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RESEARCH ARTICLE

Salivary bacterial signatures in depression-
obesity comorbidity are associated 
with neurotransmitters and neuroactive 
dipeptides
Gajender Aleti1, Jordan N. Kohn1, Emily A. Troyer1, Kelly Weldon2,3, Shi Huang2,4, Anupriya Tripathi3,4, 
Pieter C. Dorrestein2,3,4,5, Austin D. Swafford2, Rob Knight2,4,6,7 and Suzi Hong1,8* 

Abstract 

Background: Depression and obesity are highly prevalent, often co-occurring conditions marked by inflamma-
tion. Microbiome perturbations are implicated in obesity-inflammation-depression interrelationships, but how the 
microbiome mechanistically contributes to pathology remains unclear. Metabolomic investigations into microbial 
neuroactive metabolites may offer mechanistic insights into host-microbe interactions. Using 16S sequencing and 
untargeted mass spectrometry of saliva, and blood monocyte inflammation regulation assays, we identified key 
microbes, metabolites and host inflammation in association with depressive symptomatology, obesity, and depressive 
symptomatology-obesity comorbidity.

Results: Gram-negative bacteria with inflammation potential were enriched relative to Gram-positive bacteria in 
comorbid obesity-depression, supporting the inflammation-oral microbiome link in obesity-depression interrela-
tionships. Oral microbiome was more highly predictive of depressive symptomatology-obesity co-occurrences than 
of obesity or depressive symptomatology independently, suggesting specific microbial signatures associated with 
obesity-depression co-occurrences. Mass spectrometry analysis revealed significant changes in levels of signaling 
molecules of microbiota, microbial or dietary derived signaling peptides and aromatic amino acids among depressive 
symptomatology, obesity and comorbid obesity-depression. Furthermore, integration of the microbiome and metab-
olomics data revealed that key oral microbes, many previously shown to have neuroactive potential, co-occurred with 
potential neuropeptides and biosynthetic precursors of the neurotransmitters dopamine, epinephrine and serotonin.

Conclusions: Together, our findings offer novel insights into oral microbial-brain connection and potential neuroac-
tive metabolites involved.

Keywords: Oral microbiome, Depression, Obesity, Host inflammation, Host-microbe interactions, Neuroactive 
molecules
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Background
Depression and obesity are common, debilitating, and 
frequently co-occurring chronic conditions with increas-
ing incidences globally [1]. Nearly 39% of the adult 
population are overweight and 13% are obese world-
wide (WHO, 2016), while 5% of the world population 
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are affected by mood disorders (WHO, 2017) [2, 3]. The 
relationship between obesity and depression is often 
bidirectional [4], as prevalence of depression among indi-
viduals with obesity is significantly higher than that in 
the general population [5, 6]. Conversely, individuals with 
depression are more likely to develop obesity compared 
to non-depressed individuals [7]. Despite the advent of 
antidepressant drugs and their long-term usage in clini-
cal treatment, the majority of patients with depression 
are treatment-refractory, and obesity may further reduce 
the efficacy of antidepressants [8]. Furthermore, comor-
bid depression and obesity are strongly associated with 
several diseases such as type 2 diabetes mellitus, car-
diovascular diseases, chronic kidney disease and cancer, 
reducing both longevity and quality of life [2, 9]. There-
fore, obesity and depression, and their co-occurrence, 
pose a major public health concern worldwide.

Inflammatory dysregulation is a common pathogenic 
mechanism underlying the co-occurrence of depression 
and obesity, as both are associated with chronic low-
grade inflammation [10, 11]. Individuals with obesity and 
depression evidence increased concentrations of periph-
eral and central inflammatory cytokines and acute phase 
reactants, such as interleukin (IL)-6, tumor necrosis fac-
tor alpha (TNF-α), and C-reactive protein (CRP) [11, 
12]. In obesity, macrophages accumulate in adipose tis-
sue leading to local and systemic inflammation [13, 14], 
which can contribute to depressive symptoms via multi-
ple mechanisms, such as by decreasing neurotransmitter 
availability, and by potentiating neuroinflammatory pro-
cesses such as microglial activation and peripheral mono-
cyte trafficking to the central nervous system (CNS) [10, 
15, 16]. It should be noted, however, that inflammation 
has been shown to underlie only a subset of depression 
cases [17], hence the conceptualization of a theoretical 
immuno-metabolic subtype of major depressive disorder 
[18]. Nonetheless, inflammatory dysregulation remains 
a central mechanism underlying the co-occurrence of 
depression and obesity, and this is likely relevant to sub-
clinical depressive symptomatology. To this end, our pre-
vious work has demonstrated that even in individuals 
without clinical diagnosis of depression, higher depres-
sive symptom scores, obesity, and downregulated glu-
cocorticoid and adrenergic receptor-mediated cellular 
inflammatory control are interrelated [19–21].

Although psychological stress, host genetics and envi-
ronmental factors have been shown to contribute to 
obesity and depression, recently, the human microbi-
ome (i.e., collection of diverse microorganisms and their 
genetic material) and metabolome (i.e., a large collection 
of structurally diverse metabolites) have been implicated 
in processes of energy homeostasis, mood and behavior, 
and immune regulation, and may therefore offer a novel 

mechanism underlying the co-occurrence of depression 
and obesity [2]. Animal studies of obesity have shown 
that depletion of members of Bifidobacterium, Lactoba-
cillus, and Akkermansia are associated with weight gain, 
increased inflammation, increased depressive behavior 
and changes in neural circuitry [22, 23]. Animal studies 
have also shown that increased permeability in the intes-
tinal barrier and the blood-brain barrier (BBB) are asso-
ciated with increased plasma lipopolysaccharide (LPS) 
levels [22–24] and neuroinflammation [23]. Altogether, 
these studies suggest that increased intestinal barrier per-
meability and subsequent translocation of gut bacterial 
endotoxin, particularly LPS from Gram-negative bacte-
rial cell walls into systemic circulation, may cause meta-
bolic endotoxemia, leading to immune cell activation and 
production of pro-inflammatory cytokines such as IL-1β, 
IL-6 and TNF-α [2]. Increased dietary saturated fatty 
acids are also known to stimulate adipocytes and mac-
rophages for pro-inflammatory cytokine production, and 
adipose tissue accumulates adipose tissue-resident mac-
rophages, which can further promote inflammation [25]. 
These processes may further contribute to increased BBB 
permeability, leading to accumulation of pro-inflamma-
tory cytokines and immune cells in the brain, which can 
potentiate neuroinflammatory processes, and therefore 
serve as a potential mechanism underlying the occur-
rence of depressive symptoms in the context of obesity.

It is to be noted that human microbiome studies in 
depression and obesity, and indeed in health and disease, 
have focused largely on the ecosystem of the distal gut, 
while few studies have examined the microbial ecology 
of the oral cavity outside of oral-related conditions such 
as dental caries (i.e., tooth decay) and periodontitis (i.e., 
severe gum inflammation). The oral cavity, an entry por-
tal to both the digestive and respiratory tracts, contains 
the most diverse microbial community after the gut, har-
boring more than 700 unique bacterial species with at 
least 150 specialized bacterial species per mouth [25, 26]. 
More than 60% of the microbial species found in the oral 
cavity have been shown to be potentially transmitted to 
the gut, suggesting that oral cavity is a reservoir for gut 
microbial strains in shaping the gut microbiome in health 
and disease [27]. Dysregulation of the unique microbe-
microbe and microbe-host interactions in the oral eco-
system has been associated with systemic inflammatory 
diseases such as inflammatory bowel syndrome [28, 29] 
beyond an array of oral diseases. In addition, oral micro-
biota have also been associated with several neurological 
diseases, such as Alzheimer’s disease (AD) [30], multiple 
sclerosis [31] and Parkinson’s disease [32]. Previously, our 
group found that salivary microbial diversity and diurnal 
variability were associated with both peripheral proin-
flammatory cytokine levels and psychological distress 
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in this cohort on which this study is based [33]. The 
intimate link between the oral microbiota and systemic 
human diseases, as evidenced by aforementioned studies 
suggests that the oral cavity is likely a promising site for 
gaining insight into the pathophysiology of depression-
obesity comorbidity. Moreover, the oral cavity is easily 
accessible via non-invasive as well as ‘on-demand’ collec-
tion of saliva samples for multi-omics applications.

While mechanisms linking the oral microbiota to the 
brain (i.e. “oral-brain axis”) remain largely unknown [34, 
35] , recent studies have speculated several transmis-
sion routes of how oral bacteria may reach the brain 
and influence neuro-immune activity and inflamma-
tion [36] . For instance, routine dental procedures such 
as flossing, brushing and cleaning may cause oral bac-
teria to enter the blood circulation and cause bactere-
mia [37] , and some of these microbes may traverse the 
BBB. Alteration in the permeability of the BBB may also 
expose the brain to bacterial metabolites triggering an 
inflammatory response, which in turn alters function-
ing of the CNS. For example, Porphyromonas gingivalis, 
a resident oral bacterium and a keystone pathogen in 
periodontitis has been found in the brain of AD patients 
[30]  as well as neurotoxic proteases i.e., gingipains pro-
duced by P. gingivalis [30] .

A recent study has shown that human gut bacteria 
encode at least 56 gut-brain metabolic pathways, which 
encompass both known and novel microbial pathways 
for synthesis and degradation of a number of neuro-
transmitters that have potential to cross the intestinal 
barrier and BBB [35]. A subset of these gut-brain path-
way effectors, for instance dopamine, glutamate, trypto-
phan and gamma-aminobutyric acid (GABA) were either 
enriched or depleted in patients with major depression 
[35]. In particular, tryptophan metabolic pathways have 
been shown to be widely distributed across human gut 
bacterial species [35]. Intriguingly, the majority of these 
gut bacterial species with neuroactive potential are also 
found to be residents of the oral cavity [25]. However, to 
what extent these bacterial species can truly biosynthe-
size neurotransmitters within the host, either in the gut 
or the oral cavity, remains unknown. Thus, utilization of 
metabolomics offers a functional readout of both host 
and microbial phenotypes encoded in the genome [38, 
39], and in conjunction with microbiome analyses, can 
provide mechanistic insights, yet current knowledge 
is greatly limited. In particular, microbial specialized 
metabolites have been shown to be canonical mediators 
of microbe-microbe and microbe-host interactions, and 
the most predominant specialized metabolites are of 
great interest for understanding the mechanisms of these 
interactions at the molecular level [38–40]. In this regard, 
the vast and highly diverse array of short peptides shown 

to play key roles in bacterial cell signaling [41], immune 
modulation, and neuroactive metabolism [42–44] 
remains largely unexplored. A recent study has shown 
that depletion of a variety of structurally uncharacter-
ized dipeptides are associated with inflammatory bowel 
disease, a chronic inflammatory condition of the gastro-
intestinal tract [45]. These observations prompted us to 
hypothesize that neurotransmitters and dipeptides likely 
have pivotal roles in obesity-inflammation-depression 
interrelationships.

In this study we aimed to investigate whether oral 
microbiota and small-molecule mediators of key 
microbe-microbe and microbe-host interactions differ by 
depressive symptomatology and obesity as well as their 
co-occurrence, and are influenced by inflammatory pro-
cesses. We performed 16S rRNA gene-based sequencing 
of the oral microbiome and untargeted mass spectrome-
try of small-molecules from saliva, as well as host inflam-
mation regulation profiles in blood from 60 participants.

Results
Participant characteristics
A total of 261 saliva samples collected from five time 
points across the day from 60 participants were ana-
lyzed (20 – 65 years): 50 participants had five; 51 had 
four, and 54 had three samples which were adjusted in 
analyses (See Statistical Analyses). Participants were cat-
egorized into the following four groups: non-obese (BMI 
< 30 kg/m2) and lower-depressive controls (N = 10 par-
ticipants; n = 43 saliva samples; “controls”), obese (BMI 
≥30 kg/m2) and lower-depressive (N = 18; n = 74; “Ob/
lower-Dep”), non-obese and higher-depressive symp-
toms (N = 5; n = 22; “Non-ob/higher-Dep”), and obese 
and higher-depressive symptoms (N = 27; n = 122; “Ob/
higher-Dep”). Sociodemographic characteristics are pre-
sented across participant groups (Table 1).

Obesity is associated with depressive symptomatology 
and inflammation
Given that individuals with a clinical diagnosis of depres-
sion and/or use of antidepressants were excluded from 
the study to focus on inflammation-related subclinical 
depressive symptoms in relation to obesity among other-
wise healthy adults, BDI total scores (BDI-T) on average 
were low (median = 3; sd = 5; range = 0-22). The median 
value of BDI-T of ≥3 was used to divide participants with 
relatively ‘higher’ or ‘lower’ depressive symptoms in this 
non-clinical sample.

In all individuals, BMI was positively correlated 
with BDI-T scores (r  = 0.29, p  = 0.04), as well as cog-
nitive-affective (r  = 0.27, p  = 0.03) and somatic symp-
tom scores with small to medium effects (r  = 0.22, 
p  = 0.08) (Fig.  S1). BARIC values, an indicator of 
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neuro-inflammation regulation, were negatively cor-
related with BMI (r = − 0.38, p = 0.009), and an estima-
tion of adipose tissue volume indicated by %trunk fat 
(r  = − 0.25, p  = 0.034) across all participants (Fig.  S1). 
Age did not moderate any of these relationships, which 
is in agreement with previous findings [20]. Altogether, 
obesity was significantly associated with both inflamma-
tion regulation and depressive symptoms. However, no 
significant associations were observed between BARIC 
and BDI scores in this study (Fig. S1).

Oral microbiota differ based on obesity‑depressive 
symptom groups and inflammation status
Principal coordinates analysis (PCoA) and post-hoc pair-
wise comparisons of unweighted-UniFrac distances of 
samples revealed that oral microbiota composition was 
distinct by obesity (PERMANOVA pseudo-F = 1.9645, 
p  = 0.003, Fig.  1a, Table  2), BDI-T (PERMANOVA 
pseudo-F = 2.4703, p = 0.001, Fig. 1b, Table 2) and across 
the four obesity-depressive symptom comorbid groups 
(i.e, Ctrl, Ob/lower-Dep, Non-ob/higher-Dep, Ob/
higher-Dep) (Fig. 1c, Tables 2 and 3). Beta-diversity was 
also significantly differentiated based on the host inflam-
mation across all participants (PERMANOVA pseudo-
F = 4.7562, p  < 0.001, Fig.  1d and Table  2). Significant 
beta-diversity differences were also observed by age, 
sex, and race but not by sampling time of day (Table 2). 
Phylogenetic alpha-diversity increased with inflamma-
tion (Faith’s PD: t = − 2.312, p  = 0.025). Inflammation 
had slightly larger effects  (R2 = 0.0181) on microbiome 
composition than obesity  (R2 = 0.00756) and depressive 
symptomatology  (R2 = 0.00948) (Table 2).

Oral microbiota is predictive of the host obesity‑depressive 
symptomatology
To assess the predictive capacity of the oral microbi-
ome in stratifying individuals with depressive symp-
toms, obesity and depressive symptomatology-obesity 

co-occurrence status, we utilized supervised random 
forest classification. The prediction performance of the 
model indicated by both area under the receiver operat-
ing characteristic curve (AUROC) and area under pre-
cision recall curve (AUPRC), revealed high prediction 
accuracy (AUROC = 0.75 and AUPRC = 0.74) for obesity-
depressive symptom status (Ob/higher Dep) than other 
groups when multiple samples per-participant were taken 
into account (Fig. 2a and b). The Ctrl group was predicted 
with AUROC = 0.75 and AUPRC = 0.58; Ob/lower Dep 
status with AUROC = 0.70 and AUPRC = 0.49; Non-ob/
higher Dep with AUROC = 0.70 and AUPRC = 0.46. 
However, at sample-level both AUROC and AUPRC 
ranged from 0.93 to 0.97, across all groups (Fig. S2a and 
b). Altogether, oral microbiome was highly predictive of 
depressive symptomatology-obesity co-occurrences than 
obesity and depressive symptomatology independently.

Key oral bacterial taxa are associated with specific host 
phenotype
Next, we identified the most differentially ranked 
microbes (99 unique taxa) associated with host pheno-
types (Fig. 2c). Linear mixed-effects model revealed sig-
nificant differences in the relative abundances of microbes 
associated with Ob/higher-Dep (t = 6.5, p  = 5.07e-08), 
Non-ob/higher-Dep (t = − 4.2, p = 0.0002) and Ob/lower 
Dep (t = − 4.5, p = 5.07e-05) in comparison to Ctrl group, 
and with inflammation status (t = − 4.83, p  = 3.03e-
05). Most differentially represented taxa (84 unique 
taxa) were assigned to Gram-negative bacteria such as 
Prevotella, Aggregatibacter, Pseudomonas, Campylobac-
ter, Clostridia (Selenomonas, Butyrivibrio, Veillonella, 
Megasphaera and Schwartzia), Leptotrichia, Capnocy-
tophaga, and periodontal pathogens such as Treponema, 
Veillonella, Porphyromonas and Fusobacterium. Gram-
positive (15 unique taxa) were assigned to Peptostrep-
tococcaceae, Clostridia (Catonella, Mogibacteriaceae), 
Staphylococcus, Corynebacterium, Rothia, Actinomyces, 

Table 1 Demographic and clinical characteristics of participants

Values presented as mean ± SD. Significant differences between groups were evaluated by Mann-Whitney test and presented as superscripts

Abbreviations: C Caucasian, AA African-American, Asn Asian, NS Mixed or not specified, BARIC Monocyte beta-adrenergic receptor-mediated inflammation control, BMI 
Body mass index, BDI-T Beck Depression Inventory (BDI-Ia) total score

Variable Non‑obese low 
 depressivea

Obese low  depressiveb Non‑obese high 
 depressivec

Obese high  depressived

Age 39 ± 12.2 38.9 ± 17.2 42.7 ± 10.5 43.5 ± 10.9

Sex (%female) 44 50 61.1 73.3

Race(%C/AA/Asn/NS) 72/16/12/0 37.5/37.5/12.5/12.5 55.6/16.7/27.8/0 46.7/40/13.3/0

BARIC 32.1 ± 10.2d 21.9 ± 6.2c 31.8 ±  9cd 25.3 ± 7.5ac

BMI (kg/m2) 25.1 ± 2.9bd 35.5 ± 4.7ac 26.6 ± 2.9bd 36 ± 4.7ac

BDI-T 0.5 ± 0.8cd 0.6 ± 0.7cd 7.9 ± 5.4ab 7.9 ±  5ab
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and beneficial/probiotic genera Bifidobacterium and Lac-
tobacillus (Fig.  2c, log-fold change abundances for each 
microbe are shown in Table  S1). The Ob/higher-Dep 
group exhibited a slightly higher abundance of Gram-
negative bacteria relative to Gram-positive compared to 

the Ctrl group (Wilcoxon test: p = 0.004) (Fig. 2d), which 
were not significantly associated with BARIC scores (data 
not shown).

Small molecules detected in saliva are associated 
with obesity‑depressive symptom‑inflammation 
relationships
Untargeted liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) analysis of the saliva samples was 
performed to examine the metabolic potential in the oral 
ecosystem and understand the intimate link between sali-
vary microbiota and metabolome in obesity-depressive 
symptom relationships.

The most predominant chemical classes identified from 
automated chemical classification [46] of our samples 
via GNPS [47] platform were terpenoids, indoles, car-
bohydrates and carbohydrate conjugates, amino acids, 
peptides, derivatives of purines and pyrimidines, eicosa-
noids and linoleic acids (Fig. S3). Particularly, molecular 

Fig. 1 Principal coordinates analyses (PCoA) of oral bacterial communities in a non-obese and obese b low depressive and higher depressive c 
non-obese low-depressive, non-obese high-depressive, obese, and co-occurring obesity and depressive symptom groups, and d in inflammation 
status. Unweighted-UniFrac distances among samples were visualized using EMPeror. Significance of separation between the groups and further 
post-hoc pairwise comparisons between groups was tested by applying PERMANOVA test on the principal coordinates

Table 2 Beta-diversity analysis of 16S derived ASVs across 
groups

Asterisks indicate statistical significance of PERMANOVA test, p < 0.05. All 
p-values were generated based on 999 permutations

Variable R2 F P‑value

Age 0.01483 3.8849 0.001 ***

Sex 0.01042 2.7157 0.001 ***

Race 0.03504 3.0985 0.001 ***

Time of day 0.01125 0.7253 0.998

BARIC 0.0181 4.7562 0.001 ***

Obesity 0.00756 1.9645 0.003 **

Depressive symptomatology 0.00948 2.4703 0.001 ***

Obesity-depressive co-occurrences 0.02421 2.1175 0.001 ***
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structures of diazines, benzotraizoles, imidazopyrimi-
dines and azides were batch-specific (Fig.  S3). Feature-
based mass spectral molecular networking of 7818 total 
MS1 molecular features (which included retention time 
and relative quantitative information) enabled the anno-
tation of 248 that had matches against all publicly avail-
able reference spectra [48]. It should be noted that these 
are level 2 or 3 annotations according to the 2007 metab-
olomics standards initiative [49]. A reference-frame 
based approach enabled the identification of 155 features 
distinctly associated with specific categories relative to 
Ctrl group (i.e., Non-Ob/lower-dep) (Fig.  3). Key mole-
cules involved in host-microbiota interactions such as the 
annotation as tyrosine (level 2), a precursor of catechola-
mine, dopamine and serotonin, and tryptophan (level 2, 
cluster 14 and 26 in Fig. 3), a precursor of the neurotrans-
mitter serotonin, were depleted in Ob/higher-Dep and 
Ob/lower-Dep groups (Fig. 2b). The amino acid, phenyla-
lanine (Level 2, cluster 2 Fig. 3), a biosynthetic precursor 
of tyrosine, catecholamine, dopa and dopamine was less 
abundant in the Ob/higher-Dep and Non-ob/higher-Dep 
groups, but increased with inflammation status (Fig. 4a).

Within the molecular network, we also identified 41 
molecular clusters primarily associated with quorum 
sensing molecules of microbiota, products of microbial 
transformation of dietary components or host molecules, 
and essential aromatic amino acids (Fig. 3). Most intrigu-
ingly, we identified 34 structurally distinct dipeptides 
across groups, making it the most prevalent molecular 
cluster within the network (molecular features of clusters 
2, 3, 5, 9, 12, 17, 19, 30, 31, 32 and 34 in Fig. 3). Of these, 
molecular features of cluster 2 (present in 60 participants) 
were differentially represented in Ob/higher-Dep and 
Non-ob/higher-Dep individuals, while features of cluster 
34 (present in 58 participants) were differentially repre-
sented in Ob/higher-Dep and Ob/lower Dep individuals, 
when compared to controls (see left panels in Fig.  4a). 
Moreover, clusters 2, 14 and 26 were depleted in the Ob/
higher-Dep and non-ob/higher-Dep groups, while cluster 
34 was depleted in the Ob/higher-Dep and Ob/lower Dep 

groups. Other differentially represented molecular clus-
ters included clusters 14 (detected in 56 participants) and 
26 (detected in 58 participants), which encompassed two 
of the essential aromatic amino acids i.e. tryptophan and 
tyrosine molecules (see clusters 14 and 26 in Figs. 3 and 
4a). Molecular features from these clusters are positively 
associated with inflammation (right panels in Fig.  4a). 
Abundance of features from the remaining clusters did 
not significantly vary across groups (data not shown). 
Other molecular features included previously reported 
microbiota-derived dipeptides (Phe-Val and Tyr-Val) (see 
clusters 2 and 30 in Fig. 3) [42, 50, 51]. Dipeptide (Phe-
Phe) reported to be synthesized by Clostridium (cluster 
2 Fig.  3) [52] was predominant in the Ob/higher-Dep 
group. Other molecules such cyclic dipeptides (Val-Pro 
and Val-Leu), commonly found to be made by microbes, 
were also identified (see cluster 2 and 12 Figs.  3 and 
4a, Table  S2) [50, 51]. The majority of the other dipep-
tides identified were potentially related to host dietary 
metabolism (i.e. enzymatic digest of food proteins) [43, 
44]. Among these, Tyr-Leu, Phe-Leu and Ile-Tyr (cluster 
2 Fig.  3), were significantly more abundant in the Ctrl 
group compared to the other Ob/higher-Dep and Ob/
lower-Dep groups (Fig. 4a) among which, Tyr-Pro (clus-
ter 34 Fig. 3) was also depleted (Fig. 4a).

Key oral microbes co‑occurred with biosynthetic 
precursors of the neurotransmitters and dipeptide 
signaling molecules
Integration of the microbiome and metabolomics data 
revealed associations between oral microbial metabo-
lism and key oral microbes such as Prevotella, Clostridia, 
Selenomonas, Aggregatibacter, Oribacterium, Corynebac-
terium, and periodontal pathogens such as Tannerella 
and Porphyromonas (Fig.  4b). Dipeptide signaling mol-
ecules (Phe-Phe, Phe-Val and Tyr-Val) co-occurred with 
Clostridia, Prevotella and Porphyromonas, corroborating 
known associations of dipeptides produced by Clostrid-
ium spp. [42, 50–52]. Members of Clostridia also co-
occurred with phenylalanine, a potential biosynthetic 

Table 3 Post-hoc pairwise comparisons of beta-diversity between groups

Asteriks indicate statistical significance of PERMANOVA test, p < 0.05. All p-values were generated based on 999 permutations and then adjusted using the Benjamini–
Hochberg method displayed in the table as FDR

Pairwise contrasts R2 F P‑value FDR

Obese high-depressive x Non-obese low-depressive 0.01449 2.3819 0.001 *** 0.001 ***

Obese low-depressive x Non-obese low-depressive 0.01734 2.0294 0.001 *** 0.003 **

Non-obese high-depressive x Non-obese low-depressive 0.03364 2.1928 0.003 ** 0.003 **

Obese low-depressive x Non-obese high-depressive 0.02118 2.034 0.004 ** 0.004 **

Obese low-depressive x Obese high-depressive 0.01108 2.1632 0.003 ** 0.002 **

Obese high-depressive x Non-obese high-depressive 0.01286 1.8369 0.002 ** 0.002 **
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precursor of dopamine, epinephrine and tryptophan. 
Intriguingly, Oribacterium belonging to Clostridium 
and Tannerella co-occurred with tryptophan, shown to 
encompass tryptophan biosynthetic pathways. Our find-
ings further corroborate known microbial-derived cyclic 
dipeptides (Val-Leu and Val-Pro) associations with Sele-
nomonas, Aggregatibacter and Clostridium spp. (Fig. 4b) 
[50, 51]. Potential dietary dipeptides (Phe-Leu, Tyr-Pro 
and Tyr-Leu) co-occurred with Tannerella, Selenomonas, 
Prevotella, Porphyromonas and Clostridia [43, 44].

Discussion
We previously reported that obesity is significantly asso-
ciated with both inflammation and depressive symptoms 
[20, 21, 53]. Growing evidence also suggests that gut bac-
terial composition and their specialized metabolites may 
trigger chronic systemic inflammation in obesity-depres-
sion co-occurrences [2], highlighting the importance of 
the host immune and microbial interplay. In this study, 
we showed that the composition of salivary microbiota 
differ in co-occurring obesity-depressive symptoms and 
in relation to obesity, depression, and inflammation. We 
also showed that individual bacterial taxa were linked 
to specific host obesity-depressive symptoms ‘pheno-
type’, and small-molecule mediated microbe-microbe 
and microbe-host interactions likely play a critical role in 
these host phenotypes. While effects of obesity, inflam-
mation and depression phenotypes on gut microbiome 
have been studied previously, this study extends our 
previous work [33] that identified relationships between 
oral microbial composition, host stress profile and 
inflammatory status, by providing further evidence that 
oral microbial composition and metabolic profiles are 
also influenced by the specific host phenotypes, and are 
likely characterized by significant alterations in the bio-
synthetic precursors of neurotransmitters and signal-
ing dipeptides. These findings highlight a potential link 
between oral microbiota and the brain (i.e. oral-brain 
axis), adding to known gut microbiota-brain interactions 
[34–36], as well as biomarker utility of oral microbiome 
in studying brain and behavioral outcomes.

Examining the composition of the oral microbiome 
revealed significant differences based on obesity, depres-
sive symptomatology and comorbid obesity-depressive 

symptomatology. At the same time, the oral microbi-
ome composition differed by the host inflammatory pro-
cesses beyond the effects of obesity or depression. This 
emphasizes the need of further scrutinizing the central 
role of microbiome-mediated inflammation in obesity-
depressive symptomatology interrelationship and is 
closely aligned with the existing literature in chronic low-
grade inflammation at the intersection of depression and 
obesity.

Random forest classification indicated that oral micro-
biota is highly predictive of obesity-depressive symptom 
co-occurrences, suggesting specific microbial signatures 
associated with obesity-depression co-occurrences. 
Corroborating these findings, abundances of several 
microbes were differentially represented across the 
obesity-depressive symptomatology groups as revealed 
by the differential abundance analysis. Gram-negative 
microbes have been shown to be associated with inflam-
mation due to their LPS cell wall, the hallmark trait of 
Gram-negative bacteria. We found that Gram-negative 
microbes Prevotella, Aggregatibacter, Pseudomonas, 
Campylobacter, Selenomonas, Leptotrichia, Capnocy-
tophaga, and Gram-negative periodontal pathogens such 
as Treponema, Veillonella, Porphyromonas and Fusobac-
terium are enriched in Ob/higher-dep group. However, 
we found no significant correlation with BARIC scores 
that measured monocytes’ responsiveness to a β-AR ago-
nist during an inflammatory response to LPS, indicating 
inflammation regulatory processes [53]. Increased abun-
dance of Prevotella in the human oral cavity has been 
previously ambiguously associated with both health and 
disease conditions [26, 54, 55]. Pathogenic Campylobac-
ter has been shown to increase anxiety-like behavior in 
mice [56] and Aggregatibacter has been reported to be 
associated with inflammation. Notably, Gram-positive 
beneficial microbes Bifidobacterium and Lactobacillus 
depleted in Ob/higher-Dep group are in line with their 
activity as they are reported to exhibit antidepressant 
and anti-obesity effects, and reduced levels of TNF-α 
in both clinical and animal studies [57–59]. However, 
in the present study we found no significant correlation 
between Bifidobacterium and Lactobacillus with TNF-α 
production, suggesting other inflammation regulatory 
processes [53]. Our findings of Gram-negative and the 

Fig. 2 Oral microbiota is distinctly impacted by the host status in co-occurring obesity-depressive status. a Receiver operating characteristic curves 
(AUROC) illustrating classification accuracy of the random forest model across all groups (i.e. controls, Ob/lower Dep, Non-ob/higher-Dep, Ob/
higher-Dep). b Area under precision recall curves (AUPRC) illustrating performance of the random forest model across all groups. c Phylogenetic 
distribution of the most differentially ranked taxa across the groups. Branches of the de novo phylogenetic tree and the innermost ring are colored 
by phyla. Each barplot layer represents log-fold change abundances of taxa within the group in comparison to the healthy controls i.e. Non-ob/
lower-Dep. A multinomial regression model was employed for regressing log-fold change abundances against BARIC values. d Log-fold change 
abundances of Gram-negative microbes relative to Gram-positive microbes across host phenotypes

(See figure on next page.)
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Gram-positive taxa associated with obesity-depression 
are in line with recent oral microbiome findings from 
a study of obesity in a larger cohort [60]. In particular, 
Bifidobacterium, Lactobacillus, Selemonas, Clostridium, 
Porphyromonas and Pseudomonas association with obe-
sity makes them the most reliable markers of obesity. 
Future studies should examine the extent to which the 
oral microbial taxa associated with obesity-depression-
inflammation in our study are reciprocated in the gut 
microbiome within the same individuals or correlate with 
different gut microbial phenotypes.

We also found differences in relative abundance pat-
terns in many molecules across the obesity-depression 
symptoms groups, including quorum sensing molecules 
of microbiota, products of microbial transformation of 
dietary components or host molecules and aromatic 
amino acids. Importantly, metabolites of aromatic amino 
acids tryptophan and tyrosine, both of which are pre-
cursors of the neurotransmitter serotonin, have been 
mechanistically implicated in obesity-depression asso-
ciations [61], and play signaling roles in host-microbe 
interactions in the gut [62], were depleted in obese indi-
viduals compared to the control group. Host dietary 
dipeptides (Tyr-Leu and Phe-Leu) that were significantly 
less abundant among the obese individuals compared to 
the control group in this study are shown to display anti-
depressant-like activity as greater abundance of Tyr-Leu 
activates serotonin, dopamine and gamma aminobutyric 
acid (GABA) receptors in mice [43, 44]. Tyr-Pro and Ile-
Tyr, which were also depleted in the obese individuals in 
our study, are an inhibitor of angiotensin I-converting 
enzyme (ACE) with antihypertensive activity [63] and 
affect catecholamine (e.g. dopamine and noradrenaline) 
metabolism in the mouse brain [64], respectively. These 
findings offer initial mechanistic insight into comorbid 
obesity and depression, albeit complex.

Furthermore, we identified several structurally distinct 
dipeptides that were positively associated with inflam-
mation. To our knowledge, it is the first time that micro-
bial-derived dipeptide (Phe-Val, Tyr-Val and Phe-Phe) 
and cyclic dipeptides signaling molecules (Val-Pro and 
Val-Leu) were detected in salivary metabolomes. Bio-
synthetic gene clusters and the production of dipeptides 

(Phe-Val and Tyr-Val) have been recently identified in 
the human microbiome [42, 50, 51]. These molecules are 
known to play key roles in quorum sensing (cell-to-cell 
communication to maintain cell density) and virulence, 
and promote growth of beneficial Bifidobacterium [41]. 
A previous study showed that Phe-Phe derived from 
Clostridium sp. can inhibit host proteins by chemi-
cal modification of the host cellular proteins, especially 
by targeting cathepsins in human cell proteomes [52]. 
Given our findings that Phe-Phe was highly abundant in 
the Ob/higher-Dep group, its biological role in the cel-
lular inflammatory process which likely underlie obesity-
depression comorbidity warrants further investigation.

Our findings of specific microbe-metabolite interac-
tions with potential to influence host’s brain function-
ing offer potentially significant insight into the role 
of host immune-microbiome interplay in comorbid 
obesity-depression and is likely through microbial neu-
rotransmitters. Metabolic pathways for biosynthesis 
of neuroactive molecules in the genomes of human-
associated genera Clostridium and Tannerella have 
been recently reported [35]. Intriguingly, members of 
Clostridium and Tannerella co-occurred with trypto-
phan and have been detected/reported to harbor genes 
for tryptophan biosynthesis [35]. Members of Clostridia 
co-occurred with phenylalanine, a potential biosynthetic 
precursor of dopamine, epinephrine and tryptophan, 
have been shown to be key species in neuropsychiatric 
disorders and shown to produce dopamine in mice [36, 
65]. While almost all taxa that displayed significant posi-
tive correlations with specific neuroactive molecules in 
the co-occurrence analysis were Gram-negative taxa, 
beneficial Gram-positive taxa including the genera Bifi-
dobacterium and Lactobacillus, which were greatly 
depleted in obese-depressive individuals showed no sig-
nificant positive co-occurrences with neurotransmitters 
and neuroactive dipeptides. This suggests that microbial 
neuroactive molecules modulated through Gram-nega-
tive taxa likely play pivotal roles in obesity-inflammation-
depression interrelationships. Many of these molecules 
including the dipeptides, shown to have potential to cross 
the intestinal barrier and blood brain barrier, may modu-
late the oral–brain connection through neurotransmitter 

(See figure on next page.)
Fig. 3 Feature-based molecular network of the ions detected in salivary metabolomes of obese-depressive group. The molecular network was 
generated by 293 nodes with 41 molecular clusters, which are sub-networks of a larger network generated via Global Natural Products Social 
Molecular Networking (GNPS). Nodes (small circles with m/z values) represent unique tandem mass spectrometry (MS/MS) consensus spectra and 
edges (lines) drawn between the nodes correspond to similarity (cosine score) between MS/MS fragmentation. Annotation is performed by MS/
MS spectral library matching in GNPS platform. Pie charts within the individual nodes qualitatively represent specific ion presence across groups: 
non-obese and non-depressive, obese, depressive, and both obese and depressive symptom groups, as well as blank samples. Molecular clusters 2, 
3, 4, 5, 9, 17, 19, 30 and 34 represent structural diversity of dipeptides. Molecular clusters 2, 14 and 26 represent aromatic amino acids tryptophan, 
tyrosine and phenylalanine
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signaling pathways [35, 65]. Such neurotransmitters and 
their biosynthetic precursors may offer promising targets 
for therapeutics.

There are caveats in this study that merit caution: in 
an effort to recruit individuals with subclinical levels of 
depressive mood co-occurring with a range of obesity 
without antidepressant intake or heterogeneous clini-
cal depression, the participants exhibited low levels of 
BDI scores on average which may limit the applicability 
of our findings to clinical depression. At the same time, 
it is notable that host-microbiome-metabolome signa-
tures and their interactions appear to be salient in patho-
physiology of subclinical depression symptomatology. 
We also acknowledge a small sample size of the study 
participants, despite the expanded specimen sample size 
owing to multiple saliva collections. Notably, all waking 
saliva samples were collected prior to oral hygiene activ-
ity and ingestion of food or drink, or after an oral rinse 
with water for non-waking samples. However, additional 
factors such as diet, oral hygiene practices and oral health 
status (i.e., dental caries and periodontitis) have been 
unequivocally shown to impact the oral microbiome, 
were not recorded in this study. High carbohydrate and 
sugar consumption associated with a Western diet have 
been shown to lead to poor oral health as well as obesity, 
and further studies must be take these into account to 
gain further understanding of the factors impacting the 
human oral microbiome in obese-depression interrela-
tionships [66, 67].

Conclusions
Despite these limitations, our study significantly expands 
the evidence for microbial specialized metabolites and 
peptides with neuroactive potential, adding further 
research avenues into microbiome-host physiology inter-
actions and there is a great deal of clinical potential in 
understanding and modifying these interactions. Fur-
thermore, it provides initial evidence for a foundation of 
the microbial oral-brain axis in addition to the gut-brain 
axis in the context of obesity-depression-inflammation 
interrelationships.

Methods
Participants
A total of 60 lean to obese participants (20-65 years old) 
with a range of subclinical depressive symptoms, partici-
pating in a larger study investigating the impact of obe-
sity on vascular inflammation and immune cell activation 
in normotension versus stage 1 hypertension (Basal sys-
tolic blood pressure (BP): 130-140 mmHg and diastolic 
BP: 80-90 mmHg), were included in this study and pro-
vided saliva samples. Participant inclusion/exclusion 
criteria were previously described in detail [33]. Briefly, 
participants were excluded if they had diabetes, recent 
history of smoking or substance abuse, history of cardio-
vascular disease, history of bronchospastic pulmonary 
disease, inflammatory disorders or health-related factors 
affecting immune function, psychosis, major depressive 
disorder, and stage 2 clinical hypertension or with aver-
age BP ≥145/90 mmHg measured at the lab visit from six 
measurements on two separate days, using a Dinamap 
Compact BP monitor (Critikon, Tampa, FL). Sociode-
mographic characteristics (i.e., age, sex, and race) and 
anthropometrics (i.e., height, weight, hip and waist cir-
cumference) data were collected.

Obesity characterization
BMI was calculated based on height and weight measure-
ments (kg/m2), and individuals were dichotomized into 
two groups, based on our prior findings of little notable 
differences in inflammatory or depressive symptoms state 
between lean and overweight individuals (ref ): non-obese 
(BMI < 30 kg/m2) and obese (BMI ≥30 kg/m2). For fur-
ther adiposity characterization dual x-ray absorptiometry 
was performed to calculate %total and trunk body fat.

Depressive symptomatology assessment
Depressive symptoms were assessed using the Beck 
Depression Inventory (BDI-Ia), a comprehensive and 
clinically robust self-report 21-item questionnaire 
(Beck et  al., 1996). Each question was scored from 0 to 
3, summed to a BDI total score (BDI-T), and then sub-
categorized into cognitive-affective (BDI-C) and somatic 

Fig. 4 Differentially abundant molecular clusters and microbe-metabolite co-occurrences in obesity-inflammation-depressive and inflammation 
status. a Sample plot showing log-ratio of differential molecular features relative to cluster 1 (see left panel). The corresponding right panels 
represent a scatterplot of samples showing log-ratio of differential features versus inflammation status. Individual samples are colored by health 
status. Statistical significance of the log-ratios was evaluated by pairwise comparisons using Wilcoxon rank sum test. A linear regression model was 
employed for regressing log-ratios against BARIC values. b Visualization of microbe-metabolite co-occurrences. Arrows represent microbes and 
dots represent metabolites. The x and y axes represent principal components of the microbe-metabolite conditional probabilities as determined 
by the neural network. Distances between arrow tips quantify co-occurrence strengths between microbes, while directionality of the arrows 
indicates which microbes and metabolites have a high probability of co-occurring. Only known microbiota-derived molecules are labeled. Microbial 
abundances are estimated using differential abundance analysis via multinomial regression

(See figure on next page.)
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(BDI-S) depression scores based on the items such as 
BDI-C: guilt, pessimism and BDI-S: fatigue, sleep disrup-
tion [68].

Based on obesity status and mean BDI-T scores, par-
ticipants were categorized into the following four-groups 
with a total of 261 saliva samples collected from five time 
points across the day from 60 participants as described 
in Supplementary Information (see saliva collection); 
non-obese and lower-depressive controls (N  = 10 par-
ticipants; n = 43 samples; “controls”), obese and lower-
depressive (N = 18; n = 74; “Ob/lower-Dep”), non-obese 
and higher-depressive symptoms (N = 5; n = 22; “Non-
ob/higher-Dep”), and obese and higher-depressive symp-
toms (N = 27; n = 122; “Ob/higher-Dep”).

Blood collection and cellular inflammation assay
For detailed protocol, see Supplementary Materials and 
Methods section. Briefly, LPS-stimulated blood was 
incubated with beta-adrenergic receptor agonist isopro-
terenol and evaluated for intracellular monocyte TNF-α 
production using flow cytometry, as previously described 
[53]. Monocyte beta-adrenergic receptor-mediated 
inflammation control (i.e., “BARIC”, a measure of sys-
temic inflammation) was calculated as the arithmetic 
difference in %TNF-α-producing monocytes between 
LPS + media-treated and LPS + isoproterenol-treated 
samples.

Saliva collection, DNA extraction and 16S sequencing
For detailed protocols of saliva collection procedure and 
16S analysis, see Supplementary Materials and Methods 
section. Saliva from each participant was collected at five 
time points across a single day: waking, mid-morning 
(10:00 h), midday (12:00 h), afternoon (14:00 h), and even-
ing (17:00 h).

Statistical analyses
Statistical analyses were conducted using R software 
(version 3.6.3) in RStudio (version 1.2.5019). First, asso-
ciations among continuous and categorical metadata 
variables i.e., age, obesity (BMI, %total body fat and 
trunk fat), BARIC, BDI scores (BDI-T, BDI-C and BDI-
S) were assessed using univariate Spearman correlations 
across all participants using psych package in R software. 
We applied a simple linear mixed-effects model (LMM) 
fit to model two alpha diversity measures (Shannon 
index and Faith’s PD) using restricted maximum likeli-
hood (REML) with a random intercept by participant to 
account for repeated measurements across the day, and 
main effects of obesity status, depressive symptom sta-
tus, and BARIC. Age, sex, race were included as covari-
ates in the model. Beta-diversity between groups was 
tested on the unweighted UniFrac distance metric using 

non-parametric PERMANOVA with distribution-free 
inferences achieved by 999 permutations for each covari-
ate separately and constrained by participant to adjust 
for 3-5 samples per participant. A test of homogeneity 
of dispersion was conducted with the same constraints 
using PERMDISP2 procedure with betadisper function 
in vegan package to test overall species composition 
differences within the groups. Next, post-hoc pairwise 
comparison was performed using pairwiseAdonis with 
Benjamini-Hochberg false discovery rate (FDR) correc-
tions for multiple testing within the vegan package in R. 
Alpha level was set to 0.05 for both uncorrected and FDR 
corrected tests.

Random forest classifications
A random forest sample classifier was trained based 
on the 16S data with tuned hyperparameters (num.
trees = 500, mtry = 45) in the 20-time repeated, strati-
fied 5-fold cross-validation using caret package in R 
software. The dataset was repeatedly split into five 
groups with similar class distributions, and we trained 
the classifier on 80% of the data, and made predictions 
on the remaining 20% of the data in each fold iteration. 
We next evaluated the performance of the classifier 
on predicting the four groups (i.e. controls, Ob/lower-
Dep, Non-ob/higher-Dep, Ob/higher-Dep) using both 
area under the receiver operating characteristic curve 
(AUROC) and area under the precision-recall curve 
(AUPRC) based on the samples’ predictions in the hold-
out test set using PRROC package in R. To account for 
multiple samples per-participant, we next performed 
20-time repeated group 3-fold cross-validation, where 
each participant is in a different testing fold and also 
samples from the same subjects are never in both test-
ing and training folds.

Small molecule metabolite detection through mass 
spectrometry
Saliva was dried and resuspended in 80% MeOH− 20% 
water and submitted to untargeted LC/MS/MS analy-
sis. For a detailed protocol, see Supplementary Materials 
and Methods section. To examine the metabolic poten-
tial in the oral ecosystem and understand the intimate 
link between salivary microbiota and metabolome in 
obesity-depressive symptom relationships, we conducted 
LC-MS/MS analysis of the saliva samples from the same 
participants who were first investigated for taxonomic 
profiling in the above analyses [47, 69]. By integrating 
feature based molecular networking [70] with an auto-
mated chemical classification [46] and reference frame 
based differential abundance analysis [71] approaches, we 
revealed differential representation of the key molecular 
features in obesity and depressive symptom conditions.
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Feature based mass spectral molecular networking (FBMN) 
and chemically‑informed comparison of metabolomic 
profiles
A data matrix of MS1 features that triggered MS2 scans 
were uploaded along with the metadata file to Global 
Natural Product Social Molecular Networking (GNPS) 
(https:// gnps. ucsd. edu) [47]. Feature-based molecular 
networking (version release_20) [70] was performed, and 
library IDs were generated (see Supplementary Materi-
als and Methods section). To further gain a broad over-
view of the chemistry of salivary metabolomes from MS/
MS data, utilizing an automated chemical classification 
approach [46], available via GNPS platform, we per-
formed a chemically-informed comparison of untargeted 
metabolomic profiles across the four groups.

Differential ranking of taxa and metabolomic features
Differential ranks of taxa and metabolomic features 
were calculated using Songbird [71], which uses refer-
ence frames. Age, sex, race and time of day of saliva 
collection were provided as covariates in generating a 
multinomial regression model based on microbial fea-
tures. Differential microbial features were visualized 
alongside de novo phylogenetic tree constructed from 
the representative sequences of amplicon sequence vari-
ants (ASVs) obtained in this study using EMPress [23]. 
Statistical significance was tested by applying LMMs on 
log-ratios of the top-and bottom-20 ranked microbes 
for each group obtained using Qurro rank plots [72]. We 
applied a linear regression model by utilizing log-ratios of 
bacterial features and BARIC inflammatory scores to test 
interactions between obesity-depressive symptoms and 
inflammation relationships.

To mitigate the inter-batch effect often observed in the 
metabolomics data due to technical limitations in the num-
ber of samples processed in a batch, relative abundances 
were adjusted for batch specific-effect along with age, sex, 
race and time of day, utilizing the multivariate model in 
the reference frame-based approach [71]. We chose cluster 
1 (90 features) as the denominator (“reference frame”) for 
the log-ratio calculations due to its high prevalence across 
samples, and moreover, GNPS analyses groups structurally 
similar molecules into a cluster. Statistical significance was 
tested by applying Friedman test to account for repeated 
measurements, prior to multiple pairwise comparison anal-
ysis using Wilcoxon rank-sum tests with Benjamini-Hoch-
berg FDR corrections for multiple testing.

Microbe‑metabolite interactions through their 
co‑occurrence probabilities
Permutation based differential abundance testing was 
performed using discrete false-discovery rate correction 

method [73] in Calour (https:// github. com/ bioco re/ cal-
our) to remove batch-specific MS1 molecular features. 
Annotated features that were not identified as batch-
specific were included in the co-occurrence analysis. 
Using ASV (N = 1516) and annotated molecular fea-
tures (N = 155) as inputs to train neural networks [74] in 
QIIME 2 [75], we estimated the conditional probability 
that each molecule is present given the presence of a spe-
cific microorganism. The resulting conditional probabil-
ity matrix representing microbe-metabolite interactions 
was visualized as an EMPeror biplot [74].

Abbreviations
IL: Interleukin; TNF-α: Tumor necrosis factor alpha; CRP: C-reactive protein; CNS: 
Central nervous system; BBB : Blood-brain barrier; LPS: Lipopolysaccharide; AD: 
Alzheimer’s disease; GABA: Gamma-aminobutyric acid; BDI-T: Beck Depression 
Inventory total score; BARIC: Monocyte beta-adrenergic receptor-mediated 
inflammation control; BMI: Body mass index; PCoA: Principal coordinates 
analysis; AUROC: Area under the receiver operating characteristic curve; 
AUPRC: Area under precision recall curve; Controls: Non-obese and lower-
depressive controls; Ob/lower-Dep: Obese and lower-depressive; Non-ob/
higher-Dep: Non-obese and higher-depressive symptoms; Ob/higher-Dep: 
Obese and higher-depressive symptoms; LC-MS/MS: Liquid chromatography-
tandem mass spectrometry; REML: Restricted maximum likelihood; FDR: False 
discovery rate; FBMN: Feature based mass spectral molecular networking; 
GNPS: Global Natural Product Social Molecular Networking; ASVs: Amplicon 
sequence variants.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12866- 022- 02483-4.

Additional file 1: Supplementary Materials and Methods. Figure S1. 
Matrix of plots illustrating Pearson correlations among obesity, depres-
sive symptoms, inflammation and sex, across participants. Histograms 
of the variables displayed along the matrix diagonal represent distribu-
tion of samples and scatter plots of variable pairs are displayed in the off 
diagonal. Correlation coefficients displayed represent the slopes of the 
least-squares reference lines in the scatter plots. Figure S2. Per sample 
based RF analysis. (a), Receiver operating characteristic curves (AUROC) 
illustrating classification accuracy of the random forest model across all 
groups (i.e. controls, Ob/lower Dep, Non-ob/higher-Dep, Ob/higher-
Dep) and (b), Area under precision recall curves (AUPRC) illustrating 
performance of the random forest model across all groups. Figure S3. 
Chemical diversity captured in salivary metabolomes. Branches in the 
circular chemical tree are colored according to the class type and branch 
labels represent putatively annotated chemical features at subclass level 
based on chemical taxonomy. Bar graphs at the leaf tips illustrate relative 
abundance of molecules across groups.

Additional file 2: Supplementary Table 1. Log-fold change abundances 
of most differentially ranked microbes across host phenotypes in com-
parison to the control group. Supplementary Table 2. List of metabolites 
detected in saliva samples of obese, depressed and comorbid obese-
depressed adults.

Acknowledgements
Not applicable.

Authors’ contributions
SH2 designed and obtained funding for the study. GA performed the data 
analysis. JNK, KW, AT, ADS and SH1 assisted with the data analysis. GA, SH2, 
PCD, ADS and RK interpreted the results. GA, EAT and SH2 wrote the original 

https://gnps.ucsd.edu
https://github.com/biocore/calour
https://github.com/biocore/calour
https://doi.org/10.1186/s12866-022-02483-4
https://doi.org/10.1186/s12866-022-02483-4


Page 15 of 17Aleti et al. BMC Microbiology           (2022) 22:75  

manuscript. GA, JNK, EAT, KW, AT, SH1, ADS, SH2, PCD and RK reviewed and 
edited the manuscript. All authors have read and approved the manuscript.

Funding
This work was funded in part by NIH R01-HL90975 and R01-90975S1 (Hong), 
which funded study design, blood collection and cellular inflammation 
assay, interpretation of the results, and the writing of the manuscript. Seed 
Grant from the Center for Microbiome Innovation from UC San Diego (Hong) 
funded the microbiome, metabolomics data collection and data analyses. 
Aleti was supported by Wayne State University Endowment Fund (Hong) and 
the Kavli Institute for Brain and Mind (KIBM) Innovative Research Grant (Aleti). 
Co-authors were supported by trainee fellowship from NIMH T32-MH019934 
(Kohn) and T32-MH018399 (Troyer). Funders played no role in decision making 
of the study design, collection, analyses, and interpretation, and writing of the 
manuscript.

Availability of data and materials
Sample metadata, the raw and processed 16S sequencing data and their asso-
ciated feature tables, and preparation metadata are available in Qiita Study ID 
11259 (https:// qiita. ucsd. edu/ study/ descr iption/ 11259). Mass spectral files and 
LC-MS/MS preparation metadata are accessible from the MassIVE repository 
accession ID MSV000083077 (ftp:// massi ve. ucsd. edu/ MSV00 00830 77). The 
GNPS feature based molecular networking job is available at https:// gnps. 
ucsd. edu/ Prote oSAFe/ status. jsp? task= f192a 0030f 69422 4a0ba 8f082 23a13 23.

Declarations

Ethics approval and consent to participate
All participants provided written informed consent to the protocol prior to 
the commencement of the study. The Ethics Committee of the University 
of California, San Diego, CA, USA, approved the study design as well as the 
procedure for obtaining informed consent (IRB reference number: 171027). All 
experiments were performed in accordance with the approved guidelines of 
UCSD Human Research Protections Program.

Consent for publication
Not applicable.

Competing interests
PCD serves as a scientific advisor to Sirenas, Cybele and Galileo. PCD is also a 
founder and scientific advisor of Ometa and Enveda with approval by UC San 
Diego.

Author details
1 Department of Psychiatry, University of California San Diego, La Jolla, CA 
92093, USA. 2 Center for Microbiome Innovation, University of California San 
Diego, La Jolla, CA 92093, USA. 3 Skaggs School of Pharmacy and Pharma-
ceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA. 
4 Department of Pediatrics, University of California San Diego, La Jolla, CA 
92093, USA. 5 Collaborative Mass Spectrometry Innovation Center, University 
of California San Diego, La Jolla, CA 92093, USA. 6 Department of Computer 
Science and Engineering, University of California San Diego, La Jolla, CA 92093, 
USA. 7 Department of Bioengineering, University of California San Diego, La 
Jolla, CA 92093, USA. 8 Herbert Wertheim School of Public Health and Human 
Longevity Science, University of California San Diego, La Jolla, CA 92093, USA. 

Received: 18 August 2021   Accepted: 25 February 2022

References
 1. Smith DJ, Court H, McLean G, Martin D, Martin JL, Guthrie B, et al. Depres-

sion and multimorbidity: a cross-sectional study of 1,751,841 patients in 
primary care. J Clin Psychiatry. 2014;75(11):1202–8.

 2. Schachter J, Martel J, Lin CS, Chang CJ, Wu TR, Lu CC, et al. Effects of obe-
sity on depression: a role for inflammation and the gut microbiota. Brain 
Behav Immun. 2018;69:1–8 Academic Press Inc.

 3. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. 
Global, regional, and national incidence, prevalence, and years lived with 

disability for 354 diseases and injuries for 195 countries and territories, 
1990-2017: a systematic analysis for the global burden of disease study 
2017. Lancet. 2018;392(10159):1789–858.

 4. Mannan M, Mamun A, Doi S, Clavarino A. Is there a bi-directional relation-
ship between depression and obesity among adult men and women? 
Systematic review and bias-adjusted meta analysis. Asian J Psychiatry. 
2016;21:51–66 Elsevier B.V.

 5. Dawes AJ, Maggard-Gibbons M, Maher AR, Booth MJ, Miake-Lye I, Beroes 
JM, et al. Mental health conditions among patients seeking and undergo-
ing bariatric surgery a meta-analysis. JAMA. 2016;315(2):150–63.

 6. Pratt LA, Brody DJ. Depression and obesity in the U.S. adult household 
population, 2005–2010. NCHS data brief, no 167. Hyattsville: National 
Center for Health Statistics; 2014.

 7. Luppino FS, De Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BWJH, 
et al. Overweight, obesity, and depression: a systematic review and meta-
analysis of longitudinal studies. Arch Gen Psychiatry. 2010;67:220–9.

 8. Woo YS, Seo HJ, McIntyre RS, Bahk WM. Obesity and its potential effects 
on antidepressant treatment outcomes in patients with depressive 
disorders: a literature review. Int J Mol Sci. 2016;17(1):80 MDPI AG.

 9. Scully T. Public health: society at large. Nature. 2014;508(7496):S50–1.
 10. Capuron L, Lasselin J, Castanon N. Role of adiposity-driven inflammation 

in depressive morbidity. Neuropsychopharmacology. 2017;42:115–28 
Nature Publishing Group.

 11. Milano W, Ambrosio P, Carizzone F, De Biasio V, Di Munzio W, Foia MG, 
et al. Depression and obesity: analysis of common biomarkers. Diseases. 
2020;8(2):23.

 12. Young JJ, Bruno D, Pomara N. A review of the relationship between pro-
inflammatory cytokines and major depressive disorder. J Affect Disord. 
2014;169:15–20 Elsevier B.V.

 13. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and 
metabolic disease. Nat Rev Immunol. 2011;11:85–97.

 14. Dalmas E, Clément K, Guerre-Millo M. Defining macrophage phenotype 
and function in adipose tissue. Trends Immunol. 2011;32:307–14.

 15. Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to 
the brain with stress and inflammation: a novel axis of immune-to-brain 
communication that influences mood and behavior. Front Neurosci. 
2015;8:447. https:// doi. org/ 10. 3389/ fnins. 2014. 00447.

 16. Miller AH, Raison CL. The role of inflammation in depression: from 
evolutionary imperative to modern treatment target. Nat Rev Immunol. 
2016;16:22–34 Nature Publishing Group.

 17. Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes 
OD. Inflammatory markers in depression: a meta-analysis of mean dif-
ferences and variability in 5,166 patients and 5,083 controls. Brain Behav 
Immun. 2020;87:901–9 Academic Press Inc.

 18. Milaneschi Y, Lamers F, Berk M, Penninx BWJH. Depression heterogeneity 
and its biological underpinnings: toward immunometabolic depression. 
Biol Psychiatry. 2020;88:369–80 Elsevier USA.

 19. Hong S. Inflammation at the interface of physical and neuropsychiatric 
outcomes: investigation of neuroendocrine regulatory pathways to inform 
therapeutics. Brain Behav Immun. 2020;88:270–4 Academic Press Inc.

 20. Kohn JN, Cabrera Y, Dimitrov S, Guay-Ross N, Pruitt C, Shaikh FD, et al. Sex-
specific roles of cellular inflammation and cardiometabolism in obesity-
associated depressive symptomatology. Int J Obes. 2019;43(10):2045–56.

 21. Cheng T, Dimitrov S, Pruitt C, Hong S. Glucocorticoid mediated regulation 
of inflammation in human monocytes is associated with depressive 
mood and obesity. Psychoneuroendocrinology. 2016;66:195–204.

 22. Sharma S, Fulton S. Diet-induced obesity promotes depressive-like 
behaviour that is associated with neural adaptations in brain reward 
circuitry. Int J Obes. 2013;37(3):382–9.

 23. Cantrell K, Fedarko MW, Rahman G, McDonald D, Yang Y, Zaw T, et al. 
EMPress enables tree-guided, interactive, and exploratory analyses of 
multi-omic data sets. mSystems. 2021;6(2):e01216-20. https:// doi. org/ 10. 
1128/ mSyst ems. 01216- 20.

 24. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Meta-
bolic endotoxemia initiates obesity and insulin resistance. Diabetes. 
2007;56(7):1761–72.

 25. Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The 
Human Oral Microbiome Database: a web accessible resource for inves-
tigating oral microbe taxonomic and genomic information. Database 
(Oxford). 2010;2010:baq013. https:// doi. org/ 10. 1093/ datab ase/ baq013.

https://qiita.ucsd.edu/study/description/11259
ftp://massive.ucsd.edu/MSV000083077
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f192a0030f694224a0ba8f08223a1323
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f192a0030f694224a0ba8f08223a1323
https://doi.org/10.3389/fnins.2014.00447
https://doi.org/10.1128/mSystems.01216-20
https://doi.org/10.1128/mSystems.01216-20
https://doi.org/10.1093/database/baq013


Page 16 of 17Aleti et al. BMC Microbiology           (2022) 22:75 

 26. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu WH, et al. The 
human oral microbiome. J Bacteriol. 2010;192(19):5002–17.

 27. Schmidt TSB, Hayward MR, Coelho LP, Li SS, Costea PI, Voigt AY, et al. 
Extensive transmission of microbes along the gastrointestinal tract. Elife. 
2019;8:e42693.

 28. Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I, Narushima S, et al. 
Ectopic colonization of oral bacteria in the intestine drives TH1 cell induc-
tion and inflammation. Science (80-). 2017;358(6361):359–65.

 29. Dickson I. Gut microbiota: oral bacteria: a cause of IBD? Nat Rev Gastroen-
terol Hepatol. 2018;15:4–5 Nature Publishing Group.

 30. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. 
Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for 
disease causation and treatment with small-molecule inhibitors. Sci Adv. 
2019;5(1):eaau3333.

 31. Farrokhi V, Nemati R, Nichols FC, Yao X, Anstadt E, Fujiwara M, et al. Bacte-
rial lipodipeptide, lipid 654, is a microbiome-associated biomarker for 
multiple sclerosis. Clin Transl Immunol. 2013;2(11):e8.

 32. Shen L. Gut, oral and nasal microbiota and Parkinson’s disease. Microb 
Cell Factories. 2020;19:50 BioMed Central Ltd.

 33. Kohn JN, Kosciolek T, Marotz C, Aleti G, Guay-Ross RN, Hong SH, et al. Dif-
fering salivary microbiome diversity, community and diurnal rhythmicity 
in association with affective state and peripheral inflammation in adults. 
Brain Behav Immun. 2020;87:591–602.

 34. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous 
bacteria from the gut microbiota regulate host serotonin biosynthesis. 
Cell. 2015;161(2):264–76.

 35. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. 
The neuroactive potential of the human gut microbiota in quality of life 
and depression. Nat Microbiol. 2019;4(4):623–32.

 36. Olsen I, Hicks SD. Oral microbiota and autism spectrum disorder (ASD). 
J Oral Microbiol. 2019;12(1):1702806. https:// doi. org/ 10. 1080/ 20002 297. 
2019. 17028 06.

 37. Olsen I. Update on bacteraemia related to dental procedures. Transfus 
Apher Sci. 2008;39(2):173–8.

 38. Aleti G, Baker JL, Tang X, Alvarez R, Dinis M, Tran NC, et al. Identifica-
tion of the bacterial biosynthetic gene clusters of the oral microbiome 
illuminates the unexplored social language of bacteria during health and 
disease. MBio. 2019;10(2):1–19.

 39. Garg N, Luzzatto-Knaan T, Melnik AV, Caraballo-Rodríguez AM, Floros DJ, 
Petras D, et al. Natural products as mediators of disease. Nat Prod Rep. 
2017;34:194–219 Royal Society of Chemistry.

 40. Donia MS, Fischbach MA. Small molecules from the human microbiota. 
Science (80-). 2015;349(6246):1254766.

 41. Hatanaka M, Morita H, Aoyagi Y, Sasaki K, Sasaki D, Kondo A, et al. Effective 
bifidogenic growth factors cyclo-Val-Leu and cyclo-Val-Ile produced by 
Bacillus subtilis C-3102 in the human colonic microbiota model. Sci Rep. 
2020;10(1):1–9.

 42. Cao L, Shcherbin E, Mohimani H. A metabolome- and metagenome-wide 
association network reveals microbial natural products and microbial 
biotransformation products from the human microbiota. mSystems. 
2019;4(4):e00387–19.

 43. Mizushige T, Uchida T, Ohinata K. Dipeptide tyrosyl-leucine exhibits 
antidepressant-like activity in mice. Sci Rep. 2020;10(1):1–0.

 44. Kanegawa N, Suzuki C, Ohinata K. Dipeptide Tyr-Leu (YL) exhibits 
anxiolytic-like activity after oral administration via activating seroto-
nin 5-HT1A, dopamine D1 and GABAA receptors in mice. FEBS Lett. 
2010;584(3):599–604.

 45. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker 
S, et al. Gut microbiome structure and metabolic activity in inflammatory 
bowel disease. Nat Microbiol. 2019;4(2):293–305.

 46. Tripathi A, Vázquez-Baeza Y, Gauglitz JM, Wang M, Dührkop K, Nothias-
Esposito M, et al. Chemically informed analyses of metabolomics mass 
spectrometry data with Qemistree. Nat Chem Biol. 2021;17(2):146–51.

 47. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing 
and community curation of mass spectrometry data with Global Natural 
Products Social Molecular Networking. Nat Biotechnol. 2016;34:828–37 
Nature Publishing Group.

 48. Aksenov AA, Da Silva R, Knight R, Lopes NP, Dorrestein PC. Global chemi-
cal analysis of biology by mass spectrometry. Nat Rev Chem. 2017;1:1–20 
Nature Publishing Group.

 49. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. 
Proposed minimum reporting standards for chemical analysis: Chemical 
Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). 
Metabolomics. 2007;3(3):211–21.

 50. Park HB, Crawford JM. Pyrazinone protease inhibitor metabolites from 
Photorhabdus luminescens. J Antibiot (Tokyo). 2016;69(8):616–21.

 51. Wyatt MA, Mok MCY, Junop M, Magarvey NA. Heterologous expression 
and structural characterisation of a pyrazinone natural product assembly 
line. ChemBioChem. 2012;13(16):2408–15.

 52. Guo CJ, Chang FY, Wyche TP, Backus KM, Acker TM, Funabashi M, et al. 
Discovery of reactive microbiota-derived metabolites that inhibit host 
proteases. Cell. 2017;168(3):517–526.e18.

 53. Hong S, Dimitrov S, Cheng T, Redwine L, Pruitt C, Mills PJ, et al. Beta-
adrenergic receptor mediated inflammation control by monocytes is 
associated with blood pressure and risk factors for cardiovascular disease. 
Brain Behav Immun. 2015;50:31–8.

 54. Zhang L, Liu Y, Zheng HJ, Zhang CP. The oral microbiota may have influ-
ence on oral cancer. Front Cell Infect Microbiol. 2020;9:476.

 55. Larsen JM. The immune response to Prevotella bacteria in chronic inflam-
matory disease. Immunology. 2017;151:363–74 Blackwell Publishing Ltd.

 56. Goehler LE, Park SM, Opitz N, Lyte M, Gaykema RPA. Campylobacter jejuni 
infection increases anxiety-like behavior in the holeboard: possible ana-
tomical substrates for viscerosensory modulation of exploratory behavior. 
Brain Behav Immun. 2008;22(3):354–66.

 57. Abildgaard A, Elfving B, Hokland M, Lund S, Wegener G. Probiotic treat-
ment protects against the pro-depressant-like effect of high-fat diet in 
Flinders Sensitive Line rats. Brain Behav Immun. 2017;65:33–42.

 58. Abildgaard A, Elfving B, Hokland M, Wegener G, Lund S. Probiotic treat-
ment reduces depressive-like behaviour in rats independently of diet. 
Psychoneuroendocrinology. 2017;79:40–8.

 59. Schellekens H, Torres-Fuentes C, van de Wouw M, Long-Smith CM, 
Mitchell A, Strain C, et al. Bifidobacterium longum counters the effects of 
obesity: partial successful translation from rodent to human. EBioMedi-
cine. 2021;63:103176.

 60. Yang Y, Cai Q, Zheng W, Steinwandel M, Blot WJ, Shu XO, et al. Oral micro-
biome and obesity in a large study of low-income and African-American 
populations. J Oral Microbiol. 2019;11(1):1650597.

 61. Chaves Filho AJM, Lima CNC, Vasconcelos SMM, de Lucena DF, Maes M, 
Macedo D. IDO chronic immune activation and tryptophan metabolic 
pathway: a potential pathophysiological link between depression and 
obesity. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80:234–49 
Elsevier Inc.

 62. Roager HM, Licht TR. Microbial tryptophan catabolites in health and 
disease. Nat Commun. 2018;9:1–0 Nature Publishing Group.

 63. Yamamoto N, Maeno M, Takano T. Purification and characterization of 
an antihypertensive peptide from a yogurt-like product fermented by 
Lactobacillus helveticus CPN4. J Dairy Sci. 1999;82(7):1388–93.

 64. Moriyasu K, Ichinose T, Nakahata A, Tanaka M, Matsui T, Furuya S. The 
dipeptides Ile-Tyr and Ser-Tyr exert distinct effects on catecholamine 
metabolism in the mouse brainstem. Int J Pept. 2016;2016:6020786.

 65. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, et al. Criti-
cal role of gut microbiota in the production of biologically active, free 
catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver 
Physiol. 2012;303(11):G1288–95.

 66. Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, et al. 
Sequencing ancient calcified dental plaque shows changes in oral 
microbiota with dietary shifts of the Neolithic and industrial revolutions. 
Nat Genet. 2013;45(4):450–5.

 67. Goodson JM, Hartman ML, Shi P, Hasturk H, Yaskell T, Vargas J, et al. The 
salivary microbiome is altered in the presence of a high salivary glucose 
concentration. PLoS One. 2017;12(3):e0170437.

 68. Beck AT, Steer RA, Ball R, Ranieri WF. Comparison of Beck depres-
sion inventories -IA and -II in psychiatric outpatients. J Pers Assess. 
1996;67(3):588–97.

 69. Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bousli-
mani A, et al. Reproducible molecular networking of untargeted mass 
spectrometry data using GNPS. Nat Protoc. 2020;15(6):1954–91.

 70. Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. 
Feature-based molecular networking in the GNPS analysis environment. 
Nat Methods. 2020;17(9):905–8.

https://doi.org/10.1080/20002297.2019.1702806
https://doi.org/10.1080/20002297.2019.1702806


Page 17 of 17Aleti et al. BMC Microbiology           (2022) 22:75  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 71. Morton JT, Marotz C, Washburne A, Silverman J, Zaramela LS, Edlund A, 
et al. Establishing microbial composition measurement standards with 
reference frames. Nat Commun. 2019;10(1):1.

 72. Fedarko MW, Martino C, Morton JT, González A, Rahman G, Marotz CA, 
et al. Visualizing ‘omic feature rankings and log-ratios using Qurro. NAR 
Genomics Bioinform. 2020;2(2):lqaa023.

 73. Jiang L, Amir A, Morton JT, Heller R, Arias-Castro E, Knight R. Discrete 
false-discovery rate improves identification of differentially abundant 
microbes. mSystems. 2017 Dec;26:2(6).

 74. Morton JT, Aksenov AA, Nothias LF, Foulds JR, Quinn RA, Badri MH, et al. 
Learning representations of microbe–metabolite interactions. Nat Meth-
ods. 2019;16(12):1306–14.

 75. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, 
et al. Reproducible, interactive, scalable and extensible microbiome data 
science using QIIME 2. Nat Biotechnol. 2019;37:852–7 Nature Publishing 
Group.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Salivary bacterial signatures in depression-obesity comorbidity are associated with neurotransmitters and neuroactive dipeptides
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Participant characteristics
	Obesity is associated with depressive symptomatology and inflammation
	Oral microbiota differ based on obesity-depressive symptom groups and inflammation status
	Oral microbiota is predictive of the host obesity-depressive symptomatology
	Key oral bacterial taxa are associated with specific host phenotype
	Small molecules detected in saliva are associated with obesity-depressive symptom-inflammation relationships
	Key oral microbes co-occurred with biosynthetic precursors of the neurotransmitters and dipeptide signaling molecules

	Discussion
	Conclusions
	Methods
	Participants
	Obesity characterization
	Depressive symptomatology assessment
	Blood collection and cellular inflammation assay
	Saliva collection, DNA extraction and 16S sequencing
	Statistical analyses
	Random forest classifications
	Small molecule metabolite detection through mass spectrometry
	Feature based mass spectral molecular networking (FBMN) and chemically-informed comparison of metabolomic profiles
	Differential ranking of taxa and metabolomic features
	Microbe-metabolite interactions through their co-occurrence probabilities

	Acknowledgements
	References




