158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

xiv



5.13 Synthesis wall time in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.1 End-to-end Heterosys optimization flow for the LLM accelerator. . . . . . . . . 194

6.2 Original chaining algorithm for the long read pairwise sequence overlapping. 199

6.3 Example of the match array in a pair of genome reads. . . . . . . . . . . . . . . 200

6.4 Optimized chaining for the long read pairwise sequence overlapping [GLR19]. 201

xv



LIST OF TABLES

2.1 Programming challenges of heterogeneous kernels from diverse domains. . . . 30

3.1 Recursive data structure kernels: HeteroRefactor vs. manual refactoring effort. 78

3.2 Resource utilization comparison of recursions transformed by HeteroRefactor. 80

3.3 FPGA’s specific invariants for integer optimization. . . . . . . . . . . . . . . . . 82

3.4 Resource utilization comparison for integer optimization benchmarks. . . . . . 83

3.5 Probabilistic floating-point verification results. . . . . . . . . . . . . . . . . . . . 85

3.6 Resource utilization comparison for floating-point optimization benchmarks. . 87

3.7 Runtime overhead for recursions and integers. . . . . . . . . . . . . . . . . . . . 88

3.8 Differential execution overhead for FP (sec / %). . . . . . . . . . . . . . . . . . . 88

4.1 Timing improvements and resources on HLS designs using Adroit. . . . . . . . 117

4.2 Experiment results on 512-wide vector product. . . . . . . . . . . . . . . . . . . 124

4.3 Experiment results on pattern matching. . . . . . . . . . . . . . . . . . . . . . . 127

5.1 Code in Python or Verilog required to support different HLS tools in RapidIR. 168

5.2 Frequency improvements automated with RapidIR for various design formats

on different FPGAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.1 Resource utilization and maximum operating frequency of the synthetic design

across Heterosys optimization stages. . . . . . . . . . . . . . . . . . . . . . . . . 192

6.2 Resource utilization percentage and maximum operating frequency of the

LLM FPGA accelerator after each Heterosys optimization stage. . . . . . . . . . 196

6.3 Resource utilization and frequency of the parallelized Minimap2 chaining

algorithm on FPGA across Heterosys optimization stages. . . . . . . . . . . . . 203

xvi



ACKNOWLEDGMENTS

Pursuing my doctoral degree is a privilege born of fortune. I am blessed with the

guidance of my advisor and professors, the unwavering support of family and friends,

and the financial backing of funding bodies. Living in peaceful countries and enjoying

both physical and mental support have provided me with the peace needed to complete

my projects. I hope others may share such privileges, and I wish for peace for all.

I am deeply grateful to my advisor and committee chair, Professor Jason Cong, for

his invaluable guidance and support throughout my academic journey. His mentorship

has enabled me to pursue my research interests. It has been a privilege to join the UCLA

VAST lab, where Prof. Cong has fostered an inspiring environment that encourages the

exploration and advancement of high-level synthesis and customized computing.

I would like to thank my Ph.D. committee members, Professors Miryung Kim, Tony

Nowatzki, and Glenn Reinman, for their invaluable guidance in refining this dissertation.

I am also deeply indebted to Professors Miryung Kim and Zhiru Zhang for their ongoing

support and crucial contributions to my various projects.

Thank you to my collaborators: Zhe Chen, Yuze Chi, Young-kyu Choi, Kristof Denolf,

Yubo Du, Zhenman Fang, Muhammad Gulzar, Eddie Hung, Jingtong Hu, Shixin Ji, Alex

Jones, Alireza Kaviani, Moazin Khatti, Chris Lavin, Wuxi Li, Gai Liu, Sihao Liu, Jack

Lo, Michael Lo, Pongstorn Maidee, Stephen Neuendorffer, Peichen Pan, Weikang Qiao,

Zhenyuan Ruan, Yiyu Shi, Aishwarya Sivaraman, Atefeh Sohrabizadeh, Linghao Song,

Xingyu Tian, Ecenur Ustun, Kees Vissers, Jie Wang, Peng Wei, Shaojie Xiang, Yuanlong

Xiao, Yutong Xie, Zhuoping Yang, Hanchen Ye, Cody Hao Yu, Qian Zhang, Peipei Zhou,

Yun Zhou, Jinming Zhuang, and others for their invaluable contributions and insights.

Among the collaborators, special thanks to Licheng Guo for his crucial contributions

to Chapter 4, particularly in identifying and categorizing broadcast issues. I am equally

grateful to Aishwarya Sivaraman and Qian Zhang for their significant work on Chapter

xvii



3, implementing integer transformation and floating-point precision optimization ap-

proaches, as well as conducting key experiments. Yuanlong Xiao has contributed to the

experiments of RapidIR in Chapter 5. Together with these co-first authors, we developed

comprehensive end-to-end solutions, Adroit and HeteroRefactor.

I am grateful for my friends who have stood by me through difficult times. Although

I cannot name everyone, I am particularly grateful for Yangyang Chen, Licheng Guo,

Xiaohan Li, Miao Wang, and Peiran Yao, in alphabetical order. To those unlisted: Your

support is no less valued; my brevity stems from discretion, not indifference.

My parents, Weihua Ke and Fujin Liu, provide unwavering emotional and financial

support, nurturing my growth in a secure and encouraging environment.

Zhengmei Huang, my spouse and lifelong love, is my heartbeat. We have enjoyed

each other’s best and suffered the worst, only making us closer. While I would not say

the dissertation owes its existence to her, or paint her as the perfect partner, which is

common in such acknowledgments, she is the irreplaceable one who makes me alive.

In this dissertation, large language models serve dual roles: as subjects of FPGA

accelerator optimization and as my writing assistants. While the models differ, GPT-4

and Claude 3.5 Sonnet have proven invaluable in correcting grammar and improving

sentence readability. All AI-corrected texts incorporated herein have been double-checked

to ensure they accurately and faithfully convey my original texts’ intent and meaning.

This dissertation is partially supported by RapidStream Design Automation, Inc.;

CRISP, one of the six centers in JUMP, a Semiconductor Research Corporation (SRC)

program; member companies under the Center for Domain-Specific Computing (CDSC)

Industrial Partnership Program; the Intel/NSF CAPA program; NSF grants CCF-1764077,

CCF-1527923, and CCF-1723773; ONR grant N00014-18-1-2037; and a Samsung grant.

xviii



VITA

2014–2018 Bachelor of Science, Computer Science,

Tsinghua University, Beijing, China.

2018–2022 Master of Science, Computer Science,

University of California, Los Angeles, U.S.A.

PUBLICATION HIGHLIGHTS

Underline indicates co-first authors.

Jason Lau, Yuanlong Xiao, Yutong Xie, Yuze Chi, Linghao Song, Sihao Liu, Shaojie Xiang,

Michael Lo, Zhiru Zhang, Jason Cong, and Licheng Guo. 2024. RapidStream IR: Infras-

tructure for FPGA High-Level Physical Synthesis. In Proceedings of the 43rd IEEE/ACM

International Conference on Computer-Aided Design (ICCAD).

Licheng Guo, Yuze Chi, Jason Lau, Linghao Song, Xingyu Tian, Moazin Khatti, Weikang

Qiao, Jie Wang, Ecenur Ustun, Zhenman Fang, Zhiru Zhang, and Jason Cong. 2023.

TAPA: A Scalable Task-parallel Dataflow Programming Framework for Modern FPGAs

with Co-optimization of HLS and Physical Design. ACM Trans. Reconfig. Technol. Syst.

Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Yubo Du, Jack Lo, Kristof

Denolf, Stephen Neuendorffer, Alex Jones, Jingtong Hu, Deming Chen, Jason Cong,

and Peipei Zhou. 2023. CHARM: Composing Heterogeneous Accelerators for Matrix

Multiply on Versal ACAP Architecture. In Proceedings of the 2023 ACM/SIGDA International

Symposium on Field Programmable Gate Arrays (FPGA).

xix



Jason Cong, Jason Lau, Gai Liu, Stephen Neuendorffer, Peichen Pan, Kees Vissers, and

Zhiru Zhang. 2022. FPGA HLS Today: Successes, Challenges, and Opportunities. ACM

Trans. Reconfigurable Technol. Syst.

Yuze Chi, Licheng Guo, Jason Lau, Young-kyu Choi, Jie Wang, and Jason Cong. 2021.

Extending High-Level Synthesis for Task-Parallel Programs. In Proceedings of the IEEE

2021 International Symposium on Field-Programmable Custom Computing Machines (FCCM).

Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun, Zhiru

Zhang, and Jason Cong. 2021. AutoBridge: Coupling Coarse-Grained Floorplanning and

Pipelining for High-Frequency HLS Design on Multi-Die FPGAs. In Proceedings of the

2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA). Best

Paper Award.

Jason Lau, Aishwarya Sivaraman, Qian Zhang, Muhammad Ali Gulzar, Jason Cong, and

Miryung Kim. 2020. HeteroRefactor: Refactoring for Heterogeneous Computing with

FPGA. In Proceedings of the 42nd International Conference on Software Engineering (ICSE).

Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen, Zhiru Zhang,

and Jason Cong. 2020. Analysis and Optimization of the Implicit Broadcasts in FPGA

HLS to Improve Maximum Frequency. In Proceedings of the 57th ACM/EDAC/IEEE Design

Automation Conference (DAC).

Licheng Guo, Jason Lau, Zhenyuan Ruan, Peng Wei, and Jason Cong. 2019. Hardware

Acceleration of Long Read Pairwise Overlapping in Genome Sequencing: A Race Between

GPU and FPGA. In Proceedings of the 2019 IEEE 27th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM).

xx



CHAPTER 1

Introduction

The landscape of computing has changed significantly in recent years, driven by the

slowing of CMOS technology scaling and the ever-increasing demand for computational

power. This surge in the need for computational resources is particularly evident given

the exponential growth of data and increasingly complex machine learning models.

Consequently, there has been a growing interest in heterogeneous and customizable

architectures, where each component is specialized in different aspects and tailored

for certain compute patterns to improve performance [CSG11, CMH10, CGG14, CSR10].

Such heterogeneous systems typically integrate scalar processors, such as CPUs, with

domain-specific accelerators, including Field-Programmable Gate Arrays (FPGAs), Neural

Processing Units (NPUs), AI Engines [Xil21b], and Graphics Processing Units (GPUs).

By utilizing these customizable accelerators, heterogeneous systems could potentially

achieve higher performance and energy efficiency across diverse domains of applications.

For instance, FPGAs, when reconfigured to customize for specific tasks, often outperform

general-purpose processors by orders of magnitude [CCP16, PCC14, GLR19, SCS22].

The complex nature of real-world end-to-end applications requires a heterogeneous

approach to computing resources. Composing diverse computational elements into a

single system enables sustained performance improvements in specialized tasks while pre-

serving some programmability by integrating general-purpose processors [Car20, CHK21,

GZK21, KSR18, DKR18, PSS18]. For instance, modern heterogeneous platforms such as

AMD’s Versal ACAP (Adaptive Compute Acceleration Platform) combine ARM proces-

1



sors, FPGA fabric, and specialized AI Engines on a single chip [Xil22a, Xil22d, Xil22c],

offering a versatile computing environment capable of addressing a broad spectrum of

computational challenges. By leveraging the strengths of different architectural paradigms,

heterogeneous systems can efficiently handle diverse workloads, from traditional serial

tasks to highly parallel computations and custom accelerated functions.

Versal ACAP Platforms

ARM
Application 
Processor

ARM
Real-time 
Processor

Network-on-Chip

FPGA Fabric
Programmable Logic

AI Engines

IO
s

IP
s

I/O Banks
DDR Controller

Figure 1.1: Schematic illustration of the Versal ACAP platform.

Figure 1.1 illustrates the architectural layout of the Versal ACAP platform. The

chip integrates several components including ARM processors, AI Engines, memory

controllers, and various control or computational intellectual properties (IPs), which

handle tasks related to signal processing and cryptography. These components are

interconnected through the FPGA fabric and the network-on-chip.

From this example, we can see that at the heart of this heterogeneous system, the

FPGA fabric plays a central role due to its customizability. The FPGA serves as the central

hub that connects and orchestrates various components while concurrently handling

some customized, computation-intensive tasks for acceleration.

To support this evolution in hardware architecture and the complexity of FPGA pro-

gramming, electronic design automation (EDA) tools have also advanced significantly.

High-Level Synthesis (HLS) tools [Fei12, Xil21c, Int24, CGL21], for example, allow de-

velopers to describe FPGA designs using high-level languages like C/C++, OpenCL, or

2



Python, automating much of the low-level hardware design process. Similar advance-

ments have been made for other components, such as the Adaptive Data Flow language

for programming AI Engine arrays [Xil21b], and CUDA for NVIDIA GPU devices [Nvi11].

However, despite advancements in hardware architectures, design tools, and compilers,

a significant challenge persists: making heterogeneous computing accessible to software

developers. Efficiently utilizing diverse computational resources requires specialized

knowledge of hardware architectures and multiple low-level programming paradigms

and coding styles for each device, creating a barrier for those who lack the expertise or

time to learn. The gap between the potential of heterogeneous systems and developers’

ability to harness it creates a pressing need for innovative approaches and tools. These

solutions must abstract most of the underlying complexity while still enabling developers

to leverage the performance benefits of specialized hardware.

This dissertation develops methodologies to bridge the gap between high-level soft-

ware development and the efficient utilization of heterogeneous resources. By improving

the accessibility of heterogeneous computing for software developers, we aim to unlock

the potential of these systems and foster innovation in the computing landscape.

1.1 Problem Statement

The use of heterogeneous computing platforms remains limited to a small subset of

programmers with specialized knowledge of architectural details, driving up develop-

ment costs [RLL11]. These challenges can be broadly categorized into three main areas:

limited programmability support, difficulty in achieving high performance, and the

time-consuming nature of porting across diverse computational architectures.

While this research focuses on the EAD tools from AMD [Xil21b, Xil21c], these

challenges are also common across tools from other vendors, such as Intel and Mentor.

3



1.1.1 Limited Programmability Support in Domain-Specific Resources

HLS tools for FPGA accelerators aim to simplify hardware development by abstracting

hardware complexity [CLN11]. Nevertheless, significant design constraints continue to

burden software developers [CLL22]. These constraints often conflict with conventional

software development practices, requiring substantial code modification to meet hardware-

specific requirements. For instance, targeting FPGAs using HLS tools mandates several

synthesizability requirements [Xil20, Xil21c], including:

1. Pointer Restrictions. HLS tools limit or prohibit the use of pointers, which are

fundamental in software development for data structures and memory management.

2. Static Memory Allocation. Developers often need to pre-allocate overly conserva-

tive, static arrays rather than using dynamic memory management on heterogeneous

resources, leading to resource inefficiencies and increased code complexity.

3. Recursion Limitations. Recursive algorithms, which are intuitive and efficient

enough in software, are usually unsupported or require complex manual transfor-

mations into iterative forms when targeting heterogeneous resources.

4. Physical Layout. Software programmers typically create code using logical hi-

erarchies, grouping related functionalities. However, FPGA design tools require

modules to be grouped by physical affinity for quality of result or even successful

routing [Con01]. Even worse, automated FPGA optimization tools aiming to solve

the routing challenges often mandate a flat dataflow graph as input, requiring

extensive code refactoring [GCW21, GCL23, DLS23, DLZ24, CGL21].

Similarly, programming for embedded systems, AI engines, or GPUs often requires

learning specialized languages or APIs that diverge from traditional software development

paradigms [Xil21b, Nvi11]. This divergence mandates substantial code rewrites to ensure

functionality, often conflicting with software engineering best practices.

4



1.1.2 Difficulty in Achieving High Performance and Efficiency

While heterogeneous systems offer promising performance improvements, realizing these

gains requires specialized hardware knowledge and expertise in optimization techniques

specific to each architecture. Software developers often struggle to fully exploit diverse

computational resources due to the following key challenges:

1. Data Representation. Optimizing for resource efficiency involves fine-tuning the

bitwidth of data. Determining the minimal required bitwidth for each variable and

arithmetic operation without compromising functionality requires a deep under-

standing of both the algorithmic and hardware implications of data representation.

2. Micro-Architecture. Subtle issues like high-fanout nets from data or control signal

broadcasts can significantly degrade the maximum achievable clock frequency. Soft-

ware developers usually lack the expertise to identify and mitigate these hardware-

specific issues, since they are not apparent in high-level source code.

3. Global Layout and Pipelining. In large, complex designs, especially for multi-die

FPGAs, physical layout is crucial for performance. Long interconnects can create

critical paths that limit clock frequency. Effectively pipelining these critical paths

requires an understanding of physical layout beyond software descriptions.

These challenges often require developers to think in terms of hardware architecture

rather than software algorithms, a significant mindset shift for many software engineers.

1.1.3 Time-Consuming Porting Across Diverse Architectures

The heterogeneous nature of modern computing systems challenges code portability and

maintenance, especially when porting code between target accelerator devices.

5



1. Code Adaptation. Ideally, existing software code should run on FPGAs with no

modifications if not part of the kernel’s bottleneck. In reality, developers must

substantially rewrite CPU-targeted code for FPGA compatibility [LSZ20]. This refac-

toring is time-consuming, error-prone, and requires hardware-specific knowledge.

2. Optimization for Hardware Fabrics. Code targeting FPGAs often needs manual

register insertion to meet timing constraints [GLC20], varying by hardware fabric.

This demands detailed hardware knowledge. An automated low-level optimization

approach would simplify code porting and improve design quality.

3. Physical Layout Redesign. Porting designs to newer FPGAs often requires sub-

stantial code changes so that they are optimized for new physical layouts [GCW21].

This change of physical layout may be due to increased die count, new built-in

components (IPs), or changes in hardware interconnect. An automatic optimization

solution from a single codebase targeting different FPGA devices would enhance

portability and reduce development efforts.

The challenges of porting design code across target hardware devices create mainte-

nance issues and require multiple code versions of an algorithm. Solutions automating

software adaptation, handling low-level optimizations, and providing seamless portability

across FPGA devices would lower entry barriers for developers.

1.2 Research Objectives

This dissertation address the challenges in our problem statement. We pursue the

following research objectives (RO):

RO1 Improve the heterogeneous development experience for software programmers.

To make heterogeneous computing more accessible to software developers, we

6



focus on: (a) Developing automated code transformation techniques that convert

software-oriented code into hardware-synthesizable equivalents without manual

effort; (b) Creating approaches that identify potential performance issues in the

code and perform optimizations specific to target hardware; (c) Designing methods

to adapt existing designs to different hardware fabrics, reducing the time and effort

required for porting code across diverse computational architectures.

RO2 Bridge the gap between high-level description and efficient hardware imple-

mentation. To ensure that high-level descriptions can be efficiently implemented

on heterogeneous hardware, we aim to: (a) Develop compiler frameworks that

decouple hardware-specific optimizations from high-level software descriptions; (b)

Create optimization techniques that identify and mitigate hardware-specific issues

automatically; (c) Design strategies for automated global layout optimization and

pipelining, particularly for large, complex designs on multi-die FPGAs.

We aim to create an end-to-end framework from software source code to bitstream

that empowers software developers to harness FPGA-based heterogeneous computing

systems without sacrificing development productivity or requiring extensive hardware

design training. Our research aims to lower the barriers to heterogeneous computing,

enabling a broader range of developers to leverage these resources efficiently.

1.3 Contribution Overview

In this dissertation, we present a comprehensive set of methodologies and tools designed

to address the challenges faced by software developers when utilizing heterogeneous

computing resources. Our contributions in this work support the research objectives

of enhancing the heterogeneous development experience (RO1) and bridging the gap

between high-level descriptions and efficient hardware utilization (RO2).

7



Our main contributions are collectively called Heterosys, a holistic framework in-

corporating our proposed methodologies and tools. Heterosys focuses on tackling the

issues of limited programmability, performance optimization, and cross-architecture

portability by offering (1) automated code transformation and optimization techniques,

(2) architecture-driven design generation to improve abstraction over hardware-specific

details, and (3) seamless layout-driven design optimization and porting across diverse

FPGA targets. It comprises three components: HeteroRefactor, Adroit, and RapidIR.

Figure 1.2 presents the overall system of Heterosys, which begins with a software code

input. This code undergoes dynamic analysis by HeteroRefactor, which refactors it into

hardware-compatible code. Subsequently, the code is optimized by Adroit, which utilizes

architecture information to optimize the hardware code into an architecture-aware kernel.

RapidIR integrates multiple such optimized kernels with design libraries, orchestrating

them into a cohesive system that is physically optimized. HeteroRefactor employs a

selective offloading mechanism to ensure correctness, enabling the refactored software

code to run on an FPGA-centric heterogeneous system.

Heterosys

Software
Code

Design
Library

System
Interconnect

§3 HeteroRefactor
Dynamic Analysis

§3 HeteroRefactor
Automated Refactoring

Hardware 
Code

§4 Adroit
Datapath

Optimizations

§4 Adroit
Control Flow
Optimizations

Architecture
Information

Optimized 
Kernels
Optimized 

Kernels
+ Optimized 

Kernels

§5 RapidIR
Transform 

Passes

§5 RapidIR
System 

Integration

Target
Device

§3
Hetero

Refactor
Selective

Offloading

Optimized 
System

+

H
et

er
og

en
eo

us
 S

ys
te

m
s

Figure 1.2: System overview of the Heterosys framework, integrating HeteroRefactor,

Adroit, and RapidIR to facilitate end-to-end optimization for heterogeneous systems.

8



1.3.1 HeteroRefactor: Dynamic Analysis and Automated Refactoring

To address the challenge of limited programmability support in domain-specific resources

(RO1), we present HeteroRefactor, an automated refactoring tool. HeteroRefactor bridges

the gap between software development practices and hardware synthesis requirements

through a combination of dynamic analysis and code transformations. It ensures the

correctness of the refactored code by leveraging selective offloading only when the

observed dynamic behavior is consistent with the expected behavior.

The workflow of HeteroRefactor is as follows: First, a developer implements their

kernel in a familiar high-level language such as C/C++. The kernel is then executed on

existing test data or a representative subset of inputs to identify FPGA-specific dynamic

invariants. Using this information, HeteroRefactor automatically transforms the kernel,

converting pointer-based structures into synthesizable, flattened arrays and recursion

into iterative equivalents. This process not only makes the code HLS-compatible but

also optimizes resource usage by inferring the minimal required bitwidths for integers

instead of int32 or int64, and the minimal precision of floating-point numbers, leading

to reduced resource consumption and increased operating frequency at the FPGA level

(RO2). To ensure the correctness of the transformed code, HeteroRefactor employs a

selective offloading mechanism by monitoring if the observed dynamic behavior matches

the assumptions during the initial dynamic analysis and refactoring process.

The impact of HeteroRefactor is fourfold:

1. Code Complexity Reduction. For an average recursive program of 175 lines of code

(LOC), HeteroRefactor eliminates the need for an additional 185 LOC that an expert

FPGA programmer would typically write to achieve HLS compatibility.

2. Resource Efficiency Improvements. By using tight bounds for recursive data

structures (e.g., 2k depth instead of an overly conservative 16k), HeteroRefactor

9



achieves up to 83% reduction in BRAM usage and 42% increase in operating

frequency.

3. Integer Representation Optimization. For integer-intensive programs, HeteroRefac-

tor reduces bit usage by 76%, leading to 25% reduction in flip-flops, 21% in look-up

tables, 41% in BRAM, and 52% in DSP resources.

4. Floating-Point Precision Tuning. In floating-point-intensive programs, with a

specified acceptable precision loss of 10−4 at 95% confidence level, HeteroRefactor

achieves up to 61% reduction in flip-flops, 39% in LUTs, and 50% in DSP usage.

By automating these hardware-specific code transformations, HeteroRefactor enables

software developers to leverage the power of FPGAs without rewriting existing code or

sacrificing their familiar programming paradigms.

1.3.2 Adroit: Architecture-Driven Optimization for Implicit Broadcasts

To address the challenge of achieving high performance in heterogeneous systems (RO2),

we introduce Adroit, an innovative analysis methodology that targets a critical yet often

overlooked aspect of HLS–implicit signal broadcasts. Our research reveals that these

broadcasts, automatically inferred or created by HLS compilers in both datapath and

control logic, are a major cause of frequency degradation in HLS-synthesized designs.

Adroit tackles this issue through three key contributions:

1. Identification and Classification: We provide the first comprehensive analysis of

implicit signal broadcasts in highly-optimized designs synthesized using industrial-

strength HLS tools, classifying them into data and control broadcast structures.

2. Automated Optimization Techniques: Adroit implements a set of simple yet effec-

tive techniques, including broadcast-aware scheduling, redundant synchronization

10



pruning, and skid-buffer-based pipeline control, to automatically optimize these

broadcasts. These techniques have been integrated into commercial products1.

3. Performance Improvements: Applied to nine real-world HLS benchmarks in exper-

iments, Adroit achieves an average frequency improvement of 53% with minimal

area overhead, with some cases showing gains of over 100 MHz.

Adroit employs an architecture-centric strategy focused on enhancing implicit broad-

casts by analyzing the HLS design of a kernel and its resulting RTL. This examination

helps pinpoint subtle yet impactful broadcast-related performance issues, which are then

addressed using a set of optimization techniques. Adroit enables software developers

to achieve significantly higher performance in heterogeneous systems without requiring

deep hardware expertise. It further improves the heterogeneous development experience

by providing an additional layer of abstraction over the hardware details (RO1).

1.3.3 RapidIR: Infrastructure for High-Level Physical Synthesis

To address the challenges of porting across diverse FPGA architectures (RO1) and enabling

efficient hardware utilization (RO2), we introduce RapidIR, a comprehensive infrastruc-

ture for high-level physical synthesis. RapidIR bridges the gap between software-level

design and layout-specific optimizations, providing a unified framework that supports an

optimized hierarchical composition of FPGA designs from diverse sources.

RapidIR accepts multiple forms of input, including hardware kernels from the afore-

mentioned tools, reusable design libraries, system interconnect descriptions, and target

device specifications, generating a physically optimized system configured for implemen-

tation on the specified FPGA. Key features of RapidIR include:

1Starting from Xilinx Vivado HLS 2020.2, a prior version of AMD Vitis HLS, it allows users to manually
choose the skid-buffer-based pipeline flow control method instead of the broadcast-based flow control.

11



1. Intermediate Representation (IR). RapidIR provides a flexible IR capturing both

software semantics and hardware-specific information, allowing for the creation of

reusable passes that support various design formats and device targets, requiring

only the implementation of minimal information extractors.

2. Transparent Integration. RapidIR allows seamless hierarchical composition of

FPGA designs from diverse sources, such as HLS-generated kernels, handcrafted

RTL libraries, and vendor-specific IPs. It enables automated physical optimizations

in complex designs with hybrid source formats, aiming to achieve high frequency

while maintaining design productivity and code maintainability.

3. Extensible Optimizations. RapidIR implements automated exploration of physical

synthesis optimizations, including coarse-grained partitioning, floorplanning, and

pipelining. It provides an extensible architecture, supporting reusable optimization

passes for various design formats and device targets.

RapidIR addresses critical limitations in current HLS approaches by automating

optimizations typically performed manually by RTL experts. These include pipeline

insertion to mitigate long wire delays across dies and balanced resource utilization

through design partitioning. Experimental results demonstrate a state-of-the-art and

consistent average frequency improvement of 40% across a range of well-researched

and newly introduced FPGA architectures. Notably, RapidIR enables some previously

unimplementable designs to reach a frequency of around 300 MHz.

By automating the effort required to optimize and port designs across different FPGA

platforms, RapidIR enables software developers to achieve RTL-expert-level optimizations

without requiring in-depth hardware knowledge of every FPGA target.

12



1.4 Dissertation Organization

This dissertation is organized into the following chapters:

Chapter 2. Background and Related Work. This chapter provides an overview of het-

erogeneous computing systems, focusing on FPGAs and their role in accelerating

various applications. It discusses the current state of high-level synthesis tools,

their limitations, and existing approaches to bridging the gap between software

development and hardware acceleration. By demonstrating a real-world acceleration

design example, this chapter motivates the work introduced in this thesis. The

chapter also reviews related work in automated code transformation, performance

optimization for heterogeneous systems, and cross-architecture portability.

Chapter 3: Dynamic Analysis and Automated Refactoring. This chapter presents the

design and implementation of HeteroRefactor. It details the methodology for dy-

namic invariant analysis, the automated refactoring process for converting software

constructs into hardware-synthesizable equivalents, and the optimization tech-

niques for data representation. The chapter includes case studies demonstrating

HeteroRefactor’s effectiveness in reducing code complexity and improving resource

efficiency for FPGA implementations.

Chapter 4: Architecture-Driven Optimization for Implicit Broadcasts. This chapter in-

troduces Adroit, our architecture-driven approach to optimizing implicit signal

broadcasts in HLS-generated designs. It provides an in-depth analysis of data and

control broadcast structures, describes the optimization techniques proposed by

Adroit, and presents experimental results showcasing the significant frequency

improvements achieved across various benchmarks.

Chapter 5: Infrastructure for High-Level Physical Synthesis. This chapter details the

design and implementation of RapidIR. It presents the flexible intermediate rep-

13



resentation (IR), the automated exploration of physical synthesis optimizations,

and the support for integrating diverse design sources. The chapter includes case

studies demonstrating RapidIR’s effectiveness in improving design frequency and

portability across different FPGA architectures.

Chapter 6: Evaluation and Discussion. This chapter presents a comprehensive evalua-

tion of the end-to-end frequency enhancements achieved by Heterosys when applied

to a large language model (LLM) accelerator and on genome sequencing applica-

tions, domains where the challenges addressed in this dissertation are particularly

salient. The chapter provides an in-depth analysis of the optimizations implemented

within the overall design flow, elucidating their individual and collective contribu-

tions to performance improvement. A detailed examination of a synthetic design is

conducted, offering insights into the Heterosys approach.

Chapter 7: Conclusion and Future Work. The final chapter summarizes the key contri-

butions of this dissertation, discusses the broader implications of our work for the

field of heterogeneous computing, and outlines promising directions for future

research. It reflects on the progress made towards enabling software developers

to effectively utilize heterogeneous computing resources and identifies remaining

challenges and opportunities in this rapidly evolving field.

14



CHAPTER 2

Background and Related Work

The landscape of computing has undergone significant changes in recent years, with

heterogeneous systems emerging as a solution to address the growing demands for

computational power and energy efficiency. This chapter provides an overview of het-

erogeneous computing, with a particular focus on the challenges and opportunities it

presents for software developers to leverage heterogeneous platforms. We begin by ex-

ploring FPGA-centric heterogeneous systems and their growing importance. The chapter

then narrows to the specific challenges faced by software developers when working with

these FPGA systems. We examine the current state of FPGA high-level synthesis tools,

evaluating their capabilities and limitations, motivating our work. Furthermore, this

chapter reviews related work in key areas relevant to our research objectives: automated

code transformation techniques, performance optimization strategies for heterogeneous

systems, and approaches to cross-architecture portability.

To ground our discussion in practical realities, we use the AMD Versal device VCK190

[Xil22d] and other multi-die FPGAs as exemplars of modern heterogeneous computing

systems (Section 2.1). We then present a detailed analysis of existing compilers targeting

these systems, highlighting their current limitations (Section 2.2). Based on a set of 12

real-world applications from a broad range of domains, we identify the deficiencies in

existing solutions when implementing these applications on FPGA-centric heterogeneous

systems (Section 2.3). To further illustrate the potential and challenges of heterogeneous

computing, we conduct an in-depth case study on an FPGA large language model

15



accelerator, underscoring the existing obstacles (Section 2.4). We conclude this chapter

with an examination of the literature background and related work (Section 2.5).

2.1 Heterogeneous Computing Architecture

As Moore’s Law began to decelerate, experts in computer architecture and systems engi-

neering turned to specialized and parallel hardware accelerators to continue improving

performance and efficiency. This shift was motivated by two key insights: firstly, different

types of computations could be more efficiently executed on separate hardware specifi-

cally designed for those tasks, rather than relying solely on general-purpose processors;

and secondly, that expanding to multiple computational units proves more feasible than

increasing the clock speed of a single centralized component [CLL22, CLN11].

Modern heterogeneous computing systems typically integrate various computational

units, including CPUs, Graphics Processing Units (GPUs), Field-Programmable Gate

Arrays (FPGAs), and Application-Specific Integrated Circuits (ASICs). CPUs excel at

general-purpose computing and complex control flow, GPUs are optimized for parallel

processing of large datasets, FPGAs offer reconfigurable hardware for custom acceleration,

and ASICs provide maximum efficiency for fixed functions. With the recent boost in

the need for computational resources for artificial intelligence (AI) tasks, specialized

Neural Processing Units (NPUs) or AI Engines (AIEs) [ASB19, Xil22a] are also becoming

increasingly common in heterogeneous systems. The combination of these diverse

components allows for optimized performance across a wide range of applications.

Take the AMD Versal VCK190 [Xil22a] as an example of a modern heterogeneous

system, which integrates multiple computational resources into a single System-on-Chip

(SoC). The overall architecture of the VCK190 is shown in Figure 2.1.

16



 
AIE

Interface

Switch

AIE

Switch

AIE

Switch

AIE

Switch

AIE

Switch

AIE

Switch

Switch

Interface

Switch

Interface

Switch

…

…

…

…

…

…

Reconfigurable Hardware Instruction-Based Processors

AXI to DDRShared MemoryAXI Stream

Figure 2.1: The architecture of a heterogeneous system, Versal VCK190 as an example.

17



The VCK190 features three main components: ARM CPU processors, FPGA fabric1,

and an AI Engine (AIE) array [ASB19, Xil22a]. The ARM processors can run Linux and

handle general-purpose applications, providing a familiar environment for software

developers. The FPGA fabric allows for the design of application-specific hardware,

offering flexibility and customization. Distributed in the FPGA fabric are 1,968 Digital

Signal Processing (DSP) elements for arithmetic operations. The AIE array consists of

8×50 VLIW processors operating at 1 GHz, supporting vector operations up to 1024 bits,

which are useful for signal processing and AI applications [Xil22a, ZLY23].

At the core of the VCK190 is the FPGA fabric, acting as the central hub between

the ARM processors, AIE array, DSP elements, I/O peripherals, and other intellectual

property (IP) cores. It facilitates high-bandwidth communication between components,

integrating ARM processors, AIE array, and I/O peripherals such as PCIe and DRAM

controllers. The memory is designed to support the diverse needs of its components.

The FPGA fabric includes both Ultra RAM (URAM) and Block RAM (BRAM), providing

on-chip memory resources for custom logic designs. Each AIE processor tile has 32 KB

of data memory and 16 KB of program memory, with the ability to access up to 128 KB

of memory, including that of adjacent tiles. External DDR4 memory is also available,

accessible by both the ARM processors and the FPGA fabric. Coordinated communication

facilitated by the FPGA fabric helps to fully utilize the memory bandwidth between these

heterogeneous components due to its customizable features [Xil21b].

This heterogeneous architecture, while powerful, creates challenges for software de-

velopers. Firstly, adapting existing code from the ARM cores to the FPGA fabric requires

compatibility with HLS tools, as the FPGA fabric is configured as a circuit with specific

physical locations for each logical component. This means common software constructs

like dynamic memory allocation and recursion are not supported. Developers must com-

pletely rewrite code to move a workload from ARM processors to FPGA fabric. Secondly,

1Also referred to as Programmable Logic or PL.

18



optimizing for performance on heterogeneous systems involves hardware-specific skills

such as clock cycle management, layout optimization to minimize routing delays, and

pipelining for maximum throughput. These optimizations demand a deep understand-

ing of the hardware architecture, including the physical location of the aforementioned

components. Lastly, while reusable RTL and IP libraries provide high-performance accel-

eration for specific tasks on AMD FPGAs, they are often designed for specific hardware

devices and lack easy portability, even across platforms from the same vendor.

Making it worse, integrating more specialized components within a heterogeneous

system exacerbates physical design complexity, challenging even hardware design experts.

For example, in Figure 2.2, the AMD Alveo U55C FPGA has three dies, each with some

resources dedicated to the shell to communicate with the CPU host, and unprogrammable

gap regions for built-in computation and communication IPs. The AMD Versal VP1552

FPGA consists of two dies, featuring networks-on-chip and an integrated ARM processor

as heterogeneous components. The Intel Stratix 10 FPGA has I/O banks at the center of

the programmable logic, with multi-die interconnect bridges and PCIe blocks on the sides

[GCW21, Adv24a]. This architectural diversity exhibited in FPGA devices in component

types, resource distribution, and wire latency, both across and within devices, requires

careful design consideration to ensure proper physical layout optimization and poses

significant challenges for adapting a design to another device.

While the FPGA-centric platforms are focused on in this thesis, many of these chal-

lenges are common across heterogeneous computing platforms. Other architectures, such

as systems combining CPUs with GPUs or AIEs, face similar issues of code porting,

hardware-specific optimization, and performance tuning. For instance, CPU+GPU sys-

tems require rewriting code for specialized programming models like CUDA or OpenCL,

and embedded systems enforce coding style and resource constraints.

19



Alveo U55C Versal VP1552 Stratix 10
IP

s

S
he

ll 
IP

IP
s

I/
O

 B
an

ks

HBM Memory Controller

Cross-Die Cross-Die

Cross-Die Cross-Die
PCIe PCIe

PCIe PCIe

DDR Controller and Other I/O

DDR Controller and Other I/O

Die #1 Network-on-Chip

I/
O

ARM

I/
O

I/
O

Die #2

Die #3

Die #1

Die #2

IPs

FPGA
Fabric FPGA

Fabric FPGA Fabric

9,024
DSPs

7,392
DSPs

Die #N

I/O Banks
Memory Controller

Figure 2.2: Modern FPGA devices integrate diverse heterogeneous computing and

communication resources on multiple dies, complicating physical layout optimization.

2.2 Heterogeneous Compilers

As heterogeneous systems become more sophisticated, specialized compilers and elec-

tronic design automation (EDA) tools have been developed to manage complexity. These

tools allow developers to describe designs at the algorithmic level and generate low-level

design code, thereby reducing development effort [CLN11]. This section focuses on the

existing tools and prior work for programming heterogeneous computing architectures,

with a particular emphasis on FPGA High-Level Synthesis (HLS) compilers, while also

briefly discussing compilers for other components in heterogeneous systems.

2.2.1 FPGA High-Level Synthesis Compilers

Traditionally, FPGAs were programmed using Hardware Description Languages (HDLs)

like Verilog or VHDL at the Register Transfer Level (RTL). This approach required

developers to specify register storage units, compute units, wires, and cycle-accurate

behaviors, which were then mapped to the FPGA fabric through logical synthesis and

physical placement and routing. However, as FPGAs have grown in size and complexity, it

20



has gained traction to raise the abstraction level to enable the use of high-level languages

like C++ or OpenCL for FPGA programming to reduce effort [CLN11, CLL22].

Modern FPGAs are highly complex devices, comprising millions of look-up tables

(LUTs), thousands of embedded block memories (BRAMs), thousands of digital signal

processing blocks (DSPs), and millions of flip-flop registers (FFs) [Xil19]. Each k-input

LUT can implement any Boolean function with up to k inputs. To achieve the desired

behavior, an FPGA must be programmed with a specific binary bitstream that specifies

all the LUT, BRAM, DSP, and programmable switch configurations. Designing such a

device in the traditional way using HDLs is a time-consuming and error-prone process.

As a solution, High-Level Synthesis (HLS) plays a central role in raising the abstraction

level, translating untimed or partially timed specifications into low-level cycle-accurate

RTL specifications [CLN11]. HLS tools perform three primary functions:

Scheduling. HLS analyzes the C/C++ code and assigns each operation from the source

code to specific time slots (clock cycles). During this process, HLS estimates the

delay of each operation using pre-characterized statistics for common hardware

components such as adders, multipliers, registers, BRAMs (Block RAMs), and

multiplexers. It transforms the untimed C/C++ code into a timed model by inserting

appropriate clock boundaries, thereby breaking down the datapath into discrete

clock cycles. It is important to note, however, that HLS tools typically estimate only

the logic delay and base net delays and may not accurately account for additional

delays caused by net fanout or congestion in more complex structures.

Binding. Operations and storage are mapped to specific resource types on the physical

device, determining the number and type of hardware units (such as LUTs, FFs,

BRAMs, DSPs) used for implementing functionality.

RTL Generation. From the scheduled and bound result, designs are generated in HDL

format. It creates designs from a fixed RTL template, where each time slot is repre-

21



sented as a state in the finite state machine (FSM), controlling the hardware resource

to perform corresponding operations. For fully-pipelined datapaths [ZPF16], enable

or stall signals from the FSM are broadcast to every element of the pipeline for

activation or flow control. Additionally, the FSM proceeds to the next stage only

when all concurrent modules at the current stage signal their completion to the

controller. This aggregated condition of completions is used as the next start signal

and is broadcast to parallel modules in the subsequent stage.

Figure 2.3 depicts a typical FPGA HLS process. Initially, HLS code is parsed and com-

piled into an LLVM representation. Within the LLVM, data transfer and computational

tasks are allocated to specific clock cycles (T0, T1, T2) based on an estimated delay model.

During the subsequent binding phase, certain registers and operations are allocated for

different values or operations in different timeslots; for instance, values %a and %result

share a register in the given example. The RTL generation stage organizes the schedule

for each component using fixed templates to construct FSMs. These FSMs enable or

disable the resources during the respective clock cycles (e.g. add is enabled on T1, and

[%a / %result] is used as %a on T0 and %result on T2).

HLS has significantly simplified FPGA programming. However, it is still required

for software developers delving into heterogeneous computing to understand both the

limitations of HLS and the complexity of the synthesis process.

2.2.2 Challenges in FPGA HLS Compilers

Despite the promise of simplifying FPGA programming, HLS tools still present significant

challenges for software developers. Taking AMD Vitis HLS [Xil21c] as an example, several

limitations make it challenging for developers to write specifications, even though the

HLS source code superficially resembles software programs:

Unsupported C/C++ Constructs. Many common software programming constructs are

22



High-Level Synthesis

HLS Code

Scheduling

Binding

RTL GenerationFixed 
Template

Parsing

Inaccurate
Delay Model

LLVM Representation
%result = add i32 %a, %b

Timed Descriptions

%a %b add %result
T0 T1 T2

Concrete Design

%a / %result %badd

FSM

T0 T0T1T2

RTL 
Design Synthesis Placement &

Routing

Figure 2.3: Overview of a typical FPGA HLS flow.

not supported in HLS due to FPGA hardware limitations. These include pointers,

dynamic memory management, recursion, polymorphism, and exception handling.

These restrictions significantly depart from what software programmers expect from

C/C++ languages, creating a steep learning curve.

Inflexible Architecture Mapping. While HLS C/C++ allows the use of pragmas to spec-

ify the mapping of operations to physical units, not everything is customizable.

Certain constructs map to fixed implementations that may not be suitable for all

scenarios. For instance, pipelines are implemented as stalled datapaths, and opera-

tion controllers are compiled into FSMs. These fixed designs can lead to issues in

hardware implementations and are challenging to work around.

Inaccurate Delay Estimation. HLS relies on delay estimation to schedule instructions

into clock cycles. However, due to the lack of physical layout information, these

23



estimations are often inaccurate. Underestimation leads to a degradation of design

frequency, while overestimation wastes resources and increase latency.

Coupling of Logic and Physical Architecture. Many logical program constructs or cod-

ing styles in HLS directly impact the physical architecture of the compiled design.

For example, a function call may result in a dedicated hardware module, with the

number of implemented modules being non-trivial to control. Putting two function

calls in the same hardware modules or implementing exclusive modules for each

call often requires significant code restructuring.

Micro-Architecture Tuning Complexity. While software developers typically use stan-

dard data types like 32-bit or 64-bit integers, FPGA designs benefit from optimized

bitwidths, especially when multiple operations can fit into one DSP arithmetic unit.

However, this optimization requires in-depth knowledge of both the algorithm and

hardware architecture, adding another layer of complexity.

Portability Issues. HLS programs often incorporate device-specific features, complicat-

ing their portability to other accelerators or different FPGAs. This limitation can

hinder the adaptation of workloads across diverse components of a heterogeneous

system or the deployment of a workload on a new device by reusing code.

2.2.3 Other Heterogeneous Compilers

While we focus primarily on AMD FPGAs, it’s worth briefly noting that compilers for

other heterogeneous components or from other FPGA vendors face similar challenges:

Other FPGA Compilers. FPGA compilers from various vendors generally face the same

limitations as AMD Vitis HLS due to the inherent characteristics of FPGA hard-

ware, with a few exceptions. Intel’s HLS tools [Int24] adopt an approach that

favors handshake signals over global signals, which can mitigate certain hard-

24



ware implementation issues. However, this approach still suffers from inflexible

architecture mapping, often resulting in excessive resource usage. The Merlin

compiler [CHP16a, Sol20] takes a different approach by decoupling logic from

architecture and automatically exploring physical design options. While this au-

tomation can simplify the development process, it heavily relies on automated

analysis, potentially limiting opportunities for manual performance tuning by expe-

rienced developers. Despite these innovations, Merlin and other FPGA compilers

continue to share the aforementioned fundamental limitations inherent to HLS tools,

underscoring the persistent challenges in making FPGA programming accessible to

developers while maintaining the flexibility needed for optimal performance.

AI Engine Compilers. AI Engines provide powerful instruction-based processing based

on vector operations, yet programming them parallels the challenges faced in FPGA

development [Xil21b]. The AMD AI Engine compilers offer separate paradigms for

programming individual cores and their interconnections, using a combination of

C++ with vector intrinsics (analogous to HLS) and the Adaptive Data Flow domain-

specific language for core connections (analogous to RTL). This approach presents

several limitations: unsupported C/C++ constructs due to 16 KB memory con-

straints and disabled language features, tight coupling between logical descriptions

and physical architecture, such as the subtle difference between stream and window,

and the necessity for complex low-level programming interfaces to achieve optimal

performance [Xil21a], akin to physical layout optimization on FPGA. Though efforts

like MLIR-AIE [Xil22b] aim to unify and simplify AI Engine programming, they

demand considerable architectural expertise.

GPU Compilers (e.g., NVIDIA CUDA, AMD HIP). GPUs have become more accessible

for experienced developers with a progressively easier learning curve. After decades

of software and hardware evolution, most C/C++ constructs are now supported by

compilers, although this was not the case initially. For instance, dynamic memory

25



management on device global memory using malloc was only supported starting

with CUDA 3.2 [Nvi11]. Nonetheless, GPU programming still demands a thorough

understanding of the underlying architecture to achieve optimal performance.

Portability across different GPU vendors remains challenging, and realizing peak

theoretical performance often requires low-level optimizations.

DSP and Embedded Processor Compilers. Digital Signal Processors (DSPs) [KLT13] and

other embedded processors, such as MicroBlaze [CCG13], often suffer from the

same set of limitations as the AMD AI Engine compilers due to their similar pro-

cessor architecture and resource constraints. They may require manual handling of

hardware interfaces and interrupts, adding complexity for software developers.

The limitations of heterogeneous compilers highlight the persistent challenges in

enabling software developers to effectively utilize diverse computing resources. While

this dissertation focuses on FPGA development, many of the methodologies presented

are applicable to other platforms. For instance, automated refactoring based on dynamic

analysis could be applied to GPUs and embedded processors to rewrite unsupported

programming constructs and optimize resource usage. Similarly, a tool akin to our physi-

cal layout optimization framework could be developed for AI Engines to accelerate the

inferring of an optimized flow graph with layout-aware communication channels. These

potential applications across various heterogeneous platforms form a key motivation for

the research presented in this dissertation.

2.3 Challenges for Software Developers

This section examines the practical challenges faced by software developers when adapting

applications for heterogeneous computing. Through a survey of 12 real-world kernels

from diverse domains, we identify and categorize the primary obstacles that developers

26



encounter. This analysis provides insight into the gaps between traditional software

development practices and the requirements of heterogeneous computing, highlighting

areas where improved tools and methodologies are needed.

Our survey includes a diverse range of applications, including:

3DR: 3D Image Rendering. Rosetta [ZGD18] is a set of realistic FPGA benchmarks cre-

ated using HLS, where 3DR is a kernel for 3D image rendering.

CNN: Convolutional Neural Network. Cong et al. [CW18] proposed an automated com-

pilation framework for generating high-performance systolic array architectures on

FPGA, where a CNN accelerator is one of its applications [BSW23].

FDT: Face Detection. Srivastava et al. [SDM17] created a face detection accelerator based

on the Viola-Jones algorithm, included in the Rosetta Benchmark [ZGD18].

GSQ: Genome Sequencing. Guo et al. [GLR19] designed an FPGA accelerator with co-

optimization of the host program and the chaining algorithm [Li18] for accelerating

long read pairwise overlapping in third-generation genome sequencing.

JAC: Jacobi. Chi et al. [CCW18] proposed an automated framework that takes in domain-

specific language describing the stencil kernel [TYL23] and generates efficient HLS

code. We use a 2D-Jacobi kernel from the framework’s results to illustrate the

challenges in designing a heterogeneous code generator.

KNN: K-Nearest Neighbor. Lu et al. [LFF20] creates a k-nearest neighbor accelerator for

the Alveo U280 FPGA, using HLS kernels and a custom RTL interconnect.

LLM: Large Language Model. Chen et al. [CZD24] design a hybrid-source accelerator

for large language model inference of the LLaMA2 model, manually optimized for

a specific FPGA, writing code in a four-level nested pipeline.

27



MML: Matrix Multiplication. Cong et al. [CWY18a] design fast matrix multiplication on

FPGA, serving as a fundamental component in various applications.

R2Y: RGB2YUV. Lau et al. [LSZ20] modify the RGB to YUV color scheme conversion

program from OpenCV examples [BK08] for FPGA execution.

STB: Stream Buffer. Guo et al. [GLW20] design a memory to buffer stream that features

a straightforward pipeline with large BRAM consumption.

STS: String Searching. Lau et al. [LSZ20] adapted the Aho-Corasick [AC75] algorithm,

a string multi-pattern searching algorithm utilizing breadth-first search with a

dynamic queue, a recursive dictionary tree [De 59], and a finite state machine.

VDC: Video Decoder. Liu et al. [LCN16] developed an H.264 decoder comprising over

6,000 lines of code and more than 100 functions. The design achieves real-time

decoding at 34 fps with a resolution of 640×480.

From the comparison of the kernels above with their original programs, we observe

that most of the developers have written many lines of code to address the challenges of

current heterogeneous compilers. Additionally, some have unresolved problems in their

implementations. We summarize these major challenges into three categories:

Limited Programmability Support. Many common software constructs are unsupported

or restricted in heterogeneous computing environments. Examples include lack of

support for pointers (PTR), which are fundamental in C/C++ for data structures

and memory manipulation; restrictions on dynamic memory management (DMM),

forcing developers to pre-allocate memory statically; and inability to use function

recursion (REC), requiring manual conversion to iterative algorithms.

Difficulty in Achieving High Performance. Optimizing for heterogeneous platforms of-

ten requires hardware-specific knowledge unfamiliar to software developers. This

28



includes optimization of integer bitwidth (INT) to reduce resource usage and in-

crease parallelism; tuning floating point precision (FPP) to balance accuracy and

performance; implementing workarounds for long hardware critical paths and

high fanouts (FAN); and writing code that addresses the inflexible architecture

mapping (FIX) imposed by compiler tools.

Time-Consuming Porting Across Architectures. Adapting code for different heteroge-

neous platforms or even different devices within the same family can be challenging.

This includes rewriting code to adapt to a different programming model or con-

straints (ADP), which may involve new APIs, pragma systems, or even entirely

different languages. Additionally, changing the physical layout design for a different

device (PHY) often requires a deep understanding of the target hardware’s overall

structure and may require a complete rewrite of the code hierarchy.

We summarize the challenges found in each application in Table 2.1. The application

name and the challenge name are abbreviated as in the brackets above. When a challenge

exists in an application, either addressed by their proposed solutions or still remaining in

the program, a checkmark is added to the corresponding column.

As can be seen from the table, these challenges are pervasive across the surveyed

applications, with more complex applications like large language model (LLM) exhibiting

a higher number of issues [ZLD24, YGB24, YMS24, NWL24, YRB22, YKW23]. The preva-

lence of these problems underscores the significant effort required to adapt software for

heterogeneous platforms, often resulting in code that is less readable and maintainable

due to the inclusion of architecture-specific details. In Chapter 6, we present the end-to-

end frequency enhancement achieved through the optimization of the LLM application,

within which all discussed challenges are present.

The root causes of these challenges can be attributed to four factors: (1) The level of

abstraction provided by current HLS tools, while higher than RTL, still exposes many

29



Table 2.1: Programming challenges of heterogeneous kernels from diverse domains.

App Domain Target
Programmability Performance Portability

PTR DMM REC INT FPP FAN FIX ADP PHY

3DR Media Kintex-7 ✓ ✓ ✓ ✓ ✓ ✓

CNN AI UltraScale+ ✓ ✓ ✓ ✓ ✓ ✓

FDT AI Kintex-7 ✓ ✓ ✓ ✓ ✓

GSQ Genome UltraScale+ ✓ ✓ ✓ ✓ ✓ ✓ ✓

JAC Scientific UltraScale+ ✓ ✓ ✓ ✓ ✓

KNN AI UltraScale+ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LLM AI Versal ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MML Scientific UltraScale+ ✓ ✓ ✓ ✓ ✓

R2Y Media UltraScale+ ✓ ✓ ✓ ✓

STB Network UltraScale+ ✓ ✓

STS Network UltraScale+ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VDC Media Kintex-7 ✓ ✓ ✓ ✓ ✓ ✓ ✓

30



hardware-specific details to software developers; (2) achieving optimal performance often

requires low-level optimizations that conflict with high-level programming paradigms;

(3) the diversity of heterogeneous architectures makes it difficult to create portable code

that performs well across different platforms, even different FPGA devices within the

same family from the same vendor; and (4) current compilers and synthesis tools often

make fixed architectural decisions that may not be optimal for all use cases, requiring

developers to implement workarounds in their source code.

Addressing these challenges requires a multifaceted approach that includes:

Code Transformation. Developing code analysis, transformation and refactoring tools to

automatically adapt software for heterogeneous platforms, abstracting hardware-

specific details that are not performance-related.

Hardware-Aware Optimizations. Developing methods to bridge the gap between high-

level expressions and low-level implementations, enabling architecture-aware and

layout-aware performance optimizations without developer intervention.

Unified Optimization Framework. Proposing an intermediate representation to capture

both high-level descriptions and low-level hardware intricacies, allowing abstract

extension for multiple FPGA-centric heterogeneous devices.

The research presented in this dissertation aims to address these challenges by de-

veloping methodologies and tools that can decouple architectural details from logical

programs. This approach seeks to improve programmability, automate performance

optimizations, and facilitate easier porting across different heterogeneous platforms,

ultimately making heterogeneous computing more accessible to software developers.

31



2.4 Case Study: Large Language Model Accelerator

To elaborate on the challenges software developers face when adapting applications for

heterogeneous computing, we present a case study of a Large Language Model (LLM)

accelerator. Since Chen et al. [CZD24] implement the algorithm from scratch with FPGA

architecture details in mind, we compare their implementation with a potential original

software implementation (based on llama2.c [Kar24]) to show what a software developer

needs to modify if taking it as a starting point. This comparison highlights the significant

modifications required to port a software application to an FPGA, aligning with the

programming challenges identified in Table 2.1.

2.4.1 Pointer Usage and Memory Management

Dynamic memory allocation (DMM) is commonly used in software but is not supported

in most FPGA compilers. In the original software implementation, memory is allocated

dynamically during runtime using functions like malloc() and free(). This allows

programs to request memory when needed and release it when no longer in use. This

approach is flexible and efficient for handling varying memory requirements. For example,

in llama2.c [Kar24], memory is allocated for an input prompt buffer:

char* str_buffer =
malloc((t->token_length*2 +1 +2) * sizeof(char));

In contrast, FPGA implementations use static memory allocation, where the memory

size and structure are determined at compile-time. Due to the lack of support for runtime

memory management functions analogous to those in software, it requires designers to

carefully plan and optimize memory usage ahead of time to avoid resource wastage and

ensure performance, often leading to overly conservative memory usage.

#define INPUT_SIZE 4096
// io_pack_type is defined as a hardware optimized representation

32



// with reduced bitwidth (INT).
io_pack_type input_buffer[INPUT_SIZE];

Similarly, pointers (PTR) are used extensively for efficient memory access and ma-

nipulation. For example, to process text, a software programmer often uses pointers to

traverse the text by incrementing the pointer to access subsequent characters and search

the text by using the pointer to locate specific characters or substrings. This can enhance

readability by using the same representation for a substring in the same way as the

original text. For example, in llama2.c [Kar24], the text is traversed using a pointer:

for (char *sub = text; *sub != '\0'; sub++)
if (/* condition... */ )

process_substring(sub);

However, in the FPGA implementation, pointers are not directly supported. Instead,

the programmers need to iterate through the input buffer using indexed loops, and

process the substring by passing the buffer and the index to the processing function:

io_pack_type input_buffer[INPUT_SIZE];
for (i = 0; i < input_size; i++)

if (/* condition... */ )
process_substring(input_buffer, i);

This change illustrates the challenge of (PTR) the lack of pointer support and the lack

of dynamic memory allocation support (DMM). Software developers must rewrite code

to use fixed-size arrays and then access them using indices, leading to inefficient memory

usage or limitations on input size, and requiring a restricted coding style.

2.4.2 Recursion and Algorithm Adaptation

Recursion (REC) is a powerful programming construct commonly used in software

development for elegant and concise implementations of algorithms, particularly those

33



with a naturally recursive structure. However, it presents significant challenges when

implemented directly in hardware, such as FPGAs. This is due to the static nature of

hardware designs and the potential for unbounded resource usage in recursive calls.

For example, in the original software implementation of llama2.c [Kar24], binary

search is used for the efficient search of tokens. In llama2.c, the binary search uses the

standard library function bsearch() to find a token in the vocabulary. Below, we show a

simplified version of the binary search function for illustrative purposes:

TokenIndex *binary_search(Token tok, TokenIndex *vocab, int size) {
if (size == 0) return NULL;
int mid = size / 2;
if (tok == vocab[mid].token) return &vocab[mid];
if (tok < vocab[mid].token) return binary_search(tok, vocab, mid);
return binary_search(tok, vocab + mid + 1, size - mid - 1);

}

This binary search algorithm is concise and intuitive, internally using recursion in

its implementation. While Chen et al. [CZD24] do not implement the binary search

algorithm in their FPGA accelerator, if this function is to be ported to an FPGA, this

recursive algorithm would need to be rewritten as an iterative version, as shown below:

int binary_search(Token tok, TokenIndex vocab[], int size) {
int low = 0, high = size - 1;
while (low <= high) {

int mid = low + (high - low) / 2;
if (tok == vocab[mid].token) return mid;
if (tok < vocab[mid].token) high = mid - 1;
else low = mid + 1;

}
return -1;

}

This iterative version uses a while loop to implement the binary search, explicitly

managing the search boundaries (equivalent to the function arguments). It is functionally

equivalent but potentially less intuitive for developers accustomed to recursion.

34



The transformation from recursive to iterative algorithms often requires:

Explicit State Management. Developers must manually track the state that is implicitly

handled by the call stack in recursive implementations. In the binary search example,

the low and high indices, which were vocab and size in the recursion, are explicitly

managed in the iterative version. These variables are not used after the function

returns; otherwise, they would need to be stored in a separate stack.

Control Flow Adaptation. The control flow of the recursion must be translated into loop

conditions, as shown in the while loop in iterative binary search, where the control

flow continues looping until the search boundaries meet. If the function has multiple

recursive calls, the iterative version needs to manage these cases explicitly.

This rewriting process can make code less intuitive and harder to maintain. It also

requires developers to think in a more hardware-oriented manner, considering aspects

like fixed resource utilization and deterministic execution paths.

Moreover, some algorithms that are naturally expressed recursively (e.g., tree traversals,

merge sort [QGF23, QOG21], graph algorithms [CGC22]) become substantially more

complex when rewritten iteratively. This can lead to increased development time and a

higher likelihood of introducing bugs. We will present these more complex examples of

algorithm adaptation in Chapter 3.

2.4.3 Data Representation and Precision

Optimizing data representation is crucial for efficient FPGA implementations, often

involving reducing the bitwidth of integers (INT) and adjusting floating-point precision

(FPP). These optimizations are essential for maximizing resource efficiency on FPGAs

to improve performance but require careful consideration of the applicable range in the

application domain, and trade-offs between result precision and design efficiency.

35



In the original software implementation of llama2.c [Kar24], standard integer and

floating-point types are used without concern for bit-level optimization:

int *prompt_tokens = (int *)malloc((strlen(prompt)+3) * sizeof(int));
float *q, *k, *v, *wq, *wk, *wv;
matmul(q, xb, wq + ldimdim, dim, dim); // ...

This approach is natural for software developers, who typically rely on the CPU’s

native support for these data types and don’t need to consider the underlying bit-level

representations. Even if the input data does not require the full range of the data type,

reducing the bitwidth is not a common practice in software development due to the

negligible performance improvements on CPUs. In fact, the performance can sometimes

be even degraded due to the overhead of bit manipulation.

In contrast, the FPGA implementation by Chen et al. [CZD24] requires careful

optimization of data types to reduce resource usage and fit more processing elements.

ap_uint <15> prompt_tokens[INPUT_SIZE];
ap_fixed<8, /*...*/ > k, v, q;
ap_fixed<24, /*...*/ > wk, wv, wq;
ap_fixed<32, /*...*/ > result;
result = k * wk + v * wv + q * wq;

This FPGA version uses custom bitwidths for integers and fixed-point arithmetic

instead of float. The ap_uint<15> type for prompt_tokens indicates that 15 bits are

sufficient to represent the token values, potentially saving significant FPGA resources

compared to using 32-bit integers. Similarly, the matrix multiplication operations are

implemented using fixed-point arithmetic with carefully chosen bitwidths.

These transformations require software developers to (1) analyze the range and preci-

sion requirements of each variable in their algorithm, (2) choose appropriate bitwidths

that balance accuracy and resource usage, and (3) carefully track and manage the growth

of bitwidths through arithmetic operations to prevent overflow or loss of precision.

36



This bit-level optimization is typically unfamiliar to software developers and requires

a deep understanding of both the algorithm’s numerical properties and the FPGA’s

resource constraints. It also introduces the risk of subtle numerical errors that may not be

present in the original implementation, requiring careful monitoring of results.

2.4.4 Architecture-Specific Optimizations

FPGA implementations often require architecture-specific optimizations to achieve high

performance. This includes addressing issues like fan-out (FAN) and inflexible archi-

tecture mapping (FIX). These optimizations often require a deep understanding of the

underlying hardware architecture and can significantly impact the structure of the code.

In software implementations, developers typically do not need to consider low-level

architectural details. For example, in a typical software implementation, the following

code snippet in Chen et al.’s work [CZD24] might look innocent and high-performance:

for (int j = 0; j < block_size_b; j++) {
#pragma HLS pipeline
ap_int<64> acc_temp = block_C_drainer[j];
for (int i = 0; i < block_size_a; i++) {

ap_int<32> outp0_dp = acc_temp.range(31, 0);
ap_int<32> outp1_dp = acc_temp.range(63, 32);
ap_int<8> outp0 = outp0_dp * buf18[ps_offset + i];
ap_int<8> outp1 = outp1_dp * buf18[ps_offset + i];
outp_data_pack_0.range(i*8 + 7, i8) = outp0;
outp_data_pack_1.range(i*8 + 7, i8) = outp1;

}
outp[j] = (outp_data_pack_1, outp_data_pack_0);

}

However, there are two pitfalls that are difficult to detect even for an FPGA HLS

expert without conducting a thorough analysis of the generated RTL code.

First, the acc_temp variable is read in every iteration of the inner loop. In hardware,

this generates a fan-out broadcast to each hardware entity of the loop iterations. Specifi-

37



cally, each iteration of the inner loop will generate a hardware subentity that occupies

a physical resource on the FPGA, with the acc_temp variable being broadcast to all of

them (FAN). Due to the limited physical routing resource on an FPGA, this can cause

congestion and reduce the maximum achievable clock frequency.

Second, as the hardware entities inside the outer loop are created in parallel to work

in a pipeline (#pragma HLS pipeline), they require a centralized control mechanism to

ensure synchronization. This control mechanism is generated by the HLS tool and is

typically implemented as a state machine. However, the state machine produced by the

HLS tool may often not be flexible or optimal for the specific application (FIX). In this

example, the pipeline depth of the outer loop is high, and when the input is not ready, a

stall signal is generated and broadcast to each hardware entity. This control broadcast

signal can also cause congestion and reduce the achievable clock frequency.

Figure 2.4 showcases these two potential challenges during the synthesis into hardware.

The first challenge, depicted in the fan-out example, involves broadcasting the data stored

in acc_temp to every i = 0, 1, ..., A iteration required for computing the result of

outp0_dp. The second challenge, observed in the fixed architecture example, relates to

the control signals of pipeline stages for the j loop. These stages are controlled by both

the data source and the sink that receives the output. Hence, a stall in either the data

source or sink results in broadcasting the stall signal across all pipeline stages.

To address the performance problems, an expert HLS developer will usually rewrite

the code to reduce the fan-out or add pipeline registers to the broadcast signals and

manually optimize the generated RTL to reduce the control signal broadcast. For instance,

by adding a pipeline register to the acc_temp variable to mitigate the fan-out issue:

for (int j = 0; j < block_size_b; j++) {
// ...
for (int i = 0; i < block_size_a; i++) {

ap_int<32> outp0_dp = HLS_REG(acc_temp).range(31, 0);
// ...

38



j-loop
Stage
outp0
_dp

i = 0 i = 1 i = 2 i = A…acc_tempFan-Out

j-loop

Stage 1 Stage 2 Stage 3 …Fixed
Architecture

Stage N SinkSource

Stall

Figure 2.4: Fan-out data signals and fixed architecture templates of the pipeline stall

signals in the LLM design [CZD24], potentially degrading operating frequency.

}
}

These optimizations require a deep understanding of the HLS tool and the underlying

FPGA architecture, which are foreign to typical software development practices.

2.4.5 Adaptation and Portability Challenges

Adapting code for different architectures (ADP) and ensuring portability across different

FPGA devices (PHY) present significant challenges in heterogeneous computing.

In typical software, the code structure closely follows the logical flow of the algorithm.

For example, in llama2.c [Kar24], the main processing loop might look like this:

encode(tokenizer, prompt, 1, 0, prompt_tokens, &num_prompt_tokens);
float* logits = forward(transformer, token, pos);
next = sample(sampler, logits);
char* piece = decode(tokenizer, token, next);

This code is straightforward, with clear separation between encoding, forward pass,

sampling, and decoding steps. It’s also highly portable across different CPUs with

39



Layer Region 1 Layer Region 2 Layer Region 3

Linear Layers
Part I

Linear Layers
Part II

Non-Linear Layers
Part I

Non-Linear Layers
Part II

GELU
LNorm

Figure 2.5: The physically-aware hierarchy of the LLM FPGA accelerator [CZD24].

minimal changes required. However, when adapting this code for FPGA implementation,

as done by Chen et al. [CZD24], the structure changes dramatically:

layer_region_1(inp_addr_0, inp_addr_1, inp_addr_2,
wk_addr, wv_addr, wq_addr, outp_k, outp_v, outp_q, outp_inp);

layer_region_2(w_ds0_addr, outp_k, outp_v, outp_q, outp_inp, outp_ln0);
layer_region_3(w_ds1_addr, w_ds2_addr, outp_ln0, outp_addr);

The logical flow of the algorithm is obscured by low-level hardware details in this

modified version. In this version, the source code is structured into three functions, each

in a different hardware region, with layer_region_1 placed on the first FPGA chip die,

layer_region_2 placed on the second chip die, and so on. This code modification is

illustrated in Figure 2.5. Here, the integral functionalities of Linear Layers are divided to

fit into two distinct regions: Layer Region 1 and Layer Region 2.

With this methodology, originally integral functions are distributed across multiple

physical regions, involving complex data dependencies and communication channels.

Besides, this structure is highly optimized for the specific FPGA architecture but is

difficult for software developers to understand and maintain (ADP). Additionally, porting

to another FPGA platform requires extensive design restructuring (PHY).

2.4.6 Other Out-of-Scope Optimizations

There are some optimizations that are out of the scope of this work but are crucial

for FPGA implementations. These optimizations include parallelism, pipelining, and

40



memory hierarchy. While our research focuses on bridging the unaddressed gap between

software development and heterogeneous computing, it is important to acknowledge

these additional aspects where prior work has been extensively researched.

In FPGA programming, the interface between the host system and the FPGA device,

or between the FPGA fabric and its peripheral IPs, must be explicitly defined. This

interface is typically described using pragmas in the top-level function of HLS code. For

instance, in Chen et al.’s work [CZD24], the top-level function is defined as follows:

void llm(io_pack_float *inp_0, io_pack_float *inp_1, /* ... */ ) {
#pragma HLS interface m_axi port=inp_0 offset=slave bundle=gmem0
#pragma HLS interface m_axi port=inp_1 offset=slave bundle=gmem1
// ...

}

In this example, developers use specialized pragmas to specify that the inputs are

passed to the FPGA design via memory-mapped AXI buses. In comparison, software

developers are not accustomed to defining such interfaces explicitly, as the function

parameters are passed through the stack or registers.

Another critical optimization is the use of parallelism and pipelining to maximize

resource utilization and performance. In FPGA implementations, developers often use

pragmas to specify parallelism and pipelining directives to the HLS tool. For example, in

Chen et al.’s work [CZD24], the #pragma HLS unroll directive is used to specify that the

loop’s content PE_int8_int16 function call should be executed in parallel.

for (int m = 0; m < block_size_a; m++) {
#pragma HLS UNROLL

for (int n = 0; n < block_size_b; n++) {
#pragma HLS UNROLL

PE_int8_int16(A_fifo[m][n], A_fifo[m][n+1],
B_fifo[n][m], B_fifo[n][m+1],
C[m][n], inp_len);

}
}

41



This is similar to the use of OpenMP pragmas in software development to specify

parallelism. However, the FPGA pragmas are more low-level, as specifying excessive

parallelism will oversubscribe the FPGA resources and cause compilation failures, while

software can typically tolerate that using lightweight threads and context switching.

Additionally, the parallelism specified in HLS must be supported by the concurrently

designed memory hierarchy, such as array partitioning, to be described in the next

paragraph, which is usually not a concern in software development.

Efficient management of the memory hierarchy is crucial for FPGA performance.

This includes optimizing device memory access by packing data into the full width of

DRAM accesses (typically 512 bits), splitting memory into multiple banks for parallel

access, implementing techniques like double buffering to overlap communication with

computation [CFH18], and explicitly managing on-chip caching through data tiling,

batching, or reuse strategies [SMM03, PZS13, CCW18]. A simple example of memory

hierarchy optimization is shown in Chen et al.’s work [CZD24], where the C matrix is

partitioned into smaller blocks for parallel memory access:

ap_int<64> C[block_size_a][block_size_b] = {0};
#pragma HLS ARRAY_PARTITION variable = C complete dim = 1
#pragma HLS ARRAY_PARTITION variable = C complete dim = 2

Solutions to these challenges are outside the scope of this thesis, as they are well

addressed in the literature, such as polyhedral model-based loop transformations [BBK08,

CW18, PZS13, ZLC13], automatic parallelization exploration [CWY18a, KPZ16, YWG18,

GLW20], data tiling, batching, or reusing for efficient memory hierarchy or movement

[CHP16b, CWY18a, KPZ16, PSK15, PZS13, CCW18], and automatic device and host

interface generation [CHP16b, YWG18, RHL18]. Instead, we focus on the challenges that

have not been adequately addressed in prior work.

42



2.5 Related Work

As we discussed in Section 2.2, this dissertation focuses on three pressing challenges in de-

velopment for heterogeneous computing platforms by software developers: (1) improving

programmability by allowing more code constructs, (2) boosting performance by reduc-

ing resource usage and performing architecture-specific optimizations, and (3) providing

a flexible and extensible optimization framework for portable physical optimizations. We

present related work in these three directions in the following subsections.

2.5.1 Improving Programmability

This part discusses related work in two key areas enabling software developers to pro-

ductively program for heterogeneous computing resources with their familiar paradigms:

dynamic invariant analysis and support for recursive data structures.

2.5.1.1 Dynamic Invariant Analysis

Dynamic invariant analysis plays a central role in our approach to enabling refactoring

from software programs to synthesizable counterparts for FPGAs, as FPGA mandates

static resource allocations, distinct from software practices. This technique has been

extensively explored in the software engineering community, with applications ranging

from program understanding to automated debugging and refactoring.

One key piece of work in this area is Daikon [EPG07], which generates 22 types of

invariants for C, C++, and Java programs. Daikon’s approach to inferring likely invariants

from program executions has been influential in the field. It uses dynamic analysis to

understand program behavior. Building on this work, Kataoka et al. [KEG01] use Daikon

to apply dynamic invariant detection to code refactoring, specifically for suggesting

appropriate API changes based on observed program behavior.

43



While these approaches have proven effective in traditional software contexts, they

typically require representative data sets to infer accurate invariants. Our proposed

solution differs in this aspect, as it does not require representative data a priori. Instead,

we leverage selective offloading to ensure correctness, allowing developers to use sys-

tematic test generation tools [GKS05, GLM08, SMA05] or test minimization techniques

[HO09, TG05] to infer invariants without compromising on correctness.

2.5.1.2 Support for Recursive Data Structures

Enabling the use of recursive data structures in heterogeneous computing, particularly

on FPGAs, has been a long-standing challenge. The root of this challenge lies in the

fundamental difference in memory models between traditional CPUs and FPGAs. Unlike

the unified memory model of CPUs, in HLS for FPGAs, each array has a separate address

space, making it difficult to implement pointer-based data structures.

Several methodologies have been proposed to address this challenge. SynADT [XT16]

offers an HLS library for representing linked lists, binary trees, hash tables, and vectors.

It internally uses arrays and a shared system-wide memory allocator [XT15] to emulate

these structures on FPGAs. While SynADT provides a valuable step towards supporting

complex data structures in HLS, it is limited to a predefined set of structures and requires

manual refactoring by developers. Thomas et al. [Tho16] took a different approach, using

C++ templates to create a domain-specific language (DSL) that supports recursion in

HLS. This method allows for more flexible recursive structures but comes at the cost

of requiring extensive rewriting of control statements using lambda functions. Another

approach, exemplified by CHiMPS [PEB09], uses FPGA distributed memory as caches,

requiring a centralized main memory. While the approach of caching on FPGA can

simplify the implementation of recursive structures, it may not be optimal for all FPGA

designs and can introduce performance bottlenecks. Ahmad et al. [ADZ24] proposes fast

Strassen’s matrix multiplication on FPGAs with carefully designed architectures.

44



It’s worth noting that similar challenges have been faced in other heterogeneous

computing platforms. For instance, early versions of CUDA for GPUs [Nvi11] and

OpenCL [SGS10] had limitations on dynamic memory management. CUDA, for example,

did not support dynamic memory allocation on device global memory using malloc

until version 3.2 [Nvi11]. To work around these limitations, researchers have developed

custom memory allocators for GPUs [HRJ10, SKK12, AP14]. These allocators can work

with arbitrary types and serve as replacements for malloc on various memory types.

However, they still typically require manually specifying a heap size.

The key difference between GPU and FPGA approaches lies in the underlying memory

model. GPUs provide a single address space with regular access widths, similar to CPUs,

which simplifies the implementation of dynamic memory management. FPGAs, on the

other hand, lack this unified address space, making the implementation of recursive

structures and dynamic memory allocation significantly more challenging.

2.5.2 Improving Performance

In this part, we discuss related work in various areas of performance optimization,

focusing on techniques that can be applied to improve the efficiency of FPGA-centric

heterogeneous systems while maintaining a high-level programming model.

2.5.2.1 Integer Bitwidth Optimization

Integer bitwidth optimization is crucial for efficient FPGA implementations, as it directly

impacts resource utilization and power consumption and allows for parallelization by

duplicating processing elements. Klimovic et al. [KA13] propose an approach that

optimizes FPGA accelerators for common-case inputs by reducing bitwidths using both

bitmask analysis and program profiling [GA13]. Their method triggers a software fallback

function when inputs exceed the common-case range. They estimate an average area

45



reduction of 28% for accelerators with their bitwidth optimization method.

In contrast, static analysis methods like Bitwise [SBA00], which propagates bitwidth

constraints based on bit flow graphs, and MiniBit [LGM05], which minimizes integer and

fixed-point data signals using affine arithmetic, often result in over-approximation. Cong

et al. [CGL09] employ a combination of affine arithmetic, general interval arithmetic, and

symbolic arithmetic methods to optimize fixed-point data. While these static approaches

provide valuable insights, they may be overly conservative for practical applications.

Our work differs from these approaches by focusing on dynamic analysis and auto-

mated refactoring, which can potentially achieve more aggressive optimizations while

maintaining correctness through runtime checks and fallback mechanisms.

2.5.2.2 Floating-Point Precision Optimization

Optimizing floating-point precision can similarly reduce resource utilization and create

spaces for parallelization. Several approaches offer HLS libraries for variable-width

floating-point computation units but often need manual developer intervention. For

example, Thomas [Tho19] introduces an HLS backend for generating customized floating-

point accelerators using C++ template-based, parameterized types. However, users must

manually specify bit widths for exponents and fractions, posing challenges for software

developers lacking hardware expertise.

FPTuner [CBB17] uses static analysis for automatic precision-tuning of expressions,

supporting single, double, or quadruple precision. Precimonious [RNN13] employs

dynamic analysis and delta-debugging to identify lower-precision instructions that satisfy

user-specified precision loss constraints. These tools provide automation but do not

support arbitrary-width floating-point types or integration with HLS workflows.

Our proposed work aims to automate the process of floating-point precision opti-

mization within the context of HLS, allowing software developers to benefit from these

46



optimizations without requiring in-depth knowledge of floating-point representations or

FPGA-specific implementation details.

2.5.2.3 High-Fanout Signal Optimization

High-fanout data dependencies can significantly impact the performance of FPGA designs,

particularly in terms of achievable clock frequencies. While fanout optimization has

been extensively studied in logic synthesis [PB91, HKP84, SS90] and physical design

[OC97, BL03, WMP03, Wea08], these approaches are often limited by the cycle-accurate

timing specifications of RTL inputs. For example, they cannot arbitrarily divide broadcast

delays across multiple clock cycles, and techniques like retiming [Wea08, VHB06] are

constrained by the availability of registers on critical paths.

Our work focuses on behavior-level optimizations that can change the schedule of

broadcasts, offering more flexibility than traditional backend optimizations. This approach

allows for significant frequency gains even in designs that have already undergone

modern backend broadcast optimization. Cong et al. [CGH18] propose using a multi-

level broadcast tree for control signals, but their approach requires iterative tuning to

achieve a satisfactory tree topology.

2.5.2.4 Optimization of HLS Data Broadcast

Cong et al. [CWY18b] address a particular case of the data broadcast problem by

attempting to alleviate critical paths when accessing large buffers that may be mapped to

scattered BRAM units. However, their approach requires explicit user intervention and

iterative tuning to explore the best topology. Moreover, it is limited to rearranging data

interconnects between external ports and explicitly-defined processing elements, without

addressing fine-grained datapaths.

47



2.5.2.5 Physically-Aware Optimization for HLS

Physically-aware optimization in HLS is crucial for bridging the gap between high-level

descriptions and efficient hardware implementations. Zhang et al. [ZGR14] propose an

iterative approach that runs placement and routing to calibrate delay information used

by HLS. However, this method incurs significant compilation time overhead and may not

address timing issues caused by auto-inferred control logic.

Zhao et al. [ZTD15] and Tan et al. [TDG15] propose considering technology mapping

for logic operations to improve delay predictions. Fujiwara et al. [FKY15, FKY16] model

clock skew at the behavior level. Cong et al. [CLL12] introduce metrics to assess the

layout-friendliness of an RTL netlist, while Tatsuoka et al. [TWO15, TK18] identify source

code lines leading to MUX and deMUX structures. TARO [CCL23] is an optimization

technique applied to free-running dataflow kernels to minimize control signal overheads.

Our work builds on these efforts by developing a comprehensive framework for

physically aware optimization, transparent to high-level software descriptions.

2.5.2.6 Other Automated Optimizations for HLS

Researchers have developed various methods to optimize hardware-software integra-

tion to streamline the development process. One focus is the automatic generation of

device and host interfaces, which enables seamless integration between FPGA hardware

accelerators and software components [CHP16b, YWG18, RHL18].

To optimize the performance of hardware accelerators, it is crucial to explore paral-

lelization opportunities. Researchers have proposed various automated techniques to

identify and exploit parallelism in algorithms [CWY18a, KPZ16, YWG18, GLW20]. These

methodologies employ strategies such as loop unrolling, pipelining, and task-level paral-

lelism. Notably, AutoSA [WGC21] and SODA [CCW18] generate hardware-efficient paral-

lel architectures, including systolic arrays and stencil architectures, directly from software

48



descriptions with constrained computation patterns. Furthermore, AutoDSE [SYG22] and

HARP [SBS23] utilize automated exploration techniques to determine optimal pragma

insertions for leveraging parallelism.

Efficient data movement between off-chip memory and on-chip resources is also cru-

cial for reducing latency and power consumption. To address this challenge, researchers

have developed various methods to optimize data transfer and minimize memory access

latency [CHP16b, CWY18a, KPZ16, PSK15, PZS13, CCW18]. These techniques incorpo-

rate strategies such as data reuse, memory partitioning, and scheduling of memory

operations to improve overall system performance.

2.5.3 Extensible Optimization Framework

Enabling software developers to effectively leverage heterogeneous computing resources

requires not only high-level abstractions but also powerful, extensible optimization

frameworks that can adapt to diverse hardware targets and design methodologies. This

subsection discusses related work in the areas of High-Level Physical Synthesis (HLPS),

intermediate representations (IRs), and dataflow design methodologies.

2.5.3.1 High-Level Physical Synthesis

High-level physical synthesis methodologies have been extensively explored in recent

years [GCW21, LWK22, DLS23, DLZ24, GCL23, KTC23, NBN23, LLC23, MGC23, XHP22,

XPN24], aiming to bridge the gap between high-level descriptions and efficient physical

implementations. These approaches focus on integrating physical design considerations

into the high-level synthesis process, enabling concurrent optimizations for maximum

frequency.

A notable example is AutoBridge [GCW21], which improves timing by considering

layout information during HLS stages, particularly for high-frequency multi-die FPGA

49



designs. However, AutoBridge is limited to one-level pipelining with streaming ports at

the top-level function in a dataflow manner, constraining software developers working on

complex, hierarchical designs needing more flexible pipelining strategies.

Our work aims to address these limitations by providing a comprehensive framework

that supports pipelining at arbitrary hierarchy levels and can accommodate hybrid-source

designs. This approach allows for greater flexibility in optimizing complex systems,

making it more accessible for software developers working with a mix of high-level

software descriptions and optimized low-level hardware libraries.

High-level physical synthesis methodology for FPGAs has been significantly influ-

enced by coarse-grained partitioning-based optimizations. Xiao et al. [PXM18, XPB19,

XMB22, XAD20] propose accelerating compilation using partial reconfiguration (PR) with

a pre-compiled network-on-chip. While reducing compile time, this approach necessitates

application decomposition into fixed PR pages, potentially causing fragmentation and

bandwidth limitations. Their subsequent work, HiPR [XHP22, XPN24], introduces an

automated PR overlay generation system, adapting to application-specific requirements

while maintaining efficiency.

Notably, recent advancements in high-level physical synthesis have significantly ad-

vanced co-optimization and design space exploration. In one of those work, Du et al.

[DLS23] proposed an important framework for co-optimizing HLS directives and floor-

plans on multi-die FPGAs, employing latency-bottleneck-guided search and incremental

floorplan legalization. This approach yields up to 8.78x performance improvement and

693x-4925x faster convergence. Their follow-up work [DLZ24] addressed limitations of

synthesis-based methods by introducing an analytical QoR model-based directive search

integrated with incremental floorplanning, achieving a 1.40x improvement over their

previous results.

50



2.5.3.2 Intermediate Representations

Intermediate Representations (IRs) play a crucial role in enabling effective optimizations

and transformations in compiler frameworks. Several IRs have been proposed to address

various aspects of hardware design and synthesis, including MLIR [LAB21], CIRCT

[LLV], Yosys IR [WGK13], ScaleHLS [YHC22], CIRRF [VPN10], HIR [MB24], and Xilinx

IPI [Adv24b]. These IRs focus on different aspects of the compilation process, such as

fine-grained logic, datapath descriptions, operation schedules, and IP integration.

However, existing IRs lack the necessary infrastructure to fully support the unique

challenges posed by heterogeneous computing, particularly in handling current designs

and enabling physical optimizations for FPGAs. Our research addresses this limitation

by developing a reusable IR that can capture both high-level design intent and low-level

physical constraints. This IR is designed to support a wide range of input formats and

target devices, enabling more comprehensive and flexible optimizations that can benefit

software developers working across diverse heterogeneous platforms.

2.5.3.3 Optimization for Other Targets

There exists a range of acceleration frameworks designed for platforms other than FPGA

devices. To name a few, TensorFlow XLA [ABC16] is a domain-specific compiler for

linear algebra that optimizes TensorFlow computations. NVIDIA’s TensorRT [JKH22] is a

deep learning inference optimizer and runtime that enhances the performance of deep

learning applications on GPU platforms. Apache TVM [CMJ18] is an end-to-end deep

learning compiler stack that optimizes deep learning workloads across diverse hardware

backends. MLIR [LAB21] provides a unified infrastructure for high-performance machine

learning compilers, enabling optimizations across different levels of abstraction. GMorph

[YYX24] is a deep learning compiler that optimizes model execution on various hardware

platforms by merging computation graphs and sharing similar operations across models

51



to achieve significant speed-ups. Ruzhanskaia et al. [RXC24] uses programmed I/O to

optimize communication between CPU and peripherals.

The extension of optimization frameworks to emerging applications and FPGA devices

has the potential to be utilized in applications that demand real-time performance and

energy efficiency. These applications include live streaming [DXX24], virtual reality

and 3D data acquisition with surface reconstruction [LL20], the security and privacy

protection of volumetric video streaming [TFX20, TPF23], wearable technology [JLD22],

medical imaging [GMN23, GSF22], and the generation of protective perturbations for

image recognition [YTP22, TYL24]. Evaluating geometric disparities between simulated

and experimental structures through computer-vision-based methodologies also requires

computational efficiency and real-time capabilities. These algorithms encompass feature

extraction, pattern recognition, and symmetric difference analysis [XDC24]. FPGAs,

with inherent parallelism and low latency, could facilitate defect detection and expedite

feedback during design and manufacturing.

2.5.3.4 Dataflow Design Methodologies

Our research leverages dataflow to create an accessible and flexible optimization frame-

work for software developers. By integrating dataflow principles into our IR and opti-

mization passes, we enable high-level expression of parallel and pipelined computations.

Heterogeneous computing benefits from dataflow design methodologies. Various

models, including Kahn Process Network (KPN) [Gil74] and Synchronous Data Flow

(SDF) [LM87], offer different balances between expressiveness and analyzability. More

constrained models like SDF allow for more precise throughput analysis [GGS06]. Du

et al. [SDL24] propose an end-to-end solution for vertex-parallel graph processing that

leverages dataflow methodologies. Their approach incorporates software-hardware co-

optimization techniques to enhance scalability in graph processing systems.

52



Latency Insensitive Theory [CS00, LK03, LK06, CC07, AB18] enables analytical through-

put calculations with SDF-like constraints. Research has focused on optimizing buffer

placement in dataflow circuits and integrating IP blocks with varying latencies through

delay insertion techniques. Our work builds on these principles, inserting delays to

resolve timing issues and optimize throughput in heterogeneous computing designs.

53



CHAPTER 3

Dynamic Analysis and Automated Refactoring

The advancement of high-level synthesis (HLS) tools has raised the programming abstrac-

tion for heterogeneous computing, transitioning from hardware description languages

(HDLs) to C/C++ environments. However, this progress has not fully bridged the gap

between software development practices and customized hardware resources. Software

developers still face challenges leveraging heterogeneous computing platforms, particu-

larly with constructs like pointers, dynamic memory management, and recursion. These

constructs, fundamental to many algorithms, are often incompatible with HLS tools and

require manual refactoring to be synthesizable for FPGAs.

Achieving optimal performance on heterogeneous platforms requires extensive opti-

mizations to improve resource efficiency and maximize frequency. These optimizations

require deep knowledge of the hardware architecture, posing a significant barrier for de-

velopers lacking this expertise. To address these challenges, we introduce HeteroRefactor,

a novel approach combining dynamic invariant analysis with automated refactoring and

selective offloading techniques. HeteroRefactor operates in three stages:

Dynamic Invariant Analysis. HeteroRefactor monitors the dynamic invariants of the

target program, including the bitwidth of integer and floating-point variables

and the size of recursive data structures and stacks. This captures the actual

runtime behavior, offering insights beyond static analysis. These invariants guide the

refactoring process and enable the synthesis of traditionally incompatible programs.

Automated Refactoring. Using the knowledge of dynamic invariants, HeteroRefactor

54



refactors the kernel to optimize resource usage and frequency. It transforms the

program to make it synthesizable for customized resources while also optimizing

resource usage and achievable operating frequency. This step alleviates the need for

manual, error-prone refactoring by developers.

Selective Offloading. To ensure correctness and maintain software compatibility, Het-

eroRefactor implements a selective offloading mechanism. Computation is only

transferred from the CPU to customized resources when the input falls within

the observed dynamic invariants. This approach guarantees functional correctness

while maximizing the use of heterogeneous resources.

HeteroRefactor is implemented using the ROSE compiler framework [QL11] for source-

to-source transformations and is extended upon Daikon [EPG07] for dynamic analysis.

This chapter presents the HeteroRefactor approach. We evaluate HeteroRefactor on

benchmarks, demonstrating its effectiveness in optimizing resource usage and frequency

while maintaining functional correctness. Our results show that HeteroRefactor makes

heterogeneous computing resources more accessible to software developers.

HeteroRefactore is the result of collaborative efforts. The integer refactoring techniques

described in Section 3.2.2 were primarily developed by Aishwarya Sivaraman. Parts of

the floating-point refactoring methods and parts of the experimental evaluation, covered

in Sections 3.2.3 and 3.3 respectively, involved significant contributions from Qian Zhang.

Professor Miryung Kim provided valuable insights and guidance throughout the research.

This chapter is based on research originally published at the 2020 IEEE/ACM 42nd Inter-

national Conference on Software Engineering [LSZ20]. The software distribution of Het-

eroRefactor could be found at https://github.com/heterorefactor/heterorefactor.

By addressing the challenges of code compatibility and optimization for heteroge-

neous platforms, HeteroRefactor represents a step towards enabling software developers

to leverage the power of heterogeneous computing without requiring extensive hardware

55

https://github.com/heterorefactor/heterorefactor


expertise. The following sections will delve into the details of our approach, its implemen-

tation, and its effectiveness in bridging the gap between software development practices

and heterogeneous computing requirements.

3.1 Overview

3.1.1 Observations

The transition from traditional CPU-based computing to heterogeneous systems presents

significant challenges for software developers. One of the key observations driving our

research is that software kernels are often designed with a level of generality that, while

having little impact on CPU-based execution, can lead to inefficiencies when implemented

on customized accelerators. This over-provisioning, intended to handle a wide range of

inputs, can significantly impact the efficiency of heterogeneous implementations, where

resource utilization and performance are highly dependent on the actual ranges of values

and data structure sizes encountered during execution.

For instance, a software developer might use a 32-bit integer to represent a human

age, despite the fact that the practical range rarely exceeds 120. Similarly, an array might

be conservatively allocated with a size of 16k elements, even though 99% of executions

only require a size of 2k or less. While such design choices have minimal impact on

CPU performance, they can lead to substantial inefficiencies in customized accelerators,

affecting resource usage and maximum operating frequency.

3.1.2 Approaches

HeteroRefactor automatically transforms software kernels in high-level languages like

C/C++ into forms that are compatible with HLS tools. This automation reduces the

manual effort required to port existing software to heterogeneous platforms, addressing

56



the "80-20 rule" often observed in FPGA design, where a disproportionate amount of

effort is spent on code rewriting that constitutes a small portion of the runtime, and a

large amount of storage is allocated for data range outliers that are rarely encountered.

By executing the kernel code on existing tests or a subset of input data, HeteroRefactor

identifies target-specific dynamic invariants, capturing actual runtime behavior of the

program, providing insights that static analysis alone cannot offer. Leveraging the

knowledge obtained from dynamic invariant analysis, HeteroRefactor optimizes resource

usage by reducing bitwidths for integers and floating-point variables, and by efficiently

handling recursive data structures. These optimizations lead to significant improvements

in resource utilization and maximum operating frequency on FPGAs.

HeteroRefactor uses selective offloading, ensuring behavior preservation by only of-

floading computation to customized accelerators when the input falls within the observed

dynamic invariants. This approach ensures correctness while aggressively optimizing for

common-case scenarios. It does not require a comprehensive dataset for identifying dy-

namic invariants. Instead, it focuses on optimizing accelerator efficiency for common-case

inputs without sacrificing correctness or generality.

3.1.3 Contributions

We adapt and extend automated refactoring techniques, traditionally used for improving

software maintainability, to lower the barriers for creating efficient customized circuits.

This approach enables software developers to leverage heterogeneous computing re-

sources without requiring extensive hardware design expertise.

By combining dynamic invariant analysis, automated kernel refactoring, and selective

offloading, we create a unique approach for transparent customized accelerator com-

pilation and optimization. This integration provides a powerful toolset for software

developers to target heterogeneous platforms efficiently.

57



HeteroRefactor provides a vendor-agnostic solution for automating common code

adaptation techniques. The synthetizability and resource reductions enabled by this

framework allow developers to focus on performance bottlenecks and further parallelizing

or pipelining their designs, rather than addressing low-level hardware specifics.

Results show that HeteroRefactor reduces code complexity in recursive programs,

eliminating 185 lines of code for HLS compatibility, with up to 83% BRAM reduction

and 42% frequency increase. For integer-intensive programs, bitwidth optimization saves

25% flip-flops, 21% LUTs, 41% BRAM, and 52% DSP. In floating-point computations, it

reduces flip-flops by 61%, LUTs by 39%, and DSP by 50%.

3.2 Approach

HeteroRefactor is an end-to-end solution that combines dynamic invariant analysis, auto-

mated refactoring, and selective offloading. This approach addresses three key challenges

in adapting software for heterogeneous platforms: rewriting recursive data structures,

optimizing integer bitwidth, and tuning floating-point precision. Our methodology is

founded on the insight that a priori dynamic analysis can significantly improve both the

synthesizability of software for hardware platforms and the resource efficiency of the

resulting implementations.

HeteroRefactor’s workflow, as illustrated in Figure 3.1, consists of three main com-

ponents: (A) Instrumentation for target-specific dynamic invariant analysis; (B) Source-

to-source transformation guided by the identified dynamic invariants; (C) Selective

offloading with runtime guard condition checks.

58



HeteroRefactor

Software
Code

Selective Offloading to FPGA

§3.2.3 Floats
Modify Types

Modify Operators
Typical
Inputs

Data
Struct.
Shape

Recur.
Depth

Value
Range

Unique
ElementInvariances

Rewrite Memory
Managements

Modify
Pointer Accesses

Precision Losses
Information

from Differential
Execution

§3.2.1 Recursion
Refactoring-Based

Instrumentation

§3.2.2 Integers
Kvasir-Based

Instrumentation
Assess FP Errors

Transformed Hardware Kernel Code

Convert Recursions

Modify
Integer
Types

FPGA
Accelerator

Monitor
Malloc
Failures

Monitor
Stack

Overflow

Host
Input

Checks

Device
Value

Checks

Probabilistic
Verification

Programs with
Different Precisions

Figure 3.1: HeteroRefactor’s overall framework.

59



3.2.1 Recursive Data Structure Transformation

Many software applications rely heavily on recursive data structures, dynamic memory

allocation (malloc and free), and recursive function calls. However, as discussed in

Section 2.3, these constructs are often unsupported or strictly limited in HLS tools for

FPGA programming. For instance, Vitis HLS throws an error for unsynthesizable types

when encountering pointer-based structures like linked lists (e.g., an unsynthesizable type

’[10 x struct.Node.0.1.2]*’). In this situation, expert developers often rewrite recursive data

structures to flattened arrays to comply with compiler constraints. This process involves

declaring an array size that is larger than necessary for all input data, leading to over-

provisioning, manually converting recursion into loop iterations, and over-provisioning

the stack required to track the program state involved in recursive calls. This limitation

significantly constrains the types of programs that can be automatically ported for

heterogeneous computing. To address this challenge, HeteroRefactor employs a two-

step process: dynamic analysis through refactoring-based instrumentation, followed by

automated code transformation.

3.2.1.1 Refactoring-based Instrumentation

HeteroRefactor instruments the original code to collect crucial information about recursive

data structures and function call depths. There are two main types of information that

HeteroRefactor collects: (1) the number of elements allocated for each data structure and

(2) the maximum recursion depth of each recursive function. To collect this information,

we perform Memory Allocation Tracing and Recursion Depth Monitoring:

Memory Allocation Tracing. HeteroRefactor instruments memory allocation and deal-

location function calls, such as malloc and free for linked list nodes. It monitors

the count of elements allocated for each data structure. By analyzing the trace,

HeteroRefactor obtains the typical peak element count within the data structure.

60



This data helps decide the appropriate size for the static array intended to replace

the dynamic data structure.

Recursion Depth Monitoring. HeteroRefactor sets tracing points at both the entry and

exit of recursive functions to monitor the recursion depth. From the trace, it manages

a separate variable for each function, which is incremented every time the program

enters a function call and decremented when it reaches a return statement. During

execution, the typical highest value attained by this variable is reported and used as

the bound for the corresponding stack.

For example, in a linked list implementation:

Node* create_list(int n) {
if (n == 0) return NULL;
Node* node = (Node*)malloc(sizeof(Node));
node->data = n;
node->next = create_list(n - 1);
return node;

}

HeteroRefactor would insert tracing points to record the number of allocated nodes

and the maximum recursion depth:

Node* create_list(int n) {
trace_call("create_list"); // Record function entry
if (n == 0) {

trace_return("create_list"); // Record function exit
return NULL;

}
Node* node = (Node*)malloc(sizeof(Node));
trace_alloc("Node", 1); // Record allocation
node->data = n;
node->next = create_list(n - 1);
trace_return("create_list"); // Record function exit
return node;

}

61



This instrumentation allows HeteroRefactor to determine the maximum size required

for flattened arrays generated for each data structure and the corresponding stack depth

for recursive functions required during typical program execution.

3.2.1.2 Refactoring

Using the data collected through dynamic analysis, HeteroRefactor applies a series of

transformations with the ROSE compiler framework to make the code compatible with

HLS tools while preserving its semantics:

Rule 1: Rewrite Memory Management. HeteroRefactor pre-allocates arrays for each

data type, sized according to the dynamic analysis results. It implements a buddy

memory system for efficient memory allocation and deallocation within these ar-

rays, which requires less overhead and has little external fragmentation [WJN95].

With this transformation, all calls to malloc and free are replaced with calls to the

memory system, which returns an available index from the pre-allocated array.

Rule 2: Convert Pointer Access to Array Access. HeteroRefactor transforms pointers to

unsigned integers representing offsets in the pre-allocated arrays. It modifies

pointer dereferences and structure accesses to use array indexing. The changes

are propagated through the data flow graph to ensure that all pointer accesses are

replaced with array accesses.

Rule 3: Convert Recursion to Iteration. HeteroRefactor creates a stack for each recursive

function to store local variables and execution state. It transforms recursive functions

into iterative ones by pushing the current context to the stack and updating the

program counter to simulate function calls. Local variable accesses are replaced to

reference the top of the stack.

For example, the function for creating a linked list can be adapted to non-recursive as

62



illustrated below. We omit the implementation of the buddy memory system for brevity.

Instead, we show an allocator from a free index without the capability of deallocating.

We will explain the modifications in detail after the full code snippet for overview.

#define MAX_NODES 1000
#define MAX_STACK_DEPTH 100

struct Node {
int data;
unsigned int next; // Index in the array instead of pointer

};

Node node_array[MAX_NODES];
unsigned int free_index = 0;

unsigned int create_list(int n) {
struct {

int n;
unsigned int node;
unsigned int result;
int state;

} stack[MAX_STACK_DEPTH];
int sp = 0; // Stack pointer

stack[sp].n = n;
stack[sp].state = 0;

while (sp >= 0) {
switch (stack[sp].state) {
case 0:

if (stack[sp].n == 0) {
stack[--sp].result = -1; // Equivalent to NULL

} else {
// Allocate node
stack[sp].node = (unsigned int)free_index++;
node_array[node].data = stack[sp].n;

// Recursive call becomes stack push
sp++;
stack[sp].n = stack[sp-1].n - 1;
stack[sp].state = 0;

63



Node* node =
(Node*)malloc(sizeof(Node));

// allocated *node

Node* create_list(int n);

Node node_array[MAX_NODES];
unsigned int free_index = 0;
unsigned int node =

(unsigned int)free_index++;
// allocated node_array[node]

unsigned int create_list(int n);

Figure 3.2: Original source code implementing the linked list memory management (left)

and HeteroRefactor-transformed version (right).

stack[sp-1].state = 1;
}
break;

case 1:
// Set next pointer and return
node_array[stack[sp].node].next = stack[sp].result;
stack[sp-1].result = stack[sp].node;
sp--;
break;

}
}
return stack[0].result;

}

Rule 1: Rewrite Memory Management. HeteroRefactor modifies traditional dynamic

memory allocation by utilizing a pre-allocated array, node_array, for storing all nodes.

Instead of returning a pointer, the function create_list now provides an array index.

The classic malloc function is substituted by incrementing the free_index, which al-

locates a new node. While free is typically employed for deallocating memory, it is

excluded in this explanation for the sake of simplicity. In a complete implementation,

HeteroRefactor employs a buddy system for efficient memory management, where the

node = free_index++ is replaced by an invocation to the system, though this detail is

omitted here to maintain focus. The code is shown in Figure 3.2.

This integer node acts as an index referencing the target element in the pre-allocated

64



node->data = n;
node->next =

create_list(n - 1);

node_array[node].data = n;
node_array[node].next =

create_list(n - 1);

Figure 3.3: Original source code implementing the linked list pointer access (left) and

HeteroRefactor-transformed version (right).

array node_array. Type transformations occur in three locations: (1) Rewriting variable

declarations Node* node as unsigned int node; (2) Typecasting (Node*) to (unsigned

int); and (3) Modifying function parameters and the return value in both declarations and

the definition, for example, Node* create_list(int n) to unsigned int. We perform a

breadth-first search on the data flow graph to propagate the type changes.

Rule 2: Convert Pointer Access to Array Access. HeteroRefactor replaces pointer

dereferences with array indexing. For instance, the node->data and node->next accesses

are transformed into node_array[node].data and node_array[node].next, respectively.

The code after this transformation rule is shown in Figure 3.3.

We convert all pointer dereferences to array accesses using the corresponding indices.

The indirection operator (*ptr) and structure dereference operators (ptr->, ptr->*) are

refactored into array accesses (type_array_of_ptr[ptr]), where the integer serves as the

array index. Likewise, the subscript operators (ptr[]) are converted to array accesses,

with the base integer added to the specified offset to determine the array index.

Rule 3: Convert Recursion to Iteration. HeteroRefactor modifies the recursive

function create_list into its iterative counterpart by implementing a stack to maintain

the local variables and the state of the computation. In the transformed create_list

function, the stack is utilized to hold the following elements: the current value of n; the

index of the current node, denoted as node; the return value, stored as result; the state

of function execution, represented as state. The depth of the stack MAX_STACK_DEPTH is

determined by the maximum recursion depth identified during dynamic analysis:

65



struct {
int n;
unsigned int node;
unsigned int result;
int state;

} stack[MAX_STACK_DEPTH];
int sp = 0; // Stack pointer

For access to the local variables, HeteroRefactor replaces the original variable names

with the corresponding stack elements:

node_array[stack[sp].node].next = stack[sp].result;

For each recursive call, the function pushes the current state to the stack and updates

the state to reflect the next step stack[sp-1].state = 1. It also pushes new parameters

stack[sp].n to the stack and sets the state to the initial value stack[sp].state = 0, so

that the while loop can continue to the first line of the function:

sp++;
stack[sp-1].state = 1;
stack[sp].n = n;
stack[sp].state = 0;
continue;

The function then enters a loop that iterates until the stack is empty. At each iteration, a

function return writes the return value stack[sp-1].result to the stack and decrements

the stack pointer sp– to pop the top element so that the next iteration can continue from

the previous state:

while (sp >= 0) {
switch (stack[sp].state) {
case 0:

if (to_return) {
// Return -1 and pop the stack
stack[--sp].result = -1;

} else // ...

66



break;
case 1:

// Return node and pop the stack
stack[sp-1].result = stack[sp].node;
sp--;
break;

}
}

In summary, for the linked list example, HeteroRefactor transforms the original

recursive function into an iterative version that uses a stack to maintain the state of

the computation. The transformed function iterates through the stack, processing each

element according to its state. The code after this transformation rule is shown in

Figure 3.4.

3.2.2 Integer Bitwidth Optimization

Integer bitwidth optimization is crucial for efficient FPGA implementations, as it directly

impacts resource utilization and power consumption. Software developers often use stan-

dard integer types (e.g., 32-bit integers) by default, which can lead to over-provisioning

in FPGA designs. HeteroRefactor addresses this challenge through dynamic analysis and

automated refactoring.

3.2.2.1 Daikon-based Instrumentation

HeteroRefactor leverages Daikon [EPG07], a dynamic invariant detection tool, to identify

likely program invariants during execution. Daikon consists of two main components:

Language-Specific Front-End: The front end instruments the program and extracts pro-

gram state information by running the program.

Language-Independent Inference Engine: The inference engine analyzes the program

67



Node* create_list(int n) {
// ... other skipped for brevity

create_list(n - 1);

return node;

}

unsigned int create_list(int n) {
struct { /* stack */ } stack[DEPTH];
int sp = 0; // Stack pointer
stack[sp].n = n;
stack[sp].state = 0;

while (sp >= 0) {
switch (stack[sp].state) {
case 0:

sp++;
stack[sp].n = stack[sp-1].n - 1;
stack[sp].state = 0;
stack[sp-1].state = 1;
break;

case 1:
stack[sp-1].result =

stack[sp].node;
sp--;
break;

}
}
return stack[0].result;

}

Figure 3.4: Original source code implementing the recursive linked list function call (left)

and HeteroRefactor-transformed version (right).

68



state traces to identify likely invariants.

Daikon is commonly employed for program comprehension and testing, producing

invariants that describe program behavior, such as array sizes or binary comparisons,

exemplified by i>0, i<0, size(array)=0, size(array)>0, etc. HeteroRefactor extends its

capabilities to identify FPGA-specific invariants. For instance, reducing variable bitwidth

or floating-point precision can directly decrease resource usage in FPGA designs [KA13].

3.2.2.2 FPGA-Specific Invariants

To optimize for FPGA, HeteroRefactor focuses on three types of target-specific invariants:

(1) the minimum and maximum value of a variable based on range analysis, (2) the

number and type of unique elements in an array, and (3) the size of an array.

These invariants are particularly relevant for FPGA designs, as they can be used to

perform bitwidth reduction and efficient resource allocation. For example, consider this

face detection kernel where 32-bit integers are used by default:

int cascadeClassifier(
int SUM1_data[IMG_HEIGHT][IMG_WIDTH],
int SQSUM1_data[IMG_HEIGHT][IMG_WIDTH],
MyPoint pt) {

int stddev = int_sqrt(dev);
// ...

}

While 32-bit integers are standard in CPU architectures, FPGAs allow for arbitrary

bitwidth specification, potentially leading to significant resource savings.

3.2.2.3 Refactoring

Based on the identified invariants, HeteroRefactor applies the following refactoring rule:

69



Rule: Modify Variable Type. HeteroRefactor converts standard integers to arbitrary

precision integers using Vitis HLS’s ap_uint<k> or ap_int<k> types, where k is the

minimum number of bits required based on the observed value range. For example, if

HeteroRefactor determines that a variable has a minimum value of 0 and a maximum

value of 83, it can be represented using only 7 bits instead of 32.

In the refactoring process, HeteroRefactor parses the program’s data flow, identifies

the variable declarations and computation operations, and modifies the corresponding

types based on the observed value range.

For the face detection kernel, the variable stddev in the method cascadeClassifier

is declared as a 32-bit integer. However, HeteroRefactor determines that only 18 bits are

required based on the observed value range. It modifies the type to ap_uint<18>:

int cascadeClassifier(/* ... */ ) {
ap_uint<18> stddev = int_sqrt(dev);

}

In addition to modifying variable types, HeteroRefactor changes arithmetic operators

to work with the new types and propagates type changes throughout the dataflow graph.

It further implements a guard protection system to monitor invariant violations:

bool guard_error = false;
void guard_check(ap_int<65> value, int size, int sign) {
#pragma HLS inline off

if (sign == 1) {
if (value < 0) {

if (value < -(1LL<<(size-1))) guard_error = true;
} else { /.../ }
} else { /.../ }

}

int cascadeClassifier(/* ... */ ) {
ap_uint<18> stddev = int_sqrt(stddev);
guard_check(ap_int<65>(int_sqrt(stddev)), 18, 0);

}

70



3.2.3 Floating-Point Precision Optimization

Optimizing floating-point (FP) precision presents unique challenges compared to integer

bitwidth reduction. Unlike integer optimization, reducing FP precision can lead to accu-

racy loss, which must be carefully managed to maintain program correctness. Estimating

the error resulting from reducing the bitwidth of an FP representation requires differen-

tial execution for reliable outcomes. Existing static analysis methods tend to excessively

estimate FP errors, making them less effective for this purpose. HeteroRefactor addresses

this challenge through a novel probabilistic, differential execution-based approach.

3.2.3.1 Probabilistic Verification Approach

HeteroRefactor’s FP optimization strategy consists of four key steps: (1) Code transfor-

mation to generate program variants with different bitwidths; (2) Estimation of required

input samples using Hoeffding’s inequality [Hoe94]; (3) Test generation and differential

execution; and (4) Probabilistic verification for FP errors.

The core insight of this approach is that we can empirically assess whether the relative

error between a low-precision and high-precision program variant is within an acceptable

range with a given probability. This method provides a probabilistic guarantee for

unseen inputs, addressing the limitations of prior work that relied on fixed test sets

[RNN13, RNM16].

To ensure statistical significance, HeteroRefactor uses Hoeffding’s inequality [Hoe94]

to determine the minimum number of samples required:

P[|ci − E[ci]| ≥ ϵ] ≤ 2e−2nϵ2
(3.1)

n ≥ ln(2/α)/(2ϵ2) (3.2)

Where: (1) ci is the empirical measurement of the error distribution. (2) E[ci] is the

71



actual expectation. (3) ϵ is the acceptable deviation (error). (4) (1− α) is the specified

confidence level. n is the required number of samples.

This approach provides a conservative bound for expectations of any arbitrary distri-

bution, making it suitable for situations where the FP loss distribution is unknown.

3.2.3.2 Refactoring Rules

HeteroRefactor applies the following refactoring rules to optimize FP precision:

Rule 1: Duplicate Method and Modify Type. HeteroRefactor creates low-precision

variants of FP functions by redefining variable types using Thomas’ templatized soft

floating-point library [Tho19]. For example, the l2norm function from the KNN kernel is

transformed from float to thls::fp_flopoco<5,16>, which has 22 bits in total (5 for the

exponent, 16 for the fraction, and 1 for the sign bit), is shown in Figure 3.5.

Rule 2: Modify Arithmetic Operators. HeteroRefactor adapts arithmetic operations

to work with the new low-precision types. For unsupported operations (e.g., subtraction

in thls::fp_flopoco), it implements equivalent operations using supported primitives.

For example, subtraction is converted to addition and negation using the neg function, as

shown in Figure 3.5.

Rule 3: Assess FP Error for Differential Execution. HeteroRefactor generates code to

compute the relative error between high and low-precision variants and verify if the error

is within the acceptable range:

int main() {
for (...) {

// For each input sample args[]
float highValue = l2norm(args[]);
float lowValue = low_l2norm(args[]);
float error = highValue - lowValue;

if (fabs(error) > acceptableError) Failed++;
else Passed++;

72



float l2norm(
float query[],
float data[],
int dim

) {
float dist = 0.0;
for (int j = 0; j < dim; j++) {

dist += ((query[j] - data[j])
* (query[j] - data[j]));

}
return sqrt(dist);

}

using namespace thls;
typedef policy_flopoco<16,5>::value_t

LOWBIT;
float low_l2norm(

float query[],
float data[],
int dim

) {
LOWBIT dist = 0.0;
for (int j = 0; j < dim; j++) {

LOWBIT fp_query_j =
to<LOWBIT, policy>(query[j]);

LOWBIT fp_data_j =
to<LOWBIT, policy>(data[j]);

LOWBIT fp_neg_1 =
neg(fp_data_j);

dist += (fp_query_j + fp_neg_1)
* (fp_query_j + fp_neg_1);

}
return sqrt(to<float>(dist));

}

Figure 3.5: Original FP kernel code using float: l2norm from KNN (left) and HeteroRefac-

tor-transformed version with low-precision (right).

73



}
if (double(Passed) / Samples > requiredProbability) {

// Passed verification
} else {

// Failed verification
}

}

This approach allows software developers to specify their accuracy requirements

(e.g., error less than 10−4 with 95% probability and 95% confidence) without needing to

understand the intricacies of FP representation in hardware, tuning the precision to meet

the desired accuracy, and manually maintaining program correctness.

3.2.4 Selective Offloading with Guard Check

Optimizations in software that utilize heterogeneous computing must maintain program

correctness. HeteroRefactor applies a selective offloading strategy that incorporates guard

checks. This method supports aggressive optimizations by utilizing dynamically observed

invariants and ensures correctness across all potential inputs, even those not observed

during the analysis phase.

The guard check system operates by inserting conditional checks in both the host

program (which manages data transfer to the accelerator) and the kernel (the algorithm

mapped to the accelerator). These checks verify that the current execution adheres to the

assumptions made during optimization. If a violation is detected, the execution falls back

to the CPU, ensuring correct results at the cost of performance loss for outlier cases.

HeteroRefactor implements guard checks differently depending on the optimization:

Recursive Data Structure Transformation. Guard conditions are inserted at memory

allocation points. A global flag (guard_error) is set if the pre-allocated array is full

or if the stack size exceeds the depth.

74



Integer Bitwidth Optimization. Guard conditions are added for each input, output, and

intermediate value in the kernel. These guards proactively prevent overflow by

checking if values exceed the reduced bitwidth range.

Floating-Point Precision Tuning. The guard check is implicit in the differential execution

process, where results from low-precision and original variants are compared.

This guard check system provides a safety net that enables developers to confidently

deploy heterogeneous computing without fear of silent errors or incorrect results.

3.3 Evaluation

To assess the effectiveness of HeteroRefactor in enabling software developers to leverage

heterogeneous computing resources, particularly FPGAs, we conducted a comprehensive

evaluation. Our analysis focuses on three key research questions:

RQ1. How effectively does HeteroRefactor expand the scope of HLS synthesizability

for programs with recursive data structures?

RQ2. To what extent can HeteroRefactor reduce the manual effort required to create

HLS-compatible programs?

RQ3. What level of resource reduction does HeteroRefactor achieve for recursive data

structures, integer optimization, and floating-point optimization?

These questions evaluate HeteroRefactor’s ability to bridge the gap between software

development practices and the requirements of FPGA programming, addressing key

challenges identified in our problem statement.

75



3.3.1 Benchmarks

We experiment with HeteroRefactor on programs from Section 2.3 and synthetic bench-

marks that exhibit a variety of typical software constructs and algorithmic patterns. These

programs present specific challenges associated with porting to heterogeneous computing

resources, which include: Support for pointers (PTR); Restrictions on dynamic memory

management (DMM); Inability to use function recursion (REC); Requiring optimization

of integer bitwidth (INT); Tuning floating-point precision (FPP). These challenges align

with the solutions proposed in this chapter. The chosen benchmarks are categorized into

three groups based on their primary optimization target:

Recursive Data Structures (R1-R5). Aho-Corasick (R1) is a string pattern searching algo-

rithm that employs breadth-first search with a dynamic queue, a recursive Trie tree,

and a finite state machine [AC75]. It is the STS benchmark from §2.3. Depth-First

Search (R2) is a graph traversal algorithm implemented using recursion. Linked

List (R3) performs basic operations (insertion, removal, and sorting) on a linked list

data structure. Merge Sort (R4) creates a recursive sorting algorithm implemented

on a linked list. Strassen’s Algorithm (R5) implements a recursive algorithm for

matrix multiplication [HJJ96].

Integer Optimization (I6-I8). Face Detection (I6) is an image processing algorithm from

the Rosetta benchmark suite [ZGD18, SDM17]. It is the FDT benchmark from

§2.3. 3D Rendering (I7) is a graphics processing algorithm, also from the Rosetta

benchmark suite, corresponding to the 3DR benchmark. Bubble Sort (I8) is a

synthetic benchmark that sorts an array of integers.

Floating-Point Optimization (F9-F10). KNN-l2norm (F9) uses the L2 norm calculation

component of the K-Nearest Neighbors algorithm, adapted from OpenCV examples

[BK08]. RGB2YUV (F10) is a color space conversion algorithm from OpenCV

examples, corresponding to the R2Y benchmark in §2.3.

76



These benchmarks were chosen to match the challenges identified in our problem

statement, which HeteroRefactor aims to address. For the recursive data structure bench-

marks (R1-R5), the original programs were not synthesizable by HLS tools, allowing us to

evaluate HeteroRefactor’s ability to enable FPGA acceleration for previously incompatible

software constructs. For the integer and floating-point benchmarks (I6-F10), we focus

on resource utilization improvements, comparing HeteroRefactor’s results against both

unoptimized and manually optimized versions where available. For the comparison,

hand-optimized programs of the synthetic benchmarks were developed by experienced

graduate students from an FPGA research group at UCLA.

3.3.2 Experimental Setup

Our experiments were conducted on a machine with an Intel(R) Core(TM) i7-8750H

2.20GHz CPU and 16 GB of RAM, running Ubuntu 16.04. We used the following software

tools and hardware targets:

Dynamic Invariant Analysis. Daikon version 5.7.2 with Kvasir as the front-end.

Automated Refactoring. ROSE compiler version 0.9.11.0.

HLS and RTL Synthesis. Vivado Design Suite 2018.03.

FPGA Target. AMD/Xilinx Virtex UltraScale+ XCVU9P on a VCU1525 Reconfigurable

Acceleration Platform, with a target frequency of 300 MHz.

3.3.3 Results for Recursive Data Structures

To address RQ1 and RQ2, we evaluated HeteroRefactor’s ability to transform recursive

data structure programs into HLS-synthesizable versions and quantified the reduction in

manual effort. We further analyzed the impact of HeteroRefactor on resource utilization

and operating frequency for these programs.

77



Table 3.1: Recursive data structure kernels: HeteroRefactor vs. manual refactoring effort.

ID/Program

Original

LOC

Manual

LOC

∆

LOC

Original

Chars

Manual

Chars

∆

Chars

R1/A.-C. 190 291 33% 5673 8776 35%

R2/DFS 86 198 57% 2236 5699 61%

R3/L. List 131 235 44% 3061 6686 54%

R4/M. Sort 128 342 63% 3267 9124 64%

R5/Strassen’s 342 735 53% 10026 40971 76%

Geomean 49% 56%

3.3.3.1 Synthesizability and Manual Effort Reduction

Table 3.1 compares the original programs, manually refactored versions, and HeteroRefac-

tor’s output in terms of lines of code (LOC) and character count (Chars).

Synthesizability. Results show that all five recursive data structure programs, which

were initially incompatible with HLS tools, were successfully transformed by Het-

eroRefactor into synthesizable versions.

Manual Effort Reduction. Manual refactoring resulted in significant code expansion,

with an average increase of 49% in LOC and 56% in character count. HeteroRefactor

eliminated the need for this manual refactoring, potentially saving developers

substantial time and effort in adapting these algorithms for FPGA implementation.

3.3.3.2 Resource Utilization and Performance

To address RQ3, we compared the resource utilization and performance of HeteroRefactor-

optimized designs against manually optimized versions with conservative array sizes.

We used input data sizes of 1k, 2k, 4k, or 8k for profiling and compared them against

78



Manual HR-8K HR-4K HR-2K HR-1K
100

200

300

400

Program (Manually / HeteroRefactor-optimized)

Fr
eq

ue
nc

y
(M

H
z)

Aho-Corasick
DFS

Linked List
Merge Sort
Strassen’s

Figure 3.6: Operating frequency comparison between hand-optimized and HeteroRefac-

tor-optimized versions on different typical input data sizes.

manual implementations with a fixed size of 16k, which corresponds to the common

scenario where FPGA developers over-allocate resources to ensure correctness.

Table 3.2 summarizes the resource utilization results. Key findings include:

Memory Efficiency. HeteroRefactor achieved an average 83% reduction in BRAM usage

for a typical input size of 2k, compared to the manually refactored versions.

LUT and FF Overhead. There was a small increase in LUT (302 units) and FF (494 units)

usage on average, attributed to the fixed-size buddy memory system implemented

by HeteroRefactor.

Frequency Improvement. As shown in Figure 3.6, HeteroRefactor-optimized designs

achieved higher operating frequencies1. For a 2k input size, there was an average

42% increase in frequency compared to the hand-written code with a 16k size.

1The frequency is calculated statically by using the worst negative slack (WNS) in the report file:
Fmax = 1/(1/300MHz + WNS) after placement and routing by Vivado.

79



Table 3.2: Resource utilization comparison of recursions transformed by HeteroRefactor.

ID/Program LUT FF BRAM DSP

R1/Aho-Corasick Original Not Synthesizable

Manual Refactoring 3287 4666 1939 7

HeteroRefactor-8K 5492 5085 678 10

HeteroRefactor-2K 5234 5006 206 10

R2/DFS Original Not Synthesizable

Manual Refactoring 1471 1961 221 0

HeteroRefactor-8K 2634 2901 254 0

HeteroRefactor-2K 2563 2881 69 0

R3/Linked List Original Not Synthesizable

Manual Refactoring 2993 3732 534 0

HeteroRefactor-8K 3771 4044 318 0

HeteroRefactor-2K 3655 3936 83 0

R4/Merge Sort Original Not Synthesizable

Manual Refactoring 2755 2878 519 0

HeteroRefactor-8K 2751 2958 367 0

HeteroRefactor-2K 2603 2951 105 0

R5/Strassen’s Original Not Synthesizable

Manual Refactoring 21631 13722 919 12

HeteroRefactor-8K 20303 14899 223 12

HeteroRefactor-2K 19591 14654 68 12

80



If an FPGA programmer sets the buffer size to 32k, two algorithms, Merge Sort and

Strassen’s Matrix Multiplication, may not produce any bitstream. This is because their

resource requirements exceed what is available, highlighting the importance of dynamic

analysis in FPGA design.

These results highlight HeteroRefactor’s ability to generate more efficient FPGA imple-

mentations by tailoring resource allocation to typical input sizes, while still maintaining

the flexibility to handle larger inputs through CPU fallback mechanisms.

In summary, HeteroRefactor successfully addresses the challenges of implementing

recursive data structures on FPGAs, enabling software developers to leverage these

algorithms in heterogeneous computing environments with minimal manual intervention

and improved resource efficiency. The accelerators, optimized for common-case inputs,

exhibit an 83% increase in memory efficiency and a 42% improvement in frequency

compared to hand-written code of a conservative size.

3.3.4 Results for Integer Optimization

To address RQ3 for integer-intensive programs, we evaluated HeteroRefactor’s ability

to reduce bitwidth based on dynamic invariants and its impact on resource utilization.

We compared the results against both unoptimized original programs and manually

optimized versions created by FPGA experts.

3.3.4.1 Dynamic Invariant Analysis

Table 3.3 presents the FPGA-specific invariants identified by HeteroRefactor for the integer

optimization benchmarks.

For Face Detection, we utilize hexadecimal images from [SDM17], resizing them to

a 16×16 format. The application employs an array of integers as pre-trained weights.

HeteroRefactor determines that one of these arrays needs only 14-bit unsigned integers,

81



Table 3.3: FPGA’s specific invariants for integer optimization.

Program Variable FPGA-specific Invariants

Min Max Unique Size

I6/Face Detection Weights Array 1 8192 12288 2 2913

I6/Face Detection Stddev Variable 305 369 N/A N/A

I6/Face Detection Coord 0 6746969 21 12

I7/3D Rendering Triangle 3D (x0) 38 255 49 100

I8/Bubble Sort Input Array 0 10 11 400

given its maximum and minimum values and the presence of only two distinct values.

In the context of 3D Rendering, test inputs from the dataset cited in [ZGD18] are

divided into segments of 100 for each assessment run. HeteroRefactor establishes that the

model’s input range is (38,150) with a consistent size of 100.

For Bubble Sort, 400 integers are generated following a Chi-Square distribution [LS05].

HeteroRefactor confirms that the identified invariants align with the statistical parameters

of the distribution and the unvarying size of the input set.

These invariants provide insights into the actual range and characteristics of integer

variables in the programs, enabling HeteroRefactor to optimize bitwidths effectively.

3.3.4.2 Resource Utilization

Table 3.4 summarizes the resource utilization results for the integer optimization bench-

marks. We compared three versions of each program:

Original. The unoptimized program with default integer types.

Manual Refactoring. A manually optimized version created by FPGA experts.

82



Table 3.4: Resource utilization comparison for integer optimization benchmarks.

ID/Program LUT FF BRAM DSP

I6/Face Detection Original 11325 5784 49 39

Manual Refactoring 10158 4800 49 37

HeteroRefactor 10298 4770 47 28

I7/3D Rendering Original 3828 2033 123 36

Manual Refactoring 2239 1357 67 12

HeteroRefactor 1907 878 39 9

I8/Bubble Sort Original 313 125 2 0

Manual Refactoring 306 125 1 0

HeteroRefactor 302 125 1 0

HeteroRefactor. The version optimized by HeteroRefactor based on dynamic invariants.

From the experimental results, we observed a 25% reduction in Flip-Flops (FF), a

21% reduction in Look-Up Tables (LUT), a 41% reduction in Block RAM (BRAM), and a

52% reduction in Digital Signal Processors (DSP) for HeteroRefactor-optimized designs

compared to the original programs. The reductions were 12% in FF, 5% in LUT, 15% in

BRAM, and 16% in DSP compared to the manually optimized versions.

These results demonstrate that HeteroRefactor not only significantly improves resource

utilization compared to unoptimized programs but also achieves better efficiency than

carefully handcrafted optimizations by FPGA experts.

3.3.4.3 Performance Impact

We implemented the optimized designs on the target FPGA with a 300 MHz target

frequency. All HeteroRefactor-optimized programs met this timing constraint, whereas

83



the original version of 3D Rendering (I7) failed to meet timing and could only achieve

241 MHz. This demonstrates that HeteroRefactor’s optimizations can lead to improved

timing performance in addition to resource savings.

In summary, HeteroRefactor automates the bit width optimization for integers, signifi-

cantly reducing manual refactoring effort. It achieves resource savings of 25% FF, 21%

LUTs, 41% BRAM, and 52% DSP, outperforming expert hand-optimized kernels.

3.3.5 Results for Floating-Point Optimization

For floating-point programs, we evaluated HeteroRefactor’s ability to reduce bitwidth

while maintaining a probabilistic guarantee of accuracy. This addresses both RQ2 and

RQ3 by demonstrating automated optimization with trade-offs between precision and

resource utilization.

3.3.5.1 Probabilistic Verification

As detailed in Section 3.2.3, we utilize Hoeffding’s inequality to determine the required

number of input data samples, given a confidence interval (1− α). In our experimentation,

ϵ is set at 0.03. We adjust the probability value, p, across three settings: 0.95, 0.99, and

0.999, aligning α such that (1 − α) = p. The corresponding minimum sample sizes

required are 2049, 2943, and 4222, respectively.

Table 3.5 presents the results of HeteroRefactor’s probabilistic floating-point verifica-

tion for different configurations of acceptable loss (e) and probability (p). The 8 and 16

columns show the verification results for 8-bit and 16-bit floating-point types, respectively,

where Fail indicates a verification failure. The HR column indicates the smallest bitwidth

that passed verification identified by HeteroRefactor.

HeteroRefactor successfully reduced the bitwidth from the original 32 bits to as low

as 21 bits while maintaining probabilistic guarantees of accuracy. Higher precision

84



Table 3.5: Probabilistic floating-point verification results.

Program p e = 10−2 e = 10−4 e = 10−6

8-bits 16-bits HR 8-bits 16-bits HR 8-bits 16-bits HR

F9/KNN 0.95 Fail Fail 24 Fail Fail 29 Fail Fail 32

0.99 Fail Fail 25 Fail Fail 29 Fail Fail 32

0.999 Fail Fail 25 Fail Fail 30 Fail Fail 32

p e = 10−4 e = 10−5 e = 10−6

F10/R2Y 0.70 Fail Fail 20 Fail Fail 24 Fail Fail 27

0.80 Fail Fail 21 Fail Fail 24 Fail Fail 28

0.95 Fail Fail 21 Fail Fail 25 Fail Fail 30

0.99 Fail Fail 22 Fail Fail 25 Fail Fail 32

0.999 Fail Fail 22 Fail Fail 26 Fail Fail 32

requirements (lower e) and higher confidence levels (higher p) generally resulted in larger

bitwidths, demonstrating the tool’s ability to balance accuracy and resource efficiency.

We also observed that the achievable bitwidth reduction varied between programs, with

RGB2YUV (F10) allowing for more aggressive optimization than KNN-l2norm (F9).

3.3.5.2 Resource Utilization

Table 3.6 summarizes the resource utilization results for the floating-point optimization

benchmarks. The Original row indicates the original program with 32-bit float type

and p represents the probability and the confidence level (1− α). We compared the

resource utilization of the original programs with 32-bit float types against HeteroRefactor-

optimized versions with reduced bitwidths. The results show that HeteroRefactor can

achieve up to 61% reduction in FF, 39% in LUT, and 50% in DSP. The resource savings

varied with the chosen probability and acceptable loss, allowing developers to balance

85



precision and resource utilization based on application requirements.

In summary, these results demonstrate HeteroRefactor’s ability to automatically

optimize floating-point computations for FPGA, providing software developers with a

powerful tool to leverage the efficiency benefits of reduced precision while maintaining

control over accuracy. HeteroRefactor reduces the floating-point bitwidth while providing

a probabilistic guarantee for a user-specified quality loss, probability, and confidence

level. It achieves up to 61% reduction in FF, 39% in LUT, and 50% in DSP.

3.3.6 Overhead and Performance Analysis

To provide a comprehensive evaluation of HeteroRefactor’s practicality for software de-

velopers, we analyzed its runtime overhead and the performance impact of the optimized

designs when leveraging this tool in the context of FPGA development.

3.3.6.1 Runtime Overhead

Tables 3.7 and 3.8 present the runtime overhead of HeteroRefactor for various benchmark

categories, including recursive data structures, integers, and floating-point programs. The

tables compare the time taken for instrumentation and refactoring against the synthesis

time of the original programs.

Recursive Data Structures and Integers (R1-I8). The instrumentation overhead is gener-

ally less than 1% of synthesis time, with the exception of 3D Rendering (I7). The

refactoring overhead is consistently less than 1% of synthesis time.

Floating-Point Programs (F9-F10). The differential execution overhead for floating-point

programs is less than 2% compared to the synthesis time across all configurations.

There is no instrumentation required for floating-point programs.

These results show that HeteroRefactor introduces minimal overhead to the develop-

86



Table 3.6: Resource utilization comparison for floating-point optimization benchmarks.

ID/Program LUT FF BRAM DSP

F9/KNN-l2norm Original 88843 18591 30 32

p e = 10−2

HeteroRefactor-0.95 80163 15257 30 16

HeteroRefactor-0.99 82228 15626 30 16

HeteroRefactor-0.999 82228 15626 30 16

p e = 10−4

HeteroRefactor-0.95 88952 17102 30 32

HeteroRefactor-0.99 88952 17102 30 32

HeteroRefactor-0.999 88952 17855 30 32

p e = 10−6

HeteroRefactor-0.95 88843 18591 30 32

HeteroRefactor-0.99 88843 18591 30 32

HeteroRefactor-0.999 88843 18591 30 32

F10/RGB2YUV Original 398444 73437 30 288

p e = 10−4

HeteroRefactor-0.95 243516 28379 30 144

HeteroRefactor-0.99 250044 28827 30 144

HeteroRefactor-0.999 250044 28827 30 144

p e = 10−5

HeteroRefactor-0.95 304956 49468 30 144

HeteroRefactor-0.99 304956 49468 30 144

HeteroRefactor-0.999 311532 49964 30 144

p e = 10−6

HeteroRefactor-0.95 372236 66381 30 288

HeteroRefactor-0.99 398444 73437 30 288

HeteroRefactor-0.999 398444 73437 30 28887



Table 3.7: Runtime overhead for recursions and integers.

Instrumentation Refactoring

Program time (min) ratio time (sec) ratio

R1/Aho-Corasick 0.10 0.26% 5.1 0.26%

R2/DFS 0.06 0.26% 4.7 0.34%

R3/Linked List 0.12 0.49% 4.5 0.31%

R4/Merge Sort 0.05 0.20% 4.5 0.29%

R5/Strassen’s 0.09 0.20% 10 0.38%

I6/Face Detection 0.15 0.62% 10 0.69%

I7/3D Rendering 13.66 64.76% 10 0.79%

I8/Bubble Sort 10−3 ∼ 0 10−3 ∼ 0

Table 3.8: Differential execution overhead for FP (sec / %).

Program p e = 10−2 10−4 10−6

F9/KNN 0.95 60.8 / 0.3% 29.4 / 0.2% 11.7 / 0.1%

0.99 58.2 / 0.3% 30.4 / 0.2% 11.7 / 0.1%

0.999 60.8 / 0.3% 25.9 / 0.1% 12.8 / 0.1%

p e = 10−4 10−5 10−6

F10/R2Y 0.95 83.5 / 1.8% 59.3 / 1.3% 26.8 / 0.6%

0.99 81.5 / 1.7% 58.5 / 1.2% 12.9 / 0.3%

0.999 82.3 / 1.7% 54.5 / 1.2% 13.7 / 0.3%

88



ment process, making it a practical tool for software developers.

3.3.6.2 Performance Impact

We compared the execution performance of HeteroRefactor-optimized kernels against the

original programs running on a CPU. For floating-point programs, our experiment shows

a significant speedup of up to 7× and 19× in KNN-l2norm and RGB2YUV, respectively.

These improvements are attributed to the inherent parallel computation capabilities of

FPGAs. For recursive programs, the refactored kernels are slower than the CPU due to

the use of sequential memory allocation in the refactored designs, the memory-bound

nature of these algorithms, and the lower clock frequency of the FPGA compared to the

CPU. They are designed for porting non-bottleneck parts of the program to the FPGA to

achieve higher energy efficiency and less memory transfer instead of higher processing

throughput. For integer-intensive programs, the end-to-end performance depending on

the ease of exploiting data parallelism. The selected kernels (I6 and I7) from Rosetta were

designed for energy efficiency rather than processing throughput, resulting in slightly

slower execution than on CPU.

It’s important to note that while some optimized kernels do not outperform CPU in

terms of raw speed, they often offer other benefits such as energy efficiency or the ability

to reduce memory movements between FPGAs and other heterogeneous components.

Additionally, HeteroRefactor’s primary goal is to reduce resource usage and enable

FPGA implementation of previously unsynthesizable code, rather than maximizing

performance, which prior work [CWY18a, CHP16a] focused on. HeteroRefactor could

be used jointly with these tools to produce fast and resource-efficient FPGA accelerators,

increasing the operating frequency of generated hardware and the potential count of

processing elements, which are important factors in performance.

89



3.4 Conclusion

This chapter has presented HeteroRefactor, a novel approach to enabling software de-

velopers to effectively leverage heterogeneous computing resources, particularly FPGAs,

without requiring extensive hardware expertise. By adapting and expanding the scope

of automated refactoring techniques traditionally used for software maintainability, Het-

eroRefactor addresses key challenges in porting software to heterogeneous platforms.

HeteroRefactor’s end-to-end solution comprises three main components:

Dynamic Analysis. This component identifies common-case sizes and characteristics of

data structures and variables, providing crucial insights for optimization without

requiring developers to manually specify these details.

Automated Kernel Refactoring. Based on the dynamic analysis results, HeteroRefactor

automatically transforms software to enhance synthesizability for FPGAs and reduce

on-chip resource usage, bridging the gap between software development practices

and hardware implementation requirements.

Selective Offloading with Guard Checking. This mechanism ensures correctness by dy-

namically deciding whether to execute on the FPGA or fall back to CPU execution

based on runtime input conditions, allowing for aggressive optimizations while

maintaining program correctness.

We evaluate the effectiveness of HeteroRefactor across a range of program types:

Recursive Data Structures. Recursions are traditionally challenging to implement on

FPGAs. HeteroRefactor automatically refactored them to be synthesizable, achieving

an 83% reduction in BRAM usage and a 42% increase in operating frequency

compared to conservative manual implementations.

90



Integer-Intensive Programs. HeteroRefactor reduced the bitwidth of integers by 76% on

average, leading to a 41% decrease in BRAM usage and in other resource types.

Floating-Point Computations. HeteroRefactor achieved a 50% reduction in DSP usage

while maintaining user-specified precision guarantees, demonstrating its ability to

balance accuracy and resource efficiency.

These results highlight HeteroRefactor’s potential to significantly lower the barriers to

entry for software developers in the field of heterogeneous computing. By automating

complex transformations and optimizations, HeteroRefactor enables developers to:

• Port a wider range of software constructs to FPGAs.

• Achieve resource efficient hardware implementations without requiring in-depth

knowledge of FPGA architecture or design principles.

• Explore trade-offs between precision, performance, and resource utilization.

• Maintain a single, high-level codebase that targets both CPU and FPGA execution.

While HeteroRefactor represents a step forward in enabling heterogeneous computing

for software developers, it also opens up several avenues for future research. For example,

it can be extended to support other types of accelerators, such as GPUs or domain-

specific processors, to provide a more comprehensive heterogeneous computing solution.

By integrating HeteroRefactor with existing HLS tools, a more seamless development

experience may be created. HeteroRefactor provides insights into dynamic characteristics,

allowing other performance-oriented optimizations to achieve both efficient resource

utilization and high performance.

In conclusion, HeteroRefactor demonstrates the potential of applying software en-

gineering techniques to the challenge of heterogeneous computing. By automating the

process of adapting software for efficient execution on FPGAs, HeteroRefactor empowers

91



a broader range of developers to leverage the benefits of heterogeneous computing plat-

forms. This work contributes to the broader goal of making heterogeneous computing

more accessible and practical for software developers.

92



CHAPTER 4

Architecture-Driven Optimization for Implicit Broadcasts

As we continue our exploration of enabling heterogeneous computing for software

developers, we turn our attention to a critical aspect of FPGA acceleration: achieving

high clock frequencies in High-Level Synthesis (HLS) generated designs. This chapter

introduces Adroit (Architecture-Driven Optimization for Implicit Broadcasts), a novel

approach to addressing timing issues in HLS-generated FPGA designs.

FPGAs play a pivotal role in heterogeneous computing systems, often serving as

a communication hub for various specialized resources. The operating frequency of

these FPGA-based hubs can significantly impact overall system efficiency. While HLS

tools have greatly simplified the process of implementing new applications on FPGAs,

allowing software developers to work at a higher level of abstraction, they often fall short

in producing designs that achieve optimal timing performance.

Our investigation into this challenge revealed a common issue across a diverse set of

realistic FPGA designs: the primary cause of frequency degradation in HLS-generated

designs is often related to implicit broadcast structures. These broadcasts, automatically

inferred or created by HLS compilers in both datapath and control logic, are typically not

explicitly present in the source code and are therefore often overlooked by developers.

Based on our observations, we have identified three major types of broadcasts in

HLS designs: (1) high-fanout data signals, (2) pipeline flow control signals, and (3) syn-

chronization signals for concurrent modules. These broadcast structures pose significant

challenges for downstream physical design flows in achieving timing closure, leading to

93



suboptimal clock frequencies that can bottleneck the entire heterogeneous system.

Adroit addresses these challenges through a set of architecture-driven techniques:

Broadcast-Aware Scheduling. This technique considers the impact of data broadcasts

during the HLS scheduling process, minimizing high-fanout signals.

Redundant Synchronization Pruning. Adroit analyzes the control flow to eliminate un-

necessary synchronization signals, reducing control signal broadcasts.

Skid-Buffer-Based Flow Control. Adroit introduces a more flexible pipeline control

mechanism that reduces the impact of control signal broadcasts.

The architecture-driven approach sets Adroit apart by focusing on the impact of FPGA

architecture on timing performance, contrasting with software optimizations tailored

to fixed hardware data paths in CPU processors. Additionally, Adroit improves the

inherent quality of dataflow dependencies in HLS designs, rather than depending on

optimizations specific to vendor-provided FPGA architectures. This strategy allows

the optimized RTL to be effectively processed by downstream tools, independent of the

specific FPGA architecture targeted. In the subsequent chapter, RapidIR will focus on

the challenges specific to diverse FPGAs, which make it challenging to port a design to

another FPGA device, filling the gap left by Adroit’s FPGA-architecture-neutral approach.

By incorporating these methodologies into the end-to-end optimization framework,

Heterosys, Adroit narrows the gap between abstract software models and optimized

FPGA deployments. This solution is crucial for software developers using heterogeneous

computing platforms, enabling high-performance FPGA configurations without detailed

hardware design knowledge or manual RTL adjustments. Adroit allows developers to

fully utilize FPGAs in heterogeneous settings. By resolving complex timing issues from

implicit broadcasts, Adroit lets developers focus on algorithm design while ensuring

hardware implementations meet strict timing requirements.

94



In the following sections, we dive into the details of our broadcast classification,

the limitations of current HLS tools in handling these broadcasts, and the techniques

employed by Adroit to overcome these challenges. We also present case studies demon-

strating the effectiveness of our approach across a range of real-world FPGA designs.

This chapter builds upon collaborative research that was originally published at

the 2020 Design Automation Conference, where it received recognition as a best paper

nominee. The work presented here is the result of joint efforts with Licheng Guo, whose

contributions were significant in the problem categorization detailed in Section 4.2.

The software distribution of Adroit could be found at https://github.com/Licheng-Guo/

vivado-hls-broadcast-optimization.

4.1 Overview

4.1.1 Observations

Our investigation into HLS-generated designs revealed a surprising commonality in

frequency issues across a diverse set of real-world FPGA implementations:

Implicit Broadcasts as Performance Bottlenecks. The primary cause of frequency degra-

dation in HLS-generated designs is often related to implicit broadcast structures.

These broadcasts, automatically inferred or created by HLS compilers in both datap-

ath and control logic, are typically not explicitly present in the source code and are

therefore often overlooked by developers.

Classification of Broadcast Structures. From the FPGA design benchmarks, we identi-

fied two major categories of broadcasts in HLS-generated designs:

Data Broadcasts. High-fanout signals in the datapath often result from shared

access in unrolled loops or a single point of access to partitioned arrays.

95

https://github.com/Licheng-Guo/vivado-hls-broadcast-optimization
https://github.com/Licheng-Guo/vivado-hls-broadcast-optimization


Control Broadcasts. High-fanout control signals that start and stop processing

elements, including synchronization signals and pipeline control signals.

Difficulty in Debugging. These broadcast-related timing issues are extremely challeng-

ing for software developers and even expert FPGA developers to identify and debug,

as they are not apparent in the high-level source code and often result from HLS

tool optimizations rather than explicit programming decisions.

Compounding Effects. Data and control broadcasts often interact, exacerbating timing

issues. Even seemingly simple designs can suffer from both types of broadcasts,

requiring comprehensive solutions to achieve significant frequency improvements.

4.1.2 Approaches

To address these challenges and enable software developers to achieve high-performance

FPGA designs through HLS, Adroit employs several key approaches:

Broadcast-Aware Scheduling. This technique enhances the HLS scheduler’s delay model

to account for the additional delay introduced by broadcast structures. By calibrating

the scheduler with more accurate delay estimates, Adroit improves the quality of

the generated schedule, leading to better timing performance.

Synchronization Logic Pruning. Adroit analyzes the parallelism patterns inferred by

HLS tools and eliminates unnecessary synchronization logic. This reduces the

complexity of the generated design and minimizes control broadcasts.

Skid-Buffer-Based Pipeline Control. To address the issues with high-fanout pipeline

control signals, Adroit transforms the pipeline controller into a more hardware-

friendly form. This approach uses skid buffers to manage pipeline stalls, reducing

the broadcast factor of control signals.

96



These approaches are designed to be integrated into existing HLS flows, providing

automatic optimizations that software developers can benefit from without requiring

in-depth knowledge of FPGA architecture or manual RTL optimization.

4.1.3 Contributions

The key contributions of this work in the context of enabling heterogeneous computing

for software developers include:

Identification and Classification of Implicit Broadcasts. We provide the first compre-

hensive analysis and classification of implicit broadcast structures in HLS-generated

designs. This insight is crucial for understanding and addressing a major source of

performance degradation in FPGA accelerators.

Optimization Techniques. Adroit introduces a set of architecture-driven optimization

techniques that address the timing issues caused by implicit broadcasts. These tech-

niques are designed to be integrated into HLS tools, allowing software developers

to benefit from improved timing performance without manual intervention.

Performance Improvements. Our evaluation demonstrates an average frequency im-

provement of 53% across a set of nine real-world HLS benchmarks, with some cases

showing gains of over 100 MHz. These improvements are achieved with minimal

area overhead, demonstrating the efficiency of our approach.

Bridging the Gap for Software Developers. By addressing the limitations of current

HLS tools in handling broadcast structures, Adroit enhances the ability of these tools

to generate high-frequency FPGA designs from high-level descriptions, making a

significant step towards more accessible FPGA acceleration for software developers.

By addressing these critical aspects of HLS-generated FPGA designs, Adroit con-

tributes to the broader goal of enabling software developers to effectively leverage het-

97



erogeneous computing resources. It allows developers to focus on algorithmic design in

high-level languages while still achieving implementations that meet timing requirements,

which is a crucial factor in the overall performance of heterogeneous systems.

4.2 Problem Categorization

To enable software developers to effectively leverage heterogeneous computing resources,

particularly FPGAs, it is important to understand the challenges that arise when high-

level code is translated into hardware implementations. Our analysis of HLS-generated

designs reveals that a significant source of performance degradation stems from implicit

broadcast structures. These broadcasts, which are not present in the source code, can

lead to timing issues that are difficult for software developers to identify and address. In

this section, we categorize these implicit broadcasts into three main types: data signal

broadcasts, synchronization control broadcasts, and pipeline control broadcasts.

4.2.1 Data Signal Broadcast

Data signal broadcasts occur in the datapath of HLS-synthesized designs and are a result

of common software programming patterns that, when translated to hardware, lead to

high-fanout signals. We identify two primary scenarios where these broadcasts occur:

4.2.1.1 Loop Unrolling

Consider the following code snippet, which is common in software development:

data_t source = ...; // loop-invariant variable

for (size_t i = 0; i < 1024; i++) {

#pragma HLS unroll

foo = foo_func(i);

98



foo = foo_func(0);

foo = foo_func(1);

foo = foo_func(2);

data_t source;
i=0

i=1

i=2

-

-

-

bar

bar

bar

+

+

+

dest

dest

dest

i=3,4,...

Figure 4.1: HLS-generated architecture showing data broadcast in unrolled loop.

bar = bar_func(i); // loop-dependent

dest[i] = source + foo - bar;

}

The #pragma HLS unroll directive is analogous to the #pragma omp parallel for

used in OpenMP for parallelizing loops in software development. A software developer

might anticipate that this pragma would similarly lead to efficient parallelization of the

code because, in CPU architectures, elements such as the source variable can be cached

to enhance performance. Nevertheless, the practical impact on FPGAs is contrary to that

seen in CPUs. Unlike CPUs, the data reuse can, in fact, degrade FPGA performance.

When this code is synthesized for FPGA implementation with loop unrolling, it results

in a hardware structure where the source variable is broadcast to 1024 instances of the

loop body, as illustrated in Figure 4.1.

The challenge arises because current HLS tools do not accurately account for the

additional delay introduced by this broadcast. For example, if a simple addition operation

typically has a delay of 1.5ns, the actual delay for the 1024-way broadcast addition might

99



Buffer Buffer Buffer

source

Figure 4.2: HLS-generated architecture showing data broadcast to distributed memory.

be 2.5ns. However, the HLS scheduler, unaware of this increased delay, might incorrectly

schedule operations, leading to timing violations in the final implementation.

4.2.1.2 Large Buffer and Memory Arrays

Another common scenario involves large on-chip buffers, as shown in this example:

data_t buffer[737280]; // mapped to multiple BRAM units

buffer[idx] = source; // 'source' connects to every BRAM unit

Similarly, a software developer will expect that the source variable is written to a

single memory location in the buffer and therefore assumes that, no matter the buffer

size, it should not cause any performance issues. However, the reality is different.

In FPGA implementations, large buffers are typically distributed across multiple Block

RAM (BRAM) units. This distribution leads to a scenario where the source signal fans

out to many physically scattered memory units, as illustrated in Figure 4.2.

Current HLS tools fail to account for the increased delay in load and store operations

100



as buffer sizes grow. This oversight can result in inadequate pipelining between memory

units and data sources/sinks, leading to timing issues in the final implementation.

4.2.2 Synchronization Control Signal

Synchronization control broadcasts arise from the HLS tool’s approach to parallelizing

sequential code. While this parallelization is crucial for performance improvements, the

generated synchronization logic can introduce critical paths, especially as the degree of

parallelism increases. Consider this streaming design example:

#pragma HLS dataflow

while (1) {

// Part #A

inFifoA.read(&a);

outFifoA1.write(a.foo);

outFifoA2.write(a.bar);

// Part #B

inFifoB.read(&b);

outFifoB1.write(b.foo);

outFifoB2.write(b.bar);

}

In this case, HLS tools often generate excessive synchronization logic, treating inde-

pendent streams as if they were tightly coupled, as shown in Figure 4.3. However, in fact,

Part #A and Part #B are independent of each other.

Another scenario involves multiple independent function calls:

data_t kernel(...) {

101



&

&

&

outFifoA_2inFifoA outFifoA_1

outFifoB_2inFifoB outFifoB_1

Figure 4.3: HLS-generated architectures showing synchronization broadcasts in a single

logical function coupling two sets of unrelated FIFOs.

aOut = PE_1(aIn);

bOut = PE_2(bIn);

cOut = PE_3(cIn);

return aOut + bOut + cOut;

}

Here, HLS tools typically generate synchronization logic that waits for all parallel

executions to complete and asserts the done signal before proceeding, as illustrated in

Figure 4.4. This “reduce-broadcast” pattern of synchronization can become a critical path

as the design scales, significantly impacting performance.

4.2.3 Pipeline Control Signal

Pipeline control broadcasts occur in fully-pipelined datapaths, particularly when interact-

ing with flow-controlled interfaces like FIFOs. Consider this example:

102



 PE_2
Proceed

Done
&

 PE_3
Done

 PE_1
Proceed

Done

Proceed

Figure 4.4: HLS-generated architectures showing synchronization broadcasts between

multiple logical functions each proceeds only when all functions are completed.

for (int i = 0; i < ITER; i++) {

#pragma HLS pipeline

input_fifo.read(&a);

b = inlined_datapath_foo(a);

output_fifo.write(b);

}

In the resulting hardware, shown in Figure 4.5, back-pressure signals (e.g., if the input

is ready, and if the downstream process is ready for taking output) are broadcast to

control the entire pipeline to control whether they proceed or not.

While this pipeline control method is effective for small designs, it can become a

timing-critical path as pipeline depth increases, leading to performance bottlenecks.

These implicit broadcasts pose significant challenges for software developers targeting

heterogeneous computing platforms. They are not apparent in the high-level source

code and are difficult to identify and optimize without deep hardware knowledge. In

the following sections, we will present our approach to automatically addressing these

103



&

Figure 4.5: HLS-generated architecture showing pipeline control broadcast.

issues, enabling software developers to achieve high-performance FPGA implementations

without requiring extensive hardware expertise.

4.3 Approach

Having identified the key challenges posed by implicit broadcasts in HLS-generated

designs, we present Adroit’s approach to addressing these issues. Adroit introduces a set

of automated techniques that target the three main categories of implicit broadcasts: data

signal broadcasts, synchronization control broadcasts, and pipeline control broadcasts.

Our approach is designed to be integrated into existing HLS flows, providing au-

tomatic optimizations that software developers can benefit from without manual inter-

vention. By addressing these broadcast-related issues, Adroit aims to bridge the gap

between high-level software descriptions and efficient FPGA implementations, making

heterogeneous computing more accessible to a broader range of developers.

In this section, we detail three components of Adroit: (1) Broadcast-Aware Scheduling;

(2) Synchronization Logic Pruning; And (3) Skid-Buffer-Based Pipeline Control.

Each of these components targets a specific aspect of the implicit broadcast problem,

working together to improve the overall performance of HLS-generated designs.

104



4.3.1 Broadcast-Aware Scheduling

The first component of Adroit addresses the challenge of data signal broadcasts by

introducing a broadcast-aware scheduling technique. This approach aims to provide

more accurate delay estimations for operations involving broadcasts, enabling the HLS

scheduler to make better decisions about cycle boundaries and resource allocation.

4.3.1.1 Delay Calibration Methodology

To overcome the limitations of current HLS delay models, which do not account for the

additional wire delay caused by broadcasts, we propose a simple yet effective method for

approximating this extra delay.

We implement skeleton broadcast structures on an empty FPGA to capture post-

routing delay data. For each permutation of operator, data type, and broadcast factor, we

collect reusable statistics on calibrated delays. These delays are then utilized to optimize

the HLS scheduling process. Although the placement results on an empty FPGA may

differ from the real situation, it is an effective lower bound on the delay penalty.

For example, to calibrate the delay for an addition operation with a broadcast factor

of 64, we instantiate 64 adders on an empty FPGA, with one of the two input ports of

each adder connected to a common source register. For buffer access operations (load,

store), we record the actual delays of different buffer sizes using a similar methodology.

Figure 4.6 illustrates the results of our delay calibration for different operations. Key

observations from our calibration results are:

• For addition and buffer access operations, our calibrated delays closely match the

HLS-predicted values for small broadcast factors. However, for large broadcast

factors, our measurements significantly exceed the HLS-predicted values, revealing

the inaccuracy of current delay estimations in these scenarios.

105



Figure 4.6: Comparison of Vitis HLS estimated delay, our calibrated delay, and raw

experimental delay for different operators.

• For floating-point operations, HLS-predicted delays are sometimes more conserva-

tive than our measurements, possibly a deliberate overestimation.

4.3.1.2 Integration with HLS Flow

To integrate our calibrated delay model into the HLS process, we first parse HLS schedul-

ing reports to identify broadcast structures and their factors. We then apply our calibrated

delays to these structures, inserting register modules in the source code for violations of

the target frequency, effectively forcing the scheduler to split operations across multiple

cycles. Certain operations, particularly floating-point multiplications, inherently incur

delays that exceed the target. To address this, additional pipelining is inserted after the

operations to facilitate downstream retiming. This retiming strategy involves relocating

the registers within the operations.

This approach, when incorporated into HLS tools, allows software developers to

106



benefit from more accurate timing estimates without requiring them to manually analyze

and optimize broadcast structures. By adjusting the scheduling based on more realistic

delay estimates, Adroit enables the generation of more efficient FPGA implementations

from high-level software descriptions.

In the following subsections, we will discuss how Adroit addresses the challenges of

synchronization control broadcasts and pipeline control broadcasts, further enhancing its

ability to generate high-performance FPGA designs from software-oriented code.

4.3.2 Synchronization Logic Pruning

The second component of Adroit addresses the challenge of synchronization control

broadcasts. These broadcasts, which arise from the HLS tool’s approach to parallelizing

sequential code, can significantly impact the maximum achievable frequency of the

generated design. While downstream logic synthesis tools cannot optimize away these

synchronization structures due to a lack of high-level information, Adroit, working on

high-level descriptions, leverages its understanding of the original software code to

identify and eliminate redundant synchronization logic.

4.3.2.1 Dataflow Synchronization Optimization

For dataflow synchronization, such as the scenario illustrated in Figure 4.8, Adroit

employs the following approach:

1. Reconstruct the dataflow graph at the granularity of elementary flow control units,

rather than relying on the HLS tool’s inferred synchronization.

2. Identify isolated sub-graphs within user-defined streaming kernels.

3. Split independent flows into separate loops, avoiding unwanted synchronization

generated by the HLS compiler.

107



Part #A

&¬Empty
¬Full

¬Full

Ready

Part #B

&¬Empty
¬Full

¬Full

Ready

Proceed

outFifoA_2inFifoA outFifoA_1

outFifoB_2inFifoB outFifoB_1

Proceed

Independent

Figure 4.7: Optimized control-pruned architecture corresponding to Figure 4.3.

Figure 4.7 illustrates the optimized logic structure resulting from this approach. By

isolating independent flow paths, Adroit reduces the complexity of synchronization logic

and minimizes the impact of control broadcasts on timing.

4.3.2.2 Parallel Module Synchronization Optimization

For scenarios involving synchronization of parallel modules, as shown in Figure 4.10,

Adroit adopts the following strategy:

1. Analyze the HLS schedule report to identify modules with deterministic latency.

2. For modules with known latency, implement a synchronization scheme that only

waits for the slowest part to finish.

3. Generate optimized control logic that reduces the broadcast factor.

Figure 4.9 shows the resulting optimized logic structure for this scenario, where PE_1

is the slowest processing element to finish. Its Done signal is used to control whether all

three modules PE_1, PE_2, and PE_3 can proceed.

108



#pragma HLS dataflow

while (1) {

/* --- inferred parallelization --- */

// Part #A

inFifoA.read(&a);

outFifoA1.write(a.foo);

outFifoA2.write(a.bar); // #A

// Part #B

inFifoB.read(&b);

outFifoB1.write(b.foo);

outFifoB2.write(b.bar);

/* --- HLS infers excessive synchronization --- */

}

Figure 4.8: Example code showing dataflow synchronization.

 PE_2
Proceed

 PE_3

 PE_1
Proceed

Done

Proceed

Figure 4.9: Optimized control-pruned architecture corresponding to Figure 4.4.

109



data_t kernel(...) {

/* --- inferred parallelization --- */

aOut = PE_1(aIn);

bOut = PE_2(bIn);

cOut = PE_3(cIn); // ...

/* --- inferred synchronization --- */

return aOut + bOut + cOut /* ... */ ;

}

Figure 4.10: Example code showing parallel module synchronization.

This approach significantly reduces the complexity of synchronization logic for parallel

modules with deterministic latency. For modules with dynamic latency, Adroit currently

maintains the original synchronization scheme to ensure correctness. Future work may

explore the use of symbolic execution techniques to handle more complex scenarios with

variable latency.

4.3.3 Skid-Buffer-Based Pipeline Control

The third component of Adroit addresses the challenge of pipeline control broadcasts.

These broadcasts occur in fully-pipelined datapaths, particularly when interacting with

flow-controlled interfaces like FIFOs. To mitigate the performance impact of these

broadcasts, Adroit implements a skid-buffer-based pipeline control strategy.

4.3.3.1 Skid Buffer Concept

The key idea behind the skid-buffer approach is to keep the pipeline always flowing and

use additional buffering to handle backpressure. This strategy replaces the traditional

stall-based control, which requires broadcasting control signals to all pipeline stages.

110



depth = N+1

ready

data

valid

data
N stages

skid
buffer

valid

&
empty

valid

ready

α β

Figure 4.11: Skid-buffer-based pipeline control architecture.

Figure 4.11 illustrates the basic concept of skid-buffer-based pipeline control:

In the proposed method, the pipeline maintains continuity of operations even when

downstream components are unable to process incoming data. To address this, a skid

buffer [Int19] is integrated at the pipeline’s terminal stage. This buffer serves to collect

data during periods when downstream is not ready to avoid overflow due to the continued

flow of the pipeline. The state of the skid buffer influences pipeline behavior: upon

detecting data in the buffer (buffer non-empty), the reading of upstream data is halted,

resulting in the transmission of invalid bubbles in subsequent pipeline stages.

The skid buffer’s capacity is determined by setting its depth to N + 1, where N

represents the number of stages in the pipeline. This configuration ensures the prevention

of any overflow, with the additional unit (+1) accounted for by the latency of the empty

signal de-assertion, which occurs one cycle post the entry of the initial data element.

This method eliminates the need for global stall signals broadcast to the whole

pipeline. Instead, the skid buffer’s state is only passed to the immediate upstream stage,

significantly reducing the impact of control broadcasts on timing.

4.3.3.2 Area Optimization

While effective at improving timing, the skid-buffer approach introduces additional

area overhead. To minimize this overhead, Adroit implements a dynamic programming

algorithm that optimizes the placement and sizing of skid buffers throughout the pipeline.

The primary insight is that the skid buffer’s management can be decentralized within

111



the datapath, as depicted in Figure 4.12. Rather than employing a single skid buffer with

an N-depth and width wfi at the end of the pipeline, Adroit places an (M + 1)-depth

buffer with width wff , corresponding to the data width at the intermediate M-th stage,

and an (N −M + 1)-depth buffer with width wfi, corresponding to the data width of

output after the final stage. This distributed buffering offers equivalent functionality to

the singular, centralized buffer configuration illustrated in Figure 4.11.

N-M+1

ready

data
valid

ready

data
M depth=M+1

validvalid

N-M

& &
empty

valid

ready empty

α β

Figure 4.12: Multi-level skid-buffer-based pipeline control.

The new area overhead will be:

BufferArea′ = (M + 1) · wα + (N −M + 1) · wβ

Let N be the number of stages of the pipeline; wi be the width of data passed from

stage #i to stage #{i + 1}. Sj
i represents the subset of the pipeline which includes stages

#{i, ..., j}. We aim to identify the optimal partition set p that effectively the entire pipeline

into a sequence of sub-pipelines Sp1
1 , Sp2

p1+1, . . . , SN
pt+1. Here, pi represents the division

points between stages, and t denotes the total number of such points, i.e., |p| = t.

min p TotalBufferAreap = ∑
1≤i≤t+1

(pi − pi−1 + 1) · wpi

s.t. pi ∈ Z, pi < pi+1, p0 = 0, pt+1 = N

(4.1)

We solve this optimization problem through dynamic programming algorithm. Specif-

ically, for the initial N′ stages of the pipeline, we determine the minimal total buffer area,

represented by fN′ . Assuming that fi is known for all i < N′, fN′ is computed as follows

in Equation 4.2:

112



fN′ = min


(N′ + 1) · wN′

min{ fi + (N′ − i + 1) · wN′ | 0 < i < N′}
(4.2)

From the functions f1, . . . , fN′−1, we derive fN′ . Ultimately, this series allows us to

compute fN, which represents the minimal area overhead required to incorporate skid

buffers into the designated pipeline.

To determine wi, we examine the operations within each stage. Let us define vi as the

set of all values produced at stage i; ui as the set of all values consumed at stage i; and br

as the bitwidth of any arbitrary value r. Values generated at stage i and used at stage j

are propagated through all intermediate stages from i to j. Hence:

wi = ∑
j≤i

∑
v′∈vj

bv′ · ci+1,v′ (4.3)

where ci,v′ = 1 if ∑j≥i |uj ∩ {v′}| > 0, otherwise ci,v′ = 0.

To determine the data width br transmitted between pipeline stages, we analyze the

schedule report. This involves extracting both the definition and usage locations of each

variable within the pipeline stages. By aggregating these data, we calculate the total data

width transferred across stages.

By implementing and optimizing skid-buffer-based pipeline control, Adroit enables

software developers to achieve high-performance pipelined designs without requiring

them to manually manage complex flow control mechanisms. This approach is partic-

ularly valuable for long pipelines or designs with complex flow control requirements,

where manual optimization would be challenging and time-consuming.

113



4.4 Evaluation

To assess the effectiveness of Adroit in enabling software developers to leverage FPGAs,

we conducted a comprehensive evaluation using a diverse set of real-world applications.

Our evaluation aims to demonstrate how Adroit’s automated optimizations can improve

the performance of HLS-generated designs without requiring manual intervention or

hardware expertise from developers.

In this section, we present the results of our experiments, focusing on how Adroit

addresses the challenges posed by implicit broadcasts in HLS-generated designs. We

evaluate the impact of our optimizations on both the achievable clock frequency and

resource utilization, demonstrating the potential for software developers to achieve

high-performance FPGA implementations from high-level code descriptions.

Our evaluation seeks to answer the following key questions:

RQ1: How effective is Adroit in improving the clock frequency of HLS-generated

designs across a range of applications?

RQ2: What is the impact of Adroit’s optimizations on resource utilization?

4.4.1 Benchmarks

To ensure a comprehensive evaluation of Adroit’s capabilities, we selected a diverse set of

benchmarks that represent a range of application domains and computational patterns.

These benchmarks were chosen from Section 2.3 to reflect real-world scenarios where

software developers might leverage FPGA acceleration in heterogeneous computing envi-

ronments, with fanout (FAN) and fixed architecture (FIX) issues as defined in Section 2.3

as the primary concerns. Our benchmark suite includes:

Genome Sequencing (GSQ). An accelerator for long-read pairwise overlapping in third-

generation genome sequencing from Guo et al. [GLR19]. This benchmark allows us

114



to evaluate Adroit’s performance on data-intensive bioinformatics applications.

LSTM Inference Network. A benchmark of a Long Short-Term Memory (LSTM) network

implementation for inference tasks, based on the work of Chen et al. [CHB18]. We

focus on the N-Node component, using floating-point data types with N set to

256. This benchmark evaluates Adroit’s performance on deep learning inference

workloads, in addition to those examined in the Background chapter.

Face Detection (FDT). An implementation of the Viola-Jones face detection algorithm,

sourced from the Rosetta benchmark suite [ZGD18]. This computer vision applica-

tion demonstrates Adroit’s effectiveness on image processing tasks.

Matrix Multiplication (MML). An optimized matrix multiplication kernel adapted from

Cong et al. [CWY18a]. We further increased the parallelism to stress-test Adroit’s

ability to handle highly parallel designs.

String Search (STS). A string pattern matching accelerator, also adapted from Cong et

al. [CWY18a]. This benchmark represents text processing applications.

Jacobi (JAC). A Jacobi stencil computation kernel generated by SODA [CCW18]. We

include both a standard version and an HBM (High Bandwidth Memory) version to

evaluate Adroit’s performance with different memory architectures.

Streaming Buffer (STB). A custom design consisting of two loops that write to and read

from a very large buffer. This benchmark tests Adroit’s ability to optimize designs

with complex memory access patterns.

These benchmarks were chosen to cover a wide range of application characteristics,

including compute-intensive, memory-intensive, and control-intensive workloads. In

brackets, we provide the abbreviated names used in Section 2.3 for each benchmark.

115



For each benchmark, we implemented both the original design from the benchmark

and an Adroit-optimized version using Vitis HLS and Vivado 2018.2 with default op-

timization settings. We enabled the fan-out optimization included in the Vivado tool,

demonstrating the impact of Adroit’s additional optimizations thanks to the high-level

information. The target FPGA models were selected based on the choices made in the

original designs, ensuring a fair comparison. We summarize the results in Table 4.1,

comparing the resources and frequency of these two versions.

In the following subsections, we will present detailed results for a subset of these

benchmarks, highlighting how Adroit addresses specific broadcast-related challenges

in each case. We will then provide a comprehensive summary of results across all

benchmarks, demonstrating the overall impact of Adroit in enabling software developers

to achieve high-performance FPGA implementations.

4.4.2 Broadcast-Aware Scheduling in Genome Sequencing Acceleration

To demonstrate the effectiveness of Adroit’s broadcast-aware scheduling in enabling

software developers to achieve high-performance FPGA implementations, we present

a case study of a genome sequencing accelerator. This accelerator, originally designed

by the authors in previous work [GLR19], targets the acceleration of Minimap2 [Li18], a

state-of-the-art genomics tool renowned for its speed and accuracy.

The accelerator focuses on the chaining step of Minimap2 [Li18], which constitutes

70% of the tool’s execution time. This step performs dynamic programming to identify

sequences of matches with consistent distances between read pairs, indicating potential

shared sub-sequences within the genome.

Accelerating this algorithm on FPGAs presents several challenges that are representa-

tive of the difficulties software developers face when targeting heterogeneous computing

platforms: (1) Poor inherent parallelism in the original algorithm. (2) Large and variable

116



Ta
bl

e
4
.1

:T
im

in
g

im
pr

ov
em

en
ts

an
d

re
so

ur
ce

s
on

H
LS

de
si

gn
s

us
in

g
A

dr
oi

t.

A
pp

li
ca

ti
on

B
ro

ad
ca

st
ty

pe
Ta

rg
et

FP
G

A
LU

T
(%

)
FF

(%
)

B
R

A
M

(%
)

D
SP

(%
)

Fr
eq

(M
H

z)

O
ri

g
O

pt
O

ri
g

O
pt

O
ri

g
O

pt
O

ri
g

O
pt

O
ri

g
O

pt
D

iff

G
en

om
e

Se
qu

en
ci

ng
[G

LR
1
9
]

D
at

a
U

lt
ra

Sc
al

e+
(A

W
S

F1
)

2
2

2
2

1
1

1
2

6
6

8
8

2
6
4

3
4
1

2
9
%

LS
T

M
N

et
w

or
k

[C
H

B1
8
]

D
at

a
U

lt
ra

Sc
al

e+
(A

W
S

F1
)

8
9

6
6

2
2

1
4

1
4

2
8
5

3
2
5

1
4
%

Fa
ce

D
et

ec
ti

on
[S

D
M

1
7
]

D
at

a
Z

Y
N

Q
(Z

C
7
0
6

)
2
1

2
2

1
4

1
5

1
6

1
6

9
9

2
2
0

2
7
3

2
4
%

M
at

ri
x

M
ul

ti
pl

y
Pi

pe
.C

tr
l.

&
D

at
a

U
lt

ra
Sc

al
e+

(A
W

S
F1

)
2
3

2
3

2
4

2
7

2
5

2
5

7
4

7
4

2
0
2

2
9
9

4
8
%

St
re

am
Bu

ff
er

Pi
pe

.C
tr

l.
&

D
at

a
U

lt
ra

Sc
al

e+
(A

W
S

F1
)

1
1

1
1

9
5

9
5

0
0

1
5
4

2
8
1

8
2
%

St
en

ci
l[

C
C

W
1
8
]

Pi
pe

.C
tr

l.
U

lt
ra

Sc
al

e+
(A

W
S

F1
)

4
0

4
0

4
1

4
1

3
0

2
9

8
3

8
3

1
2
0

2
5
3

1
1
1
%

Ve
ct

or
A

ri
th

m
et

ic
Pi

pe
.C

tr
l.

&
Sy

nc
.

U
lt

ra
Sc

al
e+

(A
W

S
F1

)
1
7

1
7

1
6

1
5

0
<1

6
0

6
0

1
9
5

3
0
1

5
4
%

H
BM

-B
as

ed
St

en
ci

l[
C

C
W

1
8
]

Pi
pe

.C
tr

l.
&

Sy
nc

.
U

lt
ra

Sc
al

e+
(A

lv
eo

U
5
0
)

2
1

2
3

2
3

2
3

3
4

3
1

3
7

3
7

1
9
1

3
2
4

7
0
%

Pa
tt

er
n

M
at

ch
in

g
[C

W
Y

1
8
a]

D
at

a
&

Sy
nc

.
V

ir
te

x-
7

(A
lp

ha
-D

at
a)

1
7

1
7

5
7

9
9

0
0

1
8
7

2
7
8

4
9
%

117



input data sizes, complicating task-level parallelism. (3) Complex data dependencies that

can lead to broadcast-related performance bottlenecks.

The accelerator employs a fully pipelined streaming architecture. A key component of

this design is a loop that performs distance calculations and score computations, unrolled

to process multiple elements in parallel:

#pragma HLS pipeline

#define UNROLL_FACTOR 64

for (int j = 0; j < UNROLL_FACTOR; j++) {

#pragma HLS unroll

dist_x = prev[j].x - curr.x;

dist_y = prev[j].y - curr.y;

dd = dist_x > dist_y ? dist_x - dist_y : dist_y - dist_x;

min_d = dist_y < dist_x ? dist_y : dist_x;

log_dd = log2(dd); // a series of if-else

temp = min_d > prev[j].w ? prev[j].w : min_d;

dp_score[j]= temp - dd * avg_qspan - (log_dd >> 1)

if ((dist_x == 0 || dist_x > max_dist_x ) ||

(dist_y > max_dist_y || dist_y <= 0) ||

(dd > bw) || (curr.tag != prev[j].tag)) {

dp_score[j] = NEG_INF_SCORE;

}

} // ...

This code structure, while natural for software developers, leads to significant

broadcast-related challenges when synthesized for FPGA implementation. For example,

118



prev[j].x

prev[j].x

prev[j].x

data_t curr_x;
j=0

j=1

j=2

-

-

-

j=3,4,...

dist_x

dist_x

dist_x

-

-

-

select

select

select

dd

dd

dd

>

>

>

HLS clockinserted clock

Figure 4.13: An operation chain with broadcast operators identified by Adroit.

the variables like curr.x, curr.y, and avg_qspan are broadcast to multiple operations

within the unrolled loop, creating high-fanout data signals that limit the achievable clock

frequency.

4.4.2.1 Adroit’s Broadcast-Aware Scheduling

Adroit’s broadcast-aware scheduling technique identified that variables like curr.x are

broadcast to multiple operations within the unrolled loop. The HLS tool, unaware of

the additional delay introduced by these broadcasts, generates a suboptimal schedule

that packs operations too tightly, even though the design cannot meet the desired clock

frequency due to the broadcast-related delays.

Figure 4.13 illustrates an operation chain with broadcast operators as identified by

Adroit, where curr.x is consumed by 64 sub operators.

Analysis revealed that the HLS tool predicted a delay of 0.78ns for each subtraction

operation involving the broadcast variables. However, Adroit’s calibrated delay model,

accounting for the broadcast factor of 64, adjusted this prediction to 2.08ns. Based on

this more accurate estimate, Adroit inserts a register module to split the operation chain,

119



Figure 4.14: Calibrated delay estimation of Adroit and frequency improvement achieved

by Adroit’s architecture-aware scheduling with different broadcast factors.

preventing the accumulation of broadcast-related delays within a single clock cycle.

4.4.2.2 Results and Impact

The impact of Adroit’s broadcast-aware scheduling on the achievable clock frequency is

illustrated in Figure 4.14. In this optimization, Adroit’s calibrated delay model provides

a more accurate approximation of the actual delay, especially as the broadcast factor

increases. Compared to the HLS-estimated delay, which remains constant, failing to

account for the impact of broadcasts.

Adroit’s optimization results in a significant frequency improvement, particularly

for larger broadcast factors (unroll factor of the loop in the design). The optimization

increased the pipeline depth by one, maintaining the same initiation interval of one.

This minor increase in pipeline depth resulted in a negligible overhead in flip-flop while

enabling a substantial improvement in clock frequency.

This case study demonstrates how Adroit enables software developers to achieve

high-performance FPGA implementations without requiring manual identification and

120



optimization of broadcast-related issues. By applying broadcast-aware scheduling, Adroit

allows developers to write natural, high-level code while still benefiting from optimiza-

tions that traditionally required deep hardware expertise.

4.4.3 Synchronization Logic Pruning and Pipeline Control Optimization

To further demonstrate how Adroit enables software developers to write FPGA imple-

mentations that achieve high clock frequencies, we present two case studies focusing on

synchronization logic pruning and pipeline control optimization. These studies illustrate

how Adroit addresses complex hardware-specific issues that typically require a deep

understanding of FPGA architecture, as well as HLS tool behavior, and typically involve

manual interventions in the non-human-readable generated RTL code.

4.4.3.1 Synchronization Logic Pruning in HBM-based Jacobi Stencil Acceleration

Our first case study examines an HBM-based (High-Bandwidth Memory) Jacobi stencil

acceleration kernel generated by the SODA compiler [CCW18]. This kernel represents

a common scenario in high-performance computing where software developers aim to

leverage advanced memory architectures for improved performance.

The kernel utilizes 28 independent memory ports of the HBM, with 512-bit data

from each port scattered into eight 64-bit FIFOs for processing by different streaming

kernels. While this approach allows for high memory bandwidth utilization, it introduces

synchronization challenges that can impact performance.

Challenges. The SODA compiler, designed to simplify the development of stencil

accelerators, expresses the 28 independent data flows together in a single loop. This

results in a synchronization broadcast pattern similar to that shown in Figure 4.3, where

unnecessary synchronization is introduced among all HBM ports and destination FIFOs.

Adroit’s Optimization. Adroit’s synchronization logic pruning identified the indepen-

121



dent data flows and split them into separate loops, eliminating unnecessary synchroniza-

tion. This optimization, which typically requires a deep understanding of the HLS tool’s

behavior, was performed by Adroit.

Results and Impact. The optimization resulted in a significant frequency improvement

from 191 MHz to 324 MHz, a 69.6% increase. This substantial performance gain was

achieved without requiring the software developer to manually analyze and modify the

HLS-generated design, demonstrating Adroit’s ability to enable high-performance FPGA

implementations from high-level code.

4.4.3.2 Skid-Buffer-Based Pipeline Control Optimization

Our second case study focuses on pipeline control optimization, another area where

achieving high performance typically requires hardware-specific expertise. We examine

two scenarios: a 2D Jacobi kernel pipeline and a synthetic vector product example.

2D Jacobi Kernel Pipeline. We utilized the SODA compiler [CCW18] to generate a 2D

Jacobi kernel as a pipeline. To evaluate Adroit’s effectiveness on pipelines of varying

complexity, we concatenated iterations of the kernel to create pipelines of increasing size.

As pipeline depth increases, traditional stall-based control mechanisms can lead to timing

closure issues due to the broadcast of control signals across the entire pipeline.

Adroit’s Solution. Adroit analyzes the HLS schedule report to calculate the width of

transferred data between pipeline stages. It then determines the optimal configuration of

skid buffers and inserts them into the RTL design.

Result. Figure 4.15 illustrates the frequency improvements achieved by Adroit’s

skid-buffer-based pipeline control. For a super pipeline of eight Jacobi iterations (370

datapath stages), Adroit’s optimization improved the achievable frequency by over 50%

while requiring only about 23KB of additional BRAM resources.

122



Figure 4.15: Achieved frequency of Jacobi kernels in different iteration counts with

different pipeline control strategies, original design vs. optimized by Adroit.

Table 1: Timing improvements and post-implementation resources on real-world HLS designs using our proposed solutions.

Application Broadcast type Target FPGA
LUT (%) FF (%) BRAM (%) DSP (%) Freq (MHz)

Orig Opt Orig Opt Orig Opt Orig Opt Orig Opt Di�
Genome Sequencing [20] Data UltraScale+ 17 17 9 9 5 5 6 6 264 341 29%
Face Detection [21] Data Kintex-7 21 22 14 15 16 16 9 9 220 273 24%
Video Decoder [22] Data Virtex-7 38 38 22 22 2 2 10 10 192 230 20%
Matrix Multiply [19] Pipe. Ctrl. & Data UltraScale+ 23 23 24 27 25 25 74 74 202 299 48%
Stream Bu�er Pipe. Ctrl. & Data UltraScale+ 1 1 1 1 95 95 0 0 154 281 82%
Stencil [23] Pipe. Ctrl. UltraScale+ 40 40 41 41 30 29 83 83 120 253 111%
HBM-Based Stencil [23] Pipe. Ctrl. & Sync. UltraScale+ HBM 21 23 23 23 34 31 37 37 191 324 70%
Pattern Matching [19] Data & Sync. Virtex-7 17 17 5 7 9 9 0 0 187 278 49%

0 5 10 15 20 25 30 35 40 45 50 55 60

512
1,024
1,536
2,048

Pipeline Stage Number

D
at

a
W

id
th

(b
its

)

Figure 17: Canton Tower

1 loop1: for (int i = 0; i < BIG_SIZE; i++) {
2 #pragma HLS pipeline II=1
3 in_fifo.read(&buffer[i]); } // data into buffer
4 loop2: for (...) ... // data out of buffer

Figure 18: Code for the large bu�er access example.

With the bubble-based pipeline control, the broadcast of enable is
avoided. Figure 19 shows the achieved frequency of varying bu�er
size. Three batches of experiments are done: the original one; only
�x the data broadcast; �x both the data and control broadcast. As
is obvious, we need to optimize both the data broadcast and the
control broadcast to achieve scalable performance.

160 320 480 640 800 960 1,120 1,280

100
150
200
250
300
350

Elements in the Bu�er (k)

Fr
eq

ue
nc

y
(M

H
z)

Original
Optimize Datapath
Optimize Datapath & Control

Figure 19: Achieved frequencies of the stream bu�er design
with di�erent bu�er sizes.

The simple design is representative to a large class of FPGA
accelerator designs. Transferring the data from external ports to
the local bu�ers of processing elements is the very foundation in the
pursuit of tremendous parallelism, which however ultimately boils
down to the few lines of code in Figure 18. The Pattern Matching
and Matrix Multiplication designs in our benchmark both fall into
this category.

7 CONCLUSION
In this paper, we �rst classify and analyze the common types of
broadcasts in the context of HLS. We present how these broadcasts
can become the critical paths due to the limitations of current HLS
tools. We propose corresponding solutions to each of the limitation
and test our solutions on both synthetic and real-world HLS designs.
Experiments show that our methods bring over 40% of frequency
gain on average.

REFERENCES
[1] M. Pedram et al. Layout driven logic restructuring/decomposition. ICCAD’91.
[2] H. J. Hoover et al. Bounding fan-out in logical networks.
[3] K. J. Singh et al. A heuristic algorithm for the fanout problem. DAC’90.
[4] T. Okamoto et al. Bu�ered steiner tree construction with wire sizing for inter-

connect layout optimization. ICCAD ’96.
[5] G. Beraudo et al. Timing optimization of FPGA placements by logic replication.

DAC ’03.
[6] N. Weaver et al. Post-placement c-slow retiming for the Xilinx Virtex FPGA.

FPGA ’03.
[7] N. Weaver. Retiming, repipelining and c-slow retiming, Recon�gurable Com-

puting.
[8] B. Van Antwerpen et al. Register retiming technique. US Patent 7,120,883.
[9] H. Zheng et al. Fast and e�ective placement and routing directed high-level

synthesis for FPGAs. FPGA ’14.
[10] R. Zhao et al. Area-e�cient pipelining for FPGA-targeted high-level synthesis.

DAC ’15.
[11] M. Tan et al. Mapping-aware constrained scheduling for LUT-based FPGAs.

FPGA ’15.
[12] K. Fujiwara et al. Clock skew estimate modeling for FPGA high-level synthesis

and its application. ASICON ’15.
[13] K. Fujiwara et al. A high-level synthesis algorithm for FPGA designs optimizing

critical path with interconnection-delay and clock-skew consideration. VLSI-
DAT ’16.

[14] K. Fujiwara et al. Interconnection-delay and clock-skew estimate modelings
for �oorplan-driven high-level synthesis targeting FPGA designs. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sciences.

[15] J. Cong et al. Towards layout-friendly high-level synthesis. ISPD ’12.
[16] M. Tatsuoka et al. Physically aware high level synthesis design �ow. DAC’15.
[17] M. Tatsuoka et al. Wire congestion aware high level synthesis �ow with source

code compiler. ICICDT’18.
[18] J. Cong et al. Latte: locality aware transformation for high-level synthesis.

FCCM ’18.
[19] J. Cong et al. Automated accelerator generation and optimization with com-

posable, parallel and pipeline architecture. DAC ’18.
[20] L. Guo et al. Hardware acceleration of long read pairwise overlapping in

genome sequencing: a race between FPGA and GPU. FCCM ’19.
[21] N. K. Srivastava et al. Accelerating face detection on programmable SoC using

C-based synthesis. FPGA ’17.
[22] X. Liu et al. High level synthesis of complex applications: an H. 264 video

decoder. FPGA ’16.
[23] Y. Chi et al. SODA: stencil with optimized data�ow architecture. ICCAD ’18.

6

reduction tree for a·b

scalar multiply with celement-wise multiply 
of a and b

Figure 4.16: Bitwidth of the passed data between stages.

Synthetic Vector Product Pipeline. To further demonstrate the resource efficiency of

Adroit’s skid buffer optimization, we examined a synthetic example computing (a · b)c,

where the dot product of vectors a and b is scalar-multiplied with vector c. This

computation pattern results in a pipeline with varying data widths between stages, as

illustrated in Figure 4.16. In Stage #56 only one number (result of a · b) is passed through.

Thus, the first stages #1 to #56 should be buffered separately from the stages after #56.

Directly adding a buffer at the end results in (61 + 1)× 1024 = 63488 bits, while the

optimized version costs (56 + 1)× 32 + (5 + 1)× 1024 = 7968 bits, i.e., 8× smaller.

Adroit’s Solution. Adroit’s dynamic programming algorithm identified the aforemen-

tioned optimal placement of skid buffers, taking into account the varying data widths

123



Table 4.2: Experiment results on 512-wide vector product.

Implementation Frequency LUT FF BRAM DSP

Stall 195 MHz 17% 16% 0% 60%

Skid Buffer 299 MHz 18% 16% 12% 60%

Min-Area Skid Buf. 301 MHz 17% 15% 0.02% 60%

throughout the pipeline, resulting in a more resource-efficient design.

Result. Table 4.2 shows the implementation results for a 512-wide floating-point vector

on a Xilinx UltraScale+ FPGA. Adroit’s optimized skid buffer implementation achieved a

54% frequency improvement over the stall-based approach while using significantly fewer

resources than a naive skid buffer implementation. The optimized version required only

0.02% BRAM usage compared to 12% for the naive approach, demonstrating Adroit’s

ability to balance performance improvements with resource efficiency.

4.4.4 Combined Results

While individual optimization techniques can yield significant improvements, many

real-world applications require a combination of approaches to fully address timing

degradation issues. This section demonstrates how Adroit’s integrated approach, com-

bining data broadcast optimization, synchronization logic pruning, and pipeline control

optimization, enables software developers to achieve optimal performance without re-

quiring deep hardware expertise.

4.4.4.1 Case Study: Stream Buffer

To illustrate the combined effect of Adroit’s optimizations, we examine a stream buffer

implementation that exhibits both data and control broadcasts. This example is represen-

124



loop1: for (int i = 0; i < BIG_SIZE; i++) {

#pragma HLS pipeline II=1

buffer[i] = in_fifo.read();

} // data into buffer

loop2: for (int i = 0; i < BIG_SIZE; i++) {

#pragma HLS pipeline II=1

out_fifo.write(buffer[i]);

} // data out of buffer

Figure 4.17: High-level code for the stream buffer example.

tative of common patterns in data processing applications when targeting FPGAs. Figure

4.17 shows the high-level code for this stream buffer. This seemingly simple code leads to

two broadcast-related challenges when synthesized for FPGA implementation:

Data Broadcast. The source data register in_fifo.read() is connected to each BRAM

unit buffer[i], forming an implicit data broadcast.

Control Broadcast. The enable back-pressure signal is broadcast to all BRAM units

implemented for the buffer array for flow control.

To address these issues, Adroit applies a combination of optimizations:

Data Broadcast Optimization. Based on the array size and pipeline depth, Adroit adds

additional latency between in_fifo and buffer to optimize the data broadcast. The

same optimization is applied to the out_fifo.write() operation.

Pipeline Control Optimization. Adroit implements skid-buffer-based pipeline control

to eliminate the broadcast of the enable signal to the buffer BRAMs.

125



160 320 480 640 800 960 1,120 1,280

150
200
250
300
350

Elements in the Buffer (k)

Fr
eq

ue
nc

y
(M

H
z)

Original
Opt. Data
Opt. Data & Ctrl

Figure 4.18: Achieved frequencies of the stream buffer design with different combinations

of Adroit’s optimizations compared to the original design.

Figure 4.18 presents the achieved frequency for varying buffer sizes under three

scenarios: the original one (Original); the version which only has the data broadcast

optimized (Opt. Data); the version with both optimizations (Opt. Data & Ctrl).

The results demonstrate that optimizing both data and control broadcasts is necessary

to achieve scalable performance, especially as buffer sizes increase. This combined

approach allows the design to maintain high frequency even for large buffer sizes.

4.4.4.2 Case Study: Pattern Matching

To further illustrate the combined effect of optimizations, we examine a pattern matching

accelerator adapted from Cong et al. [CWY18a]. This design exhibits both data and

synchronization control broadcasts, similar to the pattern shown in Figure 4.4.

Adroit identified and addressed both the data broadcast and synchronization control

issues in this design by applying a combination of broadcast-aware scheduling techniques

to optimize data-intensive operations and synchronization logic pruning to remove

unnecessary synchronization, reducing control signal broadcasts.

Table 4.3 presents the implementation results for the pattern matching accelerator.

From the results, we observe that data broadcast optimization alone yielded an 11.2%

126



Table 4.3: Experiment results on pattern matching.

Implementation Frequency LUT FF BRAM DSP

Original 187 MHz 17% 5% 9% 0%

Data Optimized 208 MHz 18% 7% 9% 0%

Adroit Fully Optimized 278 MHz 17% 7% 9% 0%

frequency improvement, while combining data and control optimizations resulted in a

48.7% frequency increase over the original design. The fully optimized version achieved

this significant performance improvement with minimal impact on resource utilization.

4.4.4.3 Implications for Software Developers

The combined effect of Adroit’s optimization techniques demonstrates its ability to

address complex, interrelated performance issues in FPGA designs. This capability is

particularly valuable for software developers, as it allows them to:

Write Platform-Neutral High-Level Code. Developers can express their algorithms in

familiar, high-level constructs without worrying about low-level hardware optimiza-

tions, such as adding additional registers manually.

Achieve Scalable Performance. As demonstrated by the stream buffer example, Adroit’s

optimizations enable designs to maintain high performance even as problem sizes

increase, exhibiting a similar behavior on traditional platforms.

Leverage Complex Optimizations. The pattern matching case study shows how Adroit

can apply sophisticated, combined optimizations that would typically require

extensive hardware expertise.

Maintain Code Readability. By handling optimizations automatically, Adroit allows

127



developers to maintain clean, readable code without sacrificing performance.

By providing these capabilities, Adroit significantly lowers the barriers to entry for

heterogeneous computing and aligns with our goal of making heterogeneous computing

more accessible and practical for software developers across various domains.

4.5 Conclusion

This chapter has presented Adroit, a novel approach to addressing critical performance

bottlenecks in HLS-generated FPGA designs. By focusing on the challenges posed by

implicit broadcasts, Adroit significantly advances the goal of enabling software developers

to effectively leverage heterogeneous computing resources, particularly FPGAs, without

requiring extensive hardware expertise. Adroit’s key contributions include:

Broadcast-Aware Scheduling. By implementing a more accurate delay model that ac-

counts for broadcast-related delays, Adroit enables HLS tools to generate more

efficient schedules, leading to improved timing performance.

Synchronization Logic Pruning. Adroit’s ability to identify and eliminate unnecessary

synchronization logic addresses a common source of performance degradation in

parallel designs.

Skid-Buffer-Based Pipeline Control. The introduction of an area-efficient skid buffer

implementation allows for high-performance pipelined designs without the timing

penalties associated with traditional stall-based control mechanisms.

Integrated Optimization Approach. By combining these techniques, Adroit demonstrates

the ability to address complex, interrelated performance issues that arise in real-

world applications.

128



Our evaluation on a diverse set of benchmarks including genome sequencing, stencil

computation, and pattern matching, demonstrates the effectiveness of Adroit’s approach:

Frequency Improvements. Across various synthetic examples and real-world bench-

marks, Adroit achieved an average frequency improvement of 53%, with some cases

showing gains of over 100 MHz.

Minimal Overhead. These performance improvements were realized with minimal area

overhead, ensuring efficient use of FPGA resources.

Scalability. Adroit’s optimizations proved effective across a range of design sizes and

complexities, from simple stream buffers to complex, multi-stage pipelines.

The significance of Adroit in enabling heterogeneous computing for software develop-

ers is multifaceted:

Abstraction of Hardware Complexity. By addressing complex broadcast-related issues,

Adroit allows developers to write high-level code without concern for low-level

hardware optimizations.

Performance Accessibility. Adroit enables software developers to achieve performance

levels that would typically require deep FPGA expertise, democratizing access to

high-performance heterogeneous computing.

Code Maintainability. The easy-integration nature of Adroit’s optimizations allows de-

velopers to maintain clean, readable code while still benefiting from sophisticated

hardware-specific optimizations.

Adroit signifies an advancement in democratizing FPGA acceleration for software

developers; however, there are multiple directions for further exploration. First, although

Vitis HLS has incorporated Adroit’s skid-buffer and synchronization optimizations, it

129



lacks data broadcast analysis. Integration of the data broadcast optimization approach

into commercial HLS tools could streamline the optimization process for developers.

Second, investigating methods for dynamic adaptation of optimizations, particularly

synchronization pruning, could prove beneficial in settings where static analysis falls short.

Third, extending Adroit’s architecture-aware optimizations to broader programming

models and other heterogeneous platforms, where data and control communication

affinity plays a crucial performance role, such as AI engines, could further reduce the

learning curve for software developers new to heterogeneous computing.

In conclusion, Adroit shows the potential for automated, architecture-aware opti-

mizations to bridge the gap between software development practices and efficient FPGA

implementation. By addressing implicit broadcasts in HLS-generated designs, Adroit

enables software developers to leverage heterogeneous computing more effectively.

130



CHAPTER 5

Infrastructure for High-Level Physical Synthesis

Optimizations

The evolution of Field-Programmable Gate Arrays (FPGAs) into larger, multi-die devices

has significantly enhanced their capability to accelerate complex computations, offering

improved performance and energy efficiency for applications such as large language

models. This advancement, however, has introduced new challenges in design complexity

and physical optimization, particularly for software developers leveraging High-Level

Synthesis (HLS) tools to target these sophisticated FPGA architectures.

While HLS has made significant progress in simplifying FPGA programming by

allowing developers to describe designs at an algorithmic level, it often falls short in

addressing critical physical optimization challenges, especially when targeting specific

FPGA boards. The absence of cycle-accurate and physical layout information in high-

level specifications can lead to mismatches between frontend HLS and backend physical

implementation, hindering timing closure and overall design quality.

To bridge this gap, we introduce RapidIR, a novel framework designed to enable

software developers to compose high-performance FPGA systems without requiring deep

hardware expertise. RapidIR addresses key limitations of existing High-Level Physical

Synthesis (HLPS) approaches, offering support for hierarchical design optimizations,

integration of diverse design sources (including HLS-generated modules, handcrafted

RTL, and vendor IPs), and portability across various FPGA platforms.

131



RapidIR represents a significant step forward in making heterogeneous computing

more accessible to software developers. By providing an extensible infrastructure for

exploring physical optimizations in complex FPGA designs, RapidIR aims to democratize

access to large-scale high-performance FPGA acceleration, enabling developers to leverage

the full potential of modern multi-die FPGA architectures without sacrificing productivity

or requiring extensive hardware design expertise.

In this chapter, we explore the key features of RapidIR, its underlying architecture, and

its potential impact on software developers to effectively utilize heterogeneous computing

resources. Through case studies and experimental results, we demonstrate how RapidIR

can significantly improve design efficiency and portability, making FPGA acceleration

more accessible and practical for a wider range of applications and developers.

RapidIR is presented at the 43rd IEEE/ACM International Conference on Computer-

Aided Design as RapidStream IR [LXX24]. The software distribution of RapidIR could be

found at https://docs.rapidstream-da.com.

5.1 Overview

5.1.1 Observations

Our investigation into the challenges faced by software developers in heterogeneous

computing, particularly when targeting modern FPGA architectures, revealed several key

observations:

Mismatch between HLS and Physical Implementation. The absence of cycle-accurate

and physical layout information in high-level specifications often leads to suboptimal

implementations when translated to hardware.

Scalability Issues. As FPGA designs grow in complexity, current EDA tools struggle

to efficiently handle large designs, particularly when distributing processing logic

132

https://docs.rapidstream-da.com


across multiple dies.

Limited Optimization Scope. Existing HLPS solutions often focus on a narrow set of

designs and FPGA devices, limiting their applicability to real-world scenarios,

especially those applications written by software developers.

Integration Challenges. Many real-world accelerator designs incorporate a mix of HLS-

generated modules, handcrafted RTL, and vendor-specific IPs, which existing tools

struggle to optimize holistically.

To illustrate these challenges, consider the large language model (LLM) FPGA acceler-

ator from Section 2.3, developed by Chen et al. [CZD24], as shown in Figure 5.1.

Top-Level System in Verilog Optimized System in Verilog

Die1.v Die2.v Die3.v

Input
Loader
(RTL)

Output
Writer
(RTL)

M
em

or
y 

C
on

tr
ol

le
r 

(IP
)

Linear 
Layers
(HLS)

Buffer
(RTL)

Weight
Loader
(RTL)

GELU
(HLS)

Non-
Linear
Layers
(HLS)

Layer
Norm
(HLS)

Memory Controller

Weight
Loader

Input
Loader

Linear 
Layers

Part I
S

LR
 R

eg
is

te
r 

S
lic

e 
IP

S
LR

 R
eg

is
te

r 
S

lic
e 

IP
Output
Writer

Linear 
Layers
Part II

Buffer

Non-
Linear 
Layers

Part I

Non-
Linear 
Layers
Part II

GELU

LNorm

Figure 5.1: FPGA HLS accelerator design for large language models (LLM) before and

after physical optimizations.

This design incorporates various source formats, including HLS-generated designs,

such as the Linear Layer kernels and the GELU layer; reusable RTL components, such as

the input loaders; and Intellectual Property (IP) components, such as the memory con-

troller and pipeline stages between FPGA dies. This design requires manual optimization

133



to achieve high performance. The initial implementation achieved only 150 MHz on a

Xilinx Alveo U280 FPGA. Through extensive U280-specific optimizations, such as manual

distribution of modules across FPGA dies and strategic register insertion, the frequency

was improved to 245 MHz. However, this manual process is time-consuming, error-prone,

difficult to port to new hardware platforms such as the AMD Versal ACAP platforms,

and completely foreign to software developers.

While existing HLPS approaches have automated frequency optimizations for limited

FPGA design styles, they do not support (1) integration of hybrid-source designs, akin to

using libraries in software development, and (2) pipelining at multiple hierarchy levels,

compelling developers to write program interactions in a single, flat fashion.

5.1.2 Approaches

To address these challenges and enable software developers to effectively leverage hetero-

geneous computing resources, RapidIR introduces several key innovations:

Flexible Intermediate Representation (IR). RapidIR offers an extensible IR that captures

module connectivity, hierarchical structure, and physical spatial information of the

design. This IR can be manipulated using any programming language, providing a

powerful abstraction layer for optimization.

Reusable Optimization Passes. RapidIR provides a set of reusable passes for design

transformation, including hierarchical rebuilding, module partitioning, and module

insertion, allowing for exploration of different optimization strategies.

Support for Diverse Design Formats. RapidIR implements analyzers for various design

formats, including Verilog, Xilinx Compiled IPs (XCI), Xilinx Vitis Object files (XO),

and Vitis HLS-generated designs. This flexibility allows for the integration of diverse

components common in real-world designs.

134



Cross-Platform Portability. RapidIR gives users a programming interface for defining

the physical information of new FPGA devices, enabling portability across different

platforms without modifying core optimization passes.

5.1.3 Contributions

The key contributions of RapidIR in enabling heterogeneous computing for software

developers include:

Unified HLPS Infrastructure. RapidIR is the first HLPS infrastructure to support hierar-

chical composition of FPGA designs from diverse sources, enabling exploration of

physical optimizations in complex designs while maintaining productivity.

Extensible IR for HLPS. The flexible and extensible IR allows for the creation of reusable

passes that cater to various design formats and device targets, significantly reducing

the effort required to support new design types or FPGA architectures.

Automated Optimization. RapidIR automates the physical layout optimization process

for complex FPGA designs, achieving comparable or even better performance than

manual optimization without requiring any code modifications.

Enhanced Portability. The framework enables seamless porting of designs across differ-

ent FPGA platforms, with evaluations showing frequency improvements ranging

from 30% to 62% across six FPGA devices.

Research Facilitation. Through case studies in floorplan exploration, parallel synthesis,

and design debugging, RapidIR demonstrates its ability to facilitate research and

exploration in FPGA design optimization.

By addressing these critical aspects of FPGA design and optimization, RapidIR

enables developers to achieve high-performance FPGA system implementations from

135



high-level descriptions, automates complex physical optimizations, and provides a flexible

framework for exploring new optimization strategies.

The following sections will delve into the technical details of RapidIR, its implementa-

tion, and its impact on enabling software developers to effectively utilize heterogeneous

computing resources, particularly FPGAs, in their large-scale, multi-kernel applications.

5.2 Problem Statement

As software developers increasingly turn to heterogeneous computing to meet the growing

demands of complex applications, they face significant challenges when targeting modern

FPGA architectures. This section outlines the key problems that RapidIR aims to address,

focusing on the barriers that prevent software developers from fully leveraging the

potential of FPGAs in heterogeneous computing environments.

5.2.1 Architectural Complexity of Modern FPGAs

The evolution of FPGAs into larger, multi-die devices has introduced new layers of

complexity that are often opaque to software developers. Figure 5.2 illustrates this

complexity using three representative FPGA architectures:

AMD Alveo U55C. This three-die FPGA features dedicated resources for the Vitis shell

and 32 High-Bandwidth Memory (HBM) channels. The unprogrammable gap

regions and the complex memory architecture pose significant challenges for efficient

resource utilization and timing optimization. Additionally, within the high-level

description of Vitis HLS, the HBM channels are represented as global memory, and

developers utilize array arguments to access the channels without direct control

over the location of the accessor module or the pipeline levels to the HBM controller.

Communication between modules and the accessor is typically through stream

136



Alveo U55C Versal VP1552 Stratix 10
N

on
-P

ro
gr

am
m

ab
le

 R
eg

io
n

V
iti

s 
S

he
ll 

IP

N
on

-P
ro

gr
am

m
ab

le
 R

eg
io

n

I/
O

 B
an

ks

HBM IP

Cross-Die Cross-Die

Cross-Die Cross-Die
PCIe PCIe

PCIe PCIe

DDR Controller and Other I/O

DDR Controller and Other I/O

Accessor

C
ri

tic
al

 P
at

h

PE

Die
Crossing

6 
re

gi
on

s
7 

re
gi

on
s

Potential Cross-Die Critical Path

Die Crossing

I/O Banks
DDR Controller

Network-on-Chip

I/
OARM

and
IPs

I/
O

I/
O PE

PE

Figure 5.2: Layout of modern FPGA devices, highlighting architectural complexities not

considered in HLS.

channels, which are implemented as straightforward FIFO modules, irrespective of

the physical distance separating the interacting modules.

AMD Versal VP1552. Comprising two dies with different resource configurations, this

FPGA includes network-on-chip interconnects and an integrated ARM processor.

The discontinuities caused by IP blocks and the high latency of die crossings are

not reflected in high-level synthesis, leading to potential performance bottlenecks.

Intel Stratix 10. This FPGA’s unique layout, with I/O banks at the center and multi-die

interconnects on the sides, introduces complexities not modeled in HLS tools. The

current HLS tools do not consider the physical locations of the I/Os, potentially

leading to inefficient architectural decisions and timing closure challenges.

These coarse-grained architectural layout intricacies are typically not exposed to

software developers working with high-level synthesis tools, leading to a significant

mismatch between the high-level description and the optimal hardware implementation.

137



5.2.2 Limitations of Current Approaches

While HLS has made significant strides in simplifying FPGA programming for software

developers, it falls short in several critical areas when targeting modern, complex FPGA

architectures:

Lack of Physical Awareness. HLS tools operate without knowledge of the underlying

FPGA’s physical layout, leading to suboptimal coarse-grained layout decisions,

hindering downstream placement and routing. This is particularly problematic for

multi-die FPGAs, where crossing die boundaries incurs substantial latency.

Limited Scope of Optimization. Current HLS tools and research focus primarily on local

optimizations within individual modules, failing to capture global optimization

opportunities across the entire design hierarchy.

Inflexibility in Design Composition. Many real-world FPGA designs incorporate a mix

of HLS-generated modules, hand-crafted RTL libraries, and vendor-specific IPs.

Current HLS flows struggle to optimize these heterogeneous designs holistically.

Poor Adaptability to New Architectures. As FPGA architectures evolve, HLS optimiza-

tion tools often lag in supporting novel architectural elements, limiting the ability of

software developers to leverage cutting-edge hardware.

5.2.3 The Need for High-Level Physical Synthesis

To bridge the gap between high-level software descriptions and efficient FPGA imple-

mentations, High-Level Physical Synthesis (HLPS) has emerged as a promising approach.

HLPS aims to provide HLS with physical layout information, enabling more informed

decisions about module partitioning, floorplanning, and pipeline insertion. Figure 5.3

illustrates the HLPS flow using the first few stages of the LLM accelerator. The process

can be summarized in the following stages:

138



(1) Communication Analysis. (2) Design Partitioning.

(3) Coarse-Grained Floorplanning. (4) Global Interconnect Synthesis.

Layer 1
Buffer

Coupled

Layer 1

FPGA Die #1 FPGA Die #2 FPGA Die #1 FPGA Die #2

Handshake

Loader

Buffer

Loader
Layer 2

Split

Buffer
Loader

Layer 1
Merge

Loader

Layer 1

Layer 2

Buffer

Layer 2

P
ip

el
in

e

Layer 2

Figure 5.3: HLPS for the first three stages of the LLM design [CZD24].

Communication Analysis. The high-level specification, such as C++ code, is analyzed

to identify connections between module units that can tolerate latency, such as

handshakes and interconnect buses. These communications are typically represented

as streams, data flow regions, and function arguments in C++.

Design Partitioning. The design is divided into partitions based on communication pat-

terns, allowing only latency-tolerant connections between groups. These partitions

can be distributed across distant regions or different dies, and the connections

between them can be pipelined, breaking global critical paths.

Coarse-Grained Floorplanning. Partitions are allocated to coarse-grained regions on

the FPGA, optimizing multiple objectives such as minimizing inter-region wire

crossings, managing regions with limited available resources, and balancing resource

distribution to prevent local routing congestion.

Global Interconnect Synthesis. Once the location of each partition is determined, the

139



partitions are interconnected based on estimated delay to break critical paths.

A number of studies [GCW21, DLS23, DLZ24, GCL23, KTC23, NBN23, LLC23, MGC23]

have investigated methodologies for HLPS and demonstrated their effectiveness in auto-

matically optimizing the frequency of HLS designs. However, the application of HLPS

is limited by several shortcomings in (1) global optimization across hierarchical levels,

(2) integration of diverse source formats, and (3) adaptation to new devices:

Limited Hierarchical Support. Existing HLPS approaches often fail to optimize across

different hierarchical levels of a design, adding pipeline stages only at the module

boundaries in the top-level module, leading to suboptimal global solutions.

Lack of Integration for Diverse Design Sources. Many HLPS tools focus solely on HLS

modules, neglecting the reality of mixed-source designs common in real-world

applications, such as the use of vendor-specific IPs and reusable RTL libraries.

Device-Specific Implementations. Current HLPS solutions are often tied to specific

FPGA devices or families, limiting their applicability across different platforms.

Insufficient Infrastructure for Research and Exploration. The lack of a flexible, exten-

sible framework for HLPS hinders research into new optimization strategies and

adaptation to emerging FPGA architectures.

5.2.4 Challenges in Real-World Physical Layout Optimization

To illustrate these challenges, consider the Large Language Model (LLM) FPGA accelerator

design shown in Figure 5.4. This design exemplifies the complexities faced by software

developers when targeting heterogeneous computing platforms:

Mixed-Source Integration. The design incorporates library modules implemented in

Verilog RTL (Input Loader, FIFO) alongside HLS-generated components (Linear

140



Layers), connected by top-level Verilog logic. Current HLS approaches struggle

to optimize such heterogeneous designs comprehensively. However, software

developers, without deep hardware expertise, often rely on vendor-provided, highly

optimized RTL libraries for critical components.

Hierarchical Optimization. The two Linear Layers, while logically part of a function,

would benefit from independent placement and pipelining to balance resource

utilization across the FPGA. Existing tools lack this level of hierarchical flexibil-

ity. Software programmers are forced to flatten their designs to achieve optimal

performance, leading to complex monolithic programs that are difficult to maintain.

Control Logic Partitioning. The top-level Verilog control logic, if treated as a monolithic

unit, can lead to non-pipelined connections and global critical paths. Intelligent

partitioning of this logic is crucial for optimal performance but is beyond the

capabilities of current HLPS solutions.

Portability Concerns. Adapting this design to new FPGA architectures or exploring

different optimization strategies requires substantial manual effort. Even worse,

without a deep understanding of the underlying FPGA hardware layout, software

developers may inadvertently introduce inefficiencies that hinder performance.

These challenges underscore the need for a more comprehensive, flexible approach

to HLPS that can empower software developers to effectively leverage heterogeneous

computing resources, particularly FPGAs, without requiring deep hardware expertise.

In the following sections, we introduce RapidIR, a novel optimization infrastructure

designed to address these challenges and enable software developers to achieve high-

performance FPGA implementations from high-level descriptions across a wide range of

applications and target architectures.

141



assign input_read = fifo_ready[0]; 

always @(posedge clock) begin
  if (start) begin
    loader_start <= 1'b1;

Figure 5.4: LLM accelerator design optimized with and without RapidIR, highlighting

challenges in optimizing complex mixed-source FPGA implementations.

142



5.3 Approach

RapidIR is a comprehensive framework designed to bridge the gap between high-level

software descriptions and FPGA implementations with efficient coarse-grained layout.

RapidIR addresses the challenges outlined in the previous section by providing a flexible,

extensible infrastructure for HLPS that empowers software developers to leverage the

full potential of modern multi-die FPGA architectures without requiring deep hardware

expertise. It consists of three key components:

Intermediate Representation (IR). A progressively refined representation that remains

agnostic to specific HLS frameworks, EDA tools, or coding styles.

Utility Plugins. Tools for inputting design specifications and outputting to EDA tools,

bridging the gap between high-level descriptions and low-level implementations.

Transformation Passes. A set of reusable operations for composing design optimizations,

allowing for flexible and extensible optimization strategies.

Figure 5.5 illustrates the overall architecture of RapidIR. RapidIR takes three types of

inputs: (1) FPGA designs (e.g., Verilog, netlists); (2) high-level interface information (e.g.,

HLS reports, pragmas); and (3) Python directives for device information and EDA tool

interaction. These inputs are processed by plugins into the IR, which is then modified

by transformation passes to perform the HLPS flow. The final IR is processed back by

the plugins into optimized design code and layout hints and constraints for EDA tool

implementation.

5.3.1 Design Principles

In developing RapidIR, we adhered to several key design principles aimed at making

heterogeneous computing more accessible to software developers:

143



Figure 5.5: RapidIR’s overall architecture, consisting of the intermediate representation

(IR, blue), utility plugins (green), and transformation passes (red).

Enabling Incremental Analysis and Transformation. We intentionally designed the IR

to be lightweight and robust, allowing for incremental refinement of the design.

This approach makes passes and plugins simpler and more modular, facilitating

easier optimization development and maintenance.

Scoping Flexibility. Rather than attempting to create an all-in-one solution like MLIR

[LAB21], we focused on the practical requirements for HLPS methodologies. This ap-

proach allows us to prioritize coarse-grained module interactions while maintaining

support for fine-grained logic that cannot be easily translated into IR.

Language Agnosticism. Recognizing that not all computations warrant the development

overhead of C++, we made the IR as simple as possible, using a subset of the JSON

schema [JSO20]. This design choice supports all major programming languages and

provides automated language binding generators, allowing developers to work in

their preferred language.

Consistency and Debuggability. We provide "Design Rule Checking (DRC)" passes to

144



ensure consistency in design information and maintain a mapping between original

design components and their transformed counterparts. This feature enhances

human readability and debuggability, crucial for complex FPGA designs.

In the following sections, we will delve into the details of each component of RapidIR,

demonstrating how they work together to enable efficient FPGA design for software

developers without requiring extensive hardware expertise.

5.3.2 Progressively Refined Intermediate Representation

At the heart of RapidIR is a progressively refined Intermediate Representation (IR)

that serves as a bridge between high-level software descriptions and low-level FPGA

implementations. This IR is designed to incrementally incorporate a design’s coarse-

grained information, keeping the original fine-grained logic intact if it is unused in the

passes. This make it particularly suitable for developers who may not be familiar with

the intricacies of fine-grained hardware design.

5.3.2.1 Design Elements

The RapidIR IR captures the following key elements of a design:

Module. A design entity classified into grouped module and leaf module. Each module

is identified by a name and consists of multiple ports, each having direction and

width attributes, interconnecting with other modules. They can incorporate interface

that identifies the potential pipeline methods of the ports.

Leaf Module. A basic design unit treated atomically by HLPS, which keeps it intact. Leaf

modules can be in any format, such as RTL or IPs, provided they are supported

by subsequent EDA tools. RapidIR provides various utility plugins to obtain

the required attributes of a leaf module. A leaf module may be progressively

145



reconstructed into a grouped module or partitioned into multiple leaf modules

using RapidIR’s transformation passes.

Grouped Module. A reconstructed hierarchy from a leaf module, organizing submodules.

Grouped modules act only as containers without adding logic, which implies that

each submodule connection must be via a single identifier. RapidIR progressively

partitions its submodules while adhering to this rule.

Interface. A pipeline strategy that can be applied to a set of ports. The type of the

interface guides the pipelining strategy, such as handshake or feedforward. When a

port is included in an interface, it allows for pipelining by introducing additional

pipeline stages. For instance, a feedforward interface, carrying only scalar signals,

can be pipelined by inserting a flip-flop to break critical paths. A handshake inter-

face, involving valid, ready, and data ports, can be pipelined by adding a relay

station [BCd09] or an almost-full FIFO [GLC20]. Figure 5.6 illustrates these two

most common interfaces and their pipelining methods.

Additional Metadata. The IR can include extra data such as floorplan constraints, re-

source utilization, and timing characteristics, appended to any IR node as additional

fields and progressively inferred and updated by analysis passes as needed.

5.3.2.2 Invariant Assumptions

A valid IR must adhere to several invariant assumptions at all times:

1. Each wire in a grouped module must connect precisely two modules, prohibiting

broadcast or fan-out in the intermediate representation.

2. Each submodule port in a grouped module must connect to only one identifier or a

constant, without operations such as concatenation or bit selection.

146



Feedforward Interfaces

Controller
Start

Worker

W

Handshake Interfaces

Producer

Data

ConsumerValid
Ready

Data
Valid
Ready

Data
Valid
Ready

CP

Data
Valid

FI
FO

¬AFull
StartC Delayed

Start
Flip-Flop

D Q

Figure 5.6: Feedforward interfaces are pipelined using flip-flop registers, and handshake

interfaces are pipelined with an almost-full FIFO and registers. AFull indicates that the

FIFO is almost full, preventing overflow due to flip-flop latency.

3. All non-constant ports on an interface should be fully connected to another module,

disallowing the splitting or omission of signals.

These restrictions maintain the simplicity and ease of manipulation of the IR. Despite

being restricted, our core passes enable the handling of complex designs in this form.

5.3.2.3 Virtual Device Definition

To support a wide range of FPGA devices, RapidIR introduces the concept of virtual

device descriptions stored in the IR. These descriptions contain the resource distribution

within the device and the number of inter-die wires. The virtual device description

divides the physical FPGA device into slots.

During floorplanning, design modules are mapped to these slots. RapidIR includes

predefined virtual devices for UltraScale+ and Versal, based on empirical data. Users

can also customize the virtual device by specifying parameters such as the FPGA device

part number and the slot shapes. RapidIR then uses vendor tools to extract the necessary

147



factory = DeviceFactory(rows = 4, cols = 2,
part = "xcvp1552-vsva3340-2MHP-i-S")

factory.set_slot_pblock(row = 0, col = 0,
["-add CLOCKREGION_X1Y1:CLOCKREGION_X4Y2"])

# ... and other pblock ranges from Vivado
factory.extract_slot_resources()
device = factory.generate_virtual_device()

Figure 5.7: Pblocks for VP1552, RapidIR virtual device description, and inferred resource

and die-crossing wire capacity by RapidIR plugins.

resource information and automatically generates the virtual device description.

Figure 5.7 shows an example of a virtual device description for the Versal VP1552.

By using description files from hardware experts or built-in settings in RapidIR, this

approach allows software developers to target different FPGA architectures without

needing to understand the low-level details of each device.

5.3.2.4 Sample IR Format

RapidIR uses a structured format that can be validated using JSON Schema, making it

accessible to a wide range of programming languages and tools. The choice of storage and

exchange format for the IR, such as YAML [BEI09], JSON [BRS17], or XML [SW03], can

optionally vary depending on the programming languages utilized. Figure 5.8 illustrates

an example segment of the IR for an LLM accelerator, presented in YAML format for

clarity, alongside its corresponding block graph.

148



1 - module_name: LLM
2 module_ports:
3 - { name: ap_clk, direction: in, width: 1 } # ..
4 module_wires: [{ name: I_wire, width: 64 }, ..]
5 module_submodules:
6 - instance_name: InputLoader_inst
7 module_name: InputLoader
8 connections: [{ port: I, value: I_wire }, ..]
9 - instance_name: FIFO_inst

10 module_name: FIFO
11 connections: [{ port: I, value: I_wire }, ..]
12 - instance_name: Layers_inst # ..
13

14 - module_name: FIFO
15 module_ports:
16 - { name: I, direction: in, width: 64 }
17 - { name: I_rdy, direction: out, width: 1 }
18 - { name: I_vld, direction: in, width: 1 }
19 - { name: ap_clk, direction: in, width: 1 } # ..
20 module_verilog: "module FIFO (I, ..); ..; endmodule"
21 module_interfaces:
22 - iface_type: handshake
23 iface_ports: { data: [ I ], clk: ap_clk ,
24 ready: I_rdy, valid: I_vld }
25 module_metadata:
26 resource: { FF: 10, LUT: 39, DSP: 0, BRAM: 0, ..}
27 floorplan: "SLOT_X1Y1"
28

29 - virtual_device: VP1552
30 floorplan_slots:
31 - name: "SLOT_X0Y0"
32 pblocks: [ "CLOCKREGION_X1Y1:CLOCKREGION_X4Y2" ]
33 resource: { LUT: 234624, FF: 469248, ... } # ..

Input
Loader

               FIFO Layers

O
O_vld

O_rdy

I
I_vld

I_rdy

Grouped Module: LLM Accelerator

ap_clk

module FIFO
(I, ..); ..

I_vld
I_rdy

I_vld
I I

I_rdy

Handshake Interface

ap_clk

I_wire
width=64

Figure 5.8: Part of the LLM’s IR and corresponding block graph.

149



The top-level grouped module, LLM (Lines 1-12), instantiates three submodules under

it: InputLoader, FIFO, and Layers (Lines 5-12), which are interconnected via handshake

interfaces. InputLoader retrieves text input from memory, FIFO buffers this data, and

Layers executes linear layer computations on the buffered input. The IR captures coarse-

grained information such as module names (Lines 1, 14), ports (Lines 2-3, 15-19), and

wires (Line 4). The instantiation of the FIFO module is denoted as FIFO_inst (Lines 9-11),

connecting I_wire to its I port (Line 11). Within the leaf module FIFO, the IR preserves

its native form, such as Verilog source code (Line 20). Details regarding the pipeline are

specified in the interface section (Lines 21-24), which defines the handshake interface

and its associated ports. Each object can optionally contain additional metadata specific

to different transformation passes, such as resource utilization for floorplanning solver

passes and floorplan constraints for pipeline insertion (Lines 25-27).

The device information can be embedded in the IR to facilitate transformation passes

that optimize the design for a specific FPGA target or generate constraints for EDA tools.

For instance, Lines 29-33 present the virtual device description for the VP1552 FPGA, as

illustrated in Figure 5.7.

This representation allows developers and pass designers to work with a high-level,

abstract view of the design while still capturing the necessary details for efficient FPGA

implementation.

5.3.2.5 Type System

RapidIR incorporates a validation-based type system to ensure the robustness of its

IR. This type system checks design consistency and enables optimizations across di-

verse input formats and target architectures, enabling software developers to work with

heterogeneous components without extensive hardware knowledge.

The rationale behind employing checking over syntax-based typing, which prohibits

150



typing mismatches in representation, lies in the fact that RapidIR’s input originates from

various sources, rather than being solely defined by end-users. It is an overly stringent

requirement to mandate that users refactor all design components to conform to the

typing system’s specifications.

Type Definitions. The type system in RapidIR is embedded in the representation as

attributes and checked statically during optimization runtime. It operates at three levels:

1. High-level typing: Despite not being part of the RapidIR representation, when

operating on HLS designs, high-level languages such as Vitis HLS C/C++ verify

the communication protocol, including streams and shared memory, and data

types, such as integers and floating points, within the program representation. This

verification ensures that data transfer between modules is accurately matched. This

information is subsequently passed to the lower level of interface-level typing using

HLS reports.

2. Interface-level typing: Not all design modules are programmed using a high-level

programming language. Therefore, with the high-level typing, the checking is not

performed for the libraries, analogous to the syscalls used by software. Interface-

level typing assigns higher-level types (e.g., ‘handshake’, ‘feedforward’, ‘AXI’) to

interfaces, encapsulating the semantic meaning of port groups. Although one might

assume that the direction of interfaces and widths should be recorded in the type

system for consistency checking, this information is actually embedded in the ports

constituting the interface and is checked at the prior level. RapidIR provides an

array of pipeline templates to be inserted in the pipeline insertion pass so that the

types after transformation remain matched.

3. Port-level typing: Assigns basic types (e.g., ‘reg’, ‘wire’), directions (e.g., ‘input’,

‘output’, ‘inout’), and widths to each port, extracted from original design sources.

151



The type system guides optimization processes, such as pipeline insertion, ensuring

that control signals in handshake interfaces maintain protocol correctness with proper

pipeline modules. Users are able to define additional types by specifying the ports to be

included in an interface and providing a pipeline stage template.

Type Inference. RapidIR implements type inference algorithms to deduce types from

modules with known types, such as modules generated by HLS or libraries annotated

by their designers, and automatically deduce rule-based definitions from input designs

when explicit type information is not provided. The type inference is particularly useful

when working with legacy RTL designs that may not have explicit type annotations.

Type Checking. To ensure interface compatibility between modules, RapidIR imple-

ments a matching algorithm that checks for type consistency when connecting modules.

This algorithm verifies: (1) Port width compatibility; (2) Protocol compatibility (e.g., ensur-

ing handshake interfaces are connected to other handshake interfaces); and (3) Direction

compatibility (ensuring inputs connect to outputs and vice versa). When mismatches are

detected, RapidIR raises an error to the developer with detailed diagnostic information.

This type system enables software developers to confidently compose complex FPGA

designs from heterogeneous components, automatically handling many low-level details

of interface compatibility that typically require hardware design expertise.

5.3.2.6 Comparisons with Other IRs

RapidIR focuses on HLPS for existing designs in various formats, differing from other

representations in several key ways:

• Unlike Xilinx IP Integrator (IPI), RapidIR focuses on HLPS for existing designs in

various formats. Xilinx IP Integrator (IPI) assembles IPs into systems and treats large

152



HLS-generated modules monolithically. In contrast, large HLS-generated modules

can be partitioned in RapidIR thanks to the flexible representation that supports

incremental analysis through passes, where all modules are initially treated as

indivisible leaf modules and partitioned as needed.

• Compared to accelerator description languages like Chisel [BVR12] and Calyx

[NTL21], RapidIR is tailored for capturing coarse-grained information pertinent

to HLPS. These accelerator description languages enable the specification of fine-

grained hardware designs and are orthogonal to RapidIR. Given the language-

agnostic design of RapidIR, it can directly incorporate these representations as leaf

modules, allowing the transformation of these modules using reusable passes.

• In contrast to MLIR [LAB21], RapidIR is specifically designed for HLPS with a

coarse-grained focus and accommodates arbitrary formats in leaf modules. MLIR

serves as a general-purpose IR across abstraction levels, mandates the use of C++

for transformation passes, and does not have a native representation to keep fine-

grained information intact. Although RapidIR can be forced into MLIR with a

custom dialect to represent the JSON schema, such a representation would require

C++ for the passes, which RapidIR intentionally avoids. Moreover, MLIR lacks

reusable passes for HLPS, negating the motivation for its use in this domain.

These distinctions make RapidIR well-suited for software developers to work with

complex FPGA designs without requiring extensive hardware design expertise. By

providing a flexible, incrementally refined representation, RapidIR allows developers

to focus on high-level design concepts while the framework handles the intricacies of

mapping to efficient FPGA layout implementations.

153



5.3.3 Practical Utility Plugins

RapidIR’s utility plugins serve as bridges between the abstract IR and concrete imple-

mentations. These plugins are designed to be modular and extensible, supporting a wide

range of source formats and EDA tools to accommodate diverse development workflows.

The utility plugins in RapidIR are categorized into three main types: (1) importers

parsing the user design input and generating RapidIR, (2) analyzers obtaining target-

dependent information of the design from backend tools, and (3) exporters producing

optimized designs for the user to continue in their flow.

5.3.3.1 Leaf Module Importer

The leaf module importer is responsible for extracting metadata from a module’s source

format and constructing a corresponding leaf module in the IR. This process involves:

1. Parsing module names, ports, and other relevant data.

2. Embedding the original source code or binary in the IR to maintain design integrity.

RapidIR supports a variety of formats, including Verilog, VHDL, netlists, and Xilinx

Compiled IP (XCI). For Verilog, RapidIR utilizes the Slang tool [Pop24] to extract module

information from the syntax tree. Other formats are handled using appropriate parsers

or by transforming module signatures into Verilog stub files, which are then processed by

the Slang-based Verilog importer.

This flexibility allows software developers to work with their preferred languages,

vendor tools, IP blocks, or reusable RTL libraries without needing to manually translate

or refactor between different source code formats.

154



module InputLoader (
output wire m_axi_AWVALID, input wire m_axi_AWREADY,
output wire m_axi_WVALID, input wire m_axi_WREADY,
// ... 33 other AXI ports

);
// pragma handshake pattern=m_axi_{bundle}{role} \

role.valid=VALID role.ready=READY role.data=.*
endmodule

Figure 5.9: Interface pragmas in Verilog mapping ports with the m_axi_ prefix to hand-

shake interfaces and bundle ports with the same prefix (e.g., m_axi_AW). Suffixes VALID

and READY indicate port roles, while any other suffixes denote data.

5.3.3.2 Interface Importer

The interface importer extracts high-level interface information essential for HLPS from

various sources, including interface information from Vitis HLS report files and Xilinx

IPs’ XCI files. If interface data is missing, users can provide it using pragmas in source-code

comments or interface rules specified in our Python API with regular expressions.

Figure 5.9 demonstrates how a single-line pragma can be used to set the handshake

interface for all 37 AXI ports of the handcrafted memory input loader RTL library:

5.3.3.3 Platform Analyzer

The platform analyzer interfaces with downstream vendor tools to collect essential

information for design optimizations, such as resource utilization per module and timing

information. This data is used for balancing resource allocation across device regions

and making informed decisions about module placement and pipelining. With platform

analyzers, RapidIR abstracts the interaction with low-level information from the FPGA

development flow, simplifying design decisions, especially for software developers.

155



5.3.3.4 Design Exporter

The design exporter generates the final design output from the IR, ensuring compatibility

with downstream EDA tools. Its key functions include:

1. Outputting unchanged leaf modules in their original source format.

2. Generating corresponding Verilog files for modified modules.

3. Creating constraint files for floorplanning guidance and other metadata.

This component enables transition from the high-level representation used in RapidIR

to the concrete implementations required by FPGA synthesis and implementation tools.

The utility plugins abstract away many of the complexities associated with working

directly with hardware description languages and vendor-specific tools, allowing de-

velopers to focus on their application logic while still benefiting from efficient FPGA

implementations. The modular nature of these plugins also ensures that RapidIR can

be easily extended to support new source formats, analysis techniques, or EDA tools

as they emerge, future-proofing the framework and making it adaptable to evolving

heterogeneous computing landscapes.

5.3.4 Composable Transformation Passes

RapidIR’s composable transformation passes form the core of its optimization capabilities,

enabling automated and sophisticated FPGA optimizations. These passes progressively

gather data and incrementally refine the IR to optimize the design. Each pass is de-

signed to focus on a specific aspect of the optimization process, ensuring robustness,

maintainability, and extensibility.

To illustrate the functionality of these passes, we’ll use a subset of the LLM accelerator

example [CZD24] as shown in Figure 5.10 with the core passes of RapidIR applied.

156



M

I/W

LLM

Memory

Control
Control

LLM

ap_clk
ap_rst

Memory

Control

Input Loader

ap_clk
ap_rst

Memory

Control

Input

Weight

Buffer

ap_clk
ap_rst

RAM

Legend leaf modules

grouped modules

ports

port bundle

pipelinable

non-pipelinable

passthrough split

omitted for simplicity

(a) Imported Large Language Model Accelerator Design.

Layers

ap_clk
ap_rst

Input

Weight

Control

RAM

(c) Interface Inference on Module “LLM_aux”.

I/W RAM RAM

BufferLayer 1 Layer 2

Memory

Control

BufferLayer 1 Layer 2

Input Loader

(b) Hierarchy Rebuild of Leaf Module “LLM” into a Grouped Module.

LLM
aux

Input Loader

Memory

BufferLayer 1 Layer 2Input Loader

Control

LLM
aux

aux
Control1

aux
Control2

aux
FIFO

auxMem auxRAM

(d) Partitioning “LLM_aux” into Smaller Auxs.

Memory Input Loader

Control
aux

Control1
aux

Control2

aux FIFO Layer 1

(e) Flattening Grouped Module “Layers”

Memory Input Loader

Control
aux

Control1
aux

Control2

aux FIFO Layer 1

BufferLayer 2

BufferLayer 2

Memory

Control

ap_rst
ap_clk

(g) Floorplanning

aux
Ctrl1

I/O  Die
#1

Die
#2

68
bits

272
bits

aux
Ctrl2

Layer 2

Buffer

Memory

Control

ap_rst
ap_clk

(h) Pipeline Insertion Between Dies

aux
Ctrl1

I/O

FIFO

Loader

Layer 1

FIFO

Loader

Layer 1

aux
Ctrl2

Layer 2

BufferFIFO

 Die
#1

Die
#2

(f) Grouping Non-Pipelinable Modules “Layer_2” and “Buffer”.

Figure 5.10: RapidIR’s passes applied to the LLM accelerator example.
157



5.3.4.1 Hierarchy Rebuild Pass

The hierarchy rebuild pass converts imported leaf modules into grouped modules,

reconstructing the design hierarchy. This pass is crucial for handling complex designs with

multiple levels of hierarchy, including a mix of module containers and logic descriptions.

It creates a grouped module comprising extracted submodules and residual logic,

which is defined as an aux (auxiliary) module. The reconstructed grouped module

maintains the same module ports as the original leaf module. At this point in the process,

this pass does not analyze the interconnection among submodules. Rather, it introduces

corresponding ports on the aux module for every port of the original submodules. Each

submodule has its ports connected to the aux module. Similarly, the newly formed

grouped module’s ports are fully connected to the aux module.

As shown in Figure 5.10b, the rebuild pass restructures the LLM module into a grouped

module containing its submodules and an aux module, LLM_Aux. This aux module con-

tains the control logic and interconnects of LLM. Note that directly analyzing LLM’s inter-

connect is challenging due to the complexity of its source format, which includes Verilog

language syntax such as always and generate, requiring a full elaborator. Maintaining

and updating such an elaborator for various design formats would be labor-intensive.

This transformation pass preserves the IR assumptions (§5.3.2.2):

1. In the newly formed grouped module, each wire is connected to exactly two

modules: the aux module and a submodule.

2. (a) Ports of an extracted submodule are connected to a wire identifier that inter-

connects with the aux module.

(b) Each port of the aux module is directly connected by a wire to an extracted

submodule or to a port on the restructured grouped module; in either case, it

is an identifier.

158



3. Every port on a submodule is wholly connected to the aux module, ensuring that

there is no splitting of the interface.

The implementation of the hierarchy rebuild pass is straightforward for any design

source format if there exists a syntax rewriter providing three functionalities: (1) extraction

of submodule names and port connections; (2) addition of new ports to a module; and

(3) connection of expressions to these new ports.

For example, the Slang [Pop24] tool allows for the extraction of Verilog submodule

information; new ports are added by modifying the syntax tree; connections are rerouted

by appending new assign statements. This approach is adaptable to other source formats

by implementing a similar syntax rewriter. Note that even without a dedicated rewriter

for a particular source format, RapidIR can still manage modules in this format by treating

them as leaf modules; thus, it is still possible to insert pipeline stages between these

modules or to partition them as needed.

5.3.4.2 Interface Inference Pass

When design modules lack explicit interface information necessary for pipeline insertion,

the interface inference pass deduces interfaces from other modules. This pass is partic-

ularly useful for developers who may not have specified detailed interface information

in their high-level descriptions due to their lack of hardware-specific knowledge. For

instance, a user instantiating a grouped module for a reusable RTL library may have all

ports directly connected to submodules, yet the module itself lacks interface data. By

leveraging the interface details from these submodules, the interface inference pass can

deduce the interface for the parent module.

Interface information propagates not only between parent and child modules but also

among siblings. Specifically, for aux modules created during the hierarchy rebuild pass,

the interface inferencer defines their interfaces by transferring information from the aux’s

159



sibling modules, the extracted submodules, completing the aux module’s interface.

Figure 5.10c illustrates how this pass completes the interface information for the aux

module by transferring data from its sibling modules. As this pass does not modify the

design structure in the IR, the IR assumptions (§5.3.2.2) remain intact.

5.3.4.3 Partitioning Pass

The partitioning pass divides a leaf module into components for separate floorplanning,

effectively serving as a communication analysis pass. This pass is crucial for dividing

and optimizing the placement of design components across the FPGA fabric.

It partitions the aux module created by the hierarchy rebuild pass to decentralize

submodule communications. Figure 5.10d shows the partitioning of the LLM_aux module,

which initially connects all submodules. After partitioning, it is divided into five compo-

nents, including memory connections (auxMem and auxRAM) and control logic (auxControl1

and auxControl2). In this example, the LLM module implements FIFO logic in the Verilog

body, connecting the input loader and the first layer, which is partitioned into auxFIFO.

This pass is implemented by converting modules in arbitrary formats to netlists using

EDA flows and applying the union-find algorithm [GF64] to merge logically connected

nets, excluding clock and reset signals due to their shared use in submodules. From

the unioned results, RapidIR analyzes port connectivity. Disjoint ports are separated

into new modules. The partitioned modules are created by wrapping the original aux

module, exposing only the necessary ports and preserving the internal logic. Unconnected

logic remains undriven, which will be eliminated by subsequent EDA flows. The new

components replace the original aux in the IR, and clock and reset signals are distributed

to all submodules through dedicated broadcasting aux modules. Instead of modifying

the logic content, the wrapping method makes it less prone to errors and remains

language-agnostic.

160



It maintains IR assumptions (§5.3.2.2) by merging ports in a common interface into

a union set, preventing the interface from spanning multiple splits. It introduces no

new connections except for clock and reset signals, which are managed by broadcasting

modules. This ensures that, post-transformation, all wires still connect exactly two

modules, and all ports connect to either an identifier or a constant.

5.3.4.4 Passthrough Pass

The passthrough pass identifies and optimizes direct connections between interfaces,

bypassing unnecessary intermediate modules. This pass can significantly simplify the

design structure and reduce the number of modules, making the optimized design more

readable and easier to optimize with other passes.

In order to implement this pass, if netlist analysis in the partitioning pass shows that

an interface on a module connects solely and directly to another interface on the same

module, the module can be bypassed by rerouting connections between the interfaces,

eliminating the need for the intermediate partitioned component.

In Figure 5.10d, the auxRAM component is bypassed, allowing direct connections

between the Layer_2 and Buffer modules. This simplifies the IR and reduces the number

of modules, making the design more readable and easier to optimize.

The passthrough pass maintains IR assumptions (§5.3.2.2) by detaching a wire from

one module before connecting it to another.

5.3.4.5 Flattening Pass

The flattening pass transforms a hierarchical design into a flat one, which is often required

for certain HLPS optimization formulations, such as integer linear programming (ILP)

used in AutoBridge [GCW21]. This pass is essential for enabling global optimizations

that may not otherwise be possible within a hierarchical structure.

161



The flattening pass performs the recursive merging of all grouped modules into a

single one. During this process, wires are consolidated and renamed to avoid conflicts,

and submodules and their connections are re-established in the new module.

Figure 5.10e shows the flattening pass incorporating the Layer_1 and Layer_2 sub-

modules into the LLM module, allowing for more flexible partitioning of these resource-

intensive components. Without this pass, these two modules would have to be grouped

into a single partition, resulting in suboptimal partitioning.

This pass adheres to the IR assumptions (§5.3.2.2) by not introducing new intercon-

nections between modules. It solely consolidates existing wires and submodules, thus

preserving the original properties.

5.3.4.6 Wrapping Pass

The wrapping pass encapsulates a module within a template, adding helper submodules

and connecting them to the wrapped module. This pass is particularly useful for

implementing partitioning and adding pipeline stages.

It adds helper submodules and connects them to the wrapped module, further

allowing the wrapper grouped module’s ports to connect to either helpers or the wrapped

module. This pass implements partitioning by exposing specific ports. It can also add

pipeline stages as helper submodules. Typically, a flattening pass follows to elevate the

helpers to the parent level, effectively inserting the helper modules.

5.3.4.7 Grouping Pass

The grouping pass restructures a flat design into a hierarchy, allowing for the creation of

physical groupings that can be used to specify floorplanning constraints.

In Figure 5.10f, non-pipelinable submodules Layer_2 and Buffer are grouped into a

new module, so that it can have floorplanning constraints specified.

162



By providing these composable transformation passes, RapidIR enables software

developers to call the passes to apply sophisticated FPGA optimization techniques

without requiring in-depth knowledge of hardware design principles. The passes work

together to progressively refine the design representation, automatically handling many

of the complex transformations that would traditionally require hardware expertise.

5.3.5 Framework Integration

To demonstrate the practical application of RapidIR, we have developed a complete

HLPS system that integrates our utility plugins and transformation passes. This inte-

grated framework follows the HLPS methodology described in Section 5.2.3, showcasing

RapidIR’s applicability to real-world design scenarios.

Figure 5.10 illustrates the workflow of this integrated HLPS system, which consists of

four main stages: communication analysis, design partitioning, coarse-grained floorplan-

ning, and global interconnect synthesis. The numbered items below correspond to the

subfigure numbers in Figure 5.10.

5.3.5.1 Communication Analysis

This stage captures coarse-grained communication patterns between modules, laying the

foundation for subsequent optimizations. The process involves:

(a) Design and Interface Importers. Importing design and interface data into RapidIR

IR using the leaf module importers of each source format and interface importers

for HLS reports, XCI files, and user-specified pragmas.

(b) Hierarchy Rebuild Pass. Restructuring large modules into grouped modules by ex-

tracting their submodules and creating aux (auxiliary) modules.

163



(c) Interface Inference Pass. Inferring interfaces from the parent and siblings for aux

modules (LLM_aux) and for modules lacking interface information.

(d) Partitioning Pass. Partitioning centralized broadcasting modules and applying pass-

through to components with only wire assignments, especially for aux modules.

These steps allow the framework to automatically extract and analyze the underlying

communication structures.

5.3.5.2 Design Partitioning

This stage focuses on partitioning the design into pipelinable sections based on the

identified communication patterns. The key steps are:

(e) Flattening Pass. Converting the design into a flat representation for subsequent opti-

mization formulations, such as integer linear programming (ILP), which requires a

flat graph view of the design flow.

(f) Grouping Pass. Grouping non-pipelined modules with adjacent ones.

This partitioning process enables efficient mapping of the design onto the FPGA fabric

using optimization techniques, a task that would typically require significant hardware

design expertise to reconstruct in the source code format.

5.3.5.3 Coarse-Grained Floorplanning

Leveraging AutoBridge’s integer linear programming (ILP) formulation [GCW21], this

stage optimizes the placement of modules into predefined slots on a virtual device and

designs a pipeline insertion scheme. The process:

(g) ILP Floorplanning. Optimizing module placement, aiming to minimize cross-region

164



wiring and adhere to constraints such as DSP count and the number of boundary-

crossing wires. It designs a pipeline insertion scheme based on the floorplan.

This stage abstracts away the complexities of FPGA floorplanning, allowing software

developers to benefit from optimized physical layouts without needing to understand the

physical structure of FPGAs.

5.3.5.4 Global Interconnect Synthesis

The final stage generates inter-partition connections based on estimated delay to break

critical paths and aid in timing closure. The steps include:

(f) Grouping Pass. Clustering modules in the same region.

(h) Wrapping Pass. Inserting pipeline stages between regions using the reusable wrap-

ping pass. This stage generates inter-partition connections based on estimated

delays to break critical paths and aid in timing closure.

After this stage, the optimized design is exported for implementation using the design

exporter utility plugin.

By integrating these stages, RapidIR provides a comprehensive HLPS system that

automates many of the complex tasks involved in optimizing FPGA designs. This integra-

tion allows software developers to focus on their application logic while the framework

handles the intricacies of mapping that logic to an efficient FPGA implementation.

The framework’s modular design, centered around the progressively refined IR and

composable passes, offers several key advantages for software developers:

Abstraction of Hardware Complexity. Developers can work with high-level descriptions

while the framework automatically handles low-level optimizations.

165



Flexibility. The modular nature of the passes allows for easy customization and extension

of the optimization process. Even without knowledge of hardware description lan-

guages or architecture, software developers can call and even modify optimization

passes to explore different strategies.

Portability. By using a virtual device description and abstract IR, the framework facili-

tates porting designs across different FPGA architectures.

Incremental Optimization. The progressive refinement approach allows for step-by-step

optimization, making the process more manageable and easier to debug.

In summary, the integration of RapidIR’s components with AutoBridge’s formula-

tion [GCW21] into a complete HLPS system demonstrates its potential to significantly

lower the barriers to entry for software developers in the field of heterogeneous comput-

ing. By automating complex FPGA optimization tasks and providing a flexible, extensible

framework, RapidIR enables developers to leverage the power of FPGAs without requiring

extensive hardware design expertise.

5.4 Evaluation

To assess RapidIR’s effectiveness in enabling software developers to leverage heteroge-

neous computing resources, we conducted a comprehensive evaluation. Our experiments

were designed to answer three key research questions, corresponding to the portable

physical layout design challenges (PHY) faced by software developers targeting modern

FPGA architectures, identified in Section 2.3.

RQ1 Can RapidIR effectively handle FPGA designs in various input formats, including

handcrafted Verilog and HLS designs generated by different vendor tools?

166



RQ2 Does RapidIR reduce the effort required for developers to implement new research

exploration tasks in FPGA design optimization?

RQ3 Can RapidIR provide significant frequency improvements for complex FPGA de-

signs across different target devices?

Our evaluation was conducted using AMD FPGAs with the Vivado 2023.2 flow,

on a server with an AMD EPYC 7282 CPU, 128 GB of RAM, and Ubuntu 22.04. For

optimization tasks requiring integer linear programming (ILP), we used the COIN-OR

solver [Sal02] with a 400-second limit. To test RapidIR’s ability to handle diverse design

formats, we also utilized Dynamatic 2.0, Catapult HLS 2021.1, and Intel FPGA HLS 19.4.0

to produce RTL inputs for RapidIR and checked the functionality of output design.

5.4.1 Support for Diverse High-Level Synthesis Inputs

To demonstrate RapidIR’s flexibility in handling various input formats (RQ1), we ex-

tended its support to include RTL designs generated by different HLS tools. This

capability is crucial for software developers who may be working with a variety of

high-level synthesis tools or integrating components from different sources.

We focused on three HLS tools: Dynamatic [JGI18, JGI20], Catapult HLS [Sie24], and

Intel HLS [Int24]. Prior HLPS work lacks the infrastructure to manipulate the RTL designs

generated by these tools. To develop a new frontend in RapidIR that accepts the generated

designs from these tools, three new components are needed: (1) a metadata parser, (2) an

interface analyzer, and (3) a code rewriter.

The metadata parser and code rewriter are common to most input that use standard

hardware description languages such as Verilog or VHDL. The interface analyzer, however,

is specific to each HLS framework. We focus on the interface analyzer in this section, as

the parser implementation was discussed in Section 5.3.3.1.

167



The total additional lines of Python or Verilog code required for RapidIR to handle

inputs from these HLS tools are shown in Table 5.1.

Table 5.1: Code in Python or Verilog required to support different HLS tools in RapidIR.

Software Dynamatic Catapult HLS Intel HLS

Lines of code 146 158 204

For Dynamatic, we used 20 Python-based interface rules for RapidIR interface importer

to specify all its handshake interfaces. Figure 5.11 shows two of them: one specifies reset

signals using the regular expression ".*" to match and apply to all modules, and the

other defines the handshakes of the top-level module.

add_reset(module=".*", port="rst|reset", active="high")

add_handshake(module=top_level, pattern="{bundle}_{role}",

role={ready:"ready", valid:"valid", data:"in|out"})

Figure 5.11: Snippet of the interface rules for Dynamatic in RapidIR.

For Catapult HLS and Intel HLS, we used similar approaches, leveraging their

consistent naming conventions and custom design libraries to infer handshake inter-

faces. Catapult HLS synthesizes handshakes using customizable design libraries such

as ccs_out_wait and ccs_in_wait; with simple pragmas in these modules’ Verilog code,

the interface can be automatically propagated during the interface inference pass to

neighboring modules. Intel HLS creates handshakes mostly with consistent port naming,

making them also compatible with the Python-based interface rules method.

To validate our approach, we tested RapidIR with:

• All 29 examples from the Dynamatic repository [EPF24].

168



• A sparse linear algebra accelerator for Catapult HLS [Du24].

• All 12 benchmarks from the CHStone suite for Intel HLS [DLZ18].

RapidIR successfully extracted interface information, imported designs into its IR,

transformed their hierarchy, inserted pipelines, and exported functionally equivalent RTL

designs for all benchmarks.

This evaluation demonstrates RapidIR’s ability to handle a wide range of input

formats, enabling software developers to work with their preferred HLS tools while still

benefiting from advanced FPGA optimizations.

5.4.2 Multi-Floorplan Exploration

To address RQ2, we evaluated RapidIR’s ability to simplify complex FPGA design tasks,

such as floorplan exploration. Floorplanning is a critical step in FPGA design optimization

that typically requires deep hardware expertise. We used the LLM design [CZD24] as a

case study to demonstrate how RapidIR can automate this process.

Figure 5.12 illustrates the relationship between resource distribution, wirelength, and

frequency for ten different floorplans of the LLM design. This figure highlights the

complex trade-offs involved in floorplanning. The line chart in the figure shows that

decreasing the amount of logic in the most congested area of the floorplan reduces local

congestion but potentially leads to longer wire lengths, which adversely affect global

routing results, and vice versa. Additionally, the bar chart in the figure highlights the

complexity of these tradeoffs, indicating a variation in the operating frequency of up to

20 MHz depending on the chosen tradeoff point between local and global optimization.

Without RapidIR, designers would need to manually explore the design space by

refactoring the code to partition the design, restructuring the hierarchy as previously

shown in Figure 5.1, modifying the floorplan constraints for the backend EDA tools, and

169



225

250

275

300

253
265 264

257
269 263

271 273
262

272

Fr
eq

ue
nc

y
(M

H
z)

10 13 16 19 22 25 28 31 34 370.0

0.2

0.4

0.6

0.8

1.0

1.2

Remaining resources in the most resource-intensive slot (%)

N
or

m
al

iz
ed

w
ir

el
en

gt
h

Figure 5.12: Relationship between resource distribution, wirelength, and frequency for

the LLM design on VHK158.

re-executing the synthesis and place-and-route processes for multiple iterations.

As an evaluation of RapidIR’s applicability, we applied our methodology to this

floorplan exploration task. By adjusting the maximum allowable resource utilization for

each slot using the virtual device model described in Section 5.3.2.2, RapidIR optimizes

the wire length in placements given the constraints. In this way, RapidIR automatically

explores the design space of tradeoffs and approximates Pareto optimality. This approach

creates a variety of floorplans, as we have presented in Figure 5.12, allowing designers to

evaluate the balance between wire length and resource distribution. This automation is

implemented as a standalone RapidIR plugin, written in 207 lines of Python code, that

can be reused across different designs. In contrast, manual exploration of this design

alone would require a significant rewrite of the RTL code, consisting of hundreds of lines,

potentially introducing errors and requiring numerous iterations.

This case study demonstrates how RapidIR can simplify the extension of high-level

physical optimizations, such as the exploration of different floorplan schemes, thus

significantly reducing the effort required for complex FPGA design tasks.

170



13× 12

13× 10

13× 8

13× 6

13× 4

2,215

1,623

1,589

1,379

1,201

6,154

4,686

3,921

3,718

1,920
Parallel Synthesis
Monolithic Synthesis

Figure 5.13: Synthesis wall time in seconds.

5.4.3 Parallel Synthesis

Another example of RapidIR’s extensibility (RQ2) is its ability to enable parallel synthesis.

We implemented a parallel synthesis plugin in 299 lines of Python code, leveraging

RapidIR’s design partitioning capabilities.

In RapidIR, we divide the design into several coarse-grained groups, each corre-

sponding to a device slot. This approach intrinsically spawns the potential to perform

parallel synthesis, where slots can be synthesized in parallel. The top-level module can

be synthesized along with these slots by marking the slots as black boxes. Finally, we

assemble these post-synthesis netlists to obtain the complete design.

We evaluate the RapidIR parallel synthesis plugin using HLS benchmarks of systolic

array architectures for convolutional neural networks, which are generated using Au-

toSA [WGC21]. The evaluation is performed on the Alveo U250 FPGA by synthesizing

the device slots in parallel, as shown in Figure 5.13. For systolic processing element arrays

with sizes ranging from 13× 4 to 13× 12, the plugin achieves an average synthesis wall

time acceleration of 2.49×.

This demonstrates RapidIR’s potential to not only optimize FPGA designs but also to

accelerate the development process itself, further enhancing productivity for software

171



developers working with heterogeneous computing platforms.

5.4.4 Benchmarking

To comprehensively evaluate RapidIR’s effectiveness in enabling software developers to

achieve high-performance FPGA implementations (addressing RQ3), we conducted exten-

sive benchmarking using a diverse set of real-world FPGA designs. These designs were

selected from Section 2.3 and represent scenarios where physical layout optimizations

for specific target FPGA devices are challenging in meeting timing requirements (PHY).

The chosen designs encompass a range of applications and complexities that software

developers might encounter when targeting heterogeneous computing platforms. In

brackets, we provide the abbreviated names used in Section 2.3 for each benchmark.

We compared the frequency results obtained using RapidIR against those from Au-

toBridge [GCW21] and the standard EDA tool supplied by the FPGA vendor, AMD

Vivado. This comparison allows us to assess RapidIR’s performance relative to both

state-of-the-art research tools and industry-standard solutions.

The benchmark designs used in our evaluation are as follows:

1. Convolutional Neural Network (CNN) refers to a neural network accelerator

designed with AutoSA [WGC21] into a systolic array architecture in AMD Vitis

HLS. It features a flat hierarchy, which is supported by AutoBridge. We use this

benchmark to compare the frequency results between RapidIR and AutoBridge.

2. LLaMA2 Language Model (LLM) refers to a hybrid-source accelerator designed

for large language model inference of the LLaMA2 model, initially optimized for

the AMD Alveo U280 FPGA with a four-level nested pipeline using HLS, Xilinx

IPs, and manual RTL [CZD24]. AutoBridge does not support it due to its complex

hierarchical design. We further ported it to AMD Versal boards using RapidIR and

compared the frequency performance with that of Vivado, demonstrating RapidIR’s

172



adaptability for multi-source and multi-target designs.

3. Minimap2 (GSQ) refers to an accelerator for long-read genome sequencing with

multiple hierarchical levels of pipelines, initially developed for AMD UltraScale+

VU9P using Vitis HLS [GLR19]. In the benchmarking, we retained the original

hierarchical structure of Minimap2 and ported it to the AMD Versal VP1552 device,

showcasing RapidIR’s ability to automatically port designs to new architectures.

4. K-Nearest Neighbor (KNN) refers to a k-nearest neighbor accelerator for the Alveo

U280 FPGA, using HLS kernels and a custom RTL interconnect, implemented on

the Vitis platform [LFF20, LLS23]. RapidIR directly ingests the Vitis-packed Xilinx

Object (XO) files for optimization and outputs the optimized design in the same

format, acting as a transparent plugin to the Vitis framework.

RapidIR successfully ingests all designs and applies transformations using the HLPS

methodology, as summarized in Table 5.2, where the design features, such as multiple

levels of pipelined hierarchy, a mixture of different source formats, including RTL, HLS,

and IP, and implementation targets for new FPGA devices, are listed in the “Benchmark

Features” columns. These features are unsupported by existing HLPS frameworks. In the

“Freq (MHz)” columns, the “Original” column shows the frequency of the original design

before optimizations implemented using Vivado; the “RapidIR” column presents the

frequency of designs optimized by RapidIR; and the “Other” column includes results from

existing literature [GCW21, CZD24]. We indicate the frequency results for benchmarks

that fail routing as “-”. Regarding resource utilization, we report the percentages of LUTs,

FFs, BRAMs, DSPs, and URAMs used in the original design. The change in resource

utilization post-optimization is minimal, within 1%, across all benchmarks.

Key observations from our benchmarking results:

Consistent Performance Improvements. RapidIR achieved frequency improvements rang-

ing from 30% to 62% across various designs and target devices. For the Convolu-

173



Ta
bl

e
5
.2

:F
re

qu
en

cy
im

pr
ov

em
en

ts
au

to
m

at
ed

w
it

h
R

ap
id

IR
fo

r
va

ri
ou

s
de

si
gn

fo
rm

at
s

on
di

ff
er

en
t

FP
G

A
s.

A
pp

li
ca

ti
on

Ta
rg

et
B

en
ch

m
ar

k
Fe

at
ur

es
LU

T
FF

B
R

A
M

D
SP

U
R

A
M

Fr
eq

(M
H

z)

H
ie

ra
rc

hy
M

ix
ed

-S
ou

rc
e

N
ew

FP
G

A
s

(%
)

(%
)

(%
)

(%
)

(%
)

O
ri

gi
na

l
R

ap
id

IR
O

th
er

s

C
N

N
1

3
×

4
U

2
5

0
1

3
1

1
1

0
1

7
0

2
3

3
3

3
5

(+
4

4
%

)
3

2
5

[G
C

W
2

1
]

C
N

N
1

3
×

6
U

2
5

0
1

5
1

6
1

3
2

6
0

2
3

4
3

2
7

(+
4

0
%

)
3

2
4

[G
C

W
2

1
]

C
N

N
1

3
×

8
U

2
5

0
2

6
2

2
1

6
2

4
0

2
4

5
3

3
2

(+
3

6
%

)
3

2
0

[G
C

W
2

1
]

C
N

N
1

3
×

1
0

U
2

5
0

3
0

2
7

2
8

4
3

0
-

3
2

0
(+

∞
%

)
3

2
2

[G
C

W
2

1
]

C
N

N
1

3
×

1
2

U
2

5
0

2
7

3
3

3
0

5
1

0
-

3
0

5
(+

∞
%

)
2

9
5

[G
C

W
2

1
]

LL
M

V
P1

5
5

2
✓

✓
✓

3
2

1
6

1
3

2
2

1
8

1
9

8
2

5
8

(+
3

0
%

)
N

/A

LL
M

V
H

K
1

5
8

✓
✓

✓
3

2
1

6
1

3
2

2
1

8
2

0
6

2
7

3
(+

3
3

%
)

N
/A

LL
M

U
5

5
C

✓
✓

✓
4

9
2

5
2

4
1

8
2

4
1

6
5

2
4

7
(+

5
0

%
)

N
/A

LL
M

V
U

9
P

✓
✓

5
9

3
2

2
3

2
4

2
4

1
4

1
2

1
2

(+
5

0
%

)
N

/A

LL
M

U
2

5
0

✓
✓

4
2

2
3

2
0

1
4

1
9

1
5

9
2

2
8

(+
4

3
%

)
N

/A

LL
M

U
2

8
0

✓
✓

4
9

2
5

2
4

1
8

2
5

1
5

0
2

4
3

(+
6

2
%

)
2

4
5

[C
Z

D
2

4
]

LL
M

(o
pt

)
U

2
8

0
✓

✓
3

5
1

9
1

5
1

8
2

5
2

0
1

3
0

6
(+

5
2

%
)

2
4

5
[C

Z
D

2
4

]

G
SQ

V
P1

5
5

2
✓

✓
3

9
1

5
1

0
3

1
0

2
6

5
2

8
5

(+
8
%

)
N

/A

K
N

N
U

2
8

0
✓

5
6

2
8

1
0

1
4

0
-

2
9

2
(+

∞
%

)
N

/A

A
ve

ra
ge

Tr
ea

ti
ng

U
nr

ou
ta

bl
e

D
es

ig
ns

as
Z

er
os

3
6

2
2

1
8

2
4

1
1

1
5

7
2

8
3

(+
8

0
%

)

A
ve

ra
ge

Ex
cl

ud
in

g
O

ri
gi

na
lly

U
nr

ou
ta

bl
e

D
es

ig
ns

3
6

2
0

1
6

2
1

1
4

2
0

0
2

7
7

(+
3

9
%

)

174



tional Neural Network (CNN) design on U250, RapidIR matched the performance

of AutoBridge, demonstrating its competitiveness with state-of-the-art HLPS tools.

Handling Complex Designs. RapidIR successfully optimized the LLaMA2 Language

Model (LLM) design, which AutoBridge couldn’t support due to its complex hierar-

chy. On the U280, RapidIR achieved a frequency of 243 MHz for LLM, comparable

to the 245 MHz achieved through manual optimization.

Portability Across Devices. RapidIR effectively ported the LLM design to different FPGA

architectures (U280, VHK158, VP1552), demonstrating significant frequency im-

provements in each case. Additionally, The Minimap2 (GSQ) design was successfully

ported from UltraScale+ VU9P to Versal VP1552, with a 8% improvement.

Resource Utilization. The change in resource utilization post-optimization was minimal

across all benchmarks, indicating that RapidIR’s improvements come primarily from

better design physical layout rather than increased resource consumption.

Potential for Further Optimizations. For the LLaMA2 Language Model design, further

refactoring the design into smaller components enabled by RapidIR (“LLM (opt)”)

boosted the frequency to 306 MHz on U280, showcasing the framework’s potential

for advanced optimizations when the developer has design-specific knowledge.

Flexibility in Design Inputs. RapidIR successfully handled designs from various sources

(HLS, RTL, IP cores) and in different formats (including Vitis-packed XO files),

demonstrating its versatility in real-world scenarios.

These benchmarking results highlight RapidIR’s effectiveness in enabling software

developers to achieve high-performance FPGA implementations across a range of designs

and target devices. By automating complex optimization tasks and supporting diverse

input formats, RapidIR significantly lowers the barrier to entry for software developers

looking to leverage FPGAs in heterogeneous computing environments.

175



The framework’s ability to match or exceed the performance of specialized tools like

AutoBridge, while offering broader design support and eliminating the need for complete

refactoring of the design, demonstrates its potential as a comprehensive solution for

software developers targeting heterogeneous platforms. Furthermore, RapidIR’s success

in porting designs to new FPGA architectures showcases its value in maintaining code

portability and performance across evolving hardware landscapes.

5.5 Conclusion

This chapter presented RapidIR, a comprehensive framework designed to bridge the gap

between high-level software development and efficient FPGA physical implementation in

heterogeneous computing environments.

RapidIR’s main contributions to enabling heterogeneous computing include:

Flexible Intermediate Representation. RapidIR introduces a progressively refined IR

that captures design information at various levels of abstraction, allowing for

incremental optimization and analysis.

Support for Diverse Input Formats. The framework successfully handles designs from

various sources, including handcrafted RTL, HLS-generated code from different

vendors, and IP cores, providing flexibility for real-world development scenarios.

Automated Optimization. RapidIR implements a suite of composable transformation

passes that automate complex FPGA optimization tasks, including hierarchy re-

building, interface inference, and floorplanning.

Performance Improvements. Our evaluation demonstrated significant frequency im-

provements ranging from 30% to 62% across various designs and FPGA platforms,

with some initially unroutable designs achieving around 300 MHz after optimiza-

tion.

176



Extensibility. RapidIR’s modular design allows for easy extension to support new op-

timization techniques, input formats, and target devices, as demonstrated by our

case studies in floorplan exploration and parallel synthesis.

RapidIR’s approach to FPGA optimization has several important implications for

software developers targeting heterogeneous computing platforms:

Abstraction of Hardware Complexity. By automating many low-level physical optimiza-

tion tasks, RapidIR allows developers to focus on high-level application logic while

still benefiting from efficient FPGA implementations.

Improved Portability. The framework’s ability to handle diverse input formats and target

different FPGA architectures enhances code portability, a crucial factor in the rapidly

evolving landscape of heterogeneous computing.

Enhanced Productivity. Automated optimization and exploration tools, such as the floor-

plan exploration case study, significantly reduce the time and effort required to

achieve high-performance FPGA implementations.

While RapidIR represents a significant step forward in enabling heterogeneous com-

puting for software developers, several promising research directions could further

enhance its capabilities:

Automated NoC Synthesis. Extending RapidIR to support Network-on-Chip (NoC) syn-

thesis for FPGA HLS designs could enable more efficient communication between

modules in complex designs. This would involve automatically integrating routers

between handshake modules, analyzing intra-node patterns for bandwidth require-

ments, and optimizing the network to minimize the impact on throughput. It

would further enable software developers to utilize new interconnect components

by automatically refactoring HLS-generated code or RTL library to use NoC.

177



Parallel Placement and Routing. Building on RapidIR’s hierarchy flattening and reor-

ganization capabilities, future work could explore parallel placement and routing

techniques for FPGA designs. This could potentially leverage existing tools like

RapidStream [GMZ22, GMZ23] while extending support to a broader range of HLS

tools and design hierarchies. Challenges include interfacing with vendor tools or

developing a custom placer and router using RapidWright [LK18].

Automated Design Instrumentation. Enhancing RapidIR to automatically insert perfor-

mance counters and monitoring IPs could greatly aid in onboard design profiling

and debugging. This capability would help developers identify performance bottle-

necks and analyze runtime behaviors, further bridging the gap between software

development practices and FPGA optimization.

Machine Learning-Driven Optimization. Incorporating machine learning techniques

into RapidIR’s optimization process could potentially lead to more efficient design

space exploration and better-optimized FPGA implementations.

Integration with High-Level Programming Models. Further research could explore ways

to integrate RapidIR with emerging high-level programming models for heteroge-

neous computing, such as OpenCL or SYCL, to provide a more seamless develop-

ment experience for software developers.

In conclusion, RapidIR makes heterogeneous computing, particularly FPGA accelera-

tion, more accessible to software developers. By automating complex optimization tasks,

supporting diverse input formats, and achieving substantial performance improvements

across multiple FPGA platforms, RapidIR empowers software developers to leverage

the full potential of heterogeneous computing platforms without requiring extensive

hardware-design expertise on each FPGA architecture.

178



CHAPTER 6

Discussion and Evaluation

The integration of HeteroRefactor (Chapter 3), Adroit (Chapter 4), and RapidIR (Chapter 5)

results in an end-to-end optimization framework, Heterosys, that transforms software

programs into hardware-efficient accelerator systems, thereby simplifying heterogeneous

hardware development for software engineers. HeteroRefactor, serving as the frontend of

Heterosys, converts dynamic software program functions into synthesizable hardware

kernel designs with optimized resource utilization, alleviating the need for software

developers to engage in complex program analysis and refactoring. Adroit further refines

these kernel designs, optimizing them into architecture-aware equivalents with enhanced

broadcast patterns, automatically addressing implicit performance issues that may elude

even experienced FPGA experts. RapidIR completes Heterosys by composing multiple

kernel designs into a cohesive system with an optimized floorplan, achieving high

operating frequencies without manual intervention or code restructuring. Collectively,

Heterosys bridges the gap between software development practices and hardware design,

addressing challenges overlooked by previous research efforts.

This chapter examines a deceptively simple synthetic design that, despite its apparent

simplicity, requires extensive hardware optimizations for efficient FPGA implementation.

This minimal example design serves as a case study to discuss the collective functionality

of Heterosys and to analyze the mechanisms underlying the observed performance

improvements. Additionally, we present a case-study of the end-to-end performance

when these approaches in Heterosys are applied in concert to a large language model

179



(LLM) accelerator, a complex real-world application identified in Chapter 2 as presenting

numerous challenges to software engineers. Finally, we demonstrate the practical benefits

of our Heterosys framework by applying it to accelerate a real-world genome sequencing

application. This case study showcases how Heterosys empowers software developers

to create highly efficient FPGA accelerators, even for complex bioinformatics tasks. Our

results highlight the framework’s ability to significantly improve performance in genomic

data processing, illustrating its potential impact on computational biology and other

data-intensive fields.

All evaluation of Heterosys in this chapter was conducted using AMD Alveo U50

FPGAs and Vivado 2023.2. The experiments were performed on a system equipped with

an AMD EPYC 7282 CPU and 128 GB of RAM, running Ubuntu 22.04. For Integer Linear

Programming (ILP) optimization tasks, we employed the COIN-OR solver [Sal02], setting

a maximum runtime limit of 400 seconds per optimization instance.

6.1 Case Study 1: Synthetic Design

To delve deeper into the mechanisms underlying the observed resource efficiency and to

elucidate the inner workings of Heterosys, we have devised a deceptively simple synthetic

example. This case study serves to demonstrate how Heterosys transforms software code

to achieve optimized results. In this section, we present a detailed analysis of the code

transformations and their corresponding impacts, offering insights into the optimization

process and its effects on hardware implementation.

6.1.1 Software Code

The following software code implements a simple synthetic data processing algorithm

that performs a series of “folding” operations on an input stream. This “folding” process

involves reading all data from the input stream and storing it locally, then writing half of

180



the original data size to the output stream. The output values are computed by subtracting

corresponding elements from the end of the buffer from those at the beginning. This

process is applied to the data four times in succession, with each iteration’s output serving

as the input for the next, before the final result is written to the output stream.

void kernel1(hls::stream<long long> &input,
hls::stream<long long> &output) {

int size_of_input = input.read();

long long *buffer =
(long long *)malloc(size_of_input * sizeof(long long));

for (int i = 0; i < size_of_input; i++)
buffer[i] = input.read();

output.write(size_of_input / 2);
for (int i = 0; i < size_of_input / 2; i++)

output.write(abs(buffer[i] - buffer[size_of_input - 1 - i]));

free(buffer);
}

// ... same for kernel2, kernel3, kernel4

void system_top(hls::stream<long long> &input,
hls::stream<long long> &output) {

hls::stream<long long> a, b, c;
kernel1(input, a);
kernel2(a, b);
kernel3(b, c);
kernel4(c, output);

}

The presented software code, while seemingly straightforward, embodies several

characteristics that make it challenging to implement efficiently in hardware.

Firstly, the utilization of malloc for dynamic memory allocation is incompatible

with HLS, necessitating a refactoring into statically allocated arrays. Secondly, the

indiscriminate use of standard types may lead to inefficiencies when the actual data

181



range is more constrained. For instance, if all values are below 240, a more compact data

type of ap_uint<40> could be employed instead of long long, reducing 37.5% resource

needs. Furthermore, the buffer array with a large size is fragmented across multiple

BRAM units dispersed throughout the FPGA. This fragmentation can result in extensive

data broadcasting, which is inherently inefficient in hardware designs. Lastly, the overall

system lacks proper floorplanning, with kernel placements on the FPGA device left

unspecified. This absence of strategic component placement can lead to suboptimal

pipelining between FPGA dies, ultimately compromising the system’s performance and

efficiency.

These factors collectively underscore the need for Heterosys to bridge the gap between

software algorithms and their optimal hardware implementations.

6.1.2 Optimizations with HeteroRefactor

HeteroRefactor extracts dynamic invariants from software functions, such as kernel1 by

executing the code with typical inputs. When most data values are below 240 and the

input size is less than 200,000, it automatically transforms the data types and memory

allocation from the original code. In the original code, the input data and output data, as

well as local variables, are all of type int or long long:

void kernel1(hls::stream<long long> &input,
hls::stream<long long> &output) {

int size_of_input = input.read();
// ...

}

These data types are refactored based on their actual observed value ranges:

void kernel1(hls::stream<ap_uint<40>> &input,
hls::stream<ap_uint<40>> &output) {

ap_uint<18> size_of_input = input.read();
// ...

}

182



The original code utilizes dynamic allocation malloc for the buffer array:

void kernel1(...) {
buffer = (long long *)malloc(size_of_input * sizeof(long long));
buffer[i] = input.read();

}

This will fail with the error “Undefined function malloc” when synthesized using

Vitis HLS 2023.2. To make it synthesizable, HeteroRefactor translates this into the

following code using a buddy memory allocation system (reformatted for readability):

union __alloc_list_ap_uint_40 {
struct {

ap_uint<18> prev;
ap_uint<18> next;

} _link;
ap_uint<40> _data;

} __ap_uint_40[200001U];

ap_uint<18> __malloc_ap_uint_40(ap_uint<18> request) {
// ... omitted for simplicity ...

}

void kernel1(...) {
buffer = __malloc_ap_uint_40(size_of_input);
__ap_uint_40[buffer + i]._data = input.read();

}

Here, the new function __malloc_ap_uint_40 implements the buddy memory alloca-

tion from the __ap_uint_40 array. Each element in this array is a union of either a linked

list for the buddy system (_link), or the actual stored data (_data). With the allocated

index buffer, memory access is translated to access on the __ap_uint_40 array.

HeteroRefactor’s refactoring process optimizes data types and memory allocation,

transforming the code into a form suitable for efficient hardware implementation while

preserving its original functionality. Through these optimizations, HeteroRefactor trans-

lates the initially unsynthesizable program into a hardware kernel, with resource utiliza-

tion optimized for efficient hardware deployment.

183



Without HeteroRefactor’s automated refactoring, developers would need to manually

translate memory allocation into appropriate memory systems and convert all pointer

usages into array accesses. This process is not only tedious but also prone to errors. Het-

eroRefactor automates this transformation, ensuring the program becomes synthesizable

with minimal human intervention. The dynamic analysis performed by HeteroRefactor is

crucial for efficient resource usage. In the absence of such analysis, programmers might

opt for overly conservative estimates. For example, without proper analysis, a developer

might allocate an excessive buffer size of 1,000,000 for the kernel1 buffer array and

employ standard long long data types for all variables. Such an approach could result in

a 2.8× BRAM resource requirements compared to what is available on the U50 FPGA,

causing implementation failure due to resource constraints. In contrast, HeteroRefactor’s

optimizations reduce BRAM resource consumption to 64% while allowing the design to

be successfully implemented and achieving a clock frequency of 191 MHz.

6.1.3 Optimizations with Adroit

While HeteroRefactor focuses on utilizing information gathered from dynamic analysis

to refactor software code into a hardware-friendly form, Adroit further optimizes the

hardware kernels using architecture-aware information specific to the FPGA fabric.

In the original code, access to the buffer becomes a data broadcast operation, as a

single BRAM cannot hold all data in the array. Accessing an element in the array requires

consulting multiple BRAMs distributed across the FPGA device. For example, in the code

already refactored by HeteroRefactor:

__ap_uint_40[buffer + i]._data = input.read();

This access to __ap_uint_40 becomes a broadcast operation. The data obtained from

input is distributed to all BRAM units of __ap_uint_40 in the same clock cycle. As

this broadcast involves long wire connections, the clock latency must be increased to

184



accommodate this operation, thus degrading the operating frequency.

Adroit refactors this code to insert an additional clock cycle with HLS_REG between the

input data read operation and the distributed BRAM access, allowing the long latency

broadcast operation to be broken into two clock cycles:

template<class T> T HLS_REG(T in){
#pragma HLS pipeline
#pragma HLS inline off
#pragma HLS interface port=return register

return in;
}

__ap_uint_40[buffer + i]._data = HLS_REG(input.read());

Furthermore, Adroit addresses redundant synchronization signals in system_top from

all four parallel kernels. Since kernel4 always completes last, the synchronization of four

kernels in system_top can be simplified. In the original code:

void system_top(hls::stream<long long> &input,
hls::stream<long long> &output) {

hls::stream<long long> a, b, c;
kernel1(input, a);
kernel2(a, b);
kernel3(b, c);
kernel4(c, output);

}

The generated RTL code waits for all four kernels to complete before concluding the

process of system_top. This generates a global control signal broadcast that requires

signals from all four kernels, residing in multiple FPGA regions, to arrive at the control

logic of system_top in one clock cycle:

assign ap_done = (
kernel4_U0_ap_done & kernel3_U0_ap_done &
kernel2_U0_ap_done & kernel1_U0_ap_done);

185



Adroit rewrites the control signal in the generated Verilog code so that the ap_done

signal only depends on the ap_done signal of kernel4, avoiding the signal fanout:

assign ap_done = kernel4_U0_ap_done;

With a minimal area overhead of 787 LUTs and 934 FFs, which accounts for less

than 0.1% of the available resources on the U50 FPGA, Adroit improves the operating

frequency from 191 MHz to 242 MHz.

These optimizations demonstrate Adroit’s capability to fine-tune hardware imple-

mentations beyond what is achievable through software-level refactoring alone. By

addressing architecture-specific challenges such as data broadcasting and control signal

optimization, Adroit complements HeteroRefactor’s efforts, resulting in more efficient

and higher-performing FPGA designs.

6.1.4 Optimizations with RapidIR

RapidIR enhances optimization for FPGA heterogeneous systems by partitioning and

rearranging kernels to compose an efficient overall system. It takes the transformed

RTL from Adroit and restructures the global hierarchy and interconnect using high-level

physical synthesis methodologies to produce an optimized system.

In the RTL from Adroit, the system_top top-level module instantiates four child

modules, with kernel1 occupying 77% BRAM on an AMD Alveo U50 FPGA die:

module system_top (
input_r_dout, input_r_empty_n, input_r_read,
output_r_din, output_r_full_n, output_r_write,
ap_clk, ap_rst, ap_start, ap_done, ap_ready, ap_idle

);
// ... port and wire definitions omitted ...

// kernel1 occupies 38% BRAM of the device, 77% BRAM of an FPGA die
system_top_kernel1 kernel1_U0(

186



// ... other ports omitted ...
.input_r_dout(input_r_dout),
.input_r_empty_n(input_r_empty_n),
.input_r_read(kernel1_U0_input_r_read),
.a_din(kernel1_U0_a_din),
.a_full_n(a_full_n),
.a_write(kernel1_U0_a_write)

);

system_top_kernel2 kernel2_U0(/* ... */ );
system_top_kernel3 kernel3_U0(/* ... */ );
system_top_kernel4 kernel4_U0(/* ... */ );

endmodule // system_top

The intuitive approach of an expert RTL designer might involve manually assigning

kernel1 to a dedicated FPGA die and distributing other kernels across the remaining

die, with appropriate pipelining implemented between them. However, such specialized

knowledge is often beyond the expertise of software engineers. Interestingly, this intuitive

allocation proves suboptimal in this case. RapidIR’s analysis reveals that a more efficient

configuration involves co-locating kernel1 and kernel4 on the same die.

RapidIR automates this complex, device-specific optimization and exploration process.

It begins by importing the RTL design into an intermediate representation, which serves

as a foundation for subsequent analysis and optimizations:

- module_name: system_top
module_ports:
- { name: input_r_dout, direction: in, width: 40 }
- { name: input_r_empty_n, direction: in, width: 1 }
- { name: input_r_read, direction: out, width: 1 }
- { name: output_r_din, direction: out, width: 40 }
- { name: output_r_full_n, direction: in, width: 1 }
- { name: output_r_write, direction: out, width: 1 }

# ...

module_wires:
- { name: kernel1_U0_input_r_read, width: 1 }

187



- { name: kernel1_U0_a_din, width: 40 }
- { name: a_full_n, width: 1 }
- { name: kernel1_U0_a_write, width: 1 }

# ...

module_submodules:
- instance_name: kernel1_U0

module_name: system_top_kernel1
connections:
- { port: input_r_dout, value: input_r_dout }
- { port: input_r_empty_n, value: input_r_empty_n }
- { port: input_r_read, value: kernel1_U0_input_r_read }
- { port: a_din, value: kernel1_U0_a_din }
- { port: a_full_n, value: a_full_n }
- { port: a_write, value: kernel1_U0_a_write }

- instance_name: kernel2_U0 # ...
- instance_name: kernel3_U0 # ...
- instance_name: kernel4_U0 # ...

Through a series of analysis and optimization steps, creates a dedicated floorplan

for this specific design and device combination. It leverages information about the U50

FPGA architecture and the resource needs of each module to create an optimized layout.

In this arrangement, RapidIR assigns kernel1 and kernel4 to the lower die of the FPGA,

SLOT_X0Y0, while placing the other two kernels on the top die, SLOT_X0Y1:

- instance_name: kernel1_U0 # ...
instance_metadata:

floorplan: "SLOT_X0Y0"

- instance_name: kernel2_U0 # ...
instance_metadata:

floorplan: "SLOT_X0Y1"

- instance_name: kernel3_U0 # ...
instance_metadata:

floorplan: "SLOT_X0Y1"

- instance_name: kernel4_U0 # ...

188



instance_metadata:
floorplan: "SLOT_X0Y0"

RapidIR continues the optimization process by reorganizing the module instances into

two distinct slot modules: SLOT_X0Y0 and SLOT_X0Y1. To address global critical paths, it

introduces an additional module, Pipeline_SLOT_X0Y0_SLOT_X0Y1, which adds necessary

pipeline stages between these design slots:

- module_name: system_top # ...
module_submodules:
- instance_name: SLOT_X0Y0_inst

module_name: SLOT_X0Y0 # ...
- instance_name: SLOT_X0Y1_inst

module_name: SLOT_X0Y1 # ...
- instance_name: Pipeline_SLOT_X0Y0_SLOT_X0Y1_inst

module_name: Pipeline_SLOT_X0Y0_SLOT_X0Y1 # ...

- module_name: SLOT_X0Y0 # ...
module_submodules:
- instance_name: kernel1_U0

module_name: system_top_kernel1 # ...
- instance_name: kernel4_U0

module_name: system_top_kernel4 # ...

- module_name: SLOT_X0Y1 # ...
module_submodules:
- instance_name: kernel2_U0

module_name: system_top_kernel2 # ...
- instance_name: kernel3_U0

module_name: system_top_kernel3 # ...

It generates constraint files and rebuilds RTL hierarchy as the final output of Heterosys:

module system_top (
input_r_dout, input_r_empty_n, input_r_read,
output_r_din, output_r_full_n, output_r_write,
ap_clk, ap_rst, ap_start, ap_done, ap_ready, ap_idle

);
// ... port and wire definitions omitted ...

189



SLOT_X0Y0 SLOT_X0Y0_inst(
// ... other ports omitted ...
.input_r_dout(input_r_dout), // ... `input`'s ports
.output_r_din(output_r_din), // ... `output`'s ports
.kernel_1_a_din(kernel_1_a_din), // ... `a`'s ports
.kernel_4_c_dout(kernel_4_c_dout), // ... `c`'s ports

);

SLOT_X0Y1 SLOT_X0Y1_inst(/* ... */ );

Pipeline_SLOT_X0Y0_SLOT_X0Y1 Pipeline_SLOT_X0Y0_SLOT_X0Y1_inst(
// ... other ports omitted ...
.kernel_1_a_din(kernel_1_a_din), // pipeline source of `a`
.kernel_2_a_dout(kernel_2_a_dout), // => pipeline sink of `a`
.kernel_3_c_din(kernel_3_c_din), // pipeline source of `c`
.kernel_4_c_dout(kernel_4_c_dout), // => pipeline sink of `c`

);

endmodule // system_top

RapidIR demonstrates substantial performance enhancements over the post-Adroit

stage. With a negligible area overhead of less than 0.1% of the FPGA resources, it

boosts the operating frequency from 248 MHz to 278 MHz, yielding a 15% performance

improvement. This optimization represents the culmination of the Heterosys toolchain’s

efforts, achieving a remarkable 46% overall performance gain compared to the initial

implementable version after HeteroRefactor’s optimizations.

6.1.5 Results and Performance Analysis

Table 6.1 summarizes the improvements achieved at each stage of Heterosys.

Given that the original baseline design unsynthesizable, we developed a manually

optimized baseline for comparative analysis. This modified baseline incorporates an

expansive buffer size of 1,000,000 elements and utilizes standard 64-bit long long data

types for input data, while employing 32-bit int types for all other variables. However,

190



this approach’s overly conservative estimation of input data size, coupled with the absence

of data type representation optimizations, results in resource requirements that exceed the

available capacity of the Alveo U50 FPGA. Consequently, the implementation fails during

the placement phase of the synthesis process, highlighting the challenges associated with

naive implementations on resource-constrained hardware platforms.

HeteroRefactor significantly improves resource utilization and allows the design to

be synthesized. Table 6.1 shows that after applying HeteroRefactor, BRAM usage drops

from 281.0% to 63.8% of available resources. This reduction allows the design to fit

within the FPGA’s resources, solving the placement failure seen in the hand-transformed

baseline. LUT and FF usage remain low and stable, as this design doesn’t involve much

computation using these resources. The optimized design runs at a maximum frequency

of 191 MHz, showing that HeteroRefactor enables successful implementation. These

results demonstrate that HeteroRefactor effectively refactors code for FPGA synthesis

automatically, greatly reducing resource needs while maintaining functionality.

Adroit further enhances the performance of the design with minimal resource over-

head. As shown in Table 6.1, the post-Adroit implementation maintains similar resource

utilization compared to the post-HeteroRefactor stage, with only a slight increase in LUT

usage from 1.1% to 1.2%. The BRAM usage remains constant at 63.8%, preserving the

significant reduction achieved by HeteroRefactor. Notably, Adroit substantially improves

the maximum operating frequency from 191 MHz to 242 MHz, a 27% increase. This

improvement is achieved with a negligible area overhead of 787 LUTs and 934 FFs, ac-

counting for less than 0.1% of the available resources on the U50 FPGA. The minimal

resource impact coupled with the significant frequency boost allows Adroit to contribute

to the overall effectiveness of the Heterosys compilation framework.

The final stage of the Heterosys toolchain, RapidIR, further optimizes the design’s

performance while maintaining resource efficiency. The post-RapidIR implementation

maintains the same LUT usage at 1.2% and slightly increases FF usage from 0.5% to

191



Table 6.1: Resource utilization and maximum operating frequency of the synthetic design

across Heterosys optimization stages.

LUT FF BRAM DSP URAM Frequency

Heterosys Stage (%) (%) (%) (%) (%) (MHz)

Software Baseline Unsynthesizable

Hand-Transformed Baseline 1.2 0.2 281.0 0.0 0.0 Failed to Place

Post-HeteroRefactor 1.1 0.5 63.8 0.0 0.0 191

Post-Adroit 1.2 0.5 63.8 0.0 0.0 242

Post-RapidIR 1.2 0.6 63.8 0.0 0.0 278

0.6% compared to the post-Adroit stage. In absolute terms, this translates to a modest

increase of 76 LUTs (from 10,598 to 10,674) and 522 FFs (from 9,300 to 9,822). The BRAM

utilization remains constant at 63.8%,. Most notably, RapidIR pushes the maximum

operating frequency from 242 MHz to 278 MHz, representing a 14.9% improvement over

the post-Adroit stage and a 45.5% increase from the post-HeteroRefactor frequency.

These results highlight the synergistic effects of the Heterosys toolchain, where each

successive stage builds upon the previous optimizations, resulting in a design that

balances resource efficiency with significantly enhanced performance.

6.2 Case Study 2: Large Language Model

This section presents an end-to-end evaluation of Heterosys optimizing large language

models (LLMs) for FPGA acceleration [CZD24], demonstrating the transformation of a

software-oriented baseline into an efficient hardware implementation through a series of

automated optimization stages.

192



6.2.1 Benchmark Setup

Chen et al. [CZD24] propose a complex hybrid-source accelerator for the inference

phase of the LLaMA2 large language model, originally manually optimized for the AMD

Alveo U280 FPGA, implementing a four-level nested pipeline. In this section, we revert

their manual optimizations to a software-only version as a baseline that corresponds to

what a software programmer would typically write and optimize for this specific task.

Specifically, we revert the optimization of the input buffer with a static size to dynamic

allocation, transform array access to the buffer back to pointer access, employ the original

standard 32-bit int and float data types, disable broadcast-aware optimizations, and revert

the FPGA-die based function partitioning to its logically natural form.

For the purpose of demonstration, we retain other optimizations that are outside the

scope of this dissertation. For instance, the interface pragmas of the top-level function

are preserved, and the unrolling and array partitioning directives remain intact. These

optimizations could be achieved by other works in the literature, such as AutoDSE

[SYG22], Merlin [Sol20], and AutoSA [WGC21]. In this evaluation, we assume that the

input to Heterosys has already been optimized by these tools. In fact, the kernel code of

the LLM accelerator partially reflects the methodology of AutoSA [WGC21].

6.2.2 Optimization Flow

Starting with the baseline software code, we applied a series of automated optimizations

using Heterosys. First, we used HeteroRefactor to perform automated refactoring on

the kernel code based on observed dynamic invariants. Next, we optimized broadcast

patterns using architecture-aware approaches in Adroit. Finally, we utilized RapidIR for

partitioning, floorplanning, and pipelining to integrate the kernels into an optimized

system. Figure 6.1 illustrates the overall optimization flow.

In the initial stage, HeteroRefactor serves as the frontend of Heterosys, analyzing

193



Linear Layers

Unsynthesizable Resource-Inefficient

int *A = (int *)malloc(
  input_length * sizeof(int));

*(A++) = input.read();

int a, b = // ...

int acc = a * b;

Synthesizable Resource-Efficient 

int A[ANALYZED_SIZE_A];

A[index++] = input.read();

ap_int<8>  a, b = // ...

ap_int<16> acc = a * b;

A[index++] = REG(input.read());

ap_int<16> acc = a * REG(b);

Optimized Data Broadcast Optimized Control

Figure 6.1: End-to-end Heterosys optimization flow for the LLM accelerator.

194



software function behavior to determine typical sizes of dynamically allocated arrays

(e.g., A) and translating allocations (malloc) into static arrays (A[ANALYZED_SIZE_A]).

Leveraging dynamic invariants obtained during the instrumentation phase, it further

optimizes data representation, converting standard data types like int into bit-width

optimized versions (e.g., ap_int<8>). This process renders the kernel both synthesizable

and resource-efficient, making it suitable for hardware implementation.

Adroit subsequently processes the hardware kernel, analyzing broadcast patterns

within the code. It improves large array access by introducing additional pipelines (e.g.,

inserting REG between read and A) and optimizes the broadcast of invariant variables to all

loop iterations (e.g., REG(b)). Furthermore, it refines the control flow by transforming stall-

based pipeline control broadcasts into skid-buffer-based free-flowing pipelines, thereby

improving overall efficiency with a higher operating frequency.

In the final stage, RapidIR integrates the optimized kernels, partitioning them into

smaller, more manageable units (such as multiple components of the Linear Layers)

and strategically floorplanning these units across different FPGA regions. To mitigate

global critical paths, it introduces pipeline stages between regions. As the culmination

of Heterosys’ optimization process, the original software baseline is transformed into

a highly optimized FPGA heterogeneous computing system, demonstrating significant

improvements in performance and resource utilization.

6.2.3 End-to-End Results

Table 6.2 presents a summary of the LLM design’s resource utilization and maximum

operating frequency at each stage of optimization. The resource requirements are ex-

pressed as percentages of the available resources on the AMD Alveo U50 FPGA. All

reported results were obtained using Vitis’ default target frequency of 300 MHz and

standard settings. This data provides an overview of the impact of each stage on resource

195



Table 6.2: Resource utilization percentage and maximum operating frequency of the LLM

FPGA accelerator after each Heterosys optimization stage.

LUT FF BRAM DSP URAM Frequency

Heterosys Stage (%) (%) (%) (%) (%) (MHz)

Software Baseline Unsynthesizable

Hand-Transformed Baseline 91.9 45.0 89.8 59.8 60.6 Failed to Route

Post-HeteroRefactor 76.8 39.7 45.2 28.1 37.2 157

Post-Adroit 76.9 39.6 45.2 28.1 37.2 198

Post-RapidIR 75.8 39.8 40.4 28.1 37.2 232

consumption and performance throughout the Heterosys optimization process.

The software baseline implementation, representing the initial software-oriented de-

sign, is not synthesizable due to unsupported program constructs such as dynamic

memory allocation and pointer usage. To compare it with Heterosys-transformed ver-

sions, we manually transform these structures into synthesizable versions with known

data bounds from Chen et al.’s optimized design. This hand-transformed baseline ver-

sion exhibits high resource utilization across all categories, particularly in LUTs (92%)

and BRAMs (90%). Notably, this excessive resource utilization, which nearly saturates

the entire FPGA device, results in implementation failure due to routing congestion–a

hardware-specific compilation error that falls outside the expertise of software develop-

ers. This outcome underscores the challenges inherent in transitioning from software to

hardware implementations without specialized tools or knowledge.

Following the application of HeteroRefactor, a significant reduction in resource utiliza-

tion is observed across multiple categories. Notably, LUT usage decreases from 92% to

77%, RAM consumption is reduced from 90% to 45%, and DSP utilization diminishes

from 60% to 28%. This optimization phase not only alleviates resource constraints but also

196



enables successful compilation of the design, achieving a maximum operational frequency

of 157 MHz. These improvements can be attributed to HeteroRefactor’s ability to optimize

data representations and transform dynamic allocations into more resource-efficient static

structures, thereby reducing the FPGA resource requirements.

The application of Adroit following HeteroRefactor leads to a slight increase in LUT

usage and a minor decrease in FF utilization (to 76.8% and 39.6%, respectively). This

modest change can be attributed to the addition of pipeline registers and control logic for

optimizing broadcast patterns, as well as potential variations in the backend Vivado EDA

flow. Notably, Adroit significantly improves the frequency to 198 MHz, an improvement

that underscores the effectiveness of its architecture-aware optimizations.

In the final phase, RapidIR enhances the design’s performance, reaching the target

frequency of 232 MHz. This significant frequency improvement comes with only a small

increase in FF resource usage. The minor rise in resource utilization is due to the extra

register stages needed for inter-region pipelining. Interestingly, there is a decrease in

BRAM usage after RapidIR, which can be explained by the replacement of HLS-generated

FIFO with our optimized pipeline stages.

These results collectively demonstrate Heterosys’ effectiveness in converting software-

oriented designs into efficient hardware implementations. The framework successfully

balances resource utilization and operating frequency, ultimately achieving an optimized

frequency of 232 MHz while reducing overall resource consumption.

6.3 Case Study 3: Genome Sequencing

To further demonstrate the effectiveness of Heterosys in accelerating complex real-world

applications, we present a case study of optimizing a genomic sequencing algorithm.

Specifically, we focus on the chaining step of Minimap2 [Li18], a state-of-the-art tool for

pairwise sequence alignment in genome sequencing. In this section, we explore hardware

197



acceleration of long read pairwise sequence overlapping using FPGA, and optimize the

hardware accelerator with our Heterosys framework.

Together with co-first author Licheng Guo, we proposed an algorithmic optimization

approach at the 2019 IEEE 27th Annual International Symposium on Field-Programmable

Custom Computing Machines [GLR19]. This corresponds to the optimized version

presented in Figure 6.4. The same optimization methodology was subsequently ap-

plied to GPUs, resulting in significant accelerations. Heterosys further optimized it for

FPGA-specific features, thereby reducing resource requirements and increasing operating

frequency from the high-level optimizations.

6.3.1 Background and Challenges

Minimap2 [Li18] is a genomics tool that excels in speed and quality of results, targeting

versatile tasks including pairwise overlapping of long reads in genome sequencing. We

focus on the bottleneck in the tool, chaining, which performs dynamic programming to

find series of feature matches that have consistent distances on the two reads. When two

reads have a long series, i.e., a long chain, it implies that they have continuous matches

and may share the same sub-sequence from the whole genome.

We summarize the chaining algorithm detailed in Li’s paper [Li18] as follows: a match

between read a and b can be represented by a 3-tuple (x, y, l), describing an exact match

of length l: “ax−l+1..ax” = “by−l+1..by”. All matches are assumed to be sorted first by

x and then by y. The chaining score f (t) of match t is calculated by evaluating its 64

previous matches s using the following formula:

f (t) = max{max
s≺t
{ f (s)− β(s, t) + α(s, t)}, 0 + l(t)}

In this formula, l(t) represents the length of match t, β(s, t) quantifies the inconsistency

cost in location between matches s and t, and α(s, t) is the contribution of match t to the

198



Input: match[]: ordered list of matches between a pair of reads, represented as a 3-tuple

(x, y, l), describing an exact match of length l: “ax−l+1..ax” = “by−l+1..by” in the genome

sequence read results. α and β: weight functions defined in [Li18], used in computing the

transition function weight w[j][i] from match j to match i.

Output: π[]: the predecessors and f []: the chaining scores.

1: for i = 1 to n do

2: for j ∈ [max(0, i− 64), i− 1] do

3: w[j][i]← (−β + α)(match[i], match[j])

4: end for

5: f [i]← maxj{ f [j] + w[i][j]}

6: π[i]← arg maxj{ f [j] + w[i][j]}

7: if f [i] < match[i].l then

8: f [i] = match[i].l; π[i] = ∅

9: end if

10: end for

Figure 6.2: Original chaining algorithm for the long read pairwise sequence overlapping.

total matching length if it is added to a chain ending at match s. The skeleton of the

original chaining algorithm is presented in Figure 6.2.

An illustration of the 3-tuple match is provided in Figure 6.3, which contains seven

matches. The tuple (x, y, l) corresponding to match5 is highlighted in red.

This step is a one-dimensional dynamic programming algorithm that presents several

challenges for hardware acceleration:

1. Poor parallelizability: The original computation pattern involves dependencies that

limit parallelism, which is essential for hardware acceleration.

2. Data reuse: The algorithm exhibits a high degree of data reuse, requiring careful

199



 . . . A G G A G C C G C A G T C A G A T C C T A G C G T C G

A G C C G T A G T C A G A G C C T A G C G T C G A G C . . .

#1

#2

#3 #4 #5#6 #7

potential 
overlap

x#5

y#5

l#5

Figure 6.3: Example of the match array in a pair of genome reads.

consideration of data placement and movement in the hardware design.

3. Variable input sizes: The large and irregular sizes of input data make it difficult to

leverage task-level parallelism effectively.

6.3.2 Parallelization Approach

In [GLR19], we propose several key optimizations to address the challenges in imple-

menting hardware acceleration for the genome sequencing task:

1. Intra-task parallelism. The algorithm was transformed to a hardware-friendly form

that enables full parallelization of the inner updating loop and reduces pipeline

initiation interval. By distributing the reduction operations across iterations, the

dependency chain was shortened, allowing for more efficient pipelining. This

transformation reduced the initiation interval from the latency of 7 comparison

operations to just one comparison.

2. Data reuse. Metadata, scores, and predecessors of matches i + 1 to i + 64 are stored

in local memory to dramatically reduce memory bandwidth requirements. This

200



Input: match[]: ordered list of matches between a pair of reads as in Algorithm 6.2.

Output: π[]: the predecessors and f []: the chaining scores.

1: Initialize all f [i]← match[i].l, and π[i]← ∅ in parallel.

2: for (pipeline) i = 1 to n do

3: for (parallel) k ∈ [i + 1, min(n, i + 64)] do

4: w[k][i]← (−β + α)(match[i], match[k])

5: if f [k] < f [i] + w[k][i] then

6: f [k] = f [i] + w[k][i]; π[k] = i

7: end if

8: end for

9: end for

Figure 6.4: Optimized chaining for the long read pairwise sequence overlapping [GLR19].

optimization reduced the theoretical bandwidth requirement from 7345 Gbps to

just 112 Gbps, making it feasible for implementation on current hardware. The local

storage forms a sliding window that enables efficient parallel access to the data.

3. Task-level parallelism. Multiple levels of parallelism are leveraged by concatenating

tasks from different read pairs and separating them with runtime tags. This

approach addresses the challenges of limited fast storage and the inefficiency of

processing very small tasks. By combining multiple tasks, the design can better

utilize hardware resources and amortize overhead across multiple read pairs.

The optimized pseudocode is shown in Figure 6.4. With parallelization approaches

familiar to high-performance software developers and existing HLS tools, the code is

implemented into FPGA accelerators. The implementation of Figure 6.4 could be found

at https://github.com/UCLA-VAST/minimap2-acceleration.

201

https://github.com/UCLA-VAST/minimap2-acceleration


6.3.3 Application of Heterosys Framework

The Heterosys framework was applied to the optimized Minimap2 chaining FPGA kernel,

Algorithm 6.4, implemented in Vitis HLS, to enhance performance and resource utilization

of the FPGA implementation. The process comprised the following stages:

1. HeteroRefactor: This tool was employed to analyze the optimized algorithm imple-

mentation and execute automated refactoring. The focus was on optimizing data

representations through integer bitwidth reduction and floating-point precision

adjustment. For example, the length of genome sequence reads typically does not

exceed 30,000 base pairs, so the location information x and y of match could be

shorten from 32 bits into 15-bit integers.

2. Adroit: This component was utilized to further refine the hardware-friendly code

generated by HeteroRefactor. The emphasis was on optimizing broadcast patterns

and implementing control signal optimizations tailored to the FPGA architecture.

3. RapidIR: Finally, this tool was used to optimize the overall system architecture,

encompassing partitioning, floorplanning, and inter-region pipelining strategies.

6.3.4 Results and Analysis

The performance and resource utilization of the parallelized Minimap2 chaining algorithm

on FPGA across various Heterosys optimization stages are presented in Table 6.3.

Resource Utilization. HeteroRefactor significantly reduced resource utilization across

all categories. LUT usage decreased from 90.2% to 42.1%, FF usage from 46.4% to 24.6%,

and DSP usage from 26.6% to 9.3%. This substantial reduction in resource usage enables

potential scaling of the design to process multiple set of data in parallel, or integration of

additional functionalities, such as other parts in the overall genome sequencing pipeline.

202



Table 6.3: Resource utilization and frequency of the parallelized Minimap2 chaining

algorithm on FPGA across Heterosys optimization stages.

LUT FF BRAM DSP URAM Frequency

Heterosys Stage (%) (%) (%) (%) (%) (MHz)

Optimized Baseline (Algo. 6.4) 90.2 46.4 16.3 26.6 0.6 169.9

Post-HeteroRefactor 42.1 24.6 15.0 9.3 0.6 243.7

Post-Adroit 42.2 24.6 15.0 9.3 0.6 262.0

Post-RapidIR 42.3 24.8 15.0 9.3 0.6 279.4

Frequency Improvement. The baseline implementation of the optimized algorithm

achieved a frequency of only 169.9 MHz due to its excessive resource usages. After

applying HeteroRefactor, the frequency increased to 243.7 MHz, a 43.4% improvement.

Adroit further increased the frequency to 262.0 MHz, resulting in a 54.2% improvement

compared to the baseline. The final RapidIR stage achieved a frequency of 279.4 MHz,

representing a total improvement of 64.4% over the optimized baseline.

Optimization Overhead. The post-Adroit and post-RapidIR stages show only slight

increases in resource usage compared to the post-HeteroRefactor stage. LUT usage

increased marginally from 42.1% to 42.2% (Adroit) and 42.3% (RapidIR), while FF us-

age remained stable at 24.6% for Adroit and increased slightly to 24.8% for RapidIR.

This demonstrates that Adroit and RapidIR optimizations introduce minimal resource

overhead while providing significant frequency improvements.

6.3.5 Discussion

The case study results demonstrate Heterosys’ effectiveness in optimizing complex

genomic algorithms for FPGA acceleration. Key findings include:

203



• Automated Optimization: Heterosys successfully automated many optimizations

previously implemented manually, potentially reducing development time and

expertise requirements for efficient FPGA accelerators.

• Performance and Efficiency: The significant increase in operating frequency and

dramatic reduction in resource utilization suggest superior performance compared

to the original optimized designs. This efficiency allows for potential scaling to

larger datasets or implementation of additional functionalities.

These findings indicate that Heterosys can significantly enhance the development

process and performance of FPGA accelerators for genomic algorithms, potentially

lowering barriers to entry for software developers to implement FPGA accelerators for

data processing and other applications.

6.4 Conclusion

This chapter has presented an end-to-end evaluation of Heterosys, demonstrating its

effectiveness in bridging the gap between software development practices and efficient

hardware design for FPGA acceleration. Through a synthetic design example, a real-

world case study of a Large Language Model (LLM) accelerator, and optimization over

a highly optimized genome sequencing accelerator, we have illustrated the synergistic

effects of HeteroRefactor, Adroit, and RapidIR in transforming software-oriented code

into optimized hardware implementations.

The synthetic design case study highlighted the ability of Heterosys to address chal-

lenges that are often overlooked in software-to-hardware translations. HeteroRefactor’s

automated refactoring significantly reduced resource utilization, enabling successful

synthesis where a naive implementation failed. Adroit’s architecture-aware optimizations

further improved performance with minimal resource overhead, increasing the maximum

204



operating frequency by 27%. RapidIR’s system-level optimizations pushed the perfor-

mance even further, achieving a 46% overall frequency improvement compared to the

post-HeteroRefactor stage.

In the more complex LLM accelerator case study, Heterosys demonstrated its capability

to handle real-world applications. Starting from an unsynthesizable software baseline,

each stage of Heterosys contributed to substantial improvements. HeteroRefactor’s

optimizations led to significant reductions in resource utilization across all categories,

enabling successful compilation. Adroit’s optimizations further enhanced the operating

frequency, while RapidIR’s system-wide strategy brought the design to 232 MHz.

The case study on genome sequencing further validates Heterosys’ effectiveness in

optimizing complex real-world applications for FPGA acceleration. By focusing on the

chaining step of long read genome sequencing, we demonstrated how Heterosys can

significantly reduced resource utilization while improving operating frequency. Het-

eroRefactor’s data representation optimizations led to substantial reductions in LUT, FF,

and DSP usage, while Adroit and RapidIR further increased the operating frequency

with minimal resource overhead. The final implementation achieved a 64.4% frequency

improvement over the baseline, with dramatically reduced resource utilization.

These results underscore the power of Heterosys in automating the optimization

process for FPGA acceleration. By addressing challenges at multiple levels – from code

refactoring to architecture-aware optimizations and system-level integration – Heterosys

enables software engineers to leverage FPGA acceleration without requiring deep hard-

ware design expertise. The framework’s ability to balance resource utilization and perfor-

mance optimization demonstrates its potential to significantly streamline the development

of efficient FPGA-based accelerators for complex applications.

In conclusion, Heterosys represents a significant step forward in democratizing FPGA

acceleration, making it more accessible to software developers and potentially accelerating

the adoption of FPGA technology across a broader range of applications.

205



CHAPTER 7

Conclusion and Future Work

7.1 Dissertation Summary

This dissertation has presented a set of methodologies and tools aimed at bridging the

gap between high-level software development and efficient utilization of heterogeneous

computing resources, particularly FPGA acceleration. The primary goal of this work

was to make heterogeneous computing more accessible to a broader range of software

developers by abstracting away much of the hardware complexity while still enabling

developers to leverage the performance benefits of specialized hardware effectively.

The key contributions of this dissertation can be summarized as follows:

HeteroRefactor: Dynamic Analysis and Automated Refactoring. HeteroRefactor is an

automated refactoring tool that combines dynamic invariant analysis and intelligent

code transformations to make software code FPGA-compatible and hardware-

friendly. HeteroRefactor significantly reduces the manual effort required to port

software to FPGAs, achieving up to 83% reduction in resource usage and 42%

increase in operating frequency compared to manual implementations.

Adroit: Architecture-Driven Optimization for Implicit Broadcasts. Adroit is a novel ap-

proach to identifying and optimizing implicit broadcast structures in HLS-generated

designs. Adroit’s broadcast-aware scheduling, synchronization logic pruning, and

skid-buffer-based pipeline control techniques achieve an average frequency improve-

206



ment of 53% across a range of real-world benchmarks, while incurring minimal area

overhead.

RapidIR: Infrastructure for High-Level Physical Synthesis Optimizations. RapidIR is

a comprehensive infrastructure for high-level physical synthesis optimizations. It

integrates coarse-grained floorplanning with behavior-level pipelining, supporting

hierarchical composition of heterogeneous designs from diverse sources. RapidIR

automates the exploration of various physical optimization strategies, freeing pro-

grammers from designing device-specific hardware layouts for each target device.

It achieved frequency improvements ranging from 30% to over 62% compared to

state-of-the-art EDA tools and enabled some previously unimplementable designs

to reach a frequency of around 300 MHz.

These contributions collectively form Heterosys, an end-to-end optimization frame-

work that simplifies heterogeneous hardware development by decoupling algorithmic

descriptions from underlying fabrics and offering layout-driven and architecture-driven

design generation. The research presented in this dissertation has demonstrated substan-

tial performance improvements across diverse applications and benchmarks, including

genomic sequencing and large language model acceleration.

The methodologies and tools presented in this dissertation have significant implica-

tions for enabling software developers to leverage heterogeneous computing resources:

Improved Programmability. HeteroRefactor and RapidIR significantly enhance the ac-

cessibility of FPGA technology for software developers by abstracting complex

hardware details. HeteroRefactor supports the inclusion of recursive and dynamic

programming patterns in regions that are not performance-limiting, while RapidIR

allows developers to maintain their program’s hierarchical structure without the

need to convert the code into a single-level representation or translate it into a spe-

cialized HLS language prior to optimization for physical synthesis. This abstraction

207



facilitates the implementation of efficient FPGA designs without necessitating deep

hardware knowledge, thereby broadening the pool of developers who can effectively

utilize FPGAs for various applications.

Automated Performance Optimization. HeteroRefactor, Adroit, and RapidIR automate

complex performance optimization tasks, such as resource optimization, broadcast

optimization, and physical synthesis, enabling software developers to achieve high-

performance FPGA implementations without manual intervention. HeteroRefactor

leverages dynamic analysis to identify performance issues and automatically refac-

tors the code to improve performance, while Adroit statically optimizes implicit

broadcast structures in kernel codes to enhance the frequency of HLS-generated

designs. RapidIR automates the exploration of physical synthesis optimizations,

such as floorplanning and pipelining, to compose heterogeneous design components

from diverse sources, enabling software developers to achieve high-performance

FPGA implementations with minimal effort. These tools collectively reduce the time

and effort required to achieve high-performance FPGA implementations, making it

easier for software developers to leverage FPGA acceleration.

Enhanced Portability. All three tools enhance the portability of FPGA designs by en-

abling developers to maintain code that is independent of the target device and

fabric. HeteroRefactor automatically refactors software code to make it FPGA-

compatible, enabling developers to write code that can be easily ported to FPGA

devices. Adroit optimizes implicit broadcast structures in HLS-generated designs,

reducing the gap between software expectations and hardware realities. RapidIR

automates the exploration of physical synthesis optimizations, enabling developers

to write device-independent designs without physical layout information that can

be easily ported to different target devices. These tools collectively enhance the

portability of FPGA designs, enabling developers to write code that can be easily

deployed on different FPGA devices without manual intervention.

208



By addressing these key challenges, our work contributes to the broader goal of

democratizing heterogeneous computing and making FPGA acceleration more accessible

and practical for software developers.

7.2 Future Research Directions

This dissertation has made significant contributions to enabling heterogeneous computing

for software developers. However, several promising directions for future research

could further enhance the accessibility, performance, and applicability of the proposed

methodologies and tools:

Integration with High-Level Programming Models. One potential direction is to ex-

plore ways to integrate our tools with emerging high-level programming mod-

els for heterogeneous computing, such as PyTorch [PGM19], SYCL [Khr21] or

MLIR [LAB21], which could provide a more seamless development experience for

software developers. Integration with MLIR-based solutions, such as ScaleHLS

[YHC21], Allo [CZX24], and MLIR-AIE [Xil22b], will enable users to seamlessly

enhance the optimized outputs from these frameworks using Heterosys efficiently.

Automated Design Space Exploration. Incorporating machine learning techniques into

the optimization process could potentially lead to more efficient design space explo-

ration and better-optimized FPGA implementations. This could involve learning

from previous optimization results and adapting to new design patterns and FPGA

architectures. When applied to HeteroRefactor and RapidIR, the remaining manual

or heuristic optimization strategies could be replaced. For instance, ActiveCEM

[DSL24] enables the application of existing optimization databases to emerging

techniques, while AutoDSE [SYG22] could be extended to optimize architecture-

and physical-aware features of FPGA designs.

209



Extending to Other Heterogeneous Platforms. While this dissertation primarily focused

on FPGA acceleration, many of the techniques and principles could be adapted to

other heterogeneous platforms, such as GPUs or domain-specific accelerators like AI

Engines. An example extension to the AI Engine includes CHARM [ZLY23, ZLY24],

which leverages FPGA acceleration techniques and integrates FPGA components

into AI engine-centric accelerators. Investigating the applicability of our methodolo-

gies to these platforms could further broaden the impact of our work.

Automated Design Instrumentation and Debugging. Enhancing our tools to automati-

cally insert performance counters and monitoring IPs could greatly aid in onboard

design profiling and debugging. This capability would help developers identify

performance bottlenecks and analyze runtime behaviors, further bridging the gap

between software development practices and hardware optimization. Examples

include HeteroFuzz [ZWK21], which tests high-level descriptions of FPGA designs

to detect synthesis divergence, and HeteroGen [ZWX22], which automatically gen-

erates tests and repairs programs. These tools can be enhanced with RapidIR to

incorporate production-environment components into the testing process, providing

additional insights.

Collaborative Optimization Framework. Developing a collaborative optimization frame-

work, akin to MLIR [LAB21] but extended to incorporate more hardware-specific

features, or HeteroCL [LCH19] with enhanced component integration, would fa-

cilitate the sharing and reuse of optimization strategies, thereby accelerating the

adoption of heterogeneous computing. Such a framework could incorporate ver-

sion control, performance tracking, and a library of reusable optimization passes,

fostering a community-driven approach to heterogeneous computing.

These future research directions aim to further lower the barriers to entry for hetero-

geneous computing, making it more accessible, efficient, and user-friendly for software

210



developers. By continuing to narrow the gap between software development and hard-

ware optimization, we can unlock the full potential of heterogeneous computing and

drive innovation across a wide range of applications and domains.

7.3 Concluding Remarks

The rise of heterogeneous computing presents both opportunities and challenges for

software developers. While the potential for performance and efficiency gains is signif-

icant, the complexity of leveraging these specialized hardware resources has hindered

widespread adoption. This dissertation has presented a comprehensive set of methodolo-

gies and tools designed to address these challenges and enable software developers to

effectively utilize heterogeneous computing resources, particularly FPGA acceleration.

Through HeteroRefactor, Adroit, and RapidIR, we have demonstrated the potential for

automated analysis, refactoring, and optimization techniques to bridge the gap between

high-level software development and efficient hardware implementation. By abstracting

away much of the hardware complexity and automating key optimization tasks, our

work empowers software developers to leverage the power of FPGAs without requiring

extensive hardware expertise.

As we look to the future, it is clear that heterogeneous computing will continue to

play an increasingly important role in meeting the computational demands of the 21st

century. By continuing to develop and refine methodologies and tools that enable software

developers to effectively leverage these resources, we can unlock the full potential of

heterogeneous computing and drive the next generation of technological advancements

across a wide range of applications and domains, from scientific computing and machine

learning to data analytics and beyond.

In conclusion, this dissertation represents a step forward in enabling heterogeneous

computing for software developers. By providing a set of methodologies and tools that

211



bridge the gap between software development and hardware optimization, our work

paves the way for more widespread adoption of heterogeneous acceleration in software

development practices. As we continue to build upon these foundations and explore

new research directions, we move closer to a future where the power of heterogeneous

computing is accessible to all developers, regardless of their hardware expertise.

212



REFERENCES

[AB18] Mustafa Abbas and Vaughn Betz. “Latency insensitive design styles for
FPGAs.” In 2018 28th International Conference on Field Programmable Logic and
Applications (FPL), pp. 360–3607. IEEE, 2018.

[ABC16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. “TensorFlow: a system for large-scale machine learning.” In 12th
USENIX symposium on operating systems design and implementation (OSDI 16),
pp. 265–283, 2016.

[AC75] Alfred V Aho and Margaret J Corasick. “Efficient string matching: an aid to
bibliographic search.” Communications of the ACM, 18(6):333–340, 1975.

[Adv24a] Advanced Micro Devices, Inc. Versal Adaptive SoC Technical Reference Manual,
4 2024.

[Adv24b] Advanced Micro Devices, Inc. Vivado Design Suite User Guide: Designing with
IP, 5 2024.

[ADZ24] Afzal Ahmad, Linfeng Du, and Wei Zhang. “ Fast and Practical Strassen’s
Matrix Multiplication using FPGAs .” In 2024 34th International Conference on
Field-Programmable Logic and Applications (FPL), pp. 311–317, Los Alamitos, CA,
USA, September 2024. IEEE Computer Society.

[AP14] Andrew V Adinetz and Dirk Pleiter. “Halloc: a high-throughput dynamic
memory allocator for GPGPU architectures.” In GPU Technology Conference
(GTC), volume 152, 2014.

[ASB19] Sagheer Ahmad, Sridhar Subramanian, Vamsi Boppana, Shankar Lakka, Fu-
Hing Ho, Tomai Knopp, Juanjo Noguera, Gaurav Singh, and Ralph Wittig.
“Xilinx First 7nm Device: Versal AI Core (VC1902).” In 2019 IEEE Hot Chips 31
Symposium (HCS), pp. 1–28, 2019.

[BBK08] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, Jagannathan
Ramanujam, Atanas Rountev, and Ponnuswamy Sadayappan. “Automatic
transformations for communication-minimized parallelization and locality
optimization in the polyhedral model.” In International Conference on Compiler
Construction, pp. 132–146. Springer, 2008.

[BCd09] Julien Boucaron, Anthony Coadou, and Robert de Simone. “Latency-
Insensitive Design: Retry Relay-Station and Fusion Shell.” In Proceedings
of the 4th International Workshop on the Application of Formal Methods for Globally

213



Asynchronous and Locally Synchronous Design (FMGALS ’09), volume 245, pp.
23–33, 2009.

[BEI09] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. “Yaml ain’t markup language
(yaml™) version 1.1.” Working Draft 2008, 5(11), 2009.

[BK08] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. O’Reilly Media, Inc., 2008.

[BL03] Giancarlo Beraudo and John Lillis. “Timing optimization of FPGA placements
by logic replication.” In DAC ’03, 2003.

[BRS17] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoč. “JSON:
Data model, Query languages and Schema specification.” In Proceedings of
the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS ’17, p. 123–135, New York, NY, USA, 2017. Association for
Computing Machinery.

[BSW23] Suhail Basalama, Atefeh Sohrabizadeh, Jie Wang, Licheng Guo, and Jason
Cong. “FlexCNN: An End-to-end Framework for Composing CNN Accel-
erators on FPGA.” ACM Trans. Reconfigurable Technol. Syst., 16(2), March
2023.

[BVR12] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. “Chisel: constructing
hardware in a Scala embedded language.” In Proceedings of the 49th Annual
Design Automation Conference, DAC ’12, p. 1216–1225, New York, NY, USA,
2012. Association for Computing Machinery.

[Car20] Luca P Carloni. “Scalable Open-Source System-on-Chip Design.” In Pro-
ceedings of the IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), 2020.

[CBB17] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh
Gopalakrishnan, and Zvonimir Rakamariundefined. “Rigorous Floating-Point
Mixed-Precision Tuning.” In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, p. 300–315, New York, NY,
USA, 2017. Association for Computing Machinery.

[CC07] Rebecca L Collins and Luca P Carloni. “Topology-based optimization of max-
imal sustainable throughput in a latency-insensitive system.” In Proceedings of
the 44th annual Design Automation Conference, pp. 410–415, 2007.

[CCG13] Yu-Ting Chen, Jason Cong, Mohammad Ali Ghodrat, Muhuan Huang, Chun-
yue Liu, Bingjun Xiao, and Yi Zou. “Accelerator-rich CMPs: From concept to

214



real hardware.” In 2013 IEEE 31st International Conference on Computer Design
(ICCD), pp. 169–176, 2013.

[CCL23] Young-Kyu Choi, Yuze Chi, Jason Lau, and Jason Cong. “TARO: Auto-
matic Optimization for Free-Running Kernels in FPGA High-Level Synthesis.”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
42(7):2423–2427, 2023.

[CCP16] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, et al. “A cloud-scale acceleration architecture.” In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, p. 7. IEEE Press, 2016.

[CCW18] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. “SODA: stencil with
optimized dataflow architecture.” In 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 1–8. IEEE, 2018.

[CFH18] Jason Cong, Zhenman Fang, Yuchen Hao, Peng Wei, Cody Hao Yu, Chen
Zhang, and Peipei Zhou. “Best-Effort FPGA Programming: A Few Steps Can
Go a Long Way.” arXiv preprint arXiv:1807.01340, 2018.

[CGC22] Yuze Chi, Licheng Guo, and Jason Cong. “Accelerating SSSP for Power-Law
Graphs.” In Proceedings of the 2022 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’22, p. 190–200, New York, NY, USA,
2022. Association for Computing Machinery.

[CGG14] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik
Gururaj, and Glenn Reinman. “Accelerator-rich architectures: Opportunities
and progresses.” In Proceedings of the 51st Annual Design Automation Conference,
pp. 1–6. ACM, 2014.

[CGH18] Jason Cong, Licheng Guo, Po-Tsang Huang, Peng Wei, and Tianhe Yu.
“SMEM++: A Pipelined and Time-Multiplexed SMEM Seeding Accelerator
for Genome Sequencing.” In 2018 28th International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 210–2104. IEEE, 2018.

[CGL09] Jason Cong, Karthik Gururaj, Bin Liu, Chunyue Liu, Zhiru Zhang, Sheng
Zhou, and Yi Zou. “Evaluation of static analysis techniques for fixed-point
precision optimization.” In 2009 17th IEEE Symposium on Field Programmable
Custom Computing Machines, pp. 231–234. IEEE, 2009.

[CGL21] Yuze Chi, Licheng Guo, Jason Lau, Young-kyu Choi, Jie Wang, and Jason Cong.
“Extending High-Level Synthesis for Task-Parallel Programs.” In 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 204–213, 2021.

215



[CHB18] Zhe Chen, Andrew Howe, Hugh T Blair, and Jason Cong. “CLINK: Com-
pact LSTM inference kernel for energy efficient neurofeedback devices.” In
ISLPED’18, p. 2, 2018.

[CHK21] Anthony Cabrera, Seth Hitefield, Jungwon Kim, Seyong Lee, Narasinga Rao
Miniskar, and Jeffrey S Vetter. “Toward Performance Portable Programming
for Heterogeneous Systems on a Chip: A Case Study with Qualcomm Snap-
dragon SoC.” In 2021 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–7. IEEE, 2021.

[CHP16a] Jason Cong, Muhuan Huang, Peichen Pan, Yuxin Wang, and Peng Zhang.
“Source-to-source optimization for HLS.” In FPGAs for Software Programmers,
pp. 137–163. Springer, 2016.

[CHP16b] Jason Cong, Muhuan Huang, Peichen Pan, Di Wu, and Peng Zhang. “Software
infrastructure for enabling FPGA-based accelerations in data centers.” In
Proceedings of the 2016 International Symposium on Low Power Electronics and
Design, pp. 154–155. ACM, 2016.

[CLL12] Jason Cong, Bin Liu, Guojie Luo, and Raghu Prabhakar. “Towards layout-
friendly high-level synthesis.” In ISPD ’12, 2012.

[CLL22] Jason Cong, Jason Lau, Gai Liu, Stephen Neuendorffer, Peichen Pan, Kees
Vissers, and Zhiru Zhang. “FPGA HLS Today: Successes, Challenges, and
Opportunities.” ACM Transactions on Reconfigurable Technology and Systems,
15(4), Aug 2022.

[CLN11] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers,
and Zhiru Zhang. “High-Level Synthesis for FPGAs: From Prototyping to
Deployment.” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 30(4):473–491, 2011.

[CMH10] Eric S Chung, Peter A Milder, James C Hoe, and Ken Mai. “Single-chip
heterogeneous computing: Does the future include custom logic, FPGAs,
and GPGPUs?” In 2010 43rd annual IEEE/ACM international symposium on
microarchitecture, pp. 225–236. IEEE, 2010.

[CMJ18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al.
“TVM: An automated end-to-end optimizing compiler for deep learning.” In
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pp. 578–594, 2018.

[Con01] J. Cong. “An interconnect-centric design flow for nanometer technologies.”
Proceedings of the IEEE, 89(4):505–528, 2001.

216



[CS00] Luca P Carloni and Alberto L Sangiovanni-Vincentelli. “Performance analysis
and optimization of latency insensitive systems.” In Proceedings of the 37th
Annual Design Automation Conference, pp. 361–367, 2000.

[CSG11] Andrew A Chien, Allan Snavely, and Mark Gahagan. “10x10: A general-
purpose architectural approach to heterogeneity and energy efficiency.” Proce-
dia Computer Science, 4:1987–1996, 2011.

[CSR10] Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. “Customizable
domain-specific computing.” IEEE Design & Test of Computers, 28(2):6–15,
2010.

[CW18] Jason Cong and Jie Wang. “PolySA: polyhedral-based systolic array auto-
compilation.” In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–8. IEEE, 2018.

[CWY18a] Jason Cong, Peng Wei, Cody Hao Yu, and Peng Zhang. “Automated accel-
erator generation and optimization with composable, parallel and pipeline
architecture.” In Proceedings of the 55th Annual Design Automation Conference
(DAC), pp. 1–6. IEEE, 2018.

[CWY18b] Jason Cong, Peng Wei, Cody Hao Yu, and Peipei Zhou. “Latte: Locality
aware transformation for high-level synthesis.” In 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 125–128. IEEE, 2018.

[CZD24] Hongzheng Chen, Jiahao Zhang, Yixiao Du, Shaojie Xiang, Zichao Yue, Ni-
ansong Zhang, Yaohui Cai, and Zhiru Zhang. “Understanding the Potential
of FPGA-Based Spatial Acceleration for Large Language Model Inference.”
ACM Transactions on Reconfigurable Technology and Systems, Apr 2024.

[CZX24] Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia
Dai, and Zhiru Zhang. “Allo: A Programming Model for Composable Accel-
erator Design.” Proc. ACM Program. Lang., 8(PLDI), June 2024.

[De 59] Rene De La Briandais. “File searching using variable length keys.” In Papers
presented at the the March 3-5, 1959, Western Joint Computer Conference, pp.
295–298. ACM, 1959.

[DKR18] Michael Ditty, Ashish Karandikar, and David Reed. “NVIDIA’s Xavier SoC.”
In Hot chips: a symposium on high performance chips, 2018.

[DLS23] Linfeng Du, Tingyuan Liang, Sharad Sinha, Zhiyao Xie, and Wei Zhang.
“FADO: Floorplan-Aware Directive Optimization for High-Level Synthesis
Designs on Multi-Die FPGAs.” In Proceedings of the 2023 ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays (FPGA ’23), 2023.

217



[DLZ18] Steve Dai, Gai Liu, and Zhiru Zhang. “A Scalable Approach to Exact Resource-
Constrained Scheduling Based on a Joint SDC and SAT Formulation.” In Pro-
ceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA ’18), 2018.

[DLZ24] Linfeng Du, Tingyuan Liang, Xiaofeng Zhou, Jinming Ge, Shangkun Li,
Sharad Sinha, Jieru Zhao, Zhiyao Xie, and Wei Zhang. “FADO: Floorplan-
Aware Directive Optimization Based on Synthesis and Analytical Models for
High-Level Synthesis Designs on Multi-Die FPGAs.” ACM Trans. Reconfig-
urable Technol. Syst., 17(3), September 2024.

[DSL24] Zijian Ding, Atefeh Sohrabizadeh, Weikai Li, Zongyue Qin, Yizhou Sun, and
Jason Cong. “Efficient Task Transfer for HLS DSE.”, 2024.

[Du24] Yixiao Du. “Cornell University: Building Sparse Linear Algebra Accelerators
with HLS.” Webinar, April 2024.

[DXX24] Fan Dang, Yifan Xu, Rongwu Xu, Xinlei Chen, and Yunhao Liu. “LSync: A
Universal Timeline-Synchronizing Solution for Live Streaming.” IEEE/ACM
Transactions on Networking, 32(5):4144–4159, 2024.

[EPF24] EPFL Processor Architecture Laboratory. “DHLS (Dynamic High-Level Syn-
thesis) Compiler Based on MLIR.”, 04 2024.

[EPG07] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos
Pacheco, Matthew S Tschantz, and Chen Xiao. “The Daikon system for
dynamic detection of likely invariants.” Science of computer programming,
69(1-3):35–45, 2007.

[Fei12] Tom Feist. “Vivado design suite.” White Paper, 5:30, 2012.

[FKY15] Koichi Fujiwara, Kazushi Kawamura, Masao Yanagisawa, and Nozomu To-
gawa. “Clock skew estimate modeling for FPGA high-level synthesis and its
application.” In ASICON ’15, 2015.

[FKY16] Koichi Fujiwara, Kazushi Kawamura, Masao Yanagisawa, and Nozomu To-
gawa. “A high-level synthesis algorithm for FPGA designs optimizing critical
path with interconnection-delay and clock-skew consideration.” In VLSI-DAT
’16, 2016.

[GA13] Marcel Gort and Jason H Anderson. “Range and bitmask analysis for hard-
ware optimization in high-level synthesis.” In 2013 18th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 773–779. IEEE, 2013.

218



[GCL23] Licheng Guo, Yuze Chi, Jason Lau, Linghao Song, Xingyu Tian, Moazin
Khatti, Weikang Qiao, Jie Wang, Ecenur Ustun, Zhenman Fang, Zhiru Zhang,
and Jason Cong. “TAPA: A Scalable Task-parallel Dataflow Programming
Framework for Modern FPGAs with Co-optimization of HLS and Physical
Design.” ACM Transactions on Reconfigurable Technology and Systems, 16(4), Dec
2023.

[GCW21] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun,
Zhiru Zhang, and Jason Cong. “AutoBridge: Coupling Coarse-Grained
Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die
FPGAs.” In Proceedings of the 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’21), 2021.

[GF64] Bernard A. Galler and Michael J. Fisher. “An improved equivalence algorithm.”
Communications of the ACM, 7(5):301–303, May 1964.

[GGS06] Amir Hossein Ghamarian, Marc CW Geilen, Sander Stuijk, Twan Basten,
Bart D Theelen, Mohammad Reza Mousavi, Arno JM Moonen, and Marco JG
Bekooij. “Throughput analysis of synchronous data flow graphs.” In Sixth In-
ternational Conference on Application of Concurrency to System Design (ACSD’06),
pp. 25–36. IEEE, 2006.

[Gil74] KAHN Gilles. “The semantics of a simple language for parallel programming.”
Information processing, 74:471–475, 1974.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed Auto-
mated Random Testing.” In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’05, pp. 213–223,
New York, NY, USA, 2005. ACM.

[GLC20] Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen,
Zhiru Zhang, and Jason Cong. “Analysis and Optimization of the Implicit
Broadcasts in FPGA HLS to Improve Maximum Frequency.” In Proceedings of
the 2020 57th ACM/IEEE Design Automation Conference (DAC ’20), 2020.

[GLM08] Patrice Godefroid, Michael Y. Levin, and David A Molnar. “Automated
Whitebox Fuzz Testing.” In Network Distributed Security Symposium (NDSS).
Internet Society, 2008.

[GLR19] Licheng Guo, Jason Lau, Zhenyuan Ruan, Peng Wei, and Jason Cong. “Hard-
ware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing:
A Race Between FPGA and GPU.” In Proceedings of the 2019 IEEE 27th An-
nual International Symposium on Field-Programmable Custom Computing Machines
(FCCM ’19), 2019.

219



[GLW20] Licheng Guo, Jason Lau, Jie Wang, Cody Hao Yu, Yuze Chi, Zhe Chen,
Zhiru Zhang, and Jason Cong. “Analysis and Optimization of the Implicit
Broadcasts in FPGA HLS to Improve Maximum Frequency.” In Proceedings
of the 28th ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA). ACM, 2020.

[GMN23] Chang Gao, Zhengyang Ming, Kim-Lien Nguyen, Xiaodong Zhong, and
John Paul Finn. “Undersampling reconstruction of ferumoxytol-enhanced
cardiac cine MRI using a spatiotemporal neural network.” In Proeedings of the
31st Annual Meeting of ISMRM, p. 391, 2023.

[GMZ22] Licheng Guo, Pongstorn Maidee, Yun Zhou, Chris Lavin, Jie Wang, Yuze Chi,
Weikang Qiao, Alireza Kaviani, Zhiru Zhang, and Jason Cong. “RapidStream:
Parallel Physical Implementation of FPGA HLS Designs.” In Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA ’22), 2022.

[GMZ23] Licheng Guo, Pongstorn Maidee, Yun Zhou, Chris Lavin, Eddie Hung, Wuxi
Li, Jason Lau, Weikang Qiao, Yuze Chi, Linghao Song, Yuanlong Xiao, Alireza
Kaviani, Zhiru Zhang, and Jason Cong. “RapidStream 2.0: Automated Par-
allel Implementation of Latency–Insensitive FPGA Designs Through Partial
Reconfiguration.” ACM Trans. Reconfigurable Technol. Syst., 16(4), September
2023.

[GSF22] Chang Gao, Shu-Fu Shih, J Paul Finn, and Xiaodong Zhong. “A projection-
based k-space transformer network for undersampled radial mri reconstruc-
tion with limited training subjects.” In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 726–736. Springer, 2022.

[GZK21] Abraham Gonzalez, Jerry Zhao, Ben Korpan, Hasan Genc, Colin Schmidt, John
Wright, Ayan Biswas, Alon Amid, Farhana Sheikh, Anton Sorokin, et al. “A
16mm 2 106.1 GOPS/W Heterogeneous RISC-V Multi-Core Multi-Accelerator
SoC in Low-Power 22nm FinFET.” In ESSCIRC 2021-IEEE 47th European Solid
State Circuits Conference (ESSCIRC), pp. 259–262. IEEE, 2021.

[HJJ96] Steven Huss-Lederman, Elaine M Jacobson, Jeremy R Johnson, Anna Tsao,
and Thomas Turnbull. “Implementation of Strassen’s algorithm for matrix
multiplication.” In Supercomputing’96: Proceedings of the 1996 ACM/IEEE
Conference on Supercomputing, pp. 32–32. IEEE, 1996.

[HKP84] H James Hoover, Maria M Klawe, and Nicholas Pippenger. “Bounding fan-out
in logical networks.” Univ. of Toronto, 1984.

[HO09] Hwa-You Hsu and Alessandro Orso. “MINTS: A General Framework and Tool
for Supporting Test-suite Minimization.” In Proceedings of the 31st International

220



Conference on Software Engineering, ICSE ’09, pp. 419–429, Washington, DC,
USA, 2009. IEEE Computer Society.

[Hoe94] Wassily Hoeffding. “Probability inequalities for sums of bounded random
variables.” In The Collected Works of Wassily Hoeffding, pp. 409–426. Springer,
1994.

[HRJ10] Xiaohuang Huang, Christopher I Rodrigues, Stephen Jones, Ian Buck, and
Wen-mei Hwu. “Xmalloc: A scalable lock-free dynamic memory allocator for
many-core machines.” In 2010 10th IEEE International Conference on Computer
and Information Technology, pp. 1134–1139. IEEE, 2010.

[Int19] Intel. Intel Hyperflex Architecture High-Performance Design Handbook. Intel, 2019.

[Int24] Intel. “Intel High Level Synthesis Compiler.” https://www.intel.
com/content/www/us/en/software/programmable/quartus-prime/
hls-compiler.html, 2024.

[JGI18] Lana Josipović, Radhika Ghosal, and Paolo Ienne. “Dynamically Scheduled
High-level Synthesis.” In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA ’18), 2018.

[JGI20] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. “Invited Tutorial: Dyna-
matic: From C/C++ to Dynamically Scheduled Circuits.” In Proceedings of the
2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA ’20), 2020.

[JKH22] EunJin Jeong, Jangryul Kim, and Soonhoi Ha. “TensorRT-based framework
and optimization methodology for deep learning inference on jetson boards.”
ACM Transactions on Embedded Computing Systems (TECS), 21(5):1–26, 2022.

[JLD22] Xinqi Jin, Lingkun Li, Fan Dang, Xinlei Chen, and Yunhao Liu. “A survey on
edge computing for wearable technology.” Digital Signal Processing, 125:103146,
2022. Sensing, Signal Processing and Computing for the Era of Wearables.

[JSO20] JSON Schema. “JSON Schema: A Media Type for Describing JSON Docu-
ments.” https://json-schema.org/specification.html, 2020. Draft 2020-
12.

[KA13] Ana Klimovic and Jason H Anderson. “Bitwidth-optimized hardware ac-
celerators with software fallback.” In 2013 International Conference on Field-
Programmable Technology (FPT), pp. 136–143. IEEE, 2013.

[Kar24] Andrej Karpathy. “llama2.c: Inference LLaMA 2 in one file of pure C.”, 2024.

221

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://json-schema.org/specification.html


[KEG01] Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and David Notkin.
“Automated support for program refactoring using invariants.” In ICSM 2001,
Proceedings of the International Conference on Software Maintenance, pp. 736–743,
Florence, Italy, November 6–10, 2001.

[Khr21] Khronos. “SYCL 2020 Specification revision 3.” https://www.khronos.org/
registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf, 2021.

[KLT13] Sen M Kuo, Bob H Lee, and Wenshun Tian. Real-time digital signal processing:
fundamentals, implementations and applications. John Wiley & Sons, 2013.

[KPZ16] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delimitrou, Chris-
tos Kozyrakis, and Kunle Olukotun. “Automatic generation of efficient ac-
celerators for reconfigurable hardware.” In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), pp. 115–127. Ieee,
2016.

[KSR18] Didier Keymeulen, Simon Shin, Jason Riddley, Matthew Klimesh, Aaron Kiely,
Elliott Liggett, Peter Sullivan, Michael Bernas, Hamid Ghossemi, Greg Flesch,
et al. “High performance space computing with system-on-chip instrument
avionics for space-based next generation imaging spectrometers (NGIS).” In
2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 33–36.
IEEE, 2018.

[KTC23] Moazin Khatti, Xingyu Tian, Yuze Chi, Licheng Guo, Jason Cong, and Zhen-
man Fang. “PASTA: Programming and Automation Support for Scalable
Task-Parallel HLS Programs on Modern Multi-Die FPGAs.” In Proceedings
of the 2023 IEEE 31st Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM ’23), 2023.

[LAB21] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. “MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation.” In Proceedings of the 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO ’21), 2021.

[LCH19] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou,
Jason Cong, and Zhiru Zhang. “HeteroCL: A multi-paradigm programming
infrastructure for software-defined reconfigurable computing.” In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 242–251, 2019.

[LCN16] Xinheng Liu, Yao Chen, Tan Nguyen, Swathi Gurumani, Kyle Rupnow, and
Deming Chen. “High level synthesis of complex applications: An H. 264

222

https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf


video decoder.” In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 224–233. ACM, 2016.

[LFF20] Alec Lu, Zhenman Fang, Nazanin Farahpour, and Lesley Shannon. “CHIP-
KNN: A Configurable and High-Performance K-Nearest Neighbors Acceler-
ator on Cloud FPGAs.” In Proceedings of the 2020 International Conference on
Field-Programmable Technology (ICFPT ’20), 2020.

[LGM05] Dong-U Lee, Altaf Abdul Gaffar, Oskar Mencer, and Wayne Luk. “MiniBit:
bit-width optimization via affine arithmetic.” In Proceedings of the 42nd annual
Design Automation Conference, pp. 837–840. ACM, 2005.

[Li18] Heng Li. “Minimap2: pairwise alignment for nucleotide sequences.” Bioinfor-
matics, 34(18):3094–3100, 2018.

[LK03] Ruibing Lu and Cheng-Kok Koh. “Performance optimization of latency
insensitive systems through buffer queue sizing of communication channels.”
In ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat.
No. 03CH37486), pp. 227–231. IEEE, 2003.

[LK06] Ruibing Lu and Cheng-Kok Koh. “Performance analysis of latency-insensitive
systems.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 25(3):469–483, 2006.

[LK18] Chris Lavin and Alireza Kaviani. “RapidWright: Enabling custom crafted
implementations for FPGAs.” In Proceedings of the 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM ’18), 2018.

[LL20] Wuyue Lu and Ligang Liu. “Surface reconstruction via cooperative evolu-
tions.” Computer Aided Geometric Design, 77:101831, 2020.

[LLC23] Jianwen Luo, Xinzhe Liu, Fupeng Chen, and Yajun Ha. “HRFF: Hierarchical
and Recursive Floorplanning Framework for NoC-Based Scalable Multidie
FPGAs.” IEEE Transactions on Circuits and Systems I: Regular Papers, 70(11):4295–
4308, 2023.

[LLS23] Kenneth Liu, Alec Lu, Kartik Samtani, Zhenman Fang, and Licheng Guo.
“CHIP-KNNv2: A Configurable and High-Performance K-Nearest Neighbors
Accelerator on HBM-based FPGAs.” ACM Trans. Reconfigurable Technol. Syst.,
16(4), December 2023.

[LLV] LLVM. “CIRCT: Circuit IR Compilers and Tools.” https://circt.llvm.org/.

[LM87] Edward A Lee and David G Messerschmitt. “Synchronous data flow.” Pro-
ceedings of the IEEE, 75(9):1235–1245, 1987.

223

https://circt.llvm.org/


[LS05] Henry Oliver Lancaster and Eugene Seneta. “Chi-square distribution.” Ency-
clopedia of biostatistics, 2, 2005.

[LSZ20] Jason Lau, Aishwarya Sivaraman, Qian Zhang, Muhammad Ali Gulzar, Jason
Cong, and Miryung Kim. “HeteroRefactor: refactoring for heterogeneous
computing with FPGA.” In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, p. 493–505, New York, NY, USA,
2020. Association for Computing Machinery.

[LWK22] Sihao Liu, Jian Weng, Dylan Kupsh, Atefeh Sohrabizadeh, Zhengrong Wang,
Licheng Guo, Jiuyang Liu, Maxim Zhulin, Rishabh Mani, Lucheng Zhang,
Jason Cong, and Tony Nowatzki. “OverGen: Improving FPGA Usability
through Domain-specific Overlay Generation.” In 2022 55th IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pp. 35–56, 2022.

[LXX24] Jason Lau, Yuanlong Xiao, Yutong Xie, Yuze Chi, Linghao Song, Shaojie Xiang,
Michael Lo, Zhiru Zhang, Jason Cong, and Licheng Guo. “RapidStream
IR: Infrastructure for FPGA High-Level Physical Synthesis.” arXiv preprint
arXiv:2410.13079, 2024.

[MB24] Kingshuk Majumder and Uday Bondhugula. “HIR: An MLIR-based Interme-
diate Representation for Hardware Accelerator Description.” In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’23. Association for Computing
Machinery, 2024.

[MGC23] Mohammadmahdi Mazraeli, Yu Gao, and Paul Chow. “Partitioning Large-
Scale, Multi-FPGA Applications for the Data Center.” In Proceedings of the
2023 33rd International Conference on Field-Programmable Logic and Applications
(FPL ’23), 2023.

[NBN23] Tan Nguyen, Zachary Blair, Stephen Neuendorffer, and John Wawrzynek.
“SPADES: A Productive Design Flow for Versal Programmable Logic.” In
Proceedings of the 2023 33rd International Conference on Field-Programmable Logic
and Applications (FPL ’23), 2023.

[NTL21] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. “A compiler
infrastructure for accelerator generators.” In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’21, p. 804–817, New York, NY, USA, 2021.
Association for Computing Machinery.

[Nvi11] Nvidia. “Nvidia CUDA C programming guide.” Nvidia Corporation, 120(18):8,
2011.

224



[NWL24] Xuefei Ning, Zifu Wang, Shiyao Li, Zinan Lin, Peiran Yao, Tianyu Fu,
Matthew B. Blaschko, Guohao Dai, Huazhong Yang, and Yu Wang. “Can
LLMs Learn by Teaching for Better Reasoning? A Preliminary Study.”, 2024.

[OC97] Takumi Okamoto and Jason Cong. “Buffered Steiner tree construction with
wire sizing for interconnect layout optimization.” In ICCAD ’96, 1997.

[PB91] Massoud Pedram and Narasimha B Bhat. “Layout Driven Logic Restructur-
ing/Decomposition.” In ICCAD’91, 1991.

[PCC14] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers,
Gopi Prashanth Gopal, Jan Gray, et al. “A reconfigurable fabric for acceler-
ating large-scale datacenter services.” ACM SIGARCH Computer Architecture
News, 42(3):13–24, 2014.

[PEB09] Andrew Putnam, Susan Eggers, Dave Bennett, Eric Dellinger, Jeff Mason,
Henry Styles, Prasanna Sundararajan, and Ralph Wittig. “Performance and
power of cache-based reconfigurable computing.” ACM SIGARCH Computer
Architecture News, 37(3):395–405, 2009.

[PGM19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library.” In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[Pop24] Michael Popoloski. “Slang: SystemVerilog compiler and language services.”
https://github.com/MikePopoloski/slang, 2024.

[PSK15] Nam Khanh Pham, Amit Kumar Singh, Akash Kumar, and Mi Mi Aung
Khin. “Exploiting loop-array dependencies to accelerate the design space
exploration with high level synthesis.” In 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 157–162. IEEE, 2015.

[PSS18] Yu Pu, Chunlei Shi, Giby Samson, Dongkyu Park, Ken Easton, Rudy Beraha,
Adam Newham, Mark Lin, Venkat Rangan, Karam Chatha, et al. “A 9-mm 2

ultra-low-power highly integrated 28-nm CMOS SoC for Internet of Things.”
IEEE Journal of Solid-State Circuits, 53(3):936–948, 2018.

[PXM18] Dongjoon Park, Yuanlong Xiao, Nevo Magnezi, and André DeHon. “Case for
Fast FPGA Compilation using Partial Reconfiguration.” In FPL, pp. 235–2353,
Dublin, Ireland, 2018. IEEE.

225

https://github.com/MikePopoloski/slang


[PZS13] Louis-Noel Pouchet, Peng Zhang, Ponnuswamy Sadayappan, and Jason Cong.
“Polyhedral-based data reuse optimization for configurable computing.” In
Proceedings of the ACM/SIGDA international symposium on Field programmable
gate arrays, pp. 29–38. ACM, 2013.

[QGF23] Weikang Qiao, Licheng Guo, Zhenman Fang, Mau-Chung Frank Chang, and
Jason Cong. “TopSort: A High-Performance Two-Phase Sorting Accelerator
Optimized on HBM-Based FPGAs.” IEEE Transactions on Emerging Topics in
Computing, 11(2):404–419, 2023.

[QL11] Dan Quinlan and Chunhua Liao. “The ROSE source-to-source compiler
infrastructure.” In Cetus users and compiler infrastructure workshop, in conjunction
with PACT, volume 2011, p. 1. Citeseer, 2011.

[QOG21] Weikang Qiao, Jihun Oh, Licheng Guo, Mau-Chung Frank Chang, and Ja-
son Cong. “FANS: FPGA-Accelerated Near-Storage Sorting.” In 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 106–114, 2021.

[RHL18] Zhenyuan Ruan, Tong He, Bojie Li, Peipei Zhou, and Jason Cong. “ST-Accel:
A high-level programming platform for streaming applications on FPGA.” In
2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 9–16. IEEE, 2018.

[RLL11] Kyle Rupnow, Yun Liang, Yinan Li, and Deming Chen. “A study of high-level
synthesis: Promises and challenges.” In 2011 9th IEEE International Conference
on ASIC, pp. 1102–1105. IEEE, 2011.

[RNM16] Cindy Rubio-González, Cuong Nguyen, Benjamin Mehne, Koushik Sen, James
Demmel, William Kahan, Costin Iancu, Wim Lavrijsen, David H Bailey, and
David Hough. “Floating-point precision tuning using blame analysis.” In
Proceedings of the 38th International Conference on Software Engineering, pp. 1074–
1085. ACM, 2016.

[RNN13] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Dem-
mel, William Kahan, Koushik Sen, David H Bailey, Costin Iancu, and David
Hough. “Precimonious: Tuning assistant for floating-point precision.” In
SC’13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pp. 1–12. IEEE, 2013.

[RXC24] Anastasiia Ruzhanskaia, Pengcheng Xu, David Cock, and Timothy Roscoe.
“Rethinking Programmed I/O for Fast Devices, Cheap Cores, and Coherent
Interconnects.”, 2024.

[Sal02] Matthew J. Saltzman. Coin-OR: An Open-Source Library for Optimization, pp.
3–32. Springer US, Boston, MA, 2002.

226



[SBA00] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. “Bidwidth
Analysis with Application to Silicon Compilation.” In Proceedings of the ACM
SIGPLAN 2000 Conference on Programming Language Design and Implementation,
PLDI ’00, pp. 108–120, New York, NY, USA, 2000. ACM.

[SBS23] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. “Robust
GNN-Based Representation Learning for HLS.” In 2023 IEEE/ACM Interna-
tional Conference on Computer Aided Design (ICCAD), pp. 1–9, 2023.

[SCS22] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young-kyu Choi, Jason
Lau, and Jason Cong. “Sextans: A Streaming Accelerator for General-
Purpose Sparse-Matrix Dense-Matrix Multiplication.” In Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’22, p. 65–77, New York, NY, USA, 2022. Association for Computing
Machinery.

[SDL24] Chunyou Su, Linfeng Du, Tingyuan Liang, Zhe Lin, Maolin Wang, Sharad
Sinha, and Wei Zhang. “GraFlex: Flexible Graph Processing on FPGAs
through Customized Scalable Interconnection Network.” In Proceedings of the
2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’24, p. 143–153, New York, NY, USA, 2024. Association for Computing
Machinery.

[SDM17] Nitish Srivastava, Steve Dai, Rajit Manohar, and Zhiru Zhang. “Accelerating
Face Detection on Programmable SoC Using C-Based Synthesis.” In 25th

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Feb
2017.

[SGS10] John E Stone, David Gohara, and Guochun Shi. “OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems.” Computing in
science & engineering, 12(3):66–73, 2010.

[Sie24] Siemens. Catapult High-Level Synthesis and Verification, 2024.

[SKK12] Markus Steinberger, Michael Kenzel, Bernhard Kainz, and Dieter Schmalstieg.
“ScatterAlloc: Massively parallel dynamic memory allocation for the GPU.” In
2012 Innovative Parallel Computing (InPar), pp. 1–10. IEEE, 2012.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit
Testing Engine for C.” In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE-13, pp. 263–272, New York, NY,
USA, 2005. ACM.

227



[SMM03] Giacinto Paolo Saggese, Antonino Mazzeo, Nicola Mazzocca, and Antonio GM
Strollo. “An FPGA-based performance analysis of the unrolling, tiling, and
pipelining of the AES algorithm.” In International Conference on Field Pro-
grammable Logic and Applications, pp. 292–302. Springer, 2003.

[Sol20] Xilinx/Falcon Computing Solutions. “Merlin Compiler.” https://www.
mentor.com/hls-lp/catapult-high-level-synthesis, 2020.

[SS90] Kanwar Jit Singh and Alberto Sangiovanni-Vincentelli. “A heuristic algorithm
for the fanout problem.” In DAC ’90, 1990.

[SW03] Jérôme Siméon and Philip Wadler. “The essence of XML.” SIGPLAN Not.,
38(1):1–13, jan 2003.

[SYG22] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. “AutoDSE: En-
abling Software Programmers to Design Efficient FPGA Accelerators.” ACM
Trans. Des. Autom. Electron. Syst., 27(4), feb 2022.

[TDG15] Mingxing Tan, Steve Dai, Udit Gupta, and Zhiru Zhang. “Mapping-aware
constrained scheduling for LUT-based FPGAs.” In Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
190–199. ACM, 2015.

[TFX20] Zhongze Tang, Xianglong Feng, Yi Xie, Huy Phan, Tian Guo, Bo Yuan, and
Sheng Wei. “VVSec: Securing Volumetric Video Streaming via Benign Use
of Adversarial Perturbation.” In Proceedings of the 28th ACM International
Conference on Multimedia, MM ’20, p. 3614–3623, New York, NY, USA, 2020.
Association for Computing Machinery.

[TG05] Sriraman Tallam and Neelam Gupta. “A Concept Analysis Inspired Greedy Al-
gorithm for Test Suite Minimization.” In Proceedings of the 6th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE ’05, pp. 35–42, New York, NY, USA, 2005. ACM.

[Tho16] David B Thomas. “Synthesisable recursion for C++ HLS tools.” In 2016 IEEE
27th International Conference on Application-specific Systems, Architectures and
Processors (ASAP), pp. 91–98. IEEE, 2016.

[Tho19] David B Thomas. “Templatised Soft Floating-Point for High-Level Synthesis.”
In 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2019.

[TK18] Masato Tatsuoka and Mineo Kaneko. “Wire congestion aware high level
synthesis flow with source code compiler.” In ICICDT’18, 2018.

228

https://www.mentor.com/ hls-lp/catapult-high-level-synthesis
https://www.mentor.com/ hls-lp/catapult-high-level-synthesis


[TPF23] Zhongze Tang, Huy Phan, Xianglong Feng, Bo Yuan, Yao Liu, and Sheng Wei.
“Security-Preserving Live 3D Video Surveillance.” In Proceedings of the 14th
ACM Multimedia Systems Conference, MMSys ’23, p. 266–277, New York, NY,
USA, 2023. Association for Computing Machinery.

[TWO15] Masato Tatsuoka, Ryosuke Watanabe, Tatsushi Otsuka, Takashi Hasegawa,
Qiang Zhu, Ryosuke Okamura, Xingri Li, and Tsuyoshi Takabatake. “Physi-
cally aware high level synthesis design flow.” In DAC ’15, 2015.

[TYL23] Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman
Fang. “SASA: A Scalable and Automatic Stencil Acceleration Framework for
Optimized Hybrid Spatial and Temporal Parallelism on HBM-based FPGAs.”
ACM Trans. Reconfigurable Technol. Syst., 16(2), April 2023.

[TYL24] Zhongze Tang, Mengmei Ye, Yao Liu, and Sheng Wei. “Privacy-Preserving
Multimedia Mobile Cloud Computing Using Protective Perturbation.”, 2024.

[VHB06] Babette Van Antwerpen, Michael D Hutton, Gregg Baeckler, and Richard
Yuan. “Register retiming technique.”, October 10 2006. US Patent 7,120,883.

[VPN10] Jason Villarreal, Adrian Park, Walid Najjar, and Robert Halstead. “Designing
Modular Hardware Accelerators in C with ROCCC 2.0.” In Proceedings of the
2010 18th IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM ’10), 2010.

[Wea08] Nicholas Weaver. “Retiming, repipelining and c-slow retiming.” In Reconfig-
urable Computing, pp. 383–399. Elsevier, 2008.

[WGC21] Jie Wang, Licheng Guo, and Jason Cong. “AutoSA: A Polyhedral Compiler
for High-Performance Systolic Arrays on FPGA.” In Proceedings of the 2021
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA
’21), 2021.

[WGK13] Clifford Wolf, Johann Glaser, and Johannes Kepler. “Yosys: A free Verilog
synthesis suite.” In Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), volume 97, 2013.

[WJN95] Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles. “Dynamic
storage allocation: A survey and critical review.” In International Workshop on
Memory Management, pp. 1–116. Springer, 1995.

[WMP03] Nicholas Weaver, Yury Markovskiy, Yatish Patel, and John Wawrzynek. “Post-
placement C-slow retiming for the Xilinx Virtex FPGA.” In Proceedings of the
2003 ACM/SIGDA eleventh international symposium on Field programmable gate
arrays, pp. 185–194. ACM, 2003.

229



[XAD20] Yuanlong Xiao, Syed Ahmed, and André DeHon. “Fast Linking of Separately
Compiled FPGA Blocks without a NoC.” In ICFPT, pp. 196–205, Maui, HI,
USA, 2020. IEEE.

[XDC24] Yutong Xie, Benyamin Davaji, Ivan Chakarov, Sandy Wen, Michael Hargrove,
David Fried, Peter C. Doerschuk, and Amit Lal. “Quantitative Comparison
of Simulation and Experiment Enabling a Lithography Digital Twin.” IEEE
Transactions on Semiconductor Manufacturing, 37(4):546–552, 2024.

[XHP22] Yuanlong Xiao, Aditya Hota, Dongjoon Park, and André DeHon. “HiPR:
High-level Partial Reconfiguration for Fast Incremental FPGA Compilation.”
In Proceedings of the 2022 32nd International Conference on Field-Programmable
Logic and Applications (FPL ’22), 2022.

[Xil19] Xilinx. “UltraScale Architecture and Product Data Sheet: Overview.”
https://www.xilinx.com/support/documentation/data_sheets/
ds890-ultrascale-overview.pdf, 2019.

[Xil20] Xilinx. “Xilinx Vitis Unified Platform.”, 2020.

[Xil21a] Xilinx. AI Engine Intrinsics User Guide (UG1078): (v2021.2). Xilinx, 2021.

[Xil21b] Xilinx. AI Engine Kernel Coding Best Practices Guide: UG1079 (v2021.1). Xilinx,
2021.

[Xil21c] Xilinx. Vitis High-Level Synthesis User Guide: UG1399 (v2021.2). Xilinx, 2021.

[Xil22a] Xilinx. “Adaptive Compute Acceleration Platform.”, 2022.

[Xil22b] Xilinx. “MLIR-AIE: MLIR-based AIEngine toolchain.”, 2022.

[Xil22c] Xilinx. “VCK5000 Versal Development Card.”, 2022.

[Xil22d] Xilinx. “Versal AI Core Series VCK190 Evaluation Kit.”, 2022.

[XMB22] Yuanlong Xiao, Eric Micallef, Andrew Butt, Matthew Hofmann, Marc Alston,
Matthew Goldsmith, Andrew Merczynski-Hait, and André DeHon. “PLD:
Fast FPGA Compilation to Make Reconfigurable Acceleration Compatible
with Modern Incremental Refinement Software Development.” In Proceedings
of the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2022, pp. 933–945, New York, NY,
USA, 2022. Association for Computing Machinery.

[XPB19] Yuanlong Xiao, Dongjoon Park, Andrew Butt, Hans Giesen, Zhaoyang Han,
Rui Ding, Nevo Magnezi, and André DeHon. “Reducing FPGA Compile Time
with Separate Compilation for FPGA Building Blocks.” In ICFPT, pp. 153–161,
TianJin, China, 2019. IEEE.

230

https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf


[XPN24] Yuanlong Xiao, Dongjoon Park, Zeyu Jason Niu, Aditya Hota, and André
Dehon. “ExHiPR: Extended High-Level Partial Reconfiguration for Fast In-
cremental FPGA Compilation.” ACM Transactions on Reconfigurable Technology
and Systems, 17(2), Mar 2024.

[XT15] Zeping Xue and David B Thomas. “SysAlloc: A hardware manager for dy-
namic memory allocation in heterogeneous systems.” In 2015 25th International
Conference on Field Programmable Logic and Applications (FPL), pp. 1–7. IEEE,
2015.

[XT16] Zeping Xue and David B Thomas. “SynADT: Dynamic Data Structures in
High Level Synthesis.” In 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 64–71. IEEE, 2016.

[YGB24] Peiran Yao, Kostyantyn Guzhva, and Denilson Barbosa. “Semantic Graphs
for Syntactic Simplification: A Revisit from the Age of LLM.”, 2024.

[YHC21] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen
Neuendorffer, and Deming Chen. “ScaleHLS: A New Scalable High-Level
Synthesis Framework on Multi-Level Intermediate Representation.” arXiv
preprint arXiv:2107.11673, 2021.

[YHC22] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen
Neuendorffer, and Deming Chen. “ScaleHLS: A New Scalable High-Level
Synthesis Framework on Multi-Level Intermediate Representation.” In Pro-
ceedings of the 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA ’22), 2022.

[YKW23] Peiran Yao, Matej Kosmajac, Abeer Waheed, Kostyantyn Guzhva, Natalie
Hervieux, and Denilson Barbosa. “NLP Workbench: Efficient and Extensible
Integration of State-of-the-art Text Mining Tools.” In Proceedings of the 17th
Conference of the European Chapter of the Association for Computational Linguistics:
System Demonstrations, p. 18–26. Association for Computational Linguistics,
2023.

[YMS24] Peiran Yao, Jerin George Mathew, Shehraj Singh, Donatella Firmani, and
Denilson Barbosa. “A Bayesian Approach Towards Crowdsourcing the Truths
from LLMs.” In NeurIPS 2024 Workshop on Bayesian Decision-making and
Uncertainty, 2024.

[YRB22] Peiran Yao, Tobias Renwick, and Denilson Barbosa. “WordTies: Measur-
ing Word Associations in Language Models via Constrained Sampling.” In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Findings of the
Association for Computational Linguistics: EMNLP 2022, pp. 5959–5970, Abu

231



Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics.

[YTP22] Mengmei Ye, Zhongze Tang, Huy Phan, Yi Xie, Bo Yuan, and Sheng Wei.
“Visual privacy protection in mobile image recognition using protective per-
turbation.” In Proceedings of the 13th ACM Multimedia Systems Conference,
MMSys ’22, p. 164–176, New York, NY, USA, 2022. Association for Computing
Machinery.

[YWG18] Cody Hao Yu, Peng Wei, Max Grossman, Peng Zhang, Vivek Sarker, and
Jason Cong. “S2FA: an accelerator automation framework for heterogeneous
computing in datacenters.” In Proceedings of the 55th Annual Design Automation
Conference (DAC), p. 153. ACM, 2018.

[YYX24] Qizheng Yang, Tianyi Yang, Mingcan Xiang, Lijun Zhang, Haoliang Wang,
Marco Serafini, and Hui Guan. “GMorph: Accelerating Multi-DNN Inference
via Model Fusion.” In Proceedings of the Nineteenth European Conference on Com-
puter Systems, EuroSys ’24, p. 505–523, New York, NY, USA, 2024. Association
for Computing Machinery.

[ZGD18] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen
Jin, Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita Velasquez,
Wenping Wang, and Zhiru Zhang. “Rosetta: A Realistic High-Level Synthesis
Benchmark Suite for Software-Programmable FPGAs.” Int’l Symp. on Field-
Programmable Gate Arrays (FPGA), Feb 2018.

[ZGR14] Hongbin Zheng, Swathi T Gurumani, Kyle Rupnow, and Deming Chen.
“Fast and effective placement and routing directed high-level synthesis for
FPGAs.” In Proceedings of the 2014 ACM/SIGDA international symposium on
Field-programmable gate arrays, pp. 1–10. ACM, 2014.

[ZLC13] Wei Zuo, Peng Li, Deming Chen, Louis-Noël Pouchet, Shunan Zhong, and
Jason Cong. “Improving polyhedral code generation for high-level synthe-
sis.” In 2013 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), pp. 1–10. IEEE, 2013.

[ZLD24] Shulin Zeng, Jun Liu, Guohao Dai, Xinhao Yang, Tianyu Fu, Hongyi Wang,
Wenheng Ma, Hanbo Sun, Shiyao Li, Zixiao Huang, Yadong Dai, Jintao Li, Ze-
hao Wang, Ruoyu Zhang, Kairui Wen, Xuefei Ning, and Yu Wang. “FlightLLM:
Efficient Large Language Model Inference with a Complete Mapping Flow
on FPGAs.” In Proceedings of the 2024 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA ’24), 2024.

[ZLY23] Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Yubo Du, Jack Lo,
Kristof Denolf, Stephen Neuendorffer, Alex Jones, Jingtong Hu, Deming Chen,

232



Jason Cong, and Peipei Zhou. “CHARM: Composing Heterogeneous AcceleR-
ators for Matrix Multiply on Versal ACAP Architecture.” In Proceedings of the
2023 ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’23, p. 153–164, New York, NY, USA, 2023. Association for Computing
Machinery.

[ZLY24] Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Shixin Ji, Jack Lo,
Kristof Denolf, Stephen Neuendorffer, Alex Jones, Jingtong Hu, Yiyu Shi,
Deming Chen, Jason Cong, and Peipei Zhou. “CHARM 2.0: Composing
Heterogeneous Accelerators for Deep Learning on Versal ACAP Architecture.”
ACM Trans. Reconfigurable Technol. Syst., 17(3), September 2024.

[ZPF16] P. Zhou, H. Park, Z. Fang, J. Cong, and A. DeHon. “Energy Efficiency of Full
Pipelining: A Case Study for Matrix Multiplication.” In FCCM ’16, 2016.

[ZTD15] Ritchie Zhao, Mingxing Tan, Steve Dai, and Zhiru Zhang. “Area-efficient
pipelining for FPGA-targeted high-level synthesis.” In Proceedings of the 52nd
Annual Design Automation Conference, p. 157. ACM, 2015.

[ZWK21] Qian Zhang, Jiyuan Wang, and Miryung Kim. “HeteroFuzz: fuzz testing to
detect platform dependent divergence for heterogeneous applications.” In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2021, p. 242–254, New York, NY, USA, 2021. Association for Computing
Machinery.

[ZWX22] Qian Zhang, Jiyuan Wang, Guoqing Harry Xu, and Miryung Kim. “Hetero-
Gen: transpiling C to heterogeneous HLS code with automated test generation
and program repair.” In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS ’22, p. 1017–1029, New York, NY, USA, 2022. Association for Computing
Machinery.

233


	Introduction
	Problem Statement
	Limited Programmability Support in Domain-Specific Resources
	Difficulty in Achieving High Performance and Efficiency
	Time-Consuming Porting Across Diverse Architectures

	Research Objectives
	Contribution Overview
	HeteroRefactor: Dynamic Analysis and Automated Refactoring
	Adroit: Architecture-Driven Optimization for Implicit Broadcasts
	RapidIR: Infrastructure for High-Level Physical Synthesis

	Dissertation Organization

	Background and Related Work
	Heterogeneous Computing Architecture
	Heterogeneous Compilers
	FPGA High-Level Synthesis Compilers
	Challenges in FPGA HLS Compilers
	Other Heterogeneous Compilers

	Challenges for Software Developers
	Case Study: Large Language Model Accelerator
	Pointer Usage and Memory Management
	Recursion and Algorithm Adaptation
	Data Representation and Precision
	Architecture-Specific Optimizations
	Adaptation and Portability Challenges
	Other Out-of-Scope Optimizations

	Related Work
	Improving Programmability
	Improving Performance
	Extensible Optimization Framework


	Dynamic Analysis and Automated Refactoring
	Overview
	Observations
	Approaches
	Contributions

	Approach
	Recursive Data Structure Transformation
	Integer Bitwidth Optimization
	Floating-Point Precision Optimization
	Selective Offloading with Guard Check

	Evaluation
	Benchmarks
	Experimental Setup
	Results for Recursive Data Structures
	Results for Integer Optimization
	Results for Floating-Point Optimization
	Overhead and Performance Analysis

	Conclusion

	Architecture-Driven Optimization for Implicit Broadcasts
	Overview
	Observations
	Approaches
	Contributions

	Problem Categorization
	Data Signal Broadcast
	Synchronization Control Signal
	Pipeline Control Signal

	Approach
	Broadcast-Aware Scheduling
	Synchronization Logic Pruning
	Skid-Buffer-Based Pipeline Control

	Evaluation
	Benchmarks
	Broadcast-Aware Scheduling in Genome Sequencing Acceleration
	Synchronization Logic Pruning and Pipeline Control Optimization
	Combined Results

	Conclusion

	Infrastructure for High-Level Physical Synthesis Optimizations
	Overview
	Observations
	Approaches
	Contributions

	Problem Statement
	Architectural Complexity of Modern FPGAs
	Limitations of Current Approaches
	The Need for High-Level Physical Synthesis
	Challenges in Real-World Physical Layout Optimization

	Approach
	Design Principles
	Progressively Refined Intermediate Representation
	Practical Utility Plugins
	Composable Transformation Passes
	Framework Integration

	Evaluation
	Support for Diverse High-Level Synthesis Inputs
	Multi-Floorplan Exploration
	Parallel Synthesis
	Benchmarking

	Conclusion

	Discussion and Evaluation
	Case Study 1: Synthetic Design
	Software Code
	Optimizations with HeteroRefactor
	Optimizations with Adroit
	Optimizations with RapidIR
	Results and Performance Analysis

	Case Study 2: Large Language Model
	Benchmark Setup
	Optimization Flow
	End-to-End Results

	Case Study 3: Genome Sequencing
	Background and Challenges
	Parallelization Approach
	Application of Heterosys Framework
	Results and Analysis
	Discussion

	Conclusion

	Conclusion and Future Work
	Dissertation Summary
	Future Research Directions
	Concluding Remarks

	References



