
sMAP – a Simple Measurement and Actuation Profile for
Physical Information

Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David Culler
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

{stevedh,fxjiang,gtolle,jortiz,culler}@cs.berkeley.edu

Abstract
As more and more physical information becomes avail-

able, a critical problem is enabling the simple and efficient
exchange of this data. We present our design for a simple
RESTful web service called the Simple Measuring and Ac-
tuation Profile (sMAP) which allows instruments and other
producers of physical information to directly publish their
data. In our design study, we consider what information
should be represented, and how it fits into the RESTful
paradigm. To evaluate sMAP, we implement a large number
of data sources using this profile, and consider how easy it is
to use to build new applications. We also design and evaluate
a set of adaptations made at each layer of the protocol stack
which allow sMAP to run on constrained devices.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in Other Sys-

tems

General Terms
Design, Management, Standardization

Keywords
Sensor data, Instrumentation

1 Introduction
As traditional instrumentation has become ever more net-

worked, as wireless sensor networks have allowed instru-
mentation to become more diverse and more pervasive, and
as physical information has become widely used in a broad
range of applications, there is growing consensus that net-
worked sensors should be viewed essentially as tiny embed-
ded information servers. Web Services hold the potential to
enable the integration of diverse sources of physical infor-
mation, as do diverse conventional sources [1, 17, 29]. Uni-
form, machine independent access to self-describing physi-
cal information would obviate the innumerable drivers and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is premitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee.
SenSys’10, November 3–5, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-4503-0344-6/10/11 ...$10.00

sMAP Server sMAP Clients

HTTP GET
{‘UnitofMeasure’ : kW, …}

…/data/pump/sensor/0/reading

http://hvac.anon.edu/…
/data/pump/sensor/0/formatting

{ ‘$schema’ : ‘http://schema.smap.org’
 ‘Reading’ : 5, ‘ReadingTime’ : 0, …}

{‘Reading’ : 5, ‘ReadingTime’ : 1, …}

HTTP POST w/
{‘ReportLoc’ : ‘http://client.foo.edu’,…}

HTTP GET

http://hvac.anon.edu http://client.foo.edu/

{‘Reading’ : 5, ‘ReadingTime’ : 2, …}

…/reporting/create

{‘Reading’ : 5, ‘ReadingTime’ : 3, …}

Internet	

http://schema.smap.org/

sMAP Schema Server

sMAP	 Schema	
Service	

A
pp

lic
at

io
n

sM
A

P
 S

er
vi

ce

(a) An example of how sMAP is normally used.

!"#$%&'$(")

*#(%+#&)

,#-.&(/+'$(")
*(%#&)

!01'&-02#0%(")3%&4$%4&(")
5$%4(%-&)

6$$4/(0$7)

!"#$%

8-9#"'0.)

:';4("'<(=-0)

>-0=04-4;)
>-22';;'-0'0.)

>-0%&-")

?#&;-0(")
@##9A($B)

C#A4..'0.)3%-&(.#)
D-$(=-0)

54%+#0=$(=-0)

5$%4(=-0)

A
pp

lic
at

io
ns

P

hy
si

ca
l I

nf
or

m
at

io
n

(b) sMAP sits between producers and consumers of physical
sensor data.

Figure 1. Schematic views of a single sMAP interaction,
and where sMAP sits in relation to other components.

adapters for specific sensor and actuator devices found in in-
dustrial building automation, process control, environmen-
tal monitoring solutions. Physical information is in many
ways more challenging to handle than conventional data be-
cause its interpretation is so dependent on the behavior and
context of the particular sensor or actuator; also, the diver-
sity of sensors is huge. In many cases, the representation,
transportation, and storage of this data must be extremely ef-
ficient. Thus, while it is easy to wrap readings in XML and
transport them over HTTP, it is challenging to get widespread
agreement on a simple, easily understood solution.

We propose a simple representation of measurement in-
formation and actuation events based on modern RESTful
web service techniques that allows for arbitrary architectural
composition of data sources, freeing application designers
from tight frameworks and enabling widespread exploration

of the sensor-application arena. We take the practicality of
implementing web services on all classes of devices to be a
given and instead focus on defining a particular web service
for exchanging physical data. Success means not just being
appropriate for a single application but becoming a widely
accepted interchange format for sensor data on the Internet.

The design space for a web service for physical informa-
tion consists of three interlocking areas:

Metrology the study of measurement; what is necessary to
represent a datum.

Syndication concerns how a data is propagated out from the
sensor into a larger system.

Scalability relates to the range of devices and uses the ser-
vice can support, from small embedded systems to huge
Internet data centers.

Each of these concerns presents a set of design decisions,
some of which have been previously addressed in the aca-
demic literature or by industrial efforts. In this work, we ex-
amine these previous solutions and build from them a single
set of solutions which are designed to solve a specific prob-
lem: representing and transmitting physical information.

A prototypical interaction between a client and an instru-
ment exposing a sMAP interface is shown in Figure 1(a).
The client contacts the device over HTTP and discovers what
resources, and thus what data is provided by the instrument.
In the figure, the client first determines what the units of a
particular channel and measurement point are, before tak-
ing a sample by fetching the reading resource. Finally,
the client arranges for period reports to be delivered to him.
Since all communication references a schema, the client can
also fetch the schema to validate the data.

sMAP was not developed in a vacuum; it forms the ba-
sis for a build to electric grid testbed which provides fine-
grained, multi-resolution sensor data about the building un-
der inspection. The project currently provides around 2000
distinct measurement channels. These channels monitor
electricity consumption, environmental quality data, HVAC
parameters, weather data, and more. An early problem we
confronted was how to integrate all of these sensors to al-
low “building applications” to be possible; the answer was
sMAP. sMAP is designed to unify access to legacy instru-
ments with a consistent representation and up-to-date tech-
nological underpinnings. While many recognize the need for
such integration, much of the work is present in proprietary
products and seek to interoperate only within the particu-
lar industrial sector. We believe that by presenting a simple
but carefully-considered specification along with a substan-
tial amount of data, we can bootstrap the process of making
all physical information universally accessible. 1

In the following sections, we present the design of our
service, and evaluate it both on traditional metrics like code
size and message complexity, but also by presenting how a
diverse set of data sources are made available in this format.
Furthermore, we preview some of the sMAP “applications”

1Source code for a variety of sMAP servers, as well nearly all
of the data feeds presented in this paper are available at http://
smap.cs.berkeley.edu.

which are made possible by having a uniform data plane.

2 Background
The topics of compact web services, content syndication,

and the representation of physical data have all been ad-
dressed in different communities.

2.1 Compact Protocol Design
Traditional Internet design discipline has dictated that ap-

plication protocols should use simple ASCII or unicode mes-
sages for ease of debugging, implementation, interoperabil-
ity, and extensibility. Much previous work has addressed the
challenges of bringing Internet protocols including web ser-
vices to embedded and other constrained devices [29, 39,
23, 27]. Since web service protocols like SOAP-WS seem
best-suited to the types of services we are using, some work
has focused on designing efficient compression formats for
transmitting this data over links with small MTUs. For in-
stance, Tiny Web Services explored methods of compressing
a SOAP envelope using both generic algorithms like zip and
LZW, and also XML-specific compression techniques. In
their evaluation, techniques which can leverage knowledge
of the underlying protocol resulted in the best compression
ratios.

The paradigm of Representation State Transfer, or REST,
provides an alternative to SOAP which is build around the
idea of the transfer of “resources” [12]. RESTful services are
built on top of HTTP, which avoids re-defining much of the
functionality present in that protocol. Recent work has also
explored bringing REST together with physical data, an im-
portant advance [32]. However, these services are still typi-
cally too verbose for embedded devices, an issue we address
in our protocol design; at the lower layers we use techniques
like 6lowpan header compression and IEEE 802.15.4 links.

The result of this recent work on embedded web services
should cause us to add a corollary: protocol design should
also take into account the need for a stateless compression
mechanism to and from a compact binary format.

2.2 Decentralized Architecture
Other work has federated large collections of sensors into

a single system that may be treated uniformly. Creating sys-
tems which use data from a huge variety of sources is indeed
important, and there are several architectural possibilities to
choose from when doing so. Existing systems tend towards
the “aggregator” model, where a centralized system draws in
feeds from different sources and subscribers access the data
indirectly through this central mediator. This architecture
is simple and easy to understand, and has some advantages.
The predominant examples of this system are Google Pow-
erMeter and Microsoft SenseWeb.

Google PowerMeter provides a RESTful API for pub-
lishing data to the Google cloud, where it is then available
through iGoogle and potentially other Google web properties
[1]. Data publishers format their data into a flat name space,
and use HTTP to periodically transmit the data to Google. It
is designed only to put data into the system, and furthermore
ties a particular feed to a single user; a concept that doesn’t
map onto how many physical sensors are employed as part
of a larger process.

Microsoft SenseWeb is a system for the integrated sens-
ing and querying of sensor data [17]. Users with an API
key can use a .NET system to add data objects to the sys-
tem. The overall architecture takes the form of a multi-stage
stream processing system, where intermediate units can per-
form online data processing and forward the results to the
next unit, forming a Directed Acyclic Graph.

pachube is a hosted web application for collecting
and cataloging a large variety of sensor data, and has a
HTTP/JSON interface similar to sMAP [2]. Once data is
loaded into the system, a number of different visualization
and analytics plugins are available to examine readings. This
system is very relevant, and can be considered essentially an
example of the type of universal application which can be
built on top of a common sensor plane such as sMAP.

From the commercial process-control world, the OSISoft
PI System archives and presents time-series of readings from
different sensors. Its major strength is the library of drivers
for a large numbers of existing automation systems present in
buildings and plants. Unfortunately, its technological under-
pinnings look backwards rather then forwards: applications
are mostly designed using Microsoft’s proprietary tools and
protocols, and integrating a new sensor is a task for the com-
pany’s software engineers: the software contains drivers for
430 interfaces and COM connectors to load data from exist-
ing sources.

A common thread of these systems is that they make it
easy to put data in. In contrast, sMAP is designed to get data
out to as many different consumers as possible.
2.3 Syndication

The related work closest in design to ours comes not from
the field of sensor networks, but from content syndication on
the Internet. IETF standards like Atom and RSS have shown
how a very simple envelope container that can be automati-
cally parsed can have dramatic uptake and spur a family of
applications [26]. The key design principle is to be “really
simple”: do exactly one thing, and do it well.

Traditional work on information busses using the pub-
lish/subscribe model would meet our requirements for mak-
ing data broadly available across the Internet; examples
would include CORBA, and more recently the Advanced
Message Queuing Protocol (AMQP) [37]. This type of
functionality is also often integrated into “Message Ori-
ented Middleware” such as Java Messaging System (JMS)
or TIBCO. All of these products are enterprise oriented,
and generally require significantly more infrastructure then
a simple sensor can provide. The Extensible Messaging and
Presence Protocol (XMPP) was initially developed as an in-
stant messaging protocol, but has subsequently expanded to
fill a role as messaging middleware [31]. The Sensor Andrew
project [30] is exploring this design and we believe further
work is merited on comparing these approaches.

To address problems with scalability inherent in the use of
polling RSS and Atom feeds, two approaches have emerged,
paralleling the choices we face with sensor data. One, the
centralized version, is exemplified by Google Reader: a
master server performs the polling on RSS feeds, and sub-
scribers access the data not through the end servers but
through Google. The second, a decentralized architecture, is

used by pubsubhubbub and augments HTTP, a fundamen-
tally client-server architecture with notifications and deliv-
eries for RSS feed updates [13]. Although there are several
techniques for doing this, pubsubhubbub delivers notifica-
tions to clients via HTTP POST requests. Since our design
is decentralized, we draw on ideas from pubsubhubbub to
provide scalable syndication of sensor data, even from de-
vices with very few resources.
2.4 Data Representation

There are many industry efforts in use or under devel-
opment which are comparable to sMAP. In general, these
efforts are either targeted at very specific problem spaces
and specify complete solutions, or are “lowest common-
denominator” type specifications. Additionally, there is
some related protocols and designs from academia which are
very relevant.

One use case which has attracted a good deal of atten-
tion are Smart Home and Smart Grid applications. Driven by
NIST efforts to identify and support interoperable smart grid
protocols [3], bodies such as the Zigbee Alliance are work-
ing to identify and specify protocol stacks for this usage. The
upcoming Smart Energy Profile 2.0, for instance, will pro-
vide for device-level interoperability for energy-consuming
appliances in the home [33]. Although a complete specifi-
cation is not available, published information indicates that
will be built around an IPv6-based stack, with adaptations
at each layer of the stack coming from the IEEE, IETF, and
W3C (802.15.4e, 6lowpan, ROLL, CoRE, and EXI). Proto-
col work in these groups is ongoing, however, the data model
is still unspecified; this is approximately where sMAP could
fit.

Within the same space, a standard known as ANSI C12.19
defines a data model for revenue-grade electric meters [5].
C12.19 includes metadata for describing the electrical char-
acteristics of the metering device, device identification,
units of measure, and the measurement registers themselves.
sMAP’s data model is significantly simpler than C12.19’s,
embodies similar concepts for register readings and units of
measure, but is not intended to capture the full complexity of
common industry practice for revenue-grade electric meter-
ing.

SensorML, developed by the OpenGIS consortium is
an XML specification designed to completely model sense
points: it allows extensive specification of the sensor data
and instrument type, in addition to context such as geolo-
cation data and legal on the data [8]. The format is being
driven by GIS-type applications and a significant amount of
data is currently available in this format. sMAP’s data model
is in many ways similar to that developed by SensorML, but
contains no “external” metadata – that is, metadata which
depends upon the particular location of the instrument. By
separating this type of information from the actual sensor
readings, we increase flexibility; for instance, the coordinate-
centric location models used by SensorML might not be ap-
propriate for sensors located in a building, where the loca-
tion is hierarchically defined by room and floor, or one in
a process control application. sMAP also defines additional
features to make it easy to syndicate data streams into online
stream-processing systems.

Metadata Use
Value The quantity
Units Interpretation
Measured Quantity Type of measurement: water,

electric, etc
Scaling coefficient Conversion to engineering units

without loss of precision
Global timestamp Interpretation and alignment
Sequence number Missing data detection; comput-

ing actual sampling period
Instrument range (min-max) Establish dynamic range
Instrument identifier Establish traceability

Table 1. Minimum metadata required to interpret a
scalar data stream.

Another set of standards and schema emerging from the
construction industry are the Industry Foundation Classes
(IFC) and the related Extended Environments Markup Lan-
guage (EEML) [4, 20]. Finally, Modbus is a very simple
industry standard for transferring data to and from sensors,
typically carried over serial links or in IP packets. The prob-
lem with Modbus’s data model is that it does not exist; each
instrument has its own set of registers and a map which a
developer can use to translate those register locations into
meanings.

The major shortfall we find with most of these efforts is
that they specify either too little or too much. Both Sen-
sorML and IFC/EEML specify data models, but they leave
means of publishing the unconstrained. While very useful
for interoperability, it is impossible to meaningfully make an
instrument which presents its data as “SensorML,” and so
does not eliminate the need to write “glue” code to interface
with a new meter. Since sMAP defines both the data model
and the access method, it is possible to have multiple inter-
changeable instruments presenting a consistent interface.

3 sMAP Design
sMAP’s design comprises two underlying aspects: the

metrology deals with what abstract quantities should be rep-
resented and how they should be organized; the architecture
has to do with how the metrology is implemented in a real
system. At its core, sMAP is a method of making available
discrete, scalar data and control points. Although other data
sources such as imagery and acoustic data are also common,
we do not include them in the the design; they are addressed
by existing work on multimodal sensor data repositories.

3.1 Metrology
Although scalar measurements consist of a single num-

ber, their interpretation depends on knowing how to convert
that number into engineering units as well as a host of other
information. The value is always a digitized signal from an
instrument, measuring a property of the physical world. By
providing an indication about what that property is and what
units were used, a client can tell the basic type of instrument
present. A timestamp and sequence number place the value
within a stream of discrete values. A scaling coefficient ex-
tends the range of values representable in the format.

The problem of specifying units admits several possible
solutions. In principle, all units can be derived from the
seven independent SI units. However, specifying all units

in terms of their derivation from these units is often cumber-
some and leads to an overly-complex specification system
for a design which is nominally “simple.” Therefore, sMAP
includes an enumerated list of commonly used units and sup-
ports other units using simple strings. This list includes at
least one canonical unit for each type of measurement.

Traceability in measurement is the concept of being able
to trace a given datum back to a calibration with a source
of known uncertainties; normally, a chain of calibrations are
made back to an authority such as NIST. In order to establish
this, it is necessary to know not just what type of instrument
was used, but the particular device in question so that the
measurement may later be cross-referenced with calibration
records. To meet this need, we allow including a device-
specific unique identifier such as a serial number.
3.1.1 Measurement Location

Another frequently-encountered property of instrumenta-
tion is that a sensor will present multiple scalar quantities
measured at the same point. For instance, an electric me-
ter often measures voltage and current in addition to power,
while a control point in an HVAC system will measure tem-
perature and flow rate at the same location. Therefore, we
define two terms dealing where where measurement occurs.

Measurement Point a specific point in a process which has
been fitted with instrumentation. For instance, a circuit
level meter in an electric system or a flow meter located
on a pipe.

Channel A single stream of scalar values from a measure-
ment point. Example channels include the a voltage or
power reading from the circuit-level meter, or the in-
stantaneous flow rate at a flow meter.

Using this decomposition, the source of a stream of sen-
sor data from an instrument is uniquely identified by its mea-
surement point and channel.
3.1.2 Modalities

sMAP is designed to facilitate three predominant modali-
ties of interaction. Two, sensing and metering, are read-only.
The third, actuation, allows a user to change the state of the
device. Sensing refers to scalar quantities which are mea-
sured instantaneously. Typical examples are temperature, or
voltage, or position. These quantities are typically measured
at a constant rate, although data consumers downstream may
re-sample the streams so as to align it with other data. Me-
tering refers to values representing accumulated quantities.
These are usually properties of flows: measuring the total
volume of fluid flow, or amount of heat transferred. Finally,
actuators are two-way; they allow a client to modify the
physical state of some device. Because of the large diver-
sity of actuators, sMAP cannot claim to represent all types.
Instead, we provide a small library actuator templates and
allow the protocol to be extended in the future.

Table 2 shows the list of basic actuator types supported by
sMAP. Although many more types are possible, these basic
types cover a huge fraction of basic actuators actually in use
in deployments.

For each actuator, sMAP supports get and set opera-
tions. For all types of default actuators, the set action in
idempotent. sMAP supports versioned set so as to provide

!"#$%"$#&
'$((&)*+"$&

,-./&01#$213&

,-./&

!"#$%&' ()*+,-'

,-./&

,-./&01#$213&4
$"

#&5
6%
57
6#&
8
$#
$%
&

/%
+9
3&
:$
%;
$%
&

./
0
11
2'
13
45

&6
47

"5
'

'1(6<+%"61&!:=& ,-./&01#$213&

&!82'(9&"%3:9&' 8;;6<:47"5&'

0++>($&/+2$%-$#$%&

?$1#*$%&

,-./&

./0112'='>2?@'='@A"B28C'
D<3969&&'!9&E'C9FB"3G'

,-./&

,-./&

,-./&

,-./&

.#H9'("%F93'

@$8)$%1#7%$A/.BA@:B&

C6D%1E+"&A&F786G6#3&

.'&)(7>&8$#$%&

H6>*#&,26#5*&

I;$%3&J76(G6">&

41#1D1,$&

Figure 2. The full diversity of sMAP sources and gateways we have implemented under the aegis of a building moni-
toring project. Sources include Modbus/RS-485 meters, 6lowpan/IEEE802.15.4 wireless devices, and proxied data from
weather and grid sources. sMAP serves as the data interchange layer sitting between those instruments, and applica-
tions including a Google PowerMeter gateway, mobile applications, databases, and EveryBuilding. EveryBuilding is
a web application for modeling the relationships between spaces in a building, and managing information about the
location of all the sense points.

Name Description Examples
Binary two possible states switches
N-State a finite set of positions stepper motors, dis-

crete dimmers
Set point choose a setting in a contin-

uous range
thermostats, fan speed
controllers

Control bands influence a control loop by
setting min and max range

thermostats

Table 2. Types of actuators supported by sMAP without
extensions.

simple transactional semantics. To support this functional-
ity, the get function returns a nonce in addition to the device
state; in order to subsequently change the device state, the
nonce in the set request must match the current device state
(the nonce is changed with each successful set). This allows
clients to implement functionality like “toggle” without con-
fusing behavior when multiple parallel requests are present.

To meet the need for more complicated actuation, we also
allow actuators to create new types which are not part of
sMAP. Although it is recommended one of the actuator types
in Table 2 if possible, the world of possibilities is large.

3.2 Service Design
The second design issue is how data information is

mapped into actual protocol messages and documents. If we
were targeting only direct, human consumption of the data,
an HTML interface would be appropriate, and indeed this is
what many instruments provide. Since our target is applica-
tions, a machine-to-machine service is desirable. We chose

JSON as the object exchange format, since its data structures
map naturally onto those of modern programming languages,
obviating the use of a specific API like SAX or DOM to ac-
cess the data. JSON can also be automatically translated to
XML when required.

3.2.1 HTTP Mapping
Using HTTP, we expose all of sense points and chan-

nels as resources at standardized URLs with respect to a
sMAP root and follow the paradigm of Representational
State Transfer (REST) [12]. Haphazard use of this design
pattern is much maligned, but a RESTful approach to web
services design is characterized by a systematic use of its
conventions. Because the abstractions and data model we
developed map neatly onto resources, we hold that this is a
good fit for physical information.

The four top-level resources in the sMAP profile are
/data contains resources for reading and controlling me-

ters, sensors, and actuators.

/reporting allows control of periodic reports for syndica-
tion, discussed in Section 3.4.

/status contains a single universal universal field specify-
ing if the device data is valid, as well as instrument-
specific codes.

/context contains any information about the device’s re-
lationship to other devices. This includes the device’s
Global Unique Identifier.

All meter, sensor, and actuator data is placed

in the “data” top-level resource. Within this loca-
tion, data is organized hierarchically in the form of
/data/<point>/<modality>/<channel>/<object>. The
measurement point and channel resources may be named by
any valid URL-encoded string; Figure 3 shows the full URL
for a “reading” object for a three-phase electric meter.

!"#$#!%&'!()$)*!$+$#,-.+/)*!*)#"0123

!"#$%&"!"'()*+,'()

!+-#.,(/)

01#''".)

+23"0()

Figure 3. Canonical sMAP URL for the “total power”
meter of a three-phase electric meter.

Each channel provides several leaf resources. The first,
reading, contains the single latest sample from the device,
along with a global timestamp and sequence number. The
formatting resource contains all information necessary to
interpret the reading object and convert to engineering units:
scaling coefficients, units, and a key indicating what is be-
ing measured (e.g., electricity, water, etc). The parameter
resource provides information about the underlying mea-
surement: generally, a sampling period/frequency and any
instrument-specific parameters.

Using HTTP, these three resources must be available us-
ing the GET verb. Subject to access control, an instrument
may also implement a POST form of the request. When this
is used, a client can POST a new document to the appro-
priate resource to update sampling parameters or change the
scaling coefficient.!"#"$%&'#"$()*"%
/data # list sense points under resource data [GET] 	
 / [sense_point] # select a sense points [GET]	
 /meter # meters provide this service [GET] 	
 / [channel] # a particular channel [GET] 	
 /reading # meter reading [GET] 	
 /formatting # calibration and units [GET/POST] 	
 /parameter # sampling parameter [GET/POST] 	
 /profile # history of readings [GET]	
/status # device-specific status messages [GET]	
/context # instrument serial number or GUID [GET]	
/reporting # for syndication [GET]	
 /create # create a new periodic report [POST]	
 /reports # show current reports [GET]	
 /txSkcQ6K # a reporting instance [GET/DELETE] 	

POST requests supply JSON objects as arguments:	
POST: http://meter1.cs.berkeley.edu/report 	
{ "ReportResource" : "/data/325/meter/*/reading", 	
 "ReportDeliveryLocation" : 	
 	 "http://webs.cs.berkeley.edu/receivereports.php", 	
 "Period" : 60, "Minimum" : 50, "Maximum" : 100 } 	

Figure 4. The sMAP resource hierarchy.
A forth object, profile is an optional resource which

some instruments export. It consists of a circular buffer of
recent measurements – typically the last N measurements,
although the implementation might alternatively provide me-
ter data over a fixed time interval. This resource is available
for two reasons. The first is to enable a client to retry a re-
quest to ensure that 100% of data is delivered. The second
is to allow applications like automatic meter reading where
data is only fetched once per billing period.
3.2.2 JSON

JSON, the Javascript Object Notation is a language-
independent data interchange format [10]. Since JSON is

a representation with little structure, we further constrain its
use within sMAP through the following rules: (1) All ob-
jects follow a schema, and contain a reference to it. (2) All
schemas are versioned, and each object contains which ver-
sion it implements. (3) Schemas are named by URI. A sam-
ple instance of a sensor reading object is shown in Figure
5.

{"$schema" : {"$ref" :
"http://schema.anon.edu/sensor/reading"},

"Version" : 1,
"Reading" : 0,
"ReadingTime" : 1270239192,
"ReadingSequence" : 48879 }

Figure 5. Instance of a sensor reading object.

3.3 Externalizing Metadata
No physical measurement is ever made in isolation. Be-

yond the extra information needed to interpret the raw read-
ing, the reading’s context includes the physical location of
the meter and the logical relationships between the meter,
the physical space, the users of that space, and other in-
strumented quantities. Without this information, the reading
cannot be truly useful.

In designing sMAP, we had to decide whether to include
this additional information in the basic profile. Experience
with several implementations showed that representing this
information requires a model of entity relationships that ex-
tends far beyond the metered quantity. This model is not the
same in all places, even for the same meter, and will differ
significantly between applications and users of sMAP.

Fundamentally applications need to associate arbitrary
metadata with sMAP data sources. To support this, we in-
clude durable identifiers along with sMAP data, which are
sufficient to permanently attribute the source of a measure-
ment. However, it is the job of an external system to manage
the relationship of these identifiers to the objects in the over-
all system.

3.4 Syndication
Another central challenge is that HTTP is fundamentally

client-server, and so does not support “callbacks” or asyn-
chronous client notifications [11] whereas sensor data is of-
ten “pushed” from the source device to a repository, analysis
service, or other aspect of the operational infrastructure. To
support such periodic reports, as well as alarms within the
HTTP framework, we allow a sMAP server to also function
as a client in order to deliver reports. This is superior to forc-
ing data clients to poll because data generation is often event
driven. Support for this mode of operation is located in the
/reporting resource, which has two sub-resources. create
is used to create a new “reporting instance”, while reports
allows inspection of currently configured reports.

In order to install a new report and begin delivering
data, a client uses a POST request to send an object to the
/reporting/create resource. The object contains enough
information to allow the server to begin sending data to the
URL specified in the DeliveryLocation field.

The effect of using periodic reporting is identical to per-
forming a GET on the local resource specified in the Deliv-

Metadata use Field Name Resource location
Raw value Reading reading
Global timestamp ReadingTime reading
Reading sequence number ReadingSequence reading
Units UnitofMeasure formatting
Units UnitofTime formatting
Scaling coefficient Multiplier, Divisor formatting
Quantity type SensorType formatting
Underlying sampling rate SamplingPeriod parameter
Freshness IntervalSinceLastReading parameter
Instrument identifier GlobalIdentifier /context

Table 3. Location of important pieces of data within the sMAP HTTP resource hierarchy. The reading, formatting,
and parameter resource are unique per-channel, while /context is shared by all measurement points.

eryLocation field, except that the data is pushed to the spec-
ified DeliveryLocation URL.

3.5 Adaptations
Some of the sensor and meter devices that implement

sMAP are connected to the Internet through resource-
constrained networks, and these networks may not have the
throughput required to send full HTTP requests containing
JSON objects every time a sensor reading needs to be pub-
lished to a client. Furthermore, the devices themselves may
have very limited resources (such as code-size and memory)
to implement complicated protocols. sMAP is defined to use
HTTP for data access and JSON for object representation,
but it can function over compressed versions of these proto-
cols as well.

!"""#$%&'()**#

!+,-./0+1#

23+#

422+#

5,67.80/9#

!"""#$%&'*:';#

!+,-.<+=#

>?+#

"@422+#

5,67.80/9#"AB7CDC#

-E7FGHA#

Figure 6. Layers in the protocol stack, and the protocols
in use in the full version of sMAP, next to the version
adapted for embedded devices.

A prominent emerging approach concerning protocol de-
sign for constrained devices hold that the best way of sup-
porting these devices is to use traditional Internet protocols
like TCP and IP as the canonical form, but to make adapta-
tions where necessary to improve efficiency or robustness.
We implemented a compact version of sMAP which runs
on 802.15.4 links, using the stack shown in Figure 6. We
have drawn from emerging IEEE and IETF standards for sev-

Field Contents
DeliveryLocation† URL where data is to be sent
DeliveryResource† Local resource to be reported
Period† Requested Interval between reports
MinPeriod Minimum report interval
MaxPeriod Maximum report interval
ExpireTime When to stop sending reports
Capability Permission to create

Table 4. Information necessary to cause a sMAP server
to begin periodic or event-driven reporting. †required
information.

eral layers of the stack. We draw on adaptations from stan-
dards bodies for the transport layer and below, and define
our own Application and Object Exchange adaptations lay-
ers: EBHTTP and Binary JSON. Clients connecting over the
Internet are not typically aware of the fact that adaptations
are taking place, since they are performed by Edge Routers
and HTTP proxies.

3.5.1 Link, Network, and Transport
It has become readily apparent that it is possible to run

IPv6 over links with very small MTUs [14]. To make this
possible, the IPv6 headers are compressed to elide informa-
tion which is common to the subnet, and reduces the size of
an IPv6 header from 40 to 7 octets in the common case. Fur-
thermore, work is currently underway to develop a routing
protocol for constrained networks, called RPL.

For our prototype implementation of sMAP on con-
strained devices, we used draft versions of the 6lowpan stan-
dards, and a predecessor to RPL known as HYDRO [25, 35].
These are used in the blip package which provides UDP and
TCP interfaces on devices running TinyOS [21]; an evalua-
tion of the full http/tcp/blip implementation is presented in
Section 4.2.1.

3.5.2 EBHTTP
When reliable in-order delivery is not required, TCP is a

poor choice for embedded devices, both because its 20-byte
headers per segment are relatively large, but also because it
is somewhat “chatty” – delivering a single message takes at
least two round-trips. The simplest adaptation is to simply
use UDP for transport. Within constrained networks, we can
also run sMAP over Embedded Binary HTTP (EBHTTP).
EBHTTP is a binary-formatted, space-efficient, stateless en-
coding of the standard HTTP protocol, intended for trans-
port of small named data items, such as sensor readings, be-
tween resource-constrained nodes [36]. By using EBHTTP,
we reduce the number of message bytes needed to transport
sMAP data, while maintaining the URL structure and HTTP
method semantics of sMAP.

EBHTTP was designed with several goals in mind:

1. run over UDP, to minimize transport overhead

2. be implementable on constrained devices with minimal
code and RAM overhead

3. support unacknowledged delivery, for periodic report-
ing purposes

4. maintain HTTP semantics, enabling direct stateless
transcoding

5. reduce HTTP protocol overhead to a minimal byte
count

The basic EBHTTP header consists of 2 bytes specifying
the method and a control field; all other data is carried as
Type-Length-Value (TLV) encoded sections of the method.
These may include a request URI, HTTP headers (either
compressed or uncompressed), and body data. This encod-
ing also allows multiple EBHTTP messages to be packed
into a single UDP datagram or TCP segment. Packing multi-
ple EBHTTP messages into a UDP datagram further reduces
transport overhead, while running EBHTTP over TCP adds
reliable delivery beyond the simple stop-and-wait semantics
supported by EBHTTP over UDP.

Within the overall sMAP architecture, a less-constrained
host can run a EBHTTP transcoding proxy. This proxy
translates between EBHTTP requests and full HTTP re-
quests, forwards those requests to the originally intended
destination, and then translates the HTTP responses back
into EBHTTP responses. This transcoding proxy need not
be at the edge of the constrained network, because EBHTTP
can run over unconstrained networks as well as constrained
ones. When communicating with the nodes within the com-
pressed network, clients use the reverse proxy, making HTTP
requests for the sMAP resources, which are then translated
into EBHTTP requests and sent to the node itself.

3.5.3 Packed JSON
JSON documents are more compact then XML docu-

ments; however, they are still relatively large for environ-
ments with very small link MTUs. Therefore, we defined a
stateless compression format for JSON which takes advan-
tage of the constraints placed on the use of JSON within
sMAP, based on the Apache Avro project’s binary encod-
ing. When given a JSON instance document and the associ-
ated schema, the compressor produces a packed binary out-
put much smaller then the input document.

{ "type" : "record",
"name" : "formatting",
"fields" : [
{"name" : "Multiplier", "type" : "long"},
{"name" : "Divisor", "type" : "long"},
{"name" : "UnitofTime", "type" : "TimeUnit"},
{"name" : "UnitofMeasure", "type" : ["MeasurementUnit", "string"]},
{"name" : "SensorType", "type" : ["MeasurementType", "string"]}

]
}Figure 7. The schema for the formatting resource.

Since all JSON documents used in sMAP have both a
reference to their schema and schema version, the first five
octets of the binary coding contain a four-octet hash of the
schema name, and a single octet of version identifier. Fol-
lowing this is the actual data. Most of the compression is
achieved by eliding all the strings appearing in the schema
and replacing them with indices. Integers are packed using a
variable length “zig-zag” coding. Figure 8 gives an example
of this compression process.

To complete the web-services definition, we also spec-
ify an new HTTP header, X-Avro-Schema to allow a server

!""#$%!&'()*+'(, -.,'%/0/+,

!""#$%!&'()*$(!+,-.'(/ 00/'%121./

{"UnitofMeasure" : "kW", 	
 "Multiplier" : 1, 	
 "Divisor" : 1, 	
 "UnitofTime" : "second", 	
 "MeterType" : "electric" }	$(

.1
!(
%2
/

3405650750/ 347/ 343/ 343/ 345/ 8/3453/

%'
9
"+
2.
.2
:/

Figure 8. An example of statelessly compressing a JSON
formatting object.

to specify the name of a schema the response body is en-
coded with; this must be present when the content type is
application/x-avro. Just like with EBHTTP, we build
a stateless HTTP proxy which can silently convert between
packed and unpacked representations of JSON documents.
However, nothing in the architecture constrains this proxy to
run on the same network as the instrument, and it is general,
capable of being an intermediary for any type of sensor.
4 Implementation and Evaluation

The three major design spaces which this work touches
are metrology, syndication, and scalability. In order to eval-
uate the success of our design, we use these to provide a set
of questions we can use to evaluate sMAP.
Metrology → Completeness and Generality. To show

that our design for metrology is simple yet effective,
we show that a large variety of common data sources
from electric, environmental, process control, and
meteorological systems can be presented within the
system. We also examine a set of deployed systems
from the literature.

Syndication → Application Use. sMAP is being used as
the data plane of a host of higher-level applications.
By having a common interchange format, these appli-
cations are “portable” from one collection of sensors to
another.

Scalability → Practical Implementations. We show that
sMAP can be practically implemented on devices rang-
ing from powerful web farms to minuscule embedded
devices without losing the essential benefits of the ap-
proach.

4.1 Complete and General
The first question we examine is how general sMAP is:

what is the diversity of data it can represent. sMAP was de-
veloped during a process to create a building-to-grid testbed,
for experimenting with novel interfaces and feedback mech-
anisms between a commercial building and the electric grid.
The building in question is Cory Hall, the Electrical Engi-
neering building at Berkeley. First commissioned in 1955,
Cory hall consumes approximately 1MW of electricity in ad-
dition to steam and chilled water used for heating and cool-
ing. Our testbed construction commenced with the instru-
mentation of several hundred sense points with thousands of
channels, capturing much of the energy spend in addition to

environmental characteristics. Many of the feeds of sMAP
data in Table 5 were developed as part of this project.
4.1.1 Building AC Power

Commercial buildings typically distribute power in a tree
from a few feeds into the building substation, which are split
into multiple three-phase branches and finally broken down
to single-phase circuits at panels. We have instrumented each
of these levels in our Electrical Engineering building, and
made the data available via sMAP. Figure 9 outlines the hi-
erarchical nature of electricity distribution and locates the
various meters used to instrument the building.

!"#$%&"'()&&
*+,-.&.-/-.&

$0123(()&4+5,6&&
*78-9&47,5:795,;&

<"1=&>78-9%?7@:AB)&
C9+,?D&.-/-.&

EF&G-:-9)&*.@;&.-/-.&
47,5:795,;&+,H&?7,:97.&

Figure 9. A Sankey diagram of the electrical distribution
within a typical building, with monitoring solutions for
each level broken out. All of these sources are presented
as sMAP feeds.

At the top two levels, the substation and branch level,
electricity is distributed in three phases through several trans-
formers where it is stepped down from the the 12.5kV feed
into the building. The instrumentation at these points con-
sists of a large number of Current Transformers (CTs) and
Rogowski Coils, which are present on the feed into the build-
ing and on individual phases of each branch. The building in
question has two primary feeds from the grid, which are then
split into 12 branches; this translates into 42 separate phase
measurements (three per branch).

To distribute this data using sMAP, each branch or feed
presents a sMAP interface to the world. Since each of
these branches contains three phases, each sMAP instance
presents several measurement points corresponding to each
phase. In addition to these single-phase measurements, there
are several “virtual” measurement points which corresponds
to measurements from different combinations of CTs like
phase-to-phase measurements and total system data. Using
the flexibility of sMAP to name measurement points by any
valid URL resource, each branch or feed exports a total of
seven measurement points: A, B, C, ABC, AB, BC, and AC.

Each of these points also contains multiple sensors and
meters: for branch-level meters, there are seven sensors and
three meters. These correspond to measurements like real,
reactive, and apparent power, current, phase-to-phase volt-
ages, power factor, and several other quantities; some exam-
ple data is shown in Figure 6.

Modality Channel
meter true energy
meter reactive energy
meter apparent energy
sensor true power
sensor reactive power
sensor apparent power
sensor current
sensor displacement power factor
sensor apparent power factor
sensor line frequency

Table 6. Channels for each phase and total system mea-
surement on a three-phase electric meter.

Once electricity has been distributed through a branch, it
is further stepped down to 120V for circuit-level distribu-
tion. These circuits split off from wiring panels located on
each floor. To instrument this level of the distribution hier-
archy, we used a meter with 40 single-phase meters which
is designed to be installed inside a breaker box. To map this
arrangement onto sMAP, each circuit is treated as a single
measurement point with several channels. Since this meter is
much simpler, it only provides per-circuit energy consump-
tion information (kWh).

The meters in use are typical of modern electrical moni-
toring: they provide a Modbus interface running over RS485.
In order to make them available over the Internet using
sMAP, we use a Modbus – Ethernet adaptor to convert bridge
to an IP subnet, and then run a gateway service on a server
which periodically polls the devices and caches their last
reading for use in sMAP. Since each manufacturer typi-
cally has their own map of Modbus registers, the gateway
must be customized for each new brand of meter; of course,
this effort is all transparent to clients who receive normally-
formatted sMAP data.

4.1.2 Plug-load Power
The final level of electrical distribution is plug-level,

where individual appliances are connected to the circuit. To
monitor at this resolution, we used a custom device called
the ACme. ACme’s [15, 16] are single-phase plug-load me-
ters that measure power and energy of typical AC appliances
in households and offices. In addition, they are capable of
controlling connected devices using an internal relay. ACme
is a typical mote-class device based on a msp430 micro-
controller and a cc2420 802.15.4 radio, shown in Figure 11.
ACme is representative of a large class of sensors and me-
ters found in commercial environments that measure physi-
cal phenomenons at a single point in some process. Exam-
ples of devices in this class include flow meters, temperature
sensors, light sensors, and motion sensors.

ACmes use blip, our open-source IPv6 stack to form an
ad-hoc network. Since blip supports both TCP and UDP,
there are multiple ways a protocol like sMAP can be scaled
down to this device. We compare the options for this in Sec-
tion 4.2.

From a metrological point of view, a single ACme is a de-
vice with a single measurement point – the plug – and multi-
ple modalities – it senses power, meters energy, and actuates
a relay. The actuation present on an ACme is particularly
simple: a relay can switch the attached device. Since this

Name Sensor Type Physical Layer Sense Points Channels
Cory Hall Submetering Dent 3-Phase Modbus/Ethernet 40 1600
Cory Hall Building Power ION and PQube HTTP/Ethernet 3 150
Cory Lab Temperature TelosB [28] 802.15.4 + Ethernet 4 8
Cory Lab Machines ACme [15] 802.15.4 + Ethernet 8 16
Cory Chilled Water HeatX Meter Modbus/Ethernet 1 11
Cory Roof Environmental Hydrowatch Node [34] 802.15.4 + Ethernet 4 36
Soda Sun Blackbox Fan Speed; Environmental HTTP/Ethernet 10 84
Soda Lab Machines ACme 802.15.4 + Ethernet 40 80
Soda Lab Panel Veris E30 Meter Modbus/Ethernet 1 42
LBNL Building 90 ACme 802.15.4 + Ethernet 70 140
Berkeley Weather wunderground and Viasala WXT520 HTTP + Serial 2 20

Table 5. Deployments with data available with sMAP

0 2 4 6 8 10 Noon 2 4 6 8 10 12
0

100

200

300

400

500

600

17%

8%

< 1%

18%

5% 16%

2%

19%

7%

4%
4%< 1%

Lighting
Main Air Handler Unit (AHU)
Computer Power
Micro−Fabrication Lab
West Power Riser
AC and Plug−loads for Instructional Lab
Panel 5DPC
Machine Shop + Partial Micro−Lab + Chilled Water
5th Floor Power + Few Pumps
Parking Structure
Panel 5DPB
BG−2

0 2 4 6 8 10 Noon 2 4 6 8 10 12
0

100

200

300

400

500

600

13%

8%

< 1%

19%

6% 16%

2%

20%

6%

5%
4%< 1%

Lighting
Main Air Handler Unit (AHU)
Computer Power
Micro−Fabrication Lab
West Power Riser
AC and Plug−loads for Instructional Lab
Panel 5DPC
Machine Shop + Partial Micro−Lab + Chilled Water
5th Floor Power + Few Pumps
Parking Structure
Panel 5DPB
BG−2

0 2 4 6 8 10 Noon 2 4 6 8 10 12
0

100

200

300

400

500

600

17%

8%

< 1%

18%

5% 16%

2%

19%

7%

4%
4%< 1%

Lighting
Main Air Handler Unit (AHU)
Computer Power
Micro−Fabrication Lab
West Power Riser
AC and Plug−loads for Instructional Lab
Panel 5DPC
Machine Shop + Partial Micro−Lab + Chilled Water
5th Floor Power + Few Pumps
Parking Structure
Panel 5DPB
BG−2

0 2 4 6 8 10 Noon 2 4 6 8 10 12
0

100

200

300

400

500

600

17%

8%

< 1%

18%

5% 16%

2%

19%

7%

4%
4%< 1%

Lighting
Main Air Handler Unit (AHU)
Computer Power
Micro−Fabrication Lab
West Power Riser
AC and Plug−loads for Instructional Lab
Panel 5DPC
Machine Shop + Partial Micro−Lab + Chilled Water
5th Floor Power + Few Pumps
Parking Structure
Panel 5DPB
BG−2

0 2 4 6 8 10 Noon 2 4 6 8 10 12
0

100

200

300

400

500

600

13%

8%

< 1%

19%

6% 16%

2%

20%

6%

5%
4%< 1%

Lighting
Main Air Handler Unit (AHU)
Computer Power
Micro−Fabrication Lab
West Power Riser
AC and Plug−loads for Instructional Lab
Panel 5DPC
Machine Shop + Partial Micro−Lab + Chilled Water
5th Floor Power + Few Pumps
Parking Structure
Panel 5DPB
BG−2

Tr
ue

 P
ow

er
 (k

W
)!

Tr
ue

 P
ow

er
 (k

W
)!

Sunday!

Monday!

Figure 10. A detailed breakdown of electrical usage inside the Electrical Engineering building over two days. Data is
pushed to a client database by a sMAP gateway connected to three Dent circuit meters, each with six channels. Power is
used primarily by lighting, HVAC, and a micro-fabrication lab, as expected. Interestingly, the total power consumed on
Sunday is 440kW while on Monday is 462kW , an increase of less than 5% between a weekend and a weekday, indicative
of an inefficient building. The difference between day and night is small as well. The only load with an obvious spike in
power is lighting at around 7am on Monday, whereas most loads stay the same throughout the day and night.

fits into the library of sMAP actuators as a binary actuator,
nothing new needed to be developed to enable this form of
control.
4.1.3 External Data: CA ISO and WUnderground

sMAP can integrate existing, external data sources to help
define the context in which our study building operates. Two
forms of data relevant to our work were data from the Cali-
fornia Independent System Operator (Cal ISO) concerning
the total state-wide electricity demand, and weather data
from various locations.

Weather data typically has multiple sensors and meters,
instrumenting precipitation, wind, temperature, and pres-
sure. These are easily translated to the appropriate ab-
stractions as sMAP modalities; furthermore sMAP preserves
some important metadata about the weather meter such as its
station identifier, and make and model of the physical hard-
ware. Numerous mote-class sensors would typically be in-
corporated to monitor interior environments.

Because sMAP is relatively prescriptive – the hierarchy
and object definition does not leave much freedom – the
amount of non-shared code is very small; around 100 lines
of Python each case. In fact, the amount of non-boilerplate

code is even smaller; integrating the weather feed required
only 43 new lines of code.
4.1.4 Other Deployments

It is in some ways unfair to evaluate sMAP only based
on the particular data we thought were important. To cast a
wider net, we examined several years of SenSys and IPSN
proceedings for papers describing the deployment of whole
systems, or the development of new sensors; this listing is
present in Table 7.

We found that although the system design typically ad-
dressed novel issues, the actual data retrieved tended to be
very simple: typically, slow time-series of a few parameters.
Since mote-class devices were the most common, the mea-
surement point/channel abstraction appears to work well (as
for the ACme). In fact, none of the deployments appeared
to have a more complicated data model then a three-phase
electric meter.

An important exception to this paradigm was best demon-
strated by Lance (volcano monitoring) and the Heritage
Building project: sMAP does not address high-frequency
data like seismometer or accelerometer data. Although these
are in principle time-series of sensor data, it appears to us

Deployment Modality Sensed Quantities
RACNet [22] Datacenter temperature
ACme [15] Electricity true power, apparent power
Lance [38] Geophysical/Volcano seismometer
MEDiSN [19] Healthcare ECG, blood oxygenation level, pulse rate, etc
GreenOrbs [24] Environmental/Trees illuminance
Flood Warning [6] Water river level
NAWMS [18] Water flow rate
PermaDAQ [7] Alpine environmental temperature, conductivity, crack motion, ice stress, water pressure
Heritage Buildings [9] Structural health temperature, deformation, acceleration
HydroWatch [34] Water cycle temperature, light, humidity

Table 7. Deployments from SenSys and IPSN in the past several years.

Figure 11. ACme wireless plug-load meters (bottom
right) are used to monitor power consumption of vari-
ous appliances, including a laptop and a LCD display in
the top left, a refrigerator and a water dispenser in the
top right, and aggregate consumptions in bottom left.

that sMAP is a sub-optimal design point for representing data
from these applications; this is not a surprise since it was not
an original design goal. We may need to address this with
future protocol modifications. Another observation is that
none of these deployments involved a significant actuation
component. While there have been deployments involving
actuation reported in the literature, this has not been a dom-
inant research focus. It is, of course, common in building
environmental conditioning system.

4.2 Scalable
sMAP must be scalable in both directions: “up”, to mil-

lions of connected clients or subscribers, and “down” to tiny
embedded devices.

Scaling sMAP up is, if not simple, a well-understood
problem given that it runs over HTTP. Using the HTTP
caching model, sensors can and do define how long their
readings will be valid for using the “Expires” header – pre-
sumably, until the next sample is taken. Intermediate caching
proxies then offload queries onto multiple servers. The syn-
dication design we have built is also scalable, since a single
sMAP source may be republished other places on the Inter-
net. For instance, a sMAP instance running on embedded
device may communicate only with a caching proxy which
also offloads most syndication duties. This is very much the

model which pubsubhubbub uses [13] for scaling RSS and
Atom feeds.

A more challenging test is whether sMAP can scale down
to fit on embedded devices. While it is possible to expose
embedded devices’ functionality via web services by using
an application-layer gateway, this is a limiting architecture
because it requires the gateway to be aware of the function-
ality of each connected device. In the sMAP architecture, a
gateway or proxy may still be present for caching, but it is a
transparent component between the client and the server.

4.2.1 Embedded Implementation
We have implemented all the components of the stack pre-

sented in Figure 6; it is used to make sMAP data from AC
plug load meters available. As a comparison, we also have
an implementation of sMAP which uses Packed JSON on top
of HTTP and TCP (rather then EBHTTP).

Component Size
Application Code 936

HTTP 542
TCP 3534

Routing (HYDRO) 2890
IP + ICMP 4382
6lowpan 2262

Link 4926
Total 19472

Table 8. Code size of key elements of an sMAP imple-
mentation using Binary JSON, HTTP, and TCP.

When sMAP meters and sensors are connected
to a bandwidth-constrained network, such as 6low-
pan/IEEE802.15.4, we need to scale sMAP “down” by
minimizing the number of bytes transmitted over the
network. Both EBHTTP and packed JSON help to reduce
the cost of a sMAP request. To evaluate the effect of these
adaptation layers, we compare the size of a sMAP request
using HTTP and JSON with the same sMAP request using
EBHTTP and packed JSON. The request is a GET of
the /data/ABC/sensor/true power/reading resource,
using curl for HTTP/JSON and our EBHTTP client for
EBHTTP/Packed JSON. Table 9 shows the results of the
comparison.

With EBHTTP and Packed JSON, the overall request is
reduced to 10% of its uncompressed size. This reduction
comes from:

1. removing the TCP handshaking and header overhead by
using UDP

HTTP (octets) EBHTTP (octets)
Request
TCP/UDP 190 8
HTTP/EBHTTP 152 4
URL 35 35
Response
TCP/UDP 192 8
HTTP/EBHTTP 123 4
JSON/Packed JSON 167 25
Total 859 84

Table 9. Comparison of HTTP and EBHTTP request
sizes

2. converting the ASCII HTTP request and response head-
ers into the EBHTTP binary format

3. removing the unneeded HTTP headers sent by the client

4. converting the ASCII tags from the JSON response into
short binary tags

In addition to the message size reduction, we reduce the
size of the embedded code needed to implement this ser-
vice by replacing the TCP stack with a UDP stack, replacing
the text-based HTTP parser with a small EBHTTP parser,
and replacing the text-based JSON encoder with a simpler
packed JSON encoder.

This compression is not without cost. By switching to
UDP, we lose the segmentation and flow control provided by
TCP, and switch to a simpler stop-and-wait reliability model.
But, this is often an acceptable tradeoff when using sMAP to
communicate with constrained devices.

4.3 sMAP Applications and Syndication
sMAP decouples device details from applications that

consume their data. Applications only consume sMAP data
and interact with sMAP sources through HTTP/JSON. We
have constructed various applications that consume and pro-
cess sMAP data. There is a visualization client, a storage
and data processing service, a virtual building application,
and a mobile phone application for personal energy footprint
tracking. We have also integrated sMAP with Google Pow-
erMeter.

Because sMAP externalizes metadata management, ap-
plications must handle the metadata associated with stream
sources. Metadata management is application-specific and
is handled as such. For instance, our stream storage sys-
tem treats the metadata as another timeseries data stream
and manages the binding between the metadata stream and
its associated data stream. The virtual building application
stores metadata on building entities and objects, and con-
structs graphical relationships between them.
4.3.1 Visualization

We have built two visualization clients for sMAP. The
first provides a front-end for interacting with sMAP data
sources, called the sMAP console shown in Figure 12. The
application crawls the sMAP resources and uses the informa-
tion returned to generate an interface for any sMAP source.
Using the console, users can type in any source URL, and
easily view what sensors, meters, and actuators are available;
this gives users an easy way to explore the functionality of a
new instrument. Furthermore, if the sMAP channel supports

Figure 12. The sMAP console application can be used to
plot any sMAP-compliant data sources, such as: power
consumption of a desktop computer (top-left); portion of
the California energy usage for a day from CalISO (top-
right); lighting load monitored by a Dent circuit meter
(bottom-left); and the local temperature (bottom-right).

the profile resource, the application plots whatever data is
available.

Figure 13. A bridge sends sMAP data to Google Power-
Meter. This iGoogle widget shows the real time power
consumption of a refrigerator.

The second visualization client feeds sMAP data to
Google PowerMeter[1] to display the trends over time, as
shown in Figure 13. Google PowerMeter accepts only en-
ergy data, and in our case a client daemon periodically re-
publishes sMAP data. The data model used in PowerMe-
ter allows only a flat namespace of sensors which are re-
ported very infrequently; it is designed for publishing data
like whole-building consumption to users’ profiles. In the
future we hope there will be a standard which allows parties
to avoid additional protocol translation engines.
4.3.2 Storage

Our metadata management service provides archival stor-
age and query facilities on sMAP data. The Integrated
Sensor-Stream Storage System (IS4) is a publish-subscribe
storage system with a historical and real-time query engine.
Although IS4 is a generic data store it has specific mecha-
nisms for importing sMAP data sources.

Publishers push data into IS4 and IS4 pushes data to sub-
scribers. However, unlike the very simple sMAP profile, IS4
is built to compute various queries and aggregates on the
data coming in from sMAP and republish the results of these
queries as new streams; in this sense it is first and foremost

an ambitious attempt to build a distributed data-store for all
of our data. IS4 organizes input streams using different re-
source types and defines rules for their hierarchical organi-
zation. For instance, an IS4 “device” resource is a collection
of publishers, which map directly to a sMAP “measurement
point.”

Figure 14. The Integrated Sensor-Stream System (IS4)
manages the metadata for our Cory Hall instrumenta-
tion project: it tracks the associations between sensors
and what they are sensing. It also allows archiving data
coming from sMAP. This example uses IS4 to build up a
hierarchical representation of the Cory Hall electric tree.

Currently, our focus in IS4 is on providing a way to
manage data and metadata streams in buildings. IS4 cap-
tures relationships by constructing a resource hierarchy that
names measurement instruments relative to their context;
that is, their physical location and the location of the mea-
sured quantity. This allows us to represent the relationships
between systems, spaces, and instruments. IS4 keeps track
of changes in these relationships over time; logical changes
that reflect physical changes, such as the installation of a new
sensor. Figure 14 shows a portion of the electric load tree
captured in IS4, branching from whole-building power down
to individual panels and receptacles.
4.3.3 EveryBuilding

Another application which takes a different perspective
on sensor metadata management is EveryBuilding. Every-
Building provides a space for users to create virtual represen-
tations of the buildings they live and work in. Users incre-
mentally create building models made up of interconnecting
spaces (typically rooms), graph relationships between these
spaces, and associate sensors with data streams associated
with the spaces. EveryBuilding makes use of sMAP as a
source of live physical data streams.

Users of EveryBuilding can connect their sensors to live
data streams from sMAP by entering the URL into a web
formAfter the user enters a new sMAP URL, EveryBuilding
takes advantage of the self-describing nature of the design by
taking the following steps:

1. GET the sMAP /profile resource for the channel and
initialize the sensor’s data stream with the most recent

readings available in the channel

2. GET the sMAP /formatting resource for the chan-
nel, and store the unit of measure and scaling coefficient
along with the sensor’s sMAP subscription record

3. GET the sMAP /parameter resource for the channel,
and store the SamplingPeriod element as an indicator of
how often EveryBuilding should expect a new reading

4. POST a subscription request to the sMAP root’s
/reporting/create URL to subscribe itself to future
data items on that channel. The subscription’s Delivery-
Location is the sensor’s own reporting URL within Ev-
eryBuilding, which accepts HTTP POST requests con-
taining sMAP /reading resources, applies the scaling
coefficients, and stores the new readings into the sen-
sor’s data stream

EveryBuilding supports other data access methods for
sensor readings, including CSV upload and manual data en-
try, but sMAP subscription has proven to be a useful tool for
obtaining live physical data streams within a web application
context. Using archived data, EveryBuilding is able to feed
the models into simulation tools like Energy+ and compare
the predicted energy spend to real data.
4.3.4 Personal Energy Footprint

Figure 15. Personalized energy feedback for Android de-
vices.

In an attempt to increase energy-consumption awareness,
we built a mobile-phone application placing energy data
from sMAP-enabled sensors on mobile phones 15. As a user
moves from room to room, they scan a 2D bar code identify-
ing the room and the sMAP appliances in that room. The ap-
plication obtains data feeds from the appliances in that room
that are public or that belong the user, and presents aggre-
gates or plots. A key concept is linking the physical space
and social concept of personal responsibility with live data.
Since sMAP also provides a way to express a control inter-
face, controllable appliances also appear available for direct
interaction.
5 Conclusions

sMAP is a simple and compact version of what is typ-
ically found in web-service protocols, and has the poten-
tial to subsume much of what is currently being advocated
in standards bodies. In the course of finalizing the design,
we worked through many design facets to develop a solution

which fills a niche in the space. By providing only a durable
instrument identifier, we make it possible to build other sys-
tems which manage the context of the instrument, creating
a clear separation of concerns between sMAP, which repre-
sents data, and other systems, which track metadata. We also
investigated how sMAP can be run efficiently on constrained
devices; the solution, of using separate adaptations for each
layer is both principled, since it preserves the original archi-
tecture, and efficient, reducing message size and complexity.
In short, this concrete solution is strong enough to stand on
its own as an interface for simple sensors and meters.

sMAP pushes a broader architectural transition taking
place in sensor network construction, away from monolithic
application stacks and towards distributed, service-based ar-
chitectures. Using this simple primitive, we are able to inte-
grate data from a huge diversity of sources without restric-
tion to any underlying technology, and build applications
quickly and independently.
Acknowledgements

We would like to thanks our shepherd, Suman Nath, and
the anonymous reviewers for helping to improve the paper.
Scott McNally was instrumental in managing the Cory Hall
instrumentation project, ably assisted by Albert Goto and
Mike Howard. This work is supported in part by the Na-
tional Science Foundation under grants CPS-0932209 and
CPS-0931843.
6 References
[1] Google powermeter. http://www.google.org/powermeter/.

[2] pachube. http://www.pachube.com/.

[3] Smart grid interoperability standards project. http://www.nist.gov/
smartgrid/.

[4] End user guide to industry foundation classes, enabling interoperability. Techni-
cal report, 1996.

[5] Ansi c12.19: Meter tables. Standard, 2004.

[6] E. A. Basha, S. Ravela, and D. Rus. Model-based monitoring for early warn-
ing flood detection. In SenSys ’08: Proceedings of the 6th ACM conference on
Embedded network sensor systems, pages 295–308, New York, NY, USA, 2008.
ACM.

[7] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi, L. Thiele,
C. Tschudin, M. Woehrle, and M. Yuecel. Permadaq: A scientific instrument
for precision sensing and data recovery in environmental extremes. In IPSN ’09:
Proceedings of the 2009 International Conference on Information Processing in
Sensor Networks, pages 265–276, Washington, DC, USA, 2009. IEEE Computer
Society.

[8] M. Botts and A. Robin. Opengis sensor model language (sensorml) implemen-
tation specification. OpenGIS Implementation Specification OGC 07-000, Open
Geospatial Consortium Inc., 07 2007. Version: 1.0.0.

[9] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, M. Corra, M. Pozzi,
D. Zonta, and P. Zanon. Monitoring heritage buildings with wireless sensor
networks: The torre aquila deployment. In IPSN ’09: Proceedings of the 2009
International Conference on Information Processing in Sensor Networks, pages
277–288, Washington, DC, USA, 2009. IEEE Computer Society.

[10] D. Crockford. Rfc 4627 - the application/json media type for javascript object
notation (json). Technical report.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Rfc 2616 – hypertext transfer protocol – http/1.1. Technical
report.

[12] R. T. Fielding. REST: Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California, Irvine,
2000.

[13] B. Fitzpatrick, B. Slatkin, and M. Atkins. Pubsubhubbub core 0.3 – working
draft. Technical report.

[14] J. W. Hui and D. E. Culler. Ip is dead, long live ip for wireless sensor networks.
In SenSys ’08: Proceedings of the 6th ACM conference on Embedded network
sensor systems, pages 15–28, New York, NY, USA, 2008. ACM.

[15] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler. Design and implemen-
tation of a high-fidelity ac metering network. In IPSN ’09: Proceedings of the

2009 International Conference on Information Processing in Sensor Networks,
pages 253–264, Washington, DC, USA, 2009. IEEE Computer Society.

[16] X. Jiang, M. V. Ly, J. Taneja, P. Dutta, and D. Culler. Experiences with a high-
fidelity wireless building energy auditing network. In SenSys ’09: Proceedings
of the 7th ACM conference on Embedded network sensor systems, 2009.

[17] A. Kansal, S. Nath, J. Liu, and F. Zhao. Senseweb: An infrastructure for shared
sensing. IEEE MultiMedia, 14(4):8–13, 2007.

[18] Y. Kim, T. Schmid, Z. M. Charbiwala, J. Friedman, and M. B. Srivastava.
Nawms: nonintrusive autonomous water monitoring system. In SenSys ’08: Pro-
ceedings of the 6th ACM conference on Embedded network sensor systems, pages
309–322, New York, NY, USA, 2008. ACM.

[19] J. Ko, R. Musǎloiu-Elefteri, J. H. Lim, Y. Chen, A. Terzis, T. Gao, W. Destler,
and L. Selavo. Medisn: medical emergency detection in sensor networks. In Sen-
Sys ’08: Proceedings of the 6th ACM conference on Embedded network sensor
systems, pages 361–362, New York, NY, USA, 2008. ACM.

[20] C. Leung. Extended environments markup language. http://www.eeml.org/.

[21] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for
sensor networks. Ambient Intelligence, pages 115–148, 2005.

[22] C.-J. M. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao. Racnet: a high-fidelity data
center sensing network. In SenSys ’09: Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, pages 15–28, New York, NY, USA,
2009. ACM.

[23] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos, and K. Kim. Tinyrest
- a protocol for integrating sensor networks into the internet. In REALWSN ’05:
Workshop on Real-World Wireless Sensor Networks, 2005.

[24] L. Mo, Y. He, Y. Liu, J. Zhao, S. J. Tang, X. Y. Li, and G. Dai. Canopy closure
estimates with greenorbs: sustainable sensing in the forest. In SenSys ’09: Pro-
ceedings of the 7th ACM Conference on Embedded Networked Sensor Systems,
pages 99–112, New York, NY, USA, 2009. ACM.

[25] G. Montenegro, N. Kushalnagar, J. Hui, , and D. Culler. Rfc 4944 – transmission
of ipv6 packets over ieee 802.15.4 networks. Technical report.

[26] M. Nottingham and R. Sayre. Rfc 4287 – the atom syndication format. Technical
report.

[27] Å. Östmark, J. Eliasson, P. Lindgren, A. van Halteren, and L. Meppelink. An
infrastructure for service oriented sensor networks. Journal of Communications,
1(5):20–29, 2006.

[28] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power wire-
less research. In IPSN ’05: Proceedings of the 4th international symposium on
Information processing in sensor networks, page 48, Piscataway, NJ, USA, 2005.
IEEE Press.

[29] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao. Tiny web services: design
and implementation of interoperable and evolvable sensor networks. In SenSys
’08: Proceedings of the 6th ACM conference on Embedded network sensor sys-
tems, pages 253–266, New York, NY, USA, 2008. ACM.

[30] A. Rowe, M. Berges, G. Bhatia, E. Goldman, R. Rajkumar, and L. Soibelman.
Demo abstract: The sensor andrew infrastructure for large-scale campus-wide
sensing and actuation. In IPSN, pages 415–416. ACM, 2009.

[31] P. Saint-Andre. Rfc 3920 – extensible messaging and presence protocol. Tech-
nical report, October 2004.

[32] L. Schor, P. Sommer, and R. Wattenhofer. Towards a zero-configuration wireless
sensor network architecture for smart buildings. In BuildSys ’09: Proceedings of
the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in
Buildings, pages 31–36, New York, NY, USA, 2009. ACM.

[33] Smart Energy Profile 2.0. Zigbee Alliance, 2010.

[34] J. Taneja, J. Jeong, and D. Culler. Design, modeling, and capacity planning
for micro-solar power sensor networks. In IPSN ’08: Proceedings of the 7th
international conference on Information processing in sensor networks, pages
407–418, Washington, DC, USA, 2008. IEEE Computer Society.

[35] A. Tavakoli. Exploring a Centralized/Distributed Hybrid Routing Protocol for
Low Power Wireless Networks and Large Scale Datacenters. PhD thesis, EECS
Department, University of California, Berkeley, Nov 2009.

[36] G. Tolle. Embedded Binary HTTP (EBHTTP). IETF Internet-Draft draft-tolle-
core-ebhttp-00, Mar. 2010.

[37] S. Vinoski. Advanced message queuing protocol. IEEE Internet Computing,
10:87–89, 2006.

[38] G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh. Lance: optimizing high-
resolution signal collection in wireless sensor networks. In SenSys ’08: Proceed-
ings of the 6th ACM conference on Embedded network sensor systems, pages
169–182, New York, NY, USA, 2008. ACM.

[39] D. Yazar and A. Dunkels. Efficient Application Integration in IP-based Sensor
Networks. In Proceedings of ACM BuildSys 2009, the First ACM Workshop On
Embedded Sensing Systems For Energy-Efficiency In Buildings, Berkeley, CA,
USA, Nov. 2009.

