
Lawrence Berkeley National Laboratory
LBL Publications

Title
Fast point cloud generation with diffusion models in high energy physics

Permalink
https://escholarship.org/uc/item/4nz9d332

Journal
Physical Review D, 108(3)

ISSN
2470-0010

Authors
Mikuni, Vinicius
Nachman, Benjamin
Pettee, Mariel

Publication Date
2023-08-01

DOI
10.1103/physrevd.108.036025

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4nz9d332
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Fast point cloud generation with diffusion models in high energy physics

Vinicius Mikuni ,1,* Benjamin Nachman ,2,3,† and Mariel Pettee2,‡
1National Energy Research Scientific Computing Center, Berkeley Lab, Berkeley, California 94720, USA

2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3Berkeley Institute for Data Science, University of California, Berkeley, California 94720, USA

(Received 28 April 2023; accepted 8 August 2023; published 28 August 2023)

Many particle physics datasets like those generated at colliders are described by continuous coordinates
(in contrast to grid points like in an image), respect a number of symmetries (like permutation invariance),
and have a stochastic dimensionality. For this reason, standard deep generative models that produce images
or at least a fixed set of features are limiting. We introduce a new neural network simulation based
on a diffusion model that addresses these limitations named fast point cloud diffusion. We show that
our approach can reproduce the complex properties of hadronic jets from proton-proton collisions with
competitive precision to other recently proposed models. Additionally, we use a procedure called
progressive distillation to accelerate the generation time of our method, which is typically a significant
challenge for diffusion models despite their state-of-the-art precision.

DOI: 10.1103/PhysRevD.108.036025

I. INTRODUCTION

Simulations are a critical component of nearly all
inference tasks in particle physics. These simulations
connect theory to experiment and must span a wide range
of energy scales and encode the complex structure of
high energy physics data. Physics-based simulations are
excellent, but they are only an approximation to nature.
Additionally, some components of these simulations are
computationally expensive and are a bottleneck for the
high statistics datasets that are being collected now and
in the near future. Classical fast approximations exist
for some steps and in some cases, such as detector
simulations for a particular experiment, but they are often
not expressive enough to achieve high fidelity compared
to a full simulation routine.
Deep neural network-based simulations (called deep

generative models) are a promising alternative to classical
fast simulations. Since the first deep generative model
applied to high energy physics [1], there have been a large
number of proposals to use these tools for fast simulation
and many other applications [2–4]. In this paper, we
revisit the original problem of emulating parton shower

Monte Carlo simulations. These simulations describe the
formation of jets of hadrons that emerge from the high
energy quarks and gluons. Jets are ubiquitous at particle
colliders and are the most complex objects reconstructed
from hadronic final states. Together, these qualities make
jets a standard benchmark for developing machine learning-
based generative models.
Many deep generative models have been deployed to the

problem of emulating jet formation. The first approaches
used images by spatially discretizing the radiation pattern
within jets [5,6]. Generative adversarial networks (GANs)
[1,7] and autoencoders [8] were able to reproduce many
aspects of the parton shower, but they were fundamentally
limited because of their pixelization. While other applica-
tions of deep generative models naturally process image
data (e.g., calorimeter simulations [9–33]), jets are natu-
rally represented as variable-sized point clouds and infor-
mation is lost when they are projected onto fixed size grids
with reduced spatial position information compared to the
original detector granularity.
Point cloud generative models (PCGM) offer the sol-

ution to the inherent challenges with pixelation. The first
PCGM applied to jet formation was Ref. [34], which used a
recurrent model to describe the probability density of a
given jet. Recently, there has been a surge of interest in
more general PCGMs that do not need to make any
assumptions or approximations about the underlying gen-
erative process. This latest wave of methods began with a
graph neural network-based GAN [35] and now includes a
deep-sets-based GAN [36] and a normalizing flow [37,38].
These models mark a significant step forward in the
application of generative models to particle physics, but

*vmikuni@lbl.gov
†bpnachman@lbl.gov
‡mpettee@lbl.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 036025 (2023)

2470-0010=2023=108(3)=036025(11) 036025-1 Published by the American Physical Society

https://orcid.org/0000-0002-1579-2421
https://orcid.org/0000-0003-1024-0932
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.036025&domain=pdf&date_stamp=2023-08-28
https://doi.org/10.1103/PhysRevD.108.036025
https://doi.org/10.1103/PhysRevD.108.036025
https://doi.org/10.1103/PhysRevD.108.036025
https://doi.org/10.1103/PhysRevD.108.036025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


there is still significant room for improvement in
both precision and robustness. For example, GANs solve
a minimax problem and are thus difficult to train.
Normalizing flows are more stable to train, but may have
difficulties when generating low level inputs (such as
particle kinematic information), or a variable-length repre-
sentation with complex topology due to the invertible nature
of their neural networks.
In the machine learning literature, the most precise

generative neural networks are diffusion models (see,
e.g., Ref. [39]). These approaches circumvent the challenges
with other models by performing a convex optimization
problem, but without the need for invertible transformations.
This can be achieved by learning the score of the probability
density ∇ logp instead of the probability density directly.
The first diffusion model applied to particle physics was in
the context of image-based calorimeter simulation [33],
significantly extending the dimensionality of previous
results. Our goal is to adapt diffusion models to the
variable-length point cloud setting for parton showers and
other phenomena in high energy physicswhile also reducing
the generation time to be competitive with other fast
generationmethods. To this end, we introduce our algorithm
for fast point cloud generation (FPCD), used to simulate
point cloud data with varying length much faster than a
standard diffusion implementation. Examples of generated
point clouds using our proposed algorithm are shown in
Fig. 1, where we compare the average energy deposition for
top quark initiated jets generated by the full simulation or by
the generativemodel.We accelerate the sampling time of the
surrogate model using a method called progressive distil-
lation [40], resulting in a generativemodelwith high physics
fidelity and fast sampling times.
While this paper was being finalized, the authors of

Ref. [41] also proposed a diffusion-based PCGM for jet
formation. The proposal in our paper differs from Ref. [41]
in a few ways. First, our model does not condition on the jet
mass, but rather it utilizes a separate diffusion model to
determine the jet kinematics. Next, it is much faster (via
progressive distillation) and is conditioned on the particle

type, thereby avoiding the training of multiple diffusion
models for each type of jet. Finally, we also provide results
for more particle types (including gluons and W and Z
bosons in addition to light and top quarks) in two different
datasetswith varying number of particles to demonstrate that
our model is capable of generating outputs of varying sizes.
This paper is organized as follows: Sec. II introduces

score-based diffusion models and describes how they can
be accelerated with progressive distillation. We then detail
our implementation of the diffusion-based generative
model for parton showers in Sec. III. Numerical results
are presented in Sec. IV and the paper ends with con-
clusions and outlook in Sec. V.

II. SCORE-BASED GENERATIVE MODELS AND
PROGRESSIVE DISTILLATION

The goal of a generative model is to be able to generate
new observations from a noise distribution. Diffusion
models became popular in recent years for their capacity
to generate realistic data, often surpassing standard state-of-
the-art generative models. In score-based methods [42], a
diffusion process is designed to slowly perturb the data
through the addition of noise, while a neural network learns
a time-dependent score function∇x logpdata for some high-
dimensional distribution x∈RD described by the proba-
bility density pdata. The score function is then used in a
reverse-diffusion process: starting from a noisy distribu-
tion and proceeding to denoise the observation. The
diffusion model is described by latent variables z ¼
fztjt∈ ½0; 1�g with a time-dependent noise schedule αt,
σt, such that the log signal-to-noise ratio log½α2t =σ2t �,
decreases monotonically with time. During training, the
network learns to denoise zt ∼ qðztjxÞ ¼ N ðzt; αtx; σ2t IÞ
towards the unperturbed data x ∼ pdata, effectively learn-
ing an estimate x̂θ ≈ x by updating the trainable param-
eters θ during training. Following Ref. [40], we instead
train a network to estimate a “velocity” parameter
v≡ αtϵ − σtx, with ϵ ∼N ð0; IÞ, which is observed to
yield accurate results while also simplifying the distil-
lation method employed later. The loss function to be
minimized during optimization is then defined as

FIG. 1. Average top quark initiated jet in the full simulation, after generation with the diffusion model, and after distillation resulting in
eight or a single time step used during sampling.

MIKUNI, NACHMAN, and PETTEE PHYS. REV. D 108, 036025 (2023)

036025-2



Lθ ¼ Eϵ;tkvt − v̂t;θk2; ð1Þ
where t is sampled uniformly over the considered interval.
In this formulation, we can identify the estimate of the
score function as

∇z log p̂θðztÞ ¼ zt −
αt
σt
v̂θðztÞ: ð2Þ

In our implementation, we consider the variance-
preserving setting of diffusion processes, where σ2t ¼
1 − α2t . For the time dependence, we use a cosine schedule
such that αt ¼ cosð0.5πtÞ.
The generation of new samples is then carried out using

the Denoising Diffusion Implicit Models (DDIM) sampler
proposed in Ref. [43] that uses an integration rule to solve
the deterministic ordinary differential equation:

dzt ¼
�
fðzt; tÞ −

1

2
g2ðtÞ∇z log p̂θðztÞ

�
dt; ð3Þ

with drift coefficient fðzt; tÞ ¼ d log αt
dt zt and diffusion

coefficient g2ðtÞ ¼ dσ2t
dt . In the DDIM solver, the update

rule is then specified by

zs ¼ αsx̂θðztÞ þ σs
zt − αtx̂θðztÞ

σt
: ð4Þ

In practice, solving Eq. (3) can be slow since the error
introduced by the numerical integration is sensitive to the
number of time steps chosen, often requiring hundreds to
thousands of time steps and hence function evaluations of
the trained model.
To accelerate diffusion models, Ref. [40] introduced a

technique called progressive distillation. Starting from a
trained diffusion model, the goal of progressive distilla-
tion is to learn iteratively to halve the number of time steps
required during generation of new samples. In this setting,
the trained diffusion model (“teacher”) is used to initialize
a “student” model. During training, the goal is to have the
student model learn how to denoise data zt towards a
target x̃, where x̃ does not represent the clean data (x)
anymore, but instead is one that makes a single student
DDIM step to match two teacher DDIM steps. This
process is then repeated multiple times, with the student
at the end of each iteration becoming the new teacher. In
this work, we train a diffusion model with initial number
of steps N fixed to 512. From there, we distill the model
multiple times, reporting the results obtained with
N ¼ 512, N ¼ 8, and N ¼ 1.

III. POINT CLOUD DIFFUSION FOR
COLLIDER DATA

particle jets conditioned on the initial particle type. We
use the datasets introduced in Ref. [35] consisting of jets
initiated by light quarks, gluons, top quarks, W and Z
bosons. The jets are generated with transverse momenta
pT around 1 TeV and are clustered using the anti-kt

algorithm [44] with a radius parameter of 0.8. Each jet
has a maximum number of particles stored fixed to 30 [45]
or 150 [46]. For each jet, the four-momentum information
ðpTjet; ηjet;ϕjet; mjetÞ is provided, as well as the particle
multiplicity. For each particle clustered inside a jet, the
relative set of kinematic quantities are provided

pTrel ¼ pTpart=pTjet;

ηrel ¼ ηjet − ηpart;

ϕrel ¼ ϕjet − ϕpart: ð5Þ
Our goal is to develop a diffusion model that is condi-

tioned on the particle’s type and is able to generate both
jet- and particle-level kinematic information. To accomplish
this task, we train two diffusion models simultaneously. The
first model learns the jet kinematic information, including
particle multiplicity, while the second is conditioned on the
jet kinematic distributions to generate particle information.
Effectively, the loss function that is minimized during
training is

Ljet;particle ¼ Ljet þ Lparticle; ð6Þ
with different models trained to generate jet information and
particle information. During the generation step, we first
sample the jet kinematic information together with the
particle multiplicity, conditioned on the type of the jet we
aim to generate. This information is then used as an input to
generate the particle information for each jet. The particle
multiplicity generated determines the total number of
particles generated in each jet. Although it is feasible to
achieve a perfect match between the output particle multi-
plicity and the sampled particle multiplicity, we prefer to
employ a masking plus zero-padding approach. This
involves always sampling a set number of particles (either
30 or 150 depending on the dataset), but in the generation
process, we mask the input noise and only consider the
desired particle multiplicity.
Prior to training, the inputs to the diffusion model

undergo a normalization process where all input features
are standardized by adjusting their mean and standard
deviation to 0 and 1, respectively.
The generative model designed to produce jet kinematic

information is based on a fully connected architecture
incorporating multiple skip connections. Specifically, the
model employs five ResNet [47] blocks, where each residual
layer is connected to the output of a two-layer network
through a skip connection. The activation function used is
LeakyRelu [48] with a slope of α ¼ 0.01, and all layer sizes
are set to 512.
The particle diffusion model employs a DeepSets [49]

architecture with transformer layers [50] to increase the
model’s expressivity. The input sets are first mapped into a
larger latent space using a fully connected layer with a size
of 64, applied independently to each particle in the set. The
model then employs eight transformer encoding blocks

FAST POINT CLOUD GENERATION WITH DIFFUSION MODELS … PHYS. REV. D 108, 036025 (2023)

036025-3



followed by a fully connected layer with a size of 64 before
the output layer. The activation function used is again
LeakyRelu, and the outputs of the transformer layers are
summed to the last layer before the first transformer block,
which is observed to result in better performance according
to our experiments.
Both diffusion models incorporate time information by

feeding random Fourier features [51] through two fully
connected layers with 32 and 64 nodes. The resulting
embeddings are combined with additional conditional
information including jet type for the jet diffusion model
and both jet type and jet kinematic information for the
particle diffusion model. After passing through a fully
connected layer of size 64, these embeddings are concat-
enated with the inputs of each diffusion model.
A visual description of both models is shown in Fig. 2.
The implementation of the model is carried out using

Keras backend [52] with a TensorFlow [53] backend. The
model is trained for up to 250 epochs with a cosine learning
rate schedule [54] with initial learning rate of 16 × 10−4. If
the loss function does not decrease for 20 consecutive
epochs, evaluated in a separate testing set, representing
20% to the sample size, then the training is stopped. During
training, 16 NVIDIA A100 GPUs are used simultaneously
interfaced with the Horovod package [55] on the Perlmutter
supercomputer [56]. The batch size in each GPU is set to
128. The hyperparameters used in the model architecture
were optimized using the KerasTuner [57] package with
Hyperband [58] algorithm.

IV. RESULTS

The performance of the generative model is evaluated
using physics-based metrics proposed in [35] as well
as additional metrics designed specifically to assess the
quality of the jet kinematic generation. These metrics
include the 1-Wasserstein (W1) distances that are calculated

using only particle information such as averaged particle
relative momentumWP

1 , relative jet mass WPM
1 , and average

of first five energy flow polynomials WPEFP
1 [59]. The

1-Wasserstein distances are also calculated for jet kinematic
information, including jet transverse momentum WJP

1 , jet
pseudorapidity WJη

1 , jet mass WJM
1 , and jet particle multi-

plicityWJN
1 . The evaluation also includes Fréchet ParticleNet

distance (FPND), coverage (Cov), and minimum matching
distance (MMD), described in Ref. [35]. To calculate each
metric, 50,000 generated examples for each jet category are
compared against 50,000 validation samples that were not
used during training. Uncertainties are estimated using
bootstrapping with replacement following [35]. Addi-
tionally, results for distilled models with a different number
of total time steps are also provided in Table I.
Different jet kinematic distributions are shown in Fig. 3

as well as the comparison of the different metrics listed in
Table II. We also present the per-particle distributions in
Fig. 4, displaying simultaneously all particles inside a given
jet. Results are also compared with the official implemen-
tations of EPiC-GAN and MP-GAN, where in the latter the
MP-MP implementation is taken for the comparison.
While other implementations using the same datasets

exist [37,41], these models are not directly comparable to
our method as they are conditioned by the jet kinematic
information, whereas our method simultaneously models
both the jet and particle kinematic distributions.
Similarly, we also consider the same physics-inspired

metrics to evaluate FPCD in the dataset consisting of up to
150 particles per jet. In this case, the majority of the jets
used during training need to be zero-padded and is used to
display the capability of FPCD to learn how to generate jets
with varying number of particles. The comparison of the
physics inspired metrics are listed in Table III. Since the jet
kinematic information is not affected by the maximum
number of particles stored in each jet, we only report the
WJN

1 metric for each dataset in Table IV. Histograms for

FIG. 2. Description of the network architectures used to train the jet and particle diffusion models. Numbers after layers represent the
number of hidden nodes associated to the layer. See the text for more information.

MIKUNI, NACHMAN, and PETTEE PHYS. REV. D 108, 036025 (2023)

036025-4



FIG. 3. Generated jet kinematic information using FPCD compared to simulated events for particle jets consisting of light quarks (q),
gluons (g), and top quarks (top).

FIG. 4. Generated particle kinematic information using FPCD compared to simulated events for particle jets consisting of light quarks
(q), gluons (g), and top quarks (top). For each jet, all particles for both simulation and FPCD are shown.

FAST POINT CLOUD GENERATION WITH DIFFUSION MODELS … PHYS. REV. D 108, 036025 (2023)

036025-5



each of the distributions considered in this study are
provided in Appendix A. Finally, we also compare the
generation time for FPCD in Table V.
The original FPCD model is highly accurate but com-

putationally expensive. However, we found that a distilled

model with as few as eight time steps can achieve similar
results while significantly reducing the overall sampling
time. Surprisingly, a distilled model with only a single
time step during generation still retains high fidelity while
further reducing the sampling time. In Appendix B, we

TABLE I. Comparison of the results obtained between different generative models in the task of particle property generation in the
dataset consisting of 30 particles. Baseline FPCD uses 512 time steps during sampling. Distilled models are listed alongside number of
time steps used. Lower is better for all metrics except Cov. FPND metrics are not available for W and Z bosons, hence omitted.

Jet class Model WPM
1 (×10−3) WP

1 (×10−3) WPEFP
1 (×10−5) FPND Cov↑ MMD

Gluon FPCD 0.36� 0.08 0.34� 0.09 0.47� 0.13 0.07 0.55 0.03
FPCD 8 0.60� 0.16 0.36� 0.07 0.54� 0.09 0.07 0.55 0.03
FPCD 1 0.65� 0.11 0.34� 0.06 0.60� 0.09 0.11 0.55 0.03
MP-GAN [35] 0.69� 0.07 1.8� 0.2 0.9� 0.6 0.20 0.54 0.037
EPiC-GAN [36] 0.3� 0.1 1.6� 0.2 0.4� 0.2 1.01� 0.07 � � � � � �

Light quark FPCD 0.52� 0.07 0.27� 0.06 0.38� 0.11 0.08 0.49 0.02
FPCD 8 0.59� 0.14 0.35� 0.05 0.44� 0.07 0.09 0.48 0.02
FPCD 1 0.59� 0.08 0.36� 0.08 0.50� 0.08 0.09 0.48 0.02
MP-GAN [35] 0.6� 0.2 4.9� 0.5 0.7� 0.4 0.35 0.50 0.026
EPiC-GAN [36] 0.5� 0.1 4.0� 0.4 0.8� 0.4 0.43� 0.03 � � � � � �

Top quark FPCD 0.51� 0.07 0.41� 0.12 1.25� 0.19 0.17 0.58 0.05
FPCD 8 0.80� 0.06 0.45� 0.12 1.91� 0.30 0.37 0.58 0.05
FPCD 1 1.22� 0.09 0.46� 0.10 2.66� 0.26 0.56 0.57 0.05
MP-GAN [35] 0.6� 0.2 2.3� 0.3 2� 1 0.37 0.57 0.071
EPiC-GAN [36] 0.5� 0.1 2.1� 0.1 1.7� 0.3 0.31� 0.037 � � � � � �

W boson FPCD 0.26� 0.03 0.39� 0.08 0.15� 0.02 � � � 0.56 0.02
FPCD 8 0.48� 0.04 0.38� 0.05 0.22� 0.02 � � � 0.55 0.02
FPCD 1 0.94� 0.06 0.42� 0.09 0.35� 0.03 � � � 0.56 0.02

Z boson FPCD 0.21� 0.04 0.40� 0.13 0.18� 0.03 � � � 0.56 0.02
FPCD 8 0.40� 0.04 0.35� 0.04 0.27� 0.03 � � � 0.56 0.02
FPCD 1 0.99� 0.05 0.35� 0.06 0.49� 0.03 � � � 0.56 0.02

TABLE II. Comparison of the results obtained between different generative models for the task of jet property generation in the dataset
consisting of 30 particles. Baseline FPCD uses 512 time steps during sampling. Distilled models are listed alongside number of time
steps used. Lower is better for all metrics listed except Cov.

Jet class Model WJpT
1 WJη

1 WJM
1 WJN

1

Gluon FPCD 1.5� 0.5 0.009� 0.003 0.30� 0.07 0.020� 0.009
FPCD 8 1.5� 0.5 0.010� 0.003 0.30� 0.07 0.021� 0.009
FPCD 1 1.5� 0.4 0.011� 0.003 0.30� 0.10 0.025� 0.011

Light quark FPCD 1.3� 0.4 0.008� 0.002 0.39� 0.14 0.023� 0.009
FPCD 8 1.4� 0.3 0.009� 0.002 0.39� 0.14 0.024� 0.010
FPCD 1 1.4� 0.3 0.009� 0.002 0.39� 0.09 0.024� 0.008

Top quark FPCD 1.4� 0.3 0.009� 0.003 0.37� 0.12 0.022� 0.007
FPCD 8 1.5� 0.3 0.010� 0.003 0.37� 0.12 0.023� 0.007
FPCD 1 1.4� 0.3 0.009� 0.002 0.41� 0.12 0.025� 0.009

W boson FPCD 1.19� 0.34 0.008� 0.004 0.33� 0.15 0.021� 0.010
FPCD 8 1.23� 0.33 0.009� 0.003 0.34� 0.14 0.021� 0.010
FPCD 1 1.21� 0.25 0.009� 0.003 0.33� 0.10 0.023� 0.011

Z boson FPCD 1.14� 0.22 0.011� 0.004 0.34� 0.18 0.023� 0.013
FPCD 8 1.18� 0.24 0.012� 0.004 0.35� 0.18 0.024� 0.013
FPCD 1 1.43� 0.35 0.010� 0.004 0.36� 0.13 0.030� 0.015

MIKUNI, NACHMAN, and PETTEE PHYS. REV. D 108, 036025 (2023)

036025-6



compare the histograms for each of the kinematic distri-
butions generated by the diffusion model and the distilled
models in the dataset of top quark initiated jets.

EPiC-GAN is shown to be around one order of magnitude
faster than FPCD even with a single diffusion step due to a
different network architecture proposed by the authors. On
the other hand, FPCD with a single time step is faster than
MP-GAN, which also generates new jets through a single
evaluation of the trained network. Nevertheless, all gen-
erative models are several orders of magnitude faster than
the original physics simulation.

V. CONCLUSION AND OUTLOOK

In this work we introduced a FPCD model, providing
flexibility, accuracy, and computational efficiency in jet
generation. By simultaneously learning and generating
multiple jet species, the two-part diffusion model generates
both the jet kinematic information and particle information,
conditioned on the jet kinematics and particle type to be
generated.
Our model has achieved state-of-the-art performance in

several physics-inspired metrics. We have demonstrated its
capability to generate five different jet types with high
fidelity using datasets consisting of 30 to 150 particles,

TABLE III. Comparison of the results obtained between different generative models in the task of particle property generation in the
dataset consisting of 150 particles. Baseline FPCD uses 512 time steps during sampling. Distilled models are listed alongside number of
time steps used. Lower is better for all metrics except Cov.

Jet class Model WPM
1 (×10−3) WP

1 (×10−3) WPEFP
1 (×10−5) Cov↑ MMD

Gluon FPCD 0.44� 0.11 0.28� 0.05 0.91� 0.16 0.56 0.03
FPCD 8 0.56� 0.06 0.40� 0.05 1.09� 0.23 0.56 0.03
FPCD 1 0.65� 0.12 0.58� 0.03 1.49� 0.34 0.55 0.03
EPiC-GAN [36] 0.4� 0.1 3.2� 0.2 1.1� 0.7 � � � � � �

Light quark FPCD 0.46� 0.05 0.24� 0.02 0.43� 0.09 0.54 0.02
FPCD 8 0.46� 0.09 0.39� 0.02 0.63� 0.21 0.53 0.02
FPCD 1 0.39� 0.04 0.61� 0.03 0.57� 0.10 0.54 0.02
EPiC-GAN [36] 0.4� 0.1 3.9� 0.3 0.7� 0.4 � � � � � �

Top quark FPCD 0.40� 0.07 0.30� 0.03 2.23� 0.16 0.58 0.05
FPCD 8 0.56� 0.08 0.56� 0.04 3.29� 0.11 0.58 0.05
FPCD 1 0.85� 0.09 0.87� 0.03 3.82� 0.24 0.58 0.05
EPiC-GAN [36] 0.6� 0.1 3.7� 0.3 2.8� 0.7 � � � � � �

W boson FPCD 0.29� 0.02 0.23� 0.02 0.22� 0.04 0.55 0.02
FPCD 8 0.47� 0.03 0.39� 0.01 0.31� 0.04 0.56 0.02
FPCD 1 0.93� 0.04 0.67� 0.01 0.37� 0.03 0.56 0.02

Z boson FPCD 0.28� 0.05 0.22� 0.03 0.23� 0.03 0.55 0.02
FPCD 8 0.52� 0.04 0.42� 0.01 0.37� 0.05 0.56 0.02
FPCD 1 1.04� 0.08 0.69� 0.02 0.62� 0.06 0.57 0.02

TABLE IV. Comparison of the results obtained between different generative models for the task of jet particle multiplicity generation
in the dataset consisting of 150 particles. Baseline FPCD uses 512 time steps during sampling. Distilled models are listed alongside
number of time steps used.

Model Gluon Light quark Top quark W boson Z boson

WJN
1

FPCD 0.157� 0.036 0.191� 0.067 0.171� 0.054 0.165� 0.056 0.241� 0.090
FPCD 8 0.157� 0.035 0.190� 0.066 0.168� 0.054 0.165� 0.055 0.239� 0.090
FPCD 1 0.157� 0.035 0.190� 0.067 0.169� 0.054 0.166� 0.055 0.239� 0.090

TABLE V. Timing comparison for full jet generation with
FPCD. A fixed batch size of 10,000 examples is used. The time
reported is the sum of the time used to generate each jet and
particle kinematic information in a single GPU. Full simulation
time is taken from [35].

Model 30 particles (μs) 150 particles (μs)

FPCD 5 × 103 31 × 103

FPCD 8 85 522
FPCD 1 11 66
EPiC-GAN [36] 2 12
MP-GAN [35]a 35.7 � � �
Full Simulation 46 × 103 46 × 103

aThe EPiC-GAN work also provides a time comparison with a
retrained MP-GAN. However since we do not retrain any model
used for comparison, we decided to mention only the official
results released in the original publications.

FAST POINT CLOUD GENERATION WITH DIFFUSION MODELS … PHYS. REV. D 108, 036025 (2023)

036025-7



showcasing the model’s ability to generate jets with differ-
ent particle multiplicities through a masking strategy.
Furthermore, the generation time was reduced by a factor

of 450 using progressive distillation compared to the initial
FPCD baseline, enabling high-fidelity generation with a
single time step. This exciting result motivates future
research to further reduce the model complexity and
accelerate even further the sampling time.
The investigation of different backbone network designs

is another promising direction to reduce generation time
while maintaining high fidelity. The EPiC-GAN network
structure shows great potential, with lower computational
costs in higher particle multiplicity regions.
Given the flexibility of our model, we envision possible

future applications in fast event generation, hadronization
models conditioned on parton kinematics, and full event
reconstruction conditioned on different particle types.

The code for this paper can be found at https://github
.com/ViniciusMikuni/GSGM.

ACKNOWLEDGMENTS

We thank Jason Wong for thoughtful discussions. V. M.,
M. P., and B. N. are supported by the U.S. Department of
Energy (DOE), Office of Science under Contract No. DE-
AC02-05CH11231. This research used resources of the
National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231 using NERSC Award
No. HEP-ERCAP0021099.

APPENDIX A: JET AND PARTICLE KINEMATIC
DISTRIBUTIONS FOR THE SAMPLES
CONTAINING UP TO 150 PARTICLES

In this section we show the results obtained by the
diffusion model trained using the dataset consisting of jets
containing up to 150 particles in Figs. 5 and 6.

FIG. 5. Generated jet kinematic information using FPCD compared to simulated events for particle jets consisting of light quarks (q),
gluons (g), and top quarks (top).

MIKUNI, NACHMAN, and PETTEE PHYS. REV. D 108, 036025 (2023)

036025-8

https://github.com/ViniciusMikuni/GSGM
https://github.com/ViniciusMikuni/GSGM


FIG. 7. Comparison of generated jet kinematic information using different distillation steps for top quark initiated jets in the dataset
consisting of 30 particles.

FIG. 6. Generated particle kinematic information using FPCD compared to simulated events for particle jets consisting of light quarks
(q), gluons (g), and top quarks (top). For each jet, all particles for both simulation and FPCD are shown.

FAST POINT CLOUD GENERATION WITH DIFFUSION MODELS … PHYS. REV. D 108, 036025 (2023)

036025-9



APPENDIX B: JET KINEMATIC DISTRIBUTIONS
FOR DIFFERENT DISTILLED MODELS

In this section we provide the jet and particle
kinematic distributions for top quark initiated jets using

different number of distillation steps. The results are
shown in Figs. 7 and 8 for jet and particle information,
respectively.

[1] L. de Oliveira, M. Paganini, and B. Nachman, Comput.
Software Big Sci. 1, 4 (2017).

[2] HEP ML Community, A living review of machine learn-
ing for particle physics, https://iml-wg.github.io/HEPML-
LivingReview/.

[3] S. Badger et al., SciPost Phys. 14, 079 (2023).
[4] A. Butter and T. Plehn, arXiv:2008.08558.
[5] J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman,

J. High Energy Phys. 02 (2015) 118.
[6] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A.

Schwartzman, J. High Energy Phys. 07 (2016) 069.
[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, arXiv:
1406.2661.

[8] J. W. Monk, J. High Energy Phys. 12 (2018) 021.
[9] M. Paganini, L. de Oliveira, and B. Nachman, Phys. Rev. D

97, 014021 (2018).
[10] M. Paganini, L. de Oliveira, and B. Nachman, Phys. Rev.

Lett. 120, 042003 (2018).
[11] F. Carminati, A. Gheata, G. Khattak, P. Mendez Lorenzo, S.

Sharan, and S. Vallecorsa, J. Phys. Conf. Ser. 1085, 032016
(2018).

[12] V. Chekalina, E. Orlova, F. Ratnikov, D. Ulyanov, A.
Ustyuzhanin, and E. Zakharov, arXiv:1812.01319.

[13] M. Erdmann, J. Glombitza, and T. Quast, Comput. Software
Big Sci. 3, 4 (2019).

[14] L. de Oliveira, M. Paganini, and B. Nachman, J. Phys. Conf.
Ser. 1085, 042017 (2018).

[15] D. Belayneh et al., Eur. Phys. J. C 80, 688 (2020).

[16] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G.
Kasieczka, A. Korol, and K. Krüger, Comput. Software
Big Sci. 5, 13 (2021).

[17] S. Diefenbacher, E. Eren, G. Kasieczka, A. Korol, B.
Nachman, and D. Shih, J. Instrum. 15, P11004 (2020).

[18] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, D.
Hundhausen, G. Kasieczka, W. Korcari, K. Krüger, P.
McKeown, and L. Rustige, Mach. Learn. Sci. Tech. 3,
025014 (2022).

[19] F. Rehm, S. Vallecorsa, K. Borras, and D. Krücker, arXiv:
2103.13698.

[20] G. R. Khattak, S. Vallecorsa, F. Carminati, and G.M. Khan,
Eur. Phys. J. C 82, 386 (2022).

[21] C. Krause and D. Shih, Phys. Rev. D 107, 113003
(2023).

[22] C. Krause and D. Shih, Phys. Rev. D 107, 113004 (2023).
[23] G. Aad et al. (ATLAS Collaboration), Comput. Software

Big Sci. 6, 7 (2022).
[24] ATLAS Collaboration, arXiv:2210.06204.
[25] S. Bieringer, A. Butter, S. Diefenbacher, E. Eren, F. Gaede,

D. Hundhausen, G. Kasieczka, B. Nachman, T. Plehn, and
M. Trabs, J. Instrum. 17, P09028 (2022).

[26] A. Rogachev and F. Ratnikov, J. Phys. Conf. Ser. 2438,
012086 (2023).

[27] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G.
Kasieczka, A. Korol, and K. Krüger, EPJ Web Conf.
251, 03003 (2021).

[28] A. Abhishek, E. Drechsler, W. Fedorko, and B. Stelzer,
arXiv:2210.07430.

FIG. 8. Comparison of generated particle kinematic information using different distillation steps for top quark initiated jets in the
dataset consisting of 30 particles.

MIKUNI, NACHMAN, and PETTEE PHYS. REV. D 108, 036025 (2023)

036025-10

https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://iml-wg.github.io/HEPML-LivingReview/
https://iml-wg.github.io/HEPML-LivingReview/
https://iml-wg.github.io/HEPML-LivingReview/
https://iml-wg.github.io/HEPML-LivingReview/
https://doi.org/10.21468/SciPostPhys.14.4.079
https://arXiv.org/abs/2008.08558
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP07(2016)069
https://arXiv.org/abs/1406.2661
https://arXiv.org/abs/1406.2661
https://doi.org/10.1007/JHEP12(2018)021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1088/1742-6596/1085/3/032016
https://doi.org/10.1088/1742-6596/1085/3/032016
https://arXiv.org/abs/1812.01319
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1088/1742-6596/1085/4/042017
https://doi.org/10.1088/1742-6596/1085/4/042017
https://doi.org/10.1140/epjc/s10052-020-8251-9
https://doi.org/10.1007/s41781-021-00056-0
https://doi.org/10.1007/s41781-021-00056-0
https://doi.org/10.1088/1748-0221/15/11/P11004
https://doi.org/10.1088/2632-2153/ac7848
https://doi.org/10.1088/2632-2153/ac7848
https://arXiv.org/abs/2103.13698
https://arXiv.org/abs/2103.13698
https://doi.org/10.1140/epjc/s10052-022-10258-4
https://doi.org/10.1103/PhysRevD.107.113003
https://doi.org/10.1103/PhysRevD.107.113003
https://doi.org/10.1103/PhysRevD.107.113004
https://doi.org/10.1007/s41781-021-00079-7
https://doi.org/10.1007/s41781-021-00079-7
https://arXiv.org/abs/2210.06204
https://doi.org/10.1088/1748-0221/17/09/P09028
https://doi.org/10.1088/1742-6596/2438/1/012086
https://doi.org/10.1088/1742-6596/2438/1/012086
https://doi.org/10.1051/epjconf/202125103003
https://doi.org/10.1051/epjconf/202125103003
https://arXiv.org/abs/2210.07430


[29] J. Liu, A. Ghosh, D. Smith, P. Baldi, and D. Whiteson, in
36th Conference on Neural Information Processing Systems
(Neural Information Processing Systems, San Diego,
California, 2022), arXiv:2212.08233.

[30] S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, C.
Krause, I. Shekhzadeh, and D. Shih, arXiv:2302.11594.

[31] C. Krause, I. Pang, and D. Shih, arXiv:2210.14245.
[32] J. C. Cresswell, B. L. Ross, G. Loaiza-Ganem, H. Reyes-

Gonzalez, M. Letizia, and A. L. Caterini, in 36th Conference
on Neural Information Processing Systems (Neural Infor-
mation Processing Systems, San Diego, California, 2022),
arXiv:2211.15380.

[33] V. Mikuni and B. Nachman, Phys. Rev. D 106, 092009
(2022).

[34] A. Andreassen, I. Feige, C. Frye, and M. D. Schwartz, Eur.
Phys. J. C 79, 102 (2019).

[35] R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini,
M. Touranakou, J.-R. Vlimant, and D. Gunopulos, arXiv:
2106.11535.

[36] E. Buhmann, G. Kasieczka, and J. Thaler, arXiv:2301
.08128.

[37] B. Käch, D. Krücker, I. Melzer-Pellmann, M. Scham, S.
Schnake, and A. Verney-Provatas, arXiv:2211.13630.

[38] R. Verheyen, SciPost Phys. 13, 047 (2022).
[39] P. Dhariwal and A. Nichol, arXiv:2105.05233.
[40] T. Salimans and J. Ho, in International Conference on

Learning Representations (2022), https://openreview.net/
forum?id=TIdIXIpzhoI.

[41] M. Leigh, D. Sengupta, G. Quétant, J. A. Raine, K. Zoch,
and T. Golling, arXiv:2303.05376.

[42] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S.
Ermon, and B. Poole, arXiv:2011.13456.

[43] J. Song, C. Meng, and S. Ermon, arXiv:2010.02502.
[44] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy

Phys. 04 (2008) 063.

[45] R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini,
M. Touranakou, J.-R. Vlimant, and D. Gunopulos, Jetnet
(2022), https://zenodo.org/record/6975118.

[46] R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini,
M. Touranakou, J.-R. Vlimant, and D. Gunopulos, Jet-
net150 (2022), https://zenodo.org/record/6975117.

[47] K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (2016), pp. 770–778.

[48] B. Xu, N. Wang, T. Chen, and M. Li, arXiv:1505.00853.
[49] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R.

Salakhutdinov, and A. J. Smola, arXiv:1703.06114.
[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, L. Kaiser, and I. Polosukhin, arXiv:1706.03762.
[51] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil,

N. Raghavan, U. Singhal, R. Ramamoorthi, J. Barron, and
R. Ng, in Advances in Neural Information Processing
Systems, edited by H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin (Curran Associates, Inc., San Diego,
California, 2020), Vol. 33, pp. 7537–7547.

[52] F. Chollet, Keras, https://github.com/fchollet/keras (2017).
[53] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard et al., in OSDI
(2016), Vol. 16, pp. 265–283.

[54] I. Loshchilov and F. Hutter, arXiv:1608.03983.
[55] A. Sergeev and M. D. Balso, arXiv:1802.05799.
[56] Perlmutter system, https://docs.nersc.gov/systems/perlmutter/

architecture/.
[57] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L.

Invernizzi et al., KerasTuner, https://github.com/keras-team/
keras-tuner (2019).

[58] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A.
Talwalkar, J. Mach. Learn. Res. 18, 1 (2018).

[59] P. T. Komiske, E. M. Metodiev, and J. Thaler, J. High
Energy Phys. 04 (2018) 013.

FAST POINT CLOUD GENERATION WITH DIFFUSION MODELS … PHYS. REV. D 108, 036025 (2023)

036025-11

https://arXiv.org/abs/2212.08233
https://arXiv.org/abs/2302.11594
https://arXiv.org/abs/2210.14245
https://arXiv.org/abs/2211.15380
https://doi.org/10.1103/PhysRevD.106.092009
https://doi.org/10.1103/PhysRevD.106.092009
https://doi.org/10.1140/epjc/s10052-019-6607-9
https://doi.org/10.1140/epjc/s10052-019-6607-9
https://arXiv.org/abs/2106.11535
https://arXiv.org/abs/2106.11535
https://arXiv.org/abs/2301.08128
https://arXiv.org/abs/2301.08128
https://arXiv.org/abs/2211.13630
https://doi.org/10.21468/SciPostPhys.13.3.047
https://arXiv.org/abs/2105.05233
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://arXiv.org/abs/2303.05376
https://arXiv.org/abs/2011.13456
https://arXiv.org/abs/2010.02502
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://zenodo.org/record/6975118
https://zenodo.org/record/6975118
https://zenodo.org/record/6975117
https://zenodo.org/record/6975117
https://arXiv.org/abs/1505.00853
https://arXiv.org/abs/1703.06114
https://arXiv.org/abs/1706.03762
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://arXiv.org/abs/1608.03983
https://arXiv.org/abs/1802.05799
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://doi.org/10.1007/JHEP04(2018)013
https://doi.org/10.1007/JHEP04(2018)013



