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Abstract 
The study of multi-cue judgment investigates how decision 
makers integrate cues to predict the value of a criterion 
variable. We consider a multi-cue judgment task in which 
decision makers have prior knowledge of inter-cue 
relationships but are ignorant of how the cues correlate with 
the criterion. In this setting, a naive judgment strategy 
prescribes an equal weight for each cue. However, we find 
that many participants appear to use a weighting scheme 
based on a low-dimensional representation of the cue space. 
The use of such a representation is consistent with core 
insights in semantic memory research and has important 
optimality properties concerning judgment accuracy. 
 
Keywords: judgment and decision making; cue 
integration; improper linear models; dimensionality 
reduction; semantic memory 

Introduction 
Effective judgment and decision making involves the 

aggregation of multiple cues, or pieces of information, to 
evaluate a criterion variable. For example, individuals may 
receive advice from two or more friends regarding a 
financial investment, and aggregate this advice to calculate 
the expected return on the investment. Alternatively, they 
may have to choose between job candidates with multiple 
attributes, and have to aggregate these attributes to 
determine the quality of the candidates.  

Traditionally, many normative and descriptive models 
of judgment and decision making adopt a linear approach 
and propose that decision makers compute the value of the 
criterion using a weighted average of the cues, with the 
weights being proportional to the observed relationship 
between the cues and the criterion (Brunswik, 1952; 
Keeney & Raiffa, 1993). Linear models are often criticized 
as they require large amounts of information and abundant 
cognitive resources in order to be accurate. Thus, many 
researchers have proposed that individuals use improper 
linear models, such as heuristics. These models involve a 
fixed weighting scheme that assigns a priori weights to the 
cues. For example, an equal weights model gives each cue 

the same weight, and the lexicographic model assigns all 
the weight to a single cue (Dawes, 1979; Gigerenzer & 
Todd 1996).  These models have been shown to perform 
as well as, if not better than, proper linear models in many 
situations, ranging from graduate student admission to 
clinical predictions (Dawes, 1979). 

In addition to being cognitively simpler, improper linear 
models can also be used in situations where proper linear 
models are inapplicable. Consider settings where the 
relationship between the cues and the criterion is 
completely unknown. For example, individuals using the 
advice of their friends to judge an investment may not have 
previously observed how well their friends predict the 
performance of such investments. Likewise, individuals 
evaluating job candidates for novel or unconventional jobs 
may have never observed the value of different candidate 
attributes in the context of these jobs. In these situations, 
decision makers may have detailed knowledge about the 
relationship between the cues (e.g. how often their friends 
agree with each other or how frequently job candidate 
attributes co-occur) but have no way to assign weights to 
the cues in accordance with the standard linear model 
(where weights depend on the cues’ relationship with the 
criterion). However, an a priori weighting scheme, as 
proposed by improper linear models, can still be used to 
make an evaluation.  

For multi-cue judgment with known inter-cue 
relationships, but unknown cue-criterion relationships, the 
key questions of interest are the following: Which 
improper weighting scheme should decision makers use 
and which schemes do decision makers use. The former 
question has been tackled by Davis-Stober, Dana & 
Budescu (2010a, 2010b). Davis-Sober et al. propose that 
any possible weighting scheme, 𝜷, can be assessed with 
regards to how far it deviates from the true weight vector, 
𝜷∗, by taking the sum of squared difference between the 
weights in 𝜷  and 𝜷∗ , i.e. 𝛽$ − 𝛽$

∗ &
$ . When the cue-

criterion relationships are unknown, 𝜷∗ is also unknown. 
In these settings optimizing 𝜷 can be seen as involving 
minimizing the risk, defined as the expectation of sum of 
squared error of 𝜷, 𝛽$ − 𝛽$

∗ &
$ . By this standard, the 

best improper linear weighting scheme is the eigenvector 
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corresponding to the first (i.e. largest) eigenvalue of the 
inter-cue correlation matrix (see Davis-Stober et al. 2010 
for details). We will refer to this weighting scheme as 
𝜷𝑬𝑽𝟏. Here EV1 in the subscript refers to the use of the 
eigenvector corresponding to the first eigenvalue.  
𝜷𝑬𝑽𝟏	depends on the relationship between the cues in 

the judgment task, and can be shown, in appropriate 
settings, to approximate other existing improper linear 
models. For example, if the cues are equally, and 
positively, correlated with each other, 𝜷𝑬𝑽𝟏	 assigns an 
equal weight to each cue, similar to the equal weights 
model. In contrast, if cue 1 is highly correlated with all the 
other cues, and all the other cues are moderately correlated 
or uncorrelated internally, 𝜷𝑬𝑽𝟏	overweighs cue 1 relative 
to other cues. This can mimic a lexicographic judgment 
strategy.  

 Normative solutions aside, descriptively, which 
weighting scheme do decision makers actually use when 
integrating multiple cues with unknown cue-criterion 
relationships? A first guess involves an equal weights 
model: Without knowing which cues are more related to 
the criterion than others, it seems conceivable that decision 
makers assign the same weights to all the available cues. 
This corresponds to a type of ignorance prior. However, a 
more principled guess could rely on insights regarding 
semantic representation. Decision makers with prior 
experience with the cues may have learnt mental 
representations of the cues. These representations, in many 
settings, correspond to projections of the decision makers’ 
experiences with the cues onto a low-dimensional space. 
Such projections can be approximated by a principle 
components analysis on the cue-correlation matrix, or 
equivalently, a singular value decomposition on the matrix 
of cue-context co-occurrence. Indeed, such a 
decomposition is a key component of numerous existing 
approaches to modelling semantic representation, 
including latent semantic analysis (Landauer & Dumais, 
1997), multi-dimensional scaling (Kruskal & Wish, 1978), 
and neural network models of semantic memory (Saxe, 
McClelland & Ganguli, 2013). Interestingly, such a 
decomposition also yields the normative 𝜷𝑬𝑽𝟏	 model 
when only the first latent dimension of the projection is 
used to evaluate the criterion. 

The goal of this paper is to investigate the plausibility 
of the 𝜷𝑬𝑽𝟏 weighting scheme, and to compare its ability 
to predict participant judgments with alternate improper 
linear models such as the equal weights rule and the 
lexicographic rule. To appropriately test these models, we 
examine settings where participants have prior knowledge 
of inter-cue correlations but do not know how the different 
cues correlate with the criterion in consideration. 
Additionally, we systematically vary the cue-correlation 
matrix, and subsequently 𝜷𝑬𝑽𝟏 , in order to adequately 
differentiate the predictions of this weighting scheme from 
those of alternate weighting schemes in our studies. We 
demonstrate the applicability of 𝜷𝑬𝑽𝟏	 for describing 
participant behavior in two ways: 1) by examining the 
model fits for 𝜷𝑬𝑽𝟏	 relative to other improper linear 
models, and 2) by testing whether the weights assigned by 

𝜷𝑬𝑽𝟏	predict decision makers’ use of these other improper 
models. 

General Method 
In our three studies, the multi-cue judgment task was 
presented as an advice integration task, with the cues in 
consideration corresponding to the judgments of four 
advisors (similar to Bröder, 2003). They were described as 
predicted stock prices in Studies 1 and 2 and restaurant 
ratings in Study 3. Correspondingly, the criterion was the 
true stock price in Studies 1 and 2 and the true restaurant 
quality in Study 3. The cue-criterion correlations were 
never revealed to the participants.  

The studies consisted of three tasks. The first two tasks 
exposed the participants to the cues, so as to allow them to 
form mental representations of the cue space. The third 
task asked participants to predict the criterion value based 
on the cues. In addition to being stated numerically, cue 
values in the three tasks were also shaded based on their 
magnitude. Participants were told that the cue values 
ranged from 0-100 and were all centered at 50. They were 
also told that some cues (advisors) might be more similar 
to each other, and that it was useful to pay attention to how 
closely different cues agreed with each other. 

 
 

 
Figure 1. Stimuli display for Task 1-3.  

 
In task 1, participants saw the four cues in 25 trials 

(Figure 1: upper left) displayed in four boxes. Each trial 
presented a set of cue values, and participants were asked 
to merely observe the cue values, without providing a 
response. In task 2, participants continued to learn the cue 
values, this time with feedback. Particularly, only three of 
the four cues were shown to participants (Figure 1: lower 
left). Participants had to guess the value of the fourth cue 
based on their knowledge of the inter-cue relationships. 
After the participant’s guess, the real cue value was 
revealed. To increase motivation, participants were 
provided with a summary of their performance accuracy 
after every 50 trials. The cue to be guessed was determined 
at random in each trial.  

In task 3, participants were shown all four cue values, 
and were asked to make a guess regarding the value of the 
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criterion (real stock price for Studies 1 and 2 and actual 
restaurant quality for Study 3; Figure 1: right). The true 
value of the criterion was not revealed after participants’ 
guesses, so that participants stayed uninformed regarding 
the cue-criterion relationship. Task 3 was the most 
relevant to our research question, as it provided a direct 
test of how cue values were integrated to make a judgment 
of the criterion. 
 

Study 1 

Study 1 examines the predictions of the 𝜷𝑬𝑽𝟏weighting 
rule by considering a setting in which inter-cue 
relationships lead to a larger weight on one cue and smaller 
weights on the remaining cues.   

Methods 
44 participants (37 females; Mean Age = 19.7, SD Age = 
1.2), recruited from a university experimental 
participation pool, completed this study in a behavioral 
laboratory.   

The study involved a hypothetical stock prediction task. 
The cue values were stock prices predicted by four 
advisors. For each cue, the values were normally 
distributed, with a mean of 50 and a standard deviation of 
25. The inter-cue correlation matrix of the advisors is 
shown in Figure 2a. 

 
Figure 2 (a) Inter-cue correlation matrix for Study 1 and 
the treatment condition of Study 2. (b) Inter-cue 
correlation matrix for the control condition of Study 2. 
(c) Inter-cue correlation matrix for Study 3. 
 

As can be seen in this matrix, cue 1 is highly correlated 
with all the three other cues, with a correlation coefficient 
of 0.6. The internal correlation among the remaining cues 
is very weak, with a correlation coefficient of 0.05. The 
eigenvector corresponding to the first (largest) eigenvalue 
of the cue correlation matrix is 𝜷𝑬𝑽𝟏 = [0.35, 0.22, 0.22, 
0.22]. Using this weighting vector, leads to an 
overweighting of cue 1, and a relative underweighting of 
the remaining cues.  

We used the above distributions to generate a single set 
of stimuli for all participants, for tasks 1, 2 and 3. For each 
participant, the display position for each of the four cues 
was randomly chosen at the beginning of the study and 
stayed unchanged for the entire session. In other words, 
the specific advisor (advisor A, B, C or D) associated with 
cue 1, was counterbalanced.  

Results 
We first examined participants’ performance in task 2, 
where they used three cue values for guessing the 
remaining cue value. Our analysis of behavior in this task 
suggested that participants were able to successfully learn 
the underlying cue structure. Particularly they placed a 
higher weight on cue 1 relative to the other cues when 
predicting the remaining cues (𝑝 < 0.001). Due to space 
constraints we will not outline these results in more detail 
(they will be reported elsewhere).  

We also investigated the weighting scheme used by 
participants when integrating cues to predict criterion 
values in task 3. For this purpose, we considered a number 
of candidate weighting schemes, including 𝜷𝑬𝑽𝟏 
(corresponding to the first eigenvector of the cue-
correlation matrix) and 𝜷𝑬𝑾(corresponding to the equal 
weighting rule). We also considered lexicographic rules. 
Here, we tested four models that put all the weights on a 
single cue. These were referred to as 𝜷𝑳𝑬𝑿𝟏 , 𝜷𝑳𝑬𝑿𝟐 , 
𝜷𝑳𝑬𝑿𝟑	and 𝜷𝑳𝑬𝑿𝟒, corresponding to the cue that was given 
the unit weight. In addition to 𝜷𝑬𝑽𝟏, we also considered 
the linear weighting schemes corresponding to the 
remaining three eigenvectors of the cue correlation matrix. 
These are referred to as 𝜷𝑬𝑽𝟐, 𝜷𝑬𝑽𝟑	and 𝜷𝑬𝑽𝟒. Therefore, 
we have in total nine improper linear weighting schemes 
to compare. Each linear weighting scheme defined a 
weighting vector for the four cues. E.g. 𝜷𝑬𝑽𝟏 =
0.35, 0.22, 0.22, 0.22 , 𝜷𝑬𝑾 = [0.25, 025, 0.25, 0.25] , 
𝜷𝑳𝑬𝑿𝟏 = [1, 0, 0, 0], etc. For comparability, the weights in 
each scheme were constrained to add up to one.  

In order to scale the criterion estimate generated by 
these improper linear models to match the participants’ 
guesses, we introduced two additional participant-level 
parameters, 𝛼> and 𝛼?, so that the predicted guess for each 
weighting scheme was 𝛼> + 𝛼?𝜷 ⋅ 𝑪.  Here 𝜷 corresponds 
to the weighting vector of the model in consideration, and 
𝑪 is the vector of cue values presented in the trial. We also 
assumed a normally distribute error, with standard 
deviation 𝜎 , and subsequently fit each of these nine 
models by maximizing log-likelihood. 𝛼>, 𝛼? and 𝜎 were 
allowed to vary across the nine models. The model fitting 
was done on the participant level. Because the linear 
weighting schemes were pre-determined, each model used 
same number of parameters (3 parameters: 𝛼>, 𝛼? and 𝜎) 
to predict each participant’s 100 guesses in task 3. 

We compared participant level log likelihood values for 
the nine candidate models (Table 1). Since all models have 
the same number of parameters, our model comparison is 
equivalent to model selection by AIC. Among 44 
participants, 10 participants’ predictions were best 
described by 𝜷𝑬𝑽𝟏, 23 by 𝜷𝑬𝑾, 8 by 𝜷𝑳𝑬𝑿𝟏, 1 by 𝜷𝑬𝑽𝟐, 
1by 𝜷𝑬𝑽𝟑, and 1 by 𝜷𝑳𝑬𝑿𝟒.  When comparing only 𝜷𝑬𝑽𝟏 
and 𝜷𝑬𝑾, 19 participants were better described by 𝜷𝑬𝑽𝟏, 
whereas 25 were better described by 𝜷𝑬𝑾. According to a 
paired Wilcoxon test on participant level model fits, there 
was no significant difference between log likelihood 
values of the 𝜷𝑬𝑽𝟏 model (𝑀𝑒𝑑𝑖𝑎𝑛 = −351.38) and the 
𝜷𝑬𝑾 model (𝑀𝑒𝑑𝑖𝑎𝑛 = −351.59), 𝑍 = 1.24, 𝑝 = 0.216. 
Paired Wilcoxon tests also indicated that fits for all of the 
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remaining models were significantly worse than those for 
the 𝜷𝑬𝑽𝟏 model and 𝜷𝑬𝑾 model (p < 0.001).  

Table 1: Comparison of model fits for Study 1 
 Parameter (Median) Log Likelihood 
Model 𝛼> 𝛼? 𝜎 Median Mean # best 
EV1 7.32 0.84 8.57 -351.38 -357.16 10 
EV2 49.92 0.02 18.66 -424.01 -420.56 1 
EV3 49.96 0 18.63 -423.86 -420.64 1 
EV4 45.37 0.32 18.63 -424.05 -420.6 0 
EW 4.94 0.89 8.56 -351.59 -357.10 23 
LEX1 17.94 0.63 8.76 -351.39 -358.54 8 
LEX2 29.81 0.37 15.83 -408.81 -406.45 0 
LEX3 32.17 0.38 15.95 -410.32 -407.24 0 
LEX4 29.7 0.39 15.58 -408.7 -405.83 1 

 
 
Although participants had no information regarding the 

validities of any cues, a substantial subgroup of 
participants did not simply assign equal weights to cues. 
Instead, they overweighed cue 1 as predicted by 𝜷𝑬𝑽𝟏. The 
fact that some participants were actually best fit by 𝜷𝑳𝑬𝑿𝟏 
suggested that some participants overweighed cue 1 even 
more than 𝜷𝑬𝑽𝟏	recommended. Only one participant was 
best described by the other three lexicographic rules, 
indicating that 𝜷𝑬𝑽𝟏 can predict which single cue 
participants tend to overweigh. 

Study 2 

In Study 1, we found that the EV1 and EW models 
described participant level data about equally well, in 
terms of average log likelihood and proportion best fit. 
However, it is possible that predictions made by EV1 and 
EW were similar enough to be practically 
indistinguishable (given the noise in the data). This could 
confound our interpretation of model fit. Study 2 addresses 
this alternative explanation by manipulating the inter-cue 
relationships between subjects.  

Methods 
64 participants (35 females; Mean Age = 19.9, SD Age = 
1.1), recruited from a university experimental 
participation pool, completed this study in a behavioral 
laboratory.   

All aspects of the study design were kept identical to 
Study 1, except that the cue correlation matrix varied 
between a treatment condition and a control condition. 
Participants were randomly assigned to one of these two 
conditions at the start of the study. 

For the treatment condition, the inter-cue correlation 
matrix was identical to that in Study 1 (Figure 2a), 
generating an optimal weighting scheme with 𝜷𝑬𝑽𝟏OPQRS = 
[0.35, 0.22, 0.22, 0.22] (here we use the superscript to 
distinguish the treatment  vs. control condition). For the 
control condition, the cue correlation matrix kept the 
correlation between all the cues constant at 0.4 (Figure 2b). 
Therefore, the weighting vectors predicted by the optimal 
weighting scheme and the equal weights rule were both 
𝜷𝑬𝑽𝟏TUVS = 𝜷WX = [0.25, 0.25, 0.25, 0.25]. Due to different 

inter-cue relationships across conditions, 𝜷𝑬𝑽𝟏OPQRS  should 
provide a better account of behavior in the treatment 
condition compared to the control condition. Likewise 
𝜷𝑬𝑽𝟏TUVS = 𝜷WX	should provide a better account of behavior 
in the control condition compared to the treatment 
condition (even if a large subgroup of participants in the 
treatment condition do place an equal weight on all cues).  

Results 
31 participants were assigned to the treatment condition 
and 33 participants were assigned to the control condition. 
As in Study 1, we first looked at participant learning in 
task 2. In the treatment condition, participants did learn the 
special status of cue 1. Particularly, as in Study 1, they 
placed a higher weight on cue 1 relative to the other cues 
when predicting the remaining cues (𝑝 < 0.001). In the 
control condition, participants placed similar weights on 
cues 1-4 when predicting cue values, indicating that they 
learnt different inter-cue relationships for the two 
conditions. Manipulating the cue-correlation matrix thus 
had an effect on participant learning. This laid the basis for 
task 3, where participants integrated cues to predict 
criterion values (again, due to space constraints, we will 
not expand on these results here). 

Next, we examined which weighting schemes were 
used by participants in task 3. For both conditions, we 
applied the model fitting procedures of Study 1, and nine 
linear weighting schemes were compared on the 
participant level (Tables 2 and 3).  Out of 31 participants 
in the treatment condition, 6 were best described by 𝜷𝑬𝑽𝟏OPQRS, 
18 by 𝜷𝑬𝑾 , 6 by 𝜷𝑳𝑬𝑿𝟏 and 1 by 𝜷𝑬𝑽𝟐 . 𝜷𝑬𝑽𝟏OPQRS 
outperformed 𝜷𝑬𝑾 for a substantial subgroup of 
participants (13 out of 31). As in Study 1, some 
participants were best described by 𝜷𝑳𝑬𝑿𝟏, indicating that 
they overweighed cue 1 more than recommended by 
𝜷𝑬𝑽𝟏OPQRS . No participant was best described by the other 
three lexicographic rules, indicating that 𝜷𝑬𝑽𝟏OPQRScan predict 
decision makers’ use of other improper linear models in 
the treatment condition. 

We also compared the log likelihood values of the fits. 
Although the log likelihood values of the 𝜷𝑬𝑽𝟏OPQRS  model 
were significantly smaller than those of the 𝜷𝑬𝑾  model 
( 𝑍 = −2.06, 𝑝 = 0.040) , the effect size was small 
( 𝑀𝑒𝑑𝑖𝑎𝑛WZ? = −350.56, 𝑀𝑒𝑑𝑖𝑎𝑛WX = −350.17 ). 
Additionally both the 𝜷𝑬𝑽𝟏OPQRS model and 𝜷𝑬𝑾  model 
predicted participant level data significantly better than all 
other models ( 	𝑝 < 0.001 ). These results replicate 
findings of Study 1. 

In the control condition, the inter-cue correlation matrix 
was balanced and the weighting schemes for 𝜷𝑬𝑽𝟏TUVS and 
𝜷𝑬𝑾 were identical. Unsurprisingly, all 33 participants 
were better described by 𝜷𝑬𝑽𝟏TUVS =  𝜷WX  than any other 
models (Table 3). The fact that no participants were best 
fit by lexicographic rules in the control condition but some 
were best fit by 𝜷𝑳𝑬𝑿𝟏 in the treatment condition again 
indicated that participants’ cue weighting behavior can be 
predicted by the inter-cue correlation matrix.  

Lastly, we examined the predictions of 𝜷𝑬𝑽𝟏OPQRS  on the 
data from the control condition. For this purpose we fit a 
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tenth model in the control condition, with weights given 
by 𝜷𝑬𝑽𝟏OPQRS  (and 𝛼> , 𝛼?  and 𝜎  flexible). Unlike the 
treatment condition, this model outperformed the 𝜷WX =  
𝜷𝑬𝑽𝟏TUVS	model for only 4 out of 33 participants in the control 
condition. A paired Wilcoxon test indicated that the log 
likelihoods of the 𝜷𝑬𝑽𝟏OPQRS	model on the control-condition 
data (𝑀𝑒𝑑𝑖𝑎𝑛 = −336.73) were significantly lower than 
those of the 𝜷WX  = 𝜷𝑬𝑽𝟏TUVS	model (𝑀𝑒𝑑𝑖𝑎𝑛 = −335.76), 
𝑍 = −4.24, 𝑝 < 0.001.  

Table 2: Comparison of model fits for Study 2 (treatment) 
 Parameter (Median) Log Likelihood 
Model α> α? σ Median Mean #best 
EV1 7.70 0.90 10.07 -350.56 -363.55 6 
EV2 50.65 0.03 19.73 -424.88 -423.34 1 
EV3 50.72 0.01 19.73 -425.08 -423.60 0 
EV4 46.79 0.33 19.66 -424.85 -423.52 0 
EW 5.10 0.95 10.07 -350.17 -363.35 18 
LEX1 19.28 0.67 10.19 -353.77 -365.33 6 
LEX2 31.88 0.40 16.28 -407.65 -408.75 0 
LEX3 33.68 0.39 17.28 -412.35 -411.83 0 
LEX4 30.22 0.44 16.59 -411.66 -409.48 0 

Table 3 Comparison of model fits for Study 2 (control) 
 Parameter (Median) Log Likelihood 
Model 𝛼> 𝛼? 𝜎 Median Mean #best 
EV1/EW 10.59 0.83 7.49 -335.76 -336.13 29 
EV2 51.41 0.00 17.64 -415.22 -411.91 0 
EV3 51.41 0.00 17.64 -415.22 -411.92 0 
EV4 51.39 0.07 17.63 -414.84 -411.69 0 
LEX1 28.91 0.45 13.00 -387.19 -385.25 0 
LEX2 30.35 0.43 13.30 -391.31 -388.82 0 
LEX3 28.55 0.46 12.20 -382.23 -382.13 0 
LEX4 31.17 0.44 13.32 -390.59 -387.50 0 
EV1Treat 11.04 0.81 7.75 -336.73 -340.25 4 

 

 
  

Overall, the differences in the mean and median log 
likelihoods of the 𝜷𝑬𝑽𝟏OPQRS and the 𝜷𝑬𝑽𝟏TUVSPU^ = 𝜷𝑬𝑾 models 
in the control condition were 4.12 and 0.97 respectively. 
These were larger than the equivalent differences in the 
treatment condition, which were 0.20 and 0.39 (these 
differences were 0.06 and -0.21 in Study 1). These results 
indicate that the relatively good fits for the 𝜷𝑬𝑽𝟏	 model in 
the treatment condition of Study 2 and in Study 1 were not 
due to this model mimicking the equal weights rule.  

Study 3 

Study 3 provides a more stringent test of the 𝜷𝑬𝑽𝟏	 model 
by considering a setting with more complex inter-cue 
relationships. It also examines judgments of restaurant 
quality rather than stock performance.  

Methods 
46 participants (34 females; Age Mean = 19.3, SD Age = 
1.0) recruited from a university experimental participation 
pool, completed this study in a behavioral laboratory.   

The study was framed as involving judgments of 
restaurant quality. Here the cue values were restaurant 
scores rated by four reviewers, and the criterion 
corresponded to the real restaurant quality. Other aspects 
of the study design were kept identical to Study 1, except 
the inter-cue correlation matrix, which was changed to the 
matrix displayed in Figure 2c. Here cue 1 is highly 
correlated with cue 2, cue 3 is moderately correlated with 
cue 4, and cues 1 and 2 are weakly correlated with cues 3 
and 4. With this inter-cue correlation structure, 𝜷𝑬𝑽𝟏 
predicts a weighting vector of [0.35, 0.35, 0.15, 0.15], i.e. 
an overweighting of cues 1 and 2, relative to 3 and 4.  

Results 
As in Studies 1 and 2, our analysis of behavior in task 2 
suggested that participants were able to successfully learn 
the underlying cue structure. Particularly they relied more 
on cues 1 and 2 than on cue 3 and 4 when guessing for 
cues 1 and 2; they also relied more on cues 3 and 4 than 
on cues 1 and 2 when guessing for cues 3 and 4. Again, 
due to space constraints we will not outline these results in 
more detail.   

Next, we investigated the linear weighting schemes 
used by participants in task 3. The nine candidate 
weighting schemes and the model fitting procedures were 
the same as in Study 1 (though, of course, 𝜷𝑬𝑽𝟏 , 𝜷𝑬𝑽𝟐 , 
𝜷𝑬𝑽𝟑, 𝜷𝑬𝑽𝟒assigned different weights to the cues in Study 
3, compared to the corresponding models in Study 1).  

Out of the 46 participants, 7 were best fit by 𝜷𝑬𝑽𝟏and 
38 were best fit by 𝜷𝑬𝑾. The remaining participant was 
best fit by 𝜷𝑳𝑬𝑿𝟐. When comparing only 𝜷𝑬𝑽𝟏and 𝜷𝑬𝑾 , 
we found that 8 participants were better described by 
𝜷𝑬𝑽𝟏than 𝜷𝑬𝑾 . Additionally, 𝜷𝑬𝑾  (𝑀𝑒𝑑𝑖𝑎𝑛 = −350.82) 
was significantly better than 𝜷𝑬𝑽𝟏 (𝑀𝑒𝑑𝑖𝑎𝑛 = −353.15) 
according to a paired Wilcoxon test performed on 
participant level log likelihood values, 𝑍 = 3.98, 𝑝 <
0.001. Except for 𝜷𝑬𝑾 , 𝜷𝑬𝑽𝟏outperformed all the other 
candidate models (with 𝑝 < 0.001).  As would be 
predicted by the 𝜷𝑬𝑽𝟏model, the lexicographic models did 
not provide a good account of participant behavior in this 
study. Table 4 provides additional details regarding these 
fits. 

Table 4 Comparison of model fits for Study 3  
 Parameter (Median) Log Likelihood 
Model 𝛼> 𝛼? 𝜎 Median Mean # best 
EV1 14.04 0.76 9.28 -353.15 -358.26 7 
EV2 44.77 0.26 16.76 -412.07 -410.59 0 
EV3 51.04 0.10 17.29 -415.25 -413.63 0 
EV4 50.95 0.03 17.35 -415.29 -413.82 0 
EW 6.32 0.88 8.75 -350.82 -349.09 38 
LEX1 30.22 0.44 12.58 -383.14 -384.67 0 
LEX2 28.31 0.49 11.94 -379.23 -381.29 1 
LEX3 32.89 0.34 15.32 -403.08 -401.97 0 
LEX4 32.01 0.37 14.63 -400.57 -398.18 0 

 
 
As in previous studies, we found that a significant 

subgroup of participants overweighed some cues (as 
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suggested by 𝜷𝑬𝑽𝟏), rather than simply averaging all the 
available cues (as suggested by 𝜷𝑬𝑾 ). That said, the 
performance of 𝜷𝑬𝑽𝟏was relatively worse in this study 
compared to our previous studies. This could be due to the 
differences in the cue-correlation matrices, suggesting that 
decision makers are less likely to use the 𝜷𝑬𝑽𝟏 scheme 
when the underlying cue structure is complex. These 
differences could also, however, be attributed to the 
change in the task frame. Restaurant quality is more 
subjective than stock performance, and decision makers 
may be less likely to rely on the cue-correlation structure 
in these subjective settings.  

Discussion 
In three studies, we investigated how decision makers 
weigh cues when cue criterion relationships are unknown. 
The optimal improper linear model uses the eigenvector, 
βEV1, corresponding to the largest eigenvalue of the cue 
correlation matrix (Davis-Stober et al., 2010a, 2010b). 
Low dimensional representations of the cue space, learnt 
by some common models of semantic memory (Kruskal & 
Wish, 1978; Landauer & Dumais, 1997; Saxe et al., 2013), 
can also produce this type of weighting scheme.  

Our results suggest that 𝜷𝑬𝑽𝟏 provides a good 
description of participants’ behavior. This model 
outperformed all other improper linear models tested in 
this paper, except for the equal weights model (with 
weights 𝜷𝑬𝑾). On the aggregate level, the log likelihoods 
for the 𝜷𝑬𝑽𝟏 and 𝜷𝑬𝑾weighting scheme were relatively 
close, showing no meaningful differences in Study 1, very 
minor differences in the treatment condition of Study 2, 
and somewhat larger differences in Study 3. As for 
individual level fits, there existed a substantial group of 
participants for whom 𝜷𝑬𝑽𝟏outperformed 𝜷𝑬𝑾. The size 
of this group ranged from 43% of the participant pool in 
Study 1, 42% in the treatment condition of Study 2, and 
17% in Study 3. Moreover, a comparison of the control 
and the treatment conditions of Study 2 showed that 
experimental manipulations that varied the inter-cue 
correlation matrix influenced relative model fits.  
𝜷𝑬𝑽𝟏  was also able to predict when and how 

participants used lexicographic weights. When 𝜷𝑬𝑽𝟏 
prescribed equal weights (control condition of Study 2) or 
the overweighing two cues (Study 3), there were almost no 
participants who were best described by such 
lexicographic weighting schemes. In contrast, in Study 1 
and the treatment condition of Study 2, 𝜷𝑬𝑽𝟏 overweighed 
a single cue. In these conditions, a substantial group of 
participants (18% in Study 1 and 19% in the treatment 
condition of Study 2) behaved according to a 
lexicographic rule that placed all of the weight on this cue 
(in contrast lexicographic rules that prioritize other cues 
all performed very poorly).  

That said, 𝜷𝑬𝑽𝟏 did not provide a good account of 
behavior in Study 3, which adopted a more complex inter-
cue correlation matrix. The results of this study suggest 
that such a weighting scheme may not be used in all 
settings. Additionally, the equal weights rule was the 
majority model in all studies, indicating that most 
participants tend to use the simpler equal weights strategy 
(corresponding to an ignorance prior) in the absence of 

cue-criterion knowledge. Further work should examine the 
effect of inter-cue correlation structure and individual 
differences on the use of the 𝜷𝑬𝑽𝟏weighting rule. This 
work may extend the insights of other cognitive models of 
multi-cue judgment, such as those relying on neural 
network representations (Glöckner, Hilbig & Jekel, 2014) 
or exemplar memory-based predictions (Juslin, Karlsson 
& Olsson, 2008). Such models have not been applied to 
settings in which cue-criterion relationships are unknown. 
However, they nonetheless provide formal predictions 
regarding the learning and representation of cue 
knowledge and its relationship with the statistical structure 
of the judgment environment. For this reason they may 
provide a more adequate framework for understanding the 
cognitive underpinnings of the 𝜷𝑬𝑽𝟏 weighting model.  
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