
Lawrence Berkeley National Laboratory
LBL Publications

Title
UPC-IO: A Parallel I/O API for UPC, V1.0

Permalink
https://escholarship.org/uc/item/4p17g80s

Authors
El-Ghazawi, Tarek
Cantonnet, Francois
Saha, Proshanta
et al.

Publication Date
2004-07-29

DOI
10.25344/S4ZK5D
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4p17g80s
https://escholarship.org/uc/item/4p17g80s#author
https://escholarship.org
http://www.cdlib.org/


UPC-IO: A Parallel I/O API
for UPC

V1.0

Tarek El-Ghazawi
François Cantonnet

Proshanta Saha
The George Washington University

801 22nd Street NW • Suite 607
Washington,DC 20052, USA

{tarek, fcantonn, sahap}@gwu.edu

Rajeev Thakur
Rob Ross

Mathematics and Computer Science Division
Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL 60439, USA

{thakur, rross}@mcs.anl.gov

Dan Bonachea
Dept. of Computer Science

University of California, Berkeley
Berkeley, CA 94720, USA
bonachea@cs.berkeley.edu

July 29, 2004

1



Contents

3 Terms, definitions and symbols 4
3.1 Collective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Single-valued . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 List Based File Access . . . . . . . . . . . . . . . . . . . . . . 4
3.4 File Pointer Based Access . . . . . . . . . . . . . . . . . . . . 4
3.5 Synchronous I/O Call . . . . . . . . . . . . . . . . . . . . . . . 5
3.6 Asynchronous I/O Call . . . . . . . . . . . . . . . . . . . . . . 5
3.7 Consistency Semantics . . . . . . . . . . . . . . . . . . . . . . 5
3.8 Atomicity Semantics . . . . . . . . . . . . . . . . . . . . . . . 5

7 Library 6
7.3 UPC Parallel I/O <upc io.h> . . . . . . . . . . . . . . . . . . . 6

7.3.0 Background . . . . . . . . . . . . . . . . . . . . . . . . 8
7.3.0.1 File Accessing and File Pointers . . . . . . . . . . . 8
7.3.0.2 Synchronous and Asynchronous I/O . . . . . . . . . 11
7.3.0.3 Consistency and Atomicity Semantics . . . . . . . . 12
7.3.0.4 File Interoperability . . . . . . . . . . . . . . . . . . 15

7.3.1 Predefined Types . . . . . . . . . . . . . . . . . . . . . 15
7.3.1.1 The upc off t type . . . . . . . . . . . . . . . . . . 15
7.3.1.2 The upc file t type . . . . . . . . . . . . . . . . . 15
7.3.1.3 The upc flag t type . . . . . . . . . . . . . . . . . 17
7.3.1.4 The upc local memvec t type . . . . . . . . . . . . 19
7.3.1.5 The upc shared memvec t type . . . . . . . . . . . . 20
7.3.1.6 The upc filevec t type . . . . . . . . . . . . . . . 20
7.3.1.7 The upc hint t type . . . . . . . . . . . . . . . . . 21

7.3.2 UPC File Operations . . . . . . . . . . . . . . . . . . . 23
7.3.2.1 The upc all fopen function . . . . . . . . . . . . . 23
7.3.2.2 The upc all fclose function . . . . . . . . . . . . . 26
7.3.2.3 The upc all fsync function . . . . . . . . . . . . . 27
7.3.2.4 The upc all fseek function . . . . . . . . . . . . . 27
7.3.2.5 The upc all fset size function . . . . . . . . . . . 28
7.3.2.6 The upc all fget size function . . . . . . . . . . . 29
7.3.2.7 The upc all fpreallocate function . . . . . . . . . 29
7.3.2.8 The upc all fcntl function . . . . . . . . . . . . . 30

7.3.3 Reading Data . . . . . . . . . . . . . . . . . . . . . . . 34
7.3.3.1 The upc all fread local function . . . . . . . . . 34

2



7.3.3.2 The upc all fread shared function . . . . . . . . . 35
7.3.4 Writing Data . . . . . . . . . . . . . . . . . . . . . . . 37

7.3.4.1 The upc all fwrite local function . . . . . . . . . 37
7.3.4.2 The upc all fwrite shared function . . . . . . . . 38

7.3.5 List I/O . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3.5.1 The upc all fread list local function . . . . . . 40
7.3.5.2 The upc all fread list shared function . . . . . . 41
7.3.5.3 The upc all fwrite list local function . . . . . . 42
7.3.5.4 The upc all fwrite list shared function . . . . . 43

7.3.6 Asynchronous I/O . . . . . . . . . . . . . . . . . . . . 44
7.3.6.1 The upc all fread local async function . . . . . . 44
7.3.6.2 The upc all fread shared async function . . . . . 45
7.3.6.3 The upc all fwrite local async function . . . . . 46
7.3.6.4 The upc all fwrite shared async function . . . . 46
7.3.6.5 The upc all fread list local async function . . 47
7.3.6.6 The upc all fread list shared async function . . 47
7.3.6.7 The upc all fwrite list local async function . . 48
7.3.6.8 The upc all fwrite list shared async function . 49
7.3.6.9 The upc all fwait async function . . . . . . . . . 49
7.3.6.10 The upc all ftest async function . . . . . . . . . 50

References 51

Appendix A : Future Library Directions 52

3



3 Terms, definitions and symbols

Some of the following definitions are repeated from the UPC Language Spec-
ifications [1] for self-containment and clarity of the functions defined here.

3.1 Collective

1. A constraint placed on some language operations which requires evalu-
ation of such operations to be matched across all threads. The behavior
of collective operations is undefined unless all threads execute the same
sequence of collective operations.1

3.2 Single-valued

1. an operand to a collective operation, which has the same value on every
thread. The behavior of the operation is otherwise undefined.

3.3 List Based File Access

1. File accesses done using explicit offsets and sizes of data. Non-contiguous
accesses may be performed using lists of explicit offsets and lengths in
the file.

3.4 File Pointer Based Access

1. File accesses are done using either individual or common file pointers,
where individual file pointers provide a means for each thread to inde-
pendently control its access to the file and common file pointers provide
a means for all the threads to access the file with a single, collective
file pointer.

1A collective operation need not provide any actual synchronization between threads,
unless otherwise noted. The collective requirement simply states a relative ordering prop-
erty of calls to collective operations that must be maintained in the parallel execution trace
for all executions of any legal program. Some implementations may include unspecified
synchronization between threads within collective operations, but programs must not rely
upon such unspecified synchronization for correctness.

4



3.5 Synchronous I/O Call

1. I/O calls which block and wait until the corresponding I/O operation
is completed.

3.6 Asynchronous I/O Call

1. I/O calls which start an I/O operation and return immediately, and
must later be completed using a synchronization function. Only one
outstanding asynchronous operation is allowed on a UPC-IO file handle
at any given time.

3.7 Consistency Semantics

1. Consistency semantics define when the data written to a file by a thread
is visible to other threads. The consistency semantics also define the
outcome in the case of overlapping reads into a shared buffer in memory
when using individual file pointers or list I/O functions.

3.8 Atomicity Semantics

1. Atomicity semantics define the outcome of operations in which multiple
threads write concurrently to a file and some of the writes overlap each
other.

5



7 Library

7.3 UPC Parallel I/O <upc io.h>

1. This subsection provides the UPC parallel extensions of Section 7.19
in [2]. All the characteristics of library functions described in section
7.1.4 in [2] apply to these as well.

Common Constraints

1. All UPC-IO functions are collective and must be called by all threads
collectively. (See Section 3 of the UPC Specification [1] for the defini-
tion of collective).2

2. If a program calls exit, upc global exit, or returns from main with
a UPC file still open, the file will automatically be closed at program
termination, and the effect will be equivalent to upc all fclose being
implicitly called on the file.

3. If a program attempts to read past the end of a file, the read function
will read data up to the end of file and return the number of bytes
actually read, which may be less than the amount requested.

4. Writing past the end of a file increases the file size.

5. If a program seeks to a location past the end of a file and writes starting
from that location, the data in the intermediate (unwritten) portion of
the file is undefined. For example, if a program opens a new file (of size
0 bytes), seeks to offset 1024 and writes some data beginning from that
offset, the data at offsets 0–1023 is undefined. Seeking past the end of
file and performing a write causes the current file size to immediately
be extended up to the end of the write. However, just seeking past the
end of file or attempting to read past the end of file, without a write,
does not extend the file size.

6. All “shared void *” pointers passed to the I/O functions (as function
arguments or indirectly through the list I/O arguments) are treated as
if they had a phase field of zero (that is, the input phase is ignored).

2Note that collective does not necessarily imply barrier synchronization. The synchro-
nization behavior of the UPC-IO data movement library functions is explicitly controlled
by using the sync mode flag argument. See Section 7.3.1.3 for details.

6



7. All UPC-IO read/write functions take an argument sync mode of type
upc flag t. sync mode values are obtained by performing a bitwise
OR of a constant of the form UPC IN XSYNC and a constant of the form
UPC OUT YSYNC, where X and Y may be NO, MY, or ALL. The sync mode

argument is similar to the sync mode argument used in collective oper-
ation functions[4]. The sync mode argument and upc flag t type are
further discussed in Section 7.3.1.3.

8. The arguments to all UPC-IO functions are single-valued (must have
the same value on all threads) except where explicitly noted otherwise
in the function description (See Section 3 of the UPC Specification [1]
for the definition of single-valued).

9. UPC-IO, by default, supports weak consistency and atomicity seman-
tics. The default (weak) semantics are as follows. The data written
to a file by a thread is only guaranteed to be visible to another thread
after all threads have collectively closed or synchronized the file.

10. Writes to a file from a given thread are always guaranteed to be visible
to subsequent file reads by the same thread, even without an interven-
ing call to collectively close or synchronize the file.

11. Byte-level data consistency is supported.

12. If concurrent writes from multiple threads overlap in the file, the re-
sulting data in the overlapping region is undefined with the weak con-
sistency and atomicity semantics

13. When reading data being concurrently written by another thread, the
data that gets read is undefined with the weak consistency and atom-
icity semantics.

14. File reads into overlapping locations in a shared buffer in memory using
individual file pointers or list I/O functions leads to undefined data in
the target buffer under the weak consistency and atomicity semantics.

15. A given file must not be opened at same time by the POSIX I/O and
UPC-IO libraries.

16. Except where otherwise noted, all UPC-IO functions return NON-
single-valued errors; that is, the occurrence of an error need only be

7



reported to at least one thread, and the errno value reported to each
such thread may differ. When an error is reported to ANY thread,
the position of ALL file pointers for the relevant file handle becomes
undefined.

17. The error values that UPC-IO functions may set in errno are implementation-
defined, however the perror() and strerror() functions are still guar-
anteed to work properly with errno values generated by UPC-IO.

18. UPC-IO functions can not be called between upc notify and corre-
sponding upc wait statements.

7.3.0 Background

7.3.0.1 File Accessing and File Pointers

Figure 1: UPC-IO File Access Methods

Collective UPC-IO accesses can be done in and out of shared and pri-
vate buffers, thus local and shared reads and writes are generally supported.
In each of these cases, file pointers could be either common or individual.
Note that in UPC-IO, common file pointers cannot be used in conjunction

8



with pointer-to-local buffers. File pointer modes are specified by passing
a flag to the collective upc all fopen function and can be changed using
upc all fcntl. When a file is opened with the common file pointer flag,
all threads share a common file pointer. When a file is opened with the
individual file pointer flag, each thread gets its own file pointer.

UPC-IO also provides file-pointer-independent list file accesses by speci-
fying explicit offsets and sizes of data that is to be accessed. List IO can also
be used with either pointer-to-local buffers or pointer-to-shared buffers.

Examples 1-3 and their associated figures, Figures 2-4, give typical in-
stances of UPC-IO usage. Error checking is omitted for brevity.

Example 1:

double buffer[10]; // and assuming a total of 4 THREADS

upc_file_t *fd;

fd = upc_all_fopen( "file", UPC_RDONLY | UPC_INDIVIDUAL_FP, 0, NULL );

upc_all_fseek( fd, 5*MYTHREAD*sizeof(double), UPC_SEEK_SET );

upc_all_fread_local( fd, buffer, sizeof(double), 10,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

upc_all_fclose(fd);

Example 1 and Figure 2 illustrate a collective read operation using indi-
vidual file pointers. Each thread reads a block of data into a private buffer
from a particular thread-specific offset.

Example 2 and Figure 3 illustrate a collective read operation using a
common file pointer. The data read is stored into a shared buffer, having
a block size of 5 elements. The user selects the type of file pointer at file-
open time. The user can select either individual file pointers by passing the
flag UPC INDIVIDUAL FP to the function upc all fopen, or the common file
pointer by passing the flag UPC COMMON FP to upc all fopen.

Example 2:

shared [5] float buffer[20]; // and assuming a total of 4 static THREADS

upc_file_t *fd;

9



Figure 2: Collective read into private buffers can provide a canonical file-view

fd = upc_all_fopen( "file", UPC_RDONLY | UPC_COMMON_FP, 0, NULL );

upc_all_fread_shared( fd, buffer, upc_blocksizeof(buffer),

upc_elemsizeof(buffer), 20, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

/* or equivalently:

* upc_all_fread_shared( fd, buffer, 5, sizeof(float), 20,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

*/

Figure 3: Collective read into a blocked shared buffer can provide a parti-
tioned file-view

Example 3 and Figure 4 illustrate a collective list I/O read operation.
The list I/O functions allow the user to specify noncontiguous accesses both

10



in memory and file in the form of lists of explicit offsets and lengths in the
file and explicit address and lengths in memory. None of the file pointers are
used or updated in this case.

Example 3:

upc_local_memvec_t memvec[2];

upc_filevec_t filevec[2];

upc_file_t *fd;

char buffer[12];

fd = upc_all_fopen( "file", UPC_RDONLY | UPC_INDIVIDUAL_FP, 0, NULL );

memvec[0].baseaddr = &buffer[0];

memvec[0].len = 4;

memvec[1].baseaddr = &buffer[7];

memvec[1].len = 3;

filevec[0].offset = MYTHREAD*5;

filevec[0].len = 2;

filevec[1].offset = 10+MYTHREAD*5;

filevec[1].len = 5;

upc_all_fread_list_local( fd, 2, &memvec, 2, &filevec,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

7.3.0.2 Synchronous and Asynchronous I/O

I/O operations can be synchronous (blocking) or asynchronous (non-blocking).
While synchronous calls are quite simple and easy to use from a programming
point of view, asynchronous operations allow the overlapping of computation
and I/O to achieve improved performance. Synchronous calls block and wait
until the corresponding I/O operation is completed. On the other hand, an
asynchronous call starts an I/O operation and returns immediately. Thus,
the executing process can turn its attention to other processing needs while
the I/O is progressing.

UPC-IO supports both synchronous and asynchronous I/O functionality.
The asynchronous I/O functions have the same syntax and basic semantics
as their synchronous counterparts, with the addition of the “async” suffix in

11



Figure 4: List I/O read of noncontiguous parts of a file to private noncon-
tiguous buffers

their names. The asynchronous I/O functions have the restriction that only
one (collective) asynchronous operation can be active at a time on a given file
handle. That is, an asynchronous I/O function must be completed by calling
upc all ftest async or upc all fwait async before another asynchronous
I/O function can be called on the same file handle. This restriction is similar
to the restriction MPI-IO [3] has on split-collective I/O functions: only one
split collective operation can be outstanding on an MPI-IO file handle at any
time.

7.3.0.3 Consistency and Atomicity Semantics

Let us first define what we mean by the terms consistency semantics and
atomicity semantics. The consistency semantics define when the data written
to a file by a thread is visible to other threads. The atomicity semantics
define the outcome of operations in which multiple threads write concurrently
to a file or shared buffer and some of the writes overlap each other. For
performance reasons, UPC-IO uses weak consistency and atomicity semantics
by default. The user can select stronger semantics either by opening the file
with the flag UPC STRONG CA or by calling upc all fcntl with the command
UPC SET STRONG CA SEMANTICS.

The default (weak) semantics are as follows. The data written by a thread
is only guaranteed to be visible to another thread after all threads have called

12



upc all fclose or upc all fsync. (Note that the data may be visible to
other threads before the call to upc all fclose or upc all fsync and that
the data may become visible to different threads at different times.) Writes
from a given thread are always guaranteed to be visible to subsequent reads
by the same thread, even without an intervening call to upc all fclose or
upc all fsync. Byte-level data consistency is supported. So for example, if
thread 0 writes one byte at offset 0 in the file and thread 1 writes one byte
at offset 1 in the file, the data from both threads will get written to the file.
If concurrent writes from multiple threads overlap in the file, the resulting
data in the overlapping region is undefined. Similarly, if one thread tries to
read the data being concurrently written by another thread, the data that
gets read is undefined. Concurrent in this context means any two read/write
operations to the same file handle with no intervening calls to upc all fsync

or upc all fclose.
For the functions that read into or write from a shared buffer using a

common file pointer, the weak consistency semantics are defined as follows.
Each call to upc all {fread,fwrite} shared[ async] with a common file
pointer behaves as if the read/write operations were performed by a single,
distinct, anonymous thread which is different from any compute thread (and
different for each operation). In other words, NO file reads are guaranteed to
see the results of file writes using the common file pointer until after a close
or sync under the default weak consistency semantics.

By passing the UPC STRONG CA flag to upc all fopen or by calling upc all fcntl

with the command UPC SET STRONG CA SEMANTICS, the user selects strong
consistency and atomicity semantics. In this case, the data written by a
thread is visible to other threads as soon as the file write on the calling
thread returns. In the case of writes from multiple threads to overlapping re-
gions in the file, the result would be as if the individual write function from
each thread occurred atomically in some (unspecified) order. Overlapping
writes to a file in a single (list I/O) write function on a single thread are
not permitted (see Section 7.3.5). While strong consistency and atomicity
semantics are selected on a given file handle, the sync mode argument to
all fread/fwrite functions on that handle is ignored and always treated as
UPC IN ALLSYNC | UPC OUT ALLSYNC.

The consistency semantics also define the outcome in the case of overlap-
ping reads into a shared buffer in memory when using individual file pointers
or list I/O functions. By default, the data in the overlapping space is unde-
fined. If the user selects strong consistency and atomicity, the result would

13



be as if the individual read functions from each thread occurred atomically in
some (unspecified) order. Overlapping reads into memory buffers in a single
(list I/O) read function on a single thread are not permitted (see Section
7.3.5).

Note that in strong consistency and atomicity mode, atomicity is guaran-
teed at the UPC-IO function level. The entire operation specified by a single
function is performed atomically, regardless of whether it represents a single,
contiguous read/write or multiple noncontiguous reads or writes as in a list
I/O function.

Example
Consider the following example in which three threads write data to a file

concurrently, each with a single list I/O function. The numbers indicate file
offsets and brackets indicate the boundaries of a listed vector. Each thread
writes its own thread id as the data values:

thread 0: {1 2 3} {5 6 7 8}

thread 1: {0 1 2}{3 4 5}

thread 2: {4 5 6} {8 9 10 11}

With the default weak semantics, the results in the overlapping locations
are undefined. Therefore, the result in the file would be the following, where
x represents undefined data.

File: 1 x x x x x x 0 x 2 2 2

That is, the data from thread 1 is written at location 0, the data from thread
0 is written at location 7, and the data from thread 2 is written at locations
9, 10, and 11, because none of these locations had overlapping writes. All
other locations had overlapping writes, and consequently, the result at those
locations is undefined.

If the file were opened with the UPC STRONG CA flag, strong consistency
and atomicity semantics would be in effect. The result, then, would depend
on the order in which the writes from the three threads actually occurred.
Since six different orderings are possible, there can be six outcomes. Let us
assume, for example, that the ordering was the write from thread 0, followed
by the write from thread 2, and then the write from thread 1. The (list I/O)
write from each thread happens atomically. Therefore, for this ordering, the
result would be:

14



File: 1 1 1 1 1 1 2 0 2 2 2 2

We note that if instead of using a single list I/O function each thread
used a separate function to write each contiguous portion, there would be
six write functions, two from each thread, and the atomicity would be at the
granularity of the write operation specified by each of those functions.

7.3.0.4 File Interoperability

UPC-IO does not specify how an implementation may store the data in a file
on the storage device. Accordingly, it is implementation-defined whether or
not a file created by UPC-IO can be directly accessed by using C/POSIX I/O
functions. However, the UPC-IO implementation must specify how the user
can retrieve the file from the storage system as a linear sequence of bytes
and vice versa. Similarly, the implementation must specify how familiar
operations, such as the equivalent of POSIX ls, cp, rm, and mv can be
performed on the file.

7.3.1 Predefined Types

7.3.1.1 The upc off t type

Synopsis

1. #include <upc io.h>

upc off t myOffset;

Description

1. upc off t is a signed integral type that is capable of representing the
size of the largest file supported by the implementation.

7.3.1.2 The upc file t type

Synopsis

1. #include <upc io.h>

upc file t *myFile;

15



Description

1. An opaque shared data type of incomplete type (as defined in section
6.2.5 of [2]) that represents an open file handle:
upc file t

Constraints

1. upc file t objects are always manipulated via a pointer (that is, upc file t

*).

2. upc file t is a shared data type. It is legal to pass a (upc file t *)
across threads, and two pointers to upc file t that reference the same
logical file handle will always compare equal.

Advice to implementors

1. The definition of upc file t does not restrict the implementation to
store all its metadata with affinity to one thread. Each thread can
still have local access to its metadata. For example, below is a simple
approach an implementation could use:

/* for a POSIX-based implementation */

typedef int my_internal_filehandle_t;

#ifdef _UPC_INTERNAL

typedef struct _local_upc_file_t {

my_internal_filehandle_t fd;

... other metadata ...

} local_upc_file_t;

#else

struct _local_upc_file_t;

#endif

typedef shared struct _local_upc_file_t upc_file_t;

upc_file_t *upc_all_fopen(...) {

upc_file_t *handles =

16



upc_all_alloc(THREADS, sizeof(upc_file_t));

/* get my handle */

upc_file_t *myhandle = &(handles[MYTHREAD]);

/* cast to a pointer-to-local */

local_upc_file_t* mylocalhandle = (local_upc_file_t*)myhandle;

/* setup my metadata using pointer-to-local */

mylocalhandle->fd = open(...);

...

return handles;

}

The basic idea is that the “handle” exposed to the user actually points
to a cyclic, distributed array. As a result, each thread has easy, local
access to its own internal handle metadata with no communication,
while maintaining the property that the handle that UPC-IO exposes to
the client is a single-valued pointer-to-shared. An additional advantage
is that a thread can directly access the metadata for other threads,
which may occasionally be desirable in the implementation.

7.3.1.3 The upc flag t type

Synopsis

1. #include <upc io.h>

upc flag t sync mode;

Description
The sync mode argument is similar to the corresponding argument in

collective operation functions [4].

1. If the sync mode has the value (UPC IN XSYNC | UPC OUT YSYNC), then
if X is

17



NO the function may begin to read or write data when the first thread
has entered the I/O function call,

MY the function may begin to read or write only data which has affinity
to threads that have entered the collective function call, and

ALL the function may begin to read or write data only after all threads
have entered the collective function call3

and if Y is

NO the function may read and write data until the last thread has
returned from the collective function call,

MY the function call may return in a thread only after all reads and
writes of data with affinity to the thread are complete,4 and

ALL the function call may return only after all reads and writes of data
are complete.5

2. UPC IN XSYNC alone is equivalent to (UPC IN XSYNC | UPC OUT ALLSYNC),
where X is NO, MY, or ALL.

3. UPC OUT XSYNC alone is equivalent to (UPC IN ALLSYNC | UPC OUT XSYNC),
where X is NO, MY, or ALL.

4. 0 is equivalent to (UPC IN ALLSYNC | UPC OUT ALLSYNC).

5. In the sync mode definitions above, “data” refers exclusively to data re-
siding in user-owned memory buffers passed as arguments to the library
function. In other words, the sync mode flag only governs the behavior
of library accesses to memory locations in user-provided buffers — it

3UPC IN ALLSYNC requires the collective I/O function to guarantee that after all threads
have entered the collective function call all threads will read the same values of the input
data.

4UPC OUT MYSYNC requires the collective I/O function to guarantee that after a thread
returns from the collective function call the thread will not read any earlier values of the
output data with affinity to that thread.

5UPC OUT ALLSYNC requires the collective I/O function to guarantee that after a thread
returns from the collective function call the thread will not read any earlier values of
the output data. UPC OUT ALLSYNC is not required to provide an “implied” barrier. For
example, if the entire collective I/O operation has been completed by a certain thread
before some other threads have reached their corresponding function calls, then that thread
may exit its call.

18



does not restrict the behavior of read/write operations on the storage
medium or any buffer memory internal to the library implementation.

6. The semantics of these flags when applied to the async variants of the
fread/fwrite functions should be interpreted as follows: constraints that
reference entry to a function call correspond to entering the fread async-
/fwrite async call that initiates the asynchronous operation, and con-
straints that reference returning from a function call correspond to re-
turning from the upc all fwait async() or successful upc all ftest async()

call that completes the asynchronous operation. Also, note that all the
sync mode flags which govern an asynchronous operation are passed to
the library during the asynchronous initiation call.

7. The sync mode flag is included even on the fread/fwrite local func-
tions (which take a pointer-to-local as the buffer argument) in order
to provide well-defined semantics for the case where one or more of
the pointer-to-local arguments references a shared object (with local
affinity). In the case where all of the pointer-to-local arguments in a
given call reference only private objects, the sync mode flag provides
no useful additional guarantees and is recommended to be passed as
UPC IN NOSYNC|UPC OUT NOSYNC to maxi mize performance.

7.3.1.4 The upc local memvec t type

Synopsis

1. #include <upc io.h>

upc local memvec t myLocalMemoryVector;

Description

1. upc local memvec t is defined as follows:

typedef struct {

void *baseaddr;

size_t len;

} upc_local_memvec_t;

19



baseaddr and len specify a contiguous memory region in terms of the
base address and length in bytes. len may be zero, in which case that
entry is ignored.

7.3.1.5 The upc shared memvec t type

Synopsis

1. #include <upc io.h>

upc shared memvec t mySharedMemoryVector;

Description

1. upc shared memvec t is defined as follows:

typedef struct {

shared void *baseaddr;

size_t blocksize;

size_t len;

} upc_shared_memvec_t;

baseaddr and len specify a shared memory region in terms of the base
address and length in bytes. len may be zero, in which case that entry
is ignored. blocksize is the block size of the shared buffer in bytes. A
blocksize of 0 indicates an indefinite blocking factor.

7.3.1.6 The upc filevec t type

Synopsis

1. #include <upc io.h>

upc filevec t myFileVector;

Description

1. upc filevec t is defined as follows:

20



typedef struct {

upc_off_t offset;

size_t len;

} upc_filevec_t;

offset and len specify a contiguous region in the file in terms of the
starting offset in the file in bytes and the length in bytes.

7.3.1.7 The upc hint t type

Synopsis

1. #include <upc io.h>

upc hint t myHint;

Description

1. upc hint t is defined as follows:

typedef struct {

const char *key;

const char *value;

} upc_hint_t;

2. UPC-IO supports a number of predefined hints. An implementation is
free to support additional hints. An implementation is free to ignore
any hint provided by the user. Implementations should silently ignore
any hints they do not support or recognize. The predefined hints and
their meanings are defined below. An implementation is not required to
interpret these hint keys, but if it does interpret the hint key, it must
provide the functionality described. For each hint name introduced,
we describe the type of the hint value and its meaning. All hints are
single-valued character strings (the content is single-valued, not the
location).

21



access style (comma-separated list of strings): indicates the manner
in which the file is expected to be accessed. The hint value is a
comma-separated list of any the following: “read once”, “write once”,
“read mostly”, “write mostly”, “sequential”, and “random”. Pass-
ing such a hint does not place any constraints on how the file may
actually be accessed by the program, although accessing the file in
a way that is different from the specified hint may result in lower
performance.

collective buffering (boolean): specifies whether the application
may benefit from collective buffering optimizations. Legal values
for this key are “true” and “false”. Collective buffering param-
eters can be further directed via additional hints: cb buffer size,
and cb nodes.

cb buffer size (decimal integer): specifies the total buffer space that
the implementation can use on each thread for collective buffering.

cb nodes (decimal integer): specifies the number of target threads or
I/O nodes to be used for collective buffering.

file perm (string): specifies the file permissions to use for file creation.
The set of legal values for this key is implementation defined.

io node list (comma separated list of strings): specifies the list of
I/O devices that should be used to store the file and is only rele-
vant when the file is created.

nb proc (decimal integer): specifies the number of threads that will
typically be used to run programs that access this file and is only
relevant when the file is created.

striping factor (decimal integer): specifies the number of I/O de-
vices that the file should be striped across and is relevant only
when the file is created.

start io device (decimal integer): specifies the number of the first

22



I/O device from which to start striping the file and is relevant
only when the file is created.

striping unit (decimal integer): specifies the striping unit to be used
for the file. The striping unit is the amount of consecutive data
assigned to one I/O device before progressing to the next device,
when striping across a number of devices. It is expressed in bytes.
This hint is relevant only when the file is created.

7.3.2 UPC File Operations

Common Constraints

1. When a file is opened with an individual file pointer, each thread will
get its own file pointer and advance through the file at its own pace.

2. When a common file pointer is used, all threads positioned in the file
will be aligned with that common file pointer.

3. Common file pointers cannot be used in conjunction with pointers-to-
local (and hence cannot operate on private objects).

4. No function in this section (7.3.2) may be called while an asynchronous
operation is pending on the file handle, except where otherwise noted.

7.3.2.1 The upc all fopen function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

upc_file_t *upc_all_fopen(const char *fname,

int flags,

size_t numhints,

upc_hint_t const *hints)

Description

1. upc all fopen opens the file identified by the filename fname for in-
put/output operations.

23



2. The flags parameter specifies the access mode. The valid flags and their
meanings are listed below. Of these flags, exactly one of UPC RDONLY,
UPC WRONLY, or UPC RDWR, and one of UPC COMMON FP or UPC INDIVIDUAL FP,
must be used. Other flags are optional. Multiple flags can be combined
by using the bitwise OR operator (|), and each flag has a unique bit-
wise representation that can be unambiguously tested using the bitwise
AND operator(&).

UPC RDONLY Open the file in read-only mode

UPC WRONLY Open the file in write-only mode

UPC RDWR Open the file in read/write mode

UPC INDIVIDUAL FP Use an individual file pointer for all file
accesses (other than list I/O )

UPC COMMON FP Use the common file pointer for all file
accesses (other than list I/O)

UPC APPEND Set the initial position of the file pointer
to end of file. (The file pointer is not
moved to the end of file after each
read/write.)

UPC CREATE Create the file if it does not already exist

UPC EXCL Used in conjunction with UPC CREATE.
The open will fail if the file already
exists.

UPC STRONG CA Set strong consistency and atomicity
semantics

UPC TRUNC Open the file and truncate it to zero
length

24



UPC DELETE ON CLOSE Delete the file automatically on close

3. The UPC COMMON FP flag specifies that all accesses (except for the list
I/O operations) will use the common file pointer. The UPC INDIVIDUAL FP

flag specifies that all accesses will use individual file pointers (except for
the list I/O operations). Either UPC COMMON FP or UPC INDIVIDUAL FP

must be specified or upc all fopen will return an error.

4. The UPC STRONG CA flag specifies strong consistency and atomicity se-
mantics. The data written by a thread is visible to other threads as
soon as the write on the calling thread returns. In the case of writes
from multiple threads to overlapping regions in the file, the result would
be as if the individual write function from each thread occurred atomi-
cally in some (unspecified) order. In the case of overlapping reads into
a shared buffer in memory when using individual file pointers or list
I/O functions, the result would be as if the individual read functions
from each thread occurred atomically in some (unspecified) order.

5. If the flag UPC STRONG CA is not specified, weak semantics are pro-
vided. The data written by a thread is only guaranteed to be visi-
ble to another thread after all threads have called upc all fclose or
upc all fsync. (Note that the data may be visible to other threads
before the call to upc all fclose or upc all fsync and that the data
may become visible to different threads at different times.) Writes
from a given thread are always guaranteed to be visible to subse-
quent reads by the same thread, even without an intervening call to
upc all fclose or upc all fsync. Byte-level data consistency is sup-
ported. For the purposes of atomicity and consistency semantics, each
call to upc all {fread,fwrite} shared[ async] with a common file
pointer behaves as if the read/write operations were performed by a
single, distinct, anonymous thread which is different from any compute
thread (and different for each operation).”6

6. Hints can be passed to the UPC-IO library as an array of key-value
pairs7 of strings. numhints specifies the number of hints in the hints

6In other words, NO reads are guaranteed to see the results of writes using the common
file pointer until after a close or sync when UPC STRONG CA is not specified.

7The contents of the key/value pairs passed by all the threads must be single-valued.

25



array; if numhints is zero, the hints pointer is ignored. The user
can free the hints array and associated character strings as soon as
the open call returns. Each element of the hints array is of type
upc hint t.

7. A file on the storage device is in the open state from the beginning of a
successful open call to the end of the matching successful close call on
the file handle. It is erroneous to have the same file open simultaneously
with two upc all fopen calls, or with a upc all fopen call and a
POSIX/C open or fopen call.

8. The user is responsible for ensuring that the file referenced by the fname
argument refers to a single UPC-IO file. The actual argument passed
on each thread may be different because the file name spaces may be
different on different threads, but they must all refer to the same logical
UPC-IO file.

9. On success, the function returns a pointer to a file handle that can be
used to perform other operations on the file.

10. upc all fopen provides single-valued errors - if an error occurs, the
function returns NULL on ALL threads, and sets errno appropriately
to the same value on all threads.

7.3.2.2 The upc all fclose function

Synopsis

1. #include <upc.h>

#include <upc io.h>

int upc all fclose(upc file t *fd);

Description

1. upc all fclose executes an implicit upc all fsync on fd and then
closes the file associated with fd.

26



2. The function returns 0 on success. If fd is not valid or if an outstanding
asynchronous operation on fd has not been completed, the function will
return an error.

3. upc all fclose provides single-valued errors - if an error occurs, the
function returns –1 on ALL threads, and sets errno appropriately to
the same value on all threads.

4. After a file has been closed with upc all fclose, the file can legally be
opened and the data in it can be accessed by using regular C/POSIX
I/O calls.

7.3.2.3 The upc all fsync function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

int upc_all_fsync(upc_file_t *fd)

Description

1. upc all fsync ensures that any data that has been written to the
file associated with fd but not yet transferred to the storage device is
transferred to the storage device. It also ensures that subsequent file
reads from any thread will see any previously written values (that have
not yet been overwritten).

2. There is an implied barrier immediately before upc all fsync returns.

3. The function returns 0 on success. On error, it returns –1 and sets
errno appropriately.

7.3.2.4 The upc all fseek function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

27



upc_off_t upc_all_fseek(upc_file_t *fd,

upc_off_t offset,

int origin)

Description

1. upc all fseek sets the current position of the file pointer associated
with fd.

2. This offset can be relative to the current position of the file pointer, to
the beginning of the file, or to the end of the file. The offset can be
negative, which allows seeking backwards.

3. The origin parameter can be specified as UPC SEEK SET, UPC SEEK CUR,
or UPC SEEK END, respectively, to indicate that the offset must be com-
puted from the beginning of the file, the current location of the file
pointer, or the end of the file.

4. In the case of a common file pointer, all threads must specify the same
offset and origin. In the case of an individual file pointer, each thread
may specify a different offset and origin.

5. It is legal to seek past the end of file. It is erroneous to seek to a
negative position in the file. See the Common Constraints number 5
at the beginning of Section 7.3 for more details.

6. The current position of the file pointer can be determined by calling
upc all fseek(fd, 0, UPC SEEK CUR).

7. On success, the function returns the current location of the file pointer
in bytes. If there is an error, it returns –1 and sets errno appropriately.

7.3.2.5 The upc all fset size function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

int upc_all_fset_size(upc_file_t *fd,

upc_off_t size)

28



Description

1. upc all fset size executes an implicit upc all fsync on fd and re-
sizes the file associated with fd.

2. size is measured in bytes from the beginning of the file.

3. If size is less than the current file size, the file is truncated at the
position defined by size. The implementation is free to deallocate file
blocks located beyond this position.

4. If size is greater than the current file size, the file size increases to size.
Regions of the file that have been previously written are unaffected.
The values of data in the new regions in the file (between the old size
and size) are undefined.

5. If this function truncates a file, it is possible that the individual and
common file pointers may point beyond the end of file. This is legal
and is equivalent to seeking past the end of file (see the Common Rules
in Section 5 for the semantics of seeking past the end of file).

6. It is unspecified whether and under what conditions this function actu-
ally allocates file space on the storage device. Use upc all fpreallocate

to force file space to be reserved on the storage device.

7. Calling this function does not affect the individual or common file point-
ers.

8. The function returns 0 on success. On error, it returns –1 and sets
errno appropriately.

7.3.2.6 The upc all fget size function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

upc_off_t upc_all_fget_size(upc_file_t *fd)

Description

29



1. upc all fget size returns the current size in bytes of the file asso-
ciated with fd on success. On error, it returns –1 and sets errno

appropriately.

7.3.2.7 The upc all fpreallocate function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

int upc_all_fpreallocate(upc_file_t *fd,

upc_off_t size)

Description

1. upc all fpreallocate ensures that storage space is allocated for the
first size bytes of the file associated with fd.

2. Regions of the file that have previously been written are unaffected.
For newly allocated regions of the file, upc all fpreallocate has the
same effect as writing undefined data.

3. If size is greater than the current file size, the file size increases to
size. If size is less than or equal to the current file size, the file size
is unchanged.

4. Calling this function does not affect the individual or common file point-
ers.

5. The function returns 0 on success. On error, it returns –1 and sets
errno appropriately.

7.3.2.8 The upc all fcntl function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

30



int upc_all_fcntl(upc_file_t *fd,

int cmd,

void *arg)

Description

1. upc all fcntl performs one of various miscellaneous operations re-
lated to the file specified by fd, as determined by cmd. The valid
commands cmd and their associated argument arg are explained below.

UPC GET

CA SEMANTICS

Get the current consistency and
atomicity semantics for fd. The
argument arg is ignored.
The return value is UPC STRONG CA for
strong consistency and atomicity
semantics and 0 for the default weak
consistency and atomicity semantics.

UPC SET WEAK

CA SEMANTICS

Executes an implicit upc all fsync on
fd and sets fd to use the weak
consistency and atomicity semantics (or
leaves the mode unchanged if that mode
is already selected).
The argument arg is ignored.
The return value is 0 on success. On
error, this function returns -1 and sets
errno appropriately.

UPC SET STRONG

CA SEMANTICS

Executes an implicit upc all fsync on
fd and sets fd to use the strong
consistency and atomicity semantics (or
leaves the mode unchanged if that mode
is already selected).
The argument arg is ignored.
The return value is 0 on success. On
error, this function returns -1 and sets
errno appropriately.

31



UPC GET FP Get the type of the current file pointer
for fd.
The argument arg is ignored.
The return value is either
UPC COMMON FP in case of a common file
pointer, or UPC INDIVIDUAL FP for
individual file pointers.

UPC SET COMMON

FP

Executes an implicit upc all fsync on
fd, sets the current file access pointer
mechanism for fd to a common file
pointer (or leaves it unchanged if that
mode is already selected), and seeks to
the beginning of the file.
The argument arg is ignored.
The return value is 0 on success. On
error, this function returns -1 and sets
errno appropriately.

UPC SET INDIVIDUAL

FP

Executes an implicit upc all fsync on
fd, sets the current file access pointer
mechanism for fd to an individual file
pointer (or leaves the mode unchanged if
that mode is already selected), and seeks
to the beginning of the file.
The argument arg is ignored.
The return value is 0 on success. On
error, this function returns -1 and sets
errno appropriately.

32



UPC GET FL Get all the flags specified during the
upc all fopen call for fd, as modified
by any subsequent mode changes using
the upc all fcntl(UPC SET *)

commands.
The argument arg is ignored.
The return value has same format as the
flags parameter in upc all fopen.

UPC GET FN Get the file name provided by each
thread in the upc all fopen call that
created fd.
The argument arg is a valid (const
char**) pointing to a (const char*)
location in which a pointer to file name
will be written.
Writes a (const char*) into *arg

pointing to the filename in
implementation-maintained read-only
memory, which will remain valid until
the file handle is closed or until the next
upc all fcntl call on that file handle.

33



UPC GET HINTS Retrieve the hints applicable to fd.
The argument arg is a valid (const
upc hint t**) pointing to a (const
upc hint t*) location in which a pointer
to the hints array will be written.
Writes a (const upc hint t*) into *arg

pointing to an array of upc hint t’s in
implementation-maintained read-only
memory, which will remain valid until
the file handle is closed or until the next
upc all fnctl call on that file handle.
The number of hints in the array is
returned by the call.
The hints in the array may be a subset
of those specified at file open time, if the
implementation ignored some
unrecognized or unsupported hints.

UPC SET HINT Executes an implicit upc all fsync on
fd and sets a new hint to fd.
The argument arg points to one
single-valued upc hint t hint to be
applied. If the given hint key has
already been applied to fd, the current
value for that hint is replaced with the
provided value.
The return value is 0 on success. On
error, this function returns -1 and sets
errno appropriately.

UPC ASYNC

OUTSTANDING

Returns 1 if there is an asynchronous
operation outstanding on fd, or 0
otherwise.

2. In case of a non valid fd, upc all fcntl returns -1 and sets errno

appropriately.

34



3. It is legal to call upc all fcntl(UPC ASYNC OUTSTANDING) when an
asynchronous operation is outstanding (but it is still illegal to call
upc all fcntl with any other argument when an asynchronous op-
eration is outstanding).

7.3.3 Reading Data

Common Constraints

1. No function in this section (7.3.3) may be called while an asynchronous
operation is pending on the file handle.

7.3.3.1 The upc all fread local function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

ssize_t upc_all_fread_local(upc_file_t *fd,

void *buffer,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc all fread local reads data from a file into a local buffer on each
thread.

2. This function can be called only if the current file pointer type is an
individual file pointer, and the file handle is open for reading.

3. buffer is a pointer to an array into which data will be read, and each
thread may pass a different value for buffer.

4. Each thread reads (size*nmemb) bytes of data from the file at the
position indicated by its individual file pointer into the buffer. Each
thread may pass a different value for size and nmemb. If size or nmemb
is zero, the buffer argument is ignored and that thread performs no
I/O.

35



5. On success, the function returns the number of bytes read into the local
buffer of the calling thread, and the individual file pointer of the thread
is incremented by that amount. On error, it returns –1 and sets errno
appropriately.

7.3.3.2 The upc all fread shared function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

ssize_t upc_all_fread_shared(upc_file_t *fd,

shared void *buffer,

size_t blocksize,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc all fread shared reads data from a file into a shared buffer in
memory.

2. The function can be called when the current file pointer type is either a
common file pointer or an individual file pointer. The file handle must
be open for reading.

3. buffer is a pointer to an array into which data will be read. It
must be a pointer to shared data and may have affinity to any thread.
blocksize is the block size of the shared buffer in elements (of size
bytes each). A blocksize of 0 indicates an indefinite blocking factor.

4. In the case of individual file pointers, the following rules apply: Each
thread may pass a different address for the buffer parameter. Each
thread reads (size*nmemb) bytes of data from the file at the position
indicated by its individual file pointer into its buffer. Each thread
may pass a different value for blocksize, size and nmemb. If size or
nmemb is zero, the buffer argument is ignored and that thread performs
no I/O. On success, the function returns the number of bytes read

36



by the calling thread, and the individual file pointer of the thread is
incremented by that amount.

5. In the case of a common file pointer, the following rules apply: All
threads must pass the same address for the buffer parameter, and
the same value for blocksize, size and nmemb. The effect is that
(size*nmemb) bytes of data are read from the file at the position indi-
cated by the common file pointer into the buffer. If size or nmemb is
zero, the buffer argument is ignored and the operation has no effect.
On success, the function returns the total number of bytes read by all
threads, and the common file pointer is incremented by that amount.

6. If reading with individual file pointers results in overlapping reads into
the shared buffer, the result is determined by whether the file was
opened with the UPC STRONG CA flag or not (see Section 7.3.2.1).

7. The function returns –1 on error and sets errno appropriately.

7.3.4 Writing Data

Common Constraints

1. No function in this section (7.3.4) may be called while an asynchronous
operation is pending on the file handle.

7.3.4.1 The upc all fwrite local function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

ssize_t upc_all_fwrite_local(upc_file_t *fd,

void *buffer,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

37



1. upc all fwrite local writes data from a local buffer on each thread
into a file.

2. This function can be called only if the current file pointer type is an
individual file pointer, and the file handle is open for writing.

3. buffer is a pointer to an array from which data will be written, and
each thread may pass a different value for buffer.

4. Each thread writes (size*nmemb) bytes of data from the buffer to the
file at the position indicated by its individual file pointer. Each thread
may pass a different value for size and nmemb. If size or nmemb is zero,
the buffer argument is ignored and that thread performs no I/O.

5. If any of the writes result in overlapping accesses in the file, the result
is determined by the current consistency and atomicity semantics mode
in effect for fd (see Section 7.3.2.1).

6. On success, the function returns the number of bytes written by the call-
ing thread, and the individual file pointer of the thread is incremented
by that amount. On error, it returns –1 and sets errno appropriately.

7.3.4.2 The upc all fwrite shared function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

ssize_t upc_all_fwrite_shared(upc_file_t *fd,

shared void *buffer,

size_t blocksize,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc all fwrite shared writes data from a shared buffer in memory
to a file.

38



2. The function can be called if the current file pointer type is either a
common file pointer or an individual file pointer. The file handle must
be open for writing.

3. buffer is a pointer to an array from which data will be written. It
must be a pointer to shared data and may have affinity to any thread.
blocksize is the block size of the shared buffer in elements (of size
bytes each). A blocksize of 0 indicates an indefinite blocking factor.

4. In the case of individual file pointers, the following rules apply: Each
thread may pass a different address for the buffer parameter. Each
thread writes (size*nmemb) bytes of data from its buffer to the file
at the position indicated by its individual file pointer. Each thread
may pass a different value for blocksize, size and nmemb. If size or
nmemb is zero, the buffer argument is ignored and that thread performs
no I/O. On success, the function returns the number of bytes written
by the calling thread, and the individual file pointer of the thread is
incremented by that amount.

5. In the case of a common file pointer, the following rules apply: All
threads must pass the same address for the buffer parameter, and
the same value for blocksize, size and nmemb. The effect is that
(size*nmemb) bytes of data are written from the buffer to the file at
the position indicated by the common file pointer. If size or nmemb is
zero, the buffer argument is ignored and the operation has no effect.
On success, the function returns the total number of bytes written by
all threads, and the common file pointer is incremented by that amount.

6. If writing with individual file pointers results in overlapping accesses
in the file, the result is determined by the current consistency and
atomicity semantics mode in effect for fd (see Section 7.3.2.1).

7. The function returns –1 on error and sets errno appropriately.

7.3.5 List I/O

Common Constraints

1. List I/O functions take a list of addresses/offsets and corresponding
lengths in memory and file to read from or write to.

39



2. List I/O functions can be called regardless of whether the current file
pointer type is individual or common.

3. File pointers are not updated as a result of a list I/O read/write oper-
ation.

4. The memvec argument passed to any list I/O read function by a single
thread must not specify overlapping regions in memory.

5. The base addresses passed to memvec can be in any order.

6. The filevec argument passed to any list I/O write function by a single
thread must not specify overlapping regions in the file.

7. The offsets passed in filevec must be in monotonically non-decreasing
order.

8. No function in this section (7.3.5) may be called while an asynchronous
operation is pending on the file handle.

9. No function in this section (7.3.5) implies the presence of barriers at
entry or exit. However, the programmer is advised to use a barrier after
calling upc all fread list shared to ensure that the entire shared
buffer has been filled up, and similarly, use a barrier before calling
upc all fwrite list shared to ensure that the entire shared buffer
is up-to-date before being written to the file.

10. For all the list I/O functions, each thread passes an independent set
of memory and file vectors. Passing the same vectors on two or more
threads specifies redundant work. The file pointer is a single-valued
argument, all other arguments to the list I/O functions are NOT single-
valued.

7.3.5.1 The upc all fread list local function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

ssize_t upc_all_fread_list_local(upc_file_t *fd,

40



size_t memvec_entries,

upc_local_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc all fread list local reads data from a file into local buffers in
memory. The file handle must be open for reading.

2. memvec entries indicates the number of entries in the array memvec

and filevec entries indicates the number of entries in the array
filevec. The values may be 0, in which case the memvec or filevec

argument is ignored and no locations are specified for I/O.

3. The result is as if data were read in order from the list of locations
specified by filevec and placed in memory in the order specified by
the list of locations in memvec. The total amount of data specified by
memvec must equal the total amount of data specified by filevec.

4. On success, the function returns the number of bytes read by the calling
thread. On error, it returns –1 and sets errno appropriately.

7.3.5.2 The upc all fread list shared function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

ssize_t upc_all_fread_list_shared(upc_file_t *fd,

size_t memvec_entries,

upc_shared_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

41



1. upc all fread list shared reads data from a file into various loca-
tions of a shared buffer in memory. The file handle must be open for
reading.

2. memvec entries indicates the number of entries in the array memvec

and filevec entries indicates the number of entries in the array
filevec. The values may be 0, in which case the memvec or filevec

argument is ignored and no locations are specified for I/O.

3. The result is as if data were read in order from the list of locations
specified by filevec and placed in memory in the order specified by
the list of locations in memvec. The total amount of data specified by
memvec must equal the total amount of data specified by filevec.

4. If any of the reads from different threads result in overlapping regions
in memory, the result is determined by the current consistency and
atomicity semantics mode in effect for fd (see Section 7.3.2.1).

5. On success, the function returns the number of bytes read by the calling
thread. On error, it returns –1 and sets errno appropriately.

Note: With the above definition, there is no way to do with explicit
offsets the equivalent of upc all fread shared using a common
file pointer, namely, where all threads specify the same access
(same parameters), the data gets read collectively into the shared
buffer, and the function returns the total amount of data read by
all threads.

7.3.5.3 The upc all fwrite list local function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

ssize_t upc_all_fwrite_list_local(upc_file_t *fd,

size_t memvec_entries,

upc_local_memvec_t const *memvec,

size_t filevec_entries,

42



upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc all fwrite list local writes data from local buffers in memory
to a file. The file handle must be open for writing.

2. memvec entries indicates the number of entries in the array memvec

and filevec entries indicates the number of entries in the array
filevec. The values may be 0, in which case the memvec or filevec

argument is ignored and no locations are specified for I/O.

3. The result is as if data were written from memory locations in the
order specified by the list of locations in memvec to locations in the file
in the order specified by the list in filevec. The total amount of data
specified by memvec must equal the total amount of data specified by
filevec.

4. If any of the writes from different threads result in overlapping accesses
in the file, the result is determined by the current consistency and
atomicity semantics mode in effect for fd (see Section 7.3.2.1).

5. On success, the function returns the number of bytes written by the
calling thread. On error, it returns –1 and sets errno appropriately.

7.3.5.4 The upc all fwrite list shared function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

ssize_t upc_all_fwrite_list_shared(upc_file_t *fd,

size_t memvec_entries,

upc_shared_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

43



Description

1. upc all fwrite list shared writes data from various locations of a
shared buffer in memory to a file. The file handle must be open for
writing.

2. memvec entries indicates the number of entries in the array memvec

and filevec entries indicates the number of entries in the array
filevec. The values may be 0, in which case the memvec or filevec

argument is ignored and no locations are specified for I/O.

3. The result is as if data were written from memory locations in the
order specified by the list of locations in memvec to locations in the file
in the order specified by the list in filevec. The total amount of data
specified by memvec must equal the total amount of data specified by
filevec.

4. If any of the writes from different threads result in overlapping accesses
in the file, the result is determined by the current consistency and
atomicity semantics mode in effect for fd (see Section 7.3.2.1).

5. On success, the function returns the number of bytes written by the
calling thread. On error, it returns –1 and sets errno appropriately.

Note: With the above definition, there is no way to do with explicit
offsets the equivalent of upc all fwrite shared using a common
file pointer, namely, where all threads specify the same access
(same parameters), the data gets written collectively from a shared
buffer, and the function returns the total amount of data written
by all threads.

7.3.6 Asynchronous I/O

Common Constraints

1. Only one asynchronous I/O operation can be outstanding on a UPC-
IO file handle at any time. If an application attempts to initiate a
second asynchronous I/O operation while one is still outstanding on
the same file handle the behavior is undefined – however, high-quality
implementations will issue a fatal error.

44



2. For asynchronous read operations, the contents of the destination mem-
ory are undefined until after a successful upc all fwait async or
upc all ftest async on the file handle. For asynchronous write op-
erations, the source memory may not be safely modified until after a
successful upc all fwait async or upc all ftest async on the file
handle.

3. An implementation is free to block for completion of an operation in
the asynchronous initiation call or in the upc all ftest async call
(or both). High-quality implementations are recommended to mini-
mize the amount of time spent within the asynchronous initiation or
upc all ftest async call.

4. In the case of list I/O functions, the user may modify or free the lists
after the asynchronous I/O operation has been initiated.

7.3.6.1 The upc all fread local async function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

void upc_all_fread_local_async(upc_file_t *fd,

void *buffer,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc all fread local async initiates an asynchronous read from a file
into a local buffer on each thread.

2. The meaning of the parameters and restrictions are the same as for the
blocking function, upc all fread local.

3. The status of the initiated asynchronous I/O operation can be retrieved
by calling upc all ftest async or upc all fwait async.

45



7.3.6.2 The upc all fread shared async function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

void upc_all_fread_shared_async(upc_file_t *fd,

shared void *buffer,

size_t blocksize,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc all fread shared async initiates an asynchronous read from a
file into a shared buffer.

2. The meaning of the parameters and restrictions are the same as for the
blocking function, upc all fread shared.

3. The status of the initiated asynchronous I/O operation can be retrieved
by calling upc all ftest async or upc all fwait async.

7.3.6.3 The upc all fwrite local async function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

void upc_all_fwrite_local_async(upc_file_t *fd,

void *buffer,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

46



1. upc all fwrite local async initiates an asynchronous write from a
local buffer on each thread to a file.

2. The meaning of the parameters and restrictions are the same as for the
blocking function, upc all fwrite local.

3. The status of the initiated asynchronous I/O operation can be retrieved
by calling upc all ftest async or upc all fwait async.

7.3.6.4 The upc all fwrite shared async function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

void upc_all_fwrite_shared_async(upc_file_t *fd,

shared void *buffer,

size_t blocksize,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc all fwrite shared async initiates an asynchronous write from a
shared buffer to a file.

2. The meaning of the parameters and restrictions are the same as for the
blocking function, upc all fwrite shared.

3. The status of the initiated asynchronous I/O operation can be retrieved
by calling upc all ftest async or upc all fwait async.

7.3.6.5 The upc all fread list local async function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

47



void upc_all_fread_list_local_async(upc_file_t *fd,

size_t memvec_entries,

upc_local_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc all fread list local async initiates an asynchronous read of
data from a file into local buffers in memory.

2. The meaning of the parameters and restrictions are the same as for the
blocking function, upc all fread list local.

3. The status of the initiated asynchronous I/O operation can be retrieved
by calling upc all ftest async or upc all fwait async.

7.3.6.6 The upc all fread list shared async function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

void upc_all_fread_list_shared_async(upc_file_t *fd,

size_t memvec_entries,

upc_shared_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc all fread list shared async initiates an asynchronous read of
data from a file into various locations of a shared buffer in memory.

2. The meaning of the parameters and restrictions are the same as for the
blocking function, upc all fread list shared.

3. The status of the initiated asynchronous I/O operation can be retrieved
by calling upc all ftest async or upc all fwait async.

48



7.3.6.7 The upc all fwrite list local async function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

void upc_all_fwrite_list_local_async(upc_file_t *fd,

size_t memvec_entries,

upc_local_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc all fwrite list local async initiates an asynchronous write of
data from local buffers in memory to a file.

2. The meaning of the parameters and restrictions are the same as for the
blocking function, upc all fwrite list local.

3. The status of the initiated asynchronous I/O operation can be retrieved
by calling upc all ftest async or upc all fwait async.

7.3.6.8 The upc all fwrite list shared async function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

void upc_all_fwrite_list_shared_async(upc_file_t *fd,

size_t memvec_entries,

upc_shared_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

49



1. upc all fwrite list shared async initiates an asynchronous write of
data from various locations of a shared buffer in memory to a file.

2. The meaning of the parameters and restrictions are the same as for the
blocking function, upc all fwrite list shared.

3. The status of the initiated asynchronous I/O operation can be retrieved
by calling upc all ftest async or upc all fwait async.

7.3.6.9 The upc all fwait async function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

ssize_t upc_all_fwait_async(upc_file_t *fd)

Description

1. upc all fwait async completes the previously issued asynchronous
I/O operation on the file handle fd, blocking if necessary.

2. It is erroneous to call this function if there is no outstanding asyn-
chronous I/O operation associated with fd.

3. On success, the function returns the number of bytes read or written
by the asynchronous I/O operation as specified by the blocking vari-
ant of the function used to initiate the asynchronous operation. On
error, it returns –1 and sets errno appropriately, and the outstanding
asynchronous operation (if any) becomes no longer outstanding.

7.3.6.10 The upc all ftest async function

Synopsis

1. #include <upc.h>

#include <upc_io.h>

ssize_t upc_all_ftest_async(upc_file_t *fd,

int *flag)

50



Description

1. upc all ftest async tests whether the outstanding asynchronous I/O
operation associated with fd has completed.

2. If the operation has completed, the function sets flag=1 and the asyn-
chronous operation becomes no longer outstanding;8 otherwise it sets
flag=0. The same value of flag is set on all threads.

3. If the operation was completed, the function returns the number of
bytes that were read or written as specified by the blocking variant
of the function used to initiate the asynchronous operation. On error,
it returns –1 and sets errno appropriately, and sets the flag=1, and
the outstanding asynchronous operation (if any) becomes no longer
outstanding.

4. It is erroneous to call this function if there is no outstanding asyn-
chronous I/O operation associated with fd.

8This implies it is illegal to call upc all fwait async or upc all ftest async imme-
diately after a successful upc all ftest async on that file handle.

51



References

[1] Tarek A. El-Ghazawi, William W. Carlson, and Jesse M. Draper. UPC
Language Specifications V1.1.1 (http://upc.gwu.edu), October 2003.

[2] ISO Programming Languages-C. ISO/IEC 9899:1999(E), May 2000.

[3] MPI-2: Extensions to the Message-Passing Interface, Message Passing
Interface Forum, July 18, 1997.

[4] Elizabeth Wiebel, David Greenberg and Steven Seidel, UPC Collective
Operations Specification V1.0
(http://www.gwu.edu/ upc/docs/UPC Coll Spec V1.0.pdf), December
2003.

52



APPENDIX A : Future Library Directions

This section describes features that will be discussed in future releases of
the UPC-IO Specifications (but have been explicitly tabled for the current
release).

1. Add support for allowing multiple outstanding asynchronous opera-
tions on the same file handle, to allow more aggressive computational
overlap with file operations. This can be done by introducing a han-
dle data type like upc all handle t to represent the explicitly non-
blocking collective I/O operation in flight, and have this value returned
by each async init function and consumed by explicit-handle synchro-
nization functions (e.g., upc all handle test()/upc all handle wait()).
All of the asynchronous initiation functions currently return void, so
we could add this new handle return type without breaking any ex-
isting code. In order to be backwards compatible with the current
interface, the default behavior should remain at the current behav-
ior (allow only a single outstanding async operation, synchronized us-
ing upc all ftest async()/upc all fwait async()) and we can use
a new upc all fcntl setting to enable multi-operation handle-based
async I/O as described here. We may even want to use the same handle
data type and sync functions for explicitly non-blocking UPC collec-
tives.

An alternate approach to allowing multiple outstanding asynchronous
operations on the same file handle would be an implicit-handle ap-
proach, where we keep the current interface and simply lift the restric-
tion that only one asynchronous operation can be in-flight per handle.
This approach offers the client less flexibility in synchronization (be-
cause the only choice is to sync all outstanding operations, rather than
a particular subset), but it may be an acceptable compromise. How-
ever, we’d have to think about how errors would be reported by the
synchronization functions which complete more than one operation.

Regardless of the design chosen, an important semantic issue that must
be resolved when more than one async call can be in-flight is specifying
exactly when and how the file pointer is updated by an async operation,
especially in the presence of errors or reading to the EOF. The seman-
tics of the second and subsequent async I/O operations are not well-
defined unless we specify how the file pointer is affected by the async

53



I/O operations already in-flight. One possibility for side-stepping this
issue is to only allow multiple outstanding async I/O operations of the
list I/O variety, which are completely independent of the problematic
file pointer.

2. upc all fcntl currently provides the means to change most of the in-
teresting upc all fopen flags in effect for the given file handle. The
only upc all fopen flag which persists as an attribute of the file han-
dle and currently cannot be changed after open is the read-only/write-
only/read-write status of the file handle. Do we want to support chang-
ing this via a upc all fcntl? Is it a useful capability? What are the
implementation issues? (at worst it seems this could always be imple-
mented with a close and reopen). Note that C99 provides this capability
via freopen(), and UPC-IO currently has no equivalent – however, the
C99 semantics are too weak to be portably reliable: “If filename is a
null pointer, the freopen() function attempts to change the mode of
the stream to that specified by mode, as if the name of the file currently
associated with the stream had been used. It is implementation-defined
which changes of mode are permitted (if any), and under what circum-
stances.” It’s also unclear from the spec what the required behavior
of the file pointer is on such an freopen(). If we decide to provide
this capability, we should be less wishy-washy about the semantics to
ensure it’s portably usable.

54


	Terms, definitions and symbols
	Collective
	Single-valued
	List Based File Access
	File Pointer Based Access
	Synchronous I/O Call
	Asynchronous I/O Call
	Consistency Semantics
	Atomicity Semantics

	Library
	UPC Parallel I/O <upc_io.h>
	7.3.0 Background
	 7.3.0.1 File Accessing and File Pointers
	 7.3.0.2 Synchronous and Asynchronous I/O
	 7.3.0.3 Consistency and Atomicity Semantics
	 7.3.0.4 File Interoperability
	Predefined Types
	 7.3.1.1 The upc_off_t type
	 7.3.1.2 The upc_file_t type
	 7.3.1.3 The upc_flag_t type
	 7.3.1.4 The upc_local_memvec_t type
	 7.3.1.5 The upc_shared_memvec_t type
	 7.3.1.6 The upc_filevec_t type
	 7.3.1.7 The upc_hint_t type
	UPC File Operations
	 7.3.2.1 The upc_all_fopen function
	 7.3.2.2 The upc_all_fclose function
	 7.3.2.3 The upc_all_fsync function
	 7.3.2.4 The upc_all_fseek function
	 7.3.2.5 The upc_all_fset_size function
	 7.3.2.6 The upc_all_fget_size function
	 7.3.2.7 The upc_all_fpreallocate function
	 7.3.2.8 The upc_all_fcntl function
	Reading Data
	 7.3.3.1 The upc_all_fread_local function
	 7.3.3.2 The upc_all_fread_shared function
	Writing Data
	 7.3.4.1 The upc_all_fwrite_local function
	 7.3.4.2 The upc_all_fwrite_shared function
	List I/O
	 7.3.5.1 The upc_all_fread_list_local function
	 7.3.5.2 The upc_all_fread_list_shared function
	 7.3.5.3 The upc_all_fwrite_list_local function
	 7.3.5.4 The upc_all_fwrite_list_shared function
	Asynchronous I/O
	 7.3.6.1 The upc_all_fread_local_async function
	 7.3.6.2 The upc_all_fread_shared_async function
	 7.3.6.3 The upc_all_fwrite_local_async function
	 7.3.6.4 The upc_all_fwrite_shared_async function
	 7.3.6.5 The upc_all_fread_list_local_async function
	 7.3.6.6 The upc_all_fread_list_shared_async function
	 7.3.6.7 The upc_all_fwrite_list_local_async function
	 7.3.6.8 The upc_all_fwrite_list_shared_async function
	 7.3.6.9 The upc_all_fwait_async function
	 7.3.6.10 The upc_all_ftest_async function


	References
	Appendix A : Future Library Directions



