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ABSTRACT OF THE THESIS

Understanding Networks with Exponential-family Random Network Models

by

Zeyi Wang

Master of Science in Statistics

University of California, Los Angeles, 2023

Professor Mark Handcock, Chair

The structure of many complex social networks is determined by nodal and dyadic covariates

that are endogenous to the tie variables. While exponential-family random graph models

(ERGMs) have been very successful in modeling social networks with exogenous covariates,

they are often misspecified for networks where some covariates are stochastic. Exponential-

family random network models (ERNMs) are an extension of ERGM that retain the desirable

properties of ERGM, but allow the joint modeling of tie variables and covariates. We compare

ERGM to ERNM to show how conclusions of ERGMmodeling are improved by consideration

of the ERNM framework. In particular, ERNM simultaneously represents the effects of social

influence and social selection processes while commonly used models do not. We also look

into the latent class models for group clustering problems in social network. The random

nodal attributes can be observed or latent in ERNM. When the attributes is treated as

latent, we can investigate the probability of cluster group. Stochastic Block Models are a

well-known statistical models for group classification, however, they rely on the relational

data and omit the nodal characteristics. We compare these two models and provide a case

study to illustrate the main points.
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CHAPTER 1

Introduction

Social network analysis has been highly valued in the social sciences in recent years. Statisti-

cal models are widely used in various fields to represent network structure. The well-known

exponential-family random graph model (ERGM) is widely applied, where random graphs

consist of a selection of nodes with some fixed nodal or dyadic covariates and random connec-

tions (edges) between nodes (Frank and Strauss, 1986; Hunter and Handcock, 2006; Lusher

et al., 2013). A problem is that the assumption of fixed nodal covariates is sometimes inap-

propriate. The processes of edge and covariate formation commonly occur simultaneously

(Leenders, 1997).

A generalization of ERGM called the exponential-family random network model (ERNM)

was developed in Fellows (2012) and Fellows and Handcock (2012). It represents both “social

selection” and “social influence” processes, where the former states that the social connec-

tions are determined by the nodal attributes (Robins et al., 2001a; Friemel, 2015) and the

latter holds that the nodal attributes are determined by the social connections (Robins

et al., 2001b). ERNM represents a joint exponential-family model, where some or all the

nodal/dyadic attributes and social connections (edges) are treated as endogenous.

This paper is structured as follows. In the next two chapters (chapter 2 and 3), we

introduce the ERGM and ERNM classes with their model specifications, and we discuss

their model interpretations. Chapter 4 focuses on some interesting network statistics and

model estimation. In chapter 5, we compare ERGM and ERNM conceptually. A case-study

is conducted in chapter 5, which includes a detailed modeling and analyzing study using
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both ERGM and ERNM for an adolescent health dataset (Harris et al., 2007). Chapter 6

discusses the Latent ERNM and two case studies. Chapter 7 discusses the results of the

comparisons and concludes the paper.
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CHAPTER 2

ERGM and ERNM Classes

2.1 Construction of Social Network

A social network describes the network structures with n social actors (nodes), together with

a set of q actor variates, and the social connections between each pair of actor. The social

connections can be directed or undirected, which leads to either a directed social network or

an undirected social network.

We consider the situation where the network is the result of a social process, modeled

stochastically. For a social network (X, Y ), with n nodes, Y ⊂ Rn×n ∈ Y is the graph with

X ⊂ Rn×n×q ∈ X as dyadic attributes. The space of tie variables, Y , can be arbitrary

although here we focus on binary tie variables:

Yij =


1 if actor i is connected to actor j

0 otherwise

,

i, j = 1, · · · , n. For undirected networks, Yij = Yji. Y is often called an adjacency matrix.

The dyadic covariates, Xijk, are measures on the (i, j)th pair. An important special case

is covariates that depend only on i or j, that is nodal covariates denoted by Xik or Xjk.

Examples of dyadic covariates include a homophily term:

Xijk =


1 if actor i and actor j have identical values

on the kth nodal characteristic (Xik = Xjk)

0 otherwise

,

3



k = 1, · · · , q, for each of q separate nodal characteristics.

2.2 ERGMs Specification

Random graph describes the probability distribution on the graphs. Consider a network

with n nodes: a random graph add edges between nodes successively at random. The

basic construction of an ERGM includes a graph Y ∈ Y that can be explained by some

sufficient statistics defined by a d-vector valued function g(Y). A general form of ERGMs

that describes a probability distribution of undirected graphs with n nodes:

Pη(Y = y) =
1

c(η,Y)
exp {η · g(y)} y ∈ Y , (2.1)

where η ∈ Rd is a parameter vector associated with a d-vector valued function g(Y) and

c(η,Y) is the normalizing constant which ensures that this is a proper probability distribu-

tion. The maximum entropy of the exponential-family is guaranteed by the mean constraint

on g(y), where Eη[g(y)] = µ. Different choices of g(Y) determine different models under

ERGMs class.

Different from traditional statistical models that measure observations with some pre-

defined response variables and explanatory variables separately, exponential-family random

graph models (ERGMs) consist of explanatory variables that are functions of response vari-

ables themselves. More specifically, in a network, the response variables are typically defined

as the state of a tie y – either formation or dissolution. In general ERGMs (2.1), the graph

statistics g(y) are configurations of ties, where g(Y) are jointly sufficient for the model.

The observations in network data also consist of nodal attributes x, for example, the age of

nodes. The nodal attributes can be included in ERGMs as exogenous predictors (Fienberg

and Wasserman, 1981; Wasserman and Pattison, 1996). By defining the nodal covariates

as explanatory variables, a type of ERGM class that allows Markov dependence with nodal

attributes is

4



Pη(Y = y|X = x) =
1

c(η, x,Y)
exp {η · g(y|x)} y ∈ Y , x ∈ X , (2.2)

where η ∈ Rd is a d-vector of parameters. g(y|x) is a d-vector of graph statistics,

where g(Y|x) are jointly sufficient statistics. The normalization constant is c(η, x,Y) =∑
y∈Y

exp {η · g(y|x)}.

Choices of network statistics of interest depend on common knowledge and the social

context. Morris et al. (2008a) provides examples of the common features.

2.3 ERNMs Specification

Exponential-family random network models generalize ERGMs by treating the nodal at-

tributes as endogenous variables (Fellows and Handcock, 2012). Inspired by Leenders (1997),

which argued that the process of social selection and social influence are simultaneous.

ERNMs model the joint relationship between edges and nodal variates.

Definition 2.3.1 (ERNM, Fellows and Handcock (2012)). For a social network (X, Y ), with

n nodes, where Y ⊂ Rn×n is the graph with X ⊂ Rn×q as nodal attributes, the multivariate

distribution of Y and X can be written as:

Pη(Y = y,X = x) =
1

c(η,N )
exp {η · g(y, x)}, (y, x) ∈ N , (2.3)

where N is the sample space of Y and X, η ∈ Λ is a q-vector of parameters, g(y, x) is

a q-vector of network statistics, with g(Y,X) jointly sufficient for the model, and c(η,N )

is the normalisation constant. The formal definition of c(η,N ) is given in Fellows and

Handcock (2012): Let (N,N , P0) be a σ-finite measure space with reference measure P0,

then, a probability measure with respect to this space is an ERNM if it is dominated by P0.

The normalisation constant is defined as

c(η,N ) =

∫
y,x∈N

exp {η · g(y, x)}dP0(y, x), (2.4)

5



where Λ ⊂ {η ∈ Rq : c(η,N ) < ∞}.

2.4 Model Interpretation

To interpret the coefficient of ERGM, consider the logit form of exponential family models

(2.2):

logit
(
Pη(Yij = 1|Y c

ij = ycij)
)
= η ·

(
g(y+ij)− g(y−ij)

)
, (2.5)

where ycij is the set of tie values y\yij, y+ij and y−ij correspond to the graphs (ycij, yij = 1)

and (ycij, yij = 0), respectively, Y c
ij is the random variable Y \Yij. This is often referred to as

the conditional log-odds of a tie Yij. We see that η has the interpretation of the change in

conditional log-odds of a tie Yij per unit change in the graph statistics were yij toggled from

zero to one.

The interpretation of graph statistics Yij of ERNM is very similar to ERGM. The only

difference is that ERNM models need to consider the covariates X. From (2.3) we have:

logit
(
Pη(Yij = 1|Y c

ij = ycij, X = x)
)

= η ·
(
g(y+ij , x)− g(y−ij , x)

)
,

so that the ERNM parameter has a closely allied interpretation to that of the ERGM pa-

rameter as the distribution of Y explicitly conditional on X is the same as the ERGM with

implicit conditioning on X. This implies that we are able to interpret the parameter of

ERNMs in a similar fashion as ERGMs. See Appendix A for a derivation.

There are other interpretations as well. Fellows and Handcock (2012) discusses the way

to interpret coefficients of dyadic variables of ERNM with logistic regression. The dyadic

attributes X in equation (2.3) can be partitioned into two parts, Z and T by defining

Z ∈ (0, 1) as a binary dyadic variate of interest (that is an outcome variable) and T as

a matrix of regressors, where Z, T ⊂ X. We can rewrite the equation (2.3) with the new

6



definition:

Pη(Y = y, Z = z, T = t)

=
1

c(η,N )
exp {α · g(y, t) + λ · h(y, z) + z · tβ}

(y, x) ∈ N , (2.6)

where η = (α, β, λ) are parameters, g(y, t) and h(y, z) are network statistics, z · tβ is the

relationship of T to Z. We can then derive the logit form of the distribution of zij from

equation (2.6) condition upon the rest of the network (proof details in Appendix B):

logit
(
Pη(zij = 1|zcij, tij, Y = y)

)
= (tijβ)−

(
λ · (h(y, z−ij) + h(y, z+ij))

)
, (2.7)

where zij and tij are the measures on the (i, j)th pair of Z and T , zcij is the set of variants

z \ zij, z
+
ij and z−ij correspond to the variant of zij where zij = 1 and zij = 0, respectively.

Suppose the matrix of regressors tij changes to t
′
ij, with all other variables and networks

remaining fixed, then the logarithm of odds ratio (R) is

lnR = β · (tij − t
′

ij). (2.8)

Therefore, the coefficients of the outcome variable z may be interpreted as a conditional

logistic regression model. For one unit change in tij, the log-odds changes by β, keeping all

other variables constant.

7



CHAPTER 3

Specification and Estimation for ERGM and ERNM

Choices of statistics for modeling are very flexible and case-based. Statistics like edges,

mutuality, homophily, and transitivity are primary choices to be included in the model to

grasp the major characteristics of the network. For example, the R package ergm contains

over one-hundred “terms”, each being a coherent set of graph statistics (R Development

Core Team, 2022; Handcock et al., 2021; Morris et al., 2008a).

The set of network statistics for ERNM includes those for the ERGM, with the difference

that they have different roles in the model due to the the endogeneity of nodal attributes.

Moreover, some statistics, for example, those that involve the nodal characteristics but not

the tie values, are specific to ERNM but not to ERGM. An example of such a statistic, one

with an important role below in this paper, is the number of students who are smokers in

Section 5.2.

3.1 Primary Network Statistics for ERGM and ERNM

Different to traditional statistical models that measure observations with some predefined

response variables and explanatory variables separately, exponential-family random graph

models (ERGMs) consist of explanatory variables that are functions of response variables

themselves. More specifically, in a network, the response variables are typically defined

as the state of a tie y – either formation or dissolution. In general ERGMs (2.1), the

graph statistics g(y) are configurations of ties, where g(Y) are joint sufficient for the model.

8



The maximum entropy of exponential-family guaranteed by the mean constraint on g(y),

where Eη[g(y)] = µ. The observations in network data also consist of nodal attributes

x, for example age of nodes. And the network statistics g(y|x) in ERGMs conditioning

on nodal attributes are functions of ties given exogenous covariates. Choices of network

statistics of interest depend on common knowledge and the social context. Morris et al.

(2008b) provides examples of common features including both graph statistics and statistics

conditioning on nodal covariates. ERGM terms are also classified as dyadic dependent,

dyadic independent and curved exponential-family (CEF) terms in Hunter et al. (2008).

Transitivity and homophily are two interesting features that will be focused on.

3.1.1 Dyadic Independence vs Dyadic Dependence

ERGMs are defined by different choices of sufficient statistics g(y|x), which are explanatory

variables to the model. The way to calculate graph statistics relates with a term called

change statistics :

Definition 3.1.1 (Change Statistics, Hunter et al. (2008)). Given a network y (either

directed or undirected) and a dyad with a pair of nodes (i, j), the change of statistics under

the context of ERGMs (2.1) and a vector of statistics g(y) is defined as

δg(y)ij = g(y+ij)− g(y−ij), (3.1)

where g(y+ij) and g(y−ij) correspond to the graph statistics when yij = 1 and yij = 0. More

specifically, change of statistics measures the change in graph statistics g(yij) when yij is

toggled from 0 to 1.

A dyadic independent term does not have direct dependence on dyads, and its definition

relies on the definition of change statistics in Definition 3.1.1.

Definition 3.1.2 (Dyadic Independence, Hunter et al. (2008)). A term in an ERGM is

dyadic independence if the updates of the corresponding network change statistic δg(y)ij does

not require information of other dyads.

9



Concrete examples of dyadic dependence and dyadic independence are transitivity and

homophily. A consequence of transitivity is a closure of a triangle, however, the triad-closure

of homophily is not necessary (Figure 3.1).

Transitivity The transitivity (clustering coefficient) measures the tendency of the people

to cluster together. A famous analogy in social sciences illustrates this as “the friend of my

friend is my friend”. Hence, this term exhibits a triad-closure feature. The state of one dyad

depends stochastically on the state of other dyads, thus it is a dyad dependent term.

Homophily Homophily of a certain attribute measures the tendency of people to make

connections within the specified attributed group. It may or may not leads to a triad-closure,

and the state of a dyad does not depend on state of other dyads. Therefore, it is a dyad

independet term. There are two types of homophily: uniform and differential. Uniform

homophily counts the total number of edges with same attributes, whereas differential ho-

mophily counts each unique value of the number of edges with same attributes. Those are

measured with nodematch terms in ERGM and ERNM.

i

j

k

Figure 3.1: Transitivity vs Homophily: three vertices are all from the same value of the

attribute

Informally, transitivity is the tendency of people to cluster together. A famous analogy

illustrates this as ”the friend of my friend is my friend”. Hence, this term exhibits a triad-

closure feature. This tendency can be quantified: consider a three-number summary of the

triads in an undirected graph or network being the number of ties, 1
3

∑
ijk yij + yjk + yik,

the number of two-stars,
∑

ijk yijyik, and the number of triangles,
∑

ijk yijyikyjk. A highly

10



transitive graph would have a lot of triangles relative to the number of two-stars. It would

seem natural to include these three statistics in a model and use them to measure transitivity.

However, models with these terms in them have been shown to have bad statistical properties,

referred to as model degeneracy. So we will instead use a measure of transitivity that does

have better properties: the geometrically weighted edgewise shared partner distribution.

3.1.2 Curved-Exponential Family (CEF) Terms

In the last section, we discussed the problem of degeneracy in ERGMs brought by the dyadic

dependence terms, especially the single triangles. A Shared partner distribution manages

to handle this problem introduced under the context of curved exponential family (Snijders

et al. (2006); Hunter and Handcock (2006); Goodreau et al. (2008)).

Two nodes are edgewise shared partner (ESP) if they are connected, and each is also

connected with another node. A triangle is formed as a result of a tie between them. It is

also a measure of transitivity. The edgewise shared partner statistic is defined as ESP(k),

meaning that the number of unordered pairs {i, j} such that an edge exists between i and j,

i and j have exactly k common neighbors, under the context of undirected network. Figure

3.2 illustrated the edgewise shared partner distribution under an undirected network. The

measure ESP for edge (i−j) counts the number of nodes k such that i and j share edges with.

In this network, the edge (i − j) has three edgewise shared partners: k1, k2, k3. All other

six edges have exactly one edgewise shared partner. Hence, the edgewise shared partner

distribution of this network is: ESP(1)= 6, ESP(2)= 0, ESP(3)= 1.

i

j

k1 k2 k3

Figure 3.2: Undirected ESP Distribution
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Though it is straight-forward to understand one pair of edgewise shared partnerships,

the distribution of edgewise shared partner is not uniform. A tie that closes triangles is

more likely to form than a tie that do not close triangles. Geometrically-Weighted Edgewise

Shared Partnerships (GWESP) is developed for this purpose.

Definition 3.1.3 (GWESP, Hunter (2007)). For a network with fixed number of nodes, n,

and adjacency matrix Y, the geometrically-Weighted Edgewise Shared Partnerships statistics

is described as

GWESP = eθ
n−2∑
k=1

[1− (1− e−θ)i]ESP(k), (3.2)

where θ is the decay parameter. n − 2 is the maximum number of edgewise shared partners

for any pair of nodes in the network. The geometrically (G) here implies the statistic is based

on the geometric sequence (1− e−θ)i.

1. As more shared partners of an edge exist, the effect of GWESP decays as the result

of geometric sequence in equation (3.2). This adjustment prevents the explosion of triangles

in the network. 2. GWESP in directed network, similar as ESP, provides different results

given the different choices of two-path statistics. Both outgoing two paths and incoming two

paths may be considered in real applications.

In summary, homophily measures the tendency of individuals to connect with similar

individuals. GWESP measures the tendency of transitivity, which is an important feature of

human social networks. We will manipulate with the homophily and GWESP terms under

exponential-family random graph models and exponential-family random network models

in some real cases analysis in Chapter 5. The performance in capturing transitivity and

homophily of the two models will be analysed.
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3.2 Degeneracy and MCMC Diagnostics

The inference on ERGM parameters typically employs MCMC procedure to compute the

maximum likelihood estimation (MLE) (Hunter and Handcock, 2006). The inference on the

likelihood function of ERGMs with only dyadic independence terms can be simplified to

a standard logistic regression form. For models with dyad dependence, as for the models

considered here, certain combinations of terms result in the model not placing sufficient

probability mass on realistic graphs and networks. This is called the model degeneracy

problem (Handcock, 2003a,b; Schweinberger, 2011; Schweinberger et al., 2020).
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CHAPTER 4

Comparing ERGM to ERNM Conceptually

A main goal of social network analysis is to model the relationship between social ties in the

context of nodal attributes. Two types of processes are commonly considered: social selection

and social influence. In social selection processes, individuals form social ties on the basis

of attributes, theirs and others (Robins et al., 2001a; Friemel, 2015). In social influence

processes, the direction is reversed, where the network structure influences the attributes of

the individuals in the network; that is, an individual’s attributes may be changed by other

individuals whom they share social ties with (Robins et al., 2001b). We follow the definition

of the social selection and social influence processes in Leenders (1997):

1. Social selection process: Conventional network statistical models represent the network

structure stochastically, measure the dynamic change of the network, and treat the

nodal attributes as independent variables (or explanatory variables), usually stable and

fixed. The nodal attributes in this context refer to some fixed actor characteristics, such

as age, gender, and race. The involved process is called the social selection process,

where the network structure is determined by some fixed actor attributes.

2. Social influence process: Conversely, actors may alter their attributes because of the

influence of the network structure they are embedded in. In other words, the network

structure is conditioned on and regarded as exogenous and is invariant over time,

whereas the actor attributes are modeled stochastically. This process is called the

social influence process (some literature uses the term ”contagion”).
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The two processes can be illustrated using network examples shown in Figure 4.1 and

Figure 4.2. Both figures contain networks with four nodes (actors), A, B, C, D, and social

ties. In Figure 4.1, two new ties are formed between nodes with the same color (A and B, C

and D). It is the tendency of which an individual makes connections with other individuals

that share the same attributes, such as age or habits, which is referred to as social selection.

In Figure 4.2, node A and node D adjust their color to the nodes which they share ties

with (B and D, respectively). Hence, social influence processes describe the tendency that

individual may change their attributes influenced by other related individuals.

A

Before

C

B

D

A

After

C

B

D

Social Selection

Figure 4.1: Illustration of Social Selection: Color of nodes: nodal attributes

A

Before

C

B

D

A

After

C

B

D

Social Influence

Figure 4.2: Illustration of Social Influence: Color of nodes: nodal attributes

It is essential to note that these are rarely disjoint processes. Specifically, we would

expect that a mixture of social selection and social influence processes occur simultaneously.

It is extensively argued that the two processes are not mutually exclusive: the social ties

affect the nodal attributes and vice versa (Erickson, 1988; Leenders, 1997). As we shall see,

this is precisely the situation that ERNM represents, while ERGM and autologistic actor

attribute models (ALAAM) (Robins et al., 2001b; Lusher et al., 2013, Chapter 9) do not.

ALAAMs are developed as alternatives to ERGMs to capture social influence processes.
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ALAAMs model how network relationships influence the nodal attributes, for instance, how

friendship of adolescents may influence their smoke behaviors (nodal attributes). Hence,

ERNM can be thought of as jointly ERGM and ALAAM, plus more. Explicitly, ERGM

and ALAAM are each given by conditional views of ERNM. ERGM and ALAAM are each

special cases of ERNM, a point we make here and one developed more fully in Fellows and

Handcock (2012). ERNM represents the joint connection between the social selection and

social influence processes. Consequently, both nodal attributes and social connections are

treated as endogenous and stochastic variables, reflecting reality. Moreover, despite what

many network models assume, it is implausible to have invariant nodal attributes in the

network, as ERGM assumes. Although some reference nodal attributes in social selection

processes, such as sex, age, and race, are invariant in social influence processes, many other

attributes, such as smoking and drinking behaviors, may be altered by the network structure.

Despite this, the two social network processes are widely studied in the literature separately,

the mutual interdependence between the two processes being ignored.

ERNMs are exponential-family graph models that model the joint behavior of edges and

nodal attributes. The model (2.3) can be rewritten as

Pη(Y = y,X = x) = Pη(Y = y|X = x)Pη(X = x), (4.1)

where

Pη(X = x) =
c(η;x)

c(η;N )
x ∈ X . (4.2)

The first component of (4.1) can be viewed as an ERGM that is conditional on nodal at-

tributes X (Frank and Strauss, 1986; Hunter and Handcock, 2006):

Pη(Y = y|X = x)

=
1

c(η;N (x), x)
exp {η · g(y, x)} y ∈ N (x), (4.3)

where N (x) = {y : (y, x) ∈ N}. The second component Pη(X = x) is the marginal distribu-

tion of the nodal variate X, which does not necessarily belong to a non-trivial exponential
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family. The rewritten form (4.1) illustrates the difference between ERNM and ERGM: the

former models the joint behavior of Y and X, whereas the latter models the conditional

distribution of Y given X.

In the ERGM (2.2), the graph statistics g(y|x), equivalent to g(y, x) in (4.3), model the

network conditioning on the nodal attributes. In other words, the formation or dissolution

of an individual’s social ties is influenced by other individuals’ fixed nodal attributes. Hence,

the nodal attributes are treated as exogenous to the model, and in many real situations, this

assumption is inappropriate. On the contrary, ERNMs use the network statistics g(y, x),

which brings more flexibility to the modeling. Moreover, ERNMs take care of both nodal

attributes and dyadic variables, different from ERGMs, which stochastically model the tie

variables only. As a consequence, ERNMs are conceptually able to model both the social

selection and the social influence processes with endogenous nodal attributes. To further

illustrate the two models under the context of the two social processes, consider homophilous

selection, which is measured by homophily terms in ERGM and ERNM:

ERGM homophily selection:

Pη(Y = y|X = x)

=
1

c(η;N (x), x)
exp {η · homophily(y|x)} y ∈ N (x). (4.4)

ERNM Homophily selection:

Pη(Y = y,X = x)

=Pη(Y = y|X = x)Pη(X = x)

=
1

c(η;N (x), x)
exp {η · homophily(y|x)}EY [Pη(X = x|Y )] (y, x) ∈ N , (4.5)
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where the last equality comes from

Pη(X = x) =

∫
N (x)

P (Y = y,X = x)dy

=

∫
N (x)

Pη(X = x|Y = y)Pη(Y = y)dy

= EY [Pη(X = x|Y )].

Both ERGM and ERNM capture social selection. By controlling for other alternative

mechanisms, we can achieve a more accurate homophilous selection result (Steglich et al.,

2010). Because ERGM treats the nodal attributes as exogenous, it does not represent any

social influences. ERNM is able to reflect the social influence at the same time since the

nodal attributes are free to vary on the basis of the fixed network structure:

Pη(Y = y,X = x) = Pη(X = x|Y = y)Pη(Y = y)

Pη(X = x|Y = y) =
1

c(η;N (y), y)
exp {η · g(y, x)}, (4.6)

x ∈ N (y) (y, x) ∈ N

where N (y) = {x : (y, x) ∈ N}. The term (4.6) represents the ALAAM class (Robins

et al., 2001b). This decomposition makes the relationship between ALAAM and ERNM

transparent. ALAAM is the ERNM conditional over the network tie structure. So it is a

special case of ERNM.

The differences between ERNM and ERGM go beyond homophily terms involving the

endogenous covariates. It applies to all terms in the ERNM/ERGM (e.g., k-stars, degrees,

GWESP, GWDSP). This is direct for terms involving endogenous covariates, but also indi-

rectly via interactions between model statistics. For example, the presence of direct terms

changes the interpretation and coefficients of the other terms in the model.

It is essential to note that ERNM models the association between ties and nodal at-

tributes, and is not a causal model. With cross-sectional data and no causality specified, we

cannot preclude social selection from other mechanisms (Steglich et al., 2010). For example,
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if we are trying to model the adolescent connections on smoking behavior, the homophilous

selection modeled on the smoking attribute may preclude the transitivity or reciprocity

processes. Other mechanisms, like similarity in drinking behaviors, may also be masked. Al-

though we present a way to jointly model the social selection and social influence processes

in a cross-sectional context, in order to disentangle the two processes, longitudinal data is

needed (Leenders, 1997).

The ERNM model is a complete class model and can model any specific joint model

of Y and X by appropriate choice of network statistics. However, this is not anywhere as

strong as it seems as the statistics are unknown and could be of arbitrary complexity and

number. Because of this, there is a great need and opportunity for highly structured models

that represent much of the complex structure of the network in a relatively simple fashion.

For example, Almquist and Butts (2014) introduce a vertex process temporal ERGM for

modeling joint edge and behavior dynamics but make limiting assumptions so that the model

is tractable. Another is Weng (2020) who develops a separable model for the tie variables

and endogenous covariates and introduces individual-specific random effects to represent

individual unobserved heterogeneity influencing both network formation and the covariates.

This model makes quite different assumptions than ERNM, and a comparison would need

to be in-depth.
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CHAPTER 5

Case-study Indicating the Need for ERNM over

ERGM

5.1 Introduction to the Adolescent Health Data

Much network data on school friendships were collected by the National Longitudinal Study

of Adolescent Health (Harris et al., 2007) (Add Health). This nationally representative study

includes a longitudinal sample of more than 20,000 adolescents in grades 7 to 12 who were

surveyed with in-school questionnaires in the US in 1994 and 1995. Their smoking behaviors

are recorded by asking whether they have ever smoked at least once. In our study, we used

four networks of grades 9 to 12 (Clark and Handcock, 2022). The smoking behavior is coded

as a binary variable, where 1 was used for students who reported that they have ever smoked

at least once and 0 otherwise.

Students were asked to nominate up to 5 other students who were their best female

friends and also up to 5 other students who were their best male friends. We build the

network of weak friendship ties, that is, an undirected tie if either student nominated the

other. A visualization of the networks is shown in Figure 5.1. The edges are undirected,

as a connection between nodes A and B may represent A nominated B, B nominated A, or

both. Table 5.1 shows the summary of each network. It is clear that the higher the grade,

the greater the proportion of smoking adolescents, which is to be expected.

We are specifically interested in smoking behavior, especially its interconnection to the

network structure. Unlike other measurements like sex, age, and race that are exogenous to
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Network Summary

Nodes Edges Non-smoker Smoker Smoking ratio

Grade 9 256 617 168 88 0.3438

Grade 10 228 498 138 90 0.3947

Grade 11 192 416 118 74 0.3854

Grade 12 193 413 101 92 0.4767

Table 5.1: Network Summary

the network, smoking behavior may be influenced by social connections and is expected to

be endogenous.

5.2 Models

We fitexttted the same model terms for both ERGM and ERNM. The computational aspects

are discussed in Section 5.3. In the nomenclature of that section, these are:

• ERGM: Network ∼ edges+ ESP(0, 1, 2)

+ GWESP(0.5) + GWDegree(0.5)

+ nodefactor(smoke)+ nodematch(smoke)

• ERNM: Network ∼ edges+ ESP(0, 1, 2)

+ GWESP(0.5) + GWDegree(0.5)

+ nodefactor(smoke)+ nodematch(smoke) | smoke

For grade 12, only ESP(0) is used. In the first analysis, all the statistics included in ERGM

and ERNM are the same. What causes the difference between the two models is that ERNM

treats the smoke indicator variable as stochastic, whereas ERGM treats it as fixed. Because

of this feature of ERNM, we can, and do, fit another model to ERNM by adding the node
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Smoke Behaviour non smoker smoker

Grade 9 (nonsmoker:smoker = 168 : 88 )
A

Smoke Behaviour non smoker smoker

Grade 10 (nonsmoker:smoker = 138 : 90 )
B

Smoke Behaviour non smoker smoker

Grade 11 (nonsmoker:smoker = 118 : 74 )
C

Smoke Behaviour non smoker smoker

Grade 12 (nonsmoker:smoker = 101 : 92 )
D

Figure 5.1: Addhealth Network Visualisation

count of smokers statistic to the first model:

• ERNM-Count: Network ∼ edges+ ESP(0, 1, 2)

+ GWESP(0.5) + GWDegree(0.5)

+ nodefactor(smoke)+ nodematch(smoke)

+ nodecount(smoke) | smoke

The edges term represents the overall density of the network. The ESP term models the

lower end of the shared partner distribution. The GWESP term with decay parameter 0.5 is a

much more robust measure of transitivity than triangles (as discussed in Section 3.1.2). The

nodefactor term counts the number of times a node appears in an edge for each value of

the atttribute. GWDegree stands for geometrically weighted degree distribution, specifically

representing some aspects of the degree distribution (Morris et al., 2008a). The nodematch

term on smoking behavior measures the number of edges with same smoking behaviors on

two ends. In other words, it counts the edge (i− j) when i and j are both smokers or non-

smokers. Note that this model is saturated on smoking based mixing behavior (Handcock
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et al., 2021). The node count of smokers counts the number of smokers and this is specifically

for ERNM because the number of smokers is invariant in ERGM.

5.3 Computational aspects

All models in this chapter are fit with the open-source user-friendly R packages ergm (Hand-

cock et al., 2021) or ernm (Fellows, 2014; R Development Core Team, 2022). The easy

availability of powerful, sophisticated community supported software allows broad accessi-

bility of both these modeling classes for researchers. In particular, the ergm package is a

part of the statnet community of packages (Krivitsky et al., 2003-2020). Together these

allow robust MCMC based maximum likelihood estimation of ERGM and ERNM model

parameters. In addition, they offer powerful models and computational diagnostic tools that

we applied here and are available to all. We do not focus on these computational aspects

here, but refer the reader to the extensive material in the references.

As we discussed earlier in Section 3.2, due to the intricate dependence feature of ERGM

and ERNM, computation of approximate maximum likelihood estimates of the parameters

may be complicated by model degeneracy. MCMC diagnostics are needed to check the

appropriation of the model, in other words, whether the model converges. From the results

of MCMC diagnostics (Appendix D), the trace plots of simulated statistics from the fitexttted

model indicate low dependency and Markov chains convergent to the stationary distribution

for both ERGM and ERNM. The MCMC samplers mix well.

The code to reproduce this analysis is provided in https://github.com/Andrea-ZW/

ERNM_Paper.git.
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5.4 ERGM and ERNM Fits

We show the results of ERGM fit under the suggested model of four networks (corresponding

to grades 9, 10, 11, and 12) in Table 5.2. We can interpret the coefficients using the log-odds

definition in Section 6.1.3. The combination of Edges, Diff-homophily-smoke and Homophily-

non-smoker represents the propensity for forming a tie between all the possible combinations

of smoking attributes between paring of nodes. The baseline (Edges) corresponds to a hetero-

geneous pairing. The Homophily-non-smoke term represents the homophily for non-smokers.

All networks exhibit a positive estimated coefficient on the homophily of non-smokers (al-

though Grade 11 is not significant). To interpret this result, taking Grade 9 as an example,

the positive coefficient estimate of homophily on non-smoking (0.40) suggests that students

who have not smoked are more likely to nominate as friends others who have not smoked (all

else held constant). The Diff-homophily-smoke coefficients give us the differential homophily

for smokers. In other words, it represents the excess (or differential) homophily for smokers

over that for non-smokers. Summing the Homophily-non-smoker and Diff-homophily-smoke

coefficients give us the homophily for smokers. All networks exhibit stronger homophily for

smokers (although Grade 12 is only marginally significant). To interpret this result, taking

Grade 9 as an example, this indicates that the homophily for smokers is more than that for

non-smokers by about 0.10 on the log-odds scale and all else held constant. In other words,

friendship formed between two smokers is more likely than friendship formed between two

non-smokers. The result of the two terms is evidence that the homophilies between smokers

and between non-smokers are both stronger than the heterogamy of smokers. In other words,

non-smokers are less likely to make friends with smokers (or vice versa), all other aspects

held constant. Moreover, the model indicates that the homophily of smokers is generally

higher than the homophily of non-smokers.

The GWESP and ESP terms together model the edgewise shared partner distribution and

represent the transitivity in the network (not represented by the other terms, especially the
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homophily terms). The three ESP terms account for the number of pairs of nodes having 0,

1, and 2 alter in common. The adjustment for any deviation in the lower end of the edgewise

shared partner distribution for the additional transitivity implied by the GWESP term. We

see that the total effects of these terms are positive and significant in all but the Grade 11

network. This indicates that there is generally transitivity above and beyond that implied

by the level of homophily in the network.

From the ERGM fit, we conclude that the social connections of 9 to 12-grade adolescents

generally show a tendency for transitivity. The homophily of non-smokers and smokers are

both positive, with that of smokers higher than non-smokers. Adolescents with different

smoking behaviors are less likely to make friends with each other.

5.4.1 ERNM Fit for the same terms as the ERGM

We fitted the same networks with ERNM with the same terms, and the results are shown

in Table 5.3. As we discussed earlier, the qualitative interpretation of graph statistics of

the ERNM is comparable to that of the comparable ERGM. The dyadic variables of ERNM

can be interpreted under the conditional logistic regression as we show in section 6.1.3. The

parameter estimations of the basic terms (Edges, ESP, GWESP, and GWDegree) of ERNM

are similar to those of the ERGM fit for each of the four networks. The Homophily-non-

smoker term is also very similar to the ERGM coefficient. The estimated coefficients of

homophily on non-smoker are positive and significant in all four networks (except Grade

11). The standard errors are on the same scale as the ERGM (around 0.1). To interpret the

coefficients, take Grade 9 as an example: the log-odds of a homogeneous tie of a non-smoker

(that is a tie between non-smoker and non-smoker) versus a heterogeneous tie (that is a tie

between a non-smoker and a smoker) is 0.4 higher, holding all else fixed. This suggests that

there is a higher statistically significant probability of a tie between two smokers than a tie

between one smoker and one non-smoker (holding all else constant). This coincides with

the conclusion of ERGM. What stands out is the difference between the homophilies for
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smokers and non-smokers (that is, the Diff-homophily-smoke term). Unlike ERGM which

has statistically significantly higher homophily for smokers compared to non-smokers, ERNM

has coefficients of homophily of smokers very close to homophily of non-smokers, which

suggests uniform homophily. The difference in homophily on smoking is close to zero for

each grade. This suggests that there is no big difference in the tendency to make friends

between non-smokers and non-smokers compared to smokers and smokers. We will discuss

this result in detail in the next chapter as it sheds light on the difference between the two

models.

5.4.2 ERNM fit when a count of the number of smokers is included

Another ERNM (ERNM-Count) is fitted by adding the node count of the smoke term to the

first model, and the results are shown in Table 5.4. Note that this is equivalent to the model

counting the number of non-smokers as the total number of nodes/students is fixed for each

grade/network.

Note that the coefficients of all terms except the added term are very close to those in

the ERGM of Table 5.2 (which excludes the smoker count term). The reason for this is a

geometric feature of exponential family models. Consider conditioning on the number of

smokers in the ERNM-Count model:

Pη(Y = y,X = x) =
1

c(η)
exp {η · g(y, x) + ηcnsmokers(x)}

Pη(nsmokers(X) = nsmokers) =
c(η;nsmokers)

c(η)

Pη(Y = y,X = x|nsmokers(X) = nsmokers)

=
1

c(η;nsmokers)
exp {η · g(y, x;nsmokers)} (5.1)
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The equation (5.1) represents the exponential family form of the ERNM-Count model. By

specifying the number of smokers, it acts as if conditioning on the nodal attributes X rep-

resenting the smoking behavior. Recall the functional form of ERGM (2.2), and we would

expect the parameter estimates η of ERGM and ERNM-Count relating to homophilous

smoking to be close.

As Table 5.4 shows, the majority of the results from four networks are consistent with the

previous two models, except for the homophily terms. In particular, we observe differential

homophily on smoking in ERNM-Count (that is the statistically significant positive esti-

mated coefficients of Diff-homophily-smoker term). A positive coefficient suggests that the

homophily of smokers is more than the homophily of non-smokers. The Nodecount-smoker

term is significant (or marginally significant in Grade 12) with negative coefficient estimates.

Taking Grade 9 as an example, we see that the log-odds of a student being a smoker is −0.62,

holding the rest constant. This suggests that there are fewer smokers than expected based

on the social structure of the friendship ties.

Comparing the two models of ERNM, the discrepancy in homophily measures gives an il-

luminating finding. Without the node count on smokers, we find uniform homophily between

smokers and non-smokers. However, after taking into account the node count of smokers, the

homophily of smokers is driven up, for example, 0.38 to 0.49 in Grade 9, which indicates that

the homophily of smokers is more than the homophily of non-smokers. And the conditional

log-odds of a tie for a smoker who chooses a smoker is 0.09 higher after adding the node

count of the smoker.

5.5 Assessing Goodness of Fit

It is necessary to check the goodness of fit (GOF) of fitted models to verify the rationality of

the model. Hunter et al. (2008) introduced a procedure for goodness of fit, which generates

simulations on target network statistics and compares them to the observed graph statistics.
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The construction of the tests is as follows: for both ERGM and ERNM, we generate

1000 simulations from the fitted models and compare their simulated distributions to the

observed statistics. The GOF plot (Appendix D) consists of statistics that are included in

the model and statistics (Degree(0:20), ESP(3:10)) that are not included in the model. We

provide side-by-side box plots, including the statistics mentioned above, in order to compare

the models without the node count term fitted by ERNM and ERGM. We also compare

the model with the node count of the smoker fitted by ERNM and without the node count

model fitted by ERGM. Both ERGM and ERNM simulate distribution aligning closely to

the observed statistics, which is under expectation. Although there are some deviations

in the degree distribution, it does an adequate job, as no degree terms are included in the

model (except for the GWDegree). The comparison of the count of smokers and non-smokers

between ERNM and ERNM-Count is shown in Figure C.1 in Appendix C. The model with

full freedom of varying smoking covariates (ERNM) thinks there are more smokers than

observed, whereas ERNM-Count and observed statistics suggest that we actually have fewer

smokers than expected due to chance.
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Table 5.2: Summary of the fit of the ERGM in Section 5.2 on four grades

ERGM

Coefficient Grade 9 Grade 10 Grade 11 Grade 12

Edges -8.97(2.99) ∗∗ -19.55(3.06)∗∗∗ 9.04(3.16) ∗∗ -6.73(0.28) ∗∗∗

ESP-0 3.35(2.99) 14.01(3.05) ∗∗∗ 3.87(3.15) 1.21(0.23) ∗∗∗

ESP-1 0.67(1.11) 4.77(1.17) ∗∗∗ 0.81(1.18) NA

ESP-2 -0.23(0.40) 1.38(0.45) ∗∗ -0.05(0.43) NA

GWESP 3.85(1.88) ∗ 10.44(1.89) ∗∗∗ 4.06(1.97) . 2.40(0.18) ∗∗∗

GWDegree 2.98(0.48) ∗∗∗ 1.58(0.32) ∗∗∗ 1.66(0.35) ∗∗∗ 1.73(0.33) ∗∗∗

Diff-homophily-

smoke

0.10(0.02) ∗∗∗ 0.06(0.01) ∗∗∗ 0.10(0.03) ∗∗∗ 0.06(0.03) .

Homophily-non-

smoker

0.39(0.06) ∗∗∗ 0.40(0.06) ∗∗∗ 0.12(0.08) 0.33(0.08) ∗∗∗

Homophily-non-smoker is the number of ties between nodes with the same smoker activity;

Diff-homophily-smoke is the number of ties incident on a non-smoking node;

∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, . p < 0.1
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Table 5.3: Summary of the fit of the ERNM in Section 5.2 on four grades

ERNM

Grade 9 Grade 10 Grade 11 Grade 12

Edges -7.95(2.95) ∗∗∗ -19.36(3.12) ∗∗∗ -9.54(3.19) ∗∗∗ -6.82(0.27) ∗∗∗

ESP-0 2.23(2.94) 13.79(3.12) ∗∗∗ 4.24(3.18) 1.24(0.24) ∗∗∗

ESP-1 0.28(1.10) 4.69(1.20) ∗∗∗ 0.94(1.20) NA

ESP-2 -0.33(0.40) 1.36(0.47) ∗∗∗ -0.01(0.45) NA

GWESP 3.12(1.85) ∗ 10.30(1.93) ∗∗∗ 4.30(1.99) ∗∗ 2.42(0.18) ∗∗∗

GWDegree 3.05(0.48) ∗∗∗ 1.59(0.33) ∗∗∗ 1.63(0.35) ∗∗∗ 1.68(0.33) ∗∗∗

Diff-homophily-

smoke

0.01(0.03) 0.02(0.03) -0.01(0.04) 0.00(0.04)

Homophily-non-

smoker

0.37(0.08) ∗∗∗ 0.40(0.08) ∗∗∗ 0.14(0.11) 0.35(0.09) ∗∗∗

Homophily-non-smoker is the number of ties between nodes with the same smoker activity;

Diff-homophily-smoke is the number of ties incident on a non-smoking node;

∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, . p < 0.1
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Table 5.4: Summary of the fit of the ERNM including the count of the number of smokers

on four grades (Section 5.2)

ERNM-Count

Grade 9 Grade 10 Grade 11 Grade 12

Edges -8.80(2.95) ∗∗∗ -19.56(3.12) ∗∗∗ -8.97(3.22) ∗∗∗ -6.73(0.28) ∗∗∗

ESP-0 3.18(2.94) 14.02(3.11) ∗∗∗ 3.80(3.20) 1.21(0.24) ∗∗∗

ESP-1 0.62(1.10) 4.77(1.19) ∗∗∗ 0.78(1.21) NA

ESP-2 -0.24(0.40) 1.38(0.47) ∗∗∗ -0.05(0.45) NA

GWESP 3.73(1.85) ∗∗ 10.45(1.93) ∗∗∗ 4.02(2.01) ∗∗ 2.40(0.18) ∗∗∗

GWDegree 2.97(0.47) ∗∗∗ 1.58(0.32) ∗∗∗ 1.66(0.35) ∗∗∗ 1.72(0.34) ∗∗∗

Diff-homophily-

smoke

0.10(0.03) ∗∗∗ 0.06(0.03) ∗∗ 0.10(0.05) ∗∗ 0.06(0.05)

Homophily-non-

smoker

0.39(0.08) ∗∗∗ 0.40(0.08) ∗∗∗ 0.11(0.11) 0.34(0.09) ∗∗∗

Nodecount-

smoker

-0.62(0.20) ∗∗∗ -0.45(0.18) ∗∗ -0.85(0.25) ∗∗∗ -0.42(0.24) ∗

Homophily-non-smoker is the number of ties between nodes with the same smoker activity;

Diff-homophily-smoke is the number of ties incident on a non-smoking node;

Nodecount-smoker is the number of students that report smoker activity;

∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, . p < 0.1
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CHAPTER 6

Latent Class Exponential-family Random Network

Model

The random graph describes the probability distribution on the graphs. For a social network

(X, Y ), with n nodes, Y ⊂ Rn×n ∈ Y is the graph withX ⊂ Rn×n×q ∈ X as dyadic attributes.

The space of tie variables, Y , can be arbitrary. Although here we explicitly consider binary

tie variables. Here

Yij =


1 if actor i is connected to actor j

0 otherwise

, (6.1)

i, j = 1, · · · , n. For undirected network, Yij = Yji. Y is often called an adjacency matrix.

The dyadic covariates, Xijk are measures on the (i, j)th pair. Examples include a homophily

term:

Xijk =


1 if actor i and actor j have identical values

on the kth nodal characteristic

0 otherwise

, (6.2)

k = 1, · · · , q, for each of q separate nodal characteristics.
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6.1 Latent Class ERNM

6.1.1 ERNM Specification

Exponential-family random network models (ERNMs) generalize ERGMs by treating the

nodal attributes as endogenous variables (Fellows and Handcock, 2012). This was inspired

by Leenders (1997), which argued that the process of social selection and nodal attributes

influence are simultaneous. ERNMs model the joint relationship between edges and nodal

variates. The ERNM distribution for Y is

Pη(Y = y,X = x)

=
1

c(η,N )
exp {η · g(y, x)} (y, x) ∈ N , (6.3)

where N is the sample space of Y and X, η ∈ Λ is a q-vector of parameters, g(y, x) is

a q-vector of network statistics, with g(Y,X) jointly sufficient for the model, and c(η,N )

is the normalization constant. The formal definition of c(η,N ) is given in Fellows and

Handcock (2012): Let (N,N , P0) be a σ-finite measure space with reference measure P0, then,

a probability measure to this space is an ERNM if it is dominated by P0. The normalization

constant is defined as

c(η,N ) =

∫
y,x∈N

exp {η · g(y, x)}dP0(y, x), (6.4)

where Λ ⊂ {η ∈ Rq : c(η,N ) < ∞}.

6.1.2 Latent Variables

Many network characteristics are unobservable; for example, the class of each node belongs

to. When the group of each node in the network is latent, the stochastic block models (SBMs)

are widely used tools for detecting community structure in networks. The most recent

degree-corrected block models (DCBMs) include heterogeneity in the degrees of vertices

(Karrer and Newman, 2011). Unlike ordinary SBMs, which assume a homogeneous edge
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distribution with the probability of relationship only depending on their group memberships,

DCBMs incorporate the degree-corrected parameters into the edge distribution. Hence,

under DCBMs, high-degree nodes are more likely to be connected than those low-degree

nodes, holding everything else constant.

6.1.3 Model Interpretation

To interpret the coefficient of ERNM, consider the logit form of exponential family models

(6.3):

logit
(
Pη(Yij = 1|Y c

ij = ycij, X = x)
)

(6.5)

= η ·
(
g(y+ij , x)− g(y−ij , x)

)
,

where ycij is the set of tie values y\yij, y+ij and y−ij correspond to the graphs (ycij, yij = 1)

and (ycij, yij = 0), respectively, Y c
ij is the random variable Y \Yij. This is often referred to as

the conditional log-odds of a tie Yij. We see that η has the interpretation of the change in

conditional log-odds of a tie Yij per unit change in the graph statistics were yij toggled from

zero to one.

Fellows and Handcock (2012) discusses the way to interpret coefficients of dyadic vari-

ables of ERNM with logistic regression. The dyadic attributes X in equation (6.3) can be

partitioned into two parts, Z and T by defining Z ∈ 0, 1 as a binary dyadic variate of interest

(that is, an outcome variable) and T as a matrix of regressors, where Z, T ⊂ X. We can

rewrite the equation (6.3) with the new definition:

Pη(Y = y, Z = z, T = t)

=
1

c(η,N )
exp {α · g(y, t) + λ · h(y, z) + z · tβ}

(y, x) ∈ N , (6.6)

where η = (α, β, λ) are parameters, g(y, x) and h(y, z) are network statistics, z · tβ is the

relationship of T to Z. We can then derive the logit form of the distribution of zij from
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equation (6.6) condition upon the rest of the network:

logit
(
Pη(zij = 1|zcij, tij, Y = y)

)
= (tijβ)−

(
λ · (h(y, z−ij) + h(y, z+ij))

)
, (6.7)

where zij and tij are the measures on the (i, j)th pair of Z and T , zcij is the set of variants

z \ zij, z+ij and z−ij correspond to the the variant of zij where zij = 1 and zij = 0, respectively.

Suppose the matrix of regressors tij changes to t
′
ij, with all other variables and networks

remaining fixed, then the logarithm of odds ratio (R) is

lnR = β · (tij − t
′

ij). (6.8)

Therefore, the coefficients of the outcome variable z may be interpreted as a conditional

logistic regression model. For one unit change in tij, the log-odds changes by β, keeping all

other variables constant.

6.1.4 Inference on Groups

An advantage of latent ERNM is that we can investigate the probability of cluster group,

which is well defined through the marginal distribution P (X = x|Y = yobs, η). To compute

P (X = x|Y = yobs, η), we can simulate a large number of samples from P (X = x|Y = yobs, η̂)

using MCMC to show the probability of each node being in each cluster.

To better visualize the resulting cluster distribution, we create a network plot framework

where each node is shown as a pie chart representing the probability of being classified into

each group computed from the simulations, and the network layout consists of the original

network layout (Handcock et al., 2007).
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6.2 SBM

The Stochastic Block Model (SBM) introduced by Nowicki and Snijders (2001) is an impor-

tant statistical model for clustering problems. It models the probability of the change of an

edge using their group memberships only. Given the social network (X, Y ) defined in (6.1)

and (6.2), we also assume Q ∈ N classes on node ,and define the membership matrix Z,

where

Ziq =


1 if actor i is of class q

0 otherwise

, (6.9)

i = 1, · · · , n; q = 1, 2, · · · , Q.

Stochastic block models are extensively developed for clustering problems. However, we

did not find an applicable Degree-Corrected Stochastic Block Model to perform the clustering

analysis. An alternative model we used is simple SBM in R package SBM. The mathematical

background is provided in Leger (2016). It constructs the simple SBM with a latent layer

which represents the distribution of the class membership, and an observed layer for general

SBM. The latent class membership is independent identically distributed under multinomial

distribution:

Zi ∼ M(1, α),

where i = 1, · · · , n and α is a parameter satisfying the constraint
∑Q

q=1 = 1. The observed

layer describes the distribution of each edge conditional upon the membership assignment

of two end nodes independently:

Yij|ZiqZjl = 1 ∼ Fql(Xij),

where i, j = 1, · · · , n; i ̸= j; q, l = 1, · · · , Q. F depends on the choice of model distributions,

such as Bernoulli, Poisson, and Gaussian, without or with covariates.

It presents an implementation of a Variational EM algorithm for the Stochastic Block

Model for some common probability functions, Bernoulli, Gaussian, and Poisson, without
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or with covariates (that is, the model for the relationship between nodes). This package

implements group number exploration and selection via the Integrated Completed Likelihood

(ICL) (Biernacki et al., 2000) automatically. The ICL criterion is essentially the ordinary

BIC penalized by the subtraction of the estimated mean entropy. During the estimation,

models with different numbers of blocks are explored, and the best model with the lowest

ICL will be displayed.

6.3 Computational aspects

All models in this chapter are fit with the open-source user-friendly R packages ernm (Fel-

lows, 2014; R Development Core Team, 2022) or SBM. The easy availability of powerful,

sophisticated community supported software allows broad accessibility of both these model-

ing classes for researchers. For certain latent ERNM models (Model 2 in Section 6.4.3), the

tapered version ERNM is used.

6.4 Case Study–Sampson’s Monastery Data

The case study is performed on the sampson monastery dataset among 18 monks in a New

England monastery. Sampson (1968) collected the social interactions among the monks by

asking about each monk’s positive relations to other monks and recorded their top three

choices. A direct edge from monk A to monk B is formed if A assigns B as one of his top

choices. The vertex names are unique to the 18 monks, and they are classified into three

groups:

1. Outcasts: Elias, Simplicius, Basil, Amand;

2. Turks: John Bosco, Gregory, Winfrid, Albert, Boniface, Hugh, and Mark;

3. Loyal: Peter, Bonaventure, Berthold, Victor, Ambrose, Louis, Romuald.
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The data was gathered across three time points, and we use a time-aggregated version,

called samplike in R, to implement the study.
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Figure 6.1: Sampson Network: Left: Original; Middle: Model 1; Right: Model 2

6.4.1 Latent ERNM Fits

The latent ERNM model is fitted on the sampson data, where the dyadic variable (latent)

is set to be latent with three levels:

• Latent ERNM 1: Network ∼ edges + reciprocity + homophily(latent)

+ nodecount(latent) | latent

• Latent ERNM 2: Network ∼ edges + reciprocity +nodematch(latent)

+nodefactor(latent)+ nodecount(latent) | latent

The statistics consist of the definition in Chapter 5. Moreover, reciprocity counts for the

number of reciprocated ties, and it can only be applied to a directed network. The homophily

term is a regularised version nodematch term defined in Fellows and Handcock (2012). Model

2 is fitted with tapered version ERNM with tapering parameter 2.

The summary statistics are shown in Table 6.1. The coefficient estimates, and standard

errors of edges and reciprocity terms are very close between the two models. For model 1, the
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regularised homophily term is significant with a positive coefficient estimate, which suggests a

high tendency of connection between nodes with the same latent attributes. The Nodematch

term in ERNM 1 is also the uniform homophily with a significant positive coefficient estimate.

The Nodefactors on the latent attribute in Model 2 account for the differential homophily for

latent attribute level 2 over that for level 1 and level 3 over that for level 1, respectively. Both

terms are not statistically significant at 1% significance level, mainly due to the low variation

in the degree distribution. The Nodecount terms on the latent attribute are both negative

and insignificant in model 1, whereas they are highly significant with positive coefficients in

model 2.

Table 6.1: Summary of the Latent Class ERNM fit to Sampons Monk’s Data

Latent Class ERNM

Coefficient Model 1 Model 2

Edges -1.15(0.24) ∗∗∗ -1.50(0.37) ∗∗∗

Reciprocity 1.37(0.48) ∗∗ 1.77(0.51) ∗∗∗

Homophily-latent 5.67(0.92) ∗∗∗ NA

Nodematch-latent NA 1.43(0.30) ∗∗∗

Nodefactor-latent.1 NA -1.10(0.44) ∗

Nodefactor-latent.2 NA -1.09(0.59) .

Nodecount-latent.1 -0.02(1.14) 8.04(2.55) ∗∗

Nodecount-latent.2 -2.12(1.31) 9.16(2.51) ∗∗∗

∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, . p < 0.1

To assess the Goodness of Fit, we refer to the method in Section 5.5. We have generated

1000 simulations from the fitted latent ERNM. Then we plot the original network layout with

the cluster assignment probabilities for each actor shown as pie charts illustrated in Section

6.1.4. Model 1 achieves almost 100% accuracy in classifying the correct groups shown in
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Model Model 1 Model 2

logLLH 15.43864 54.07796

BIC -8.490592 -76.81457

Table 6.2: Sampson: Latent Class ENRM BIC Comparison

Figure 6.1 - Middle. From Figure 6.1 - Right, the correct classification of Model 2 is almost

100% except for one node, which is in group A with 80% chance and in group C for the rest

of time. It initially is Turks, but among 1000 simulations, Model 2 classifies it as a Loyal 180

times. One explanation is it has some in-edges from Loyal group nodes. The log-likelihood

and BIC are calculated for each model (Table 6.2). Model 2 gives a smaller BIC.

6.4.2 Simple SBM Fits

We fit the simple SBM with Bernoulli density to Sampson’s data. The automated ICL

suggests the SBM with two groups (SBM-2) shown in the left plot of Figure 6.2. The SBM

with three blocks (SBM-3) (the actual number of groups) yields a larger ICL than the SBM-

2. Moreover, if we sample from the fitted SBM-2 and SBM-3, the resulting blocks suggest

that SBM-2 classifies original Loyal and Outcasts into one group and original Turks into the

other group (Figure 6.2, Middle), and SBM-3 gives exactly same memberships distribution

as the original network (Figure 6.2, Right).

6.4.3 Comparison Between the Two Methods

Sampson Monastery data has a well-classified group structure. The latent ERNM did a

nice job of classifying the group membership, which generates three groups with correct

membership in all simulations from the fitted model. Unfortunately, the simple SBM with

the Bernoulli model suggests the SBM-2 with two groups according to the ICL. Moreover, as

we mentioned in Section 6.1.4, we can calculate the probability of monks being in the true
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Figure 6.2: Sampson: Left: SBM ICL; Middle: SBM with 2 groups; Right: SBM with 3

groups

group, P (X = x|Y = yobs, η), and the accuracy is almost 100%.

6.5 Case Study–Addhealth Data

The Addhealth data is from the National Longitudinal Study of Adolescent Health (Harris

et al., 2007) (Add Health). This nationally representative study includes a longitudinal

sample of more than 20,000 adolescents in grades 7 to 12 who were surveyed with in-school

questionnaires in the US in 1994 and 1995.

In this paper, we analyse a single school of 71 adolescents from grades 7–12. The network

connections are defined as the nomination of friendships. The self-nomination is disallowed,

and the isolated nodes are not considered.

6.5.1 Simple SBM Fits

We fit the Addhealth data with the simple SBM. The SBM with the Bernoulli model suggests

the best SBM with four levels (Figure 6.3) according to the ICL criterion (Figure 6.6). The

SBM with four groups (SBM-4) classifies most of the nodes from the original grade 7 as one
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group, the original grade 8 and some of grade 9 as another group, the rest of the nodes from

the original grade 9 as a 3rd group, and the original 10, 11, and 12 as the 4th group. The

SBM with five groups (SBM-5) further splits the second group in SBM-4, where grade 8 and

grade 9 are previously grouped together into two groups (Figure 6.4). In SBM-6, some of

the nodes from the original grade 11 are classified as a new group based on SBM-5 (Figure

6.5).

From the three simulated network plots, a drawback of SBM is that it fails to account

for the uncertainty in the group memberships. For instance, in SBM-4, the original grade

10, 11, and 12 are classified as one group without any uncertainty. However, if we turn to

SBM-6, some nodes originally from grade 11 are classified into a new group. In future works,

we shall implement the latent ERNM on the Addhealth data and compare it to the simple

SBM.
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CHAPTER 7

Summary

7.1 Discussion on ERNM Classes

Despite the wide success of exponential-family random graph models in representing complex

network data, they treat the nodal and dyadic covariates as exogenous. This is not true for

many realistic social processes. In this paper, we show that this treatment misspecifies the

social structure of network processes. We also provide evidence that Exponential-family

random network models represent a much better class of models for representing processes

with nodal and dyadic covariates that are endogenous to the tie variables. ERNMs have

many advantages. First, they are also in the exponential-family class of models, which have

been shown to be able to represent complex social structures. Exponential-family classes of

models have been extensively studied, and their properties have been explored. Because of

this, the extensive knowledge and software platforms that have been developed for ERGM

can, and have been, extended to ERNM.

In this paper, we compare ERGM and ERNM, with a special interest in situations where

at least some of the covariates are stochastic. We use as a case-study: a friendship net-

work among students within a school from the National Longitudinal Study of Adolescent

Health. Within this network, the student’s smoking behavior is likely endogenous to their

friendship ties. Both ERNM and ERGM models represent the four friendship networks well,

as evidenced by the goodness-of-fit and MCMC diagnostics. The coefficient estimates and

interpretations of the ERGM and ERNM are very similar after adding the node count term
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into ERNM (Table 5.2 and Table 5.4). Although both models show significant differential

homophilies on smoke, the node count term on smoke is a notable addition to the ERNM

fitting. Combining the result of ERNM and ERNM-Count model, we find there are fewer

smokers in the network than expected due to chance: the simulation results of the ERNM

model gives a higher number of smokers compared to the observed statistics and the ERNM-

Count (Figure C.1) simulated statistics; The negative coefficient of the node count variable in

the ERNM-Count model also suggests this. It illustrates the importance of treating smoking

status as endogenous, rather than exogenous as in ERGM.

The impact of the endogeneity is throughout the model. As the case study shows, primary

properties such as the presence of differential homophily can be misspecified by ERGM.

Coefficients can be both under and overestimated by ERGM and standard errors can be

affected both ways. In our case-study, this can be seen by comparing the coefficients and

standard errors in Table 5.2 (ERGM) to those in Table 5.3 (ERNM).

The findings from the ERGM and ERNM are fundamentally different: Either the smokers

have similar homophily to non-smokers (Table 5.4), or the number of smokers is lower than

we would expect (Table 5.4). This is missed by the ERGM and clear (and statistically

significant) in the ERNM. Note that the ERGM model is conceptually wrong in this case

as it is a pure social selection model where ERNM allows both social selection and social

influence.

On the one hand, based on the result of ERNM and ERGM, this is consistent with a

process of social selection. Smokers tend to connect with smokers, and non-smokers tend to

connect with non-smokers. If this argument holds empirically, then this would be a selection

causal mechanism that leads to it. However, there might be other tie formation processes,

such as different social contexts (Feld, 1981). Take a simple example: since smoker A and

smoker B go to the same tobacco shop, they meet there a lot of times and become friends.

This cannot be seen as a causal relationship of the homophily, rather, it is the social context

that leads to the formation of friendship. Hence, we can conclude an association between
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nodal attributes and social networks, instead of causality. On the other hand, AddHealth

networks can be explained by the process of social influence. Given the result of ERNM-

Count, smokers who are connected with non-smokers may choose to quit smoking and become

non-smokers. If this holds, then this would be an influence causal mechanism that leads to

it, which is a mechanism that only involves influence. Steglich et al. (2010) has verified the

existence of such a mechanism. However, it may also be possible that smokers quit smoking

because they want to make connections with non-smokers. Hence, the tie formation is a

homophily or social selection process. Although we cannot disentangle the social selection

and influence mechanisms, based on our conceptual knowledge, we tend to believe that the

social influence process is less credible under this context, and it is much more likely that it

is the selection mechanism that dominates.

The availability of powerful user-friendly open-source software allows broad accessibility

and use of both ERGM and ERNM (Krivitsky et al., 2003-2020; Fellows, 2014). The analysis

in this paper supports the notion that ERNM is preferred when networks have stochastic

covariates.

Finally, we note the ERNM provides a way to specify the complex dependency structures

that would empower autologistic actor attribute models (ALAAM) (Robins et al., 2001b).

This connection to ALAAM will be the topic of future investigation.

7.2 Discussion on Latent Class Models

One key question in network data analysis is to identify the clusters, which are subsets of

the nodes in the network and are generally unknown. This can be generalized to questions

when network exhibits unobservable quantities (ie. nodal attributes).

Stochastic Block Model are well-known models for clustering problems (Fienberg and

Wasserman, 1981; Holland et al., 1983). With known cluster groups, classic models the

distribution of the vertices’ relationship Yij depends only on their cluster groups, and are
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irrelevant to their degree distribution. In other words, the nodes from same group have the

same probabilities of relationships with all other nodes. Wasserman and Anderson (1987)

and Snijders and Nowicki (1997) introduced a posteri blockmodelling which enables the clus-

ter groups to be unknown in SBMs. However, SBMs perform poorly in many applications

to real world social and biological networks. The model assumption of homogeneous degree

distribution is the most factor to be blamed. Degree-Corrected Stochastic Block Models

(DCSBMs) introduces a set of degree-correction parameters, so nodes with larger parame-

ter values are expected to have higher connections than the nodes with smaller parameter

values within the same group (Dasgupta et al., 2004; Lei and Rinaldo, 2015). However, the

development of DCSBMs stays more on theoretical and algorithm levels, and we did not find

a compatible package to perform.

Classic SBMs fails to represent degree distribution of the network, moreover, they strug-

gle to capture the transitivity and homophily by attributes (Handcock et al., 2007). Holland

and Leinhardt (1981) introduced the p1 model, which models the whole adjacency matrix,

Y , by considering jointly the reciprocity of the network and the differential connections of

each node. The ties between each pair of nodes are independently modelled from every

other dyads. However, p1 model not only fails to capture clusters, but also the transi-

tivity or homophily of networks. The popular Exponential-family Random Graph Models

(ERGMs) (Frank and Strauss, 1986; Snijders et al., 2006) though generalize the p1 model

to allow dyads exhibit Markovian dependence, it can only represent the transitivity of the

graph. Although the subsequent development of ERGMs builds the homophily statistic by

attributes, it requires the attributes to be observable. Since the clustering structure of many

social networks are influenced by the homophily on some unobserved attributes (Wasserman

and Faust, 1994), this limits the usage of ERGM in analysing the clustering structure of

network. The Latent position cluster models (Handcock et al., 2007) posit the existence of

unobservable continuous nodal quantities that provide a spatial geometry for the network

structure.
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Exponential-family Random Network Models (ERNMs) Fellows and Handcock (2012)

models the social connections and nodal attributes jointly. It is exponential-family model,

hence inherits the some good properties: models with the dyadic dependency, includes dyadic

level and attributes level statistics. Moreover, since ERNMs treat the nodal attributes as

endogenous variables, it can make inference on the nodal attributes, that is cluster groups

in this paper. The random nodal attributes can be observed or latent in ERNM. When the

attributes is treated as latent, the homophily of unobserved nodal attributes can be analysed.

Under latent ERNM framework, we can investigate the probability of cluster group, which

is well defined through the marginal distribution P (X = x|Y = yobs, η). We have also built

a pie chart network visualisation to achieve a clear understanding of group classification. In

Sampson Monk’s case study, we build the latent ERNM and the simple SBM with Bernoulli

model. Latent ERNM suggests the model with 3 groups with high accuracy, where as the

default SBM suggests the model with 2 groups. SBMs are also inefficient in measuring the

uncertainty in the group memberships. For future work, we will fit the latent ERNM on

Addhealth data.
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APPENDIX A

ERNM Logit Form for Edge Connections

P ≡ Pη(yij = 1|x, ycij)

=
Pη(yij = 1, x, ycij)

Pη(x, ycij)

=
Pη(yij = 1, x, ycij)

Pη(yij = 1, x, ycij) + Pη(yij = 0, x, ycij)

=
exp η · g(y−ij , yij = 1, x)

exp{η · g(y−ij , yij = 1, x)}+ exp{η · g(y−ij , yij = 0, x)}

=
1

1 + exp
{
η ·

(
g(y−ij , x)− g(y+ij , x)

)} , (A.1)

logitP = log
P

1− P

= log

1

1+exp{η·(g(y−ij ,x)−g(y+ij ,x))}
1− 1

1+exp{η·(g(y−ij ,x)−g(y+ij ,x))}

= log exp
{
−η ·

(
g(y−ij , x)− g(y+ij , x)

)}
= η ·

(
g(y+ij , x)− g(y−ij , x)

)
. (A.2)
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APPENDIX B

ERNM Logit Form for Dyadic Attributes

P ≡ Pη(zij = 1|zcij, tij, Y = y)

=
Pη(zij = 1, zcij, tij, Y = y)

Pη(zcij, tij, Y = y)

=
Pη(zij = 1, zcij, tij, Y = y)

Pη(zij = 0, zcij, tij, Y = y) + Pη(zij = 1, zcij, tij, Y = y)

=
exp

{
tijβ + αg(y, tij) + λ(h(y, zij = 1) + h(y, zcij))

}
exp

{
tijβ + αg(y, tij) + λ(h(y, zij = 0) + h(y, zcij))

}
+ exp

{
αg(y, tij) + λ(h(y, zij = 1) + h(y, zcij))

}
=

exp {tijβ}
exp {tijβ}+ exp {λ(h(y, zij = 0) + h(y, zij = 1)}

=
1

1 + exp
{
λ(h(y, z−ij) + h(y, z+ij))− tijβ

} , (B.1)

logitP = log
P

1− P

= log

1

1+exp{λ(h(y,z−ij)+h(y,z+ij))−tijβ}
1− 1

1+exp{λ(h(y,z−ij)+h(y,z+ij))−tijβ}

= log exp
{
−
(
λ(h(y, z−ij) + h(y, z+ij))− tijβ

)}
= (tijβ)−

(
λ(h(y, z−ij) + h(y, z+ij))

)
. (B.2)
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APPENDIX C

Smoke Label Comparison
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APPENDIX D

Goodness of Fit
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Figure D.1: GOF Comparison of ERGM and ERNM (Model 1): Grade 9
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Figure D.2: GOF Comparison of ERGM and ERNM (Model 1): Grade 10
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Figure D.3: GOF Comparison of ERGM and ERNM (Model 1): Grade 11
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APPENDIX E

MCMC Diagnostics
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Figure E.1: MCMC Diagnostics of ERNM (Model 1) for grade 9: Left Column: Trace plot;

Right Column: Density plot
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Figure E.2: MCMC Diagnostics of ERNM (Model 1) for grade 10: Left Column: Trace plot;

Right Column: Density plot
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Figure E.3: MCMC Diagnostics of ERNM (Model 1) for grade 11: Left Column: Trace plot;

Right Column: Density plot
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Figure E.4: MCMC Diagnostics of ERNM (Model 1) for grade 12: Left Column: Trace plot;

Right Column: Density plot
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Figure E.5: MCMC Diagnostics of ERNM-Count (Model 2) for grade 9: Left Column: Trace

plot; Right Column: Density plot
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Figure E.6: MCMC Diagnostics of ERNM-Count (Model 2) for grade 10: Left Column:

Trace plot; Right Column: Density plot
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Figure E.7: MCMC Diagnostics of ERNM-Count (Model 2) for grade 11: Left Column:

Trace plot; Right Column: Density plot
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Figure E.8: MCMC Diagnostics of ERNM-Count (Model 2) for grade 12: Left Column:

Trace plot; Right Column: Density plot
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Figure E.9: MCMC Diagnostics of ERGM for Grade 9: Left Column: Trace plot; Right

Column: Density plot. (The line with different color represents each parallelled Markov

chain)
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Figure E.10: MCMC Diagnostics of ERGM for Grade 10: Left Column: Trace plot; Right

Column: Density plot. (The line with different color represents each parallelled Markov

chain)
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Figure E.11: MCMC Diagnostics of ERGM for Grade 11: Left Column: Trace plot; Right

Column: Density plot. (The line with different color represents each parallelled Markov

chain)
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Figure E.12: MCMC Diagnostics of ERGM for Grade 12: Left Column: Trace plot; Right

Column: Density plot. (The line with different color represents each parallelled Markov
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