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Abstract

The OMIC:s cascade describes the hierarchical flow of information through biological systems. The epigenome sits at the apex
of the cascade, thereby regulating the RNA and protein expression of the human genome and governs cellular identity and
function. Genes that regulate the epigenome, termed epigenes, orchestrate complex biological signaling programs that drive
human development. The broad expression patterns of epigenes during human development mean that pathogenic germline
mutations in epigenes can lead to clinically significant multi-system malformations, developmental delay, intellectual dis-
abilities, and stem cell dysfunction. In this review, we refer to germline developmental disorders caused by epigene mutation
as “chromatinopathies”. We curated the largest number of human chromatinopathies to date and our expanded approach more
than doubled the number of established chromatinopathies to 179 disorders caused by 148 epigenes. Our study revealed that
20.6% (148/720) of epigenes cause at least one chromatinopathy. In this review, we highlight key examples in which OMICs
approaches have been applied to chromatinopathy patient biospecimens to identify underlying disease pathogenesis. The
rapidly evolving OMICs technologies that couple molecular biology with high-throughput sequencing or proteomics allow
us to dissect out the causal mechanisms driving temporal-, cellular-, and tissue-specific expression. Using the full repertoire
of data generated by the OMICs cascade to study chromatinopathies will provide invaluable insight into the developmental
impact of these epigenes and point toward future precision targets for these rare disorders.

Introduction

The human body is made of trillions of cells and hun-
dreds of unique cell types, which arose from a single cell.
The nucleus of the primordial single cell: the zygote,
includes two sets of instructions that guide human develop-
ment: the genome and the epigenome. The genome (i.e.,
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deoxyribonucleic acid; DNA) remains constant across all
cells in an organism while the epigenome varies between
cells and directs cell-type specification by controlling DNA
organization through chemical modifications (Deans and
Maggert 2015). Each human possesses thousands of cell-
type-specific epigenomes (Moss et al. 2018; Horvath 2013;
Mo et al. 2015) that are inherited during cell division (Lacal
and Ventura 2018).

This review covers core concepts in gene regulation,
epigenomics, and human disease. We collectively refer to
human developmental disorders caused by germline muta-
tions in genes that control epigenome function as “chro-
matinopathies". Each chromatinopathy is considered a rare
disorder, affecting fewer than 200,000 people in the United
States (Hoskins 2022). First, we define the epigenome and
use large-scale data to expand the number of monogenic
disorders defined as chromatinopathy syndromes. Previous
reviews have restricted the definition of chromatinopathies
to neurodevelopmental disorders caused by pathogenic
mutations in canonical chromatin-modifier or chromatin-
remodeler genes (Berdasco and Esteller 2013; Bjornsson
2015; Fahrner and Bjornsson 2019; Van Gils et al. 2021;
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Luperchio et al. 2021). The second major focus in the review
is on -OMICs technology which is used to elucidate causal
mechanisms driving these rare and severe developmental
disorders. We review established and emerging molecu-
lar technologies designed to assess layers in the -OMICs
cascade and how these assays have been implemented to
investigate the pathogenesis and pathophysiology of select
chromatinopathies.

Defining the epigenome

The epigenome was originally defined as the study of herit-
able changes in gene expression and function which do not
alter the DNA (Wu and Morris 2001). In Fig. 1, a key func-
tion of the epigenome is to regulate the three-dimensional
(3D) organization of chromatin to partition the genome such
that only a fraction of genomic DNA is physically accessible
to biological machinery for transcription into ribonucleic
acid (RNA). In combination with the human genome, this
enables the epigenome to control the spatial and temporal
timing of gene expression in a cell-specific manner. There
are five major chemical modifications present on chromatin
that influence the cell’s epigenetic state: DNA methylation,
histone methylation, histone acetylation, histone phospho-
rylation, and histone ubiquitination as well as dozens of
low-abundance chemical modifications (Ludwig and Bintu
2019). In this review, we define ‘epigenes’ as genes encoding
proteins that affect a cell's epigenome (Sadakierska-Chudy
et al. 2015; Medvedeva et al. 2015). These epigenes can be
divided into four groups: (1) ‘chromatin-modifiers’ are pro-
teins that interact and/or regulate histone post-translational
modifications, (2) ‘chromatin remodelers’ are proteins that
regulate the structure/organization of chromatin, (3) proteins
that modulate chemical modification present on DNA/RNA,
and lastly (4) accessory proteins that are essential in epig-
enome-altering processes (Sadakierska-Chudy et al. 2015;
Sadakierska-Chudy and Filip 2015; Javaid and Choi 2017)
and their functions are reviewed in Medvedeva et al.

In addition to transcriptomic regulation through histone
post-translational modifications, transcript expression can
be regulated through direct post-transcriptional modifica-
tions to nucleic acids (i.e., DNA/RNA). For example, some
epigenes modulate the presence of chemical modifications
on messenger (mMRNA) and regulate their stability within a
cell, thereby influencing gene expression (Chen et al. 2016,
2020; Roundtree et al. 2017). However, significantly fewer
chemical modifications are known to exist on DNA/RNA
as compared to histones (Ludwig and Bintu 2019). Nucleic
acid methylation occurring at cytosine or adenine nucleo-
tides is the most abundant and best studied epigenetic chemi-
cal modification on DNA. However the proteins responsible
for writing, erasing, or reading RNA methylation are still
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being identified (Boo and Kim 2020). The last group of epi-
genes indirectly function in epigenome-altering processes
by serving as chaperones, scaffolds, or cofactors (Medve-
deva et al. 2015). Thus, these epigenes collectively regulate
an organism’s epigenome through a multitude of biological
and molecular processes. While the epigene definition here
does not explicitly include non-coding RNAs (ncRNAs), it
is important to highlight that ncRNAs are critical gene regu-
latory elements that regulate fundamental processes, such
as X-inactivation (Engreitz et al. 2013; Chitiashvili et al.
2020), and are reviewed in (Beermann et al. 2016). This
review primarily focuses on genetic syndromes caused by
germline mutations in protein-coding epigenes (Berdasco
and Esteller 2013).

Expanding the chromatinopathy landscape
through data mining

A comprehensive study of epigenetic factors identified 720
epigenes after filtering out 95 genes that encode histones
and protamines (Medvedeva et al. 2015). To illuminate the
extent to which pathogenic epigene mutations cause mono-
genic developmental disorders, a.k.a chromatinopathies, we
filtered 720 epigenes against the largest publicly-available
human geno-phenotype database: Online Mendelian Inher-
itance in Man (OMIM) (Hamosh et al. 2005; Amberger
et al. 2015). We found that 29.6% (213/720) of epigenes are
associated with at least one human morbidity. We identified
these genes by mapping their HGNC IDs to OMIM’s morbid
accession IDs using the ensembl database for human genes
(GRCh38.p13; downloaded June 2022 through the R pack-
age biomaRt (Smedley et al. 2009). Collectively, these 213
unique epigenes are mapped to 322 OMIM morbid accession
IDs, resulting in a list of 322 genotype—phenotype pairs that
contained repeated elements due to the polygenic-nature of
some OMIM phenotypes and the pleiotropic-nature of some
epigenes.

Therefore, to generate a high-confidence list of chro-
matinopathies shown in Table 1, we then filtered these
322 genotype—phenotype pairs to remove entries that
were not monogenic developmental disorders/syndromes.
Specifically, genotype—phenotype entries were removed
if the OMIM phenotype: (1) did not have a clear mode
of inheritance, (2) was caused by somatic mutations, or
(3) was not a syndromic developmental disorder. After
filtering these 322 genotype—phenotype pairs, we found
that 20.6% (148/720) of all epigenes cause at least one
chromatinopathy (Table 1). Specifically, we identified 179
chromatinopathies that are caused by pathogenic germline
mutations in 148 distinct epigenes using our data-mining
strategy. This doubles previous estimates, which report
40-70 chromatinopathy-causing epigenes (Fahrner and
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Fig.1 Visualization of omics layers in biological systems. A Snap-
shot of gene regulation in Eukaryotic cell by the epigenome and
genome. DNA Methyltransferases (DNMTs) write/deposit DNA
methylation, while ten-eleven translocation (TETs) enzymes erase/
remove methyl-groups from DNA. While different classes of enzymes
write/deposit, erase/remove, and maintain the 4 major histone post-
translational modifications shown above. B Snapshot of neurons

Bjornsson 2019; Valencia and Pasca 2022). The ability to
expand the current Chromatinopathy landscape, which we
extensively cataloged in Table 1, is fueled by two evolv-
ing sources of information: (1) the continuous identifi-
cation of novel genes associated with genetic syndromes

communicating to product a cellular phenotype that can be assessed
through electrophysiology to measure rate of synaptic transmis-
sion. Synaptic transmission can be driven by changes in histone
acetylation, which is a metabolic reaction mediated by genes encod-
ing lysine (K) acetyltransferases (KATs) and histone deacetylases
(HDAC:S) to cause changes in gene expression which translates to
changes in protein abundance within neurons

and (2) the elucidation of the mechanistic basis underlying
a protein’s capacity to influence gene regulation through
the epigenome. Accordingly, we expect the proportion of
chromatinopathy-causing epigenes will increase as more

@ Springer
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AD autosomal dominant, AR autosomal recessive, XLD X-linked dominant, XLR X-linked dominant, 7F transcription factor

The OMICS cascade:

. . Histone Modifications, DNA methylation,
'l Epigenomics 3D organization of chromatin

[ Genomics

l I
[ Transcriptomics H RNA
—

—~ l

l Proteomics

l

I Metabolomics

l

. Cell Functions/Phenotypes
—l Cellomics (morphology, biochemical activity, etc)

Protein

Metabolites
(sugars, amino acids, lipids, nucleotides)

—>I Single-Cellomics H Single Cell Resolution of OMICS ’

Fig.2 Graphical overview of the OMICs Cascade

children are diagnosed using state-of-the-art genome
sequencing technologies.

The OMICs cascade to study pathogenic
mutations driving chromatinopathies

The suffix -OMICs is appended to a given field of biology to
denote use of high-throughput and high-resolution technolo-
gies (Veenstra 2021). Genetic information flows through a
5-layer, hierarchical biological system where each OMICs
layer can influence or be influenced by adjacent layers,
and all layers can all be assessed at single-cell resolution,
referred to here as the “OMICs cascade” (Dettmer et al.
2007) As shown in Fig. 2, each layer of the OMICs cascade
highlights a unique biochemical snapshot of a biological
system (e.g., cell, tissue, organ, or organism).

The flow of biological information through the -OMICs
cascade starts at the epigenome which controls specific
activation of cellular programs through chemical modifica-
tions on nucleic acids and histones that drive transcription
of DNA into RNA. The transcriptome is composed of all
the RNA molecules in a cell that are either translated into
protein by ribosomes or remain untranslated and function as
non-coding RNAs (ncRNAs; e.g., microRNAs, small inter-
fering RNAs, and long ncRNAs). These ncRNA indirectly
or directly regulate the expression of their chosen targets
through mechanisms such as altered transcript stability
(Beermann et al. 2016; Roundtree et al. 2017). The pro-
teome that is encoded by mRNA consists of all the proteins
in a biological system (Wilkins 1994) and orchestrates an
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array of biological processes from cellular homeostasis via
ion channels gradients to highly specialized tasks like cell-
to-cell communication (Wilkins 2009). Finally, as we move
beyond the central dogma of biology, we can assess the
metabolome, which is defined as the low molecular weight
molecules (i.e., metabolites) present in a biological system
that participate in or are a product of biochemical reactions.
Metabolites are required for a cell’s normal function, growth,
and maintenance (Mosleth et al. 2020; Oliver et al. 1998).
The integration of extrinsic stimuli with intrinsic cellular
data culminates in cellular phenotypes, termed the cellome
(Taylor 2007; Rosato et al. 2021) that are ever expanding
with advancements in robotics and imaging capabilities.

The interconnected nature of each OMICs layer enables
propagation of perturbations through a biological system.
While essential biological processes have developed redun-
dancies to buffer the impact of strong environmental insults,
cellular responses are not adapted to respond to exceedingly
rare, high effect genetic mutations. Therefore, these rare
epigene mutations overwhelm a cell’s buffering capacity,
resulting in clinically significant phenotypes or non-viabil-
ity. Often, a single heterozygous mutation (i.e., one mutated
allele and one normal allele) can disrupt multiple cell types
and tissues by aberrant activation or repression of signal-
ing pathways, resulting in congenital syndromes (Lin et al.
2022). For example, mutations in the epigene, CREBBP
cause Rubinstein—Taybi Syndrome 1 (RSTS1; MIM180849)
and is a histone acetyltransferase. The -OMICs cascade
can be assessed in samples harboring CREBBP mutations
to assess the cascading effect of the genetic mutation on
the epigenome as well as studies of the transcriptome, pro-
teome, and metabolome. Together, these lead to an organ-
ismal phenotype seen in the RSTS! patients and Crebbp
knockout mouse models on learning and memory (Lipinski
et al. 2022). Targeted studies highlight how aberrant his-
tone acetylation can disrupt multiple layers of molecular
and cellular phenotypes. To bridge this gap in knowledge,
genome-wide studies of comprehensive OMICs cascade in
human and model organisms harboring pathogenic epigene
mutations are critical first steps. With multiple epigenes, cell
types, and conditions, there are thousands of independent
experiments needed to dissect out these complex interplay
of the histone code.

Introduction to performing multi-omic studies
on chromatinopathy-related specimens

The dissection of OMICs layers across multiple cell and tis-
sue types can unravel molecular mechanisms driving clinical
phenotypes in chromatinopathy patients. Epigenes function
at the epigenomic layer at the top of the OMICs cascade.
Therefore pathogenic germline mutations in epigenes result
in a hierarchical cascading effect through four downstream

@ Springer

OMICs layers. The coordinated biochemical disturbances
across multiple OMICs layers provide clues about disease
pathophysiology and can guide improved diagnostics and
therapeutics for the disease. In the following section, we
review key examples of the multiple experimental tools
(Table 2) that can be used to assay each OMICs layer in
chromatinopathies.

A successful multi-omics study design in human speci-
mens can be achieved using multiple strategies and cell
types. Assessing an epigene’s RNA and protein expression
profile can identify which cell- or tissue-type(s) will yield
the most meaningful results. In the context of Mendelian
Syndromes, this type of multi-tissue sampling strategy can
identify pathogenic mechanisms that remain constant across
multiple cellular contexts (Lin et al. 2022; Gotz et al. 2008).
Furthermore, a multi-omics approach can identify which
cells and tissues are particularly vulnerable or resilient to
disruption of a specific epigene. In some cases, sampling
of most appropriate cells or tissues is not possible, as there
are ethical limitations or impossible to obtain. Therefore,
in vitro modeling of specific cell types using stem cells is
an attractive and highly relevant alternative approach. For
chromatinopathy syndromes, many of the epigenes are
highly expressed in early mammalian embryonic develop-
ment (Nestorov et al. 2015), and functional studies in model
organisms have shown that they are critically important in
regulating stem cell pluripotency and differentiation (Katsu-
moto et al. 2006; Gan et al. 2007; Alari et al. 2018).

To assay the tissue-specific effects of pathogenic epigene
mutations with the -omics techniques listed in Table 2, we
can use human induced pluripotent stem cells (iPSCs) har-
boring patient-specific mutations or artificially created using
gene editing. Since iPSCs have the potential to differentiate
into all three germ layers (endoderm, ectoderm, and meso-
derm) and all somatic cell types, they enable the in vitro
recapitulation of early developmental in vivo events (Tiscor-
nia et al. 2011; Loh et al. 2014, 2016; Tchieu et al. 2017;
Durbin et al. 2018; Rowe and Daley 2019). iPSC models
allow researchers to investigate disease-associated mecha-
nisms in a temporal- and cell-type specific manner (Matheus
et al. 2019; Carosso et al. 2019; Calzari et al. 2020). While
iPSC-derived cells allow study of unobtainable cell types,
it is known that stem cell studies suffer from problems with
reproducibility that can be caused by: technical variability,
genetic heterogeneity, and biological variation (Volpato
and Webber 2020). However, the stem cell field is actively
devising guidelines and testing methodologies to improve
reproducibility as iPSCs are invaluable for in vitro disease
modeling (Volpato et al. 2018; Anderson et al. 2021; Reed
et al. 2021; Birbrair 2021; Brunner et al. 2022).

Performing these experiments across all epigenes, cell
types and experimental conditions would cost billions
of dollars and therefore creative methods for combining
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Table2 Summary of OMICs techniques

OMIC:s layer Molecular aspect assayed

Name of assay

Genomics DNA sequence

Epigenomics DNA methylation

Sanger Sequencing (Sanger et al. 1977)

Whole Genome Sequencing (WGS) (Lionel et al. 2018)
Whole Exome Sequencing (WES) (Lee et al. 2014)
Microarray-based Genotyping

Methylation Microarrays(Chater-Diehl et al. 2021), Reduced
Representation Bisulfite Sequencing (RRBS) (Meissner et al.
2008), Whole Genome Bisulfite Sequencing (WGBS) (Olova
et al. 2018), Methyl Cytosine sequencing (MethylC-seq) (Lis-
ter et al. 2008), Methyl DNA ImmunoPrecipitation analyzed
by sequencing (MeDIP-seq) (Down et al. 2008), Methyl-
CpG Binding Domain-isolated genomic DNA analyzed by
sequencing (MBD-seq) (Serre et al. 2010)

Genomic coordinates of Histone Post-Translational Modifica- Chromatin ImmunoPrecipitation and Sequencing (ChIP-seq)

tions or Chromatin-associated proteins
Chromatin Accessibility

Chromatin Conformation

Chromatin Conformation specific for Chromatin-associated

proteins

(Johnson et al. 2007)

DNase-seq (Crawford et al. 2006), Assay for Transposase-
Accessible Chromatin with Sequencing (ATAC-seq)
(Buenrostro et al. 2013), Formaldehyde-Assisted Isolation of
Regulatory Elements and Sequencing (FAIRE-seq) (Giresi
et al. 2007), MNase-seq (Chereji et al. 2019)

Hi-C(Lieberman-Aiden et al. 2009)

Chromatin Interaction Analysis with Paired-End-Tag sequenc-
ing (ChIA-PET) (Fullwood et al. 2009)

Genomic coordinates of Histone Post-Translational Modifica- Cleavage Under Targets and Release Using Nuclease

tions or Chromatin-associated proteins

Transcriptomics RNA sequence

Proteomics Proteins

Metabolomics  Metabolites

(CUT&RUN) (Skene and Henikoff 2017), Cleavage Under
Targets and Tagmentation (CUT&Tag) (Kaya-Okur et al.
2019)

Short-read RNA sequencing (Lowe et al. 2017), Pacbio's
Long-read Isoform sequencing (ISO-seq) (Leung et al. 2021),
Oxford Nanopore's Long-read Sequencing (Wang et al. 2021)

Western Blots (Pillai-Kastoori et al. 2020), Flow
cytometry(Bendall et al. 2012), Mass Spectrometry (MS)
(Yates et al. 2009), Multiplexed ImmunoHistoChemistry
(IHC) / ImmunoFluorescence (IF) (Tan et al. 2020), Protein
Microarrays(Chandra et al. 2011), SOMAscan, a High-
throughput proteomics platform(Kim et al. 2018), Proximity
Ligation Assay (PLA) (Weibrecht et al. 2010), Proximity
Extension Assay (PEA) (Assarsson et al. 2014)

Mass Spectrometry (MS) (Perez-Ramirez and Christofk 2021),
Nuclear Magnetic Resonance (NMR) (Perez-Ramirez and
Christofk 2021), Biochemical assays(Perez-Ramirez and
Christofk 2021), Image-based technologies (Perez-Ramirez
and Christofk 2021), Cellomics Cellinsight High Content
Screening Platform (Ardashov et al. 2019), Cellomics Array-
Scan platform (Williams et al. 2006), Opera™ LX (Perki-
nElmer) automated confocal microscopy system (Rosato
et al. 2021)

Websites Accessed https://epifactors.autosome.org/, version 1.7.3

samples and decreasing sample requirements can improve
our ability to comprehensively study the role of the epig-
enome in human disease. Despite the potential roadblocks
to high-quality multi-omics studies, we believe assaying
even a subset of cell types across the mutational spectrum
will identify targetable and novel pathogenic mechanisms,
potential disease-modifying gene networks, and diagnostic

and monitoring biomarkers (Awamleh et al. 2022) for use
in clinical trials.

For the following OMICs subsections, we first briefly
introduce technologies that are commonly used to assay
a given layer, we then highlight salient examples where
these OMICs technologies were applied to chromatinopa-
thy-related biological specimens such that novel disease-
associated properties were identified. We highlight the
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fact that of the 179 chromatinopathies identified in this
review (Table 1), only six chromatinopathies (i.e., Kabuki
Syndrome 1 and 2, Rubinstein—Taybi Syndrome 1 and
2, Rett Syndrome, and Bohring Opitz Syndrome) have
been thoroughly studied using a multi-omics approach in
disease-relevant cell types (Berdasco and Esteller 2013;
Bjornsson 2015; Fallah et al. 2020; Fahrner and Bjornsson
2014; Faundes et al. 2018; Lin et al. 2022). There remains
a huge potential for major discoveries in the chromatin-
opathy field that will lead to the development of novel
therapeutics.

Epigenomics

Each aspect of the epigenome can be precisely measured
using high-throughput techniques to understand how the
epigenome changes across biological contexts (Mehrmo-
hamadi et al. 2021). The most progress has been made in
developing DNA methylation-based epi-signatures, which
capture the DNA methylation changes caused by a patho-
genic mutation that can then be used to distinguish genetic
variants of uncertain significance as benign or pathogenic
(Chater-Diehl et al. 2021; Awamleh et al. 2022). These tools
can be used as a next-line test to end the diagnostic odyssey
by classifying a variant as causal for the syndrome or as a
benign variant. Another use of epigenetic biomarkers is for
therapeutic monitoring to determine whether precision tar-
geted treatments drugs can reverse the effect of pathogenic
mutation on the DNA methylation episignature (Butcher
et al. 2017; Awamleh et al. 2022). To generate DNA meth-
ylation episignatures, patient DNA undergoes bisulfite
chemical conversion (Fig. 1) and then is profiled on a meth-
ylation array containing 850,000 CpG methylation sites or
by sequencing (Pidsley et al. 2016). A recent paper dem-
onstrated that ASXL/ mutations that cause Bohring—Opitz
Syndrome (BOS) have a distinct methylation episignature
from other chromatinopathy disorders, like Kabuki syn-
drome, Sotos syndrome, and Weaver syndrome (Awamleh
et al. 2022). Specifically, 763 differentially methylated CpG
sites in BOS patients were used to develop the episigna-
ture and these classified variants of unknown significance
(VUS) in ASXLI by combining machine learning with the
BOS episignature—thereby expanding the diagnostic tools
available for this chromatinopathy (Awamleh et al. 2022).
In a separate study, researchers derived methylation signa-
tures from patients with 50 different chromatinopathies and
created a Methylation Variant Pathogenicity (MVP) score
which quantifies the probability that a score matches a spe-
cific disease (Sadikovic et al. 2021). One major challenge
in rare disease studies is the need for robust replication and
reproducibility of biomarkers. The standard in the field is to
provide the basic summary of which methylation sites were
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used to generate the episignatures (Choufani et al. 2020).
However, availability of raw data would provide immense
benefit to the rare disease community. To date, many studies
fail to provide raw or summary data which prevent valida-
tion in other data sets and reproducibility (Levy et al. 2022).

Genomics

Pathogenic mutations in epigenes that occur in the ger-
mline leads to Chromatinopathies and mutations that arise
in somatic cells lead to cancer development. (Berdasco and
Esteller 2013; Fahrner and Bjornsson 2014; Bjornsson 2015;
Wainwright and Scaffidi 2017; French and Pauklin 2021).
Cataloging common mechanisms caused by epigene muta-
tions across disease can point toward precision therapies
for both types of disorders (Russell et al. 2015; Slatnick
et al. 2023). Investigating the specific epigene mutations
that cause existing chromatinopathies remains critical as
mutations within several epigenes (e.g., CREBBP, EP300,
KAT6B, DNMT3A) cause more than one developmental syn-
drome with no established mechanism for the distinct clini-
cal presentations. For example, mutations predicted to cause
premature truncation variants in KAT6B cause two recog-
nized syndromes: Genitopatellar Syndrome (GPS) (Cam-
peau et al. 2012) and Say—Barber—Biesecker—Young—Simp-
son Syndrome (SBBYSS) (Clayton-Smith et al. 2011).
However, a recent study highlighted a significant overlap and
presence of an intermediate clinical phenotype with features
of both GPS or SBBYSS (Zhang et al. 2020) and that these
differences may be due to the variable location of the patho-
genic mutation within the gene body of KAT6B (Yabumoto
et al. 2021). The paralog of KAT6B, which is KAT6A, causes
a single chromatinopathy called Arboleda—Tham Syndrome
(ARTHS) and patients display phenotypic variability that
is correlated with location of the mutation within the gene
body of KAT6A (Kennedy et al. 2018). Understanding how
truncations affect gene and protein function can influence
response to precision therapies, when they become available.
A clear understanding how specific mutations drive different
causal mechanisms and clinical phenotypes will be essential
to determining whether therapies will be equally effective
across all mutations observed in patients.

Transcriptomics

The ability to vary exon usage in a transcript exponentially
increases the diversity of RNA isoforms possible within
a cell and ultimately drives the protein diversity. Many
genes expressing multiple isoforms per cell type (Djebali
et al. 2012). Pathogenic epigene mutations can disrupt gene
expression, splicing, alternative polyadenylation, and acces-
sibility of transcriptional start sites which leads to disease
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phenotypes. RNA sequencing technologies (Bolisetty et al.
2015; Jeffries et al. 2020) allows study of isoforms-specific
effects of epigene mutations that translate across cell and
developmental time. These studies have the power to inform
the effect of genomic variants that fall outside of the canoni-
cal protein-coding regions and affect splice isoforms.

Recently, the clinical utilities of transcriptome studies
have been used to functionally validate rare pathogenic
splice variants that disrupt genes causing rare Mendelian
Disease (Cummings et al. 2017; Lee et al. 2020). Transcrip-
tomic analysis can also reveal isoform-specific pathogenic
mechanisms underlying chromatinopathy syndromes. In
Rett syndrome, an X-linked chromatinopathy caused by
heterozygous mutations in the gene MECP2, researchers
discovered alternative splicing of the MECP2 transcript
led to the production of a novel isoforms with different
N-terminus relative to the canonical MECP2 transcript
(Kriaucionis and Bird 2004; Mnatzakanian et al. 2004).
Specifically, at the time, the canonical MECP2 transcript
included exons 1 through 4 and translation of this isoform
began at the “ATG” present in exon 2 (MECP2e2)—while
the newly discovered MECP2 transcript excluded exon 2 via
alternative splicing to generate a novel isoform whose trans-
lation begins at the “ATG” present in exon 1 (MECP2el)
(Kriaucionis and Bird 2004; Mnatzakanian et al. 2004). A
subset of Rett syndrome patients had mutations affecting
only MECP2e/—suggesting that the exonl ATG isoform
was the critical isoform leading to Rett Syndrome (Djuric
et al. 2015). iPSCs carrying a MECP2el-specific mutation
(Djuric et al. 2015) caused reduced neuron soma size and
altered synaptic activity compared to controls (Djuric et al.
2015). Exogenous expression of wild-type MECP2el, but
not wild-type MECP2e2, resulted in the phenotypic rescue
of neuron cell-body size (Djuric et al. 2015).

Proteomics

The human proteome represents the functional biological
machinery and is the primary target for disease-modify-
ing therapies. Protein abundance is regulated by the rates
of translation and degradation, and protein function and
stability is mediated by post-translational modifications.
Mutations in epigenes are most frequently considered to
disrupt the ability to identify, add, or remove post-trans-
lational modifications from histone marks (Aebersold and
Mann 2016; Li et al. 2021). The workhorse machine driving
proteomics-based discovery is the mass spectrometer (MS)
which leverages differences in peptide mass-to-charge ratios
to identify thousands of proteins and hundreds of protein
post-translational modifications (PTMs) in tandem (Witze
et al. 2007; Bantscheff et al. 2012; Silva et al. 2013). In the
context of human disease, MS-based techniques are mainly
used to quantify relative or absolute differences in peptide

abundance across affected and unaffected individuals to
pinpoint disease-specific proteomic changes (Altelaar et al.
2013). Importantly, these disease-specific proteomic changes
can be used as biomarkers in the clinical diagnosis and treat-
ment of various human morbidities, ranging from genetic
disorders to infectious diseases and cancers (Fleurbaaij et al.
2015; Diedrich and Dengjel 2017; Daniel and Turner 2018;
Chapman and Thoren 2020; Pancik et al. 2022; Wang et al.
2022). Since the epigenome has been implicated in various
human morbidities and histone PTMs play a pivotal role
in modulating the epigenome (Figs. 1, 2), it is no surprise
that histone PTMs are being profiled to understand disease
pathophysiology (Thygesen et al. 2018; Cobos et al. 2019;
Azevedo et al. 2022; Lempidinen and Garcia 2023).

In the context of chromatinopathies, a majority of the
proteomic data that exists from patient-derived biological
specimens (i.e., plasma, fibroblasts, iPSC-derived lineages)
pertains to Rett syndrome (Cortelazzo et al. 2013; Pecorelli
et al. 2016; Kim et al. 2019; Varderidou-Minasian et al.
2020; Cicaloni et al. 2020b, a). In an unbiased proteomic
approach using label-based MS, researchers found that neu-
ral lineages generated from Rett syndrome iPSCs showed
aberrant protein expression in genes related to differentiation
(Kim et al. 2019). In this time-course study, they performed
MS on Rett syndrome and control iPSC-derived neural pro-
genitor cells (NPCs) and neural cultures (Kim et al. 2019).
Their proteomic analyses revealed NPCs derived from Rett
syndrome patients displayed significantly reduced glial fate
(GFAP +) and increased neuronal fate (MAP2 +) after three
weeks of differentiation (Kim et al. 2019). Moreover, they
found the suppression of glial fate in MECP2 mutant NPCs
(i.e., those from Rett syndrome iPSCs) is due to overex-
pression of LIN28, a RNA binding protein that had been
previously shown to blocks the differentiation into glia and
increases differentiation into neurons (Balzer et al. 2010).
The multi-faceted proteomics data suggest that Rett syn-
drome’s neuropathology is due to a cell-fate timing defect
in early brain development. This study demonstrates pro-
teomic approaches can uncover potential disease-causing
mechanisms and underscores the importance of studying
chromatinopathies in disease-relevant cell types at various
points across developmental time.

Metabolomics

The metabolome is made up of low molecular weight metab-
olites, such as sugars, amino acids, lipids, and nucleotides
(Dettmer et al. 2007), many of which are used in post-trans-
lational histone modifications that are important for writ-
ing the ‘histone code’ (Fig. 1) (Cheng and Kurdistani 2022;
Hsieh et al. 2022). Metabolic phenotyping across samples
with epigene mutations can identify novel biomarkers for
disease (Remmel et al. 2016; Dettmer et al. 2007; Nicholson

@ Springer



490

Human Genetics (2024) 143:475-495

et al. 2012; Justice et al. 2013) due to the build-up of certain
metabolic by products (Moser et al. 2007) and also serve as
a marker as to whether a given treatment is having an effect.
The metabolome of cells can be measured both quantita-
tively and qualitatively using various techniques that can
be divided into four general categories: MS, nuclear mag-
netic resonance, biochemical assays/panels, and imaging-
based analyses (Lu et al. 2017; Perez-Ramirez and Christofk
2021). However, the most common metabolomic approach is
to assay metabolites in biological specimens using LC-MS/
MS which couples liquid with dual mass spectrophotom-
etry detectors for enhanced coverage of metabolites. As
of 2022, ~253,000 metabolites and their reference spectra
have been cataloged in The Human Metabolome Database
(HMDB) which contains 61 different types of biological
specimens (Wishart et al. 2022), understanding the cause-
and-effect driving metabolic changes in patients with epi-
gene mutations is vital to developing therapeutics for these
disorders.

Most of the existing metabolomics data generated from
chromatinopathy biological specimens relate to the study of
Rett syndrome (Pecorelli et al. 2016; Cappuccio et al. 2019;
Neul et al. 2020), Rubinstein—Taybi syndrome 1 and 2 (Wel-
ters et al. 2019), and Kabuki syndrome (Pacelli et al. 2020).
The first publication to identify a metabolic defect in Rett
syndrome found Rett syndrome patients had high lipid levels
(i.e., total cholesterol, LDL cholesterol, and HDL choles-
terol) (Sticozzi et al. 2013). In Rett syndrome fibroblasts, the
hyperlipidemia is caused by altered PTM of SRB1, which
encodes a receptor modulating cholesterol trafficking (Shen
et al. 2018). A third independent study used MS to ana-
lyze over 900 plasma metabolites in Rett syndrome patients
(Cappuccio et al. 2019). Pathway-based analysis for Rett
syndrome dysregulated metabolites identified sphingolipid
metabolism as a core pathway (Cappuccio et al. 2019).
Taken together, these three independent metabolomic studies
corroborated the hypothesis that lipid dysregulation is a key
feature in Rett syndrome. These studies serve as a potential
framework for other chromatinopathies that have metabolic
disease-associated phenotypes.

Cellomics

The biological information from the upstream OMICs layers
is integrated into a unique molecular state that produces a
cellular phenotype, termed cellome. The cellome is tradi-
tionally assayed using high-content screens that capture cell
properties, such as proliferation, size, migration (Matheus
et al. 2019), morphology (Rosato et al. 2021), signaling
(Gierisch et al. 2020), cell death, cell cycle, and organelle
morphology (Iannetti et al. 2019) and density (Dawes et al.
2007; Taylor 2007). These dynamic cell properties are can
be quantified using high-throughput fluorescent microscopy,
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flow cytometry, and plate readers and more automated sys-
tems quantifying specific phenotypes remain to be seen.
Using functional assays and fluorescent microscopy, the
following example identifies the aberrant cell phenotypes
observed in lineages descending from BOS patient iPSCs,
thereby expanding our understanding of BOS pathology
(Matheus et al. 2019). In the case of rare chromatinopa-
thies, it may not be possible to generate multiple patient
iPSC lines. Therefore, genome editing of human pluripotent
stem cells (hPSCs) offers an alternative approach increas-
ing the total number of independent biological replicates
that can be used to study pathogenic mutations. Matheus
et al. used iPSC lines derived from two BOS patients, in
conjunction with four biologically-independent ASXLI lines
that were created via genome editing, to study dosage (het-
erozygous vs homozygous) and the effect of overexpression
of the full-length and truncated mutant. They demonstrated
that in all ASXL]I truncation paradigms, hPSC-derived neural
crest (NC) cells showed significantly decreased migration
in vitro and in vivo compared to controls (Matheus et al.
2019). Comparing the knockout and overexpression ASXL/
hPSC-derived NC models, demonstrated that full-length
ASXL] is required for normal NC migration and that the
presence of any truncated ASXLI protein is sufficient for
perturbation of NC migration. Using disease-relevant cell
types, this study identifies aberrant mechanisms that likely
underlie the NC-related phenotypes observed in BOS.

Discussion

This review establishes a broader definition of chromatin-
opathy-causing epigenes and more than double the number
of chromatinopathy syndromes previously reported in the
literature (Table 1). The new list includes 720 epigenes
with expanded definition of epigene functions. A total
of 17 unique functions were described for proteins that
directly alter the epigenome: (1) histone “writer”, (2) his-
tone “eraser”, (3) histone “reader”, (4) chromatin “remod-
eler”, (5) histone chaperone, (6) scaffold protein, (7) DNA
modifier, (8) RNA modifier, (9) polycomb group protein,
(10) transcription factor, (11) protein cofactor for histone
“writer”, (12) protein cofactor for histone “eraser”, (13)
protein cofactor for histone “reader”, (14) protein cofac-
tor for chromatin “remodeler”, (15) protein cofactor for
histone chaperone, (16) protein cofactor for DNA modi-
fier, and (17) protein cofactor for RNA modifier. Protein
cofactors are essential for the optimal activity of com-
plexes formed by epigenes that perform the associated
epigenome-related function. A prime example of a protein
cofactor is the chromatinopathy-causing epigene TRRAP,
which is considered a histone “writer” cofactor because



Human Genetics (2024) 143:475-495

491

it binds to chromatin to recruit histone acetyltransferase
complexes to a target sites (Murr et al. 2007; Cogné et al.
2019; Yin and Wang 2021). It is difficult to directly com-
pare our approach to curation used by earlier publications
describing chromatinopathy-causing genes due to insuffi-
cient description of their curation approach (Berdasco and
Esteller 2013; Gabriele et al. 2018; Fahrner and Bjornsson
2019; Wilson et al. 2022; Nothof et al. 2022). Our list
of chromatinopathy-causing epigenes (Table 1) creates a
valuable resource for the scientific community.

Across the chromatinopathy genes, it is evident we
have only scratched the surface of epigene mechanisms
in human development and disease. Studies of rare
chromatinopathies using patient- biospecimens will be
essential to understanding how epigene mutations per-
turbs essential downstream pathways to cause disease.
OMIC:s studies can link pathogenic mutations with spe-
cific biological perturbations and the emerging single-cell
approaches will offer improved resolution of the biological
changes within a disease state. For example, developing
an integrated understanding of the multiple layers of the
OMICs cascade can improve our identification of cell-,
tissue- and developmentally specific markers. The novel
information gained from multi-omic studies can be used
to develop diagnostic biomarkers, to discover new chro-
matinopathies, to identify potential disease-modifying
pathways, and pinpoint disease-causing mechanisms.
There exist several reviews that cover the logistics of per-
forming multi-omic studies and what computational tools
are available for integration of data from multiple OMICs
layers (Misra et al. 2018; Subramanian et al. 2020; Hill
and Gerner 2021). Finally, to ensure reproducibility, it is
imperative that researchers publish detailed information on
experimental design, data analysis pipelines and raw data
from their large-scale studies (Krassowski et al. 2020).
Furthermore, national and global institutions have begun
to address the lack of reproducibility by requiring that the
raw data be easily accessible to prevent siloing of precious
patient-data and fabrication of results. Chromatinopathy
disorders are rare and every study, particularly those that
use patient-derived samples, is a step toward identifying
disease mechanisms and drug targets. With increased shar-
ing of OMICs data derived from chromatinopathy patients,
we can make true progress in the diagnosis and treatment
of these rare disorders.
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