
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Topics in Polar Coding: Structural Properties, Construction, and Decoding

Permalink
https://escholarship.org/uc/item/4nx5n1d3

Author
Yao, Hanwen

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4nx5n1d3
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Topics in Polar Coding: Structural Properties, Construction, and Decoding

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering
(Communication Theory and Systems)

by

Hanwen Yao

Committee in charge:

Professor Paul Siegel, Chair
Professor Shachar Lovett
Professor Arya Mazumdar
Professor Alon Orlitsky

2022

Copyright

Hanwen Yao, 2022

All rights reserved.

The Dissertation of Hanwen Yao is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2022

iii

DEDICATION

Dedicated to the memory of Prof. Alexander Vardy

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xi

Acknowledgements . xii

Vita . xv

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1
1.1 Background on Error Correction Codes . 1
1.2 A Brief Review on Polar Codes . 3
1.3 Dissertation Overview . 8

Chapter 2 Compute the Weight Distribution of Polar Code . 13
2.1 Introduction . 13

2.1.1 Related Prior Work . 13
2.1.2 Our Contributions . 14
2.1.3 Notations . 16

2.2 Polar Cosets . 16
2.3 Computing the Weight Enumerating Function of Polar Cosets 18
2.4 Computing the Entire Weight Distribution of Polar Codes 23

2.4.1 Representing Polar Codes with Polar Cosets . 23
2.4.2 Representing Polar Codes with Dynamically Frozen Bits 25
2.4.3 Computing the Entire Weight Distribution . 27

2.5 Mixing Factor of Polar Code . 28
2.5.1 Properties of Polar Codes as Decreasing Monomial Codes 29
2.5.2 The Largest Mixing Factor of Polar Codes . 32

2.6 Reducing Computation Complexity using LTA(m,2) . 36
2.6.1 Lower Triangular Affine Groups and Their Group Action 36
2.6.2 A Subgroup of LTA(m,2) . 38
2.6.3 One-Variable Descendance Relation . 39
2.6.4 The Main Theorem: A Transitive Group Action . 40
2.6.5 Proof of Theorem 8 . 44

2.7 Our Approach on Polar Codes and Reed-Muller Codes at Length 128 52
2.8 Acknowledgements . 52

v

Chapter 3 Construct Large Kernel Polar Codes with Small Scaling Exponent 54
3.1 Introduction . 54

3.1.1 Related Prior Work . 56
3.1.2 Our Contributions . 57
3.1.3 Notation . 59

3.2 Background . 59
3.2.1 Large Kernel Polar Codes . 59
3.2.2 The Scaling of Polar Codes . 61
3.2.3 Polarization Behavior and the Uncorrectable Erasure Patterns 62
3.2.4 Computing the Scaling Exponent . 64

3.3 Constructing Large Self-Dual Kernels . 65
3.3.1 Kernels Codes and Uncorrectable Erasure Patterns 66
3.3.2 Self-dual Kernel and the Duality Theorem . 67
3.3.3 Constructing Self-dual Kernels with Small Scaling Exponents 72

3.4 Computing the Polarization Behavior . 77
3.4.1 The Proper Trellis Algorithm . 78
3.4.2 Computing the Polarization Behaviors of K32 and K64 81

3.5 Monte-Carlo Interpolation Method . 82
3.6 A Proof that µ(K64) < 3 . 84

3.6.1 An Upper Bound for the Scaling Exponent . 84
3.6.2 Constructing the Test Function . 86

3.7 Acknowledgements . 90

Chapter 4 Successive Cancellation Decoding for Large Kernel Polar Codes 91
4.1 Introduction . 91

4.1.1 Related Prior Works . 92
4.1.2 Our Contribution . 93
4.1.3 Notations . 94

4.2 Preliminaries . 94
4.2.1 Large Kernel Polar Codes . 94
4.2.2 SC Decoding of Large Kernel Polar Codes . 95

4.3 SCL-Approximation Algorithm for Large Kernels . 97
4.3.1 Cancelling the Effect of the Preceding Bits . 98
4.3.2 Representation as Polar Codes with Dynamic Freezing 99
4.3.3 Ratio Estimation via Polar List Decoding . 101

4.4 Simulation Results . 102
4.5 Conclusion . 104
4.6 Acknowledgements . 104

Chapter 5 List Decoding of PAC Codes . 106
5.1 Introduction . 106

5.1.1 Brief Overview of PAC Codes . 108
5.1.2 Our Contributions . 109
5.1.3 Related Work . 110

vi

5.1.4 Chapter Outline . 111
5.2 Overview of Arıkan’s PAC Codes . 111
5.3 List Decoding of PAC Codes . 114

5.3.1 PAC Codes as Polar Codes with Dynamically Frozen Bits 114
5.3.2 List Decoding of PAC Codes . 116

5.4 List Decoding versus Sequential Decoding . 118
5.4.1 Performance Comparison . 119
5.4.2 Complexity Comparison . 121

5.5 Performance Analysis for PAC Codes . 126
5.5.1 Sequential Decoding versus ML Decoding . 126
5.5.2 Weight Distributions and Union Bounds . 127

5.6 PAC Codes with Random Time-Varying Convolutional Precoding 131
5.6.1 Random Time-Varying Convolutional Precoding . 132
5.6.2 Performance of PAC Codes with Random Time-Varying Convolutional

Precoding . 133
5.7 Conclusions and Discussion . 135
5.8 Acknowledgements . 136

Chapter 6 Hybrid Polar Coded Modulation . 137
6.1 Introduction . 137

6.1.1 Our Contribution . 139
6.1.2 Notations . 140

6.2 Preliminaries . 140
6.2.1 System Model . 140
6.2.2 Polar Codes . 141
6.2.3 Bit-Interleaved Polar Coded Modulation (BI-PCM) 141
6.2.4 Compound Polar Code . 142
6.2.5 Multilevel Polar Coded Modulation (ML-PCM) . 144

6.3 A Hybrid Scheme for Polar Coded Modulation . 145
6.3.1 Hybrid Binary Partitions . 145
6.3.2 Hybrid Labeling . 146
6.3.3 Hybrid Polar Coded Modulation (Hybrid-PCM) . 148

6.4 Performance Evaluation . 149
6.5 Conclusion and Discussion . 150
6.6 Acknowledgements . 151

Bibliography . 153

vii

LIST OF FIGURES

Figure 1.1. Schematic diagram of a general communication system [Sha48]. 1

Figure 1.2. Channel polarization in a length-2 polar code. 4

Figure 1.3. Two polarized channels W− and W+ . 4

Figure 1.4. Binary tree for the channel polarization process. 5

Figure 1.5. The scheme of a length-n polar code. 6

Figure 1.6. The i-th bit channel W(i)
n . 7

Figure 2.1. Polar transformation matrix G8 . 17

Figure 2.2. The recursive procedure that computes the weight enumerating function
for polar cosets . 21

Figure 2.3. Polar transformation matrix G16 in Example 2 . 24

Figure 2.4. Polar transformation matrix G16 in Example 3 . 26

Figure 2.5. Polar transformation matrix G16 in Example 4 . 31

Figure 2.6. Polar Transformation matrix G32 in Example 7 . 42

Figure 3.1. Scaling exponents of binary polarization kernels of size ℓ. The values for
ℓ = 2,4,8 are optimal [FV14]; the values for ℓ = 16,32,64 are best known. 58

Figure 3.2. Block diagram of a polar coded communication scheme. 60

Figure 3.3. The polarization behavior { f0(z), f1(z), · · · , f31(z)} of K32 69

Figure 3.4. Two polynomials f4(z) and f27(z) in the polarization behavior of K32 . . . 69

Figure 3.5. Two polynomials f9(z) and f22(z) in the polarization behavior of K32 . . . 69

Figure 3.6. The sharp transition of the polynomial fi(z) in an asymptotically-optimal
polarization behavior. (figure copied from [FHMV20]) 73

Figure 3.7. The bottom half of the self-dual kernel is constructed one row at a time,
starting from the bottom. 75

Figure 3.8. Kernel K32 . 76

Figure 3.9. Kernel K64 . 77

viii

Figure 3.10. Trellises produced in four steps of the proper trellis algorithm in Example
11. 81

Figure 3.11. f0(z), f1(z), · · · , f14(z) and f49(z), f1(z), · · · , f63(z) in the polarization be-
havior of K64 . 82

Figure 3.12. The estimated f̂29(z) in the polarization behavior of K64 83

Figure 3.13. The polarization behavior of K64, where the green curves are obtained from
the Monte-Carlo interpolation method. 84

Figure 3.14. Left: f 39(z) (in red), f̂39(z), and f
39
(z) (in blue). Right: f̃39(z) (high-

lighted) . 88

Figure 3.15. Left: test function g(z). Right: upper bound b0(z). 89

Figure 4.1. SC decoding performance for (1024,512) polar codes 104

Figure 4.2. SC decoding performance for (4096,2048) polar codes 105

Figure 5.1. Performance of PAC codes versus polar codes. 107

Figure 5.2. PAC coding scheme. 108

Figure 5.3. Performance of PAC codes under list decoding. 120

Figure 5.4. An example of the polar search tree, reproduced from [Arı19] 123

Figure 5.5. Sequential decoding vs. list decoding: Number of nodes visited in the polar
search tree. 124

Figure 5.6. Sequential decoding vs. list decoding: Number of floating-point operations. 125

Figure 5.7. Performance of the PAC code under ML decoding. 127

Figure 5.8. Low-weight codewords in the (128,64) PAC code. 128

Figure 5.9. Truncated union bound for certain codes of length 128. 129

Figure 5.10. Truncated union bound vs. performance for two PAC codes. 130

Figure 5.11. Performance of PAC codes for some specific realizations of random time-
varying convolutional precoding with ν = 6, as a function of the list size. . 134

Figure 5.12. Performance of PAC codes for some specific realizations of random time-
varying convolutional precoding for L = 128, as a function of the constraint
length. 135

ix

Figure 6.1. BI-PCM receiver . 142

Figure 6.2. ML-PCM receiver for a 2m-ary constellation. 144

Figure 6.3. 16-ASK with Gray labeling (top), SP labeling (middle), and Hybrid la-
beling with splitting parameter 2 (bottom). The first bit level lies on the
left. 147

Figure 6.4. Hybrid-PCM receiver with splitting parameter s . 149

Figure 6.5. Performance comparison for ML-PCM, Hybrid-PCM and BI-PCM with
compound polar code on 64-QAM. 151

Figure 6.6. Performance comparison for ML-PCM, Hybrid-PCM, BI-PCM with com-
pound polar code, and plain BI-PCM on 256-QAM 152

x

LIST OF TABLES

Table 2.1. Mixing factor of rate 1/2 polar codes in 5G . 28

Table 2.2. Mixing factor of self-dual RM codes . 32

Table 2.3. Conjectured upper bounds for polar codes with rates ⩽ 1/2 33

Table 2.4. A table illustrating the positions of g and g′ in the proof of Theorem 6 34

Table 2.5. The complexity reduction amounts and the weight Distribution of C in
Example 7. 45

Table 2.6. Weight distribution of the (128,64) 5G polar code . 53

Table 3.1. Kernel codes of K32 in its bottom half . 75

Table 3.2. Kernel codes of K64 in its bottom half . 76

Table 5.1. Fraction of decoding failures as a function of SNR. 120

Table 5.2. Fraction of selection errors as a function of SNR. 121

Table 5.3. Number of low-weight codewords in certain relevant codes. 128

Table 5.4. Number of low-weight codewords in PAC codes for certain specific realiza-
tions of random time-varying convolutional precoding, as a function of the
constraint length. 134

xi

ACKNOWLEDGEMENTS

There are many people who have contributed to my work during my study in UCSD in

the past six years. This dissertation would not be possible without them.

First and foremost, I would like to express my deepest gratitude to my two advisors, Prof.

Paul Siegel and Prof. Alexander Vardy. I feel very fortunate to have the opportunity to interact

with two of the best researchers and educators during my Ph.D. journey. Words are not enough

to express my thanks to their guidance, patience and encouragement along the way. I learned

from their knowledge, experience and research taste, to which I’ll always be indebted. They led

me into the door of the world of coding theory in this early stage of my career, and helped me

become the researcher I am today.

My sincere gratitude extends to my committee members Prof. Shachar Lovett, Prof.

Arya Mazumdar, and Prof. Alon Orlitsky. I’m thankful to their support, and their invaluable

recommendations on my research. I would also like to express my special thanks to one of my

favorite teachers, Prof. Orlitsky. He accepted me as his teaching assistant in my first year in

UCSD. In that period, I was deeply impressed and influenced by his critical thinking, attention

to detail, and his humor. I’m also grateful to Prof. Lovett for his enlightening classes on

computational complexity and expander graphs, where I enjoyed learning all the fascinating

theories.

During my Ph.D. study, I was fortunate to participate in a lot of collaborative projects

and work with many amazing co-authors. I feel lucky to have Arman Fazeli as one of my senior

colleagues in my early years. I’m extremely grateful to his guidance and tutoring that helped

me grow as a researcher. It was a pleasure collaborating with him on all the fruitful projects

along this journey. I would like to thank Prof. Han Mao Kiah for accepting me to his lab in NTU

in my third summer. His supervision helped me expand my research into new and fascinating

directions. I would also like to express my gratitude to Prof. Hessam Mahdavifar. Besides an

enjoyable collaboration, his advises and support helped me in an immeasureable way. I am

grateful to Dr. Jinfeng Du for his mentoring during my summer internship in Nokia Bell Lab.

xii

His guidance on my research work and many other aspects of my life were extremely valuable.

I also want to thank my other collaborators: Johan Chrisnata, Utkarsh Gupta, Bhaskar Gupta,

Hengjie Yang, Ethan Liang, Jacob King, Prof. Richard Wesel, and many others. Having the

opportunities to collaborate with them was a great honor for me.

I have taken plenty of classes along this journey in UCSD. I would also like to express

my sincere gratitude for the teachers I have met. Thank you Prof. Laurence Milstein, Prof. Tara

Javidi, Prof. Piya Pal, Prof. Ramamohan Paturi, Prof. Jacques Verstraete, Prof. Sanjoy Dasgupta,

Prof. Alireza Salehi Golsefidy, Prof. Young-Han Kim, Prof. Jason Schweinsberg, and Prof. Lutz

Warnke. Their classes deepened my knowledge, encouraged me to stay curious, and sharpened

my way of thinking towards a clear scientific perspective.

I also wish to thank my loving and caring family: my parents Hong Yao and Hongwen

Wen, my grandparents Minfan Yao and Junfang Shang, my aunt Wei Yao and my cousin Weijie

Lin. I’m immensely grateful for their unconditional love and endless support in every aspect of

my life, which made this trip so much easier.

My thanks also go to all my friends in San Diego: Chen Chen, Junjie Zhu, Junxiong

Mao, Enhao Cui, Meng Wei, Manzhi Li, Gege Shang, Yuchen Fang, Haolan Liu, Meihan Li,

Yizhou Shan, Zesen Zhang, among many others. It is impossible to list out all the names, but I’m

tremendously grateful to their company and support, which makes my life during this journey so

much more colorful and memorable. I wish them nothing but the best. My special thanks go

to Huili Chen. I’m deeply indebted to her continuously and patiently support for me in almost

every stage of the work on this dissertation. She has been my inspiration and motivation along

this way, and will be for the rest of my life.

Lastly, I would like to cherish the memory of Alexander Vardy and dedicate him this

work. I feel fortunate to have the opportunity to work under his supervision. His door was always

open for inspiring discussions and advices. His guidance will be remembered with me forever.

This dissertation was supported in part by the United States National Science Foundation

(NSF) under Grants CCF-1405119 and Grant CCF-1719139.

xiii

Chapter 2, in part, has been published at 2021 IEEE International Symposium on Infor-

mation Theory (ISIT) and appeared as: Hanwen Yao, Arman Fazeli, and Alexander Vardy “A

Deterministic Algorithm for Computing the Weight Distribution of Polar Codes” [YFV21a].

The dissertation author was the primary author of this conference paper.

Chapter 3, in part, has been published at 2019 IEEE International Symposium on In-

formation Theory (ISIT) and appeared as: Hanwen Yao, Arman Fazeli, and Alexander Vardy

“Explicit Polar Codes with Small Scaling Exponent” [YFV19]. The dissertation author was the

primary author of this conference paper.

Chapter 4, in part, has been published at 2021 IEEE Globecom Workshops (GC Wkshps)

and appeared as: Bhaskar Gupta, Hanwen Yao, Arman Fazeli,and Alexander Vardy “Polar List

Decoding for Large Polarization Kernels” [GYFV21]. The dissertation author was the primary

author of this conference paper. Bhaskar Gupta contributed to the algorithm design of this work.

Chapter 5, in part, has been published at Entropy 2021 and appeared as: Hanwen Yao,

Arman Fazeli, and Alexander Vardy “List Decoding of Arıkan’s PAC Codes” [YFV21b]. The

dissertation author was the primary author of this journal paper.

Chapter 6, in part, has been published at 2022 IEEE International Symposium on Infor-

mation Theory (ISIT) and appeared as: Hanwen Yao, Jinfeng Du, and Alexander Vardy “Polar

Coded Modulation via Hybrid Bit Labeling” [YDV22]. The dissertation author was the primary

author of this conference paper.

xiv

VITA

2016 Bachelor of Science in Electrical Engineering, Shanghai Jiao Tong University,
Shanghai, China

2018 Master of Science in Electrical and Computer Engineering (Communication Theory
and Systems), University of California San Diego

2022 Doctor of Philosophy in Electrical and Computer Engineering (Communication
Theory and Systems), University of California San Diego

PUBLICATIONS

H. Yao, A. Fazeli and A. Vardy, “List decoding of Arıkan’s PAC codes,” Entropy, 2021.

J. Chrisnata, H.M. Kiah, S. Rao, A. Vardy, E. Yaakobi and H. Yao, “On the Number of Distinct
k-Decks: Enumeration and Bounds”, Advances in Mathematics of Communications (AMC),
2021.

H. Yao, A. Fazeli and A. Vardy, “A Deterministic Algorithm for Computing the Weight Distribu-
tion of Polar Codes,” submitted to IEEE Transaction on Information Theory.

H. Yao, J. Du and A. Vardy, “Polar Coded Modulation via Hybrid Bit Labeling,” 2022 IEEE
International Symposium on Information Theory (ISIT).

B. Gupta, H. Yao, A. Fazeli and A. Vardy, “Polar List Decoding for Large Polarization Kernels,”
2021 IEEE Global Communications Conference (GLOBECOM).

H. Yao, A. Fazeli and A. Vardy, “A Deterministic Algorithm for Computing the Weight Distribu-
tion of Polar Codes,” 2021 IEEE International Symposium on Information Theory (ISIT).

H. Yao, H. Mahdavifar, A. Fazeli and A. Vardy, “Channel Combining for Nonstationary Polariza-
tion on Erasure Channels,” 2021 IEEE International Symposium on Information Theory (ISIT).

A. Fazeli, A. Vardy and H. Yao, “List Decoding of Polar Codes: How Large Should the List Be
to Achieve ML Decoding?,” 2021 IEEE International Symposium on Information Theory (ISIT).

H.M. Kiah, A. Vardy and H. Yao, “Efficient Bee Identification,” 2021 IEEE International Sym-
posium on Information Theory (ISIT).

H. Yao, A. Fazeli and A. Vardy, “List decoding of Arıkan’s PAC codes,” 2020 IEEE International
Symposium on Information Theory (ISIT).

xv

A. Fazeli, A. Vardy and H. Yao, “Hardness of Successive-Cancellation Decoding of Linear
Codes,” 2020 IEEE International Symposium on Information Theory (ISIT).

U. Gupta, H.M. Kiah, A. Vardy and H. Yao, “Polar Codes with Balanced Codewords,” 2020
IEEE International Symposium on Information Theory (ISIT).

H. Yao, A. Fazeli and A. Vardy, “Explicit Polar Codes with Small Scaling Exponent,” 2019
IEEE International Symposium on Information Theory (ISIT).

A. Fazeli, A. Vardy and H. Yao, “Convolutional Decoding of Polar Codes,” 2019 IEEE Interna-
tional Symposium on Information Theory (ISIT).

J. Chrisnata, H.M. Kiah, S. Rao, A. Vardy, E. Yaakobi and H. Yao, “On the Number of Distinct
k-Decks: Enumeration and Bounds”, The 19th International Symposium on Communications
and Information Technologies (ISCIT), 2019.

H. Yang, E. Liang, H. Yao, A. Vardy, D. Divsalar and R.D. Wesel, “A List-Decoding Approach
to Low-Complexity Soft Maximum-Likelihood Decoding of Cyclic Codes,” 2019 IEEE Global
Communications Conference (GLOBECOM).

FIELDS OF STUDY

Major Field: Electrical Engineering

Studies in Communication Theory and Systems

Advisor: Paul Siegel, Alexander Vardy

xvi

ABSTRACT OF THE DISSERTATION

Topics in Polar Coding: Structural Properties, Construction, and Decoding

by

Hanwen Yao

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California San Diego, 2022

Professor Paul Siegel, Chair

The discovery of polar codes has been widely acknowledged as one of the most original

and profound breakthroughs in coding theory in the recent two decades. Polar codes form

the first explicit family of codes that provably achieves Shannon’s capacities with efficient

encoding and decoding for a wide range of channels. This solves one of the most fundamental

problems in coding theory. At the beginning of its invention, polar code is more recognized as

an intriguing theoretical topic due its mediocre performance at moderate block lengths. Later,

with the invention of the list decoding algorithm and various other techniques, polar codes now

show competitive, and in some cases, better performance as compared with turbo and LDPC

xvii

codes. Due to this and other considerations, the 3rd Generation Partnership Project (3GPP)

has selected polar codes for control and physical broadcast channels in the enhanced mobile

broadband (eMBB) mode and the ultra-reliable low latency communications (URLLC) mode of

the fifth generation (5G) wireless communications standard.

In this dissertation, we propose new theories on a wide range of topics in polar coding,

including structural properties, construction methods, and decoding algorithms.

We begin by looking into the weight distribution of polar codes. As an important

characteristic for an error correction code, weight distribution directly gives us estimations on

the maximum-likelihood decoding performance of the code. In this dissertation, we present a

deterministic algorithm for computing the entire weight distribution of polar codes. We first

derive an efficient procedure to compute the weight distribution of polar cosets, and then show

that any polar code can be represented as a disjoint union of such polar cosets. We further study

the algebraic properties of polar codes as decreasing monomial codes to bound the complexity

of our approach. Moreover, we show that this complexity can be drastically reduced using the

automorphism group of decreasing monomial codes.

Next, we dive into the topic of large kernel polar codes. It has been shown that polar

codes achieve capacity at a rather slow speed, where this speed can be measured by a parameter

called scaling exponent. One way to improve the scaling exponent of polar codes, is by replacing

their conventional 2× 2 kernel with a larger polarization kernel. In this dissertation, we propose

theories and a construction approach for a special type of large polarization kernels to construct

polar codes with better scaling exponents. Our construction method gives us the first explicit

family of codes with scaling exponent provably under 3. However, large kernel polar codes are

known for their high decoding complexity. In that respect, we also propose a new decoding

algorithm that can efficiently perform successive cancellation decoding for large kernel polar

codes.

Moving on to the decoding algorithms, we focus ourselves on a new family of codes

called PAC codes, recently introduced by Arıkan, that combines polar codes with convolutional

xviii

precoding. At short block lengths such as 128, PAC codes show better performance under

sequential decoding compared with conventional polar codes with CRC precoding. In this

dissertation, we first show that we can achieve the same superior performance of PAC codes

using list decoding with relatively large list sizes. Then we carry out a qualitative complexity

comparison between sequential decoding and list decoding for PAC codes.

Lastly, we look into the subject of polar coded modulation. Bit-interleaved coded

modulation (BICM) and multilevel coded modulation (MLC) are two ways commonly used to

combine polar codes with high order modulation. In this dissertation, we propose a new hybrid

polar coded modulation scheme that lies between BICM and MLC. For high order modulation,

our hybrid scheme has a latency advantage compared with MLC. And by simulation we show

that our hybrid scheme also achieves a considerable performance gain compared with BICM.

xix

Chapter 1

Introduction

1.1 Background on Error Correction Codes

In 1984, Shannon [Sha48] established the fundamental limits of any communication

system using the following mathematical analog shown in Figure 1.1.

Figure 1.1. Schematic diagram of a general communication system [Sha48].

This mathematical model consists of five parts: 1) An information source that produces

the message to be transmitted; 2) A transmitter that encodes the message into signals suitable for

transmission; 3) An unreliable channel as the medium for signal transmission, where the input

signals may suffer from noise distortion; 4) A receiver that takes the noise-distorted signals from

the channel, and assigns a guess to the original message; 5) A destination where the message

intends to arrive.

In this model, the communication channel W : X → Y is described with the input

1

alphabet X , the output alphabet Y , and the collection of transition probabilities P(y|x) of

observing y as the channel output given the channel input x, for all x ∈ X and y ∈ Y .

To protect the messages against noise, the transmitter typically encodes the messages

with redundant information in the form of error correction codes. An (M,n) code for the channel

consists of the following: 1) An index set {1,2, · · · , M} representing the M different messages

that the information source can produce; 2) An encoding function E : {1,2, · · · , M} → X n for

the transmitter, that takes the message, and yields a codeword consists of n symbols suitable for

transmission; 3) A decoding function D : Yn→ {1,2, · · · , M} for the receiver, that takes the

error-distorted channel outputs, and assigns a guess to the original message. The rate of the code

is defined to be

R =
log|X |M

n
,

and it measures the relative proportion out of those n channel uses that are non-redundant.

Let X and Y denote the random variables representing the channel input and the channel

output, with the transition probabilities P(y|x) inherited from channel W. The maximal proba-

bility of error for an error correction code with encoding function E and decoding function D

can be defined as

P(n)
e = max

m∈{1,2,··· ,M}
Pr (D(Yn) ̸= m | Xn = E(m)) .

A code rate R is called achievable if there exists an error correction code with this code rate, that

has asymptotically diminishing maximal probability of error P(n)
e .

In Shannon’s original 1946 paper [Sha48], he proves that the channel capacity C, defined

as

C = sup
X

I(X;Y),

gives us the highest code rate that is achievable. Here, I(X;Y) denotes the mutual information

between the two random variables X and Y.

2

Theorem 1 (Channel coding theorem [Sha48]). For a noisy channel W, all rates below its

capacity C are achievable. Specifically, for every rate R < C, there exists a sequence of

(|X |nR,n) codes with maximum probability of error P(n)
e → 0. Conversely, any sequence of

(|X |nR,n) codes with P(n)
e → 0 must have R ⩽ C.

If we want to fully recover the transmitted message with diminishing error probability,

Shannon’s channel coding theory provides us the limit of the achievable code rates. However,

Shannon’s proof for the theorem is based on a probabilistic method. It does not give us an

explicit code construction that achieves this capacity. Ever since the publication of Shannon’s

ground-breaking paper [Sha48] in 1984, the holy grail of the coding theory society was to

find explicit error correction codes that achieved Shannon’s capacity. This problem remained

unsolved for almost half a decade, until Erdal Arıkan presented the construction for polar codes

in his seminal paper [Arı09] in 2009.

1.2 A Brief Review on Polar Codes

The invention of polar codes has been widely acknowledged as one of the most original

and profound developments in coding theory in the recent two decades. Polar codes, introduced

by Arıkan in [Arı09], form the first explicit family of codes that provably achieves Shannon’s

capacity for a wide range of channels with polynomial encoding and decoding complexity.

The main idea for the construction of polar codes is based on a phenomenon called channel

polarization.

Denote a binary memoryless symmetric (BMS) channel W : X → Y with input alphabet

X = {0,1} and output alphabet Y . For a length-2 binary message U2 = (U0,U1) where U0

and U1 follow independent Bernoulli distribution Ber(p) with p = 1/2, the following scheme

is considered. First, a 2× 2 matrix K2 is used to perform a linear transformation for U2 as

3

U0
X0

W Y0

U1
X1

W Y1

⊕

xor operation

Figure 1.2. Channel polarization in a length-2 polar code.

X2 = U2 · K2, where

K2 =




1 0

1 1


 . (1.1)

Then, the binary vector X2 = (X0, X1) is transmitted using two independent copies of W. The

channel outputs are denoted as Y2 = (Y0,Y1). The linear transformation by K2 can be viewed as

an xor operation on the two message bits U0 and U1, as illustrated in Figure 1.2.

On the decoder side, bits U0 and U1 are decoded sequentially. In the first stage, U0 is

decoded with the knowledge of Y2. Here, the channel “seen” by the first bit U0 is a new BMS

channel W− : X → Y2 shown on the left of Figure 1.3. In the second stage, U1 is decoded

with the knowledge of both U0 and Y2, assuming that U0 has been recovered correctly. This is

equivalent to another new BMS channel W+ : X → X ×Y2 shown on the right of Figure 1.3.

U0 W Y0

Ber(1
2) W Y1

⊕

W−

Ber(1
2) W Y0

U1 W Y1

⊕

W+

U0

Figure 1.3. Two polarized channels W− and W+

In this scheme, by the xor operation on U0 and U1, two copies of W are effectively

transformed into two new BMS channels W− and W+. While the sum of their capacities remains

unchanged:

I(W−) + I(W+) = 2I(W),

4

W

W− W+

W−− W−+ W+− W++

...
...

...
...

...
...

...
...

W(n−1)
nW(n−2)

nW(1)
nW(0)

n

. . .

Figure 1.4. Binary tree for the channel polarization process.

it can be shown that [Arı09]:

I(W−)⩽ I(W)⩽ I(W+).

Thus one obtains a worse channel W−, and a better channel W+. This phenomenon is called

channel polarization. The same xor operation can be applied to W− to get two new channels

W−− and W−+, and applied to W+ to get another two channels W+− and W++. By repetitively

applying this xor operation following the binary tree shown in Figure 1.4, at depth m, a collection

of n = 2m channels can be generated, denoted as W(0)
n ,W(1)

n , · · · ,W(n−1)
n . The key observation

of [Arı09] is that, as n goes to infinity, those n channels will polarize in the sense that, almost

all of them will have capacities either arbitrarily close to 0, or arbitrarily close to 1. For a small

δ ∈ (0,1), if we call a channel W(i)
n δ-good if I(W(i)

n) > 1− δ, and δ-bad if I(W(i)
n) < δ, then

the polarization theorem [Arı09] states the following

Theorem 2 (Polarization theorem [Arı09]). For every δ∈ (0,1), almost all n channels at depth

log2(n) of the binary tree in Figure 1.4 become either δ-good or δ-bad, as n→∞. In fact, since

5

Gn

WU0
X0

Y0

WU1
X1

Y1

WUn−1
Xn−1

Yn−1

...
...

Figure 1.5. The scheme of a length-n polar code.

the sum of the capacities is preserved:

I(W(0)
n) + I(W(1)

n) + . . . + I(W(n−1)
n) = nI(W),

as n→ ∞, the fraction of δ-good channels approaches the capacity I(W) of the underlying

channel W, while the fraction of δ-bad channels approaches 1− I(W).

For a length-n polar code, the combination of all the xor operations can be summarized

using an n× n matrix Gn called the polarization matrix. This polarization matrix has the form

Gn = Bn ·K⊗m
2 , where Bn is the bit-reversal permutation matrix, and K⊗m

2 is the m-th Kronecker

power of the K2 in (1.1). Let U = (U0,U1, · · · ,Un−1) denotes a length-n binary message, where

all Ui’s follow independent Bernoulli distribution Ber(p) with p = 1/2. Similar to the length-2

polar code, the following scheme is considered. On the transmitter side, the polarization matrix

Gn is used to perform a linear transformation for U as X = U · Gn. Then n independent copies

of the underlying channel W are used to transmit the symbols in vector X. The channel outputs

are denoted as Y = (Y0,Y1, . . . ,Yn−1). This scheme is illustrated in Figure 1.5.

On the receiver side, the message bits are decoded one bit at a time following the order

U0,U1, . . . ,Un−1, assuming all previous bits have been decoded correctly. Specifically, at the

i-th stage, Ui is decoded with the knowledge of both U0,U1, . . . ,Ui−1 and Y. Thus the channel

“seen” by the message bit Ui is a new channel W(i)
n :X →X i×Yn illustrated in Figure 1.6. It is

commonly referred as the i-th bit channel, and it is exactly the i-th channel at depth m = log2(n)

6

Gn

·

Ber(1
2)

Ber(1
2)

Ber(1
2)

Ber(1
2)

W Y0

W Yn−1

U0

Ui−1

...

...

...

...

Ui

Figure 1.6. The i-th bit channel W(i)
n .

of the binary tree in Figure 1.4. If the underlying W is a BMS channel, W(i)
n is also a BMS

channel. Let u = (u0,u1, . . . ,un−1) and y = (y0,y1, · · · ,yn−1) denote the realizations of U and

Y, then W(i)
n has transition probability:

W(i)
n (y,ui−1|ui) =

1
2n−1 ∑

u′∈{0,1}n−i−1

Wn(u|(ui−1,ui,u′)Gn), (1.2)

where ui−1 = (u0,u1, . . . ,ui−1) denotes the realization of the first i bits of U, Wn denotes n

independent uses of the underlying channel W, and (ui−1,ui,u′) represents the concatenation of

ui−1, ui, and u′.

Following this scheme (Figure 1.5), the polarization theorem (Theorem 2) naturally leads

to the construction of capacity-achieving polar codes. Specifically, for an (n,k) polar code, the

inputs to the k bit channels in W(0)
n ,W(1)

n , · · · ,W(n−1)
n with the highest channel capacities are

selected to carry the message bits, while the inputs to rest of the n− k bit channels are frozen to

zeros. The size-k index set for the k best bit channels is denoted as A ⊆ {0,1, . . . ,n− 1}.

On the receiver side, the bits in the message vector u = (u0,u1, . . . ,un−1) are decoded

sequentially following their orders. Let ûi denotes the decoder’s estimated value for ui. At

the i-th decoding stage, if i ∈ A, naturally the decoder would set ûi = 0. If i /∈ A, follow-

ing the channel model for Wi, the decoder should theoretically estimates ui based on both

7

ui−1 = (u0,u1, . . . ,ui−1) and the channel output y. A beautiful idea proposed by Arıkan was

substituting the real values for ui−1 by the previously estimated ûi−1 = (û0, û1, . . . , ûi−1). This

substitution has no effect on the overall frame error probability for polar codes, and it converts

this hypothetical decoding process into a real one. Thus if i /∈ A, the decoder estimates ui as

ûi =





0 if W(i)
n (y, ûi−1|0)⩾ W(i)

n (y, ûi−1|1),

1 if W(i)
n (y, ûi−1|0) < W(i)

n (y, ûi−1|1).
(1.3)

This is called successive-cancellation decoding. Arıkan further showed that due to the Kronecker

product structure (FFT-like) for the polar transform matrix G, the probabilities W(i)
n (y, ûi−1|0)

and W(i)
n (y, ûi−1|1) can be calculated recursively, resulting in an overall complexity O(n logn)

and latency O(n) for this decoding process. Later, many techniques were proposed that allows

efficient implementation of this decoder [AYK11, SGV+14a, HA17].

1.3 Dissertation Overview

After briefly reviewing the basic model of polar codes, we now give an overview on the

topics covered by this dissertation.

In Chapter 2, we present a deterministic algorithm for computing the entire weight

distribution of polar codes. As the first step, we derive an efficient recursive procedure to compute

the weight distribution that arises in successive cancellation decoding of polar codes along any

decoding path. This solves the open problem recently posed by Polyanskaya, Davletshin,

and Polyanskii. Using this recursive procedure, at code length n, we can compute the entire

weight distribution of certain polar cosets in time O(n2). We show that any polar code can be

represented as a disjoint union of such polar cosets; moreover, this representation extends to

polar codes with dynamically frozen bits. This implies that our methods can be also used to

compute the weight distribution of general linear codes. However, the number of polar cosets

in such representation scales exponentially with a parameter introduced herein, which we call

8

the mixing factor. To upper bound the complexity of our algorithm, we identify polar codes as

decreasing monomial codes, and study the range of their mixing factors. We prove that among

all decreasing monomial codes with rates at most 1/2, self-dual Reed-Muller codes have the

largest mixing factors. To further reduce the exponential complexity of our algorithm, we make

use of the fact that, as decreasing monomial codes, polar codes have a large automorphism

group, which includes the lower-triangular affine group LTA(m,2). We prove that LTA(m,2)

acts transitively on certain subsets of the codes, thereby drastically reducing the number of polar

cosets we need to evaluate. This complexity reduction makes it possible to compute the weight

distribution of any polar code of length up to n = 128.

In Chapter 3, we dive into the topic of large kernel polar codes. In finite-length analysis,

the scaling between code length and the gap to capacity is usually measured in terms of the

scaling exponent µ. It is well known that the optimal scaling exponent, achieved by random

binary codes, is µ = 2. It is also well known that the scaling exponent of conventional polar

codes on the binary erasure channel (BEC) is µ = 3.627, which falls far short of the optimal

value. On the other hand, it was recently shown that polar codes derived from ℓ× ℓ binary

polarization kernels approach the optimal scaling exponent µ = 2 on the BEC as ℓ→∞, with

high probability over a random choice of the kernel.

Herein, we focus on explicit constructions of ℓ× ℓ binary kernels with small scaling

exponent for ℓ⩽ 64. In particular, we exhibit a sequence of binary linear codes that approaches

capacity on the BEC with quasi-linear complexity and scaling exponent µ < 3. To the best of

our knowledge, such a sequence of codes was not previously known to exist. The principal

challenges in establishing our results are twofold: how to construct such kernels and how to

evaluate their scaling exponent. We begin with the fact that a given ℓ× ℓ kernel Kℓ transforms ℓ

copies of the underlying channels W into ℓ bit-channels W1,W2, . . . ,Wℓ. Notably, if W is a BEC

with erasure probability z, then W1,W2, · · · ,Wℓ are all BECs as well. The erasure probabilities

of W1,W2, . . . ,Wℓ are polynomials in z with integer coefficients and degree at most ℓ. We refer

to the corresponding set of polynomials {p1(z), p2(z), · · · , pℓ(z)} as the polarization behavior

9

of Kℓ; the scaling exponent of Kℓ is completely determined by its polarization behavior.

For kernel construction, We first introduce a class of self-dual binary kernels and prove

that their polarization behavior satisfies a strong symmetry property. This reduces the problem

of constructing Kℓ to that of producing a certain nested chain of only ℓ/2 self-orthogonal codes.

We use nested cyclic codes, whose distance is as high as possible subject to the orthogonality

constraint, to construct the kernels K32 and K64. In order to evaluate the polarization behavior of

K32 and K64, a proper trellis representations (which may be of independent interest) is proposed.

Using the resulting trellises, we show that µ(K32) = 3.122 and explicitly compute over half of

the polarization-behavior coefficients for K64, at which point the complexity becomes prohibitive.

To complete the computation, we introduce a Monte-Carlo interpolation method, which produces

the estimate µ(K64)≃ 2.87. We augment this estimate with a rigorous proof that µ(K64)< 2.97.

In Chapter 4, we continue our discussion on large kernel polar codes, and propose a

decoding algorithm that can perform efficient successive cancellation decoding for large kernels.

Polar codes constructed with large polarization kernels shown better scaling properties compared

with conventional polar codes. However, straightforward decoding for large kernel polar codes

introduces a complexity coefficient that is exponential to the kernel sizes, which makes such

codes generally believed to be impractical. In Chapter 4, we present a new method that decodes

large kernel polar codes with a complexity coefficient that is polynomial to the kernel sizes. This

could facilitate the implementation of large kernel polar codes for practical use in the future.

Successive cancellation decoding for large kernel polar codes requires calculation on the

probabilities of its bit channels. Similar to conventional polar codes, those bit channels follow a

recursive relation, which make this calculation boil down to computing the probabilities for bit

channels of a single polarization kernel. This kernel-level computation can be shown equivalent

to soft-output maximum-likelihood (ML) decoding on a single bit of a linear block code. In

our proposed method, we first use linear operations to represent the considered linear block

code as a polar code with dynamically frozen bits, and then use a modified polar list decoder

to get an approximate value on the soft-output of the desired bit. This method is motivated by

10

the observation that at short block lengths, polar list decoding with a large enough list size can

well-approximate ML decoding. The proposed low-complexity method allows us to decode polar

codes constructed with a 64× 64 polarization kernel with scaling exponent µ≈ 2.87 for the first

time.

In Chapter 5, we move on to the topic of PAC codes. Polar coding gives rise to the first

explicit family of codes that provably achieve capacity with efficient encoding and decoding for a

wide range of channels. However, its performance at short blocklengths under standard successive

cancellation decoding is far from optimal. A well-known way to improve the performance

of polar codes at short blocklengths is CRC precoding followed by successive-cancellation

list decoding [TV15]. This approach, along with various refinements thereof, has largely

remained the state of the art in polar coding since it was introduced in 2011. Recently, Arıkan

presented a new polar coding scheme, which he called polarization-adjusted convolutional (PAC)

codes [Arı19]. At short blocklengths, such codes offer a dramatic improvement in performance

as compared to CRC-aided list decoding of conventional polar codes. PAC codes are based

primarily upon the following main ideas: replacing CRC codes with convolutional precoding

(under appropriate rate profiling) and replacing list decoding by sequential decoding. One of our

primary goals in Chapter 5 is to answer the following question: is sequential decoding essential

for the superior performance of PAC codes? We show that similar performance can be achieved

using list decoding when the list size L is moderately large (say, L ⩾ 128). List decoding has

distinct advantages over sequential decoding in certain scenarios, such as low-SNR regimes or

situations where the worst-case complexity/latency is the primary constraint. Another objective

is to provide some insights into the remarkable performance of PAC codes. We first observe that

both sequential decoding and list decoding of PAC codes closely match ML decoding thereof.

We then estimate the number of low weight codewords in PAC codes, and use these estimates to

approximate the union bound on their performance. These results indicate that PAC codes are

superior to both polar codes and Reed–Muller codes. We also consider random time-varying

convolutional precoding for PAC codes, and observe that this scheme achieves the same superior

11

performance with constraint length as low as ν = 2.

Finally, Chapter 6 bring up a new scheme for polar codes on high order modulation. Bit-

interleaved coded modulation (BICM) and multilevel coded modulation (MLC) are commonly

used to combine polar codes with high order modulation. While BICM benefits from simple

design and the separation of coding and modulation, MLC shows better performance under

successive-cancellation decoding. In Chapter 6, we propose a hybrid polar coded modulation

scheme that lies between BICM and MLC, wherein a fraction of bits are assigned to set-partition

(SP) labeling and the remaining bits are assigned for Gray labeling. The SP labeled bits undergo

sequential demodulation, using iterative demodulation and polar decoding similar to MLC,

whereas the Gray labeled bits are first demodulated in parallel and then sent for decoding similar

to BICM. Either polar codes or other channel codes (such as LDPC codes) can be used for

the Gray labeled bits. For length 2048 rate 1/2 polar code on 256-QAM, the performance gap

between BICM (Gray labeling only) and MLC (SP labeling only) can be almost fully closed

by the hybrid scheme. Notably, the hybrid scheme has a significant latency advantage over

MLC. These performance gains make the proposed scheme attractive for future communication

systems.

12

Chapter 2

Compute the Weight Distribution of Polar
Code

2.1 Introduction

The weight distribution of an error correction code counts the number of codewords in

this code of any given Hamming weights. The weight distribution is one of the main characteristic

of a code, useful for analysing its performance under maximum-likelihood decoding, and various

other decoding algorithms. However, computing the weight distribution of a general linear code

is known to be NP-hard [BMVT78]. And there are very few families of codes of which the

weight distribution is known. Some families of codes that we do know the weight distributions

are Hamming codes, Golay codes, Reed-Solomon codes, and double-error-correcting BCH codes.

For Reed-Muller codes, we only know part of its weight distribution for codewords of weight

less than 2.5 times the minimum distance [KTA76]. Polar codes, introduced by Arıkan [Arı09],

form the first explicit family of codes that provably achieve capacity with efficient encoding and

decoding for a wide range of channels. The weight distribution of polar codes is currently not

known, and there are no algorithms that can efficiently compute it.

2.1.1 Related Prior Work

To the best of our knowledge, there are no prior results on how to efficiently compute the

entire weight distribution of polar codes. For crude estimations, there are probabilistic methods

13

discussed in [VY13] and [ZLP17]. Although we don’t know the weight distribution of polar

codes, we do know their minimal weight, and the number of codewords of that weight. In the

work by Bardet, Dragoi, Otmani and Tillich [BDOT16], they study the automorphism group of

polar codes from a polynomial formalism, and provide an explicit formula for the number of

codewords of minimal weight. There are also ways to estimate the first few non-zero numbers in

the weight distribution of polar codes. In the work by Li, Shen and Tse [LST12], they devise an

experiment that evaluates the number of low-weight polar codewords, by transmitting an all-zero

codeword in the extremely high SNR regime, and use polar list decoder [TV15] to decode the

channel output. But still, with this experiment, only the first few non-zero numbers in the entire

weight distribution can be estimated, and this procedure is non-deterministic.

2.1.2 Our Contributions

In this chapter, we present a deterministic algorithm that computes the entire weight

distribution of polar codes. We first propose an efficient recursive procedure to compute the

weight enumerating function of certain polar cosets to be defined later. Those polar cosets

arise during the successive cancellation decoding process, and their weight distribution can

be used to estimate the error probabilities of the bit channels. In two separate works by Niu,

Li, and Wu [NLW19], and by Polyanskaya, Davletshin, and Polyanskii [PDP20], algorithms

that compute the weight distribution of these polar cosets along the all-zero decoding path

are proposed. However, efficiently computing the weight distribution of polar cosets along an

arbitrary decoding path remained an open problem. In this work, we solve this problem by

establishing a recursive relation followed by the weight enumerating functions of those polar

cosets. Using this recursive relation, we can compute the weight distribution of polar cosets

along arbitrary decoding path in time O(n2). This computation procedure has two applications:

analyzing the successive cancellation (SC) decoding performance as explained in [PDP20] and

computing the entire weight distribution of polar codes.

To make the connection between the weight enumerating functions of polar cosets and

14

the weight distribution of polar codes, we show that we can represent any polar code as a

disjoint union of certain polar cosets. In this way, we can obtain the weight distribution of

the entire code by summing up the weight enumerating functions of those polar cosets. This

representation extends to polar codes with dynamically frozen bits [TM13], so our method can be

applied to polarization-adjusted convolutional (PAC) codes [Arı19], and other pre-transformed

polar codes [LZG19]. Since any binary linear codes can be represented as polar codes with

dynamically frozen bits [TM13, FVY20], our algorithm applies to general linear codes as well.

However, the number of polar cosets in this representation scales exponentially with a code

parameter introduced herein, which we call the mixing factor. The complexity of our algorithm is

largely governed by the mixing factor of polar codes. To bound this mixing factor, and thus give

a bound on the complexity of our algorithm, we identify polar codes as decreasing monomial

codes, introduced in [BDOT16], and prove that self-dual Reed-Muller codes have the largest

mixing factor among all decreasing monomial codes with rates at most 1/2.

Representing polar codes as disjoint unions of polar cosets works for polar codes in a

general setting, where we can select any subsets of rows in the polar transformation matrix as

generators. In a more restricted setting, where we only select the rows whose corresponding

bit channels have the smallest Bhattacharyya parameters, polar codes fall into the category

of decreasing monomial codes. Decreasing monomial codes, first studied by Bardet, Dragoi,

Otmani, and Tillich [BDOT16], have a large automorphism group, which includes the lower

triangular affine group LTA(m,2). We show that using LTA(m,2), we can largely reduce the

complexity of our algorithm. We prove that LTA(m,2) acts transitively on certain subsets of

polar codes, which implies that a lot of polar cosets in our representation share the same weight

distribution. It allows us to drastically reduce the number of polar cosets we need to evaluate in

our algorithm. This complexity reduction makes it possible to compute the weight distribution

of any polar codes up to length 128. In particular, since Reed-Muller codes are also decreasing

monomial codes, our complexity reduction applies to Reed-Muller codes as well. This makes it

possible for our algorithm to compute the entire weight distribution of Reed-Muller codes for all

15

rates and length up to 128 with reasonable complexity.

2.1.3 Notations

Here we specify some notation conventions we follow in this chapter. All the vectors

in this paper are row vectors, unless otherwise specified. We use bold letters like u to denote

vectors, and non-bold letters like ui to denote symbols within that vector. We let the indices for

the symbols within vectors start from zero. We use ui to represent (u0,u1, · · · ,ui), a subvector

of u with its first (i + 1) symbols. And we denote the concatenation of two vectors u and v as

(u,v).

2.2 Polar Cosets

Assuming n = 2m, recall that an (n,k) polar code is a binary linear block code generated

by k rows in the polar transformation matrix Gn = Bn · K⊗m
2 , where Bn is the bit-reversal

permutation matrix, K⊗m
2 is the n-th Kronecker power of K2, and

K2 =




1 0

1 1


 .

We first give the definition for polar cosets.

Definition 1. For a vector ui ∈ {0,1}i+1 with 0 ⩽ i ⩽ n− 1, we define the polar coset for path

ui as the affine space

Cn(ui)
def
=
{
(ui,u′)Gn | u′ ∈ {0,1}n−i−1

}

where (ui,u′) represents the concatenation of u and u′, and Gn is the polar transformation

matrix.

Example 1. Consider G8 with its rows denoted by g0, g1, · · · , g7 as shown in Figure 2.1.

16

G8 =




1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1




g0
g1
g2
g3
g4
g5
g6
g7

Figure 2.1. Polar transformation matrix G8

Let u4 = (0,1,0,1,0), then the polar coset C8(u4) is the affine space generated by

g5, g6, g7, and shifted by g1 and g3:

C8(u4) = g1 + g3 + span{g5, g6, g7}

In Figure 2.1, those rows are highlighted in gray and in cyan, respectively.

We remark that using polar cosets, equation (1.2) that defines the bit channel can be

equivalently written as

W(i)
n (y,ui−1|ui) =

1
2n−1 ∑

c∈Cn(ui)

Wn(y|c). (2.1)

In this section, we will mainly discuss the weight distribution of polar cosets, which can

be described by their weight enumerator functions.

Definition 2. For a vector ui ∈ {0,1}i+1 with 0 ⩽ i ⩽ n− 1, we denote the weight enumerator

function for polar coset Cn(ui) as the polynomial

An(ui)(X)
def
=

n

∑
w=0

AwXw,

where Aw is the number of vectors in Cn(ui) with Hamming weight w.

In prior works, the weight distribution of polar coset Cn(ui), where ui = (0,0, · · · ,0,1)

17

is a length-(i + 1) all-zero vector with a single 1 at the end, is also referred to as polar spectrum

in [NLW19], and as the weight distribution for SC decoding of polar codes in [PDP20]. It has

also been pointed out both in [NLW19, Sec.III.B] and in [PDP20, Sec.II.C] that the weight

distribution of such polar coset Cn(ui) can be used to analyze the error probability of the i-th bit

channel W(i)
n .

2.3 Computing the Weight Enumerating Function of Polar
Cosets

In this section, we present the first key result of this chapter: a recursive procedure that

computes the weight enumerating function for arbitrary polar cosets. Recently, both in [NLW19]

and in [PDP20], the authors introduce their respective algorithms that compute the weight

distribution for polar coset Cn(ui) with ui = (0,0, · · · ,0,0) and ui = (0,0, · · · ,0,1). How to

efficiently compute the weight distribution for Cn(ui) with arbitrary path ui remains open. Here

we present a recursive computation procedure with time complexity O(n2) that solves this

problem.

Let’s first establish some notations. We use ueven and uodd to denote the subvectors

(u0,u2, · · ·) and (u1,u3, · · ·) of u with only even indices and only odd indices, respectively, and

we use ui,even and ui,odd to denote the subvectors of ui with only even indices and only odd

indices, respectively. We also denote the concatenation of vector ui with a single bit ui+1 as

(ui,ui+1).

Our algorithm for polar cosets is based on the following recursive relations.

Theorem 3. Let m ⩾ 0, n = 2m, and 0 ⩽ i ⩽ n− 1, then

A2n(u2i)(X) = ∑
u2i+1∈{0,1}

An(u2i,even⊕ (u2i,odd , u2i+1))(X) · An(u2i,odd,u2i+1)(X), (2.2)

and

A2n(u2i+1)(X) = An(u2i+1,even ⊕ u2i+1,odd)(X) · An(u2i+1,odd)(X). (2.3)

18

Proof. Let m ⩾ 0 and n = 2m. For any u ∈ {0,1}2n we have

u · G2n = (u · B2n)K
⊗(m+1)
2 = (ueven · Bn, uodd · Bn)




K⊗m
2 0

K⊗m
2 K⊗m

2




=
(
(ueven ⊕ uodd) · BnK⊗m

2 , uodd · BnK⊗m
2

)

=
(
(ueven ⊕ uodd) · Gn, uodd · Gn

)

(2.4)

We first prove equation (2.2). According to Definition 1, we have

C2n(u2i) =
{
(u2i,u′)G2n | u′ ∈ {0,1}2n−2i−1

}
(2.5)

Denote u′ as u′ = (u2i+1,v). According to (2.4), the expression (u2i,u′)G2n in (2.5) can be

written as

(u2i,u′)G2n =
(
(u2i,even⊕ (u2i,odd,u2i+1), veven⊕ vodd) ·G2n, (u2i,odd, vodd) ·G2n

)
(2.6)

When u′ ranges over {0,1}2n−2i−1, both vodd and (veven⊕ vodd) will range over {0,1}n−i−1

separately. So we have

C2n(u2i) =
⋃

u2i+1∈{0,1}

{
(c1,c2) | c1 ∈ Cn(u2i,even⊕ (u2i,odd,u2i+1)), c2 ∈ Cn(u2i,odd,u2i+1)

}

(2.7)

Therefore for each u2i+1 ∈ {0,1}, C2n(u2i) can be expressed as the concatenation of two polar

cosets. Since the weight enumerating function of the concatenation equals the product of the two

individual weight distribution functions, we have

A2n(u2i)(X) = ∑
u2i+1∈{0,1}

An(u2i,even ⊕ (u2i,odd , u2i+1))(X) · An(u2i,odd,u2i+1)(X).

19

That proves equation (2.2). Next, we prove equation (2.3) in a similar way. According to

Definition 1, we have

C2n(u2i+1) =
{
(u2i+1,u′)G2n | u′ ∈ {0,1}2n−2i−2

}
(2.8)

According to (2.4), the expression (u2i+1,u′)G2n in (2.8) can be written as

(u2i+1,u′)G2n =
(
(u2i+1,even ⊕ u2i+1,odd, u′even ⊕ u′odd) · G2n, (u2i+1,odd, u′odd) · G2n

)

(2.9)

When u′ ranges over {0,1}2n−2i−2, both uodd and (ueven⊕ vodd) will range over {0,1}n−i−1

separately. So we have

C2n(u2i+1) =
{
(c1,c2) | c1 ∈ Cn(u2i+1,even ⊕ u2i+1,odd), c2 ∈ Cn(u2i+1,odd)

}
(2.10)

Thus C2n(u2i+1) can also be expressed as the concatenation of two polar cosets. This gives us

equation (2.3).

In Theorem 3, equation (2.2) and equation (2.3) can also be written as

A2n(u2i−1,u2i)(X) =

∑
u2i+1∈{0,1}

An(u2i−1,even ⊕ u2i−1,odd , u2i ⊕ u2i+1))(X) · An(u2i−1,odd,u2i+1)(X) (2.11)

and as

A2n(u2i,u2i+1)(X) =

An(u2i−1,even ⊕ u2i−1,odd, u2i ⊕ u2i+1)(X) · An(u2i−1,odd,u2i+1)(X) (2.12)

respectively. In this way, equation (2.11) and equation (2.12) fall into forms similar to the

20

An(ui−1,0)(X)←
An(ui−1,1)(X)← An

An/2

An/2

· · ·

← 1
← XA1

← 1
← XA1

← 1
← XA1

← 1
← XA1

...

Figure 2.2. The recursive procedure that computes the weight enumerating function for polar
cosets

recursive relations for the bit channels [Arı09, Equations (22) and (23)]. Therefore, similar to

the recursive procedure that computes the probabilities for the bit channels, we can also compute

the weight enumerating functions of polar cosets recursively with the stopping conditions:

A1(0) = 1, A1(1) = X.

This recursive procedure is illustrated in Figure 2.2, and its steps are shown in Algorithm 1.

We make the following remarks for Algorithm 1:

• The object for recursion in Algorithm 1 is a pair of weight enumerating functions

An(ui−1,0)(X) and An(ui−1,1)(X).

• If we want to compute the weight distribution for polar coset Cn(ui), we should run

Algorithm 1 with inputs n and ui−1, and select one of the two weight enumerating

functions from the output corresponding to the desired ui.

Next, we prove that Algorithm 1 has time complexity O(n2).

Theorem 4. Algorithm 1 has time complexity O(n2).

Proof. In Algorithm 1, depending on the inputs i and ui−1, we have the following three cases

for the lines we need to run:

21

Algorithm 1: CalcA(n,ui−1)
Input: block length n and vector ui−1
Output: a pair of polynomials

(An(ui−1,0)(X), An(ui−1,1)(X))
1 if n = 1 then // Stopping conditions
2 return (1, X)
3 else
4 if i mod 2 = 0 then
5 (f0, f1)← CalcA(n/2,ui−1,even ⊕ ui−1,odd)
6 (g0, g1)← CalcA(n/2,ui−1,odd)
7 return (f0g0 + f1g1, f0g1 + f1g0) ; // Use equation (2.2)
8 else
9 (f0, f1)← CalcA(n/2,ui−2,even ⊕ ui−2,odd)

10 (g0, g1)← CalcA(n/2,ui−2,odd)
11 if ui−1 = 0 then
12 return (f0g0, f1g1) ; // Use equation (2.3)
13 else
14 return (f1g0, f0g1) ; // Use equation (2.3)

Case 1: When i is even, we run lines 5, 6 and 7.

Case 2: When i is odd and ui = 0, we run lines 9, 10 and 12.

Case 3: When i is odd and ui = 1, we run lines 9, 10 and 14.

First, line 5 is the same as line 9, and line 6 is the same as line 10. Then for line 7, we need to do

4 polynomial multiplications and 2 polynomial additions, while for line 12 or line 14, we only

need to do 2 polynomial multiplications. So case 1 has the highest complexity among the above

three cases. Thus, henceforth we only consider case 1.

Denote by T(n) the time complexity of Algorithm 1. For the recursive part in the

algorithm, line 5 and line 6 both take time T(n/2). For the non-recursive part, in line 7 we need

to do 4 polynomial multiplications and 2 polynomial additions. Since f0, f1, g0, g1 are weight

enumerating functions of polar cosets with block length n/2, all of them have degrees at most

n/2. Assume multiplication of two degree-n polynomials takes time O(n2), and addition of two

22

degree-n polynomials takes time O(n), it follows that

T(n)⩽ 2T(n/2) + 4 ·O(n2/4) + 2 ·O(n2/4),

which gives us T(n) = O(n2).

We also remark that the time complexity of Algorithm 1 may be improved assuming mul-

tiplication of two degree-n polynomials takes time O(n logn) with the Fast-Fourier Transform.

2.4 Computing the Entire Weight Distribution of Polar
Codes

In this section, we present a deterministic algorithm that computes the entire weight

distribution of polar codes. We first show that any polar code can be represented as a disjoint

union of certain polar cosets. This allows us to obtain the weight distribution of the entire code

by summing up the weight distributions of those polar cosets. However, the number of polar

cosets in this representation scales exponentially with a new parameter that we introduce herein,

called the mixing factor. Next, we show that our approach naturally extends to polar codes

with dynamically frozen bits. Since any binary linear code can be represented as a polar code

with dynamically frozen bits [TM13, FVY20], our method can be used to compute the weight

distribution of any binary linear code, provided that its mixing factor is relatively small.

2.4.1 Representing Polar Codes with Polar Cosets

First, we introduce two new parameters of polar codes that we call the last frozen index

and the mixing factor, respectively.

Definition 3. Consider an (n,k) polar code C = Cn(A) specified in terms of its information

index set A. With F = {0,1, . . . ,n− 1}\A, we define the last frozen index of C as

τ(C)
def
= max{F},

23

and define the mixing factor of C as

MF(C)
def
=
∣∣{i ∈ A | i < τ(C)}

∣∣.

Loosely speaking, the mixing factor of C counts the number of information bits that are

mixed-in among the frozen bits. It is easy to see that MF(C) can be computed from τ(C) as

follows:

MF(C) = k−
∣∣{i ∈ A | i > τ(C)}

∣∣ = τ(C)− (n− k) + 1 (2.13)

Starting with an example, we now show that any polar code can be represented as a

disjoint union of certain polar cosets.

Example 2. In this example, we denote the (16,11,4) extended Hamming code as CH. It can be

generated by rows in the polar transformation matrix G16. Thus we can view CH as a polar code

of length 16 with frozen index set F = {0,1,2,4,8}. The polar transformation matrix G16 is

shown in Figure 2.3.

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




Figure 2.3. Polar transformation matrix G16 in Example 2

In Figure 2.3, the information bits of CH are highlighted in red and in blue, and the

24

frozen bits are black. We color the information bits that are mixed-in among the frozen bits in

red, and color the rest of the information bits in blue. The last frozen bit of CH is u8, so the last

frozen index of CH is τ(CH) = 8. The mixing factor of CH counts the number of red bits, so

the mixing factor of CH is MF(CH) = 4.

Consider the polar coset C16(u8). For any binary vector u8 with u0 = u1 = u2 = u4 =

u8 = 0, and u3,u5,u6,u7 ∈ {0,1}, the polar coset C16(u8) will be a subset of CH. In total we

have 24 = 16 options to assign the values for u3,u5,u6,u7. Hence there are 16 such disjoint

polar cosets, and the union of them is the entire code CH:

CH =
⋃

u8∈{0,1}9: u0=u1=u2=u4=u8=0

C16(u8)

Therefore, the entire weight distribution of CH can be obtained by first computing the weight

enumerating functions of all those 16 polar cosets, and then taking the sum.

This polar coset representation for general polar codes can be summarized by the follow-

ing proposition.

Proposition 1. Let C be a polar code with frozen index set F , and last frozen index τ. Then C

can be represented as a disjoint union of polar cosets as:

C =
⋃

uτ∈{0,1}τ+1: ui=0 for all i∈F
Cn(uτ)

The number of polar cosets in this representation equals 2MF(C).

2.4.2 Representing Polar Codes with Dynamically Frozen Bits

We now show that our polar coset representation in Proposition 1 extends to polar

codes with dynamically frozen bits. Polar codes with dynamically frozen bits, first introduced

in [TM13], are polar codes where each of the frozen bits ui is not fixed to be zero, but set to be

a boolean function (usually, a linear function) of its previous bits as ui = fi(ui−1). For frozen

25

bits with indices in F , we refer to the set of those boolean functions { fi | i ∈ F} as the dynamic

constraints for the code. Examples of polar codes with dynamically frozen bits are polar codes

with CRC precoding [TV15], polar subcodes [TM15], polarization-adjusted convolutional (PAC)

codes [Arı19], etc. In fact, since any binary linear code can be represented as a polar code with

dynamically frozen bits [TM13,FVY20], our representation extends to all binary linear codes, as

well.

The concept of last frozen index and mixing factor in Definition 3 naturally extends to

polar codes with dynamically frozen bits. We again illustrate our polar coset representation with

an example, in which the Hamming code in Example 2 is slightly modified so its frozen bits

become dynamically frozen.

Example 3. Denote by C′H a (16,11) polar code with frozen index set F = {0,1,2,4,8}, where

u0,u1,u2 are frozen as 0, and u4 and u8 are dynamically frozen as u4 = u3 and u8 = u5 + u6

respectively. We have τ(C′H) = 8 and MF(C′H) = 4 the same as in Example 2.

u0
u1
u2
u3
u4 = u3
u5
u6
u7
u8 = u5 + u6
u9
u10
u11
u12
u13
u14
u15




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




Figure 2.4. Polar transformation matrix G16 in Example 3

Consider the polar coset C16(u8). For any binary vector u8 with u3,u5,u6,u7 ∈ {0,1},

if we let u0 = u1 = u2 = 0, u4 = u3 and u8 = u5 + u6, then the polar coset C16(u8) will be a

subset of C′H. Thus similar to Example 2, with 24 = 16 options to assign the values for u3,u5,u6

26

Algorithm 2: Compute the weight enumerating functions of polar code with
dynamic freezing

Input: block length n, frozen index set F , and dynamic constraint { fi | i ∈ F}
Output: weight enumerating function AC(X) of code C

1 τ←max{F}
2 AC(X)← 0
3 for uτ ∈ {0,1}τ+1 : ui = fi(ui−1) for all i ∈ F do
4 (f0, f1)← CalcA(n,uτ−1) ; // Use Algorithm 1
5 uτ← fτ(uτ−1)
6 if uτ = 0 then
7 AC(X)← AC(X) + f0
8 else
9 AC(X)← AC(X) + f1

10 return AC(X)

and u7, C′H can be represented as a disjoint union of 16 disjoint polar cosets as

C =
⋃

u8∈{0,1}9: u0=u1=u2=0,u4=u3,
u8=u5+u6

C16(u8)

In general, Proposition 1 extends to polar codes with dynamically frozen bits as follows.

Proposition 2. Let C be a polar code with dynamically frozen bits, with frozen index set F ,

last frozen index τ, and the dynamic constraints { fi | i ∈ F}. Then C can be represented as a

disjoint union of polar cosets as:

C =
⋃

uτ∈{0,1}τ+1: ui= fi(ui−1) for all i∈F
Cn(uτ) (2.14)

The number of polar cosets in this representation equals 2MF(C).

2.4.3 Computing the Entire Weight Distribution

This polar coset representation directly gives us a way to compute the weight distribution

of polar codes. We can compute the weight enumerating function of each polar coset in the

27

representation using Algorithm 1, and then take their sum to obtain the weight distribution of

the entire code. This procedure is shown in Algorithm 2, in which conventional polar codes are

considered as special cases of polar codes with dynamically frozen bits.

For a polar code C, the number of polar cosets in the representation equals 2 to the power

of MF(C). Thus without parallel computation, Algorithm 2 has time complexity O(2MF(C) n2).

It’s clear that this complexity is largely governed by the mixing factor of polar codes. For

reference, we list the mixing factor of rate 1/2 polar codes following the 5G standard [3GP18,

BCL20] from length 8 to length 1024 in Table 2.1.

Table 2.1. Mixing factor of rate 1/2 polar codes in 5G

code length n 8 16 32 64 128 256 512 1024
mixing factor MF(C) 1 2 9 17 34 73 161 385

2.5 Mixing Factor of Polar Code

In Section 2.3, we present Algorithm 2 that computes the weight distribution by repre-

senting any polar code as a disjoint union of polar cosets. The number of polar cosets in this

representation equals two to the power of mixing factor of the code. Therefore, it is clear that for

a polar code C, the complexity of our approach is largely governed by its mixing factor MF(C).

In a prior work [FVY21], it is shown that for a given polar code C, ML decoding of polar code

can be performed with a hybrid list decoder with list size L = 2MF(C). In that sense, the mixing

factor of polar code appears to be a rather fundamental parameter that provides us an exponential

upper bound on the complexity of two important operations: computing the weight distribution

of the code and performing ML decoding of the code.

In this section, we study the range of mixing factor of polar codes. We remark that

our approach in Section 2.4 applies to polar codes in a general setting where: (1) the frozen

bits can be dynamically frozen; (2) the information index set can be arbitrary. Hereforth, we

focus on conventional polar codes where: (1) the frozen bits are all frozen to zero; (2) for code

28

of dimension k, the information index set A is chosen such that the bit channels W(i)
n ’s for

i ∈ A are the “best” k bit channels. In Arıkan’s definition, the k bit channels with the smallest

Bhattacharyya parameters are selected. Two alternative criteria for picking the best k bit channels

are mutual information and error probability. If we follow either one of these three criteria, polar

codes fall into the category of decreasing monomial codes, first introduced by Bardet, Dragoi,

Otmani, and Tillich [BDOT16]. For the details of decreasing monomial codes, we refer the

readers to [BDOT16].

Here, we first review properties of polar codes as decreasing monomial codes. Then, to

upper bound the mixing factor of polar codes, and thus upper bound the complexity of Algorithm

2, we prove that self-dual Reed-Muller codes have the largest mixing factors among all polar

codes with rates at most 1/2.

2.5.1 Properties of Polar Codes as Decreasing Monomial Codes

We start by reviewing the definition of monomial codes. Let n = 2m, and let the

polynomial ring given by

Rm = F[x0, x1, · · · , xm−1]/(x2
0 − x0, x2

1 − x1, · · · , x2
m−1 − xm−1).

Each polynomial p ∈ Rm can be associated with a binary vector in Fn
2 as the evaluation of p in

all the binary entries x = (x0, · · · , xm−1) ∈ Fm
2 . In other words, polynomial p is associated with

ev(p) = (p(x))x∈Fm
2

where ev : Rm→ Fn
2 is a homomorphism from the polynomials to the

binary n-tuples. In this work, we specify the order of x in vector (p(x))x∈Fm
2

such that from left

to right, the number ∑m−1
i=0 zi2i is in ascending order from 0 to 2m − 1, where the binary vector

(z0,z1, · · · ,zm−1) is defined by:

(z0,z1, · · · ,zm−1) = (1− xm−1,1− xm−2, · · · ,1− x0)

29

Denote the set of all the monomials inRm as

Mm =
{

xb0
0 xb1

1 · · · x
bm−1
m−1

∣∣∣ (b0,b1, · · · ,bm−1) ∈ Fm
2

}
.

The monomial codes can be defined as follows.

Definition 4. Let n = 2m and I ∈Mm, the monomial code C(I) generated by I is the linear

space

C(I) def
= span{ev(f) | f ∈ I}.

Since every row in the polar transformation matrix Gn can be obtained as ev(f) with

some f ∈Mm, polar codes can be viewed as monomial codes. For a monomial f ∈Mm given

by f = xi1 xi2 · · · xid , we write:

deg f = d

ind(f) = {i1, i2, . . . , id}

[f] = (am−1, am−2, . . . , a0) ∈ {0,1}m

[[f]] =
m−1

∑
i=0

ai2i =
m−1

∑
i=0

(1−bi)2i

where the binary vectors (am−1, am−2, . . . , a0) and (bm−1,bm−2, . . . ,b0) are defined by:

f = x1−a0
0 x1−a1

1 · · · x1−am−1
m−1 = xb0

0 xb1
1 · · · x

bm−1
m−1

Following this notation, if we label the rows in the polar transformation matrix Gn with indices

from 0 to n− 1, the evaluation ev(f) for a monomial f ∈Mm has row index [[f]] in Gn, and

[f] contains the digits in the binary expansion of [[f]]. When the underlying Gn is clear from the

context, we simply refer [[f]] as the row index for f .

Example 4. Consider the polar transform matrix G16. The monomials inM4 whose evaluations

30

are rows in G16 are shown in Figure 2.5.

f [f] [[f]]
x0x1x2x3 (0,0,0,0) 0
x1x2x3 (0,0,0,1) 1
x0x2x3 (0,0,1,0) 2
x2x3 (0,0,1,1) 3

x0x1x3 (0,1,0,0) 4
x1x3 (0,1,0,1) 5
x0x3 (0,1,1,0) 6
x3 (0,1,1,1) 7

x0x1x2 (1,0,0,0) 8
x1x2 (1,0,0,1) 9
x0x2 (1,0,1,0) 10
x2 (1,0,1,1) 11

x0x1 (1,1,0,0) 12
x1 (1,1,0,1) 13
x0 (1,1,1,0) 14
1 (1,1,1,1) 15




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




Figure 2.5. Polar transformation matrix G16 in Example 4

Henceforth, whenever we write a monomial as f = xi1 xi2 · · · xid we assume that i1 <

i2 < · · · < id, unless stated otherwise. A partial order on the monomials inMm is introduced

in [BDOT16] as follows:

Definition 5. If f = xi1 xi2 · · · xid and g = xj1 xj2 · · · xjd are two monomials of the same degree d,

we write f ≼ g if

i1 ⩽ j1, i2 ⩽ j2, · · · , id ⩽ jd

If deg f < deg g, we write f ≼ g if there exists a divisor g∗ of g, such that g∗ has the same

degree as f and f ≼ g∗. If f ≼ g and f ̸= g, we write f ≺ g.

As decreasing monomial codes, polar codes satisfy the following property, first estab-

lished by Bardet, Dragoi, Otmani, and Tillich in [BDOT16], and by Schürch in [Sch16].

Theorem 5. Let Cn(A) be a polar code, specified in terms of its information index set A. If

[[g]] ∈A and f ≼ g, then also [[f]] ∈A. Equivalently, if [[f]] ∈ F and f ≼ g, then also [[g]] ∈ F .

31

A simple lemma about the partial order of two monomials, and their row indices that is

easy to verify is the following:

Lemma 1. If g ≼ f , then [[g]]⩾ [[f]].

2.5.2 The Largest Mixing Factor of Polar Codes

Now we are ready to study the range of mixing factor of polar codes as decreasing

monomial codes. Since by the MacWilliams identity [Mac63], one can easily obtain the weight

distribution of a code from the weight distribution of its dual, if we want to compute the weight

distribution of a given polar code, we have the options of applying Algorithm 2 to either the

code itself, or to its dual. Since the dual code of a decreasing monomial code is also a decreasing

monomial code [BDOT16], to get a complexity cap of our approach, it suffices to limit our space

to polar codes of rates at most 1/2.

For conventional polar codes of rates at most 1/2, the following theorem states that their

mixing factor is bounded by the mixing factor of self-dual Reed-Muller codes.

Theorem 6. Let C be an (n,k) polar code with n = 2m, m = 2t + 1, and dimension k ⩽ n/2,

then

MF(C)⩽ 22t − 2t+1 + 1 (2.15)

Moreover, the equality holds only when C is the self-dual Reed-Muller code.

According to Theorem 6, the mixing factor of polar codes at length n = 2m, where m is

an odd number, is bounded by the mixing factor of self-dual RM codes. Here we list the mixing

factor of self-dual RM codes at length 8, 32, 128, 512 and 2048 in Table 2.2.

Table 2.2. Mixing factor of self-dual RM codes

code length n 8 32 128 512 2048
mixing factor 1 9 49 225 961

32

For polar codes at length n = 2m, where m is an even number, we make the following

conjecture about their largest mixing factors. The conjectured upper bounds for polar codes at

length 16, 64, 256, 1024 are listed in Table 2.3.

Conjecture 1. Let C be an (n,k) polar code, with n = 2m, m = 2t, and dimension k ⩽ n/2,

then

MF(C)⩽ 22t−1 − 2t+1 + 2

and the equality is achievable.

Table 2.3. Conjectured upper bounds for polar codes with rates ⩽ 1/2

code length n 16 64 256 1024
mixing factor ⩽ 2 18 98 450

The rest of this section is devoted to the proof of Theorem 6.

Proof of Theorem 6. It can be verified by exhaustive search that Theorem 6 holds when t = 1

and t = 2. So hereforth, we focus on proving the theorem when t ⩾ 3. In this proof we use

Table 2.4 to help illustrate our arguments. First we show self-dual Reed-Muller codes achieve

the equality in (2.15).

Claim 1. Let C be the self-dual RM code of length 22t+1, then MF(C) =
22t − 2t+1 + 1.

Proof. Let I be set of monomials generating C, Then I contains all
monomials of degree less or equal to t. Referring to Table 2.4, we have τ(C) =
22t − 2t+1. Thus from equation (2.13), we have

MF(C) = 22t − 2t+1 + 1.

Then we focus on the following claim, which states that if the mixing factor of the code is at

least 22t − 2t+1 + 1, then the code has to be the self-dual Reed-Muller code.

Claim 2. Let C be a polar code of length n = 22t+1 and dimension k ⩽ n/2. If

MF(C)⩾ 22t − 2t+1 + 1,

33

Table 2.4. A table illustrating the positions of g and g′ in the proof of Theorem 6

[[f]] [f] f

0 (0,0, · · · ,0,0︸ ︷︷ ︸
2t+1

) x0x1x2 · · · x2t

1 (0,0, · · · ,0,1) x1x2 · · · x2t

...
...

...

22t+1 − 2t+1 (1, · · · ,1︸ ︷︷ ︸
t

,0, · · · ,0,0︸ ︷︷ ︸
t+1

) x0x1x2 · · · xt

22t+1 − 2t+1 + 1 (1, · · · ,1︸ ︷︷ ︸
t

,0, · · · ,0,1) x1x2 · · · xt

...
...

...

22t+1 − 2 (1,1, · · · ,1,0) x0

22t+1 − 1 (1,1, · · · ,1,1) 1

← g

← g′

then C can only be the self-dual Reed-Muller code.

Now it suffices to prove Claim 2, since it is clear that Theorem 6 follows if we combine Claim 1

and Claim 2. Hereforth, we denote g = x0x1x2 · · · xt as the monomial with [[g]] = 22t+1− 2t+1,

and denote g′= x1x2 · · · xt as the monomial with [[g′]] = [[g]]+ 1. If we list out all the monomials

inM2t+1 following their row indices, the positions of g and g′ in this list are shown in Table

2.4.

Our proof for Claim 2 relies on the following three claims.

Claim 3. Let C be a polar code of length n = 22t+1, and frozen index set F . If
τ(C)⩾ [[g]], then [[g]] ∈ F .

Proof. Observe from Table 2.4 that for any monomial h with [[h]]⩾ [[g]],
h is a divisor of g, and thus h ≼ g. Therefore, if τ(C) ⩾ [[g]], it follows from
Theorem 5 that [[g]] ∈ F .

34

Claim 4. Let C be a polar code of length n = 22t+1, and frozen index set F . If
τ(C)⩾ [[g′]], then [[g′]] ∈ F .

Proof. Similar to the proof for Claim 3, we can observe from Table 2.4 that
for any monomial h with [[h]]⩾ [[g′]], we have h ≼ g′. Therefore if τ(C)⩾ [[g′]],
it follows from Theorem 5 that [[g′]] ∈ F .

Claim 5. Let C be a polar code of length n = 22t+1 and dimension k ⩽ n/2. If

MF(C)⩾ 22t − 2t+1 + 1 and τ(C) = [[g]],

then C is the self-dual Reed-Muller code.

Proof. Since for any monomial h with deg h ⩾ t + 1, we have g ≼ h, it
follows from Theorem 5 that [[h]] ∈ F for any monomial h with degree at least
t + 1. So C is a subcode of the self-dual Reed-Muller code. On the other hand,
in view of equation (2.13), the dimension of the code is at least

k = MF(C) + (n− 1)− τ(C)⩾ n/2

Thus C can only be the self-dual Reed-Muller code itself.

At this point, we are ready to prove Claim 2. We will first show that given the conditions in

Claim 2, g has to be frozen. Moreover, we will then show that the last frozen index of the code

has to be exactly [[g]].

Proof for Claim 2. First from equation (2.13), we have

τ(C) = MF(C) + (n− k)− 1 ⩾ 22t+1 − 2t+1

So the last frozen index of C is at least [[g]]. Then we show that τ(C) > [[g]]
leads to a contradiction. Assuming τ(C)> [[g]], we have [[g]] ∈ F and [[g′]] ∈ F
following Claim 3 and Claim 4 respectively. Now we count the number of
monomials having row indices in F . First for any h with deg h ⩾ t + 1, we have
h ≽ g. Thus it follows from Theorem 5 that [[h]] ∈ F for all h with deg h ⩾ t + 1.
The number of those monomials can be counted as

2t+1

∑
i=t+1

(
2t + 1

i

)
= 22t

Then for any degree-t monomial h without x0, we have h ≽ g′, which gives us
[[h]] ∈ F following Theorem 5. The number of those monomials can be counted
as (2t

t). Therefore, the number of frozen indices of C is at least

|F |⩾ 22t +

(
2t
t

)

35

This gives

|A| = n− |F|⩽ 22t −
(

2t
t

)

But that contradicts MF(C)⩾ 22t − 2t+1 + 1, since

22t −
(

2t
t

)
< 22t − 2t+1 + 1

for all t ⩾ 3.
Since τ(C)> [[g]] leads to a contradiction, we can only have τ(C) = [[g]].

Thus it follows from Claim 5 that C can only be the self-dual Reed-Muller code.

Theorem 6 follows if we combine Claim 1 and Claim 2.

2.6 Reducing Computation Complexity using LTA(m,2)

As decreasing monomial codes, polar codes have a large automorphism group including

the lower triangular affine group LTA(m,2) [BDOT16]. In this section, we look into the

algebraic property of polar codes as decreasing monomial codes, and prove that LTA(m,2) acts

transitively on certain subsets of the codes. This implies that those subsets share the same weight

distribution. We will show that this allow us to drastically reduces the number of polar cosets we

need to evaluate when we compute the weight distribution of polar codes. Since Reed-Muller

codes are also decreasing monomial codes, the results in this section apply to Reed-Muller codes

as well. This complexity reduction makes it possible to compute the weight distribution of polar

codes and Reed-Muller codes for all rates of length up to n = 128 with reasonable complexity.

2.6.1 Lower Triangular Affine Groups and Their Group Action

We start by reviewing the definition for the lower triangular affine group, and how it acts

on polynomials. Henceforth, binary m× m matrices are denoted by Fm×m
2 , and m-tuples in

Fm
2 are treated as column vectors. Following the notation in [BDOT16], we denote the affine

transformations x 7→ Ax + b over Fm
2 by a pair (A,b), where A ∈ Fm×m

2 and b ∈ Fm
2 .

Definition 6. The lower triangular affine group, denoted as LTA(m,2), consists of all affine

36

transformations (A,b), where A ∈ Fm×m
2 is a non-singular lower triangular square matrix, and

b ∈ Fm
2 .

The group action of LTA(m,2) onRm can be defined as follows. For an affine transfor-

mation (A,b) ∈ LTA(m,2) with A = (aij), and a polynomial p ∈ Rm, denote by (A,b) · p the

action of (A,b) on p, where each monomial xi in p is replaced by another monomial yi defined

as

yi =
m−1

∑
j=0

aijxj + bi.

We can observe the following for the group action of LTA(m,2) on monomials.

Proposition 3. Let (A,b) ∈ LTA(m,2) and f ∈Mm, then (A,b) · f can be written in the

following form

(A,b) · f = f + ∑
g∈Mm : g≺ f

ug · g, (2.16)

where ug ∈ {0,1} for all g.

Proof. Since A = (aij) is non-singular and lower triangular, the action by (A,b) will replace

each monomial xi in f by

yi = xi +
i−1

∑
j=0

aijxj + bi.

Therefore

(A,b) · f = ∏
i∈ind(f)

yi = ∏
i∈ind(f)

(
xi +

i−1

∑
j=0

aijxj + bi

)

Equation (2.16) follows by expanding this expression.

Here is another way to view the action by the affine transformations. Recall that the

evaluation ev(p) of a polynomial p ∈Rm is a vector that consists of p(x) over all x∈Fm
2 . Since

every affine transformation (A,b) is a bijection on Fm
2 , the evaluation ev((A,b) · p) can be

obtained from ev(p) by permuting its coordinates. Denote the action of (A,b) on a polynomial

37

evaluation as

(A,b) · ev(p) = ev((A,b) · p),

we can then view this action as a permutation on the coordinates of ev(p). In particular, vector

(A,b) · ev(p) and vector ev(p) have the same Hamming weight.

Bardet, Dragoi, Otmani, and Tillich first show that the automorphism group of decreasing

monomial codes includes the lower triangular affine group [BDOT16, Theorem 2].

Theorem 7. The automorphism group of decreasing monomial codes over m variables contains

LTA(m,2).

2.6.2 A Subgroup of LTA(m,2)

In the main theorem of this section, we consider a subgroup of LTA(m,2), denoted

LTA(m,2) f , that we associate with a given monomial f . This subgroup was introduced in

[BDOT16], where it was used to analyze and count the minimum weight codewords of decreasing

monomial codes.

Definition 7. Let f ∈ Mm. The subgroup LTA(m,2) f of LTA(m,2) associated with the

monomial f is defined as

LTA(m,2) f
def
= {(A,b) ∈ LTA(m,2) | A ∈ M f ,b ∈ B f },

where

M f = {(aij) ∈ Fm×m
2 | ∀ i > j, aij = 0 if i ̸∈ ind(f) or j ∈ ind(f)}

and

B f = {b ∈ Fm
2 | bi = 0 if i ̸∈ ind(f)}

38

Example 5. Consider LTA(5,2). For f = x0x3x4 ∈M5, we have

M f = {(aij) ∈ F5×5
2 | ∀ i > j, aij = 0 if i ̸∈ {0,3,4} or j ∈ {0,3,4}}

and

B f = {b ∈ Fm
2 | bi = 0 if i ̸∈ {0,3,4}}

Therefore, the affine transformations (A,b) in the subgroup LTA(5,2) f have the form:

A =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 a3,1 a3,2 1 0

0 a4,1 a4,2 0 1




, and b =




b0

0

0

b3

b4




,

where a3,1, a3,2, a4,1, a4,2, b0, b3, b4 can take any value in {0,1}. There are 27 such affine trans-

formations, so the order of LTA(2,4) f is 27 = 128.

2.6.3 One-Variable Descendance Relation

We also introduce a new relation on the monomials for our main theorem of this section.

Henceforth, whenever we write f = gxi for two monomials f and g, we assume i ̸∈ ind(g).

Definition 8. For f , g ∈Mm, we say g is a one-variable descendant of f , and write g≺1 f if

either one of the following holds:

1. f = hxi and g = hxj for some monomial h with j < i.

2. f = gxi .

Compared with the partial order in Definition 5, this one-variable descendance relation

is a more restricted relation in the sense that, the two involved monomials can only differ by

39

one variable. We remark that this one-variable descendance relation is only a relation, but not

a partial order on the monomials. The following example shows that this new relation is not

transitive.

Example 6. For monomials inM4, we have

x0x2≺1 x0x1x2, and x0x1x2≺1 x0x1x3,

but x0x2 is not a one-variable descendant of x0x1x3.

Nevertheless, in view of the following proposition, which can be easily checked, the

partial order in Definition 5 can be viewed as a refinement of the the one-variable descendance

relation.

Proposition 4. For any f , g ∈Mm

1) If g≺1 f , then g ≺ f .

2) If g ≺ f , then there exists a finite sequence of monomials g0, g1, · · · , gt ∈Mm such that:

g = g0 ≺1 g1 ≺1 g2 ≺1 · · · ≺1 gt = f

2.6.4 The Main Theorem: A Transitive Group Action

Now we are ready to present the main theorem of this section.

Theorem 8. Let C(I) be a polar code generated by I ∈Mm, and let f be the monomial in I

with the smallest row index. Partition I into the following disjoint union

I = { f } ∪ S ∪ T ,

40

where S consists of all the one-variable descendants of f with row indices smaller than τ(C),

and T contains the rest of the monomials in I:

S = {h ∈ I | h≺1 f and [[h]] < τ(C)}, and T = I \ ({ f } ∪ S) .

Then the group action of subgroup LTA(m,2) f on the set X is transitive, where X is the set

consists of cosets of C(T) defined as follows

X =

{
ev(f) + ∑

h∈S
uh · ev(h) + C(T)

∣∣∣ ∀ h ∈ S , uh ∈ {0,1}
}

This implies that all the cosets of C(T) in X have the same weight distribution.

Before proving this theorem, we illustrate Theorem 8 with an example, and show how

we can use this theorem to reduce the complexity when computing the weight distribution of

polar codes.

Example 7. Consider a (32,24) polar code C specified by the frozen index set F = {0,1,2,3,4,

5,8,16}. The monomials corresponding to the rows in G32 are shown in Figure 2.6, where the

information bits are highlighted in red, orange and blue, and the frozen bits are black. Code C

has last frozen index τ(C) = 16, and mixing factor MF(C) = 9.

Illustrating Theorem 8

Let f = x0x3x4 be the monomial with the smallest row index in I . Then I can be

partitioned as

I = { f } ∪ S ∪ T ,

where S consists of four of the one-variable descendants of f with row indices smaller than

41

f →

S





→

→

→

→

x0x1x2x3x4
x1x2x3x4
x0x2x3x4
x2x3x4

x0x1x3x4
x1x3x4
x0x3x4
x3x4

x0x1x2x4
x1x2x4
x0x2x4
x2x4

x0x1x4
x1x4
x0x4
x4

x0x1x2x3
x1x2x3
x0x2x3
x2x3

x0x1x3
x1x3
x0x3
x3

x0x1x2
x1x2
x0x2
x2

x0x1
x1
x0
1

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16
u17
u18
u19
u20
u21
u22
u23
u24
u25
u26
u27
u28
u29
u30
u31




1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1








C(T)

Figure 2.6. Polar Transformation matrix G32 in Example 7

τ(C) = 16, and T consists of the rest of the monomials in I :

S = {x3x4, x0x2x4, x0x1x4, x0x4},

T = {x1x2x4, x2x4, x1x4, x4, x1x2x3, x0x2x3, · · · , x0, 1}

As shown in Figure 2.6, the monomials in S are colored in red, the monomials in T are colored

in orange and in blue, and the subcode C(T) is generated by the gray rows in G32.

Then, set X is defined to consist of 16 cosets of C(T) in the form

ev(f) + u1 · ev(x3x4) + u2 · ev(x0x2x4) + u3 · ev(x0x1x4) + u4 · ev(x0x4) + C(T),

42

where u1,u2,u3,u4 are four coefficients that can take any value in {0,1}.

According to Theorem 8, the subgroup LTA(5,2) f acts transitively on X . Since the

group action of the affine transformations in LTA(5,2) f can be viewed as permutations on the

codeword coordinates, we can conclude that all 16 cosets in X have the same weight distribution.

Computing the Weight Distribution

If we directly apply Algorithm 2 to compute the weight distribution of C, we need to

compute the weight enumerating function of 29 polar cosets. Now we show how we can reduce

this number using Theorem 8.

We start by partitioning code C into two parts according to u6. Let C{u6 = 1} denote

the subset of C where u6 is fixed to be 1, and let C{u6 = 0} denotes the subcode of C where u6

is fixed to be 0. Then

C = C{u6 = 1} ∪C{u6 = 0},

and both C{u6 = 1} and C{u6 = 0} can be represented as disjoint unions of 28 polar cosets.

Next, we compute the weight distribution of C{u6 = 1} and C{u6 = 0} separately.

For C{u6 = 1}, observe that

C{u6 = 1} =
⋃

X∈X
X

By Theorem 8, all cosets in X have the same weight distribution. Thus to get the weight

distribution for C{u6 = 1}, it suffices to first compute the weight distribution of a single coset

in X using Algorithm 2, and then multiply it by |X | = 24. This reduces the number of polar

cosets we need to evaluate for C{u6 = 1} from 28 down to 24.

After that we consider C{u6 = 0}. Since the subcode C{u6 = 0} is also a decreasing

43

monomial code itself, we can again partition C{u6 = 0} into two parts according to u7:

C{u6 = 0} = C{u6 = 0,u7 = 1} ∪C{u6 = 0,u7 = 0},

and apply Theorem 8 to reduce the complexity for C{u6 = 0,u7 = 1}.

By repeating this procedure, code C can be unfolded as follows

C = C{u6 = 1}

∪ C{u6 = 0,u7 = 1}

∪ C{u6 = 0,u7 = 0,u9 = 1}

∪ · · ·

∪ C{u6 = 0,u7 = 0, · · · ,u14 = 0,u15 = 1}

∪ C{u6 = 0,u7 = 0, · · · ,u14 = 0,u15 = 0},

and Theorem 8 allows us to reduce the number of polar cosets we need to evaluate for each

of those components. The amount of complexity reduction for the components, and the total

amount of complexity reduction for C are shown on the left of Table 2.5. We also show the

computed weight distribution for C in this example on the right of Table 2.5.

2.6.5 Proof of Theorem 8

The rest of this section is devoted to the proof of Theorem 8. We first introduce more

notations. For any polynomial p ∈ Rm, we can expand it and express p as a sum of monomials

inMm as

p = ∑
q∈Mm

uq · q, (2.17)

44

Table 2.5. Left: the complexity reduction amounts in Example 7. The second column shows
the number of polar cosets in each component, and the third column shows the number of
polar cosets we need to evaluate after applying Theorem 8. Right: Weight Distribution of C in
Example 7, where the unlisted Ad equals to zero.

components complexity reduced complexity
C{u6 = 1} 28 = 256 24 = 16
C{· · · ,u7 = 1} 27 = 128 23 = 8
C{· · · ,u9 = 1} 26 = 64 22 = 4
C{· · · ,u10 = 1} 25 = 32 22 = 4
C{· · · ,u11 = 1} 24 = 16 21 = 2
C{· · · ,u12 = 1} 23 = 8 21 = 2
C{· · · ,u13 = 1} 22 = 4 20 = 1
C{· · · ,u14 = 1} 21 = 2 20 = 1
C{· · · ,u15 = 1} 20 = 1 20 = 1
C{· · · ,u15 = 0} 20 = 1 20 = 1
C 29 = 512 40

d Ad
0 1
4 472
6 6272
8 83164

10 503424
12 1768424
14 3668224
16 4717254
18 3668224
20 1768424
22 503424
24 83164
26 6272
28 472
32 1

where uq ∈ {0,1} are the coefficients. For each monomial q, we denote the coefficient uq in this

expansion of p by ⟨p⟩q. Using this notation, equation (2.17) can be written as

p = ∑
q∈Mm

⟨p⟩q · q,

We start our proof by establishing a few lemmas. First, we consider the group action of an affine

transformation (A,b) in the subgroup LTA(m,2) f on f itself. The following lemma states that

the coefficient of a monomial h ∈ S in the expansion of (A,b) · f can actually be determined by

a single entry in (A,b).

Lemma 2. In Theorem 8, let (A,b)∈ LTA(m,2) f with A = (aij), and h∈ S , then the coefficient

of h in the expansion of (A,b) · f equals to a single entry in (A,b). More precisely,

• if f = qxs and h = qxt for some monomial q with t < s, then ⟨(A,b) · f ⟩h = ast;

45

• if f = hxs, then ⟨(A,b) · f ⟩h = bs.

Proof. First, f can be written as

f = ∏
i∈ind(f)

xi

Consider the action of (A,b) ∈ LTA(m,2) on f . According to Definition 7, each monomial xi

in f will be replaced by

yi = xi + ∑
j<i: j ̸∈ind(f)

aijxj + bi

Therefore, (A,b) · f can be written as a product of ℓ linear terms, where ℓ = deg f :

(A,b) · f = ∏
i∈ind(f)


xi + ∑

j<i: j ̸∈ind(f)
aijxj + bi


 (2.18)

Given that h ∈ S is a one-variable descendant of f , we now verify this lemma by discussing the

following two cases for h:

• Case 1: f = qxs and h = qxt for some monomial q with t < s.

We can observe that when we expand the right hand side of equation (2.18), there is only

one way to generate the term h, corresponding to choosing astxt from the linear term led

by xs, and choosing the leading xi for the rest of the linear terms. Thus ⟨(A,b) · f ⟩h = ast.

• Case 2: f = hxs.

Similarly, we can observe that when we expand the right hand side of equation (2.18),

there is only one way to generate the term h, corresponding to choosing bs from the

linear term led by xs, and choosing the leading xi for the rest of the linear terms. Thus

⟨(A,b) · f ⟩h = bs.

46

Next, we consider the group action of an (A,b) ∈ LTA(m,2) f on a monomial g ∈ T .

The following lemma states that, the coefficient of a monomial h ∈ S in the expansion of

(A,b) · g is always equal to zero.

Lemma 3. In Theorem 8, let (A,b) ∈ LTA(m,2) f , h ∈ S , and g ∈ T , then the coefficient of h

in the expansion of (A,b) · g is zero. In other words, ⟨(A,b) · g⟩h = 0.

Proof. Consider the action of (A,b) on g. According to Definition 7, the monomials in g will

change as follows:

• Every xi with i ∈ ind(g) ∩ ind(f) will be replaced by

yi = xi + ∑
j<i, j ̸∈ind(f)

aijxj + bi

• Every xi with i ∈ ind(g)\ ind(f) will be replaced by yi = xi, and thus remain unchanged.

So after the action by (A,b), we have

g = ∏
i∈ind(g)

xi

⇒ (A,b) · g =


 ∏

i∈ind(g)\ ind(f)
xi




︸ ︷︷ ︸
(a)


 ∏

i∈ind(g)∩ind(f)


xi + ∑

j<i, j/∈ind(f)
aijxj + bi






︸ ︷︷ ︸
(b)

(2.19)

If ⟨(A,b) · g⟩h = 1, then h should appear if we expand the right hand side of (2.19). Since h ∈ S

is a one-variable descendant of f , according to Definition 8, we have the following two possible

cases for the relation between h and f . Next, we show that if ⟨(A,b) · g⟩h = 1, a contradiction

can be drawn in both cases.

• Case 1: f = qxs and h = qxt for some monomial q with t < s.

47

If h appears in the expansion of the right hand side of (2.19), then we break it into two

cases depending on where the xt in h comes from.

– If the xt in h comes from (a), then we must have

ind(g)\ ind(f) = t and ind(q) ⊆ ind(g) ∩ ind(f)

Since q is a divisor of f , for ind(q) ⊆ ind(g) ∩ ind(f) to be true, we can either

have

ind(q) = ind(g) ∩ ind(f)

⇒ g = h (contradiction since g and h are distinct)

or

ind(q) ∪ {s} = ind(g) ∩ ind(f)

⇒ g = qxtxs (contradiction since [[g]] > [[f]])

and both of them lead to a contradiction.

– If the xt in h comes from (b), then we must have

ind(g)\ ind(f) = ∅ and ind(q) ∪ {s} ⊆ ind(g) ∩ ind(f)

which gives us

ind(g) = ind(f) ⇒ g = f (contradiction since g and f are distinct)

• Case 2: f = hxs.

48

If h appears in the expansion of the right hand side of (2.19), then we must have

ind(g)\ ind(f) = ∅ and ind(h) ⊆ ind(g) ∩ ind(f)

Since h is a divisor of f , for ind(h) ⊆ ind(g) ∩ ind(f) to be true, we can either have

ind(h) = ind(g) ∩ ind(f) ⇒ g = h (contradiction since g and h are distinct)

or

ind(h) ∪ {s} = ind(g) ∩ ind(f)

⇒ g = f (contradiction since g and f are distinct)

and both of them lead to a contradiction.

Therefore, in both Case 1 and Case 2, ⟨(A,b) · g⟩h = 1 leads to contradictions. So we can only

have ⟨(A,b) · g⟩h = 0.

Using Lemma 3, we can prove that subcode C(T) is invariant under LTA(m,2) f , as

stated in the following lemma.

Lemma 4. In Theorem 8, subcode C(T) is invariant under LTA(m,2) f .

Proof. Let (A,b) ∈ LTA(m,2) f . The group action by (A,b) can be viewed as a permutation

on the codeword coordinates, so (A,b) acting on C(T) will generate another subspace with the

same dimension as C(T). Since C(T) is generated by the monomials in T , to prove this claim,

it suffices to prove that for any g ∈ T ,

(A,b) · ev(g) ∈ C(T)

49

Let (A,b) ∈ LTA(m,2) f and g ∈ T . First, it follows from Proposition 3 that

(A,b) · g = g + ∑
g′∈Mm : g′≺g

u′g · g′, (2.20)

where u′g ∈ {0,1} are coefficients for all g′. Then, since I is the generating set of a polar code,

from Theorem 5 we know all g′ with g′ ≺ g lie in I . Hence (2.20) can be written as

(A,b) · g = g + ∑
g′∈I : g′≺g

u′g · g′. (2.21)

Recall f is the monomial with the smallest row index in I , so it follows from Lem-

ma 1 that f ̸≼ g. Also, Claim 1 tells us that in equation (2.21), uh = 0 for all h ∈ S . Since

I = { f } ∪ S ∪ T , equation (2.21) becomes

(A,b) · g = g + ∑
g′∈T : g′≺g

u′g · g′

Therefore, any (A,b) · g with g ∈ T can be generated by the monomials in T . This finishes the

proof of this claim.

At this point, we are ready to put everything together and prove Theorem 8. Take

X0 = ev(f) + C(T) to be a coset in X . To prove that the group action of LTA(m,2) f on X is

transitive, it suffices to prove that the orbit of X0 is the entire X .

Let (A,b) be an affine transformation in LTA(m,2) f . If we consider the action of (A,b)

on f , it follows from Proposition 3 that

(A,b) · f = f + ∑
h∈S

uh · h + ∑
g∈T

ug · g

where uh = ⟨(A,b) · f ⟩h for each h ∈ S , and ug = ⟨(A,b) · f ⟩g for each g ∈ T . Therefore, if

50

we look at the action of (A,b) on X0, we have

(A,b) · X0 = ev(f) + ∑
h∈S

uh · ev(h) + ∑
g∈T

ug · ev(g) + (A,b) ·C(T) (2.22)

= ev(f) + ∑
h∈S

uh · ev(h) + ∑
g∈T

ug · ev(g) + C(T) (2.23)

= ev(f) + ∑
h∈S

uh · ev(h) + C(T) (2.24)

= ev(f) + ∑
h∈S
⟨(A,b) · f ⟩h · ev(h) + C(T) (2.25)

where

• in (2.22), we have

(A,b) ·C(T) = C(T),

since (A,b) ∈ LTA(m,2) f , and C(T) is invariant under LTA(m,2) f , according to Lem-

ma 4.

• in (2.23), we have

∑
g∈T

ug · ev(g) + C(T) = C(T),

since ev(g) ∈ C(T) for all g ∈ T .

In (2.25), according to Lemma 2, every ⟨(A,b) · f ⟩h equals to a single entry in (A,b).

Therefore, given any X ∈ X , we can pick an (A,b) ∈ LTA(m,2) f whose entries are chosen

such that X can be generated by (A,b) · X0. This proves that the orbit of X0 is the entire set X ,

which means the group action of LTA(m,2) f on the X is transitive. Since the action by affine

transformations in LTA(m,2) f can be viewed as permutations on the codeword coordinates, all

the cosets in X thus have the same weight distribution. This completes the proof.

51

2.7 Our Approach on Polar Codes and Reed-Muller Codes
at Length 128

In this section, we present the weight distribution of the (128,64) 5G polar code computed

with our algorithm, and discuss the complexity of our algorithm on the self-dual (128,64) Reed-

Muller code.

First, we run our algorithms on the (128,64) 5G polar code specified in [3GP18]. This

code has mixing factor 34, so if we directly use Algorithm 2, the number of polar cosets we

need to evaluate equals 234. The (128,64) 5G polar code can be verified to be a decreasing

monomial code. If we apply the complexity reduction using the automorphism group of polar

codes in Section 2.6, the number of polar cosets we need to evaluate can be drastically reduced

to 39257360≈ 225.23. The computed weight distribution of this code is shown in Table 2.6. For

reference, computing this weight distribution takes less than two hours on a laptop computer.

Then, we look at the (128,64) Reed-Muller code, which according to Theorem 6, achieves

the largest mixing factor for polar codes at length 128. This Reed-Muller code has mixing factor

49, so to compute its entire weight distribution, the number of polar cosets we need to evaluate

in Algorithm 2 equals 249. If we apply the complexity reduction in Section 2.6, this number

can be reduced to 49761365064≈ 235.53, which is a viable computation complexity that can be

achieved. Since this self-dual (128,64) Reed-Muller code has the largest mixing factor among all

polar codes of length 128. It is reasonable to expect that after we apply the complexity reduction

in Section 2.6, the number of polar cosets we need to evaluate for other polar codes at length 128

will not be much larger than 235. Therefore, we believe that our approach allows us to compute

the weight distribution of any polar codes and Reed-Muller codes up to length 128.

2.8 Acknowledgements

This chapter, in part, has been published at 2021 IEEE International Symposium on

Information Theory (ISIT) and appeared as: Hanwen Yao, Arman Fazeli, and Alexander Vardy

52

Table 2.6. Weight distribution of the (128,64) 5G polar code

d Ad
0 1
8 304

12 768
16 161528
20 4452096
24 166137744
28 8299319808
32 474588991516
36 19910428320256
40 555627871531568
44 9459383897458944
48 94101946507153608
52 550051775557674240
56 1920378732932218128
60 4051638142931561472
64 5194332067339587654
68 4051638142931561472
72 1920378732932218128
76 550051775557674240
80 94101946507153608
84 9459383897458944
88 555627871531568
92 19910428320256
96 474588991516

100 8299319808
104 166137744
108 4452096
112 161528
116 768
120 304
128 1

“A Deterministic Algorithm for Computing the Weight Distribution of Polar Codes” [YFV21a].

The dissertation author was the primary author of this conference paper.

53

Chapter 3

Construct Large Kernel Polar Codes with
Small Scaling Exponent

3.1 Introduction

Polar coding, pioneered by Arıkan [Arı09], gives rise to the first family of codes that

provably achieve capacity for all binary memoryless symmetric (BMS) channels with efficient

encoding and decoding. This chapter is concerned with how fast can polar coding approach

capacity as a function of the code length. In finite-length analysis [HAU14, FHMV20, MHU16,

PU19, PPV10], the scaling between code length n and the gap to capacity is usually measured

in terms of the scaling exponent µ. In coding theory, the three most important factors of any

coding family are: rate R, block length n, and block error probability Pe. While characterization

of the exact relationship of all three of them remains formidable and unknown, we can study

the relationship (also called the “scaling”) of two of them by fixing the third parameter. One

such study leads to the discussion of the scaling exponent, where we fix Pe and consider the

relationship between the block length n and the code rate R. On a channel W with capacity

I(W), the optimal scaling is of the form n = O(1/ϵµ) with a constant µ, where ϵ is the gap

to capacity given by ϵ = I(W)− R. This constant µ is referred as the scaling exponent. It is

known that the best possible scaling exponent is µ = 2 [Str62], and it can be achieved by random

linear codes [PPV10, Hay09].

For polar code, a sequence of papers [GB14, HAU14, KMTU10, MHU16, WLVG22]

54

have studied the upper and lower bounds on its scaling exponent. Those study shows that polar

code has scaling exponent µ = 3.63 on the binary erasure channel (BEC), and the best-known

bounds valid for its scaling exponent on general BMS channel W are given by 3.579 ⩽ µ ⩽ 4.63.

However, those values fall far short of the optimal scaling exponent µ = 2. One way to

improve the scaling exponent of polar coding is replacing the Arıkan’s 2× 2 polarization kernel

with a larger kernel. Recently, plenty of polarization kernels have been proposed with good

scaling properties [MT12, FV14, PSL+15, BFS+17a, TT18, Mor20]. Moreover, it was shown

in [FHMV20] that polar coding derived from a random ℓ × ℓ polarization kernel approach

optimal scaling µ = 2 on BEC with high probability as ℓ→∞,

Korada, Şaşoğlu, and Urbanke [KŞU10] were the first to show that polarization theorem

(Theorem 2) still holds if one replaces the conventional 2× 2 kernel K2 of Arıkan [Arı09] with an

ℓ× ℓ binary matrix Kℓ, provided that this matrix is non-singular and not upper triangular under

any column permutation. Moreover, [KŞU10] establishes a simple formula for the error exponent

of the resulting polar codes in terms of the partial distances of the nested kernel codes. However,

an explicit formulation for the scaling exponent is at present unknown, even for the simple case

of the BEC. Just like Arıkan’s 2× 2 kernel K2, which transforms the underlying channel W into

two synthesized bit channels {W+,W−}, an ℓ× ℓ kernel Kℓ transforms W into ℓ synthesized

bit channels W0,W1, . . . ,Wℓ−1. If W is a BEC with erasure probability z, the bit channels

W0,W1, . . . ,Wℓ−1 are also BECs and their erasure probabilities are given by integer polynomials

fi(z) for i = 0,1, . . . ,ℓ− 1. We refer the corresponding set { f0(z), f1(z), . . . , fℓ−1(z)} as the

polarization behavior of Kℓ, which completely determines the scaling exponent µ(Kℓ).

While smaller scaling exponent translates into better finite-length performance, the

complexity of decoding can grow exponentially with the kernel size. There have been attempts

to reduce the decoding complexity of large kernels [Tri14, BFS+17b, MT12, TT19, Tri19b],

however this problem remains to be considered as unsolved in general. We note that, although

our constructions are explicit, issue of decoding our constructed kernels is deferred to the next

chapter. In this chapter, our goal is to pursuit towards the following simple question: what is the

55

smallest scaling exponent one can get with an ℓ× ℓ binary kernel? In particular, we construct

a kernel K64 with µ(K64) ≃ 2.87. This gives rise to a sequence of binary linear codes that

approaches capacity on the BEC with quasi-linear complexity and scaling exponent strictly less

than 3. To the best of our knowledge, such a sequence of codes was not previously known to

exist.

3.1.1 Related Prior Work

Scaling exponents of error-correcting codes have been a subject to an extensive amount

of research. It is known since the work of Strassen [Str62] that random codes attain the optimal

scaling exponent µ = 2. It was furthermore shown by Polyanskiy, Poor and Verdu [PPV10]

that random linear codes also achieve this optimal value. For polar codes, a heuristic method

for computing the scaling exponent over the BEC under successive cancellation (SC) decoding

was given in [KMTU10], which yielded µ ≈ 3.627. It was later shown in [GX14] that the block

length, construction complexity, and decoding complexity are all bounded by a polynomial in

1/ϵ. This implies that for polar codes, µ is finite. The first attempt at bounding their scaling

exponents were given in [HAU14], where the scaling exponent of polar codes for arbitrary

channels were shown to be bounded by 3.579 ⩽ µ ⩽ 6. The upper bound was later improved to

µ ⩽ 5.702 in [GB14], further improved to µ ⩽ 4.714 in [MHU16], and then refined to µ ⩽ 4.63

in [WLVG22]. An upper bound on the scaling exponent of polar codes for non-stationary

channels was also presented in [Mah17] as µ ⩽ 8.54.

Authors in [HAU14] also introduced a method to explicitly calculate the scaling exponent

of polar codes over BEC based on its polarization behavior. They showed that for Arıkan’s

kernel K2, µ = 3.627. Later on, there are 8 × 8 and 16 × 16 kernels [FV14] found with

scaling exponents better than K2. In particular, a kernel K8 was found with µ = 3.577 for BEC,

which is optimal among all kernels with ℓ ⩽ 8 [FV14]. It was accompanied with a heuristic

construction to design larger polarizing kernels with smaller scaling exponents, which gave

rise to a 16× 16 kernel with µ = 3.356. Later, another 16× 16 kernel with µ = 3.356 was

56

proposed in [TT18], and plenty of other polarization kernels have been proposed with good

scaling properties [PSL+15, BFS+17a, Mor20]. In [MT12], a 32× 32 kernel F32 and a 64× 64

kernel was constructed, which was shown (via simulations) to have a better frame error rate than

the Arıkan’s kernel K2. The authors in [MT12] have also introduced an algorithm based on the

binary decision diagram (BDD) to efficiently calculate the polarization behavior of large kernels.

Attempts to achieve the optimal scaling exponent of 2 were first seen in [PU19], where it was

shown that polar codes can achieve the near-optimal scaling exponent of µ = 2 + ϵ over erasure

channels by using explicit large kernels over large alphabets. The conjecture that it suffices to

consider binary kernels was recently solved in [FHMV20], where it was shown that one can

achieve the near-optimal scaling exponent on BECs via almost any binary ℓ× ℓ kernel given

that ℓ is sufficiently large. The extension of this result into general BMS channels was given

in [GRY20], and the extension into discrete memoryless channels was given in [WD20]. Now it

remains to find the explicit constructions of such optimal kernels. Our results in this chapter can

be viewed as another step towards the de-randomization of the proof in [FHMV20].

3.1.2 Our Contributions

In this chapter, we will focus on the case where the underlying channel W is a BEC,

and propose a more comprehensive kernel construction approach given the size of the kernel

ℓ. Constructing large polarizing kernels composes of two computationally complex problems:

a) there are exponentially many large kernels, and b) the computational complexity of deriving

scaling exponent for each such kernel grows exponentially with the kernel size as well. To

narrow down the search size, we first introduce a special class of polarizing kernels called

the self-dual kernels. For those self-dual kernels, we prove a duality theorem showing that

their polarization behaviors are symmetric, which enables us to construct the kernel by only

designing its bottom half. In our construction, we use a greedy approach for the bottom half

of the kernel, where we push the value of fi(z) to be as close to 0 as possible for small z, in

the order of i = ℓ− 1,ℓ− 2, This heuristic approach let us construct kernels whose fi(z)’s

57

2.0

2.8

3.0

3.2

3.4

3.6

optimal scaling exponent

3.627 3.627
3.577

3.346

3.122

2.87sc
al

in
g

ex
po

ne
nt

µ

2 4 8 16 32 64
kernel size `

Figure 3.1. Scaling exponents of binary polarization kernels of size ℓ. The values for ℓ = 2,4,8
are optimal [FV14]; the values for ℓ = 16,32,64 are best known.

mimic the behavior of the polynomials in the polarization behavior of random large kernels,

which intuitively gives us small scaling exponents. This construction gives the best previously

found 16× 16 kernel K16 provided in [TT18] with scaling exponent 3.346, a new 32× 32 kernel

K32 with µ(K32) = 3.122, and a new 64× 64 kernel K64 with µ(K64) ≃ 2.87 as depicted in

Figure 3.1. We also utilize some of the known partial distances of nested Reed-Muller (RM)

codes and cyclic codes to further reduce the search size in the proposed construction algorithm.

To calculate the scaling exponent of our constructed kernels, we first calculate their

polarization behaviors, and then invoke the method introduced in [HAU14]. It has been shown

that for a specific bit channel, its fi(z) can be described by the weight distribution of its

uncorrectable erasure patterns [FV14]. To calculate this weight distribution, we introduce a

new trellis-based algorithm. Our algorithm is significantly faster than the BDD based algorithm

proposed in [MT12]. It first builds a proper trellis for those uncorrectable erasure patterns,

and then applies Viterbi algorithm to calculate its weight distribution. However, for a very

large kernel, the complexity of our trellis algorithm gets prohibitively high for intermediate

bit-channels. In particular, for our constructed K64, we are only able to compute the first 15 and

58

the last 15 polynomials in its polarization behavior. To complete the picture, we introduce an

alternative Monte Carlo interpolation-based method to numerically estimate those polynomials

in the middle, which gives us an estimation on the scaling exponent of K64 as µ(K64) ≃ 2.87.

We support our estimation with a rigorous proof that our constructed K64 has scaling exponent

µ(K64) < 2.97.

3.1.3 Notation

Here we specify some notation conventions we follow in this chapter. We use bold letters

like U,u to denote vectors, and nonbold letters like Ui,ui to denote symbols within those vectors.

We let the indices for the symbols within vectors start from zero. We use capital letters like

U,Ui to denote random vectors or random variables, and lower-case letters like u,ui to denote

constant vectors or constants. We use ui to represent (u0,u1, · · · ,ui), a subvector of u with its

first (i + 1) symbols. And we denote the concatenation of two vectors u and v as (u,v).

3.2 Background

In this section, we give a brief review on the background of large kernel polar codes.

We first briefly recap the setting of polar codes constructed by large kernels, and explain how

does the idea of channel polarization lead to their capacity-achieving property. Then we review

the analysis of its performance in two common regimes: the error-exponent regime and the

scaling-exponent regime. In this paper, we will focus on the scaling exponent regime over BECs.

3.2.1 Large Kernel Polar Codes

The channel polarization of larger kernel polar code is induced by a linear transformation

by the ℓ× ℓ matrix K⊗m, where ⊗m is the m-fold Kronecker product, and K is a binary square

matrix, called the polarization kernel. Conventional polar codes introduced by Arıkan [Arı09]

59

G = BK⊗m
ℓ

W

W
WU0

U1

Un−1

X0

X1

Xn−1

Y0

Y1

Yn−1

Figure 3.2. Block diagram of a polar coded communication scheme.

use the simple 2× 2 kernel

K2 =




1 0

1 1




It was later shown in [KŞU10] that we can construct polar codes from any ℓ× ℓ kernel K that

is non-singular, and cannot be transformed into an upper triangular matrix under any column

permutations. A length n = ℓm, dimension k large kernel polar code is a linear code generated by

k rows of the matrix G = BK⊗m, where B is an n× n base-ℓ digit reversal permutation matrix.

To show that as the block length goes to infinity, large kernel polar codes achieve the capacity of

a given BMS channel W, we can consider the bit channels introduced by G.

Let W : X → Y be a binary memoryless symmetric channel with input alphabet X =

{0,1} and output alphabet Y , characterized by its transition probabilities W(y|x) for all

x ∈ X ,y ∈ Y . Let U = (U0,U1, · · · ,Un−1), drawn uniformly random from {0,1}n, be the

information carrier vector intended for transmission. The large kernel polar coding scheme will

encode U as the codeword X = UG, and transmit X through n independent copies of W, as

shown in Figure 3.2. Let Wn : X n→Yn be n independent channel uses of W. Similar to the

conventional polar code, the bit channel Wi : {0,1} → Yn × {0,1}i−1 for i ∈ {0,2, · · · ,n− 1}

for large kernel polar code is defined by

Wi(y,ui−1|ui) =
1

2n−1 ∑
u′∈{0,1}n−i−1

Wn(u|(ui−1,ui,u′)G) (3.1)

Let Y ∈ Yn be the received vector. We can see that Wi(y,ui−1|ui) is the conditional probability

60

of the event Ui = ui, given (U1,U2, · · · ,Ui−1) = ui−1 and Y = y.

A key observation by [Arı09] for K2, and later shown to hold for any kernel Kℓ that is

non-singular and not upper triangular under any column permutation [KŞU10], is that as the

block length n goes to infinity, those bit channels W0,W1, · · · ,Wn−1 will polarize in the sense

that, most of them will have capacities either arbitrarily close to 0, or arbitrarily close to 1.

Formally, the capacity and the Bhattacharyya parameter for a BMS channel W can be defined

as

I(W) =
1
2 ∑

y∈Y
∑

x∈{0,1}
W(y|x) log2

W(y|x)
1
2W(y|0) + 1

2W(y|1)
(3.2)

and as

Z(W) = ∑
y∈Y

√
W(y|0)W(y|1) (3.3)

For a small δ ∈ (0,1), if we call a bit channel Wi δ-good if Z(Wi) > 1 − δ, and δ-bad if

Z(Wi) < δ, then the polarization theorem [Arı09, KŞU10] states the following

Theorem 9 (Polarization theorem for large kernel). For every δ∈ (0,1), almost all bit-channels

become either δ-good or δ-bad as n→ ∞. In fact, as n→ ∞, the fraction of δ-good bit-

channels approaches the capacity I(W) of the underlying channel W, while the fraction of δ-bad

bit-channels approaches 1− I(W).

With δ = o(1/n), this theorem leads to the construction of capacity-achieving polar

codes by selecting k δ-good bit channels to carry the information, and freeze the rest of the

(n− k) bit channels to the constant zero.

3.2.2 The Scaling of Polar Codes

The performance of polar codes have been commonly analyzed in two regimes, the

error-exponent regime and the scaling-exponent regime. In the error-exponent regime, we fix the

rate R < I(W), and study how does the error probability Pe scale as a function of the block length

n. For conventional polar codes, it is shown in [AT09] that under successive cancellation (SC)

61

decoding, Pe behaves roughly as 2−
√

n. A more refined results in this regime was shown later

in [HMTU12]. For large kernel polar codes with kernel K, [KŞU10] showed that Pe = o(1/2nβ
)

for any β < E(K), where E(K) is a constant called the exponent of the kernel, or the rate of

polarization. It was shown in [KŞU10] that E(K) can be explicitly expressed in terms of the

partial distances of the kernel codes. We will give the definition for kernel codes later in this

paper. Authors in [KŞU10] also proved that as the size of the kernel goes to infinity, there exists

binary kernels with Pe scaling roughly as 2−n. Some explicit constructions of kernels with large

exponents are provided in [PSL+15] and [LLAG15].

For this chapter, we focus on the scaling exponent regime, where we fix the error

probability Pe, and study the scaling between the gap to capacity ϵ = I(W)− R and the block

length n. If n = O(1/ϵµ) with a constant µ, then we call µ the scaling exponent for this family

of codes. For conventional polar codes, rigorous bounds on µ are provided in a series work

of [HAU14, GB14, MHU16, WLVG22]. The currently best-known upper bounds on the scaling

exponent are established in [MHU16] and in [WLVG22]: for any BMS channel, µ ⩽ 4.63; and

for BEC, µ ⩽ 3.639. Authors in [HAU14] also introduced a method to explicitly calculate the

scaling exponent of polar codes over BEC. It showed that for Arıkan’s K2, µ(K2) = 3.627. This

calculation method is based on a scaling assumption which requires the existence of a certain

limit, and that assumption remains open. We point out that in this paper, the values of the scaling

exponents of our constructed kernels are calculated via the generalized version of this method,

which is also based on a similar scaling assumption. But our proof that µ(K64) < 2.97 doesn’t

depend on this assumption.

3.2.3 Polarization Behavior and the Uncorrectable Erasure Patterns

Here we review the polarization behavior for a binary kernel as introduced in [FV14],

which completely describes its channel polarization process over BECs, and thus also determines

its scaling exponent. Let K be an ℓ× ℓ binary polarization kernel. To understand the channel

polarization performed by K, we take the setting in Section 3.2.1 with n = ℓ, or equivalently

62

m = 1. For a single step of polarization on a BEC, K will take ℓ independent copies of

the underlying channel W, and transform them into ℓ bit channels W0,W1, · · · ,Wℓ−1, whose

definitions are given in (3.1). When W is a BEC with erasure probability z, at the output of the

bit channels we have y ∈ Y ℓ = {0,1, ?}ℓ, where ? means erasure. An erasure pattern can be

defined to be a vector e ∈ {0,1}ℓ, where 1 corresponds to the erased positions possessed by ?,

and 0 corresponds to the unerased positions. The probability of occurrence of a specific erasure

pattern e will be

zwt(e)(1− z)ℓ−wt(e)

where wt(e) stands for the Hamming weight of the erasure pattern e.

It has been shown in [FV14] that if W is a BEC with erasure probability z, then the bit

channels are all BECs as well. Moreover, the erasure probabilities of W0,W1, · · · ,Wℓ−1 will

be polynomials of z with degree at most ℓ. To describe those polynomials, a concept called

uncorretable erasure pattern can be introduced.

Definition 9. We say an erasure pattern e is uncorrectable for a given bit-channel Wi if there

exists two information vectors u′,u′′ such that u′j = u′′j for j < i, u′i ̸= u′′i and (u′Kℓ)j = (u′′Kℓ)j

for all unerased positions j ∈ {k : ek = 0}.

In other words, an erasure pattern is called uncorrectable for a bit-channel Wi if we are

unable to determine the i-th information bit ui given the channel output y and the first i bits in

the information vector u0,u1, · · · ,ui−1. We remark that the uncorrectability of an output y for a

bit-channel depends solely on its erasure pattern, but not on the values of those unerased bits.

For the i-th bit-channel Wi, if we let Ei,w denotes the number of its uncorrectable erasure

patterns of weight w, then its erasure probability fi(z) can be represented as the polynomial

fi(z) =
ℓ

∑
w=0

Ei,wzw(1− z)(ℓ−w) (3.4)

Therefore for Wi, if we can calculate the weight distribution of its uncorrectable era-

63

sure patterns Ei,0, Ei,1, . . . , Ei,ℓ, we can derive the polynomial fi(z). The entire set of those

polynomials is called the polarization behavior of Kℓ.

Definition 10. The polarization behavior of a kernel Kℓ is the set of the polynomials

{ f0(z), f1(z), ..., fℓ−1(z)}

defined in (3.4).

3.2.4 Computing the Scaling Exponent

In the work by Hassani, Alishahi, and Urbanke [HAU14], a heuristic method was

proposed to calculate the scaling exponent of polar codes based on a scaling assumption. They

used this method to compute the scaling exponent of conventional polar codes constructed using

Arıkan’s 2× 2 kernel K2 as µ(K2) = 3.626. In this subsection, we show how their approach can

be generalized to calculate the scaling exponents for large polarization kernels.

Let the underlying channel W be a BEC(z) with erasure probability z. Consider an

ℓ× ℓ polarization kernel Kℓ with polarization behavior { f0(z), . . . , fℓ−1(z)}. The evolution of

Bhattacharyya parameter for the polarized bit channels can be modeled as a random process Zn

formulated by

Z0 = z,

Zn = fi(Zn−1) w.p.
1
ℓ

for all i = 0,1, . . . ,ℓ− 1

For 0 < a < b < 1, define

gn(z, a,b) = Pr(Zn ∈ [a,b])

as the ratio of bit channels with Bhattacharyya parameters lying in the interval [a,b] after n steps

of polarization. This ratio can be viewed as the proportion of unpolarized bit channels when

a = ϵ and b = 1− ϵ for a small ϵ.

64

It can be noticed that gn(z, a,b) satisfies the following recursion

gn+1(z, a,b) =
1
ℓ

ℓ−1

∑
i=0

gn(fi(z), a,b) (3.5)

By numerical observation, a scaling assumption is proposed in [HAU14] for conventional polar

codes. This scaling assumption can be generalized for large kernel polar codes as follows.

Assumption 1. There exists µ ∈ (0,∞) such that, for any z, a,b ∈ (0,1) with a < b, The limit

g∞(z, a,b) = lim
n→∞

ℓ
n
µ gn(z, a,b)

exists in (0,∞).

Combining this scaling assumption with equation (3.5), we get

ℓ
− 1

µ g∞(z, a,b) =
1
ℓ

ℓ−1

∑
i=0

g∞(fi(z), a,b)

This allows us to numerically solve this limit g∞(fi(z), a,b) by iteration, following the steps

described in [HAU14]. This numerical computation also gives us the scaling exponent µ.

3.3 Constructing Large Self-Dual Kernels

In this section, we propose a kernel construction method in pursuit of the following

problem: given the size of the kernel ℓ, how can we construct a polarization kernel with smallest

scaling exponent? It has been observed in [FV14] that any polarization kernel can be transformed

into a lower-triangular matrix while preserving their polarization behaviors. However, the

number of polarization kernel candidates still grows exponentially with the size ℓ, which makes

exhausting search for all possible kernels infeasible for large ℓ. Therefore, instead of looking at

all polarization kernels of size ℓ, we narrow our search space to a special class of kernels called

the self-dual kernels. We prove that the polarization behaviors of self-dual kernels show a nice

65

symmetry property, which not only simplifies our construction process, but also aids us in the

analysis on their scaling exponents.

3.3.1 Kernels Codes and Uncorrectable Erasure Patterns

Before we introduce the self-dual kernels, we review the concept of kernel codes, first

introduce in [KŞU10] to compute the error exponents for large polarization kernels. We then

make connection between kernel codes and uncorrectable erasure patterns. This connection

allows us to prove a symmetry property for self-dual kernels. In the next section, we will also use

this connection to compute the weight distribution for uncorrectable erasure patterns on trellises.

Definition 11. Let Kℓ be an ℓ× ℓ kernel with rows g0, g1, · · · gℓ−1. Define the kernel code Ci to

be the subspace

Ci = span{gi, . . . , gℓ−1}

for all 0 ⩽ i < ℓ, and define Cℓ = {0}.

It follows from the above definition that those kernel codes form a nested chain:

Fℓ
2 = C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Cℓ−1 ⊇ Cℓ = {0}

Here we also introduce the concept of cover set.

Definition 12. Given two binary vectors v1 and v2, we say v1 covers v2 if the support of v2 is a

subset of the support of v1:

supp(v2) ⊆ supp(v1)

Given a set S ⊆ Fℓ
2, we define its cover set ∆(S) as the set of vectors that covers at least one

vector in S:

∆(S) = {u ∈ Fℓ
2 : ∃ v ∈ S , u covers v}

66

We prove that for a bit-channel Wi, its uncorrectable erasure patterns can be related to

the cover set of the difference between two kernel codes.

Theorem 10. An erasure pattern e ∈ {0,1}ℓ is uncorrectable for a bit-channelWi if and only if

e ∈ ∆(Ci\Ci+1)

Proof. If e is uncorrectable, then there exists u′,u′′ as described in Definition 9, such that for the

vector (u′ − u′′), we have (u′ − u′′)j = 0 for j < i and (u′ − u′′)i = 1. Consider the codeword

encoded by this vector c = (u′ − u′′)Kℓ, it is thus a codeword lies in the difference between two

kernel codes:

c ∈ (Ci\Ci+1)

On the other hand, since u′Kℓ and u′′Kℓ have the same bits on all unerased positions, the code-

word c = u′Kℓ − u′′Kℓ is covered by the erasure pattern e. Therefore, we have e ∈ ∆(Ci\Ci+1).

For the other direction, if e ∈ ∆(Ci\Ci+1), then e covers at least one codeword c ∈

(Ci−1\Ci). Let u denote the information vector for c with c = uKℓ, then it can be verified

that 0 and u satisfiy the condition of u′,u′′ described in Definition 9, which proves that e is

uncorrectable.

3.3.2 Self-dual Kernel and the Duality Theorem

Now we introduce this special type of polarization kernels referred as the self-dual

kernels. In our kernel construction, we are going to focus on kernels in this class.

Definition 13. We call an ℓ× ℓ polarization kernel self-dual if for its kernel codes, we have

Ci = C⊥ℓ−i

for all i = 0, . . . ,ℓ.

67

The following duality theorem shows that the polarization behaviors of self-dual kernels

satisfy a nice symmetry property.

Theorem 11 (Duality theorem). If a kernel Kℓ is self-dual, then we have

fi(z) + fℓ−1−i(1− z) = 1

for all i = 0, . . . ,ℓ− 1.

Before proving this theorem, let’s first illustrate this symmetry with the following example.

Example 8. Consider the self-dual kernel K32 in Figure 3.8 constructed following the the steps

that we are going to explain later. In Figure 3.3 we show the curves of the 32 polynomials

f0(z), f1(z), · · · , f31(z) in its polarization behavior as functions of z. According to the duality

theorem, we have fi(z) + f j(1− z) = 1 for every pair of i, j where i + j = ℓ− 1. Two examples

are f4(z) + f27(1− z) = 1 and f9(z) + f22(1− z) = 1, as highlighted in Figure 3.4 and Figure

3.5, respectively. We can observe that in Figure 3.4, the curves of f4(z) and f27(z) are indeed

central symmetric with respect to the point (0.5,0.5) on the grid. Similarly in Figure 3.5, the

curves of f9(z) and f22(z) are also central symmetric with respect to the point (0.5,0.5).

The rest of this subsection is devoted to the proof of Theorem 11. We start with the

following lemma.

Lemma 5. Let Kℓ be a self-dual polarization kernel. If an erasure pattern e is uncorrectable for

bit-channel Wi, then its complement e has to be correctable for bit-channel Wℓ−1−i.

Proof. We prove this lemma by contradiction. Assume we have an erasure pattern e that is

uncorrectable for Wi, with its complement e being uncorrectable for Wℓ−1−i as well. Following

this assumption, e covers a codeword, denoted as c1, that lies in (Ci\Ci+1), and e covers a

68

Figure 3.3. The polarization behavior { f0(z), f1(z), · · · , f31(z)} of K32

Figure 3.4. Two polynomials f4(z) and f27(z) in the polarization behavior of K32

Figure 3.5. Two polynomials f9(z) and f22(z) in the polarization behavior of K32

codeword, denoted as denoted as c2, that lies in (Cℓ−1−i\Cℓ−i). Because Kℓ is self-dual, we

have

c2 ∈ (Cℓ−1−i\Cℓ−i) = (C⊥i+1\C⊥i) ⇒ c2 ⊥ Ci+1 (3.6)

69

Since the support of e and the support of e are disjoint, we have c1 ⊥ c2. Moreover, since Ci only

has one more dimension than Ci+1:

Ci = span{c1 ∪ Ci+1},

the fact that both c2 ⊥ Ci+1 and c2 ⊥ c1 implies that c2 ⊥ Ci. This contradict the fact that c2

doesn’t lie in C⊥i as shown in (3.6). Therefore, if e is uncorrectable for Wi, its complement e has

to be correctable for Wℓ−1−i.

With the help of Lemma 5, we can prove the following lemma. We make the remark that,

later we are going to show the inequality in the following lemma actually holds as equality.

Lemma 6. If Kℓ is self-dual, then

∀i ∀w : Ei,w + Eℓ−1−i,ℓ−w ⩽
(
ℓ

w

)
(3.7)

Proof. Recall that Ei,w counts the number of uncorrectable erasure patterns with weight w for

Wi, and Eℓ−1−i,ℓ−w counts the number of uncorrectable erasure patterns with weight (ℓ− w)

for Wℓ−1−i. According to Lemma 5, every uncorrectable erasure pattern e with weight w for Wi

gives us a correctable erasure pattern e with weight (ℓ− w) for Wℓ−1−i. Thus among all (ℓ
ℓ−w)

erasure patterns of weight (ℓ− w), the number of correctable erasure patterns for Wℓ−1−i is at

least Ei,w, so the number of uncorrectable erasure patterns Wℓ−1−i is at most (ℓ
ℓ−w)− Ei,w:

Eℓ−1−i,ℓ−w ⩽
(

ℓ

ℓ− w

)
− Ei,w

This gives us (3.7).

Now, we are ready to prove the duality theorem (Theorem 11) using the result in Lemma 6.

70

Proof for Theorem 11. Let Kℓ be a self-dual polarization kernel, and let i ∈ {0,1, · · · ,ℓ− 1}.

We can expand the expression fi(z) + fℓ−1−i(1− z) as follows:

fi(z) + fℓ−1−i(1− z) =
ℓ

∑
w=0

Ei,wzw(1− z)(ℓ−w) +
ℓ

∑
w=0

Eℓ−1−i,w(1− z)wz(ℓ−w) (3.8)

=
ℓ

∑
w=0

Ei,wzw(1− z)(ℓ−w) +
ℓ

∑
w′=0

Eℓ−1−i,ℓ−w′zw′(1− z)(ℓ−w′) (3.9)

=
ℓ

∑
w=0

(Ei,w + Eℓ−1−i,ℓ−w)zw(1− z)(ℓ−w) (3.10)

⩽
ℓ

∑
w=0

(
ℓ

w

)
zw(1− z)(ℓ−w) (3.11)

= 1 (3.12)

where

• in (3.8), we expand fi(z) and fℓ−1−i(1− z) according to equation (3.4).

• in (3.9), we replace w with w′ = ℓ− w in the second summation.

• in (3.11), we invoke the result in Lemma 6.

Since the above inequality fi(z) + fℓ−1−i(1− z)⩽ 1 holds for all i = 0,1, · · · ,ℓ− 1, we have

ℓ−1

∑
i=0

(fi(z) + fℓ−1−i(1− z))⩽ ℓ (3.13)

On the other hand, by the definition of the bit-channels in (3.1), the mutual information is

preserved under the polarization of kernel Kℓ:

ℓ−1

∑
i=0

I(Wi) = ℓ · I(W) ⇒
ℓ−1

∑
i=0

fi(z) = ℓz

Thus we have
ℓ−1

∑
i=0

(fi(z) + fℓ−1−i(1− z)) = ℓz + ℓ(1− z) = ℓ

71

Therefore, the inequality in (3.13) must holds as equality, which implies that all the inequalities

in (3.11) should hold equal as well. This improves the result in Lemma 6 to equality:

∀i ∀w : Ei,w + Eℓ−1−i,ℓ−w =

(
ℓ

w

)

And it gives us

∀i : fi(z) + fℓ−1−i(1− z) = 1,

which completes this proof.

3.3.3 Constructing Self-dual Kernels with Small Scaling Exponents

In this subsection, we propose an approach to construct large polarization kernels with

small scaling exponents. We start by explaining the intuition behind our approach. In a recent

work by Fazeli, Hassani, Mondelli and Vardy [FHMV20], they use a probabilistic method to

show that random large polarization kernel achieves near optimal scaling exponent with high

probability as the size of the kernel ℓ→∞. In their proof, one of the key step is to show that

with high probability, for all i = 0,1, · · · ,ℓ− 1, the polynomial fi(z) in the polarization behavior

of a random kernel Kℓ has sharp transition from 0 to 1 in the vicinity of z = i/ℓ. More precisely,

as shown in Figure 3.6, the polynomial fi(z) in an asymptotically-optimal polarization behavior

should exhibit the following behavior:

1) The value of fi(z) is close to zero when z ⩽ i/ℓ− ϵ for a diminishing ϵ.

2) The sharp transition happens in the vicinity of z = i/ℓ.

3) The value of fi(z) is close to one when z ⩾ i/ℓ+ ϵ for a diminishing ϵ.

Inspired by this result, we would like to imitate the polarization behavior for random large kernels

in our kernel construction. Specifically, our intuitive goal is to produce fi(z)’s with transitions

as sharp as possible. This goal turns out to be consistent with symmetry property of self-dual

72

Figure 3.6. The sharp transition of the polynomial fi(z) in an asymptotically-optimal polariza-
tion behavior. (figure copied from [FHMV20])

kernels shown by the the duality theorem (Theorem 11). Consider a self-dual kernel Kℓ, if one of

its polynomial fi(z) has a sharp transition in the vicinity of i/ℓ, then by the duality theorem, we

also know that fℓ−1−i(z) has a sharp transition in the vicinity of (ℓ− i)/ℓ as desired. Therefore,

if we focus on constructing a self-dual kernel, it suffices to design only half of its polynomials

f0(z), f1(z), · · · , fℓ/2−1(z) with sharp transitions. The other half will automatically have sharp

transitions as well due to symmetry.

Following this idea, our strategy is to construct half of a self-dual kernel starting from

the bottom. We propose a greedy construction that designs the kernel rows one at a time by

maximizing the partial distances at each step. The definition for partial distances is given as

follows.

Definition 14. For an ℓ × ℓ polarization kernel Kℓ with rows g0, g1, · · · , gℓ−1, the partial

distance di between row gi and the kernel code Ci+1 is defined as

di = dH(gi,Ci+1),

for all i = 0, . . . ,ℓ− 1, where dH stands for Hamming distance.

73

For a polynomial fi(z) in the polarization behavior, if we expand it using equation (3.4),

according to Theorem 10, the first non-zero coefficient will be Ei,di , with di being the partial

distance between the i-th row and Ci+1:

fi(z) =
ℓ

∑
w=0

Ei,wzw(1− z)(ℓ−w) = Ei,di z
di(1− z)(ℓ−di) + · · ·

Therefore, when z is close to 0, the value of fi(z) will be dominated by its first term Ei,di z
di(1−

z)(ℓ−di). So to push the value of fi(z) close to zero when z is small, we would like to maximize

this partial distances di for every row. And we will do it greedily in our kernel design.

In our kernel construction, we build an ℓ× ℓ self-dual polarization kernel Kℓ with the

following steps. First, we focus on the bottom half of kernel, and we start from the last kernel

row. For i = ℓ− 1,ℓ− 2, · · · ,ℓ/2, we pick the i-th row of the kernel gi to be a binary vector

with gi ⊥ Ci+1 that maximizes the partial distance

di = dH(gi,Ci+1).

We need the restriction gi ⊥ Ci+1 since this has to hold if we want Kℓ to be self-dual. This

requirement comes from the fact that, if Kℓ is self-dual, when i ⩾ ℓ/2, we have





Ci+1 = C⊥ℓ−i

gi ∈ Cℓ−i

⇒ gi ⊥ Ci+1

Following this approach, we pick gℓ−1 to be the all-one vector, pick gℓ−2 to be the vector with

Hamming weight ℓ/2, so on and so forth. If at step i, there are multiple choices of gi, we can

pick any one of them to be the i-th row in the kernel. This construction procedure is illustrated in

Figure 3.7. After we construct the bottom half of Kℓ, its top half can be filled uniquely following

its self-dual constraint.

74

1 1
1 10 0
1 10 01 10 0

Figure 3.7. The bottom half of the self-dual kernel is constructed one row at a time, starting
from the bottom.

Table 3.1. Kernel codes of K32 in its bottom half

rows kernel codes partial distances
31 C31 = {0,1} 32
27-30 subcodes of C26 16
26 C26 = RM(1,5) 16
22-25 subcodes of C11 12
21 C11 = extended BCH(31,11,11) 12
17-20 subcodes of C16 8
16 C16 = RM(2,5) 8

Example 9. In this example, we use the described kernel construction approach to design a

32× 32 kernel K32. The kernel codes that we pick for the bottom half of K32 are listed in Table

3.1. We start by picking the last row g31 to be the all-one vector. Then for rows 26-30, we pick

codewords in RM(1,5) to obtain the maximum partial distance 16. After that, we carefully select

codewords in the extended BCH codes BCH(31,11,11) for rows 21-25 to obtain the maximum

partial distance 12. For rows 16-20, we pick the codewords in RM(2,5) to achieve the maximum

partial distance 8. In the middle, the kernel code C17 turns out to be the self-dual code RM(2,5)

exactly. We finish our construction by filling up the top half of the kernel following the self-dual

constraint. The constructed K32 is shown in Figure 3.8.

Example 10. In the second example, we use the described kernel construction approach to

design a 64× 64 kernel K64. Kernel K64 is constructed similar to K32 in our last example, except

75




1 0
1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0
0 1 0 1 0
1 0 0 1 0 1 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0
1 0 0 1 0 1 0 1 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0
1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0
1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0
1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0
0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 1 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1




Figure 3.8. Kernel K32

Table 3.2. Kernel codes of K64 in its bottom half

rows kernel codes partial distances
63 C63 = {0,1} 64
58-32 subcodes of C57 32
57 C57 = RM(1,6) 32
55-56 subcodes of C54 28
54 C54 = extended BCH(63,10,27) 28
49-53 subcodes of C48 24
48 C48 = extended BCH(63,16,23) 24
43-47 subcodes of C42 16
42 C42 = RM(2,6) 16
37-41 subcodes of C36 16
36 C36 = extended cyclic(63,28,15) 16
35 C35 = (64,29,14) linear code 14
34 C34 = (64,30,12) linear code 12
33 C33 = (64,31,12) linear code 12
32 C32 = (64,32,12) linear code 12

that row 32 to row 35 are picked via computer search. The kernel codes that we pick for the

bottom half of K64 are listed in Table 3.2. The constructed K64 is shown in Figure 3.9.

76




1 0
1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0
0 0 0 1 1 0
0 0 0 0 1 0 1 0
0 0 0 0 1 1 0
0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1 0
0 1 0 1 1 1 0 0 1 0 0 1 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 1 1 1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0
0 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0
0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 1 1 1 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0
0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0
0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0
0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0
0 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1
0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1
0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 1
0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1
0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1
0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 1
0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1
1 1




Figure 3.9. Kernel K64

3.4 Computing the Polarization Behavior

In this section, we address the last challenge: computing the scaling exponents for our

constructed polarization kernels. Following the method described in Subsection 3.2.4, we can

compute the scaling exponent for large kernels if we can obtain their polarization behaviors.

However, it has been established in [FV14] that computing the polarization behavior for a general

large kernel is NP-hard. In the work by Miloslavskaya and Trifonov [MT12], they introduce an

77

algorithm based on the binary decision diagram (BDD) to compute the polarization behavior for

larger kernels. In this section, we propose a trellis algorithm that has significantly less complexity

compared with the BDD algorithm. Our trellis algorithm is still exponential, but it is efficient

enough to let us compute the entire polarization behavior of K32, and part of the polarization

behavior of K64.

3.4.1 The Proper Trellis Algorithm

A trellis T is a graphical representation of a block code, in which every path in this graph

represents a codeword. It consists of a vertex set V, an edge set E, and a labeling function

L : E→{0,1}. The vertex set V can be partitioned as V = V0 ∪V1 ∪ · · · ∪Vn, with n being the

block length of the code. Every edge denoted as e = (vj,vj+1) ∈ E in the trellis connects two

vertices from vj ∈Vj to vj+1 ∈Vj+1, and it is labeled with a single bit L(e)∈ {0,1} at coordinate

j of a codeword. Hereforth, we assume the readers are familiar with the basic concept of trellis

and the Viterbi algorithm. We refer the readers to [Var98] for a comprehensive introduction on

the trellis theory that we are going to use in this section.

If we construct a trellis for a block code, we can then do maximum-likelihood decoding of

the code by running the Viterbi algorithm on this trellis. Besides decoding, the Viterbi algorithm

can also be adjusted to compute the weight distribution of the code, given that the trellis is

one-to-one. A trellis is called one-to-one if all of its paths are labeled distinctively. Therefore,

our idea for computing a polynomial fi(z) in the polarization behavior, is to first construct a

one-to-one trellis for the cover set ∆(Ci\Ci+1), and then use the Viterbi algorithm to compute

the weight distribution Ei,0, Ei,1, · · · , Ei,ℓ of this cover set on the trellis.

However, the cover set ∆(Ci\Ci+1) that we are interested is typically both non-linear,

and non-triangular, which makes it difficult to build a trellis representation directly. Instead, we

first construct a trellis that is not one-to-one for the cover set, and then propose an algorithm that

can convert it into a proper trellis. A trellis is called proper if its edges beginning at any given

vertex are labeled distinctly, and it’s known that a proper trellis is one-to-one. In general, our

78

proposed algorithm can convert any non-proper trellis into a proper trellis, which might be of

independent interests.

Let Kℓ denote a polarization kernel with rows g0, g1, · · · , gℓ−1, our proper trellis algorithm

has the following four steps:

1. First, we construct a canonical minimal trellis representing the kernel code Ci+1, using

one of several methods described in [Var98, Section 4.2].

2. Then, for every edge e connecting vertices from Vj to Vj+1 with j ∈ supp(gi), we flip its

label L(e). In this way, we get a minimal trellis representing

gi + Ci+1 = Ci\Ci+1

3. Next, for every edge e labeled with L(e) = 0, we add a parallel edge e′ labeled with bit

L(e′) = 1. After this step, the trellis will represent the cover set ∆(Ci\Ci+1), except that it

is typically not a one-to-one trellis.

4. Finally, let T = (V, E, A) denote the trellis after the third step, we use Algorithm 10 to

convert T into a proper trellis T∗ = (V∗, E∗, A∗). In Algorithm 10, for j = 0,1,2, · · · ,ℓ,

vertices in V∗i are labeled uniquely by the subsets of Vi. After this step, we will get

a one-to-one trellis T∗ representing the cover set ∆(Ci−1\Ci), where we can apply the

Viterbi algorithm to compute its weight distribution Ei,0, Ei,1, · · · , Ei,ℓ.

Example 11. In this example, we illustrate the steps in our proper trellis algorithm for the cover

set ∆(C1\C2) of kernel

K4 =




1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1




.

79

Algorithm 3: Proper Trellis Conversion
Input: trellis T = (V, E, L) representing a block code of length n, with

V = V0 ∪V1 ∪ · · · ∪Vn
Output: proper trellis T∗ = (V∗, E∗, L∗) representing the same block code as T

1 Initialize V∗ = V∗0 ∪V∗1 ∪ · · · ∪V∗n with V∗0 = {V0} and
V∗1 = V∗2 = · · · = V∗n = ∅

2 for i = 0 to n− 1 do
3 for every vertex v∗i ∈ V∗i do
4 for a ∈ {0,1} do
5 calculate s = {vi+1 ∈ Vi+1 : ∃vi ∈ L(v∗i), (vi,vi+1, a) ∈ E}
6 if ∃v∗i+1 ∈ V∗i+1 with L(v∗i+1) = s then
7 add an edge (v∗i ,v∗i+1, a) in E∗

8 else
9 add a vertex v∗i+1 ∈ V∗i+1 with L(v∗i+1) = s

10 add an edge (v∗i ,v∗i+1, a) in E∗

In the first step, we build a trellis representing C2, as shown in the top left position of Figure

3.10. In the second step, for edges in the first two coordinates, we flip their labels to produce the

trellis representing

g2 + C2 = C1\C2,

as shown at the top right position of Figure 3.10. In the third step, for every edge in the trellis

labeled with 0, we add a parallel edge labeled with 1 to produce the trellis for the cover set

∆(C1\C2). This is shown at the bottom left position of Figure 3.10. At this point, the trellis is not

one-to-one, so we cannot use it to run the Viterbi algorithm. In the final step, we use Algorithm

10 to convert the trellis we obtained into a proper trellis, as shown at the bottom right position of

Figure 3.10. After that, we can run the Viterbi algorithm to compute the weight distribution of

∆(C1\C2), and get

E1,0 = 0, E1,1 = 0, E1,2 = 4, E1,3 = 4, E1,4 = 1,

According to equation (3.4), the polynomial f1(z) in the polarization behavior of K4 can be then

80

0

1

1

0

0

1

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

1

1

0

1

0

1

1

1

0

1

0

1

1

0

1

1

0

0

1

1

1

0
1

0
1

1

0

1

Figure 3.10. Trellises produced in four steps of the proper trellis algorithm in Example 11. The
changes in the second step and the third step are colored in red. Top left: trellis for C2 in K4;
top right: trellis for (C1\C2) in K4; bottom left: trellis for ∆(C1\C2) after step 3, which is not
one-to-one; bottom right: proper trellis for ∆(C1\C2) after applying Algorithm 10.

derived as

f1(z) =
4

∑
w=0

E1,wzw(1− z)(4−w)

= 4z2(1− z)2 + 4z3(1− z) + z4

= 4z2 − 4z3 + z4

3.4.2 Computing the Polarization Behaviors of K32 and K64

For our constructed kernel K32 shown in Figure 3.8, the proper trellis algorithm allows

us to compute its full polarization behavior, displayed in Figure 3.3. Following the method

described in Subsection 3.2.4, the scaling exponent of K32 is calculated as µ(K32) = 3.122.

For our constructed kernel K64 shown in Figure 3.9, the proper trellis algorithm allows us to

compute the top 15 polynomials and the bottom 15 polynomials in its polarization behavior,

81

Figure 3.11. f0(z), f1(z), · · · , f14(z) and f49(z), f1(z), · · · , f63(z) in the polarization behavior
of K64

as shown in Figure 3.11. Note that since K64 is self-dual, computing the last 15 polynomials

f49(z), f1(z), · · · , f63(z) in its polarization behavior directly let us obtain the first 15 polynomials

f0(z), f1(z), · · · , f14(z) from symmetry (Theorem 11). For row 15 to row 48 in the middle of

K64, the complexity of our proper trellis algorithm becomes prohibitive, such that we are unable

to obtain the full polarization behavior of K64. In the next section, we introduce a Monte-

Carlo interpolation method to complete Figure 3.11 by estimation. Using this Monte-Carlo

interpolation method, we can get an estimate for the scaling exponent of K64.

3.5 Monte-Carlo Interpolation Method

In this section, we introduce a Monte-Carlo algorithm to estimate the polynomials in the

polarization behavior of large kernels. Using this method, we can complete Figure 3.11 for K64.

Recall that fi(z) denotes the erasure probability for the i-th bit channel Wi, assuming

that the underlying channel W is a BEC(z). A naive yet explicit approach to obtain the value

of fi(z) is to cross check all 2ℓ erasure patterns to discover the exact ratio of which become

uncorrectable for Wi. Instead, we propose to take N samples of randomly generated erasure

patterns, and estimate this ratio fi(z) accordingly. Recall that the computational complexity

82

Figure 3.12. The estimated f̂29(z) in the polarization behavior of K64

of determining “correctability” for a given erasure pattern is no more than the complexity of

a MAP decoder for the BEC, which is bounded by O(ℓω), where ω is the exponent of matrix

multiplication. Therefore, to estimate the value of fi(z) for a single z, the overall complexity of

the proposed approximation method can be bounded by O(Nℓω).

Figure 3.12 shows the estimated f̂29(z) following this approach. To generate the curve in

Figure 3.12, we first take 1000 z’s evenly distributed within the interval [0,1]. Then, for every

z, we estimate the value of f29(z) as f̂29(z) by taking N = 106 randomly generated erasure

patterns from BEC(z), and check how many of them are correctable for Wi. The red dot in

Figure 3.12 shows one of those estimated points in the curve. After that, we connect those 1000

estimated points with linear interpolation to obtain an entire curve for f̂29(z). We call it the

Monte-Carlo interpolation method.

Using this method, we are able to estimate polynomials f15(z), . . . , f48(z) in the polar-

ization behavior of K64, which completes Figure 3.11. The full polarization behavior of K64 is

shown in Figure 3.13, where the green curves shows the estimated f̂15(z), . . . , f̂48(z) obtained

from the Monte-Carlo interpolation method.

While this approach adds some uncertainty to our derivations, the curves in Figure 3.13

suggest that those estimated f̂i(z)’s become visibly smooth and stable at N = 106. Using

83

Figure 3.13. The polarization behavior of K64, where the green curves are obtained from the
Monte-Carlo interpolation method.

f̂15(z), . . . , f̂48(z) together with the polynomials that we have known as shown in Figure 3.13,

we are able to invoking the method described in Subsection 3.2.4 to get µ(K64) ≃ 2.87.

3.6 A Proof that µ(K64) < 3

In this section, we support our estimation µ(K64) ≃ 2.87 with a rigorous proof that

µ(K64)⩽ 2.9603. This confirms that our constructed K64 has µ strictly under 3. We note that

this proof doesn’t depend on the scaling assumption described in Subsection 3.2.4. To the best

of our knowledge, the large kernel polar codes constructed with our K64 form the first explicit

family of codes with scaling exponent under 3.

3.6.1 An Upper Bound for the Scaling Exponent

Our approach of bounding µ(K64) follow the similar idea of the “first approach” described

in Section IV of [HAU14]. Recall the evolution of Bhattacharyya parameter for the polarized

bit channels can be modeled by a random process Zn as described in Subsection 3.2.4. Our

objective here is to find an upper bound µ for the scaling exponent of K64, by proving

Pr(Zn ∈ [a,b])⩽ O(ℓ
− n

µ) (3.14)

84

It has the following two steps:

1. Find a suitable test function g, and upper bound the speed of convergence for

gn(z) = E[g(Zn) | Z0 = z]

2. Turn this upper bound into a bound for the speed of convergence for Pr(Zn ∈ [a,b]).

For the first step, let g be any test function g : [0,1]→ [0,1], define the sequence of

functions {gn}n∈N as gn : [0,1]→ [0,1] such that

gn(z) = E[g(Zn) | Z0 = z]

This sequence of function satisfy the recursive relation:

g0(z) = g(z), gn+1(z) =
1
ℓ

ℓ−1

∑
i=0

gn(fi(z)) (3.15)

Following the idea in Section IV of [HAU14], the speed of decay of sequence {gn}n∈N can be

upper bounded through a sequence of numbers {bn}n∈N, defined as

bn = sup
z∈(0,1)

bn(z), where bn(z) =
gn+1(z)

gn(z)
(3.16)

From the definition of {bn}n∈N in (3.16), we have

gn(z)⩽ bn−1gn−1(z)⩽ (bn−1bn−2)gn−2(z)⩽ · · ·⩽ (bn−1bn−2 · · ·b0)g0(z) (3.17)

Similar to the proof of Lemma 3 in [HAU14], it can be proved that {bn}n∈N is a decreasing

sequence: b0 ⩾ b1 ⩾ b2 ⩾ · · · . Therefore, from (3.17) we have

gn(z)⩽ (bn−1bn−2 · · ·b0)g0(z)⩽ bn
0 g0(z) = bn

0 g(z)

85

Therefore, the speed of decay of sequence {gn}n∈N can be upper bounded using b0. For the

second step, we turn this upper bound into a bound for the convergence of Pr(Zn ∈ [a,b]). This

part is similar to the proof of Corollary 7 in [HAU14].

By Markov inequality:

Pr(Zn ∈ [a,b])⩽ Pr
(

g(Zn)⩾ min
z∈[a,b]

g(z)
)

⩽
E[g(Zn)]

minz∈[a,b] g(z)

Therefore,

Pr(Zn ∈ [a,b])⩽
(b0)

ng(z)
minz∈[a,b] g(z)

⩽ ℓn logℓ b0+O(1)

⩽ O
(
ℓ
− n
−1/(logℓ b0)

)

Referring to (3.14), we thus have the upper bound

µ = − 1
logℓ b0

Now, all that remains is choosing a suitable test function g.

3.6.2 Constructing the Test Function

Recall the polynomial fi(z) in the polarization behavior can be expressed as

fi(z) =
ℓ

∑
w=0

Ei,wzw(1− z)(ℓ−w)

where Ei,w denotes the number of uncorrectable erasure patterns of weight w for Wi. For K64,

using our trellis algorithm described in Section 3.4, we are able to explicitly compute the first and

86

last 15 polynomials in its polarization behavior. There are 34 polynomials f15(z), . . . , f48(z) in

the middle that we don’t know. However, we can obtain the upper bounds and the lower bounds

of those polynomials with the following Theorem in [MV20].

Theorem 12 (Theorem 1 in [MV20]). Let A0, A1, · · · , Aℓ denote the weight enumerators for

the coset (Ci\Ci+1), then

Ei,w ⩽ min

(
i

∑
j=1

(
ℓ− i
j− i

)
Ai,
(
ℓ

i

))

For i = 15,16, . . . ,48 and w = 0,1, . . . ,ℓ, define

Ei,w = min

(
i

∑
j=1

(
ℓ− i
j− i

)
Ai,
(
ℓ

i

))
, and Ei,w =

(
ℓ

i

)
− Eℓ−1−i,ℓ−w

Then we have the upper bounds and the lower bounds for all the unknown Ei,w’s as

Ei,w ⩾ Ei,w ⩾ Ei,w

Define

f i(z) =
ℓ

∑
i=0

Ei,wzi(1− z)ℓ−i, and f
i
(z) =

ℓ

∑
i=0

Ei,wzi(1− z)ℓ−i

Then we have the upper bounds and the lower bounds for all the unknown polynomials as

f i(z)⩾ fi(z)⩾ f
i
(z)

Therefore, by computing the weight distribution of (Ci\Ci+1), we can get an upper bound and a

lower bound for fi(z). An example is shown on the left of Figure 3.14.

87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.14. Left: f 39(z) (in red), f̂39(z), and f
39
(z) (in blue). Right: f̃39(z) (highlighted)

Now, we give the definition for our carefully designed test function g:

g(z) =
1

64

(
14

∑
i=0

g∗(fi(z)) +
63

∑
i=49

g∗(fi(z)) +
48

∑
i=15

g∗(f̃i(z))

)
, g∗(z) = z1/2(1− z)1/2

where

f̃i(z) =





f i(z) f i(z)⩽ 0.5

0.5 0.5 ∈ (f i(z), f
i
(z))

f
i
(z) f

i
(z)⩾ 0.5

This test function is shown on the left of Figure 3.15. In the definition of g, we use the first

and the last 15 polynomials that we have computed in the polarization behavior of K64. For the

fi(z) that we don’t know, we design a new function f̃i(z) using its upper bound f i(z) and lower

bound f
i
(z). An example f̃39(z) is shown on the right of Figure 3.14.

It can be shown that this explicitly defined test function g is increasing on [0,0.5],

decreasing on [0.5,1], and reaches its maximum when z = 0.5. This allows us to upper bound

88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Figure 3.15. Left: test function g(z). Right: upper bound b0(z).

g1(z) using the recursive relation in (3.15):

g1(z) =
1

64

(
64

∑
i=1

g(fi(z))

)
⩽

1
64

(
15

∑
i=1

g(fi(z)) +
64

∑
i=50

g(fi(z)) +
49

∑
i=16

g(f̃i(z))

)

︸ ︷︷ ︸
defined as g1(z)

Therefore, a strict upper bound b0(z) for b0(z) can be defined as:

b0(z) =
g1(z)
g(z)

⩽ b0(z) =
g1(z)
g(z)

This upper bound b0(z) is shown on the right of Figure 3.15. The maximum value of b0(z) can

be calculated analytically up to any desired precision. Our calculation shows that:

max
z∈(0,1)

b0(z) = 0.2454

So

b0 = sup
z∈(0,1)

b0(z)⩽ max
z∈(0,1)

b0(z) = 0.2454

89

This provides an upper bound for the scaling exponent of K64 as

µ(K64)⩽−
1

log64 0.2454
= 2.9603

This completes our proof.

3.7 Acknowledgements

This chapter, in part, has been published at 2019 IEEE International Symposium on

Information Theory (ISIT) and appeared as: Hanwen Yao, Arman Fazeli, and Alexander Vardy

“Explicit Polar Codes with Small Scaling Exponent” [YFV19]. The dissertation author was the

primary author of this conference paper.

90

Chapter 4

Successive Cancellation Decoding for
Large Kernel Polar Codes

4.1 Introduction

Polar codes, pioneered by Arıkan [Arı09], give rise to the first explicit family of codes

that provably achieve capacity for a wide range of channels. However, the performance of

polar codes at finite block lengths turns out to be mediocre. One reason is that polar codes

approach channel capacity at a rather slow speed. This is reflected by its finite-length scaling

properties. For a family of capacity-achieving codes, scaling exponent describes how the gap

between the code rate and the channel capacity vanishes as a function of the block length. The

smaller the scaling exponent, the faster this family of codes approaches channel capacity. It

has been shown by a series of papers [GB14, HAU14, KMTU10, MHU16, WLVG22] that polar

codes have scaling exponent µ = 3.627 for binary erasure channels (BEC), and scaling exponent

3.579 ⩽ µ ⩽ 4.63 for general binary memoryless symmetric (BMS) channels. These numbers

are far from the optimal scaling exponent µ = 2 [Str62], which can be achieved by random linear

codes [PPV10, Hay09].

Arıkan’s polar codes are constructed based on the Kronecker product of a 2× 2 binary

matrix. As shown in the last chapter, one way to improve the scaling exponent for polar codes,

and thus improving its finite-length performances, is by replacing Arıkan’s size 2 matrix with

some larger binary square matrices, called polarization kernels. Polar code with large kernels

91

were shown to provide asymptotically optimal scaling exponents [FHMV20] as the size of the

kernel goes to infinity. Recently, plenty of polarization kernels of size 16, size 32, and size 64

have been proposed with good scaling properties [FV14, PSL+15, BFS+17a, TT18, YFV19].

In particular, as shown in the last chapter, a 64× 64 polarization kernel K64 is constructed

in [YFV19], with µ ≈ 2.87, providing construction for the first explicit family of codes with

scaling exponent under 3. However, decoding large kernel polar code is generally believed to

be impractical due to its high computational complexity. Conventional polar code of length

n admits successive cancellation (SC) decoding with complexity O(n logn). For a length-n

polar code constructed with a ℓ× ℓ kernel, straightforward SC decoding requires O(2ℓn logℓ n)

computational complexity. This means by employing a size ℓ polarization kernel, we can reduce

the scaling exponent, but at the same time also introduce an extra 2ℓ complexity coefficient on

the decoding process. In the asymptotic regime, the coefficient 2ℓ is just a constant. But in the

finite-length regime, this coefficient turns out to be enormous for kernels of relatively large sizes.

4.1.1 Related Prior Works

Reducing the decoding complexity for large kernel polar codes have been a subject of

investigation in multiple prior works. In most cases, specific polarization kernels are identified for

which low-complexity decoding is possible. Peter Trifonov first proposed the window processing

algorithm and used it to decode polar codes constructed with non-binary Reed-Solomon (RS)

kernels [Tri14]. Later in [TT18,TT19], with further complexity reduction, the window processing

algorithm was used to decode other selected polarization kernels of size 16 and 32. Recently

in [AV20], the authors propose to perform column permutation on the polarization kernels to

additionally reduce the complexity for the window processing algorithm. Independently, a

class of polarization kernels called permuted kernels were introduced in [BFS+17a, BFS+17b].

Decoding permuted kernels can be viewed as SC decoding of conventional polar codes with

look-aheads. Also, there are other decoding algorithms for large kernel polar codes based on

trellises proposed in [Tri19b, MT20]. But in general, the complexity of those algorithms stays

92

high for arbitrary kernels of size 32 and size 64.

In our proposed algorithm, we employ a linear transformation technique that allows

one to view any linear code as a polar code with dynamically frozen bits. Polar codes with

dynamically frozen bits were first introduced in [TM13]. It has been shown in [TM13, FVY20]

that any linear code can be represented as a polar code with dynamically frozen bits. This allows

us to use successive cancellation list (SCL) decoding for polar code to perform approximate

maximum-likelihood (ML) decoding for the linear code. The required list size varies depending

on the given linear code.

4.1.2 Our Contribution

In this paper, we propose a new method to perform SC decoding for large kernel polar

codes. Our method is motivated by the observation that, by representing any linear code as a

polar code with dynamically frozen bits, one can employ polar list decoding with large enough

list size to get a good approximate to ML decoding.

SC decoding for large kernel polar codes requires calculation on the probabilities of its bit

channels. Similar to conventional polar codes, those bit channels follow a recursive relation, so

this calculation boils down to computing the probabilities for bit channels of a single polarization

kernel. This kernel-level computation can be shown equivalent to soft-output ML decoding on a

single bit of a linear block code. In our proposed method, we first employ linear transformation

techniques to represent the considered linear block code as a polar code with dynamically frozen

bits, and then use a modified polar list decoder with a large enough list size to get an approximate

value on the soft-output of the desired bit.

Assuming we are using a size ℓ kernel, and list size L for the approximation, the

complexity of our proposed approach for kernel-level computation is the same as the list decoding

complexity for length-ℓ polar codes, which is O(Lℓ log2 ℓ). This complexity depends on the list

size L, but it’s polynomial in the kernel size ℓ. Our simulation result shows that one can obtain

good approximation with a relatively small list size even for a kernel of size 64. The proposed

93

method enables us to decode polar codes constructed with arbitrary polarization kernels of size

32 and 64. In particular, for the first time, we are able to decode polar code constructed with the

64× 64 kernel K64 designed in [YFV19], which has a scaling exponent µ ≈ 2.87.

4.1.3 Notations

We use the following notations throughout this chapter. We use bold letters like u to

denote vectors, and non-bold letters like ui to denote symbols within that vector. We let the

indices for the symbols start from zero. For u = (u0,u1, · · · ,un−1), we denote its subvector

consists of symbols with indices from a to b as ub
a = (ua,ua+1, · · · ,ub). And we denote the

concatenation of vector u and vector v as (u,v).

4.2 Preliminaries

4.2.1 Large Kernel Polar Codes

Assuming n = ℓm, an (n,k) large kernel polar code is a binary linear block code generated

by k rows of the polar transform matrix G = DℓK⊗m, where K⊗m is an m-fold Kronecker product

of an ℓ× ℓ binary matrix K with itself, and Dℓ is a base-ℓ digit-reversal permutation matrix. In

this chapter, we use Dℓ to denote the digit-reversal permutation matrix, and save the letter B for

later use. For Arıkan’s conventional polar codes, K would be the 2× 2 matrix

K2 =




1 0

1 1


 ,

and Dℓ would be the bit-reversal permutation matrix.

Consider a BMS channel W : X → Y as base channel with input alphabet X = {0,1}

and output alphabet Y , characterized by its transition probabilities W(y|x) for all x ∈ X , y ∈ Y .

For a size ℓ polarization kernel K which is not upper triangular under any column permutation,

it’s shown in [KŞU10] that the polar transform matrix G = DℓK⊗m gives rise to bit channels

94

W(i)
m (yn−1

0 ,ui−1
0 |ui) with capacities approaching 0 or 1 as n→ ∞. The definition for the bit

channels is given by

W(i)
m (yn−1

0 ,ui−1
0 |ui) =

1
2n−1 ∑

un−1
i+1

Wn(yn−1
0 |(ui−1

0 ,ui,un−1
i+1)G), (4.1)

where Wn denotes n independent uses of channel W.

The encoding scheme for large kernel polar codes is given by c = uG, where just like

conventional polar codes, u is a length-n binary input vector carrying k information bits, and c is

the codeword for transmission. The positions of those k information bits in u are specified by an

index set A ⊆ {0,1, · · · ,n− 1}. The index set A is chosen such that the bit channels W(i)
m ’s for

i ∈ A are the k bit channels with the largest channel capacities. The rest of the n− k bits in u

are frozen to certain fixed values, usually zeros.

4.2.2 SC Decoding of Large Kernel Polar Codes

On the receiver side, for i goes from 0 to n− 1, the SC decoding algorithm successively estimate

the i-th bit ui, and decode it as ûi based on the earlier decoded path ûi−1
0 in the following way:

ûi =





argmaxui∈{0,1}W(i)
m (yn−1

0 , ûi−1
0 |ui) i ∈ A

frozen value i /∈ A
(4.2)

At the end of this process, the SC decoder returns the length-n estimated vector û as the decoded

vector for u.

To perform SC decoding, one has to calculate the probability W(i)
m (yn−1

0 ,ui−1
0 |ui) with a

given channel output vector yn−1
0 . Due to the Kronecker product structure for the polar transform

matrix G, this probability can be calculated recursively. Assuming i mod ℓ= ϕ with i = sℓ+ ϕ,

95

this probability for the bit channel can be calculated as

W(i)
m (yn−1

0 ,ui−1
0 |ui) = W(ϕ)

1 (zℓ−1
0 ,usℓ+ϕ−1

sℓ |ui) (4.3)

Here for the expression W(ϕ)
1 (zℓ−1

0 ,usℓ+ϕ−1
sℓ |ui) in (4.3), we are considering the bit channel for

a single polarization kernel K, and we let zℓ−1
0 denotes a length-ℓ channel output vector for this

single kernel. For the symbols in zℓ−1
0 , the transition probabilities of the base channels are given

by

Pr(zj|u) = W(s)
m−1(y

j(n/ℓ)
(j+1)(n/ℓ)−1,v(j)s−1

0 |u), u ∈ {0,1} (4.4)

where v(j)s−1
0 is a length-s binary vector with

v(j)k = (u(k+1)ℓ−1
kℓ K)j

Therefore, with the recursive relation in (4.3), calculating the bit channel probabilities for large

kernel polar codes boils down to computing the probabilities W(i)
1 (yℓ−1

0 ,ui−1
0 |ui) for a single

polarization kernel K. Moreover, for SC decoding in the LLR domain, it suffices to compute the

ratio

R(i)(ui−1
0 ,yℓ−1

0)
def
=

W(i)
1 (yℓ−1

0 ,ui−1
0 |ui = 0)

W(i)
1 (yℓ−1

0 ,ui−1
0 |ui = 1)

. (4.5)

In the context of analyzing large kernel polar codes, instead of looking at the probability

W(i)
m (yn−1

0 ,ui−1
0 |ui), it’s convenient to consider

W(i)
m ((ui−1

0 ,ui)|yn−1
0) =

W(i)
m (yn−1

0 ,ui−1
0 |ui)

2W(yn−1
0)

=

∑
un−1

i+1 ∈{0,1}ℓ−i−1

Wn((ui
0,un−1

i+1)G|y
n−1
0), (4.6)

96

which is the probability for path ui
0 given the channel output yn−1

0 . The ratio in (4.5) can also be

derived using those probabilities for the paths as

R(i)(ui−1
0 ,yℓ−1

0) =
W(i)

1 ((ui−1
0 ,0)|yℓ−1

0)

W(i)
1 ((ui−1

0 ,1)|yℓ−1
0)

(4.7)

In this way, the task for computing W(i)
1 (yℓ−1

0 ,ui−1
0 |ui) equivalently becomes the task for

computing the ratio R(i)(ui−1
0 ,yℓ−1

0) for a single kernel K. This task is referred as kernel

processing in [TT21], and as kernel marginalization in [BL18]. If this kernel-level computation

task takes complexity O(T), then the overall SC decoding complexity for a length-n large kernel

polar code will be O(T · n logℓ n).

Straightforward calculation for W(i)
1 (ui

0|y
ℓ−1
0) as in (4.6) takes exponential complex-

ity O(2ℓ). This complexity can be slightly reduced by methods in [HZZ+18] or by methods

in [BL18]. But in general, direct calculation stays prohibitive for kernels with relative large

sizes. More efficient algorithms such as window processing [Tri14] and recursive trellis pro-

cessing [Tri19b] have been proposed for computing W(i)
1 (ui

0|y
ℓ−1
0). Those algorithms are still

exponential with respect to the kernel size ℓ, but with various improvements [TT19,AV20,TT21],

they are efficient enough to process kernels of size 16 and some designed low-complexity kernels

of size 32.

4.3 SCL-Approximation Algorithm for Large Kernels

In this section, we propose a new algorithm that uses successive cancellation list (SCL)

decoders for polar codes [TV15] to estimate the ratio in (4.7). We call it SCL-Approximation

Algorithm. First, we show that the problem of computing the ratio R(i)(ui−1
0 ,yℓ−1

0) in (4.7) can

be transformed into the problem of soft-output ML decoding on a single bit of a linear block

code.

97

4.3.1 Cancelling the Effect of the Preceding Bits

Let K be an ℓ× ℓ polarization kernel with ℓ = 2t being a power of 2, and let

K =




A(i−1)

B(i)




where A(i−1) is defined to be the submatrix of K consisting of its rows with indices from 0 to

i− 1, and B(i) is defined to be the submatrix of K consisting of its rows with indices from i to

ℓ− 1. We start by expressing W(i)
1 (ui

0|y
ℓ−1
0) as

W(i)
1 ((ui−1

0 ,ui)|yℓ−1
0)

= ∑
uℓ−1

i+1

Wℓ((ui−1
0 ,ui,uℓ−1

i+1)K|y
ℓ−1
0)

= ∑
uℓ−1

i+1

Wℓ(ui−1
0 A(i−1) + (ui,uℓ−1

i+1)B(i)|yℓ−1
0)

Since the base channel W is a BMS channel, for any y ∈ Y with W(0|y) = p1 and W(1|y) = p2,

there exists a ȳ ∈ Y such that W(0|ȳ) = p2 and W(1|ȳ) = p1. So in the above expression for

W(i)
1 (ui

0|y
ℓ−1
0), we can cancel out the impact of the earlier path ui−1

0 on yℓ−1
0 by replacing yℓ−1

0

with a new channel output vector zℓ−1
0 , where

zj =





yj, (ui−1
0 A(i−1))j = 0

ȳj, (ui−1
0 A(i−1))j = 1

98

We remark that this zℓ−1
0 is a new defined output vector different from the one in (4.3). By

defining this new vector zℓ−1
0 , we have

W(i)
1 ((ui−1

0 ,ui)|yℓ−1
0) = ∑

uℓ−1
i+1

Wℓ((ui,uℓ−1
i+1)B(i)|zℓ−1

0)

So the ratio in (4.7) can be expressed as

R(i)(ui−1
0 ,yℓ−1

0) =
∑uℓ−1

i+1
Wℓ((0,uℓ−1

i+1)B(i)|zℓ−1
0)

∑uℓ−1
i+1

Wℓ((1,uℓ−1
i+1)B(i)|zℓ−1

0)
(4.8)

If we denote the linear code generated by B(i) as C(B(i)), and view zℓ−1
0 as the channel output

after transmitting a codeword in C(B(i)) through the base channels, then for the expression

in (4.8), we basically have Pr(ui = 0|zℓ−1
0) in the numerator, and Pr(ui = 1|zℓ−1

0) in the

denominator. Therefore, computing the ratio R(i)(ui−1
0 ,yℓ−1

0) can be achieved by soft-output

ML decoding on the first bit of the code C(B(i)) generated by B(i).

Since the polarization kernel K has full-rank, its submatrix B(i) has rank ℓ − i, and

C(B(i)) is a linear block code with length ℓ and dimension ℓ − i. To compute this ratio

R(i)(ui−1
0 ,yℓ−1

0) directly, one needs to check the probabilities for all the codewords in C(B(i)).

This straightforward approach requires complexity O(2ℓ), which is exponential in the kernel

size ℓ. In our algorithm, we propose to perform polar list decoding for C(B(i)), and approximate

the ratio R(i)(ui−1
0 ,yℓ−1

0) by only checking the probabilities for the codewords in the list. To

perform polar list decoding, we first need to represent C(B(i)) as a polar code with dynamically

frozen bits.

4.3.2 Representation as Polar Codes with Dynamic Freezing

Polar codes with dynamically frozen bits, first introduced in [TM13], are polar codes

where each of the frozen bit uj is not fixed to be zero, but set to be a linear function of its

preceding bits as uj = fi(u0,u1, · · · ,uj−1). It has been shown [TM13, FVY20] that with linear

99

operation techniques, any linear code can be encoded as a polar code with dynamically frozen

bits.

We now represent C(B(i)) as a polar code with dynamically frozen bits, so that we can

perform polar list decoding on top of it. Let KA = BK⊗t
2 be the Arıkan’s polar transform matrix

of size ℓ. We first define an (ℓ− i)× ℓ precoder matrix M as

M = B(i)KA (4.9)

It can be observed that KA is invertible with (KA)−1 = KA. So

B(i) = MKA (4.10)

Then with elementary row operations, we can transform M into a matrix M∗ in reduced row

echelon form (RREF). The relation between M and M∗ is given by M∗ = TM, where T is some

(ℓ− i)× (ℓ− i) invertible matrix. By mutiplying T on both sides of (4.10), we get

TB(i) = M∗KA (4.11)

Denote B(i)∗ = TB(i) as a new generator matrix. Since row operations preserve the linear space

spanned by B(i), B(i)∗ generates the same code as B(i). Let v be a length-(ℓ− i) binary vectors

with (ℓ− i) information bits. The encoding of v with the generator matrix B(i)∗ is given by

vB(i)∗ = vM∗︸︷︷︸
w

KA (4.12)

Here M∗ is in RREF, so vector w = vM∗ is a length-ℓ vector with (ℓ− i) information bits, and

i dynamically frozen bits. Therefore, the encoding vB(i)∗ can also be achieved by multiplying

w with dynamically frozen bits with the Arıkan’s polar transform matrix KA. In this way, we

represent C(B(i)) as a polar code with dynamically frozen bits.

100

The linear code C(B(i)) can be encoded either by uℓ−1
i B(i), or by vB(i)∗. For the same

codeword, the relation between uℓ−1
i and v can be established by

uℓ−1
i B(i) = vB(i)∗ ⇒ uℓ−1

i = vT (4.13)

This shows ui that equals to the first bit of vT. In other words, ui = (vT)0.

4.3.3 Ratio Estimation via Polar List Decoding

By viewing C(B(i)) as a polar code with dynamically frozen bits, we can now perform

SCL decoding in [TV15] for C(B(i)) to decode the vector v. Assuming the list size we are using

is L, at the end of the SCL decoding process, we will get a list of L different paths for v. We

denoted the set of those L paths as P = {v[1],v[2], · · · ,v[L]}.

Let’s re-examine the expression in (4.8) for the ratio R(i)(ui−1
0 ,yℓ−1

0). To compute this

ratio directly, we need to divide all codewords in C(B(i)) into two sets. The first set contains

codewords encoded by uℓ−1
i with ui = 0, and the second set contains codewords encoded by uℓ−1

i

with ui = 1. Then R(i)(ui−1
0 ,yℓ−1

0) can be computed as the ratio of the sums of the probabilities

for codewords in those two sets.

In our SCL-Approximation Algorithm, instead of checking all the codewords in C(B(i)),

after the SCL decoding process, we propose to only check those L codewords generated by paths

in the list. We divide those L codewords into two sets depending on the values of ui, and get an

approximate value for the ratio as

R̂(i)(ui−1
0 ,yℓ−1

0) =
∑v∈P:(vT)0=0 Wℓ(vB(i)∗|zℓ−1

0)

∑v∈P:(vT)0=1 Wℓ(vB(i)∗|zℓ−1
0)

(4.14)

With a large enough list size L, empirically the polar list decoder is a good approximation for the

ML decoder. Therefore, it is reasonable to expect that those L codewords in the list will capture

majority of the probabilities, and thus R̂(i)(ui−1
0 ,yℓ−1

0) in (4.14) will give us a precise enough

101

approximation for R(i)(ui−1
0 ,yℓ−1

0).

In this approach, the computation for the precoder matrix M∗, and the new generator

matrix B(i)∗ can all be performed offline. So the complexity of this kernel-level computation is

O(Lℓ log2 ℓ), the same as the complexity of polar list decoding for length-ℓ polar codes. This

complexity is polynomial in the kernel size ℓ. If we apply the SCL-Approximation Algorithm,

the overall complexity of SC decoding for length-n large kernel polar polar codes will be

O(Lℓ log2 ℓ · n logℓ n). The pseudo code summarizing our SCL-Approximation Algorithm is

given in Algorithm 4.

4.4 Simulation Results

In this section, we show some simulation results on SC decoding of large kernel polar

codes using our SCL-Approximation Algorithm. We consider two polarization kernels K32 and

K64 from [YFV19]. The 32× 32 kernel K32 has scaling exponent µ(K32) = 3.122, and the

64× 64 kernel K64 has scaling exponent µ(K64)≈ 2.87. The large kernel polar codes considered

here are all constructed with the Monte-Carlo simulation.

Figure 3.8 shows the simulation results of SC decoding for several (1024,512) polar

codes on AWGN channels. The black line shows the SC decoding performance for conventional

polar codes, and the color lines show the SC decoding performance with SCL-Approximation

Algorithm for large kernel polar codes constructed with K32. We can observe that as we increase

the list size L for the SCL-Approximation Algorithm, the overall SC decoding performance

gets better as expected. Since larger L is expected to gives us better approximation for the

ratio in (4.7) for kernel-level computations. For K32, our simulation results show that L = 32 is

large enough to get us close to the performance limit of our approach. Thus it is reasonable to

believe that for K32, the SCL-Approximation Algorithm with L = 32 gives us a pretty precise

approximation for the ratio in (4.7).

Figure 3.9 shows the simulation results of SC decoding for several (4096,2048) polar

102

Algorithm 4: SCL-Approximation Algorithm

Input: size ℓ kernel K =

[
A(i−1)

B(i)

]
, index i, base channel W, and channel output

vector yℓ−1
0

Output: R̂(i)(ui−1
0 ,yℓ−1

0)

1 set M← B(i)KA, where KA is Arıkan’s polar transform matrix of size ℓ
2 transform M into M∗ in RREF by M∗ = TM
3 set B(i)∗ ← M∗KA
// The above part of the algorithm can be performed

offline

4 x← ui−1
0 A(i−1)

5 z← (z0,z1, · · · ,zℓ−1)
6 for i = 0,1,,ℓ− 1 do
7 if xi = 1 then
8 zi = yi
9 else

10 zi = ȳi

11 perform SCL decoding with list size L on (vM∗)KA with channel output z to get the
set of L paths {v[1],v[2], · · · ,v[L]}

12 p0← 0
13 p1← 0
14 for i = 1,, L do
15 if (v[i]T)0 = 0 then
16 p0← p0 + Pr(v[i]B(i)∗|z)
17 else
18 p1← p1 + Pr(v[i]B(i)∗|z)

19 return R̂(i)(ui−1
0 ,yℓ−1

0) = p0/p1

codes on AWGN channels. Similarly, the black line shows the SC decoding performance for

conventional polar codes, and the color lines show the SC decoding performance with SCL-

Approximation Algorithm for large kernel polar codes constructed with K64. For K64, L = 64 is

large enough to get us close to the performance limit of our approach. This gives the evidence

that for K64, the SCL-Approximation Algorithm with L = 64 is likely to give us a pretty precise

approximation for the ratio in (4.7).

103

1 1.5 2 2.5

SNR (dB)

10 -4

10 -3

10 -2

10 -1

100

F
E

R

K2
K32, SCL-Approximation with L=8
K32, SCL-Approximation with L=16
K32, SCL-Approximation with L=32
K32, SCL-Approximation with L=64

Figure 4.1. SC decoding performance for (1024,512) polar codes

4.5 Conclusion

In this chapter, we propose the SCL-Approximation Algorithm to perform kernel-level

computation for SC decoding on large kernel polar codes. The SCL-Approximation Algorithm

exploits the idea that polar list decoding with large enough list size can well-approximate ML

decoding. This algorithm has computational complexity polynomial in the kernel size. With

this low-complexity approach, we are able to SC decode polar codes constructed with a size 64

kernel for the first time.

4.6 Acknowledgements

This chapter, in part, has been published at 2021 IEEE Globecom Workshops (GC

Wkshps) and appeared as: Bhaskar Gupta, Hanwen Yao, Arman Fazeli,and Alexander Vardy

“Polar List Decoding for Large Polarization Kernels” [GYFV21]. The dissertation author was

the primary author of this conference paper. Bhaskar Gupta contributed to the algorithm design

104

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

SNR (dB)

10 -3

10 -2

10 -1

100

F
E

R

K2
K64, SCL-Approximation with L=16
K64, SCL-Approximation with L=32
K64, SCL-Approximation with L=64
K64, SCL-Approximation with L=128

Figure 4.2. SC decoding performance for (4096,2048) polar codes

of this work.

105

Chapter 5

List Decoding of PAC Codes

5.1 Introduction

Polar coding, pioneered by Arıkan [Arı09], gives rise to the first explicit family of codes

that provably achieve capacity for a wide range of channels with efficient encoding and decoding.

However, it is well known that at short block lengths the performance of polar codes is far from

optimal.

For example, the performance of a polar code of length 128 and rate 1/2 on the binary-

input AWGN channel under standard successive cancellation (SC) decoding is shown in Figure

5.1. Figure 5.1 largely reproduces the simulation results presented by Arıkan in [Arı19]. Codes of

length 128 and rate 1/2 serve as the running example throughout Arıkan’s recent paper [Arı19],

and we will also adopt this strategy herein. We make no attempt to optimize these codes; rather,

our goal is to follow Arıkan [Arı19] as closely as possible. Also shown in Figure 5.1 is the

BIAWGN dispersion bound approximation for such codes. This can be thought of as an estimate

of the performance of random codes under ML decoding (see [PPV10]). Clearly, at length

128, there is a tremendous gap between polar codes under SC decoding and the best achievable

performance.

As shown in [TV15] and other papers, the reasons for this gap are two-fold: the polar code

itself is weak at such short lengths and SC decoding is weak in comparison with ML decoding. A

well-known way to address both problems is CRC precoding followed by successive-cancellation

106

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

F
E

R

Polar Code, SC Decoder
Polar Code with CRC Precoding, List Decoder, L=32
PAC Code, Sequential Decoder
PAC Code, List Decoder, L=128
BIAWGN Dispersion Bound Approximation

Figure 5.1. Performance of PAC codes versus polar codes.

list (SCL) decoding. Following [Arı19], the performance of CRC-aided polar codes (with 8-bit

CRC) of rate 1/2 under SCL decoding with list-size 32 is also shown in Figure 5.1. This

approach, along with various refinements thereof (see [LST14, MT14, NC12] and other papers),

has largely remained the state of the art in polar coding since it was first introduced in [TV15].

It is currently used as the coding scheme for control and physical broadcast channels in the

enhanced mobile broadband (eMBB) mode and the ultra-reliable low latency communications

(URLLC) mode of the fifth generation (5G) wireless communications standard [3GP18, BCL20].

In the Shannon Lecture at the ISIT in 2019, Erdal Arıkan presented a significant break-

through in polar coding, which significantly boosts the performance of polar codes at short lengths.

Specifically, Arıkan [Arı19] proposed a new polar coding scheme, which he calls polarization-

adjusted convolutional (PAC) codes. Remarkably, under sequential decoding, the performance

of PAC codes is very close to the BIAWGN dispersion bound approximation [PPV10, Ers16].

The performance of PAC codes of length 128 and rate 1/2 is also shown (in blue and green) in

Figure 5.1.

107

Channel

Polar
transform

x

Metric
calculator

y

Convolu-
tion

u

Sequential
decoding

m

metric requests

Rate
profiling

v

Data
extraction

v̂

d

d̂

Figure 5.2. PAC coding scheme.

5.1.1 Brief Overview of PAC Codes

Arıkan’s PAC codes are largely based upon the following two innovations: replacing

CRC precoding with convolutional precoding (under appropriate rate-profiling, discussed later

in this section) and replacing list decoding by sequential decoding. The encoding and decoding

of PAC codes are shown schematically in Figure 5.2, which is reproduced from [Arı19].

Referring to Figure 5.2, let us consider an (n,k) PAC code. On the encoding side,

Arıkan uses a rate-1 convolutional precoder concatenated with a standard polar encoder. Only

k out of the n bits of the input v to the convolutional precoder carry the information (or data)

vector d. The remaining n− k bits of v are set to 0. Just like for conventional polar codes, the

overall performance of the resulting PAC code crucially depends upon which positions in v carry

information and which are frozen to 0. This choice of frozen positions in v, Arıkan has termed

rate-profiling. Unlike conventional polar codes, the optimal rate-profiling choice is not known.

In fact, it is not even clear what optimization criterion should govern this choice, although we

hope to shed some light on this in Section 5.5.

The main operation on the decoder side is sequential decoding. Specifically, Arıkan em-

ploys Fano decoding (as described in [Fan63] and in Section 6.9 of [Gal68]) of the convolutional

code to estimate its input v. The path metrics used by this sequential decoder are obtained via

108

repeated calls to the successive-cancellation decoder for the underlying polar code.

5.1.2 Our Contributions

One of our main goals in this chapter is to answer the following question: is sequential

decoding essential for the superior performance of PAC codes? Is it possible, or perhaps

advantageous, to replace the sequential decoder in Figure 5.2 by an alternative decoding method?

We show that, indeed, similar performance can be achieved using list decoding, provided the list

size L is moderately large. This conclusion is illustrated in Figure 5.1, where we use a list of

size L = 128 to closely match the performance of the sequential decoder. It remains to be seen

which of the two approaches is advantageous in terms of complexity. While a comprehensive

answer to this question would require implementation in hardware, we carry out a qualitative

complexity comparison in Section 5.4. This comparison indicates that list decoding has distinct

advantages over sequential decoding in certain scenarios. In particular, list decoding is certainly

advantageous in low-SNR regimes or in situations where the worst-case complexity/latency is

the primary constraint.

Another objective of this chapter is to provide some insights into the remarkable perfor-

mance of PAC codes observed in simulations. Although theoretical analysis of list decoding

remains an open problem even for conventional polar codes, it has been observed in numerous

studies that list decoding quickly approaches the performance of maximum-likelihood decoding

with increasing list size L. As expected, we find this to be the case for PAC codes as well (see

Figure 5.7). Fortunately, maximum-likelihood decoding of linear codes is reasonably well under-

stood: its performance is governed by their weight distribution, and can be well approximated by

the union bound, especially at high SNRs. Motivated by this observation, we use the method

of [LST12] to estimate the number of low-weight codewords in PAC codes, under polar and

RM rate profiles (introduced by Arıkan [Arı19]). We find that PAC codes with the RM rate-

profile are superior to both polar codes (with or without CRC precoding) and the (128,64,16)

Reed-Muller code. For more on this, see Table 5.3 and Figure 5.9. We also introduce and study

109

random time-varying convolutional precoding for PAC codes. We find that, as compared with

the convolutional precoding introduced in [Arı19], time-varying convolutional precoding is much

less sensitive to the constraint length. Arıkan uses in [Arı19] a convolutional code generated by

c = (1,0,1,1,0,1,1), whose constraint length is ν = 6. In Figure 5.12, we observe that under

list decoding, random time-varying precoding achieves essentially the same performance with

constraint length ν = 2.

5.1.3 Related Work

Numerous attempts have been made to improve the performance of polar codes at short

block lengths. Various approaches based on replacing successive-cancellation decoding with

more advanced decoders include list decoding [TV15], adaptive list decoding [LST12], sequential

decoding [MT14,Tri18], and stack decoding [NC12], among others. When concatenating a polar

code with an outer code, most of the existing work still uses CRC outer codes and their variants,

as originally proposed in [TV15]. However, many other modifications of the basic polar-coding

paradigm have been extensively studied, including large polarization kernels [KŞU10, FV14,

FHMV20, YFV19, MT20, Tri19b, Tri19a, TT18, TT19], polar subcodes [TM13, TM15, TT17,

Tri19a, Tri17, MT19a, Tri20], “convolutional” polar codes [FP13, FHP17, Mor20, MT19a], and

polarized Reed-Muller coding [AY20, LST14, MHU14, YA20] among others.

As shown later in this chapter, in Arıkan’s PAC codes, convolutional precoding com-

bined with rate-profiling can be regarded as replacing traditional frozen bits with dynamically

frozen bits. Polar coding with dynamically frozen bits was first introduced by Trifonov and

Miloslavskaya in [TM13], and later studied in [TM13, TM15, TT17, Tri19a, Tri17, MT19b,

YPB+19, CNP20, MV20] and other papers. However, the dynamic freezing patterns in these

papers are very different from [Arı19]. Prior to Arıkan’s work [Arı19], convolutional precoding

of polar codes was proposed in [FTV17] and later studied in [FVY19].

Although quite recent, Arıkan’s PAC codes have already attracted considerable interest;

see for example [Arı20, LZG19, MK20, Moz20, MMQA20, TG21, WJZL20]. While these papers

110

investigate various aspects of PAC codes, none of them considers list decoding thereof. Finally,

we note the work of [RBV20, RV21], which investigates both Fano decoding and list decoding

of PAC codes. This work is apparently independent from and contemporaneous with our results

herein. 1

5.1.4 Chapter Outline

The rest of this chapter is organized as follows. We begin with an overview on Arıkan’s

PAC codes in Section 5.2, including both their encoding process and sequential decoding. In

Section 5.3, we present our list-decoding algorithm. In Section 5.4, we compare it with sequential

decoding, in terms of both performance and complexity. In Section 5.5, we endeavor to acquire

some insight into the remarkable performance of PAC codes. First, we show empirically that

both sequential decoding and list decoding thereof are extremely close to the ML decoding

performance. To get a handle on the latter, we estimate the number of low-weight codewords in

PAC codes (and polar codes) under different rate profiles. This makes it possible to approximate

the performance of ML decoding with a union bound. In Section 5.6, we introduce and study ran-

dom time-varying convolutional precoding for PAC codes, and show that it may be advantageous

in terms of the constraint length. We conclude with a brief discussion in Section 5.7.

5.2 Overview of Arıkan’s PAC Codes

For details on conventional polar codes under standard SC decoding, we refer the reader

to Arıkan’s seminal paper [Arı09]. Like polar codes, the block length n of a PAC code is also a

power of 2. That is, n = 2m with m ⩾ 1. As shown in Figure 5.2, the encoding process for an

(n,k) PAC code consists of the following three steps: rate-profiling, convolutional precoding,

and polar encoding. In the first step, the k data (information) bits of the data vector d are

1The paper of Rowshan, Burg, and Viterbo [RBV20] was posted on arxiv.org in February 2020, while
our work [YFV20] was submitted for review in January 2020. Our results became available on arxiv.org in
May 2020. The Rowshan-Viterbo paper [RV21] was posted on arxiv.org in July 2020, after our results were
presented in [YFV20].

111

embedded into a data-carrier vector v of length n, at k positions specified by an index set

A ⊆ {0,1, . . . ,n−1} with |A| = k. The remaining n − k positions in v are frozen to zero.

Arıkan [Arı19] used rate-profiling to refer to this step, along with the choice of the index set A.

Just like for polar codes, a careful choice of the index set A is crucial to achieve good

performance. Arıkan has proposed in [Arı19] two alternative approaches for selecting this set

A. The first approach, called polar rate-profiling, proceeds as follows. Let W0,W1, . . . ,Wn−1

be the n bit-channels, defined with respect to the conventional polar code of length n. In polar

rate-profiling, A is chosen so that {Wi : i ∈A} consists of the k best bit-channels in terms

of their capacity. In other words, the capacities of the k bit-channels {Wi : i ∈A} are the k

highest values among I(W0), I(W1), . . . , I(Wn−1). The second approach proposed in [Arı19]

is called RM rate-profiling. Let wt(i) denote the Hamming weight of the binary expansion

of an index i. In RM rate-profiling, we simply pick the k indices of the highest weight, with

ties resolved arbitrarily. In other words, the set {wt(i) : i ∈A} consists of the k largest values

among wt(0),wt(1), . . . ,wt(n− 1). Notably, without convolutional precoding, this choice of

A generates Reed-Muller codes (as subcodes of a rate-1 polar code).

In the second step, the data-carrier vector v resulting from the rate-profiling step is

encoded using a rate-1 convolutional code generated by c = (c0, c1, . . . , cν), with c0 = cν = 1

(the latter can be assumed without loss of generality). This produces another vector u =

(u0,u1, . . . ,un−1) of length n, where

u0 = c0v0,

u1 = c0v1 + c1v0,

u2 = c0v2 + c1v1 + c2v0,

and so on. In general, every bit in u is a linear combination of (ν + 1) bits of v computed via

112

the convolution operation:

ui =
ν

∑
j=0

cjvi−j (5.1)

where for i− j < 0, we set vi−j = 0 by convention. Alternatively, this step can be viewed as a

vector-matrix multiplication u = vT, where T is the upper-triangular Toeplitz matrix:

T =




c0 c1 c2 · · · cν 0 · · · 0
0 c0 c1 c2 · · · cν

...
0 0 c0 c1

. . . · · · cν
...

... 0

... 0
...

... . . . 0 c0 c1 c2... 0 0 c0 c1

0 · · · · · · · · · · · · 0 0 c0




(5.2)

In the third step, the vector u is finally encoded by a conventional polar encoder as the

codeword x = uPm. Here

Pm = Bn




1 0

1 1




⊗m

(5.3)

where Bn is the n× n bit-reversal permutation matrix (as defined in Section VII of [Arı09]), and

Pm is known as the polar transform matrix. Alternatively, the polar transform can be defined

as in (5.3) but without the bit-reversal matrix Bn; this has no effect on the performance of the

resulting codes.

With reference to the foregoing discussion, the PAC code in Figure 5.1 is obtained via

RM rate-profiling using the rate-1 convolutional code generated by c = (1,0,1,1,0,1,1). This

produces the (128,64) PAC code, which is the code studied by Arıkan in [Arı19]. This specific

PAC code will serve as our primary running example throughout this chapter.

On the decoding side, Arıkan [Arı19] employs sequential decoding of the underlying

convolutional code to decode the data-carrier vector v. Under the frozen-bit constraints imposed

by rate-profiling, the rate-1 convolutional code becomes an irregular tree code. There are many

113

different variants of sequential decoding for irregular tree codes, varying in terms of both the

decoding metric used and the algorithm itself. Arıkan [Arı19] uses the Fano sequential decoder,

described in [Fan63, Gal68]. Notably, the path metrics at the input to the sequential decoder are

obtained via repeated calls to the successive-cancellation decoder for the underlying polar code,

as shown in Figure 5.2.

5.3 List Decoding of PAC Codes

One of our main objectives herein is to determine whether sequential decoding of PAC

codes (cf. Figure 5.2) can be replaced by list decoding. In this section, we show how list

decoding of PAC codes can be implemented efficiently (see Algorithms 5 and 6). In the next

section, we will consider the performance and complexity of the resulting decoder, as compared

to the sequential decoder of [Arı19].

5.3.1 PAC Codes as Polar Codes with Dynamically Frozen Bits

To achieve efficient list decoding of PAC codes, we use the list-decoding algorithm

developed in [TV15]. The complexity of this algorithm is O(Ln logn), where L is the list size.

However, the algorithm of [TV15] decodes conventional polar codes. In order to make it possible

to decode PAC codes with (a modified version of) this algorithm, we first observe that PAC codes

can be regarded as polar codes with dynamically frozen bits.

Polar coding with dynamically frozen bits was first introduced in [TM13] by Trifonov

and Miloslavskaya, and later studied by the same authors in [TM15, TT17]. Let us briefly

describe the general idea. In conventional polar coding, it is common practice to set all frozen

bits to zero. That is, ui = 0 for all i ∈ F , where F ⊂ {0,1, . . . ,n−1} denotes the set of frozen

indices. However, this choice is arbitrary: we can set ui = 1 for some i ∈ F and ui = 0 for other

i ∈ F . What matters is that the frozen bits are fixed and, therefore, known a priori to the decoder.

In [TM13], it was further observed that in order to be known a priori to the decoder, the frozen

114

bits do not have to be fixed. Given i ∈ F , we can set

ui = fi(u0,u1, . . . ,ui−1) (5.4)

where fi is a fixed Boolean function (usually, a linear function) known a priori to the decoder.

For all i ∈ F , the decoder can then decide as follows

ûi = fi(û0, û1, . . . , ûi−1) (5.5)

where û0, û1, . . . , ûi−1 are its earlier decisions. The encoding/decoding process in (5.4) and (5.5)

is known as dynamic freezing.

In order to explain how Arıkan’s PAC codes [Arı19] fit into the dynamic freezing frame-

work, let us first introduce some notation. With reference to Section 5.2, for i = 0,1, . . . ,n−1,

let ui and vi denote the vectors (u0,u1, . . . ,ui) and (v0,v1, . . . ,vi), respectively. Further, let Ti,j

denote the submatrix of the Toepliz matrix T in (5.2), consisting of the first (topmost) i + 1

rows and the first (leftmost) j + 1 columns. With this, it is easy to see that ui = viTi,i for all i.

The matrix Ti,i is upper triangular with detTi,i = c0 = 1. Hence it is invertible, and we have

vi = uiT−1
i,i for all i. Now suppose that i ∈Ac, so that vi is frozen to zero in the rate-profiling

step. Then we have

ui = vi−1Ti−1,i =
(
ui−1T−1

i−1,i−1

)
Ti−1,i (5.6)

In particular, this means that the last bit ui of the vector ui is an a priori fixed linear

function of its first i bits, as follows:

ui = (u0,u1, . . . ,ui−1)T−1
i−1,i−1

(
0, . . . ,0, cν, cν−1, . . . , c1

)t

where (0, . . . ,0, cν, cν−1, . . . , c1)
t represents the last column of the matrix Ti−1,i. Clearly, the

above is a special case of dynamic freezing in (5.4).

115

Moreover, it follows that the set F of indices that are dynamically frozen is precisely the

same as in the rate-profiling step, that is F =Ac.

If i∈A, then vi is an information bit, but the value of ui is determined not only by

vi but by vi−1,vi−2, . . . ,vi−ν as well. Thus, when representing PAC codes as polar codes, the

information bits may be also regarded as dynamic.

Finally, note that in implementing the PAC decoder, there is no need to actually invert

a matrix as in (5.6). Instead, we can successively compute the vector v̂ = (v̂0, v̂1, . . . , v̂n−1) as

follows. If i∈Ac, set v̂i = 0. Otherwise, set

v̂i = ûi −
ν

∑
j=1

cjv̂i−j (5.7)

where the value of ûi is provided by the polar decoder. Given v̂i, v̂i−1, . . . , v̂i−ν, the values of

the dynamically frozen bits ûi for i∈Ac can be computed using (5.1). This computation, along

with the one in (5.7), takes time linear in ν. All that is required is additional memory to store the

vector v̂ = (v̂0, v̂1, . . . , v̂n−1).

5.3.2 List Decoding of PAC Codes

Representing PAC codes as polar codes with dynamically frozen bits makes it possible to

adapt existing algorithms for successive-cancellation list decoding of polar codes to decode PAC

codes.

There are, however, a few important differences. For example, for conventional polar

codes, when the list decoder encounters a frozen index i∈F , all the paths in the list-decoding

tree are extended in the same way, by setting ûi = 0. For PAC codes, since freezing is dynamic,

different paths are potentially extended differently, depending upon the previous decisions along

the path.

In general, our list decoder for PAC codes maintains the same data structure as the

successive-cancellation list decoder in [TV15]. In addition, for a list of size L, we introduce L

116

Algorithm 5: List Decoder for PAC Codes
Input: The received vector y, the list size L, the generator c = (c0, c1, . . . , cν) for the

convolutional precoder as global
Output: Decoded codeword x̂

// Initialization
1 · · · lines 2–5 of Algorithm 12 in [TV15]
2 shiftRegisters← new 2-D array of size L× (ν + 1)
3 for ℓ = 0,1, . . . , L− 1 do
4 shiftRegister[ℓ] = (0,0, . . . ,0)

// Main Loop
5 for ϕ = 0,1, . . . ,n− 1 do
6 recursivelyCalcP(m,ϕ)
7 if uϕ is frozen then
8 for ℓ = 0,1, . . . , L− 1 do
9 if activePath[ℓ] = false then

10 continue
11 left-shift shiftRegister[ℓ] by one, with the rightmost position set to 0
12 Cm← getArrayPointerC(m,ℓ)
13 (vϕ−ν,vϕ−ν+1, . . . ,vϕ)← shiftRegister[ℓ]

// Set the frozen bit
14 Cm[0][ϕ mod 2]← ∑ν

j=0 cjvϕ−j

15 else
16 continuePaths Unfzn(ϕ)

17 if ϕ mod 2 = 1 then
18 recursivelyUpdateC(m,ϕ)

// Get the best codeword in the list
19 · · · lines 17–24 of Algorithm 12 in [TV15]
20 return x̂ = (C0[β][0])n−1

β=0

auxiliary shift registers—one for each path. Each such shift register stores the last ν bits of the

vector v̂ = (v̂0, v̂1, . . . , v̂n−1), computed as in (5.7), for the corresponding path.

Algorithms 5 and 6 provide the full details of our list decoding algorithm for PAC codes.

These algorithms fit into the same general mold as Algorithms 12 and 13 of [TV15], with the

differences highlighted in blue.

117

Algorithm 6: continuePaths Unfzn (PAC version)
Input: phase ϕ

1 · · · lines 1–18 of Algorithm 13 in [TV15]
// Continue relevant paths

2 for ℓ = 0,1, . . . , L− 1 do
3 if contForks[ℓ][0] = false and contForks[ℓ][1] = false then
4 continue
5 Cm← getArrayPointer C(m,ℓ)
6 left-shift shiftRegister[ℓ] by one, with the rightmost position set to 0
7 (vϕ−ν,vϕ−ν+1, . . . ,vϕ)← shiftRegister[ℓ]
8 if contForks[ℓ][0] = true and contForks[ℓ][1] = true then
9 Cm[0][ϕ mod 2]← ∑ν

j=0 cjvϕ−j

10 ℓ′← clonePath(ℓ)
11 shiftRegister[ℓ′]← shiftRegister[ℓ]
12 flip the rightmost bit of shiftRegister[ℓ′]
13 Cm← getArrayPointer C(m,ℓ′)
14 (v′ϕ−ν,vϕ−ν+1, . . . ,v′ϕ)← shiftRegister[ℓ′]
15 Cm[0][ϕ mod 2]← ∑ν

j=0 cjv′ϕ−j
16 else
17 if contForks[ℓ][0] = true then
18 if ∑ν

j=0 cjvϕ−j = 1 then
19 flip the rightmost bit of shiftRegister[ℓ]

20 set Cm[0][ϕ mod 2]← 0
21 else
22 if ∑ν

j=0 cjvϕ−j = 0 then
23 flip the rightmost bit of shiftRegister[ℓ]

24 set Cm[0][ϕ mod 2]← 1

5.4 List Decoding versus Sequential Decoding

We now compare list decoding of PAC codes with sequential decoding, in terms of

both performance and complexity. For list decoding, we use the algorithm of Section 5.3.

For sequential decoding, we employ exactly the same Fano decoder that was used by Arıkan

in [Arı19]. We are grateful to Erdal Arıkan for sharing the details of their decoding algorithm.

We do not disclose these details here, instead referring the reader to [Arı19, Moz20, MMQA20].

118

We note that more efficient algorithms for sequential decoding of polar codes and their

subcodes may be available; see in particular the work of Trifonov [Tri18, TT17]. However, in

this chapter, we use the results of Arıkan [Arı19] as a benchmark, in terms of both performance

and complexity.

Our main conclusion is that sequential decoding is not essential in order to achieve the

remarkable performance of PAC codes: similar performance can be obtained with list decoding,

providing the list size is sufficiently large. As far as complexity, sequential decoding is generally

better at high SNRs and in terms of average complexity, while list decoding is advantageous in

terms of worst-case complexity and at low SNRs.

5.4.1 Performance Comparison

Figure 5.3 summarizes simulation results comparing the performance of the Fano decoder

from [Arı19] with our list decoding algorithm, as a function of the list size L. The underlying

PAC code is the same as in Figure 5.1; it is the (128,64) PAC code obtained via RM rate-profiling

(see Section 5.2). The underlying channel is the binary-input additive white Gaussian noise

(BIAWGN) channel.

As expected, the performance of list decoding steadily improves with increasing list size.

For L = 128, the list-decoding performance is very close to that of sequential decoding, while

for L = 256 the two curves virtually coincide over the entire range of SNRs.

It should be pointed out that the frame error rate (FER) reported for sequential decoding

in Figures 5.1 and 5.3 is due to two different mechanisms of error/failure. In some cases, the

sequential decoder reaches the end of the search tree (see Figure 5.4) producing an incorrect

codeword. These are decoding errors. In other cases, the end of the search tree is never reached;

instead, the computation is aborted once it exceeds a predetermined cap on the number of cycles.

These are decoding failures. As in [Arı19], the FER plotted in Figure 5.3 counts all the cases

wherein the transmitted codeword is not produced by the decoder: thus it is the sum of the error

rate and the failure rate. Table 5.1 below shows what fraction of such cases were due to decoding

119

1.5 2 2.5 3

SNR (dB)

10 -4

10 -3

10 -2

10 -1

100

F
E

R

PAC Code, List Decoder, L=1
PAC Code, List Decoder, L=2
PAC Code, List Decoder, L=4
PAC Code, List Decoder, L=8
PAC Code, List Decoder, L=16
PAC Code, List Decoder, L=32
PAC Code, List Decoder, L=64
PAC Code, List Decoder, L=128
PAC Code, List Decoder, L=256
PAC Code, Sequential Decoder
BIAWGN dispersion approximation

Figure 5.3. Performance of PAC codes under list decoding.

failures:

Table 5.1. Fraction of decoding failures as a function of SNR.

SNR [dB] 1.00 1.25 1.50 1.75 2.00 2.25
% of failures 4.53% 3.56% 1.86% 1.38% 1.01% 0.29%

A decoding failure was declared in our simulations whenever the number of cycles

(loosely speaking, cycles count forward and backward movements along the search tree in the

Fano decoder) exceeded 1,300,000. This is exactly the same cap on the number of cycles that

was used by Arıkan in [Arı19]. Overall, the foregoing table indicates that increasing this cap

would not improve the performance significantly. In fact, we observe that decoding failures never

dominate the overall FER of sequential decoding. Thus, it would be interesting to investigate

how much this cap can be decreased without sacrificing the performance.

The FER for list decoding is also due to two distinct error mechanisms. In some cases,

the transmitted codeword is not among the L codewords generated by our decoding algorithm.

120

In other cases, it is on the list of codewords generated, but it is not the most likely among them.

Since the list decoder selects the most likely codeword on the list as its ultimate output, this leads

to a decoding error. We refer to such instances as selection errors. Table 5.2 below shows the

fraction of selection errors for lists of various sizes:

Table 5.2. Fraction of selection errors as a function of SNR.

SNR [dB] 1.50 1.75 2.00 2.25 2.50 2.75 3.00
L = 64 32.1% 32.2% 32.5% 32.3% 29.4% 36.7% 39.6%

L = 128 50.0% 51.6% 54.6% 53.6% 58.4% 60.4% 63.2%
L = 256 66.2% 71.0% 75.2% 78.0% 79.9% 83.6% 82.8%

This indicates that the performance of list decoding would further improve (at least,

for L⩾ 64) if we could somehow increase the minimum distance of the underlying code, or

otherwise aid the decoder in selecting from the list (e.g., with CRC).

Finally, we also include in Figures 5.1 and 5.3 the BIAWGN dispersion-bound approx-

imation for binary codes of rate 1/2 and length 128. The specific curve plotted in Figure 5.1

and Figure 5.3 is the so-called saddlepoint approximation [VViFKL18] of the meta-converse

dispersion bound of Polyanskiy, Poor, and Verdu [PPV10]. Our curve coincides with those given

in Figure 1 of [CDJ+19] and Figure 6 of [GB19]. Note that a more accurate bound can be

derived using the methods of Erseghe [Ers16], but this is not critical for our purposes. It is clear

from Figures 5.1 and Figure 5.3 that the performance of the (128,64) PAC code, under both

sequential decoding and list decoding with L ⩾ 128, is close to the best achievable performance.

5.4.2 Complexity Comparison

A comprehensive complexity analysis of list decoding versus sequential decoding of PAC

codes in practical applications is likely to require algorithmic optimization and implementation in

hardware. In the case of list decoding, this should be relatively easy based upon our representation

of PAC codes as polar codes with dynamically frozen bits (see Section 5.3.1) in conjunction

with existing work on efficient hardware implementation of polar list decoders (see [SGV+14b,

121

SGV+15], for example). On the other hand, we are not aware of any existing implementations

of sequential decoding in hardware. Such implementation may be challenging due to variable

running time, which depends on the channel noise, and complex control logic.

In this section, we provide a qualitative comparison of list decoding versus sequential

decoding using two generic complexity metrics: the number of nodes visited in the polar search

tree and the total number of floating-point operations performed by the decoder. The results we

obtain for the two metrics, summarized in Figure 5.5 and Figure 5.6, are consistent with each

other.

The polar search tree, shown schematically in Figure 5.4, represents all possible inputs

u = (u0,u1, . . . ,un−1) to the polar encoder. It is an irregular tree with n + 1 levels containing 2k

paths. If i ∈Ac then all nodes at level i have a single outgoing edge, as ui is dynamically frozen

in this case. In contrast with conventional polar codes, these edges may be labeled differently (cf.

u4 in Figure 5.4). If i ∈A then all nodes at level i have two outgoing edges. In this framework,

both list decoding and sequential decoding can be regarded as tree-search algorithms that try to

identify the most likely path in the tree. The list decoder does so by following L paths in the tree,

from the root to the leaves, and selecting the most likely one at the end. The Fano sequential

decoder follows only one path, but has many back-and-forth movements during the decoding

process.

For the sake of qualitative comparison, we take the total number of nodes the two

algorithms visit in the tree as one reasonable proxy of their complexity. In doing so, we disregard

the nodes at the frozen levels, counting only those nodes that have two outgoing edges (colored

blue in Figure 5.4); we call them the decision nodes. Figure 5.5 shows the number of decision

nodes visited by the two decoding algorithms as a function of SNR.

For sequential decoding, two phenomena are immediately apparent from Figure 5.5.

First, there is a tremendous gap between worst-case complexity and average complexity. For

most SNRs, the worst-case complexity is dominated by decoding failures, which trigger a

computational timeout upon reaching the cap on the number of cycles (see Section 5.4.1).

122

vi = 0

vi = 1

000

0 0

1 1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

u0 u1 u2 u3 u4 u5 u6 u7u0 u1 u2 u4

Figure 5.4. An example of the polar search tree, reproduced from [Arı19]

Clearly, reducing this cap would also reduce the worst-case complexity. On the other hand, for

SNRs higher than 2.50 dB, decoding failures were not observed. Thus, beyond 2.50 dB, the

worst-case complexity gradually decreases, as expected. Another phenomenon apparent from

Figure 5.5 is that the average complexity is highly dependent on SNR. This is natural since the

processing in the Fano sequential decoder depends on the channel noise. The less noise there is,

the less likely is the sequential decoder to roll back in its search for a better path.

Neither of the two phenomena above is present for list decoding: the worst-case com-

plexity is equal to the average complexity, and both are unaffected by SNR. The resulting curves

in Figures 5.5 and 5.6 are flat, since the complexity of list decoding depends only on the list size

L and the code dimension k.

In fact, the number of decision nodes visited by the list decoder in the polar search tree

can be easily computed as follows. First assume, for simplicity, that L is a power of 2. As the

123

0 0.5 1 1.5 2 2.5 3 3.5
SNR (dB)

102

103

104

105

106

Number of nodes visited in the binary tree

Sequential Decoding (average)
Sequential Decoding (worst-case)
List Decoding, L=256
List Decoding, L=128
List Decoding, L=64
List Decoding, L=32
List Decoding, L=16
List Decoding, L=8

Figure 5.5. Sequential decoding vs. list decoding: Number of nodes visited in the polar search
tree.

list decoder proceeds from the root to the leaves, the number of paths it traces doubles for every

i ∈A until it reaches L. The number of decision nodes it visits during this process is given

by 1 + 2 + 4 + · · ·+ L = 2L− 1. After reaching L paths, the decoder visits L decision nodes

at every one of the remaining k− log2 L levels that are not frozen. Thus, the total number of

decision nodes visited is L(k + 2− log2 L)− 1 = O(kL).

If L is not a power of 2, this counting argument readily generalizes, and the number of

decision nodes visited is given by

L
(
k + 1− ⌈log2 L⌉

)
+ 2⌈log2 L⌉ − 1 = O(kL) (5.8)

As another qualitative metric of complexity of the two algorithms, we count the total

number of additions, comparisons, and multiplications of floating-point numbers throughout the

124

0 0.5 1 1.5 2 2.5 3 3.5
SNR (dB)

104

105

106

107

108 Number of floating point operations (+, >< and x)

Sequential Decoding (average)
Sequential Decoding (worst-case)
List Decoding, L=256
List Decoding, L=128
List Decoding, L=64
List Decoding, L=32
List Decoding, L=16
List Decoding, L=8

Figure 5.6. Sequential decoding vs. list decoding: Number of floating-point operations.

decoding process. The results of this comparison are compiled in Figure 5.6. The number of

floating-point operations is a more precise measure of complexity than the number of decision

nodes visited in the search tree. Yet we observe exactly the same pattern as in Figure 5.5. For list

decoding, it is no longer possible to give a simple expression as in (5.8), but the complexity is

still independent of SNR, resulting in flat curves. For sequential decoding, we again observe

the same two phenomena discussed earlier in connection with Figure 5.5. In particular, the

worst-case complexity remains prohibitive even at high SNRs.

In summary, our qualitative comparison suggests that, for a similar level of performance,

sequential decoding is clearly advantageous in terms of average-case complexity at high SNRs.

However, list decoding may have distinct advantages in low-SNR regimes or in situations where

the worst-case complexity/latency is the primary constraint.

125

5.5 Performance Analysis for PAC Codes

In this section, we study the performance of PAC codes under the assumption of

maximum-likelihood (ML) decoding. To this end, we estimate computationally the number of

low-weight codewords in PAC codes (and other codes), then combine these estimates with the

union bound. First, we explain why analysis of performance under ML decoding makes sense in

our setting.

5.5.1 Sequential Decoding versus ML Decoding

It has been observed in several papers that for polar codes, list decoding rapidly ap-

proaches the performance of ML decoding with increasing list size L. In this section, as expected,

we find this to be the case for Arıkan’s (128,64) PAC code as well.

Figure 5.7 shows a bound on the frame error-rate of ML decoding obtained in our

simulations. This is an empirical lower bound, in the sense that the actual simulated performance

of ML decoding could only be worse— even closer to the other two curves (for sequential

decoding and list decoding) shown in Figure 5.7. The bound was generated using the Fano

sequential decoder, as follows.

Every time the Fano decoder makes an error, we compare the likelihoods of the trans-

mitted path and the path produced by the decoder. If the decoded path has a better path-metric

(higher likelihood), then the ML decoder will surely make an error in this instance as well. We

count such instances to generate the lower bound. This method of estimating ML performance in

simulations is very similar to the one introduced in [TV15] for polar codes, except that [TV15]

used list decoding.

Figure 5.7 provides strong evidence that it makes sense to study PAC codes under ML

decoding in order to gain insights into their performance under sequential decoding, since the

two are remarkably close. Figure 5.7 also reveals one of the reasons why Arıkan’s PAC codes

are so good at short blocklengths: they can be efficiently decoded with near-ML fidelity.

126

1.5 2 2.5 3 3.5

SNR (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

F
E

R

PAC code, List Decoder, L=128
PAC code, Sequential Decoder
PAC code, ML Decoder (lower bound)

Figure 5.7. Performance of the PAC code under ML decoding.

5.5.2 Weight Distributions and Union Bounds

We now study the weight distribution of the (128,64) PAC code in order to develop

analytical understanding of its performance under ML decoding. Specifically, we use the method

of [LST12] to estimate the number of low-weight codewords in this code.

Consider the following experiment, devised in [LST12]. Transmit the all-zero codeword

in the extremely high SNR regime, and use list decoding to decode the channel output. It is

reasonable to expect that in this situation, the list decoder will produce codewords of low weight.

As L increases, since the decoder is forced to generate a list of size exactly L, more and more

low-weight codewords emerge. The results of this experiment for the (128,64) PAC code are

shown in Figure 5.8 as a function of the list size. We can see that the only weights observed for

L up to 400,000 are 16,18,20,22. Moreover, A16 ⩾ 3120, A18 ⩾ 2696, and A20 ⩾ 95828 (cf.

Table 5.3). These numbers are lower bounds on the weight distribution of the code. However,

the fact that the curves in Figure 5.8 saturate at these values provides strong evidence that these

127

103 104 105

List size L

103

104

105

Low-weight codewords in PAC codes with RM profiling

A16
A18
A20
A22

Figure 5.8. Low-weight codewords in the (128,64) PAC code.

Table 5.3. Number of low-weight codewords in certain relevant codes.

A8 A12 A16 A18 A20 A22

Polar code 48 0 68856 0 897024 0
Polar code, CRC8 20 173 ⩾ 7069 - - -
Reed-Muller 0 0 94488 0 0 0
PAC, polar profile 48 0 11032 6024 > 105 -
PAC, RM profile 0 0 3120 2696 95828 > 105

bounds are exact, and that codewords of other low weights do not exist.

We have used the same method to estimate the number of low-weight codewords in

other relevant codes of rate 1/2, including polar codes (with and without CRC precoding), the

self-dual Reed–Muller code, and the PAC code with polar rate-profile. Our results are compiled

in Table 5.3.

Again, the numbers in Table 5.3 should be regarded as lower bounds, which we conjecture

128

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

FE
R

Union bound approximation for certain relevant codes of length 128

Polar code: Union bound based on A8, A16
Polar code with CRC8: Union bound based on A8, A12
RM code: Union bound based on A16
PAC, polar profile: Union bound based on A8, A16, A18
PAC, RM profile: Union bound based on A16, A18, A20

Figure 5.9. Truncated union bound for certain codes of length 128.

to be exact (except for the Reed–Muller code whose weight distribution is known [SITK71] and

the polar code whose weight distribution can be computed using the methods of [YFV21a]).

Assuming this conjecture, we expect the performance under ML decoding of the (128,64) PAC

code with RM rate-profile to be superior to all other polar and PAC codes in the table, since

its minimum distance is twice as high. Interestingly, this code is also superior to the self-dual

Reed–Muller code. The two codes have the same minimum distance, but the PAC code has

significantly less codewords at this distance (by a factor of about 30). These observations are

corroborated in Figures 5.9 and 5.10, where we plot the truncated union bound based on the

partial weight distributions compiled in Table 5.3 (with all other terms set to zero). It is well

known that the performance of a linear code under ML decoding is governed by its weight

distribution, and can be well approximated by the union bound or variants thereof [SS+06],

especially at high SNRs. The “truncated union bound” is by far the simplest option, obtained by

129

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
SNR (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

FE
R

Union bound approximations for PAC codes of length 128

PAC, polar profile: L=128
PAC, Polar profile, ML Bound
PAC, polar profile: Union bound based on A8, A16, A18
PAC, RM profile: L=128
PAC, RM Profile, ML Bound
PAC, RM profile: Union bound based on A16, A18, A20

Figure 5.10. Truncated union bound vs. performance for two PAC codes.

simply ignoring those terms in the union bound for which the weight distribution is unknown.

Consequently, it is neither an upper bound nor a lower bound. Nevertheless, we have found that

in the high SNR regime, it provides a reasonable first-order approximation of performance under

ML decoding for the codes at hand. For example, Figure 5.10 shows the truncated union bound

for the two PAC codes in Table 5.3 along with upper and lower bounds on their performance

(under ML decoding) obtained in simulations.

Our results in this section also provide potential guidance for the difficult problem of PAC

code design. Since both sequential decoding and list decoding achieve near-ML performance,

one important goal of rate-profiling should be to optimize the weight distribution at low weights.

The same criterion applies for the choice of the convolutional precoder as well. A related problem

is that of finding the best rate profile for a given list size, which does not necessarily approach

ML decoding.

130

As we can see from Table 5.3, the (128,64) PAC code with RM rate-profile succeeds at

maintaining the minimum distance d = 16 of the self-dual Reed–Muller code, while “shifting”

most of the codewords of weight 16 to higher weights. This is another reason for the remarkable

performance of this code. The fact that the minimum distance of this PAC code is d = 16 also

follows from Theorem 1 of [LZG19]. In fact, the work of Li, Zhang, and Gu [LZG19] shows

that precoding with any nonsingular upper-triangular matrix, not necessarily a Toepliz matrix

as in (5.2), cannot decrease the minimum distance. Moreover, there always exist such upper-

triangular precoding matrices that strictly reduce the number of mimimum-weight codewords

(see Theorem 2 of [LZG19]). Apparently, the Toepliz matrix generated by c = (1,0,1,1,0,1,1)

is a particularly “nice” choice, reducing A16 from 94488 to only 3120. As we shall see in the

next section, there are many such “nice” matrices, and it is possible to do even better.

5.6 PAC Codes with Random Time-Varying Convolutional
Precoding

With reference to Section 5.2, the two main considerations when designing the rate-1 con-

volutional precoder are: the constraint length ν and the choice of the generator c = (c0, c1, . . . , cν).

Arıkan [Arı19] refers to such generator c as the impulse response of the convolutional precoder.

He furthermore writes in [Arı19] that:

As long as the constraint length of the convolution is sufficiently large,
choosing c at random may be an acceptable design practice.

The main question we wish to address herein is this: How large is “sufficiently large” in this

context? It appears that if the impulse response c is fixed, then constraint length on the order of

ν = 6 is required. However, if we allow the impulse response to vary with time, then essentially

the same performance can be achieved with constraint length as low as ν = 2 (which is the

minimum possible, since c0 = cν = 1 by assumption). This observation is of importance if trellis

methods (such as list-Viterbi decoding, as suggested in [Arı19, RV21]) are used to decode PAC

codes. Indeed, reducing the constraint length from ν = 6 to ν = 2 reduces the number of states

131

in the resulting trellis from 64 to 4, respectively.

We also observe that under random time-varying convolutional precoding, the perfor-

mance of PAC codes improves with constraint length but only slightly.

5.6.1 Random Time-Varying Convolutional Precoding

In time-varying convolutional precoding, the impulse response c is a function of time.

Specifically, we keep the constraint length ν fixed, but use n potentially different impulse

response vectors ci = (ci
0, ci

1, . . . , ci
ν), where ci

0 = ci
ν = 1 for all i. Thus, each bit ui of the input

u = (u0,u1, · · · ,un−1) to the polar encoder is computed via a potentially different convolution

operation:

ui =
ν

∑
j=0

ci−j
j vi−j for i = 0,1, · · · ,n− 1 (5.9)

where v is the data-carrier vector resulting from the rate-profiling step, as in Section 5.2. As

before, the convolution operations in (5.9) can be recast a vector-matrix multiplication u = vT,

where T is the following upper triangular matrix:

T =




c0
0 c0

1 c0
2 · · · c0

ν 0 · · · 0

0 c1
0 c1

1 c1
2 · · · c1

ν
...

0 0 c2
0 c2

1
. . . · · · c2

ν
...

... 0

... 0
...

... . . . 0 cn−3
0 cn−3

1 cn−3
2

... 0 0 cn−2
0 cn−2

1

0 · · · · · · · · · · · · 0 0 cn−1
0




(5.10)

In (5.10), the 2n − ν bits shown in red, namely ci
0 and ci

ν, are set to 1, whereas the

(2n− ν)(ν− 1)/2 bits shown in blue are unconstrained. In what follows, we consider random

time-varying convolutional precoding, where these unconstrained bits are i.i.d. Bernoulli
(
1/2

)

132

random variables. That is, each of these (2n− ν)(ν− 1)/2 bits is set to 0 or 1 with probability

1/2, independently of each other.

On the decoder side, we use a straightforward modification of the list-decoding algorithm

introduced in Section 5.3. With reference to the pseudocode in Section 5.3, this modification

consists of replacing cj by cϕ−j
j at line 14 of Algorithm 5 as well as lines 9, 15, 18, 22 of

Algorithm 6, where cϕ
0 , cϕ−1

1 , . . . , cϕ−ν
ν are as defined in (5.10). The complexity of such modified

list-decoding algorithm is exactly the same as before; the only difference being that the decoder

now needs to store the n impulse responses c0,c1, . . . , cn−1. However, this storage requirement

is still linear in n.

5.6.2 Performance of PAC Codes with Random Time-Varying Convolu-
tional Precoding

We now assess the performance of random time-varying convolutional precoding us-

ing our running example: the (128,64) PAC code with RM rate profile. As the comparison

benchmark, we employ the convolutional precoder with ν = 6 and c = (1,0,1,1,0,1,1) used by

Arıkan in [Arı19].

Figure 5.11 summarizes our simulation results for the case where the constraint length is

fixed at ν = 6 while the list size ranges through L = 1,4,16,128. We can see from this figure that

the performance of PAC codes under random time-varying convolutional precoding coincides

with the list-decoding performance of the benchmark for all the relevant list sizes.

In Figure 5.12, we keep the list size constant at L = 128, but vary the constraint length

ν. Note that setting ν = 0 or ν = 1 leads to degenerate cases. For ν = 0, the matrix (5.10)

reduces to the identity matrix and the PAC code reduces to the (128,64) Reed–Muller code;

the performance of this Reed–Muller code is also shown in Figure 5.12, for comparison. For

ν = 1, the precoding matrix in (5.10) is not time-varying and not random, with each row being

a shift of the vector c = (1,1). Thus the smallest nontrivial constraint length is ν = 2, which

allows a single bit of randomness per row in (5.10). Surprisingly, this suffices to closely match

133

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10 -5

10 -4

10 -3

10 -2

10 -1

100

F
E

R

Arikan's convolutional precoder, = 6, L = 1
Arikan's convolutional precoder, = 6, L = 4
Arikan's convolutional precoder, = 6, L = 16
Arikan's convolutional precoder, = 6, L = 128
Random time-varying convolutional precoding, = 6, L = 1
Random time-varying convolutional precoding, = 6, L = 4
Random time-varying convolutional precoding, = 6, L = 16
Random time-varying convolutional precoding, = 6, L = 128
BIAWGN dispersion approximation

Figure 5.11. Performance of PAC codes for some specific realizations of random time-varying
convolutional precoding with ν = 6, as a function of the list size.

Table 5.4. Number of low-weight codewords in PAC codes for certain specific realizations of
random time-varying convolutional precoding, as a function of the constraint length.

A8 A16 A18 A20 A22

Random precoding with ν = 2 0 6424 7780 142,618 > 105

Arıkan’s PAC code with ν = 6 0 3120 2696 95,828 > 105

Random precoding with ν = 6 0 2870 1526 88,250 > 105

Random precoding with ν = 10 0 2969 412 81,026 > 105

the performance of Arıkan’s PAC code [Arı19] with ν = 6. As we increase the constraint

length in (5.10) beyond ν = 2, the performance further improves, but very slightly. Figure 5.12

shows that there is no significant gain even for ν = 127, in which case the precoding matrix in

(5.10) becomes a random nonsingular upper-triangular matrix. In Table 5.4, we compile (lower

bounds on) the weight distribution for several typical realizations of the matrix in (5.10) which

correspond to ν = 2,6,10. These results corroborate the performance observed in simulations.

134

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10 -5

10 -4

10 -3

10 -2

10 -1

100

F
E

R

Arikan's convolutional precoder, = 6, L = 128
Random time-varying convolutional precoding, = 2, L = 128
Random time-varying convolutional precoding, = 6, L = 128
Random time-varying convolutional precoding, = 10, L = 128
Random time-varying convolutional precoding, = 127, L = 128
Reed-Muller code, L=128
BIAWGN dispersion approximation

Figure 5.12. Performance of PAC codes for some specific realizations of random time-varying
convolutional precoding for L = 128, as a function of the constraint length.

5.7 Conclusions and Discussion

In this chapter, we first observe that Arıkan’s PAC codes can be regarded as polar codes

with dynamically frozen bits and then, using this observation, propose an efficient list decoding

algorithm for PAC codes. We show that replacing sequential decoding of PAC codes by list

decoding does not lead to degradation in performance, providing the list size is sufficiently

large. We then carry out a qualitative complexity analysis of the two approaches, which suggests

that list decoding may be advantageous in terms of worst-case complexity. We also study the

performance of PAC codes (and other codes) under ML decoding by estimating the first few

terms in their weight distribution. The results of this study provide constructive insights into the

remarkable performance of PAC codes at short blocklengths. We furthermore introduce random

time-varying convolutional precoding for PAC codes, and observe that this makes it possible to

achieve the same remarkable performance with much smaller constraint length.

135

Based upon our results in this chapter, we believe further complexity analysis of both

sequential decoding and list decoding of PAC codes is warranted, including implementations

in hardware. Some progress along these lines has been already reported in the recent paper

[ZCZ+20], which uses the list-decoding algorithm introduced herein as a starting point. Indeed,

we hope that our work stimulates further research in this direction.

Finally, we would like to point out two important (and interdependent) but difficult

questions regarding PAC codes that remain open. What is the best choice of the rate profile?

What is the best choice of the precoder? We hope our results will contribute to further study

of these problems. In turn, effective resolution of these problems should make it possible to

replicate the success of PAC codes at length n = 128 for higher blocklengths.

5.8 Acknowledgements

This chapter, in part, has been published at Entropy 2021 and appeared as: Hanwen Yao,

Arman Fazeli, and Alexander Vardy “List Decoding of Arıkan’s PAC Codes” [YFV21b]. The

dissertation author was the primary author of this journal paper.

136

Chapter 6

Hybrid Polar Coded Modulation

6.1 Introduction

Polar codes, pioneered by Erdal Arıkan [Arı09], form the first family of error-correcting

codes that provably achieve capacity for a wide range of channels, with low encoding and

decoding complexity. At short block lengths, concatenated with cyclic redundancy check (CRC)

outer codes, polar codes under successive cancellation list decoding [TV15] show competitive,

and in some cases, better performance as compared with turbo and LDPC codes [CDJ+19]. Thus

polar codes were adopted as the error correcting code for control channels in the fifth generation

(5G) wireless communications standard [3GP18, BCL20].

To achieve higher spectrum efficiency required by the next generation wireless networks,

it is essential to combine polar coding with high order modulation. Two commonly used

schemes that combine polar codes with channel modulation are bit-interleaved coded modulation

(BICM) [CTB98, iFMC08], and multilevel coded modulation (MLC) [IH77, WFH99].

In bit-interleaved polar coded modulation (BI-PCM) [SSSH13], polar coding and modu-

lation are connected by an interleaver, and Gray labeling is commonly used for mapping between

the coded bits and the constellation symbols. At the receiver, on a constellation with 2m symbols,

the demodulator computes the soft information for all m bits of each received symbols in parallel,

which are then de-interleaved and passed to the polar decoder. In BI-PCM, the 2m-ary channel is

effectively decomposed into m binary sub-channels, and decoded regardless of their dependency.

137

Benefits from its easiness of code design and the separation of coding and modulation, BI-PCM

has been adopted for polar code in the 5G wireless communication standard [BCL20]. For

constellation whose order m is not a power of 2, an additional polarization matrix can be used to

connect polar codes with channel modulation [MEKLK15]. However, the major drawback of

BICM is that it is unable to achieve the constellation-constrained capacity over additive white

Gaussian noise (AWGN) channels [CTB98], due to loss of mutual information between the

decomposed sub-channels.

It is known that MLC together with multi-stage decoding (MSD) can achieve the constel-

lation constrained capacity over AWGN channels, provided that the code rate of each level is

properly designed [WFH99]. It turns out that MSD is very similar to successive cancellation (SC)

decoding of polar code on the conceptual level. Seidl et al. [SSSH13] first discuss the multilevel

polar coded modulation (ML-PCM). They introduce a channel parition framework that unifies

both the bit channel formation arise with SC decoding, and the channel decomposition in MSD.

This framework makes it possible to assign the code rate, and design the polar code at each

level of ML-PCM in a consistent way. In ML-PCM on a constellation with 2m symbols, the

2m-ary channel is decomposed into m binary sub-channels preserving their dependency. At

the receiver, a multi-stage demodulator sequentially computes the soft information of those m

sub-channels for each symbol. At each level, the computation is based on both the channel output

and the hard values of all the previous sub-channels, where the hard values are obtained from

the polar decoder. In this way, the mutual information between the sub-channels is preserved,

and ML-PCM is expected to have a better performance compared with BI-PCM over AWGN

channels.

However, there are multiple rounds of information exchanges between the demodulator

and the decoder during its multi-stage decoding process in ML-PCM. At each level, the demod-

ulator needs to send the evaluated soft information for a certain sub-channel over all received

symbols to the decoder, and wait for the hard values from the decoder to proceed to the next

stage. This frequent communication could introduce considerable latency for the ML-PCM

138

receiver. To mitigate this latency issue, we introduce a hyrbid polar coded modulation design

that lies between ML-PCM and BI-PCM, that is able to reduce the amount of communication

between the demodulator and the decoder, while still maintaining a considerable performance

gain over BI-PCM.

6.1.1 Our Contribution

In this chapter, we propose a new polar coded modulation scheme, referred as hybrid polar

coded modulation (Hybrid-PCM) hereafter, that can be viewed as a comprehensive framework

having both BI-PCM and ML-PCM as its special cases. In our Hybrid-PCM scheme, the 2m-

ary channel on a constellation with 2m symbols is decomposed into m binary sub-channels

following a new channel transformation that we refer as hybrid binary partition. This channel

transformation has an integer-valued splitting parameter s that lies between 0 and m. At the

receiver side, the demodulator computes the soft information for the the first s sub-channels

sequentially, based on both the channel output and the hard value of their previous sub-channels.

Then with the hard information of the first s levels, the demodulator estimates the rest of the

(m− s) sub-channels parallelly regardless of their dependency. Intuitively speaking, out of

those m levels for every received symbol, the first s levels are sequentially decoded similar to

ML-PCM, and the last (m− s) levels are parallelly decoded similar to BI-PCM. In this way,

only the mutual information of the first s sub-channels is preserved during the decoding process,

and we are free to choose this splitting parameter s between 0 and m. We also propose a hybrid

labeling rule to fit our scheme. This labeling rule lies between Gray labeling, commonly used

in BICM, and set-partitioning (SP) labeling, commonly used in MLC, and it’s governed by the

same splitting parameter s.

If we choose s to be equal to 0, then our hybrid scheme becomes BI-PCM. And if we

choose s to be m, our hybrid scheme becomes ML-PCM. For s lying between 0 and m, our

hybrid scheme can reduce the amount of back-and-forth communication required in ML-PCM,

while as we will show in Section V, still holding a considerable performance gain over BI-PCM.

139

6.1.2 Notations

Here are some notation conventions that we follow throughout this chapter. We use

bold letters like u to denote vectors, and non-bold letters like ui to denote symbols within that

vector. For u = (u1,u2, · · · ,un), we denote its subvector of symbols with indices from a to b as

ub
a = (ua,ua+1, · · · ,ub). And we use (u,v) to denote the concatenation of vector u and vector

v.

6.2 Preliminaries

In this section, we describe our system model, and give a brief review on the concepts of

polar codes and polar coded modulation. This prepare us for the development of our proposed

hybrid polar coded modulation scheme.

6.2.1 System Model

In this chapter, we consider memoryless AWGN channels with quadrature amplitude

modulation (QAM) and pulse-amplitude modulation (PAM). Since any 22m-QAM constellation

can be constructed from two independent 2m-PAM constellations for the I-channel and Q-channel,

henceforth we regard every QAM symbol as two independent PAM symbols.

For a PAM constellation with 2m symbols, its signal points are given by

X = {±1,±3, · · · ,±(2m − 1)}.

Each symbol in the constellation is labeled by a binary m-tuple, and we say that symbols in

this constellation have m bit levels. The input-output relation of the AWGN channel is given

by y = x + z, with x ∈ X for each channel use, and z being a zero mean Gaussian noise with

standard deviation σz. The quality of the channel is measured by the signal to noise ratio (SNR):

SNR = E[x2]/σ2
z .

140

6.2.2 Polar Codes

Assuming n = 2ℓ, recall that an (n,k) polar code is a binary linear block code generated

by k rows of the polar transformation matrix Gn = K⊗ℓ2 , where

K2 =




1 0

1 1


 ,

and K⊗ℓ2 is the ℓ-th Kronecker power of K2. The encoding scheme is given by c = uGn, where

u is a length-n binary input vector carrying k data bits, and c is the codeword for transmission.

The positions of the data bits in u are specified by an information index set A ⊆ {1,2, · · · ,n}

of size k, with the rest of the n− k bits in u frozen to certain fixed values, usually zeros. The

construction for polar codes usually refers to the selection of the information index set A.

For decoding of polar code, in this paper we consider the conventional SC decoder, which

is proven to be capacity achieving [Arı09]. For details of SC decoding for polar code, we refer

the readers to Arıkan’s seminal paper [Arı09].

6.2.3 Bit-Interleaved Polar Coded Modulation (BI-PCM)

Let |X | = 2m, and let N denotes the number of channel uses. In BI-PCM, the binary

codeword generated by the polar encoder is permuted by an interleaver. Then, each block of m

bits is mapped into a constellation symbol in X for channel transmission. At the receiver’s side

of BI-PCM, for each received symbol, the demodulator ignores the relation between bit levels,

and computes the soft information for all bit levels solely based on the channel observation.

Let W : X → Y be a 2m-ary channel with input symbol set X with |X | = 2m, and

output alphabet Y . In a BI-PCM scheme over this channel, W is decomposed into m binary

sub-channels that are viewed as independent channels by the receiver. This channel transform is

141

Channel
Outputs

Pa
ra

lle
lD

em
od

ul
at

or

In
te

rl
ea

ve
r

Polar
Decoder

Figure 6.1. BI-PCM receiver

called parallel binary partition (PBP) in [SSSH13]. Here we denote it as

φ : W→ {B(1)
φ , B(2)

φ , · · · , B(m)
φ },

where B(j)
φ : {0,1} → Y denotes the binary sub-channel for the j-th bit level for j = 1,2, · · · ,m.

In PBP, each sub-channel B(j)
φ only has the knowledge of the channel output y ∈ Y . And Gray

labeling is commonly used to generate sub-channels that are as independent as possible [SF07].

Let the bit-to-symbol labeling rule given by L : {0,1}m → X , then B(j)
φ has the transition

probability

B(j)
φ (y|b) = 1

2m−1 ∑
bm

1 ∈{0,1}m : bj=b
W(y|L(bm

1)),

for j = 1,2, · · · ,m.

After demodulation, as shown in Figure 6.1, the soft information of all mN bits is de-

interleaved, and fed to the decoder. Note that to use a single polar decoder for BI-PCM, the order

m of the constellation has to be a power of 2.

6.2.4 Compound Polar Code

In BI-PCM, to handle constellation whose order m is not necessarily a power of 2,

compound polar code is proposed in [MEKLK15] that uses an additional m×m polarization

matrix to connect polar code with channel modulation. This structure is also mentioned in

[SSSH13, Sec.V.D], and later used in [CNL13] on 64-QAM.

142

In BI-PCM with compound polar code, the 2m-ary channel W is also decomposed

into m binary sub-channels following PBP, but the decomposed channels are not decoded in

parallel. In compound polar code, an m × m polarization matrix is used to further polarize

those m decomposed sub-channels. And on the receiver’s side, the polarized channels are

decoded sequentially based on the hard information of their previous channels. For the details of

compound polar code, we refer the readers to [MEKLK15].

With this additional polarization matrix, compound polar code shows better performance

compared with plain BI-PCM under SC decoding [MEKLK15]. It inherits the benefit that

demodulation and decoding are separated just like plain BI-PCM, but it also introduces extra

decoding latency due to that additional polarization matrix. Since in this paper, we focus on

reducing the iterative communication between the demodulator and the decoder in ML-PCM, we

also include compound polar code in our simulation comparison in Section 6.4.

For our simulation in Section 6.4, we use K3 as the additional polarization matrix for

8-PAM the same as in [MEKLK15, Sec.VII.A], and use K4 as the additional polarization matrix

for 16-PAM the same as in [SSSH13, Sec.V.D]:

K3 =




1 0 0

1 1 0

0 1 1




, K4 =




1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1




It has been shown in [BPYS17] that for the labeling in BI-PCM with compound polar code,

the least significant bit Binary Reflected Gray Code (LSB-BRGC) shows a better performance

compared with the Binary Reflected Gray Code (BRGC) under SC decoding. Thus we also adopt

LSB-BRGC for the bit labeling for BI-PCM with compound polar code in our simulation.

143

Channel
Outputs

M
ul

ti-
st

ag
e

D
em

od
ul

at
or

Polar
Decoder 1

Polar
Decoder 2

Polar
Decoder m

··
·

Figure 6.2. ML-PCM receiver for a 2m-ary constellation.

6.2.5 Multilevel Polar Coded Modulation (ML-PCM)

Let X be the symbol set of a constellation of order 2m, and let N denotes the number

of channel uses. In an ML-PCM scheme, there are m component polar codes, each of length

N. For encoding, a length mN binary vector carrying both the data bits and the frozen bits is

split into m vectors of equal length, and encoded by those m component polar codes respectively.

Let cj = (cj1, cj2, · · · , cjN) denote the encoder output of the j-th component polar code for

j = 1,2, · · · ,m. The modulator then map the m-tuple (c1i, c2i, · · · , cmi) into a constellation

symbol for transmission for i = 1,2, · · · , N. In such a way, each component polar code only

appears at a corresponding single bit level for every channel use.

At the receiver’s side of ML-PCM, a multi-stage demodulator computes the soft informa-

tion for those m bit levels sequentially, based on both the received symbols, and the hard values

of the previous bit levels. More specifically, as shown in Figure 6.2, at stage j of the decoding

process, the demodulator computes the soft information of the j-th bit level for every received

symbols, and send it to the j-th polar decoder. Then, the demodulator waits for j-th decoder

to send back its decoding result. After retrieving the hard values for the j-th bit level of every

received symbol, the demodulator then proceeds to the next bit level.

Let W : X →Y be a 2m-ary channel with input symbol set X with |X |= 2m, and output

alphabet Y . In a ML-PCM scheme over this channel, W is effectively decomposed into m

144

binary sub-channels preserving their mutual information. This channel decomposition is called

sequential binary partition (SBP) in [SSSH13], here we denote it as

ψ : W→ {B(1)
ψ , B(2)

ψ , · · · , B(m)
ψ },

where B(j)
ψ : {0,1} → Y × {0,1}j−1 denotes the binary sub-channel for the j-th bit level for

j = 1,2, · · · ,m. In SBP, each sub-channel B(j)
ψ has the knowledge of both the channel output

y ∈ Y , and their previous bit levels. And set-partitioning (SP) labeling is commonly used to

generate widely separated bit level capacities [SSSH13]. Let the bit-to-symbol mapping rule

given by L : {0,1}m→X , then B(j)
ψ has the transition probability

B(j)
ψ (y,bj−1

1 |b) =
1

2m−j ∑
bm

j ∈{0,1}m−j+1:bj=b

W(y|L(bm
1))

for j = 1, · · · ,m.

6.3 A Hybrid Scheme for Polar Coded Modulation

In this section, we propose a hybrid polar-coded modulation scheme that lies between

BI-PCM and ML-PCM. Our hybrid scheme can be viewed as a comprehensive framework

that has BI-PCM and ML-PCM as its two special cases. We begin by introducing a channel

decomposition that we refer as hybrid binary partition.

6.3.1 Hybrid Binary Partitions

Let W : X → Y be a discrete memoryless channel with input symbol set X with |X | =

2m, and output symbol set Y . We define the hybrid binary partition (HBP) with splitting

parameter s as the channel transform

ψs : X→ {B(1)
ψs

, B(2)
ψs

, · · · , B(m)
ψs
},

145

where s is an integer between 0 and m, and B(j)
ψs

denotes the decomposed binary sub-channel for

the j-th bit level for j = 1,2, · · · ,m. In this channel decomposition, the first s sub-channels have

the knowledge of their previous bit levels and the rest of the (m− s) sub-channels only have the

knowledge of the first s bit levels.

Formally, for 1 ⩽ j ⩽ s, we have

B(j)
ψs

: {0,1} → Y × {0,1}j−1

with transition probability

B(j)
ψs
(y,bj−1

1 |b) =
1

2m−j ∑
bm

j ∈{0,1}m−j+1:bj=b

W(y|L(bm
1))

And for s < j ⩽ m, we have

B(j)
ψs

: {0,1} → Y × {0,1}s

with transition probability

B(j)
ψs
(y,bs

1|b) =
1

2m−s−1 ∑
bm

s+1∈{0,1}m−s :bj=b
W(y|L(bm

1)).

Following this definition, the first s sub-channels in HBP with splitting parameter s will

be the same as the first s sub-channels in SBP on the same 2m-ary channel W.

We make the remark that for a given 2m-ary channel W, HBP with splitting parameter

s = 0 will be the same as PBP, and HBP with splitting parameter s = m will be the same as SBP.

Therefore, PBP and SBP can be viewed as two special cases of HBP.

6.3.2 Hybrid Labeling

In polar coded modulation schemes, PBP in BI-PCM is commonly equipped with Gray

labeling, and SBP in ML-PCM is commonly equipped with SP labeling [SSSH13]. Since HBP

146

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

0001100111010101011111111011001100101010111001100100110010000000

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

1111011110110011110101011001000111100110101000101100010010000000

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

1101010110010001111101111011001111100110101000101100010010000000

Figure 6.3. 16-ASK with Gray labeling (top), SP labeling (middle), and Hybrid labeling with
splitting parameter 2 (bottom). The first bit level lies on the left.

is a hybrid channel transform that stands between PBP and SBP, we propose to equip it with a

hybrid labeling rule that stands between Gray labeling and SP labeling.

Let X be the symbol set for a 2m-ary constellation, we describe our hybrid labeling rule

with splitting parameter s as follows:

1. For every symbol x ∈ X , the first s bit levels are labeled the same as the SP labeling rule.

2. For the rest of the (m− s) bit levels, we first partition X into subsets, such that symbols

within each subset have the same bits on their first s bit levels. Then for each subset

Z ⊆ X , we label the rest of the (m− s) bit levels for symbols in Z following the Gray

labeling rule for the 2m−s sub-constellation Z .

Example 12. We illustrate this hybrid labeling rule by taking the 16-PAM constellation as an

example. Figure 6.3 shows examples of three labeling rules for 16-PAM, with Gray labeling

at the top, SP labeling in the middle, and hybrid labeling with splitting parameter s = 2 at the

bottom.

Denote the symbol set by X = {−15,−13, · · · ,15}. In the hybrid labeling with splitting

parameter s = 2, the first two bit levels for every x ∈ X are labeled the same as in SP labeling.

147

Then X can be partitioned into four subsets according to the first two bit levels:

Z1 = {−15,−7,1,9}, Z2 = {−13,−5,3,11},

Z3 = {−11,−3,5,13}, Z4 = {−9,−1,7,15}.

Those four subsets are colored differently in Figure 6.3. Take Z1 for example, in the hybrid

labeling, the last two bit levels for the symbols in Z1 are labeled following the Gray labeling

rule viewing Z1 as a 4-PAM constellation.

6.3.3 Hybrid Polar Coded Modulation (Hybrid-PCM)

Now we describe our hybrid coded modulation scheme. Let X be the symbol set of a

constellation of order 2m, and let N denotes the number of channel uses. In our Hybrid-PCM

with splitting parameter s, the 2m-ary channel is decomposed by HBP with splitting parameter s

into m binary sub-channels, where each of the first s sub-channels corresponds to a component

polar code of length N, and the last (m− s) sub-channels correspond to a single component

code of length (m− s)N.

For encoding, a length mN binary vector carrying both the data and the frozen bits is

split into s length-N vectors and one single vector of length (m− s)N. Those sub-vectors are

encoded by the component codes respectively. Denote by cj = (cj1, cj2, · · · , cjN) the encoder

output of the j-th component polar code for j = 1,2, · · · , s, and denote by

cs+1 = (cs+1,1, cs+1,2, · · · , cs+1,N)

the encoder output of the (s + 1)-th component code, where cs+1,i is a length-(m− s) vector

for i = 1,2, · · · , N. The modulator then map the m-tuple

(c1i, c2i, · · · , csi, cs+1,i)

into a constellation symbol for transmission for i = 1,2, · · · , N.

148

Channel
Outputs

M
ul

ti-
st

ag
e

D
em

od
ul

at
or

Polar Decoder 1

Polar Decoder 2

Polar Decoder s

··
·

In
te

rl
ea

ve
r

Decoder s+1

Figure 6.4. Hybrid-PCM receiver with splitting parameter s

At receiver’s side of Hybrid-PCM, as shown in Figure 6.4, a multi-stage decoder first

computes the soft information for the first s bit levels sequentially, based on both the received

symbols, and the hard values of the previous bit levels. Then the demodulator computes the soft

information for the rest of the (m− s) bit levels in parallel, based on the received symbols, and

the hard values of the first s bit levels. The soft information for the last (m− s) bit levels is then

de-interleaved, and then fed to the decoder for the last component code. In our hybrid scheme,

we employ the hybrid labeling rule with the same splitting parameter s for the mapping between

the coded bits and the constellation symbols.

Note that for a 2m-ary channel W, this hybrid scheme with the splitting parameter s can

be viewed as a general framework that includes both BI-PCM and ML-PCM as special cases by

setting s = 0 and s = m, respectively.

6.4 Performance Evaluation

We present some simulation results of our hybrid scheme on 64-QAM and 256-QAM

where all polar codes are constructed following the Monte Carlo construction.

149

Figure 6.5 shows the simulation results of SC decoding for (1536,768) polar coded

modulation on 64-QAM with three difference schemes: ML-PCM, Hybrid-PCM with splitting

parameter s = 1, and BI-PCM with compound polar code. In our experiment, every 64-QAM is

simulated by two independent 8-PAM symbols, and all the coded modulation schemes are applied

on the 8-PAM constellation. We can observe that ML-PCM performs better than Hybrid-PCM,

and BI-PCM with compound polar code as expected, and our hybrid scheme with splitting

parameter s = 1 shows an approximated 0.2 dB performance gain over BI-PCM with compound

polar code.

Figure 6.6 shows the simulation results of SC decoding for (2048,1024) polar coded

modulation on 256-QAM with four difference schemes: ML-PCM, Hybrid-PCM with splitting

parameter s = 2, BI-PCM with compound polar code, and plain BI-PCM (Figure 6.2). In

our experiment, every 256-QAM is simulated by two independent 16-PAM symbols, and all

the coded modulation schemes are applied on the 16-PAM constellation. We can see that our

hybrid scheme with splitting parameter s = 2 can close up majority of the performance gain

of ML-PCM over BI-PCM with compound polar code, while reducing the number of required

iterative information exchanges between the demodulator and the decoder in ML-PCM by half,

thus reducing the overall decoding latency.

6.5 Conclusion and Discussion

In this chapter, we propose a new polar coded modulation scheme that we call hybrid

polar coded modulation. This scheme uses hybrid bit partitions by assigning only a fraction of bits

for sequential binary partition and subsequent iterative demodulation and decoding, whereas the

remaining bits are subject to parallel binary partition and corresponding parallel demodulation

and then decoding. Our hybrid scheme can be viewed as a comprehensive framework including

both ML-PCM and BI-PCM as its two special cases, and our simulation results show that it can

alleviate the latency in ML-PCM while still maintaining a considerable performance gain over

150

6.5 7 7.5 8 8.5 9 9.5 10

Es/N0 [dB]

10 -4

10 -3

10 -2

10 -1

100

F
E

R

(1536,768) Polar Coded Modulation on 64-QAM

ML-PCM
Hybrid-PCM with s=1
BI-PCM (Compound)

Figure 6.5. Performance comparison for ML-PCM, Hybrid-PCM and BI-PCM with compound
polar code on 64-QAM.

BI-PCM.

Although we only discussed polar codes as component codes for our hybrid coded

modulation, in principle, just like MLC and BICM, any other codes such as Turbo or LDPC

codes can also be chosen as component codes in our hybrid scheme. The flexibility of working

together with other codes, reduced latency compared to ML-PCM, and the large performance

gain over BI-PCM on high order modulation make the proposed hybrid polar coded modulation

scheme attractive for future communication systems such as 6G.

6.6 Acknowledgements

This chapter, in part, has been published at 2022 IEEE International Symposium on

Information Theory (ISIT) and appeared as: Hanwen Yao, Jinfeng Du, and Alexander Vardy

“Polar Coded Modulation via Hybrid Bit Labeling” [YDV22]. The dissertation author was the

151

9 10 11 12 13 14 15

Es/N0 in dB

10 -4

10 -3

10 -2

10 -1

100

F
E

R

(2048,1024) Polar Coded Modulation on 256-QAM

ML-PCM
Hybrid-PCM with s=2
BI-PCM (Compound)
BI-PCM

Figure 6.6. Performance comparison for ML-PCM, Hybrid-PCM, BI-PCM with compound
polar code, and plain BI-PCM on 256-QAM

primary author of this conference paper.

152

Bibliography

[3GP18] ETSI TS 138.212 V15.2.0 LTE; multiplexing and channel coding (3GPP TS
38.212 version 15.2.0 release 15), July 2018.

[Arı09] Erdal Arıkan. Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels. IEEE Transactions on
information Theory, 55(7):3051–3073, 2009.

[Arı19] Erdal Arıkan. From sequential decoding to channel polarization and back again.
arXiv preprint arXiv:1908.09594, 2019.

[Arı20] Erdal Arıkan. Systematic encoding and shortening of pac codes. Entropy,
22(11):1301, 2020.

[AT09] Erdal Arikan and Emre Telatar. On the rate of channel polarization. In 2009 IEEE
International Symposium on Information Theory, pages 1493–1495. IEEE, 2009.

[AV20] Fariba Abbasi and Emanuele Viterbo. Large kernel polar codes with efficient
window decoding. IEEE Transactions On Vehicular Technology, 69(11):14031–
14036, 2020.

[AY20] Emmanuel Abbe and Min Ye. Reed-muller codes polarize. IEEE Transactions on
Information Theory, 66(12):7311–7332, 2020.

[AYK11] Amin Alamdar-Yazdi and Frank R Kschischang. A simplified successive-
cancellation decoder for polar codes. IEEE communications letters, 15(12):1378–
1380, 2011.

[BCL20] Valerio Bioglio, Carlo Condo, and Ingmar Land. Design of polar codes in 5g new
radio. IEEE Communications Surveys & Tutorials, 23(1):29–40, 2020.

[BDOT16] Magali Bardet, Vlad Dragoi, Ayoub Otmani, and Jean-Pierre Tillich. Algebraic
properties of polar codes from a new polynomial formalism. In 2016 IEEE
International Symposium on Information Theory (ISIT), pages 230–234. IEEE,
2016.

[BFS+17a] Sarit Buzaglo, Arman Fazeli, Paul H Siegel, Veeresh Taranalli, and Alexander
Vardy. On efficient decoding of polar codes with large kernels. In 2017 IEEE

153

Wireless Communications and Networking Conference Workshops (WCNCW),
pages 1–6. IEEE, 2017.

[BFS+17b] Sarit Buzaglo, Arman Fazeli, Paul H Siegel, Veeresh Taranalli, and Alexander
Vardy. Permuted successive cancellation decoding for polar codes. In 2017 IEEE
International Symposium on Information Theory (ISIT), pages 2618–2622. IEEE,
2017.

[BL18] Valerio Bioglio and Ingmar Land. On the marginalization of polarizing kernels. In
2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information
Processing (ISTC), pages 1–5. IEEE, 2018.

[BMVT78] Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. On the inherent
intractability of certain coding problems (corresp.). IEEE Transactions on Infor-
mation Theory, 24(3):384–386, 1978.

[BPYS17] Georg Bocherer, Tobias Prinz, Peihong Yuan, and Fabian Steiner. Efficient
polar code construction for higher-order modulation. In 2017 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW), pages 1–6.
IEEE, 2017.

[CDJ+19] Mustafa Cemil Coşkun, Giuseppe Durisi, Thomas Jerkovits, Gianluigi Liva,
William Ryan, Brian Stein, and Fabian Steiner. Efficient error-correcting codes in
the short blocklength regime. Physical Communication, 34:66–79, 2019.

[CNL13] Kai Chen, Kai Niu, and Jia-Ru Lin. An efficient design of bit-interleaved polar
coded modulation. In 2013 IEEE 24th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), pages 693–697.
IEEE, 2013.

[CNP20] Mustafa Cemil Coşkun, Joachim Neu, and Henry D Pfister. Successive cancellation
inactivation decoding for modified reed-muller and ebch codes. In 2020 IEEE
International Symposium on Information Theory (ISIT), pages 437–442. IEEE,
2020.

[CTB98] Giuseppe Caire, Giorgio Taricco, and Ezio Biglieri. Bit-interleaved coded modu-
lation. IEEE transactions on information theory, 44(3):927–946, 1998.

[Ers16] Tomaso Erseghe. Coding in the finite-blocklength regime: Bounds based on
laplace integrals and their asymptotic approximations. IEEE Transactions on
Information Theory, 62(12):6854–6883, 2016.

[Fan63] Robert Fano. A heuristic discussion of probabilistic decoding. IEEE Transactions
on Information Theory, 9(2):64–74, 1963.

[FHMV20] Arman Fazeli, Hamed Hassani, Marco Mondelli, and Alexander Vardy. Binary lin-
ear codes with optimal scaling: Polar codes with large kernels. IEEE Transactions
on Information Theory, 67(9):5693–5710, 2020.

154

[FHP17] Andrew James Ferris, Christoph Hirche, and David Poulin. Convolutional polar
codes. arXiv preprint arXiv:1704.00715, 2017.

[FP13] Andrew J Ferris and David Poulin. Branching mera codes: a natural extension of
polar codes. arXiv preprint arXiv:1312.4575, 2013.

[FTV17] Arman Fazeli, Kuangda Tian, and Alexander Vardy. Viterbi-aided successive-
cancellation decoding of polar codes. In GLOBECOM 2017-2017 IEEE Global
Communications Conference, pages 1–6. IEEE, 2017.

[FV14] Arman Fazeli and Alexander Vardy. On the scaling exponent of binary polarization
kernels. In 2014 52nd Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 797–804. IEEE, 2014.

[FVY19] Arman Fazeli, Alexander Vardy, and Hanwen Yao. Convolutional decoding of
polar codes. In 2019 IEEE International Symposium on Information Theory (ISIT),
pages 1397–1401. IEEE, 2019.

[FVY20] Arman Fazeli, Alexander Vardy, and Hanwen Yao. Hardness of successive-
cancellation decoding of linear codes. In 2020 IEEE International Symposium on
Information Theory (ISIT), pages 455–460. IEEE, 2020.

[FVY21] Arman Fazeli, Alexander Vardy, and Hanwen Yao. List decoding of polar codes:
How large should the list be to achieve ml decoding? In 2021 IEEE International
Symposium on Information Theory (ISIT), pages 1594–1599. IEEE, 2021.

[Gal68] Robert G Gallager. Information theory and reliable communication, volume 588.
Springer, 1968.

[GB14] Dina Goldin and David Burshtein. Improved bounds on the finite length scaling of
polar codes. IEEE Transactions on Information Theory, 60(11):6966–6978, 2014.

[GB19] Dina Goldin and David Burshtein. Performance bounds of concatenated polar
coding schemes. IEEE Transactions on Information Theory, 65(11):7131–7148,
2019.

[GRY20] Venkatesan Guruswami, Andrii Riazanov, and Min Ye. Arikan meets shannon:
Polar codes with near-optimal convergence to channel capacity. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages
552–564, 2020.

[GX14] Venkatesan Guruswami and Patrick Xia. Polar codes: Speed of polarization and
polynomial gap to capacity. IEEE Transactions on Information Theory, 61(1):3–16,
2014.

[GYFV21] Bhaskar Gupta, Hanwen Yao, Arman Fazeli, and Alexander Vardy. Polar list
decoding for large polarization kernels. In 2021 IEEE Globecom Workshops (GC
Wkshps), pages 1–6, 2021.

155

[HA17] Muhammad Hanif and Masoud Ardakani. Fast successive-cancellation decoding
of polar codes: Identification and decoding of new nodes. IEEE Communications
Letters, 21(11):2360–2363, 2017.

[HAU14] Seyed Hamed Hassani, Kasra Alishahi, and Rüdiger L Urbanke. Finite-length
scaling for polar codes. IEEE Transactions on Information Theory, 60(10):5875–
5898, 2014.

[Hay09] Masahito Hayashi. Information spectrum approach to second-order coding rate in
channel coding. IEEE Transactions on Information Theory, 55(11):4947–4966,
2009.

[HMTU12] S Hamed Hassani, Ryuhei Mori, Toshiyuki Tanaka, and Rüdiger L Urbanke. Rate-
dependent analysis of the asymptotic behavior of channel polarization. IEEE
Transactions on Information Theory, 59(4):2267–2276, 2012.

[HZZ+18] Zhiliang Huang, Shiyi Zhang, Feiyan Zhang, Chunjiang Duanmu, Farong Zhong,
and Ming Chen. Simplified successive cancellation decoding of polar codes with
medium-dimensional binary kernels. IEEE Access, 6:26707–26717, 2018.

[iFMC08] Albert Guillén i Fabregas, Alfonso Martinez, and Giuseppe Caire. Bit-interleaved
coded modulation. 2008.

[IH77] Hideki Imai and Shuji Hirakawa. A new multilevel coding method using error-
correcting codes. IEEE Transactions on Information Theory, 23(3):371–377,
1977.

[KMTU10] Satish Babu Korada, Andrea Montanari, Emre Telatar, and Rüdiger Urbanke. An
empirical scaling law for polar codes. In 2010 IEEE International Symposium on
Information Theory, pages 884–888. IEEE, 2010.

[KŞU10] Satish Babu Korada, Eren Şaşoğlu, and Rüdiger Urbanke. Polar codes: Characteri-
zation of exponent, bounds, and constructions. IEEE Transactions on Information
Theory, 56(12):6253–6264, 2010.

[KTA76] Tadao Kasami, Nobuki Tokura, and Saburo Azumi. On the weight enumeration of
weights less than 2.5 d of reed—muller codes. Information and control, 30(4):380–
395, 1976.

[LLAG15] Hsien-Ping Lin, Shu Lin, and Khaled AS Abdel-Ghaffar. Linear and nonlinear
binary kernels of polar codes of small dimensions with maximum exponents. IEEE
Transactions on Information Theory, 61(10):5253–5270, 2015.

[LST12] Bin Li, Hui Shen, and David Tse. An adaptive successive cancellation list decoder
for polar codes with cyclic redundancy check. IEEE Communications Letters,
16(12):2044–2047, 2012.

156

[LST14] Bin Li, Hui Shen, and David Tse. A rm-polar codes. arXiv preprint
arXiv:1407.5483, 2014.

[LZG19] Bin Li, Huazi Zhang, and Jiaqi Gu. On pre-transformed polar codes. arXiv
preprint arXiv:1912.06359, 2019.

[Mac63] J. A. MacWilliams. A theorem on the distribution of weights in a systematic code.
Bell System Technical Journal, 42(1):79–94, 1963.

[Mah17] Hessam Mahdavifar. Fast polarization for non-stationary channels. In 2017 IEEE
International Symposium on Information Theory (ISIT), pages 849–853. IEEE,
2017.

[MEKLK15] Hessam Mahdavifar, Mostafa El-Khamy, Jungwon Lee, and Inyup Kang. Polar
coding for bit-interleaved coded modulation. IEEE Transactions on Vehicular
Technology, 65(5):3115–3127, 2015.

[MHU14] Marco Mondelli, S Hamed Hassani, and Rüdiger L Urbanke. From polar to
reed-muller codes: A technique to improve the finite-length performance. IEEE
Transactions on Communications, 62(9):3084–3091, 2014.

[MHU16] Marco Mondelli, S Hamed Hassani, and Rüdiger L Urbanke. Unified scaling of
polar codes: Error exponent, scaling exponent, moderate deviations, and error
floors. IEEE Transactions on Information Theory, 62(12):6698–6712, 2016.

[MK20] Samir Kumar Mishra and KwangChul Kim. Selectively precoded polar codes.
arXiv preprint arXiv:2011.04930, 2020.

[MMQA20] Mohsen Moradi, Amir Mozammel, Kangjian Qin, and Erdal Arikan. Perfor-
mance and complexity of sequential decoding of pac codes. arXiv preprint
arXiv:2012.04990, 2020.

[Mor20] Ruslan Alexandrovich Morozov. Convolutional polar kernels. IEEE Transactions
on Communications, 68(12):7352–7361, 2020.

[Moz20] Amir Mozammel. Hardware implementation of fano decoder for PAC codes.
CoRR, abs/2011.09819, 2020.

[MT12] Vera Miloslavskaya and Peter Trifonov. Design of binary polar codes with arbitrary
kernel. In 2012 IEEE Information Theory Workshop, pages 119–123. IEEE, 2012.

[MT14] Vera Miloslavskaya and Peter Trifonov. Sequential decoding of polar codes. IEEE
Communications Letters, 18(7):1127–1130, 2014.

[MT19a] Ruslan Morozov and Peter Trifonov. On distance properties of convolutional polar
codes. IEEE Transactions on Communications, 67(7):4585–4592, 2019.

157

[MT19b] Ruslan Morozov and Peter Trifonov. Successive and two-stage systematic encod-
ing of polar subcodes. IEEE Wireless Communications Letters, 8(3):877–880,
2019.

[MT20] Elizaveta Moskovskaya and Peter Trifonov. Design of bch polarization kernels
with reduced processing complexity. IEEE Communications Letters, 24(7):1383–
1386, 2020.

[MV20] Vera Miloslavskaya and Branka Vucetic. Design of short polar codes for scl
decoding. IEEE Transactions on Communications, 68(11):6657–6668, 2020.

[NC12] Kai Niu and Kai Chen. Crc-aided decoding of polar codes. IEEE communications
letters, 16(10):1668–1671, 2012.

[NLW19] Kai Niu, Yan Li, and Weiling Wu. Polar codes: Analysis and construction based
on polar spectrum. arXiv preprint arXiv:1908.05889, 2019.

[PDP20] Rina Polyanskaya, Mars Davletshin, and Nikita Polyanskii. Weight distribu-
tions for successive cancellation decoding of polar codes. IEEE Transactions on
Communications, 68(12):7328–7336, 2020.

[PPV10] Yury Polyanskiy, H Vincent Poor, and Sergio Verdú. Channel coding rate in the
finite blocklength regime. IEEE Transactions on Information Theory, 56(5):2307–
2359, 2010.

[PSL+15] Noam Presman, Ofer Shapira, Simon Litsyn, Tuvi Etzion, and Alexander Vardy.
Binary polarization kernels from code decompositions. IEEE Transactions on
Information Theory, 61(5):2227–2239, 2015.

[PU19] Henry D Pfister and Rüdiger L Urbanke. Near-optimal finite-length scaling for
polar codes over large alphabets. IEEE Transactions on Information Theory,
65(9):5643–5655, 2019.

[RBV20] Mohammad Rowshan, Andreas Burg, and Emanuele Viterbo. Polarization-
adjusted convolutional (pac) codes: Fano decoding vs list decoding. arXiv preprint
arXiv:2002.06805, 2020.

[RV21] Mohammad Rowshan and Emanuele Viterbo. List viterbi decoding of pac codes.
IEEE Transactions on Vehicular Technology, 70(3):2428–2435, 2021.

[Sch16] Christian Schürch. A partial order for the synthesized channels of a polar code.
In 2016 IEEE International Symposium on Information Theory (ISIT), pages
220–224. IEEE, 2016.

[SF07] Clemens Stierstorfer and Robert FH Fischer. (gray) mappings for bit-interleaved
coded modulation. In 2007 IEEE 65th Vehicular Technology Conference-VTC2007-
Spring, pages 1703–1707. IEEE, 2007.

158

[SGV+14a] Gabi Sarkis, Pascal Giard, Alexander Vardy, Claude Thibeault, and Warren J
Gross. Fast polar decoders: Algorithm and implementation. IEEE Journal on
Selected Areas in Communications, 32(5):946–957, 2014.

[SGV+14b] Gabi Sarkis, Pascal Giard, Alexander Vardy, Claude Thibeault, and Warren J
Gross. Increasing the speed of polar list decoders. In 2014 IEEE Workshop on
Signal Processing Systems (SiPS), pages 1–6. IEEE, 2014.

[SGV+15] Gabi Sarkis, Pascal Giard, Alexander Vardy, Claude Thibeault, and Warren J
Gross. Fast list decoders for polar codes. IEEE Journal on Selected Areas in
Communications, 34(2):318–328, 2015.

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. The Bell
system technical journal, 27(3):379–423, 1948.

[SITK71] M Sugino, Y Ienaga, Nobuki Tokura, and Tadao Kasami. Weight distribution of
(128, 64) reed-muller code (corresp.). IEEE Transactions on Information Theory,
17(5):627–628, 1971.

[SS+06] Igal Sason, Shlomo Shamai, et al. Performance analysis of linear codes under
maximum-likelihood decoding: A tutorial. Foundations and Trends® in Commu-
nications and Information Theory, 3(1–2):1–222, 2006.

[SSSH13] Mathis Seidl, Andreas Schenk, Clemens Stierstorfer, and Johannes B Huber. Polar-
coded modulation. IEEE Transactions on Communications, 61(10):4108–4119,
2013.

[Str62] Volker Strassen. Asymptotische abschatzugen in shannon’s informationstheorie.
In Transactions of the Third Prague Conference on Information Theory etc, 1962.
Czechoslovak Academy of Sciences, Prague, pages 689–723, 1962.

[TG21] Thibaud Tonnellier and Warren J Gross. On systematic polarization-adjusted
convolutional (pac) codes. IEEE Communications Letters, 25(7):2128–2132,
2021.

[TM13] Peter Trifonov and Vera Miloslavskaya. Polar codes with dynamic frozen symbols
and their decoding by directed search. In 2013 IEEE Information Theory Workshop
(ITW), pages 1–5. IEEE, 2013.

[TM15] Peter Trifonov and Vera Miloslavskaya. Polar subcodes. IEEE Journal on Selected
Areas in Communications, 34(2):254–266, 2015.

[Tri14] Peter Trifonov. Binary successive cancellation decoding of polar codes with
reed-solomon kernel. In 2014 IEEE International Symposium on Information
Theory, pages 2972–2976. IEEE, 2014.

[Tri17] Peter Trifonov. Star polar subcodes. In 2017 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW), pages 1–6, 2017.

159

[Tri18] Peter Trifonov. A score function for sequential decoding of polar codes. In 2018
IEEE International Symposium on Information Theory (ISIT), pages 1470–1474.
IEEE, 2018.

[Tri19a] Peter Trifonov. On construction of polar subcodes with large kernels. In 2019
IEEE International Symposium on Information Theory (ISIT), pages 1932–1936.
IEEE, 2019.

[Tri19b] Peter Trifonov. Trellis-based decoding techniques for polar codes with large
kernels. In 2019 IEEE Information Theory Workshop (ITW), pages 1–5. IEEE,
2019.

[Tri20] Peter Trifonov. Randomized polar subcodes with optimized error coefficient.
IEEE Transactions on Communications, 68(11):6714–6722, 2020.

[TT17] Peter Trifonov and Grigorii Trofimiuk. A randomized construction of polar
subcodes. In 2017 IEEE International Symposium on Information Theory (ISIT),
pages 1863–1867. IEEE, 2017.

[TT18] Grigorii Trofimiuk and Peter Trifonov. Efficient decoding of polar codes with
some 16× 16 kernels. In 2018 IEEE Information Theory Workshop (ITW), pages
1–5. IEEE, 2018.

[TT19] Grigorii Trofimiuk and Peter Trifonov. Reduced complexity window processing of
binary polarization kernels. In 2019 IEEE International Symposium on Information
Theory (ISIT), pages 1412–1416. IEEE, 2019.

[TT21] Grigorii Trofimiuk and Peter Trifonov. Window processing of binary polarization
kernels. IEEE Transactions on Communications, 2021.

[TV15] Ido Tal and Alexander Vardy. List decoding of polar codes. IEEE Transactions on
Information Theory, 61(5):2213–2226, 2015.

[Var98] A. Vardy. Handbook of Coding Theory, chapter Trellis structure of codes. Elsevier,
1998.

[VViFKL18] Gonzalo Vazquez-Vilar, Albert Guillen i Fabregas, Tobias Koch, and Alejandro
Lancho. Saddlepoint approximation of the error probability of binary hypothesis
testing. In 2018 IEEE International Symposium on Information Theory (ISIT),
pages 2306–2310. IEEE, 2018.

[VY13] Mehrdad Valipour and Shahram Yousefi. On probabilistic weight distribution of
polar codes. IEEE communications letters, 17(11):2120–2123, 2013.

[WD20] Hsin-Po Wang and Iwan M Duursma. Polar codes’ simplicity, random codes’
durability. IEEE Transactions on Information Theory, 67(3):1478–1508, 2020.

160

[WFH99] Udo Wachsmann, Robert FH Fischer, and Johannes B Huber. Multilevel codes:
Theoretical concepts and practical design rules. IEEE Transactions on Information
Theory, 45(5):1361–1391, 1999.

[WJZL20] Liyang Wang, Ming Jiang, Chunming Zhao, and Zhengyi Li. Genetic optimiza-
tion of short block-length pac codes for high capacity phz communications. In
International Conference on Optoelectronic and Microelectronic Technology and
Application, volume 11617, pages 637–642. SPIE, 2020.

[WLVG22] Hsin-Po Wang, Ting-Chun Lin, Alexander Vardy, and Ryan Gabrys. Sub-4.7
scaling exponent of polar codes. arXiv preprint arXiv:2204.11683, 2022.

[YA20] Min Ye and Emmanuel Abbe. Recursive projection-aggregation decoding of
reed-muller codes. IEEE Transactions on Information Theory, 66(8):4948–4965,
2020.

[YDV22] Hanwen Yao, Jinfeng Du, and Alexander Vardy. Polar coded modulation via hybrid
bit labeling. In 2022 IEEE International Symposium on Information Theory (ISIT),
pages 980–985, 2022.

[YFV19] Hanwen Yao, Arman Fazeli, and Alexander Vardy. Explicit polar codes with small
scaling exponent. In 2019 IEEE International Symposium on Information Theory
(ISIT), pages 1757–1761. IEEE, 2019.

[YFV20] Hanwen Yao, Arman Fazeli, and Alexander Vardy. List decoding of arıkan’s pac
codes. In 2020 IEEE International Symposium on Information Theory (ISIT),
pages 443–448, 2020.

[YFV21a] Hanwen Yao, Arman Fazeli, and Alexander Vardy. A deterministic algorithm for
computing the weight distribution of polar codes. In 2021 IEEE International
Symposium on Information Theory (ISIT), pages 1218–1223. IEEE, 2021.

[YFV21b] Hanwen Yao, Arman Fazeli, and Alexander Vardy. List decoding of arıkan’s pac
codes. Entropy, 23(7):841, 2021.

[YPB+19] Peihong Yuan, Tobias Prinz, Georg Böcherer, Onurcan Iscan, Ronald Boehnke,
and Wen Xu. Polar code construction for list decoding. In SCC 2019; 12th
International ITG Conference on Systems, Communications and Coding, pages
1–6. VDE, 2019.

[ZCZ+20] Hongfei Zhu, Zhiwei Cao, Yuping Zhao, Dou Li, and Yanjun Yang. Fast list
decoders for polarization-adjusted convolutional (pac) codes. arXiv preprint
arXiv:2012.09425, 2020.

[ZLP17] Qingshuang Zhang, Aijun Liu, and Xiaofei Pan. An enhanced probabilistic com-
putation method for the weight distribution of polar codes. IEEE Communications
Letters, 21(12):2562–2565, 2017.

161

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background on Error Correction Codes
	A Brief Review on Polar Codes
	Dissertation Overview

	Compute the Weight Distribution of Polar Code
	Introduction
	Related Prior Work
	Our Contributions
	Notations

	Polar Cosets
	Computing the Weight Enumerating Function of Polar Cosets
	Computing the Entire Weight Distribution of Polar Codes
	Representing Polar Codes with Polar Cosets
	Representing Polar Codes with Dynamically Frozen Bits
	Computing the Entire Weight Distribution

	Mixing Factor of Polar Code
	Properties of Polar Codes as Decreasing Monomial Codes
	The Largest Mixing Factor of Polar Codes

	Reducing Computation Complexity using LTA(m,2)
	Lower Triangular Affine Groups and Their Group Action
	A Subgroup of LTA(m,2)
	One-Variable Descendance Relation
	The Main Theorem: A Transitive Group Action
	Proof of Theorem 8

	Our Approach on Polar Codes and Reed-Muller Codes at Length 128
	Acknowledgements

	Construct Large Kernel Polar Codes with Small Scaling Exponent
	Introduction
	Related Prior Work
	Our Contributions
	Notation

	Background
	Large Kernel Polar Codes
	The Scaling of Polar Codes
	Polarization Behavior and the Uncorrectable Erasure Patterns
	Computing the Scaling Exponent

	Constructing Large Self-Dual Kernels
	Kernels Codes and Uncorrectable Erasure Patterns
	Self-dual Kernel and the Duality Theorem
	Constructing Self-dual Kernels with Small Scaling Exponents

	Computing the Polarization Behavior
	The Proper Trellis Algorithm
	Computing the Polarization Behaviors of K32 and K64

	Monte-Carlo Interpolation Method
	A Proof that (K64)<3
	An Upper Bound for the Scaling Exponent
	Constructing the Test Function

	Acknowledgements

	Successive Cancellation Decoding for Large Kernel Polar Codes
	Introduction
	Related Prior Works
	Our Contribution
	Notations

	Preliminaries
	Large Kernel Polar Codes
	SC Decoding of Large Kernel Polar Codes

	SCL-Approximation Algorithm for Large Kernels
	Cancelling the Effect of the Preceding Bits
	Representation as Polar Codes with Dynamic Freezing
	Ratio Estimation via Polar List Decoding

	Simulation Results
	Conclusion
	Acknowledgements

	List Decoding of PAC Codes
	Introduction
	Brief Overview of PAC Codes
	Our Contributions
	Related Work
	Chapter Outline

	Overview of Arıkan's PAC Codes
	List Decoding of PAC Codes
	PAC Codes as Polar Codes with Dynamically Frozen Bits
	List Decoding of PAC Codes

	List Decoding versus Sequential Decoding
	Performance Comparison
	Complexity Comparison

	Performance Analysis for PAC Codes
	Sequential Decoding versus ML Decoding
	Weight Distributions and Union Bounds

	PAC Codes with Random Time-Varying Convolutional Precoding
	Random Time-Varying Convolutional Precoding
	Performance of PAC Codes with Random Time-Varying Convolutional Precoding

	Conclusions and Discussion
	Acknowledgements

	Hybrid Polar Coded Modulation
	Introduction
	Our Contribution
	Notations

	Preliminaries
	System Model
	Polar Codes
	Bit-Interleaved Polar Coded Modulation (BI-PCM)
	Compound Polar Code
	Multilevel Polar Coded Modulation (ML-PCM)

	A Hybrid Scheme for Polar Coded Modulation
	Hybrid Binary Partitions
	Hybrid Labeling
	Hybrid Polar Coded Modulation (Hybrid-PCM)

	Performance Evaluation
	Conclusion and Discussion
	Acknowledgements

	Bibliography

