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The Comment of Krommes is addressed. It is shown that all of the substantive claims therein are
incorrect. © 2004 American Institute of Physics. [DOI: 10.1063/1.1669399]

We would like to thank J. A. Krommes for his careful
reading of our paper [Kim and Diamond (2002)] (KD)' and
for the points about the spectral symmetry and 7 scaling in
his comments (2003). We, however, find that the latter is
largely concerned with minor details, which are not at all
pertinent to the goals of the analysis performed by KD; the
aim of KD was to study the excitation of nonaxisymmetric
modes and its effect on Kelvin—Helmholtz instability
through a basic order of estimate. Also, all of his substantive
claims are incorrect.

First, in the cold ion limit, the nonlinear growth rate of
generalized Kelvin—Helmholtz (GKH) mode obtained by
Kim and Diamond' [KD’s Eq. (13), or Krommes’ Eq. (1)],
and the equivalent expression derived by Krommes and
Kim? [Krommes’ Eq. (2)] become identical, modulo notation
for response function in the case when the background tur-
bulence is isotropic. This can be easily seen by expressing

|2 (aXK)|*(q'k),

in Krommes’ Eq. (2) as

(quy_ qvkx)[(q%_qi)kxky+qqu(k§_k§)] (1)

For isotropic turbulence, which was a modeling assumption
in the interest of simplicity in KD, the last term in Eq. (1)
vanishes since k,~k,. Thus, [Z-(qXk)|*(q-k)~(q,k,
—qykx)(qi—qi)kxky. Then, by changing ¢,—p and g,
—¢q, Krommes’ Eq. (2) becomes identical to the growth rate
given by KD’s Eq. (13) [Krommes’ Eq. (1)], except for the
difference in the response function. Though the disputed
term might quantitatively contribute, depending on the de-
tails of the modulation process, the impact of this contribu-
tion upon the estimates presented in KD is insignificant. In-
deed, the pattern of convective cell generation depends on
the structure of the underlying turbulence, as shown by many
authors in the past.3 We do agree, though, that the 1/2 factor
in front of this diagonal term in KD should be corrected to
unity.

Second, in the case of nonzero ion temperature, the main
equations of KD were systematically derived by taking mo-
ments of gyrokinetic equation, and by taking the finite Lar-
mor radius (FLR) effect to be small (i.e., p?k2= Tp§k2< 1).
Specifically, KD kept the FLR effect to first order in the
potential equation and ignored it in the temperature equation.
It is self-consistent to keep only the leading-order term for
the evolution of temperature itself, since the effect of tem-
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perature appears as first-order FLR correction in the potential
equation for GKH. Instead of showing this derivation, we
shall show below that the same set of the equations, which
was in fact used by Rogers et al.,* can also be obtained from
Dorland and Hammett (DH),> which Krommes referred to in
his Comment. We start with DH’s Eq. (56), which takes the
following form:

an T _
E‘f‘[l//,l’l]"r‘z[v (/l’T]_O’ (2)

in 2D slab geometry by ignoring linear terms. Here, 1
=n,/ny and T are linear perturbations of guiding center den-
sity and temperature. Density and temperature are normal-
ized by background density n,, and ion temperature T},
respectively, and the length by p, . ¢¥=(1— Tkzp?/Z) ¢ is the
gyrophase averaged potential. To obtain the expression for 7
(or n,), we use DH’s Eq. (27) in DH’s Eq. (5), which gives

(1 b°) Bt D . B
2)ng 2Ty OTi() T ’

to first order in by=7p2k> (i.e., FLR effect). Thus, by mea-

suring ¢ by T,y/e, length by p,, and temperature by T,

we obtain, to first order in FLR

i=¢=(4)-V*

¢+§T+§<¢—<¢>>}

=o—(p-V?

w+§T+fr<w—<</f>>] @

On the other hand, to leading order, DH’s Eq. (60) simplifies
to

aT _dT _
—r Tl T)= 2+ [g.7]=0. 5)

Note that Egs. (2), (4), and (5) are identical to Eq. (1) in
Rogers etal* For GKH (or CC), n=—V?[y+7/2T]
=—V?[ ¢+ 7/2T], by putting ¢=(¢b) to ensure nonadiabatic
electron response for GKH. Therefore, Eq. (2) recovers, for
example, KD’s Eq. (44) to first order in b, . Note that KD
used different notation for ¢, and also that the Laplacian of
KD’s Eq. (28) is used to obtain KD’s Eq. (44). Krommes’
Eq. (7b) for temperature contains a first-order FLR effect,
which is not necessary for the reason mentioned above. That
is, the finite ion temperature effect on potential is first order
in FLR effects, as can be clearly seen from Krommes’
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Eq. (7a). Thus, to first order in by, it is self-consistent to
keep only the leading-order term in the temperature equation.
It is, of course, an interesting question as to how to extend
the analysis in KD' and also in Rogers eral* to retain
higher-order corrections. However, this is a technical detail
which is outside the scope of KD.!

Third, for the purpose of understanding the basic physics
without being lost in a forest of formalism, KD used the
conservation of N, (i.e., wave-kinetic equation) with a
simple quasilinear response to relate the ITG pressure pertur-
bation to ¢. Note that up to first order in 7, both potential
enstrophy and pressure are conserved, separately, as indi-
cated in KD.

Finally, the wave-kinetic equation involves linear fre-
quency (and also nonlinear frequency shift), as shown by
Smolyakov and Diamond,6 for instance. Thus, the modula-
tion of the wave-kinetic equation naturally involves the
modulation of linear frequency. Note that the modulation of
nonlinear frequency is higher order in fluctuation level.
Therefore, it is not incorrect to modulate the frequency (as
done by KD). In fact, the modulation of the frequency is the
only channel through which the effect of zonal temperature
feeds back on the wave population.

E. Kim and P. H. Diamond

In summary, except for a factor of 1/2 in front of the
diagonal Reynolds stress term in KD which should be cor-
rected to unity, all other criticisms raised by Krommes are
unfounded. In particular, there is no conceptual error in KD.
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