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Cumulants and Correlation Functions vs the QCD phase diagram

Adam Bzdak∗
AGH University of Science and Technology

Faculty of Physics and Applied Computer Science
30-059 Kraków, Poland

Volker Koch† and Nils Strodthoff‡
Nuclear Science Division

Lawrence Berkeley National Laboratory
Berkeley, CA, 94720, USA

In this note we discuss the relation of particle number cumulants and correlation functions related
to them. It is argued that measuring couplings of the genuine correlation functions could provide
cleaner information on possible non-trivial dynamics in heavy-ion collisions. We extract integrated
multi-particle correlation functions from the presently available experimental data on proton cu-
mulants. We find that the STAR data contain significant four-particle correlations, at least at the
lower energies, with indication of changing dynamics in central collisions. We also find that these
correlations are rather long-ranged in rapidity. Finally based on the signs of genuine correlation
functions we provide exclusion plots for the QCD phase diagram.

I. INTRODUCTION

The search for structures in the QCD phase diagram, such as a critical point or a first order phase coexistence region
has been at the forefront of strong interaction research for the last several years. Most experimental and theoretical
effort in this regard has concentrated on the measurement and calculation of cumulants of conserved charges, in
particular of baryon number cumulants [1–7], see, e.g., [8] for an overview.

Cumulants of the particle number distribution have the advantage that they are easily accessible in finite tempera-
ture field theory since they are simply given by derivatives of the free energy with respect to an appropriate chemical
potential. However they have the disadvantage that they mix correlations of different order. For example in case of
a system of uncorrelated particles of one species, say protons, governed by the Poisson distribution, all cumulants
are given by the mean number of particles, Ki = 〈N〉 for all i. Similarly, for system of uncorrelated resonances
which decay in two particles, the cumulants are simply given by Ki = 2i〈Nres〉, with 〈Nres〉 the average number of
resonances. Therefore, a large value for the forth order cumulant does not necessarily mean the presence of strong
four-particle correlations (in our illustrative case we have only two-particle correlations). Consequently, the fact that
STAR sees a cumulant ratio for protons of K4/K2 ' 3.5 at

√
s = 7.7 GeV [9] may well be the result of strong two

particle correlations, rather than three and four body correlations, which would be expected close to a critical point
[2].

Therefore, it would be very valuable if the true correlation functions could be extracted from the measured cumu-
lants. In this note we will discuss how this can be done, at least for the case of one species of particles, such as protons
(see also [10]). For net-proton cumulants, i.e. cumulants of the difference distribution of protons and anti-protons, this
is unfortunately not the case. However, at the beam energies where STAR sees the strongest deviation from Poisson
behavior, the number of anti-proton to proton ratio is vanishingly small and thus the anti-protons can be ignored.

This paper is organized as follows. First we demonstrate how the true correlation functions can be related to the
cumulants, then we apply these relations to the preliminary STAR data. Next we discuss the centrality, rapidity, and
energy dependence of these correlation functions. Finally we illustrate how just the information about the signs of
these correlation functions can be used to exclude certain regions around the critical point.
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II. CUMULANTS AND CORRELATIONS FUNCTIONS

Let us start by introducing the correlation functions, beginning with two particles. The two particle density for
particles with momenta p1 and p2, ρ2 (p1, p2), is given by

ρ2(p1, p2) = ρ1(p1)ρ1(p2) + C2(p1, p2), (1)

where ρ1 (p) refers to the one particle density, and C2(p1, p2) represents the two-particle correlation function. Inte-
grating over the momenta we get

F2 ≡ 〈N (N − 1)〉 =
ˆ
dp1dp2 ρ2(p1, p2) = 〈N〉2 +

ˆ
dp1dp2 C2(p1, p2), (2)

so that in the absence of correlations, C2(p1, p2) = 0, we obtain
〈
N2〉 − 〈N〉2 = 〈N〉. In general the two particle

density and correlation function depend on the momenta of both particles. In the following, we will restrict ourselves
to correlations in rapidity and adopt the following notation

ρ2 (y1, y2) =
ˆ
dpt,1dφ1dpt,2dφ2ρ2 (p1, p2) ,

C2 (y1, y2) =
ˆ
dpt,1dφ1dpt,2dφ2C2 (p1, p2) ,

C2 =
ˆ
dy1dy2C2 (y1, y2) , (3)

and similarly for higher order particle densities and correlation functions.
The three particle density depends on the single-particle densities as well as the two and three-particle correlation

functions

ρ3(y1, y2, y3) = ρ1(y1)ρ1(y2)ρ1(y3) + ρ1(y1)C2(y2, y3) + ρ1(y2)C2(y1, y3)
+ ρ1(y3)C2(y1, y2) + C3(y1, y2, y3). (4)

and is related to the third order factorial moment F3 = 〈N (N − 1) (N − 2)〉 via

F3 =
ˆ
dy1dy2dy3ρ3 (y1, y2, y3) = F 3

1 + 3F1C2 + C3, (5)

where C3 is the integrated genuine three-particle correlation function1 and F1 = 〈N〉. Similarly the higher order
factorial moments are given by2

F4 = F 4
1 + 6F 2

1C2 + 4F1C3 + 3C2
2 + C4, (6)

F5 = F 5
1 + 5F1C4 + 10F 2

1C3 + 10F 3
1C2 + 15F1C

2
2 + 10C2C3 + C5, (7)

F6 = F 6
1 + 6F1C5 + 15F 2

1C4 + 20F 3
1C3 + 15F 4

1C2 + 60F1C2C3 + 45F 2
1C

2
2 + 15C2C4 + 10C2

3 + 15C3
2 + C6. (8)

At the same time, the particle number cumulants, Kn, can be expressed in terms of the factorial moments [12],

K1 ≡ 〈N〉 = F1,

K2 ≡ 〈(δN)2〉 = F1 − F 2
1 + F2,

K3 ≡ 〈(δN)3〉 = F1 + 2F 3
1 + 3F2 + F3 − 3F1(F1 + F2), (9)

and

K4 ≡ 〈(δN)4〉 − 3〈(δN)2〉2

= F1 − 6F 4
1 + 7F2 + 6F3 + F4 + 12F 2

1 (F1 + F2)− 3(F1 + F2)2 − 4F1(F1 + 3F2 + F3), (10)

where δN = N − 〈N〉. Formulas for the higher order cumulants can be found in Ref. [12].

1 The correlation functions Cn are often referred to as “factorial cumulants” [10].
2 See, e.g., Ref. [11] for explicit definitions of higher order correlation functions.
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Now we can relate the cumulants in terms of the correlation functions and the mean particle number 〈N〉 = F1

K2 = 〈N〉+ C2, (11)
K3 = 〈N〉+ 3C2 + C3, (12)
K4 = 〈N〉+ 7C2 + 6C3 + C4, (13)

and vice versa

C2 = −〈N〉+K2, (14)
C3 = 2 〈N〉 − 3K2 +K3, (15)
C4 = −6 〈N〉+ 11K2 − 6K3 +K4. (16)

Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

It should be clear from (14)-(16) that as we approach the critical point Cn is dominated by Kn which scales with
the highest power of the correlation length ξ [2]. Thus, following [2], C2 ∼ ξ2, C3 ∼ ξ4.5, and C4 ∼ ξ7 close to the
critical point.

Frequently in the literature, see, e.g., Ref. [13], one refers to correlation function where the trivial dependence on
the particle density/multiplicity is removed

cn (y1, ..., yn) = Cn (y1, ..., yn)
ρ1 (y1) · · · ρ1 (yn) , (17)

which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as

ρ2 (y1, y2) = ρ1 (y1) ρ1 (y2) [1 + c2 (y1, y2)] . (18)

The reduced correlation functions will prove helpful when studying for instance the centrality dependence of the
correlations. Integrating Eq. (17) over rapidity we obtain

Ck = 〈N〉k ck, (19)

where 〈N〉 =
´

∆Y ρ1(y)dy depends on the rapidity interval ∆Y and we denote

ck =
´
ρ1 (y1) · · · ρ1 (yk) ck (y1, ..., yk) dy1 · · · dyk´

ρ1 (y1) · · · ρ1 (yk) dy1 · · · dyk
. (20)

Using above definition we can write

K2 = 〈N〉+ 〈N〉2 c2, (21)
K3 = 〈N〉+ 3 〈N〉2 c2 + 〈N〉3 c3, (22)
K4 = 〈N〉+ 7 〈N〉2 c2 + 6 〈N〉3 c3 + 〈N〉4 c4. (23)

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix.

A. Comments

Before we analyze the existing data several comments are warranted.

(i) First it would be interesting to see how the correlation functions Cn and couplings cn scale with multiplicity
if the correlations originate from several independent sources of correlations, e.g., from resonances/clusters or
when A+A is a simple superposition of elementary p+p interactions. This will be useful when studying the
centrality dependence of the correlations.
Suppose we have Ns sources of particles, each characterized by the multiplicity distribution P (ni). The final
multiplicity distribution is given by

P (N) =
∑

n1,n2,...,nNs

P (n1)P (n2) · · ·P (nNs
)δn1+...+nNs−N . (24)
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Calculating the factorial moment generating function we obtain

H(z) =
∑

N
P (N)zN =

(∑
n1
P (n1)zn1

)Ns

= H1(z)Ns , (25)

where H1(z) is the factorial moment generating function from a single source. The correlation function, Ck, is
given by

Ck = dk

dzk
ln [H(z)]

∣∣∣∣
z=1

= Ns
dk

dzk
ln [H1(z)]

∣∣∣∣
z=1

= NsC
(source)
k . (26)

where C(source)
k is the correlation from a single source.3 As seen from the above equation Ck scales simply with

the number of sources since C(source)
k , being a property of a single independent source, does not depend on Ns.

Comparing Eq. (26) with Eq. (19) we obtain

ck = Ns
Nk

C
(source)
k , (27)

and assuming that the number of produced protons, N , is proportional to the number of sources we have for
the couplings

ck ∼
1

Nk−1 . (28)

This result is rather straightforward. The correlation strength, ck, for the whole system gets diluted once there
are many independent sources of correlations. Suppose we have Ns sources which correlate two particles each.
Then we have N = 2Ns particles and Ns = N/2 correlated pairs. The total number of pairs is N(N−1)/2 ' 2N2

s

and thus the number of correlated over all pairs scales like 1/N . Similarly for triplets (now each source correlates
three particles) one gets N/3 correlated out of N(N − 1)(N − 2)/3! ' N3/3! total triplets, leading to 1/N2.
The scaling, Eq. (28), is expected, e.g., for resonances / clusters of particles or when A+A can be decomposed
into elementary p+p collisions.
We note that the scaling given by Eq. (28) is expected to break down when the sources are not independent. For
example when we have one coherent source of correlations, the number of correlated pairs might be proportional
to the total number of pairs and ck could become constant

ck ∼ const. (29)

as a function of N . It would be definitely interesting to observe such transition (from 1/Nk−1 to const.) in
experimental data. In the next section we will argue that this is the case for central collisions in the preliminary
STAR data at the lowest energies.

(ii) Suppose that indeed c2,3,4 are constant or depend only very weakly on the number of produced protons. In
this case the correlations, Ck = 〈N〉kck, increase with the number of particles. One scenario would be that
the sources of correlation are correlated themselves or that the sources correlate increasing number of particles,
e.g., with increasing N clusters get larger (more particles per cluster) leading to C(source)

k depending on N , see
Eq. (27). Given only the integrated reduced correlation function, it is impossible to distinguish between these
various scenarios. In any case, centrality independence of the couplings, indicate that the increasing number of
particles are correlated and, for the lack of a better term, we will refer to this behavior as “collective”. In this
case the cumulants, Kn, explicitly depend on 〈N〉i, i = 1, 2, ..., n, see Eqs. (21-23). Consequently the cumulant
ratios depend on multiplicity which makes the interpretation of the data rather complicated. For example by
changing centrality or energy we obviously change 〈N〉 which may result in nontrivial behavior. For example if
〈N〉 � 1, as in the case of anti-protons at low energy, the cumulants are dominated by the leading term and
the cumulant ratios are close to 1 even if couplings carry actually some nontrivial information.
We conclude that the cumulant ratios are rather tricky to interpret if the couplings, ck, are constant as a function
of produced protons. It seems that studying correlation functions is more appropriate in this case.

3 We note that when sources are distributed according to a Poisson distribution it is enough to replace Ns by the mean number of sources,
〈Ns〉, in Eq. (26).
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(iii) Similarly we can make some general observations about the rapidity dependence of cumulants and their ratios.
To this end let us consider two limits and let us assume the rapidity density is constant, dN/dy = ρ1(y) = const
in rapidity window of interest:
(a) The correlations are local in rapidity and depend only on the relative distances, ck(y1, . . . , yk) = c0kδ(y1 −
y2) · · · δ(yk−1 − yk). In this case the couplings or reduced correlation functions, Eq. (20), are given by cn =
c0n/(∆Y )n−1, where ∆Y is the range in rapidity under consideration. Consequently, the correlation functions
Cn and the cumulants scale linearly with ∆Y

Cn ∼ ∆Y → Kn ∼ ∆Y. (30)

(b) The other extreme are long-range correlations, where the correlation functions are constant over the rapidity
region of interest4. In this case ck(y1, . . . , yk) = c0k and the correlation functions Cn scale with the n-th power
of the rapidity interval ∆Y

Cn ∼ (∆Y )n. (31)

The scaling of the cumulants Kn in this case is more subtle since the cumulants depend on correlation functions
of various order. For example the fourth order cumulant K4 depends on the correlation functions C2 to C4
and the dependence of ∆Y will thus be a polynomial of up to fourth order in ∆Y . Of course things get more
complicated if the rapidity density dN/dy is not constant and if the correlation length in rapidity is finite but
shorter than ∆Y .

(iv) It is clear that at very low energy the majority of observed protons originate from the incoming nuclei, and are
decelerated to mid rapidity. In the simplest model we may assume that protons stop in a given rapidity ∆Y
bin with some probability p leading to binomial distribution

P (N) = B!
N !(B −N)!p

N (1− p)B−N , (32)

where B is the total number of protons (that potentially can stop in ∆Y ) and pB is the mean number of protons
observed in a given acceptance. The factorial moment generating function is

H(z) =
∑

N
P (N)zN = [1− p(1− z)]B , (33)

and the couplings are

c2 = − 1
B
, c3 = 2

B2 , c4 = − 6
B3 . (34)

We note that B is changing with centrality and this scenario falls into the class of independent sources of
correlations, since protons stop independently in ∆Y .

(v) It would be interesting to measure correlations and couplings between protons and anti-protons and how they
change with energy and centrality. In the Appendix we derive suitable formulas, which require the knowledge
of additional factorial moments.

(vi) The preliminary STAR data [9] show a comparatively large ratio of the fourth-order over second-order cumulant,
K4/K2 ' 3.5. Given Eqs. (11) and (13) this does not imply a priori the presence of any four particle correlations,
since for sufficiently large two-particle correlations, C2 � 〈N〉, the cumulant ratio may be as large as K4/K2 ' 7
without any three- and four-particle correlations.

III. EXTRACTING CORRELATION FUNCTIONS FROM DATA

Having defined the correlation functions and their relation to the cumulants we can now proceed to extract them
from the measured proton number cumulants obtained by the STAR collaboration [6, 9, 14]. Here we will concentrate

4 In the STAR experiment |y| < 0.5, which is not particularly long-range in rapidity. Thus a constant ck(y1, . . . , yk) may not be such a
strong requirement.
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Figure 1. Centrality dependence of the two- three- and four-particle correlation functions C2, C3, C4 for collision energies√
s = 7.7 GeV (left panel), 11.5 GeV (middle panel), and 19.6 GeV (right panel). Results are based on preliminary STAR data

[9].

on the preliminary data which cover the transverse momentum range 0.4 GeV < pt < 2.0 GeV [9]. For the lowest beam
energies, 7.7 GeV ≤

√
s ≤ 11.5 GeV and possibly even for

√
s = 19.6 GeV the anti-proton to proton ratio is sufficiently

small so that we can ignore the presence of antiprotons without loosing the physics. In this case we can extract the
correlation functions from the data following the procedures outlined in the previous section.

Let us start with the correlation functions Cn, Eqs. (14-16). They are shown in Fig. 1 as a function of centrality for
the three energies,

√
s = 7.7 GeV, 11.5 GeV and 19.6 GeV. Note that we have multiplied the correlation functions with

the appropriate factors so that they reflect their contribution to the fourth order cumulant, Eq. (13). For the two
most central points, we find that for all three energies the four-particle correlations are finite and positive, C4 > 0,
whereas the two- and three-particle correlations are negative, C2, C3 < 0. In addition, for

√
s = 7.7 GeV C4 is clearly

the dominant contribution to the fourth order cumulant. Thus, the steep rise in the K4/K2 cumulant ratio seen in the
preliminary STAR data [9] is indeed due to four-particle correlations. For

√
s = 19.6 GeV on the other hand we find

that for the most central point the negative two-particle correlation is the dominant contribution to the fourth order
cumulant. Therefore, the fact that the preliminary STAR data show a cumulant ratio below the Poisson baseline,
K4/K2 < 1, is due to negative two-particle rather than negative four-particle correlations.
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Figure 2. Centrality dependence of three-particle reduced correlation functions c3 for collision energies
√

s = 7.7 GeV (left
panel), 11.5 GeV (middle panel), and 19.6 GeV (right panel). The horizontal long-dashed line separates positive from negative
values. The short dashed lines represent a fit based on the independent source model, c3 ∼ 1/ 〈N〉2. The full lines represent a
fit which adds a constant offset to the independent source fit. Results are based on preliminary STAR data [9].

Next we turn to the reduced correlation functions, c2, c3, c4, Eq. (20). In Figs. 2, 3 and 4 (left panel) we
show their centrality dependence for the three energies under consideration. We find that the reduced two-particle
correlations or couplings, c2, for all energies scale like 1/ 〈N〉0.85 which is close to the 1/ 〈N〉 scaling expected from
independent sources, but sufficiently different that this behavior deserves further investigation. At present we have no
obvious explanation for this deviation from independent source scaling. For Npart < 200 the three- and four-particle
couplings, within errors, are consistent with 1/ 〈N〉2 and 1/ 〈N〉3 scaling, respectively. In addition the three and
four particle couplings change sign around Npart ' 200 whereas c2 remains negative for all centralities. At roughly
the same centrality, the three- and four-particle couplings flatten out, most prominently at the lowest two energies.
Concentrating on the lowest energy,

√
s = 7.7 GeV, we find that for Npart > 200 all three reduced correlation functions

remain constant, indicating stronger correlations than an independent source picture would suggest. As discussed
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Figure 3. Same as Fig. 2 but for the four-particle reduced correlation function c4.

above, this “collective” behavior may be due to either correlations among the sources or due to sources which correlate
increasingly more particles (e.g., clusters increase their particle content with increasing N). It is interesting to note,
that the transition from independent source scaling to “collective” behavior is accompanied with a change of sign of
the three- and four-particle couplings. Apparently some new dynamics comes into play at Npart ' 200. The two right
panels of Fig. 4 show this region in more detail. It appears that the centrality independence is most significant for
the lower energies, whereas it would be difficult to argue for a centrality independence, especially for c3, at 19.6 GeV.
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Figure 4. Left panel: Centrality dependence of two-particle reduced correlation functions c2 for collision energies
√

s = 7.7 GeV,
11.5 GeV, and 19.6 GeV. The dashed lines are fits according to c2 ∼ 1/ 〈N〉0.85. Middle panel: Most central points for the
three-particle reduced correlation c3 function for energies

√
s = 7.7 GeV, 11.5 GeV, and 19.6 GeV. Right panel: Most central

points for the four-particle reduced correlation function c4 for energies
√

s = 7.7 GeV, 11.5 GeV, and 19.6 GeV. Results are
based on preliminary STAR data [9].

Next let us turn to the dependence of the cumulant ratio K4/K2 on the size of the rapidity window ∆Y , where
protons are accepted. Preliminary results of this ratio has been shown by STAR for rapidity windows up to ∆Y ≤ 1
[9]. As discussed in section IIA the cumulant ratio K4/K2 is constant in case of short range correlations in rapidity.
For long range correlations, on the other hand, the dependence of the cumulants on the rapidity is a given by a
polynomial of up to nth order, where n is the order of the cumulant. In Fig. 5 we show the preliminary STAR data
[9] for both 7.7 GeV and 19.6 GeV together with the results assuming long range correlations.5 Clearly the STAR
data show a significant dependence on ∆Y , ruling out short-range correlations. The predictions based on long-range
correlations, on the other hand, agree with the preliminary STAR data rather well. We also show the resulting
rapidity dependence when we set one of the couplings to zero. For 7.7 GeV setting c2 = 0 makes hardly any difference
and even c3 = 0 bring the result close within errors. Clearly, as already emphasized, the ratio K4/K2 for central
7.7 GeV collisions is dominated by four particle correlations. This is different for 19.6 GeV shown in the right panel.
The K4/K2 ratio drops more or less linearly with ∆Y . This dependence suggests that the second order correlation
function C2 dominates the cumulant ratio, and that C2 is negative. This is quantified by our results. While c3 = 0 or
c4 = 0 still gives reasonable agreement, setting c2 = 0 totally misses the data. This observation supports our previous

5 We remind the reader that short- and long-range is relative to the rapidity bin under consideration. At present the maximum rapidity
bin is ∆y = 1 which is rather modest.
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finding that the drop in the cumulant ratio below the Poisson limit, K4/K2 < 1 at 19.6 GeV originates from negative
two-particle correlation.
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Figure 5. Dependence on the rapidity window ∆Y of the cumulant ratio K4/K2. The full line corresponds to our prediction
assuming long range correlations (see section IIA). The shaded area represent the error on this prediction. The long-dashed
(red), short-dashed (green) and dot-dashed (black) curve correspond to setting c2 = 0 or c3 = 0 or c4 = 0, respectively. The
left panel is for

√
s = 7.7 GeV and the right panel for

√
s = 19.6 GeV. The data are preliminary STAR results [9].

Finally in Fig. 6 we show the energy dependence of the cumulants Cn which we scaled by the number of particles,
Cn/ 〈N〉 and multiplied by the appropriate factors to reflect their relative contribution to the fourth order cumulant,
Eq. (13). Here we include points for the proton correlations up to

√
s = 200 GeV to show the overall trend although

at energies larger that 19.6 GeV anti-protons become non-negligible, and thus the physical interpretation is less clear.
In spite of that there seems to be a clear trend as we lower the energy. Aside from an excursion at 62.4 GeV the scaled
four-particle correlation seems to be small, slightly positive before it significantly increases for the two lowest energies.
Clearly the excursion at 62.4 GeV needs further scrutiny. Similarly, the scaled three-particle correlation stays flat and
negative before it decreases even further at the lowest energy. The scaled two-particle correlation, on the other hand,
seem to exhibit a shallow minimum around 20 − 30 GeV. At lower energies it tends towards zero, and one might be
inclined to speculate that it may turn positive at even lower energies. Needless to say, the strong energy dependence
of the three- and four-particle correlations together with the prospect of the two particle correlation changing sign
warrants measurements at even lower energies.

101 102√
s [ GeV ]

2

0
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4

C
n
/〈 N〉

Au+Au, 0−5%

7 C2/
〈
N
〉

6 C3/
〈
N
〉

C4/
〈
N
〉

Figure 6. Energy dependence for the scaled correlation functions Cn/ 〈N〉 weighted with the appropriate factor to reflect the
relative contribution to the fourth order cumulant K4 (see Eq. (13)). The 200 GeV point for C2 is shifted for clarity. Results
are based on preliminary STAR data [9].

To summarize this section, we have used the preliminary STAR data on proton cumulants to extract information
about the correlation functions and couplings. We find that at the lowest beam energy of 7.7 GeV there are significant
four-particle correlations which dominate the fourth order cumulant. At 19.9 GeV, on the other hand, the fourth order
cumulant is dominated by a negative two-particle correlation. We further observed that for the lowest energies the
centrality dependence change from that of an independent source model to a “collective” one at Npart ' 200. At about
the same centrality the three- and four-particle couplings change sign, indicating a change in the underlying dynamics.
Finally, an analysis of the rapidity dependence indicates that the correlations are long range in rapidity. Of course
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given the fact that ∆Y ≤ 1 we can not rule out a finite correlation length which is somewhat large that δy = 1. The
rapidity dependence also confirms our finding that the cumulant ratio K4/K2 is dominated by (positive) four-particle
correlations at 7.7 GeV and by (negative) two-particle correlations at 19.6 GeV. Finally, the scaled correlations show
interesting dependence on the energy especially at the lowest available energies, which clearly calls for measurements
at even lower energies that

√
s = 7.7 GeV.

IV. POTENTIAL IMPLICATIONS FOR THE SEARCH OF A CRITICAL POINT

In this section we want to explore to which extent the signs of the correlation functions C2, C3, C4 extracted from
the preliminary STAR data can be used to exclude regions around a QCD critical point. Of course, since the STAR
data are preliminary this exercise should be, at this point, considered a feasibility study rather than a quantitative
analysis. Here we use universality arguments in analogy to [15, 16] exploiting the fact that the critical point belongs to
the Ising universality class. In the scaling domain density and reduced temperature in the QCD setting can be mapped
to the Ising variables reduced temperature t and magnetic field H. The precise mapping to the conventionally used
coordinates temperature T and chemical potential µ is of no relevance for this argument, we only note that H = t = 0
maps to the critical point and that the reduced temperature axis t is tangential to the phase boundary at the critical
point. The simplest qualitative parametrizations of freeze-out lines in terms of Ising variables is given by H = const.
lines, see also the discussion in [15, 16]. Furthermore since the signs of the correlation functions doe not really depend
on the variables use, we avoid a discussion of the precise mapping from Ising to QCD variables and stay with the
variables of the Ising model.

We start from the standard parameterization of the magnetization M in the scaling domain in Ising variables that
is given in parametric form [17]

M(R, θ) = m0R
βθ (35)

in terms of the auxiliary variables R and θ together with the relations

t(R, θ) = R(1− θ2); H(R, θ) = h0R
βδh(θ) , (36)

where m0 in (35) and h0 in (36) denote normalization constants. In addition we employ the simplest parameterization
for h(θ) in the form of the linear parametric model [18], namely

h(θ) = θ(3− 2θ2) . (37)

Now the cumulants are obtained by differentiating the magnetization with respect to the magnetic field H,

κn(t,H) =
(
∂n−1M(t,H)

(∂H)n−1

)
t

, (38)

resulting in

κ1(t,H) = m0R
1/3θ ,

κ2(t,H) = m0

h0

1
R4/3(3 + 2θ2)

,

κ3(t,H) = m0

h2
0

4θ(9 + θ2)
R3(−3 + θ2)(3 + 2θ2)3 ,

κ4(t,H) = 12m0

h3
0

81− 783θ2 + 105θ4 − 5θ6 + 2θ8

R14/3(−3 + θ2)3(3 + 2θ2)5 , (39)

together with the implicit relations (36). For simplicity we inserted the approximate values β = 1/3 and δ = 5 for the
Ising critical exponents in (39). Given these expressions for the cumulants we can extract the correlation functions
C2, C3 and C4 by using the fact that critical contribution to the cumulants is given the Ising κn, i.e.

Kn = Ñ + κn , (40)

where Ñ is set such that K1 = 〈N〉. Inserting (40) into Eqs. (14)-(16), the dependence on Ñ cancels in C2,3,4 as
expected for observables sensitive to critical fluctuations. For definiteness we fixed the normalization constants m0
and h0 by imposing the normalization conditions M(−1, 0+) = 1 and M(0, 1) = 1. In Figs. 7 and 8 we show as
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(a) The shaded area is excluded by requiring C2 < 0 . (b) The shaded area is excluded by requiring C3 < 0. .

Figure 7. Density plot of K4/K2 where red(blue) denotes positive(negative) values with excluded areas by imposing conditions
on C2 or C3. The critical point is located at H = t = 0. .

(a) The shaded area is excluded by requiring C4 > 0 . (b) The shaded area is excluded by requiring C2 < 0 and
C3 < 0 and C4 > 0. .

Figure 8. Density plot of K4/K2 where red(blue) denotes positive(negative) values with excluded areas by imposing conditions
on C4 and C2,C3,C4 simultaneously. The critical point is located at H = t = 0. .

shaded areas which region around the critical point is excluded by the fact that the measured correlations functions
Cn have a certain sign. In addition, for orientation to facilitate a mapping to the QCD phase diagram, we also show
the regions where the cumulant ration K4/K2 is positive and negative (see caption for details). For suggestive reasons
we inverted the direction of the t-axis in all figures as in the simplest mapping, the reduced temperature in QCD
maps to the magnetic field in Ising variables, whereas the reduced chemical potential µ−µc− 1 maps to the negative
reduced temperature −t in Ising variables. In this way the orientation of the plots in Ising variables can be roughly
identified with the orientation of a conventional T − µ phase diagram for QCD. In all figures, the critical point is
located at H = t = 0. Note that whereas κ2N (κ2N+1) is (anti-)symmetric with respect to H → −H, the couplings
Cn as a sum of symmetric and antisymmetric terms no longer show this symmetry.
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Assuming that the analyzed data points are already sufficiently close to the scaling domain of the critical point, we
can infer exclusion regions around the critical point from the extracted signs of C2,3,4. Clearly the strongest constraint
arises from the fact that in the preliminary STAR data, C2 < 0, see Fig. 7a. However, the two particle correlation is
likely also the one which may receive additional contributions from non-critical physics, although resonance decays, the
most prevalent two particle correlation, should be a negligible contributions in case of protons. Restricting ourselves
to the three and four particle correlations, the excluded regions are more limited, see Figs. 7b and 8a. In this case
the measured three and four particle correlation functions would exclude the region to the left and below the critical
point in addition to a region with both higher temperature and chemical potential than that of the critical point.

V. SUMMARY AND CONCLUSIONS

In this paper we have extracted the two- three- and four-particle proton correlation functions based on preliminary
data of the STAR collaboration. We have discussed how these correlation functions are expected to scale with
centrality and rapidity under various assumptions. We found that (a) at the lowest beam energy of 7.7 GeV there are
significant four particle correlation. (b) At 19.9 GeV the fourth order cumulant is dominated by a negative two-particle
correlation. (c) For the lowest energies the centrality dependence change from that of an independent source model to
a “collective” one at Npart ' 200. At roughly the same centrality the three- and four-particle couplings change sign,
indicating a change in the underlying dynamics. (d) The preliminary data on the rapidity dependence of the cumulant
ratio K4/K2 rules out short-range rapidity correlations and is consistent with long-range (∆y > 1) correlations. (e)
We looked at the energy dependence of the relative contributions to the fourth order cumulant, K4 and found that,
with an excursion at 62.4 GeV the scaled correlation are rather constant from 200 GeV down to 19.6 GeV. At lower
energies both the three and four-particle correlation show a significant energy dependence.

We also found that the two- and three-particle correlations are negative, C2, C3 < 0 for the most central bins. At
the same time, the four-particle correlation function is positive. Applying this observation to an Ising model, which is
in he same universality class as the QCD critical point, we were able to exclude various regions in the phase diagram
of the Ising model. While indicative, this exercise serves more as a demonstration, and it would be interesting to
generate similar exclusion plots based on the various models for a QCD phase transition and critical point.

Finally, we should stress that the present analysis is based on preliminary data. Furthermore, one should not forget
that there are sources of correlations other that critical dynamics. These need to be removed and understood, and
we believe that a study of correlations functions, preferably differential in some of their variable, will be essential to
make progress in the search for a QCD critical point.
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Appendix A: Correlation functions

Here we derive formulas for the couplings of the multi-particle genuine correlation functions for the case of protons
and anti-protons. Let P (N, N̄) denotes the multiplicity distribution of protons, N , and antiprotons, N̄ . The factorial
moment generating function is given by

H(z, z̄) =
∑

N

∑
N̄
P (N, N̄)zN z̄N̄ . (A1)

The factorial moments are given by

Fi,k ≡
〈

N !
(N − i)!

N̄ !
(N̄ − k)!

〉
= di

dzi
dk

dz̄k
H(z, z̄)

∣∣∣∣
z=1,z̄=1

. (A2)

The correlation function generating function is given by

G(z, z̄) = ln [H(z, z̄)] , (A3)
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and

C
(n,m)
n+m =

ˆ
C

(n,m)
n+m (y1, . . . , yn, ȳ1, ..., ȳm)dy1 · · · dyndȳ1 · · · dȳm

= dn

dzn
dm

dz̄m
G(z, z̄)

∣∣∣∣
z=1,z̄=1

, (A4)

where C(n,m)
n+m is n+m correlation function with n protons and m anti-protons. When we have only protons we have

Cn ≡ C(n,0)
n+0 .

Performing straightforward calculations we obtain:

C
(2,0)
2 = −F 2

1,0 + F2,0 (A5)

C
(1,1)
2 = −F0,1F1,0 + F1,1

C
(3,0)
3 = 2F 3

1,0 − 3F1,0F2,0 + F3,0

C
(2,1)
3 = 2F0,1F

2
1,0 − 2F1,0F1,1 − F0,1F2,0 + F2,1

C
(4,0)
4 = −6F 4

1,0 + 12F 2
1,0F2,0 − 3F 2

2,0 − 4F1,0F3,0 + F4,0

C
(3,1)
4 = −6F0,1F

3
1,0 + 6F 2

1,0F1,1 + 6F0,1F1,0F2,0 − 3F1,1F2,0 − 3F1,0F2,1 − F0,1F3,0 + F3,1

C
(2,2)
4 = (−6F 2

0,1 + 2F0,2)F 2
1,0 + 8F0,1F1,0F1,1 − 2F 2

1,1 − 2F1,0F1,2 + (2F 2
0,1 − F0,2)F2,0 − 2F0,1F2,1 + F2,2

where F1,0 = 〈N〉, F0,1 = 〈N̄〉. The remaining correlations C(n,m)
n+m for m > n can be easily obtained by a simple

change of indexes Fi,k → Fk,i.
The above equations allow to express factorial moments through correlation functions. Using formulas for the

cumulants, Ref. [12], we obtain

K2 = 〈N〉+
〈
N̄
〉

+ C
(2,0)
2 + C

(0,2)
2 − 2C(1,1)

2 (A6)

K3 = 〈N〉 −
〈
N̄
〉

+ 3C(2,0)
2 − 3C(0,2)

2 + C
(3,0)
3 − C(0,3)

3 − 3C(2,1)
3 + 3C(1,2)

3

K4 = 〈N〉+
〈
N̄
〉

+ 7C(2,0)
2 + 7C(0,2)

2 − 2C(1,1)
2 + 6C(3,0)

3 + 6C(0,3)
3 − 6C(2,1)

3 − 6C(1,2)
3 +

C
(4,0)
4 + C

(0,4)
4 − 4C(3,1)

4 − 4C(1,3)
4 + 6C(2,2)

4

Finally the reduced correlation functions or couplings are related to C(n,m)
n+m through

c
(n,m)
n+m =

C
(n,m)
n+m

〈N〉n
〈
N̄
〉m , (A7)

or

c
(n,m)
n+m =

´
ρ1 (y1) · · · ρ1 (yn) ρ1 (ȳ1) · · · ρ1 (ȳm) c(n,m)

n+m (y1, . . . , yn, ȳ1, ..., ȳm)dy1 · · · dyndȳ1 · · · dȳm´
ρ1 (y1) · · · ρ1 (yn) ρ1 (ȳ1) · · · ρ1 (ȳm) dy1 · · · dyndȳ1 · · · dȳm

. (A8)
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