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Abstract: Grapevine productivity, and berry and wine flavonoid concentration, depend on the
interactions of cultivar, environment, and applied cultural practices. We characterized the effects
that mechanical leaf removal and irrigation treatments had on the flavonoid concentration of ‘Merlot’
(Vitis vinifera, L.) grape berries and wines in a hot climate over two growing seasons with contrasting
precipitation patterns. Leaves were removed by machine, either at prebloom (PBLR), or at post-fruit-
set (PFLR), or not removed (control) and irrigation was either applied as sustained deficit irrigation
(SDI) at 0.8 of crop evapotranspiration (ETc) from budbreak to fruit set, or regulated deficit irrigation
(RDI) at 0.8 ETc from bud break to fruit set, 0.5 ETc from fruit set to veraison, and 0.8 ETc from
veraison to harvest, of ETc In 2014, PFLR reduced the leaf area index (LAI) compared to control.
The RDI decreased season-long leaf water potential (ΨInt) compared to SDI. However, in 2015, none
of the treatments affected LAI or ΨInt. In 2014, berry flavonoid concentrations were reduced by
PBLR as well as SDI. SDI increased the flavonoid concentrations in wine, and PFLR increased some
wine flavonols in one season. No factor affected the concentrations of wine proanthocyanidins or
mean degree of polymerization. Thus, mechanical PFLR and RDI may increase berry flavonoid
accumulation without yield reduction, in red wine grapes cultivars grown in hot climates when
precipitation after bud break is lacking. However, spring precipitation may influence the effectiveness
of these practices as evidenced by this work in a changing climate.

Keywords: canopy management; deficit irrigation; vineyard mechanization; flavonoids; hot
climate viticulture

1. Introduction

The San Joaquin Valley (SJV) of California is a major wine grape growing region of
the United States. In 2019, it produced 48% of the total wine grapes crushed in the state of
California [1]. The average grower return for Merlot wine grapes from the SJV was only
USD 310 per ton, whereas the state average for that variety was USD 826 per ton. Red
wine grapes from this region are generally priced lower than similar grapes from cooler
growing regions because its climate, specifically the high growing season temperatures and
rapid growing degree day accumulation, favor high yields of fruit with relatively low berry
flavonoid concertation at harvest. Hence, wines made of SJV grapes are usually marketed
as high volume, low-cost wines. The economics of this industry favor the development of
production practices that minimize grape and wine production cost while maintaining or
improving grape and wine quality. For example, mechanization of canopy management
practices and the implementation of optimal irrigation practices can minimize labor costs
and improve grape berry flavonoid concentration [2–5].
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Flavonoids are critical in determining the color, flavor, and mouthfeel of red wine [6]
and thus directly affect wine quality [7]. They are also the primary antioxidants that help
plants cope with environmental stresses. Their biosynthesis and concentration respond
to environmental cues, including water deficits, solar radiation exposure, and tempera-
ture [8–10]. Previous studies observed that moderately increasing the severity of water
deficits and solar radiation increased the content of two major flavonoid classes, antho-
cyanins and flavonols, in berries [8,11]. However, excessive exposure of grape berries
to sunlight, high air temperatures, and water deficits, reduces these compounds at har-
vest [10,12]. Another major class of flavonoids, proanthocyanidins, determine wine astrin-
gency [13] and help stabilize wine color via copigmentation [14]. They are less sensitive
to environmental stresses compared to other flavonoids [15]. However, under relatively
severe environmental stress, even proanthocyanidin composition and concentrations may
be altered, in a manner similar to the other flavonoids [16–18].

Leaf removal and deficit irrigation are the two cultural practices most commonly
used to manage canopy structure and plant water status, other than dormant pruning.
Leaf removal in the fruiting zone can directly affect canopy microclimate, and thereby
affect berry flavonoid accumulation [3]. Leafing may affect grapevine source-sink relations,
which would also contribute to the changes in berry development [19,20]. Removal of
leaves around clusters of grapes at different developmental stages were investigated to
help growers understand the various benefits selective leaf removal can provide. When
leaves were removed early (prebloom), berry set, and therefore yield, were reduced in
cool climate vineyards [21–23]. Studies in warm and hot climates deduced that early
leaf removal increased berry total soluble solids (TSS), and berry skin flavonoid concen-
tration without adversely affecting yield [3,24]. When leaves were removed later in the
season in cool climates, the total proanthcoyanidin content was increased in berries, but
decreased in wine [21]. Other studies suggested that late leaf removal could enhance berry
anthocyanins [3,25].

Water is a critical environmental factor for grapevine physiological development [26].
Water deficits reduce grapevine vegetative growth [27] and berry weight [28]. Severe water
deficits might inhibit photosynthesis [29] and promote berry maturity and vine dormancy
by stimulating abscisic acid biosynthesis [30], Mild to moderate water deficits improve
berry chemical composition due, in part, to suppressing grapevine vegetative growth, and
thereby increasing the sink strength of berries [31]. Moreover, water deficits increase berry
flavonoid concentrations [32], and the increases in TSS and flavonoid concentrations can
be attributed to the alteration of biosynthetic pathways [8,33], or simply the reduction in
berry weight due to water loss [34,35].

Imposing water deficits on grapevines at different developmental stages can result in
different effects. The SJV in California is a semiarid region and growers typically replace
70% to 80% of crop evapotranspiration from bud-break to harvest [2,35]. Preveraison
water deficits increased berry anthocyanin concentration whereas post veraison water
deficits promoted TSS concentration [32]. Castellarin et al. (2007) reported that preveraison
water deficits hastened sugar accumulation and anthocyanin biosynthesis [8], where the
genes related to anthocyanin biosynthesis, including flavonoid 3-hydroxylase (F3H), di-
hydroflavonol 4-reductase (DFR), UDP-glucose: flavonoid 3-O-glucosyl-transferase (UFGT)
and glutathione S-transferase (GST) were upregulated. There was also evidence showing
that both pre and postveraison water deficits can enhance anthocyanin biosynthesis [36].
Sometimes water deficits may increase the total anthocyanin content while the extractable
anthocyanins might be lower [23]. Postveraison water deficits may also limit flavonoid
biosynthetic accumulation [29]. Nevertheless, berry dehydration due to water deficits can
overrule the metabolomic regulation and directly determine the flavonoid concentration
in wine.

We previously studied the effects of mechanical leaf removal and water deficits on the
anthocyanin content and profile of grape berries [3]. In this study, we subjected grapevines
in a hot climate to mechanical canopy management treatments and water deficits in an
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attempt to promote flavonoid accumulation in grapes and wine. We hypothesized that
the leaf removal and water deficit would improve the berry and wine flavonoid profile
without adversely affecting yield. Overall, the objective of this study was to investigate the
physiological and chemical impacts of mechanical leaf removal and water deficits on berry
and wine flavonoid concentration of Merlot in a hot climate.

2. Results
2.1. Weather at the Experiment Site

The vineyard received approximately 34% more precipitation in the 2014–2015 posthar-
vest season (from September to April) than it did during the same time period in 2013–2014
(Figure 1A). The vineyard received little precipitation during the growing seasons, with
only 1.4 mm and 10.2 mm of precipitation in 2014 and 2015, respectively. In the second
season, precipitation prior to anthesis was higher than in 2014, and the GDD was also
greater, 1711.8 ◦C GDD in 2015, versus 1590 ◦C, in 2014 (Figure 1B). However, due to
greater early season precipitation, in 2015, Ψleaf did not reach the water deficit threshold of
−1.0 MPa to initiate irrigation until fruit set (Table 1). Due to the higher temperature from
June to harvest, the ETc was higher in the second season, where 1151.1 L per vine were
applied comparing to 1098 L per vine in 2014. Additionally, the applied water amounts
of SDI were slightly different between two seasons, where there were 1483.0 L per vine
applied in 2014 and 1423.6 L per vine applied in 2015.
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Figure 1. Weather at the experiment site in 2014 and 2015, acquired from California Irrigation
Management Information System (CIMIS) station (#206, Denair, CA). (A) Monthly precipitation.
Note: GDDs were calculated until August, when the harvests in both years occurred. (B) Growing
degree day accumulation starting in March of each year.
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Table 1. Crop evapotranspiration (ETc) and applied water amount between two irrigation regimes in a Merlot vineyard in
Denair, California in 2014 and 2015.

2014 2015

SDI RDI SDI RDI

ETc
a (mm) Applied

Water (L/vine) ETc
a (mm) Applied

Water (L/vine) ETc
a (mm) Applied

Water (L/vine) ETc
a (mm) Applied

Water (L/vine)

bud break-fruit set 29.72 181.16 29.72 181.16 n/a b n/a b n/a b n/a b

fruit set-veraison 122.19 862.20 72.37 477.70 101.64 726.57 71.18 454.11
veraison-harvest 61.49 439.60 61.49 439.60 97.50 696.99 97.50 696.99

total 213.40 1482.96 163.58 1098.46 199.13 1423.55 168.68 1151.09

a SDI utilized 80% ETc from bud-break to harvest, for RDI utilized 80% ETc from bud-break to fruit set, 50% ETc from fruit set to veraison,
and 80% ETc from veraison to harvest. b Irrigation was not applied before the leaf water potential reached −1 MPa. Hence, there was no
water applied prior to fruit set in 2015.

2.2. Canopy LAI and Season-Long Plant Water Status

Canopy LAI and season-long ΨInt were assessed in both seasons (Figure 2). In 2014,
PFLR had significantly lower LAI when compared to Control (Figure 2A1). The LAI of
grapevines subjected to PBLR was not different from Control, or PFLR, whereas in 2015,
vines subjected to either LR treatment had similar LAI (Figure 2A2). Overall, vines had
higher LAI in the second season compared to the first season. Season-long ΨInt were
−1.3 MPa with RDI in 2014, which was significantly lower than the −1.1 MPa of SDI
(Figure 2B1). However, in 2015, there was no significant difference in ΨInt between the
treatments (Figure 2B2). We did not detect a significant interaction between leaf removal
and irrigation on LAI or ΨInt in either year of the experiment.
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Figure 2. Grapevine leaf area index (LAI) and season-long leaf water potential integrals (ΨInt)
as affected by mechanical leaf removal treatments and deficit irrigation treatments, respectively.
(1) 2014, (2) 2015, (A) LAI by mechanical leaf removal treatments, including untreated control
(Control), prebloom leaf removal (PBLR), and post-fruit-set leaf removal (PFLR), (B) ΨInt by deficit
irrigation, including sustained deficit irrigation (SDI) and regulated deficit irrigation (RDI). Columns
with different letters are significantly different at p < 0.05 according to Tukey’s HSD.
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2.3. Yield Components and Berry Composition

The yield results of the 2014 trial were previously reported [3]. In 2015, vines subjected
to PBLR had the fewest clusters and lowest yield and average berry weight (Table 2). Vines
subjected to RDI had fewer clusters than other vines. Irrigation treatments did not affect
other yield components. Neither treatment affected the leaf area to fruit ratio in 2015. The
berries were harvested at the similar maturity stages in 2014 and 2015. The TSS in 2015
was affected by the leaf removal treatments; where PRLR showed the highest TSS, PFLR
showed the lowest.

Table 2. Yield components and berry primary metabolites at harvest in a Merlot vineyard in Denair, California in 2015 a,b,c.

Components of Yield Berry Composition

Cluster/Vine Yield
(kg)/Vine

Average
Berry wt.

(g)

Skin
Mass
(mg)

Skin to
Berry

Weight
Ratio (%)

Leaf Area
to Fruit
Ratio

(m2/kg)

TSS
(◦Brix) pH TA (g/L)

2014

LR

Control 55 a 6.2 a 1.09 45.3 a 4.15 a 0.94 24.3 3.60 4.83
PBLR 54 a 6.1 a 1.07 42.9 ab 4.00 a 0.87 24.1 3.62 4.66
PFLR 45 b 4.5 b 1.11 39.5 b 3.56 b 0.94 24.2 3.64 4.69

p value ** * ns * * ns ns ns ns

IRRI
SDI 52 6.1 a 1.14 a 42.7 3.83 0.79 b 23.9 b 3.63 4.83
RDI 51 5.3 b 1.04 b 42.3 3.83 1.05 a 24.5 a 3.61 4.62

p value ns ns ** ns ns * ns ns ns

LR × IRRI ns * ns ns ns ns ns ns ns

2015

LR

Control 120 a 16.6 a 1.30 a 36.5 2.69 0.43 24.6 ab 3.48 7.53
PBLR 105 b 13.4 b 1.27 b 37.4 2.92 0.49 24.9 a 3.50 7.90
PFLR 118 ab 15.1 ab 1.32 ab 32.3 2.46 0.47 24.1 b 3.49 7.44

p value * ** * ns ns ns ** ns ns

IRRI
SDI 120 a 15.7 1.31 36.8 2.81 0.46 24.3 3.48 7.73
RDI 108 b 14.4 1.33 34.0 2.57 0.47 24.8 3.50 7.52

p value ** ns ns ns ns ns ns ns ns

LR × IRRI ns ns ns ns ns ns ns ns ns
a ANOVA to compare data (p value indicated); Letters within columns indicate significant mean separation according to Tukey’s honestly
significant difference test at p value ≤ 0.05, where “*”: p value ≤ 0.05; “**”: p value ≤ 0.001. b LR: leaf removal; IRRI: irrigation; PBLR:
prebloom leaf removal; PFLR: post-fruit-set leaf removal; ns: not significant. c A portion of this table was previously published © 2015
American Society for Enology and Viticulture AJEV 66:266–278.

2.4. Berry Skin Flavonoid Concentration—Anthocyanins and Flavonols

The concentration of berry skin flavonoids was measured in 2014 and 2015 (Table 3).
In 2014, berries from vines subjected to PBLR had less delphinidin, cyanidin, and petunidin
compared to berries from vines subject to the other two leaf removal treatments. The
di-hydroxylated anthocyanins were the highest in berries from vines subjected to PFLR. In
2015, however, PFLR obtained the highest concentrations of malvidin and tri-hydroxylated
anthocyanins. It also obtained the highest concentrations of quercetin, myricetin, and total
flavonols in the second season. In 2014, RDI increased delphinidin, cyanidin, petunidin,
tri-hydroxylated, and total anthocyanin. However, there was no difference in either antho-
cyanins or flavonols between SDI and RDI in 2015. When comparing the two years, the
flavonoid concentrations in the second year were generally lower than the first.
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Table 3. Grape berry skin flavonoid concentration at harvest in a Merlot (Vitis vinifera L.) vineyard in Denair, California in
2014 and 2015 a,b,c.

Anthocyanins Flavonols

2014

Delphinidin Cyanidin Petunidin Peonidin Malvidin Tri-
hydroxylated

Di-
hydroxylated

Total
anthocyanins Quercetin Myricetin Total

flavonols

LR

Control 11.06 a 6.56 a 11.94 a 17.32 94.05 117.05 23.88 ab 140.93 13.33 0.73 14.06
PBLR 8.32 b 5.45 b 9.57 b 15.56 85.70 103.59 21.01 b 124.60 13.09 0.85 13.94
PFLR 11.19 a 7.25 a 12.01 a 18.86 90.52 113.72 26.11 a 139.83 15.00 0.88 15.88

p value ** * ** ns Ns ns * ns ns ns ns

IRRI
SDI 9.28 b 6.73 10.43 b 18.08 81.71 101.43 b 24.81 126.24 b 13.54 0.80 14.34
RDI 11.10 a 6.11 11.91 a 16.39 98.56 121.57 a 22.50 144.07 a 14.09 0.84 14.93

p value * ns * ns ** ** ns ** ns ns ns
LR × IRRI ns ns ns ns Ns ns ns ns ns ns ns

2015

LR

Control 7.89 5.29 8.92 16.67 70.46 b 87.27 b 21.96 109.23 4.89 b 1.71 b 7.81 b

PBLR 8.47 5.65 9.35 18.28 70.88 ab 88.70 b 23.93 112.64 6.35 ab 1.88 b 9.69 ab

PFLR 8.91 5.76 10.33 18.44 85.96 a 105.20 a 24.21 129.40 7.41 a 2.36 a 11.53 a

p value ns ns ns ns * * ns ns ** * **

IRRI
SDI 8.19 5.60 9.31 17.63 74.46 91.96 23.24 115.19 6.17 1.96 9.58
RDI 8.66 5.53 9.76 17.96 77.08 95.49 23.49 118.98 6.27 2.02 9.78

p value ns ns ns ns Ns ns ns ns ns ns ns
LR × IRRI ns ns ns ns Ns ns ns ns ns ns ns

Year ** * * ns *** *** ns ** *** *** ***
Year × LR * ns ns ns Ns ns ns ns ns ns ns

Year × IRRI ns ns ns ns * ns ns ns ns ns ns
Year × LR × IRRI ns ns ns ns Ns ns ns ns ns ns ns

a ANOVA to compare data (p value indicated); Letters within columns indicate significant mean separation according to Tukey’s honestly
significant difference test at p value ≤ 0.05, where “*”: p value ≤ 0.05; “**”: p value ≤ 0.001; “***”, p value ≤ 0.0001. b All compounds were
expressed as mg per kg of berry fresh weight. c Abbreviations: LR: leaf removal; IRRI: irrigation; PBLR: prebloom leaf removal; PFLR:
post-fruit-set leaf removal; SDI: sustained deficit irrigation; RDI: regulated deficit irrigation, ns: not significant.

2.5. Wine Flavonoid Concentration

Wine flavonoids were measured in 2014 and 2015, and differences observed in berry
skins did not transfer into wine with leaf removal treatments (Table 4). In 2014 and 2015,
there was no differences observed with leaf removal treatments in any of the anthocyanin
derivatives. However, the differences in flavonols from leaf removal treatments were
significant enough to be observed in wine, where PFLR had higher quercetin, myricetin,
and total flavonols although there was no separation between PBLR and PFLR in 2015.
As for irrigation treatments, in 2014, SDI increased the concentrations of cyanidin and
petunidin, and also increased quercetin and total flavonols in both seasons. Like berry skin
flavonoid concentrations, the concentrations of most of the wine anthocyanin and flavonol
derivatives were lower in the second season than the first one.

Table 4. Wine flavonoid concentration in a Merlot (Vitis vinifera L.) vineyard in Denair, California in 2014 and 2015 a,b,c.

Anthocyanins Flavonols

2014

Delphinidin Cyanidin Petunidin Peonidin Malvidin Tri-
hydroxylated

Di-
hydroxylated

Total
anthocyanins Quercetin Myricetin Total

flavonols

LR

Control 3.98 1.86 8.19 2.11 128.23 140.40 3.97 144.37 19.56 6.70 26.26
PBLR 4.23 1.92 8.58 2.12 135.87 148.68 4.04 152.72 23.66 7.60 31.26
PFLR 4.44 2.25 9.31 2.42 124.73 138.49 4.68 143.16 24.05 7.67 31.72

p value ns ns Ns ns ns ns ns ns ns ns ns

IRRI
SDI 3.81 1.85 b 7.80 b 2.15 122.82 134.43 4.00 138.43 19.44 b 6.59 26.03 b

RDI 4.62 2.17 a 9.59 a 2.29 136.40 150.61 4.46 155.07 25.40 a 8.06 33.46 a

p value ns * * ns ns ns ns ns * ns *
LR × IRRI ns ns Ns ns ns ns ns ns ns ns ns
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Table 4. Cont.

Anthocyanins Flavonols

2015

LR

Control 7.15 2.04 6.14 8.60 71.00 84.29 10.64 94.93 9.68 b 3.71 b 13.39 b

PBLR 8.37 2.06 6.59 9.09 70.59 85.56 11.15 96.71 11.82 ab 4.24 ab 16.05 ab

PFLR 9.31 2.55 7.67 10.35 85.21 102.20 12.89 115.09 12.71 a 4.72 a 17.43 a

p value ns ns Ns ns ns ns ns ns * ** *

IRRI
SDI 7.64 2.21 6.60 9.03 72.58 86.82 11.24 98.06 10.16 b 3.97 b 14.13 b

RDI 8.91 2.22 7.01 9.66 78.63 94.54 11.89 106.43 12.64 a 4.48 a 17.12 a

p value ns ns Ns ns ns ns ns ns * * *
LR × IRRI ns ns Ns ns ns ns ns ns ns ns ns

Year *** ns ** *** *** *** *** *** *** *** ***
Year × LR ns ns Ns ns ns ns ns ns ns ns ns

Year × IRRI ns ns Ns ns ns ns ns ns ns ns ns
Year × LR × IRRI ns ns Ns ns ns ns ns ns ns ns ns

a ANOVA to compare data (p value indicated); Letters within columns indicate significant mean separation according to Tukey’s honestly
significant difference test at p value ≤ 0.05, where “*”: p value ≤ 0.05; “**”: p value ≤ 0.001; “***”, p value ≤ 0.0001. b All compounds were
expressed as mg per L. c Abbreviations: LR: leaf removal; IRRI: irrigation; PBLR: prebloom leaf removal; PFLR: post-fruit-set leaf removal;
SDI: sustained deficit irrigation; RDI: regulated deficit irrigation; ns: not significant.

The wine proanthocyanidin concentration and composition were measured in 2014
and 2015 (Table 5). There were no significant differences in any of the proanthocyanidin
subunits due to either leaf removal or deficit irrigation treatments, except epicatechin
(EC) terminal subunits, which were reduced by PBLR in 2014. The general concentrations,
including the total proanthocyanidins, were lower in the second season compared to the
first season, and the mDP was higher.

Table 5. Wine proanthocyanidin subunit concentration in a Merlot (Vitis vinifera L.) vineyard in Denair, California in 2014
and 2015 a,b,c.

Extension Subunits Terminal Subunits Total
Proanthocyanidins mDP

EGC C EC ECG C EC

2014

LR

Control 125.34 28.30 303.18 8.52 88.13 136.29 a 689.76 3.09
PBLR 121.63 26.79 275.97 8.56 83.36 113.30 b 629.62 3.21
PFLR 123.49 28.67 286.42 7.86 92.06 128.50 ab 667.43 3.04

p value ns Ns ns ns ns * ns ns

IRRI
SDI 123.93 29.44 291.60 7.58 88.84 132.45 673.84 3.06
RDI 124.06 26.37 286.31 9.09 87.18 120.19 652.63 3.15

p value ns Ns ns ns ns ns ns ns
LR × IRRI ns Ns ns ns ns ns ns ns

2015

LR

Control 44.30 19.51 214.10 29.81 70.43 47.47 425.62 3.65
PBLR 49.41 20.29 229.99 31.80 71.52 49.02 452.03 3.79
PFLR 58.89 20.66 237.69 31.30 72.54 48.05 469.12 3.91

p value ns Ns ns ns ns ns ns ns

IRRI
SDI 46.35 19.07 217.74 29.55 69.24 47.38 429.34 3.70
RDI 56.39 21.39 238.84 32.62 74.05 49.12 472.41 3.88

p value ns Ns ns ns ns ns ns ns

LR × IRRI ns Ns ns ns ns ns ns ns

Year *** *** *** *** *** *** *** ***
Year × LR ns Ns ns ns ns ns ns ns

Year × IRRI ns Ns ns ns ns ns ns ns
Year × LR × IRRI ns Ns ns ns ns ns ns ns

a ANOVA to compare data (p value indicated); Letters within columns indicate significant mean separation according to Tukey’s honestly
significant difference test at p value ≤ 0.05, where “*”: p value ≤ 0.05; “***”, p value ≤ 0.0001. b All compounds were expressed as mg
per L. c Abbreviations: LR: leaf removal; IRRI: irrigation; PBLR: prebloom leaf removal; PFLR: post-fruit-set leaf removal; SDI: sustained
deficit irrigation; RDI: regulated deficit irrigation; ns: not significant; C: (+)-catechin; EC: (-)-epicatechin; ECG: (-)-epicatechin-3-O-gallate;
EGC: (-)-epigallocatechin; mDP: mean degree of polymerization. mDP was calculated as the ratio of total proanthocyanidins to the
terminal subunits.
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3. Discussion
3.1. Grapevine Canopy and Water Status

Leaf removal can reduce canopy leaf area [37,38], as occurred with PFLR in 2014.
Previous studies indicated grapevine canopies would regrow when leaves were removed
early in the season [19,22], which might partly explain why PBLR did not affect LAI. The
second season had more precipitation between bud break to anthesis, which promoted
vegetative growth, as observed from the generally higher LAI values in 2015. These
results were corroborated by the relatively higher average ΨInt of −1.0 MPa in the second
season comparing it to the first season, which was −1.2 MPa. Our results provided further
evidence that leaf removal can be more effective in altering canopy size in more arid
seasons, presumably because the drier soil made it easier to control canopy size by induced
water deficits [39]

Application of the RDI treatment decreased ΨInt in 2014, which indicated that the
30% reduction of applied water amounts between fruit set and verasion was sufficient to
alter the season-long plant water status [2]. However, the second season did not show
such a separation in season-long plant water status. We attributed this to the precipitation
received before budbreak in 2015, which delayed the attainment of moderate water deficit
stress as the Ψleaf did not reach −1.0 MPa until fruit set.

3.2. Yield Components and Berry Composition

The effects of various timings of leaf removal on berry development and composition
were previously investigated [21,38,40,41]. Late (post-fruit-set) leaf removal can affect
grapevine yield and berry composition [38,42], but prebloom leaf removal has been shown
to be more effective in modifying yield and berry composition than post-fruit-set leaf
removal [21,43]. In our study, yield was reduced by PFLR in 2014, and by PBLR in 2015.
This inconsistency might be due to treatment effects on LAI. Vines subjected to PFLR
had the lowest LAI in 2014, perhaps sufficiently to reduce yield capacity compared to
vines with larger canopies, as typically found in SJV [44]. Previous studies reported that
berry weight may be affected by leaf removal, especially when the leaf removal was
conducted early in the season [19,37]. Skin weight was affected by leaf removal, where
altered canopy microclimate by leaf removal could be the direct factor to manipulate berry
skin weight [22,45]. In our study, berry skin weight was reduced with PFLR in 2014. This
might be because that late leaf removal diminished the growth of berry skin, as witnessed
in previous studies [22,46].

Previous studies showed that leaf removal increased berry TSS concentration [19,47].
Leaf removal could increase berry TSS by dehydration sunlight [48,49], or increased carbo-
hydrate accumulation and partitioning to the fruits [19]. However, in our study, treatments
had few and small effects on TSS.

3.3. Berry and Wine Flavonoids

Previous studies investigated the effects of leaf removal on grape berry skin antho-
cyanin and flavonol concentration, and some studies focused on scrutinizing the various
outcomes from the different timings of leaf removal [40,42]. However, in our case, PFLR
was not effective in increasing berry skin anthocyanin concentration in either season. Previ-
ous work indicated that berry exposure to solar radiation late in the season might make the
berries more prone to negative effects of radiation exposure and higher air temperature [24].
As for flavonols, they are generally reported to be sensitive to solar radiation [50,51], but
we did not notice a difference in flavonols in 2014 even though the LAI was significantly
reduced by PFLR. The berry weight might have been the determining factor, where PFLR
did not significantly reduce berry weight, hence it did not increase the concentration
either. When comparing the first season to the second, the anthocyanins and flavonols
were generally lower, although the TSS at harvest in both years were at the same level.
Previous studies reported that <0.8–1.2 m2 of leaf area per kg of fruits could inhibit berry
maturation [52]. The second season had a lower leaf area to fruit ratio—the plants did
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not have sufficient canopies as source tissues to reach the same maturity in both TSS and
flavonoids, which might have contributed to the lower flavonoid accumulation in 2015.

RDI significantly reduced plant water status and increased berry anthocyanin con-
centrations in 2014. Previous studies had shown that deficit irrigation could increase
berry anthocyanin concentration [8,33]. In our case, most of the anthocyanin derivatives
were greater with RDI. As for flavonols, our study did not indicate that reduction of ap-
plied water amounts with RDI had noticeable influences on berry flavonols in either year.
This agreed with previous work, that flavonols are relatively insensitive towards water
deficits [8].

In our study, only a portion of the significant treatment effects on anthocyanins and
flavonols were carried into wine. We attributed these discrepancies to differences in berry
skin extractability affected by both treatments. Previous work indicated that higher perme-
ability of the skin cell walls would lead to more advanced maturity, eventually increasing
the extractability of flavonoids [53]. PBLR showed the ability to promote berry maturity
(i.e., TSS) in 2014, and the more advanced maturity might have diminished flavonoid
concentration benefiting from the leaf removal treatment. Some research attributed this
observance to the warm and hot climate, where the impacts of leaf removal and deficit
irrigation might be unhelpful in such regions, to a point that berry flavonoids are not
increased, or are even decreased [10,54].

Among the three classes of flavonoids, proanthocyanidins are most the chemically
stable and less easily manipulated by cultural practices or grapevine physiological sta-
tus [55–57]. In our study, there were minimal effects from the treatments, where only
EC terminal subunits were significantly affected. Some previous studies were able to
see significant effects, mainly positive, of sun exposure and water deficits on berry or
wine proanthocyanidin concentration [15,16,58]. However, in warm/hot climates, environ-
mental stresses could be sufficiently severe to degrade berry proanthocyanidins [59,60].
This might have contributed to the lower total proanthocyanidin concentrations in the
second season compared to the first due to the higher air temperatures in 2015. Among the
proanthocyanidin subunits, the EGC extension subunits were the most drastically reduced
in 2015. This was corroborated by previous work, where EGC extension subunits were
sensitive towards air temperature [61].

4. Materials and Methods
4.1. Site Description

The experiment was conducted at a commercial vineyard in Stanislaus County, CA,
USA. Merlot grapevines (clone FPS 01) grafted to Freedom (27% V. vinifera hybrid) rootstock
were planted in 1998 in 2.13 m × 3.35 m (vine × row) spacing, in rows oriented North–
South. The grapevines were head-trained and supported with a California sprawl trellis
which consisted of a cordon wire at 1.37 m above vineyard floor, and two foliage wires
separated by a 20 cm t-top. The grapevines were cane-pruned to six canes with eight nodes
each. The vineyard was drip-irrigated with pressure-compensating emitters spaced at
1.1 m with two emitters per vine delivering 2 L/h each.

4.2. Experimental Design

The experiment was a three (leaf removal) × two (deficit irrigation) arranged factori-
ally with a split-plot design with four replicated blocks. Three rows comprised one block
and four buffer rows separated each block. The main plot was the leaf removal treatments,
the subplot was irrigation treatments. Each experimental unit consisted of 285 vines, and
48 vines were selected, which were sampled and measured during the growing season.

4.3. Mechanical Leaf Removal Treatments

In 2014 and 2015, two leaf removal treatments were applied: a prebloom leaf removal
treatment (PBLR), a post-fruit-set leaf removal treatment (PFLR), and an untreated control
(Control). The leaf removal treatments were applied mechanically on the east side of the
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canopy with a roll-over type leaf remover (Model EL-50, Clemens Vineyard Equipment
Inc., Woodland, CA, USA). A 50 cm window in the fruiting zone was created after the
treatment. PBLR was applied at 200 GDD in 2014 and 2015. PFLR was applied at 644 GDD
and 600 GDD in 2014, and 2015, respectively.

4.4. Irrigation Treatments and Weather

The amount of water to apply each week, crop evapotranspiration (ETc), was calcu-
lated as the product of reference evapotranspiration (ETo) and crop coefficient (Kc) [62].
The reference ETo, air temperature, and precipitation were obtained from the California
Irrigation Management Information System (CIMIS) weather station (#206) in Denair, CA.
For crop coefficient calculation, a neighboring row was irrigated to 100% of ETo replace-
ment. The shade cast under 24 plants in this row then was measured to calculate percent
shaded area to calculate the crop coefficient weekly. The crop evapotranspiration was then
estimated as described by Williams and Ayars (2005) [63]. A sustained deficit irrigation
(SDI) at 0.8 ETc was applied weekly from anthesis until harvest. A regulated deficit ir-
rigation (RDI) treatment was applied at 0.8 ETc from anthesis to fruit set, 0.5 ETc from
fruit set to veraison, and back to 0.8 ETc from veraison until harvest. The growing degree
days (GDD) were calculated with the air temperature acquired from the CIMIS station as
GDD = [(Tmax + Tmin)/2 − Tref], where Tmax was the maximum air temperature, Tmin was
the minimum air temperature, and Tref was the base temperature 10 ◦C. All other cultural
practices were carried out according to University of California guidelines for the area.
GDD calculation for both years only considered the time prior to harvest.

4.5. Plant Water Status Assessment

Leaf water potential (Ψleaf) of the grapevines was monitored weekly. Four sun-exposed
leaves were measured with the use of a pressure chamber (Model 610 Pressure Chamber
Instrument., PMS Instrument Co., Corvallis, OR, USA) as previously reported elsewhere by
Cook et al. (2015) [3]. To summarize the season-long plant water status, Ψleaf integrals were
calculated by using natural cubic splines. The values were then divided by the number of
the days between the first and the last Ψleaf water measurements in each year to make the
data comparable to each individual measurement as ΨInt.

4.6. Leaf Area Index and Yield Components

Leaf area was determined at 50% veraison from 24 vines per experimental unit. Four
random shoots were collected from the east and west sides of the canopy per vine. The
leaves were removed from the shoots, and the leaf area was measured with a leaf area
meter (LI-3100C, LI-COR Biosciences, Lincoln, NE, USA). Total leaf area for each vine was
calculated as the average leaf area per shoot multiplied by the average shoot numbers per
vine. Lastly, leaf area index (LAI) was calculated as the ratio between the leaf area to the
ground surface area for each vine (7.14 m2).

Yield components were measured on a single harvest date as the berry TSS reached
24 ◦Brix in each year. All clusters in each treatment replicate were picked, counted, and
weighed to determine the number of clusters per vine, average cluster weight, and yield
per vine. Two sets of samples were collected, including one set of 100 berries to assess
average berry mass, and another set of 20 berries to assess the dry skin mass and further
skin flavonoid analysis.

4.7. Chemicals

All chromatographic solvents were of HPLC grade. Acetonitrile, acetone, ascorbic
acid, ethanol, glacial acetic acid, maleic acid, methanol, potassium metabisulfite, potassium
hydroxide, and sodium hydroxide were purchased from Fisher Scientific (Santa Clara, CA,
USA). Phloroglucinol, (−)-epicatechin (EC), and hydrochloric acid were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Malvidin-3-O-glucoside and quercetin-3-O-rutinoside
were purchased from Extrasynthése (Genay, France). Dihydrogen ammonium phosphate
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and phosphoric acid were purchased from VWR (Visalia, CA, USA). Hydrochloric acid
and sodium acetate anhydrous were purchased from E. M. Science (Gibbstown, NJ, USA)
and Mallinckrodt (Phillipsburg, NJ, USA), respectively.

4.8. Berry Composition

The first set of 100 berries were crushed and the juice was used for the analysis of
berry primary metabolites, including TSS, titratable acidity (TA), and must pH. Must
TSS was measured (as ◦Brix) with a digital refractometer (Atago PR-32, Atago CO., Ltd.,
Bellevue, WA, USA). The TA was measured by titrating the must to an endpoint pH of 8.2
with 0.1N sodium hydroxide on an endpoint titrator (Mettler-Toledo DL15, Mettler-Toledo
International Inc., Columbus, OH, USA). Must pH was measured by a glass electrode pH
meter (Accumet™ AB15, Fisher Scientific, Pittsburg, PA, USA).

4.9. Extraction of Skin Flavonoids

Berry skins were manually removed from the second berry set of 20 berries, and
lyophilized with a centrivap (Centrivap Benchtop Centrifugal Vacuum Concentrator
7810014 equipped with Centrivap −105 ◦C Cold Trap 7385020, Labconco, Kansas City, MO,
USA). Dry skin masses were recorded after lyophilization, and then extracted in 20 mL
66% (v·v−1) acetone solution in the dark for 24 h. Acetone extracts were vacuum filtered,
solids were discarded, and 1 mL of liquid was collected. The acetone in the extracts was
removed with the Centrivap, and the solution left was brought up to 5 mL with water.
Samples were then centrifuged for 15 min at 1400× g, and the supernatant was filtered by
PTFE membrane filters (diameter: 13 mm, pore size: 0.45 µm, VWR, Seattle, WA, USA), and
transferred into High Performance Liquid Chromatography (HPLC) vials before analysis.

4.10. Berry and Wine Flavonoid Analysis

Skin and wine anthocyanins and flavonols were analyzed by a reversed-phase HPLC
system (Agilent 1100 series, Santa Clara, CA, USA) equipped with a system controller, a
vacuum degasser (Model: G1379A), a quaternary pump (Model: G1311A), an autosampler,
a thermostatted column compartment (Model: G1316A), and a DAD/UV-vis detector
(Model: G1315A). A C18 column (LiChrosphere 100 RP-18, 4 × 520 mm2, 5 mm particle
size, Agilent Technologies, Santa Clara, CA, United States) was used as previously reported
elsewhere by Yu et al., (2016).

The concentrations for wine proanthocyanidin subunits were assessed by acid catalysis
in the presence of excess phloroglucinol (phloroglucinolysis) by reversed-phase HPLC
using the same instrument as mentioned above [64]. To purify proanthocyanidins, DSC-18
solid phase extraction (SPE) cartridges (bed weight: 500 mg, volume: 6 mL, Sigma-Aldrich,
St. Louis, MO, USA) were used. Briefly, the SPE column was preconditioned with 3 column
volumes of methanol and then with 3 column volumes of water. We passed 1 mL of samples
through the column and washed it by 3 column volumes of water to remove impurities.
Then, the resided sample was eluted with 3 × 3 mL of methanol. The eluent was lyophilized
to powder and then re-dissolved in 1 mL of methanol and ready for phloroglucinolysis.

For phloroglucinolysis, 0.25 mL eluent was mixed with 0.25 mL of phloroglucinolysis
reagent (100 g·L−1 phloroglucinol and 20 g·L−1 ascorbic acid with 0.2 N hydrochloric acid
in methanol). The proanthocyanidin of interest in the mixture solution was reacted at 50 ◦C
in water bath for 20 min. Then, the reaction was stopped by mixing 200 µL of the mixture
solution with 1 mL of stopping reagent (40 mM aqueous sodium acetate) and then directly
transferred into HPLC vials. A column with two Chromolith RP-18e (100 × 4.6 mm2)
columns serially connected was used, and it was protected by a guard column with the
same material (4 × 4 mm2) from EM Science (Gibbstown, NJ, USA). The mobile phase
flow rate was 3.0 mL·min−1, and two mobile phases were used, which included solvent
A = 1% aqueous acetic acid (v·v−1) and solvent B = 1% acetic acid in acetonitrile (v·v−1).
The HPLC flow gradient started with 97% A with 3% B, 82% A, 18% B at 14 min, 20% A,
80% B at 14.01 min, 97% A, 3% B at 16.01 min until 20 min. The compound identification
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and quantification were conducted by using ChemStation version B.04.03 with the use of
peak area measurements at 280 nm for all proanthocyanidin subunits. The standard used
was (-)-epicatechin (Sigma-Aldrich, St. Louis, MO, USA).

4.11. Winemaking

We carried out microscale fermentations in 2014 and 2015. The fruits from the 24 vines
were hand-harvested, and the 4 replicates of total 14 kg of fruits per treatment-replicate
were used for fermentation. The fruits were crushed and destemmed by using a crusher–
destemmer (Cantinetta C.d.A., ZAMBELLI Enotech, Camisano Vicentino, Italy), potassium
metabisulfite was added to the must (50 mg·kg−1 SO2). The must from each treatment
was then fermented in a 4 L vessel according to Sampaio et al. [65]. Briefly, each vessel
was equipped with a Teflon cap, a fermentation airlock, and a food-grade polyethylene
screen to keep must caps submerged in juice. Each lot was inoculated with 0.2 g·L−1 of
commercial yeast, Saccharomyces cerevisiae Meyen ex Hansen (Cotes des Blancs, Red
Star Yeast Prod. Oakland, CA, USA). All fermentations were carried out indoors with
temperatures maintained at 23 ◦C. Punch-downs were carried out twice a day, where the
polyethylene screens were submerged, until the alcoholic fermentation was completed. The
fermentation progress was monitored by a hydrometer until dryness. The wines were then
pressed with a vacuum pump (MaximaDry™, Fisher Scientific, Waltham, MA, USA) with a
pressure of 0.2 MPa maintained for 30 min, the crudes were removed by filter (P8, diameter:
11.0 cm, Fisher Scientific, Waltham, MA, USA) placed in a Buchner funnel (CoorsTek 60242,
Golden, CO, USA). Potassium metabisulfite was added to the wine to retain the SO2 level
at 50 mg·kg−1 and cold stabilized at −2 ◦C. Then, the wines were bottled in 375 mL glass
bottles with screw caps.

4.12. Statistical Analysis

Interactions between year and treatments were tested and, whenever these interactions
were significant (p ≤ 0.05), analysis was conducted separately for each year. The results
were subjected to a two-way (leaf removal × irrigation) analysis of the variance (ANOVA)
using in R (version 1.1.442, RStudio, Inc., Boston, MA, USA) appropriate for split–split plot
with a factorial arrangement of treatments. All data were tested for normality using Shapiro–
Wilk’s test, some data required a combination of log and square root transformations where
deemed necessary in 2014 and 2015. Treatment means were considered significantly
different by Tukey’s honestly significant difference adjustment at p ≤ 0.05.

5. Conclusions

Leaf removal and water deficits have been extensively studied in viticultural research.
However, there is a need to better understand the effects of different timings of mechanical
leaf removal and deficit irrigation on grape berry and wine flavonoid concentration in hot
climates where majority of the world’s wine grapes are grown. Wine grape growers in hot
climate regions must make up for relatively low prices, due to the low flavonoid concentra-
tion in grape berries/wine, with high yields of fruit without further compromising fruit
quality. Thus, we studied two factors, leaf removal and deficit irrigation, to determine their
effects on berry and wine flavonoid concentrations, to see if they may be useful to wine
growers in hot climates. To conclude, we have determined PFLR and RDI in hot climates
may increase flavonoid concentration in red wine grape berries but possibly not large
enough of an effect to beneficially affect wine flavonoid concentration. Additionally, our
study provides evidence on the feasibility of mechanical leaf removal and water deficits on
the berry and wine quality improvement in large-acreage commercial vineyards in a hot
climate where precipitation prior to anthesis is a determining factor of the effectiveness of
cultural practices. Future work in the region may consider relating the soil water content,
precipitation to anticipated fruit and wine composition.
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