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ABSTRACT OF THE DISSERTATION

Time Analyticity of Several Evolutionary Partial Differential Equations
by
Chulan Zeng

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2022
Dr. Qi S. Zhang, Chairperson

This thesis has been on the pointwise time analyticity of several evolutionary
partial differential equations, including the heat equation, the biharmonic heat equation,
the heat equation with potentials, some nonlinear heat equations and nonlocal parabolic
equations.

For the first there equations, we prove if u satisfies some growth conditions in
(x,t) € M x [0,1], then u is analytic in time (0,1]. Here M is R? or a complete noncom-
pact manifold with Ricci curvature bounded from below by a constant. Then we obtain a
necessary and sufficient condition such that u(x,t) is analytic in time at ¢ = 0. Applying
this method, we also obtain a necessary and sufficient condition for the solvability of the
backward equations, which is ill-posed in general. An interesting point is that a solution
may be analytic in time even if it is not smooth in the space variable x, implying that the
analyticity of space and time can be independent. Actually, for general manifolds, space

analyticity may not hold since it requires certain bounds on curvature and its derivatives.

vii



For the nonlinear heat equation with power nonlinearity of order p, we prove that
a solution is analytic in time ¢ € (0,1] if it is bounded in M x [0,1] and p is a positive
integer. In addition, we investigate the case when p is a rational number with a stronger
assumption 0 < C3 < |u(x,t)| < Cy. It is also shown that a solution may not be analytic
in time if it is allowed to be 0. As a lemma, we obtain an estimate of OFT'(z,t;y) where
I'(z,t;y) is the heat kernel on a manifold, with an explicit estimation of the coefficients.

We also investigate pointwise time analyticity of solutions to nonlocal parabolic
equations in the settings of R% and a complete Riemannian manifold M. On one hand,
in R, we prove that any solution u = u(t,z) to u(t,z) — Liu(t,x) = 0, where L% is a
nonlocal operator of order «, is time analytic in (0, 1] if u satisfies the growth condition
lu(t, )] < C(1+ |x|)* ¢ for any (t,2) € (0,1] x R? and € € (0, ). We also obtain pointwise
estimates for OFp,(t, z;y), where p,(t, x; y) is the fractional heat kernel. Furthermore, under
the same growth condition, we show that the mild solution is the unique solution. On the
other hand, in a manifold M, we also prove the time analyticity of the mild solution under
the same growth condition and the time analyticity of the fractional heat kernel, when
M satisfies the Poincaré inequality and the volume doubling condition. Moreover, we also
study the time and space derivatives of the fractional heat kernel in R? using the method of
Fourier transform and contour integrals. We find that when « € (0, 1], the fractional heat
kernel is time analytic at ¢ = 0 when x # 0, which differs from the standard heat kernel.
As corollaries, we obtain sharp solvability condition for the backward nonlocal parabolic
equations and time analyticity of some nonlinear nonlocal parabolic equations with power

nonlinearity of order p. These results are related to those in [19] and [58] which deal with
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local equations. At last, we get some nowhere-analytic smooth solutions to the heat equation

in either half space or whole space.
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Chapter 1

Introduction

1.1 Motivation

The study of analyticity property of solutions to PDEs has been a classical topic.
Even though the spatial analyticity is usually true for generic solutions of the heat equation,
the time analyticity is harder to prove and is false in general. For instance, it is not hard to
construct a solution of the heat equation in a space-time cylinder in the Euclidean setting,
which is not time analytic in a sequence of moments. In fact, the time analyticity is not
a local property, rather it requires certain boundary or growth conditions on the solutions.
There is a vast literature on time-analyticity for the heat equation and other parabolic type
equations under various assumptions. See, for example, [46], [35], [23], [21], [55], [19], [61],
and [19] and the citations therein. One can also consider solutions in certain LP spaces with
p € (1,00). See [50] for a large class of dissipative equations in the periodic setting. We also

mention that in [21], for any bounded domain Q C R¢ with analytic boundary, the authors



proved that any solution of the high order heat equation
u + (—A)"u =0, V(t,z)e€ (0,1] x Q,

u=Du=---=D""tu=0on (0,1] x 9Q, u(0,z) € L*()

is time analytic in ¢ € (0, 1].

Recently new applications of time analyticity are found in control theory and in
the study of backward equations which is essential in stochastic analysis and mathematical
finance. A fundamental fact in control theory for heat type equations is that if a state is
reachable by the free equation then it is reachable by suitable control from any reasonable
initial value. The former is equivalent to the solvability of the free backward equation from
this state. However this backward solvability question has been vexing the control theory
community for years. As a matter of fact, in a recent paper [40], it was written:” However, it
is a quite hard task to decide whether a given state is the value at some time of a trajectory
of the system without control (free evolution). In practice, the only known examples of
such states are the steady states.” This problem for the heat equation was solved in [19] not
long ago. More precisely, in the paper [19] (see also [61]), it was proved that if a smooth
solution of the heat equation in (—2,0] x M is of exponential growth of order 2, then it is
time analytic in ¢t € [—1,0]. Here M is either the Euclidean space or certain noncompact
manifolds. Also, an explicit condition is found on the solvability of the backward heat
equation from a given time, which is equivalent to the time analyticity of the solution of the
heat equation at that time. Lately, the time analyticity of solutions to the biharmonic heat
equation, the heat equation with potentials, and some nonlinear heat equations are proven
n [58]. See also [16] for other results about time analyticity of parabolic type differential

equations in the half space.



1.2 Differential Equations We Study

In this thesis, we investigate the pointwise time analyticity of five differential

equations. The first one is the biharmonic heat equation
O+ A%u=0, Y(x,t)eMx]0,1]. (1.1)

Here and below, M is R¢ or a d demensional complete noncompact manifold with Ricci
curvature bounded from below by a constant. The second one is the heat equation with

potentials
ou(z,t) — Au(x,t) + V(x)u(z,t) =0, V(z,t) € M x [0,1], d > 3. (1.2)

In one case, V = V(z) is a potential function in LI(M) for some ¢ > 1, with some growth
conditions. In another case, we treat V(z) > 0. The last equation is some nonlinear heat

equations with power nonlinearity of order p where p is some positive rational number,
ur(z,t) — Au(z,t) = uP(z,t), V(z,t) € M x [0,1]. (1.3)

The last equation for this part is fractional heat equations. For clarity, we will first treat

the fractional heat equations in the setting of R?, which reads

u(t,z) — Liu(t,z) = 0, a € (0,2), (t,2) € [0,1] x RY, (1.4)

where L[ is a nonlocal elliptic operator defined as follows.

Definition 1 We define

Lif(z) = p. / (fla+2) - f@))*’””z(’flﬁ) dz (1.5)

Rd




where p.v. means the principal value. Here k = k(x,z) on R? x R is a measurable function
satisfying that

0 < ko < k(z,2) < K1, k(z,2) = K(x,—2), (1.6)
and for a constant 8 € (0,1),
|k(x,2) = Ky, 2)| < molz —yl”, (1.7)
where kg, K1, and Ko are positive constants.

The fraction Laplacian (—A)O‘/ 2 is a typical example of L. As a special case, we

also obtain the time and space derivative estimates of the fractional heat kernel p, (¢, z) of
w(t,x) + (—A)Y?u(t,z) =0, a € (0,2), (t,x) € [0,1] x R% (1.8)

Our results involve both solutions and fractional heat kernels. We say that a function

pa(t, z;y) is a fractional heat kernel of the equation (1.4) in R, if
Opolt, 23y) = Lapo(t, 23y),  limpa(t, 7;y) = d(z,y).

In [10], it was proved that the fractional heat kernel is unique under the condition that

Ct
(tVe + |z —y

|pa(t,x,y)| S |)d+a’

for a constant C'. In Lemma 65, we improve this uniqueness result by only requiring the
growth condition (3.2). The definition of the fractional heat kernel p, (¢, z;y) on a manifold
M will be given in Section 3.4.

The last differential equation is the standard heat equation
Ou—Au=0, V(rt)eR" x0,1],

from which we get some solutions that are nowhere analytic in time.



1.3 Organization of This Thesis

In chapter 2, we will investigate the time analyticity of the biharmonic heat equa-
tion, the heat equation with potentials and some nonlinear heat equations. We proved that
under some growth condition, the solution to the above differential equations are analytic
in time. In chapter 3, we will investigate pointwise time analyticity of solutions to fractional
heat equations in the settings of R? and a complete Riemannian manifold M satisfying the
standard Conditions (3.7) and (3.8). Chapter 4 is about two bounded solutions to the heat

equation in the half plane, which were nowhere analytic in time.

1.4 Notation

Let us collect some frequently used notation.

If z is in RY, then |z| = \/Zle z? and B,(z) is a ball of radius 7 centered at .

e In M, B(xz,r) denotes the geodesic ball of radius r centered at x and |B(z,r)| denotes
its volume. We define d(z,y) to be the geodesic distance of two points z, y € M and

0 to be a reference point in M.

e D, (t, x;y) is the fractional heat kernel of equations (1.4), (1.8), or (3.9), and E(t,x;y)

is the heat kernel of the usual heat equation.

Qr(z,t) = B(x,r) x (t —r2,t) and Q.(x,t) = B(x,r) x (t —r4,1).

Please note throughout this paper, constant C' may be different from case to case.



Chapter 2

Time Analyticity of the
Biharmonic Heat Equation, the

Heat Equation With Potentials and

Some Nonlinear Heat Equations

2.1 Main Results and Outline

Here are the main results of this Chapter. The first one is about the biharmonic

heat equation (1.1).

Theorem 2 Let M be a d dimensional, complete, noncompact Riemannian manifold such
that the Ricci curvature satisfies Ric > —(d — 1)Ky for a nonnegative constant K.

Let uw = u(x,t) be a smooth solution of the biharmonic heat equation (1.1) on

6



M x [0, 1] of exponential growth of order %, namely

4
u(z, t)] < Ae® @0 y(z 1) e M x [0,1],

where Ay and Ag are positive constants. Then u is analytic in time t € (0, 1] with radius of
convergence depending only on t, d, Ko and Ay. Moreover, if t € (1 — 6,1] for some small

0 >0, we have

with —A%a;(z) = a;j+1(z), and
L 4
la;(z)] = [(~A?Yag(x)| < AT AL 724 @0 5= 0.1,2,...
where A = As(d, Ko, A2) and A* = A*(A1,d, xo, M).

Then we have two main theorems about the heat equation with potentials (1.2). We define

the weak solution in the beginning of Section 3.

Theorem 3 Let M be a d dimensional, complete, noncompact, smooth Riemannian mani-
fold such that the Ricci curvature satisfies Ric > —(d— 1)Ky for some nonnegative constant
Ky and

inf |B(z,1)| > 0.
zeM

Assume V =V (x) satisfies the following conditions:
. . . d
(1) There exists some R* > 0 such that V(-) € LY(B(0,R*)) for some q > §.
Kk . * *x «@ _ 2q—d
(2) For some constant C** > 0, if d(z,0) > R*, then |V (z)| < C**d(x,0)* where oo = T
and d > 2.

(3) V(-) € L'(M\B(0, R*)) and assume ||V || 1\ o,y = D

7



Let
IVlLa(B(o,r*)) = C*

where C* is a positive constant and let uw = u(x,t) be a weak solution of equation (1.2) on

M x [0, 1] of exponential growth of order 2, namely
u(z, t)] < A1e2P@0) (g 1) e M x [0,1],

where Ay and Az are some positive constants. Then w is analytic in t € (0,1/2] with radius
of convergence depending only on t, d, q, Ko, Az, a and C*.

Moreover, if t € (1/2 —6,1/2] for some small § > 0, we have
Zag (t— 1/2)
with (A —V)a;(z) = aj1(x), and
laj(2)] = (A = V)ag(z)| < Ay AL jleME @0 5 —0.1,2,... (2.1)

where constants As = As(d, q, Ko, A2, a, C*) and Ay = Ay(Ag, o, C**, D*).

Here the extra condition d > 3 can be removed in the case of R*. We will explain in more

detail during the proof.

Theorem 4 Let M be a d dimensional, complete, noncompact Riemannian manifold such
that the Ricci curvature satisfies Ric > —(d — 1)Ky for some nonnegative constant K.
Let u = u(zx,t) be a weak solution of the heat equation with nonnegative potentials

(1.2) where V.=V (x) >0 on M x [0,1]. If u is of exponential growth of order 2, namely

u(z, t)] < A1e®2®@0 - y(a ) e M x [0,1],



where Ay and Ag are positive constants, then u is analytic in t € (0, 1] with radius depending
only ont, d, Ko and Aas.

Moreover, if t € (1 — 0,1] for some small § > 0, we have

o 1y
u(e) = Y @)U
i=0 I
with (A —V)a;(z) = aj1(z), and
laj(@)] = | (A = V) ag(x)] < Ay AL jie2A2E@0) 5 =012, (2:2)

where As = As(d, Ko, A2).

We also have two theorems about some nonlinear heat equations with power nonlinearity

of order p.

Theorem 5 Let M be a d dimensional, complete, noncompact Riemannian manifold such
that the Ricci curvature satisfies Ric > —(d — 1)Ky for some nonnegative constant K.

Let uw = u(x,t) be a solution to equation (1.3) where p is a positive integer. Suppose
u satisfies

lu(z,t)] < Cy in M x[0,1],

for some constant Cy. Then u is analytic in time for any t € (0, 1] with radius of conver-

gence independent of x.

Theorem 6 Let M be the same manifold as Theorem 5 above and p = q1/qa for some

positive integers q1 and qa. Assume that a solution u = u(x,t) to the equation (1.3) satisfies

0<Cs<lu(z,t)] <Cy in Mx]0,1],



where Cs3, Cy are some constants. Then w is analytic in time for any t € (0, 1] with radius

of convergence independent of x.

Now we give a brief outline of this Chapter. In Section 2.2, we investigate the time
analyticity of the biharmonic heat equation (1.1). As a corollary, we obtain a necessary and
sufficient condition for the solvability of the backward biharmonic heat equation dyu—A?u =
0. As another corollary, we also obtain a necessary and sufficient condition under which
the solution of (1.1) is analytic in time at initial time ¢t = 0. Section 2.3 pertains the time
analyticity of the heat equation with potentials (1.2). We use similar methods and obtain
similar results as in Section 2.2. We demonstrate some solutions which may not be smooth
in space but analytic in time. Finally, Section 2.4 is about the time analyticity of some
nonlinear heat equations with power nonlinearity of order p (1.3). We prove that a solution
u = u(z,t) of (1.3) is analytic in time ¢ € (0, 1] if it is bounded in M x [0,1] and p is a
positive integer. In addition, we investigate the case when p is a rational number with a
stronger assumption 0 < C3 < |u(x,t)| < C4. As necessary lemmas, for any nonnegative
integer k, we establish an explicit estimate of |FT'(x, t;y)| where I'(x, ;%) is the heat kernel

on a manifold, and a connection between 0F (t*uP) and OfF (tFu).

2.2 Biharmonic Heat Equation

We now begin investigating the time analyticity of the biharmonic heat equation
(1.1). The main result in this section is Theorem 2. First, we have several remarks about

Theorem 2.

10



Remark 7 Just note we use the condition that u is of exponential growth of order % in the

computation of ffri (u(z,t))? dzdt in (2.18).

Remark 8 For any smooth solution uw = u(x,t) of the biharmonic heat equation (1.1) and

any (zo,t0) € M x (0,1], actually we can get

ASAETER s
k 3 2A2d*/*(x0,0)

where ¢ = [%] + 1 and [-] means the floor function. Thus, we can see at t =0, this method

fails to prove the time analyticity.

Remark 9 Just note the radius of convergence does not depends on x because As is inde-

pendent of x.

Remark 10 The exponential growth of order % corresponds to the heat kernel estimate of
the biharmonic heat equation (1.1) which can be found in

[1]. Actually, we can expect that the solutions of high order Laplacian heat equation u; +

2m
2m—1

(=A)™u = 0 are also analytic in time with exponential growth of order for any integer

m > 1.

Remark 11 Now we briefly go over the main idea of the proof of Theorem 2. For any
(zo,t0) € M x (0,1] and positive integer k, consider some regions for any j =1,2,--- |k,

41/4 .
I} = {(ac,t)\d(:c,mo) < (;kowyt € [to — ];]g,to]},

) 1/4 )
13 = {0, 0ld(o.an) < SR 1 €t - U252 1) |

- 1 2 1
Immediately I'; C T C Ty

There are three main steps. We have a lemma for each step in the following.

11



The first step is to prove that for some constant C = C(d, Ky) and any j =1,2,--- |k,

/ g (1) Pt < C"“/ A, 1) Pddt.
r! to JJr2

The second step is to prove

/ |Au(z, t)|?dzdt < // u(z, t)|*dzdt.
1'\2

Then we can combine the above two inequalities and iterate to deduce

2k
// |OFu(x,t))| 2dxdt<<0k> // u(z,t) | dzdt.
k:+1

The last step is to use the mean value inequality to get, for some constant C' = C(d, g, M),

14+q/2
Obuzo, to) < C (f) |, whuta oz
0 1

i\ 1Ha/2 2k
<C ( ) ( > // u(z, t)|2dxdt,
tO k+1

which is exactly what we want.

2.2.1 Iterated Energy Estimates

Now we begin to estimate the L? = norm of |0yu(z,t)|?.

loc

Lemma 12 For any smooth solution u = u(x,t) of the biharmonic heat equation (1.1) and

anyl=1,2,---  k, there exist some constant C such that

// |Opu(x, t)|*dedt < Ck// |Au(z, t)|*dzdt.
r! to JJrz

Proof. By Theorem 6.33 of the paper [9], there exists some smooth cut-off func-

tion 1™ (x,t) such that for some constant C,

12



VO (0 _ CVE
$O(at) Vi

0]+ 1900w 0 + AV (a0 < T 2
and

0<oW(z,t) <1, vW(z,t) =1in T}, ¥ (x,¢) is supported in I'2.
As we are doing the biharmonic heat equation instead of the heat equation, we need to have
the estimate for |Ay™®) (x,t)|? which is why we need to cite the paper [9].
We use ¢ instead of 1/1(1)(50, t) in this proof for simplicity of notation. By Green’s formula,

integration by parts and equation (1.1), we find

// |8tu(x,t)\2¢2dxdt = — // Gtu(x,t)AQU(x,t)dexdt
F? F?
= —/ Au(z, t) A(Dyu(z, t)h?)dadt

¥

= —/ Au(z,t) (Adwu(z, t)y? + 2V u(z, 1) Vp? + Opu(x, t) Ap?) dodt
¥

- / n(Aulx, £))*)2dwdt — 2 / Au(z, t)Voyu(z, t) Vo dudt
r2 rs
J J

- / Au(z, t)0u(z, t) Ap*drdt
2

2
L (au, 0202wt - (Au(z, t))2dz
S 2 2 ’ ' 2 B(zo o0yt ’

J

T (2k)1/4 ) t=to

- 2/F2 Au(z, t)Voyu(x, t) Vi dodt
) / [ (e 0o )Avvdodt 2 / /F  Au(e,)dyu(a, )|V Pt
J J
< % / /F (B, )20y dude + 2 / [ (e, )V Sue. )7 v dade
+2 / . Au(z, t)0pu(z, t) Apapdadt + 2 / /F 2 Au(z, t)Opu(z, t)|Vip|Adadt.

13



Next we can use the bounds for the cutoff function ¢ and the Cauchy-Schwarz inequality
to get:

/ Oyu(w, 1) 2 dadt
r?
Ck 2 2.2
< — |Au(z,t)|*dzdt + € |Opu(x, t)|“y dxdt
0 rs r2

4

+6/ |V Au(z, t)|?|Vap|2dadt
T2
J

k
be / / (e, )20%ddt + S8 [ [ Au(e, t)Pdzdt (2.6)
r2 eto JJr2
2.2 Ck 2
+e |Oyu(x, t)|*y dedt + — |Au(z, t)*|dxdt
r2 eto JJr2
_ Ck 2

=—(014-) / |Au(z, t)|2dzdt + 36/ |Opu(z, t)| 2 dadt
to ¢ JJr r?
4 2 2
+- |VAu(z,t)]7|Vip|“dzdt.
2
J

Now we need to get the estimate for the term %ffrf |V Au(z,t)|?|Vip|2dxdt as

above. For some small positive constants e; and €3,

4/ |V Au(z, t)]?|Vep|Pdxdt < 4C\F |VAu z,t)|?dxdt
¢ ) Jr2

= 4C\f/ A?u(z,t) Au(z, t)pdzdt
1“2

40[/ VAu(x,t)Au(z, t)Vipdrdt
F2
QC\F eg 2CVk 9
< / a6 PuPdodt + =V [ 1ute. st
2O‘f@/ IV Au(e, )2V 2dadt + C\\; |Au(x,t)|2d:zdt.
€€2
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Take e = 1/8, €3 = c\‘/\% and €3 = 64\2,7\%, we have

4/ IV Au(z, )2V 2dudt
€ FQ_

|Au(z, t)|*dzdt.
13

92 2
/ |Oyu(z, t) |2 dxdt + OSOCk/

By (2.6) and (2.7), we can get

// lﬁtu(a:,t)|2¢2dxdt§0k// |Au(z, t)|*dzdt,
r2 to JJrz

which finishes the proof of Lemma (12). =

Now we begin to estimate the LZ A norm of |Au(z,t)[?. We can get a Caccioppoli

type inequality (energy estimate) as follows.

Lemma 13 For any smooth solution u = u(x,t) of the biharmonic heat equation (1.1) and

any l =1,2,---  k, there exist some constant C' such that

sup /( G/t u? (z t¢2dac+// |Au(z,t) 2d:cdt

te(to—%,to) Z05 20i/2 )
2
// u(x, t)|“dzdt.
1‘*1

Proof. By Theorem 6.33 of the paper [9] again, there exists some smooth cut-off

function ¥ (z, t) satisfying the condition 2.4 and

0<y® (z,t) <1, p@ (z,t) =11in F?, ne) (x,t) is supported in I‘}H

We denote the cuf-off function () (z,t) by 9 again in this proof for the simplicity

of notation. Similar to (2.5) and (2.6), using Green’s formula, Cauchy-Schwarz inequality,

15



integration by parts and assumption for the cut-off function 1, we yield

/ (Au(z, t))*?dzdt

Fl.

< ( > //w (z,t) dxdt+3e// |Au(z, t) 2 dadt (2.9)
+- //1“J1.+1 \Vu(x, t)|?| V| 2dadt,

for any small positive constant e.

Next we need to obtain the estimate for the term ffrl.H |Vu(x,t)?|Vip|2dxdt.
J

By integration by parts and Cauchy-Schwarz inequality, for some small positive

constants €5 and eg,

4 4
// Vu(z, t) 2|V Pdedt < C‘/%// Vu(z, t)|2pdedt
€ 1‘*1_ € tO Fl.

20{62 // Au(z, £)202dadt + // (z,t)dwdt
662\f r,
20[63 // \Vu(z, t)|?| V| d dt+ // (2, t)dxdt.

Take € = é €9 Vi _ and €3 = Vo then

~ 128Cvk cvk’
4
// |Vu(z, )|} V|2 dedt
€ F1.
) (2.10)
< // Au, B[22 + 228C k// W2(z, £)dadt.
= o M,

Plugging (2.10) into (2.9), we can get inequality

/ |Au(z, t)|?dzdt < // u(z, t)|*dxdt. (2.11)
1‘*2

Besides, we can also see

Oy 1/2 (]+1)t1/4 U (5[,‘ t)qlz)deC
B(zo, (%)1/4 (219
:/ Ganel/t 7A2u(x tu(x,t)y d$+/ e/t (7 (l‘ )oppde.
B($0,( )1/4) B( 0,( )1/4)

16



For the term [
B(zo,

12 —A%u(z, t)u(z, t)?de, we have, by integration by parts and

(G+1)ty )
(2k)1/4

assumption for 1),

2 2
/B( 07(#1)%/4 —A%u(z, t)u(x, ) de

v | Vu(z, t)Vip|2de

1
= 8/3( G+t (A(u(xat)lﬁ))zdx—i—/

G+1)
o, (2k)1/4 ) B(zo, ](erk)f(/)4
Ck 1
T e 0P+ [ (0080 e
0 JB(zo,R) B(:co,W%
2
+5 B (j+1)té/4)(A’LL(x,t)’¢) dx.
0 (2k)1/4

By integration about time in (2.12), using the assumption about ¢ and (2.10), (2.11), we

can get the (2.8) immediately. m

2.2.2 Mean Value Inequality for the Biharmonic Heat Equation (1.1)

We also need the following lemma about the mean value inequality.

Lemma 14 Let (xg,ty) be any point in M x (0,1] and u = u(x,t) be any solution to the

biharmonic heat equation (1.1). Then for some constant Cy = Cy(d, zg, M),

Cl 2
sup  |u(z, t)? < ——— // u?(z,t)dxdt, 2.13
) ot (R —r)2ats "= (x0,t0) ( ( )

Q;.(zo,to

whereq:[%l]—i-l and 0 <r < R < 1.

Remark 15 Just note here the constant is dependent on xo and M. This is because in the
following proof, we need to use the Sobolev inequality, make sure the all the gradients of
cut-off function ¢ below is bounded, and make sure V can commute with A. In R%, due to

all of these peoperties satisfied, the constant C should be independend of xo and M.

17



Proof. Let r < R() < R1 < Ry < R where R— Ry = Ry — Ry :Rl—RO :Ro—rand
define a smooth cut-off function ¢ = ¢(x,t) which is supported in Qﬁ% (zo,tg) and ¢ = 1
in Q). (xo,t9). Just note because the manifold is smooth in B(z,1), for any nonnegative

integer k, it holds for some constant C = C(xg, k, M),
’kam‘ S C(.%'O, k7 M)7

where R,,, means the curvature tensor.
Since ¢ is smooth in B(xg, 1), for any positive integer i, there exist some constant

C(xo,i, M) depending on z, ¢ and M such that,

i C(wo 1 M) ; C(xo 21 M)
Vig?| < =~ |Alg| <
| QZ)‘_ ‘RO_TV ‘ ¢| |R0—7“|2Z
; C(l’o,4+i,M) ; C(w0,2z’+4,M)
'O < ————T—2~ |A'0:0| < :
’v t(b‘ = |R0 _ 7"4+Z ) ’ t¢‘ = ’RO _ T|27’+4 )

where V is the covariant derivative and V? means the i-th order covariant derivative.
We can also define a smooth cut-off function 1) = ¢(z,t) which is supported in Qi'%l (zo,t0)
and ¢ =1 in Q’RO (z0,to) satisfying similar condition as above.

Following the method in [15], we can use the Morrey type Sobolev inequality which

can be find in Theorem 2.7 of [30], which means there exist some constant C' = C(d, xo, M)

that
sup |U(»t)¢| < C”u('vt)wHW‘I’Q(B(:ro,Rl))'
B(zo,R1)
Also, for some constant C' = C(d), by the fundamental theorem of calculus, we
yield
t
swp Ju(e, )P < s [ afute o)t
te(to— R4 o) te(to— R4 to) Jto—R{
to C to ’
§/ |Opu(x, t)|>p3dt + 4/ lu(x, t)|?dt
to—RAll (R - T’) to—R‘l1

18



Therefore for some C = C(d, xg, M),

q

- C

sup fu(z, ) < C Y V' (Bul, W+ ——qul, V) lwea@n, @osop- (214
Qﬁn(ﬂ:o,to)|( ) ZZ;” (Orut) (R—r)4( Y)Wz, (woto)) (2.14)

Then we need to apply the well-known Bochner’s formula and the related cummutation
formula to commute V with A and its high order version, see Proposition 3.2.1 of [60] e.g..

Using the above commutation formula,
AV;f =V, Af + RV, f. (2.15)

By this formula, for any smooth function f and any cut-off function ¢ which is supported

in B(xzg, R2), there exist some constant C' = C(d, Ky) such that

2 -V A 2
A(IO,RQ) Af w dr = Z / Vszijijw dx

i,j=17 B(z0,R2)
= - Z / V,;ViVifV;fo*de — Z / ViVifV; [V de
i,j=1 xo,Rz i,j=1 -TO,RZ
= Z/ Viijviij¢2d$+/ Ric(Vf,Vf) ¢2d$ (2.16)
ij=1" B(z0,R2) (z0,R2)
+ Z / ViV, VY, fVi*de — Z / ViVifV; fVeid
ij=1 .Io RQ i,j=1 B(Z'O R2)

LY I e TR cl N\ s
B(zo,Rz2) B(zo,Rz2)
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By using formula (2.15) and its high order version repeatedly and (2.16) where we

separate (Rj, Rg) into ¢ equal parts, we can get for some C' = C(d, g, M),

Z//Q AT )\2+(]%_C>yl\vi(u(x,t)1/})]2dxdt

(3]
< Z — 2q T /// |AOpu(z, t)|*dadt
r) , (o,to)

[%]

=5 2
+ : A'u(z,t)|*dzdt 2.17
ZZ; = [ g o[ (2.17)
[437]
T 20
; (R - T)Qq 4i—1 IRQ(:E(),to)
45
5 [ a7
+ D oN20—4it3 |VAZU($,t)| dxdt.
; (R = 727043 [ g, (wo.to)

By Lemma 12 and Lemma 13, we have for some constant C

C
/ / e (z, ) Pddt < i / / (u(a, 1) 2dad.
Q'g, (wo,to) |R—r| Ry (T0:t0)

Plugging (2.11) and (2.10) into (2.17), it holds for some constant C' = C(xo, M),

2
Z//QR (e0.t0) Or(u(zx, t)y) + u(x, t)y)|“dxdt

< // \u(z,t)|>dxdt.
|R _ T|4+2q QSQB (z0,t0)

Plugging into (2.14), we can get (2.13) immediately.

2.2.3 Proof of Theorem 2

Now we are ready to prove Theorem 2. Combining Lemma 12 and Lemma 13, for

any [ =1,2,--- , k, we yield

27.2
// |Ou(z, t)Pdadt < ¢ 2k: // lu(x, t)|*ddt.
r! t Tl
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Since dlu is also a solution of (1.1), by iteration, we have
k-1 2
/ (815_ u(:c,t)) dxdt
ry

21.2
co e (CEV ] ot
k+1

Using the mean value inequality (2.13), for some constant Az = As(d, Ko, A2) and A* =

C?k?
2

2
/ 6fu(x, t) dxdt <
Fl

A*(Ah da Zo, M)a

2k
|0Fu(xo, to)|> < Cy () // |OFu(z, t)|*dedt
tO ! 1/4($07t0

0

k

44-2¢q

<Cl<if> ' <C2k2> //F1 u(w, 1)) dwdt o

= C2)2
4/3 1+ 2
<> xA%e4A2d (mo’o)ekto 4

2k
<
¢ ( to ) 2

0

x2 A2k+21.2k .
A A3 k 4A2d*/3(x0,0)

= 2k+q/2—d/4
to

Thus,

* Ak+11.k
A As k 2A2d*/3(x0,0)

0

Then we fix a number R > 1 and let ¢t € [1 — ¢, 1] for some small § > 0. For any positive

integer j, Taylor’s theorem implies that

Jj—1 i 1\
- Z@gu(x, 1)<t _i!l) = (¢ jll)jﬁgu(:n,s), (2.20)

where s = s(z,t,j) € [t,1]. By (2.19), for sufficiently small § > 0, the right-hand side of

(2.20) converges to 0 uniformly for x € B(0, R) as j — oo. Hence

= Z Hu(z,1) (t _.'1)J

j=0 I

i.e., u is analytic in time with radius 6. Denote a; = a;j(z) = & u(z,1). By (2.19) again, we
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have
1 : - 1 J
Opu(x,t) Zaﬂﬂ - ) and A2 ZAQ% - )
where both series converge uniformly for (z,t) € B(0,R) x [1 — d,1]. Since u is a solution
of the biharmonic heat equation (1.1), it implies —A2a;(z) = aj41(x) with

|aj(;c)| < A1A§+1kk62A2d4/3(:r,0)'

This completes the proof of Theorem 2. m
We can then reach two corollaries similar to Corollary 2.2 and Corollary 2.6 in the

paper [19].

Corollary 16 The Cauchy problem for the backward biharmonic heat equation

Ou — A2u=0
(2.21)
u(z,0) = a(z)

has a smooth solution of exponential growth of order % in M x (0,0) for some § > 0 if and

only if for any integer k > 0,
4
| (A2)" a(x)] < AbFIERA2A3 @00 5 — 01,2, (2.22)
where Ag, Ag are some positive constants.

Proof. Suppose (2.21) has a smooth solution of exponential growth of order 2 3
say u = u(z,t). Then wu(x,—t) is a solution of the biharmonic heat equation (1.1) with
polynomial growth of order 3. By Theorem 2, (2.22) follows as (—1)7(A%)7a(z) = a;(z) in

the theorem.
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On the other hand, suppose (2.22) holds. Then it is easy to check that

=3 (-1 (A2 a(a) s

il
j=0 I
is a smooth solution of the biharmonic heat equation for ¢ € [—4, 0] with § sufficiently small.

Indeed, the bounds (2.19) guarantee that the above series and the series

o0 6 t]
171 (A% Hg and (z) -
]ZO Z Jl

all converge absolutely and uniformly in B(0,R) x [—6,0] for any fixed R > 0. Hence

Oyu + A%y = 0. Moreover u has exponential growth of order % since

oo
. t
< AQ ja < Aj+1 -5 A2d3($0, ) < As €A2d3($0 0)
2 |y e@] ZO i
Jj= J
for some Ag provided that t € [—d,0] with ¢ sufficiently small. Thus, u(z, —t) is a solution
to the Cauchy problem of the backward biharmonic heat equation (2.21) of exponential

4
growth of order 5. m

Remark 17 It is known that generally the Cauchy problem for the backward biharmonic
heat equation is not solvable. We can expect this corollary can be used in control theory,

Ricci flow, stochastic analysis and some other areas.

We have another corollary about time analyticity at initial time ¢t = 0.

Corollary 18 For the Cauchy problem for the biharmonic heat equation

Ou+ A%u =0
(2.23)

u(z,0) = a(z).
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It has a smooth solution u = u(x,t) of exponential growth of order %, which is
analytic in time in M x [0, 9) for some § > 0 with a radius of convergence independent of

if and only if
4
| (AQ)k a(z)| < AkHigkeA2dd @00 1 —0 12 . j=0,1,2,... (2.24)
where Ao, A3 are some positive constants.

Proof. Assuming (2.24), it is well-known that the problem (2.23) has a solution

u=u(e.t) = [ plo.tials)dy
for some § > 0 and t € [0,9] where p(x,t;y) is the heat kernel for the biharmonic heat
equation on M.
By Corollary 16, the following backward problem also has a solution
O —A%v =0
v(z,0) = a(x)
in M x [0, 9) for some sufficiently small § > 0. Define the function U = U(x,t) by

u(z,t), te€]0,0)
Uz, t) =

v(x,—t), te(=4,0]

It is straight forward to check that U(z,t) is a solution of the biharmonic heat equation in
M x (4,9).
By the theorem 2, U(z,t) and hence u(x,t) is analytic in time at ¢ = 0.

On the other hand, suppose u(z,t) is a solution of the equation (2.23), which is
analytic in time at t = 0 with a radius of convergence independent of x. Then, by definition,
u has a power series expansion in a time interval (—d, ), for some 6 > 0. Hence, (2.24)

holds following the proof of Corollary 16. m
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Remark 19 Recall the well-known Kovalevskaya counter-example

Ou—Au=0, V(z,t)€e R x][0,1]

u(l‘) O) = 1_,_11,2 )

which says there are no analytic solutions in a neighborhood of the origin. We can extend

it to the case of the biharmonic heat equation.

Lemma 20 Any smooth solution to the biharmonic heat equationl.1

o+ A%u =0, Y(z,t) € Rx[0,1]

u(ac,O) = H%’

1s not analytic near origin.

Actually, if we have a analytic solution u near original, we can define
th ot
u(x,t) = Z Akl 7
E,1>0

By induction, we can prove
a(m,2n) = (—=1)"T"(4m + 2n)!, for any nonnegative integers m,n.

Therefore

la(n,4n)|  (8n)!
n!(4n)!  n!(4n)! oo

e solution is not analytic near origin.
This corollary partially solves the problem about time analyticity of the biharmonic heat

equation at t = 0.

Remark 21 We can give a non-uniqueness example similar to the well-known non-uniqueness

example for heat equation by A.N.Tychonov. To be precise, when M = R, we can give a
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solution u of (1.1) which does not satisfy |u(x,t)| < Ajet2lal? ip RY (0,1] and is not

analytic at t = 0. It is

0 - 24k
k=0
where
eV, forany a>1,t>0
g(t) =
0, t <0.

We can prove for some positive constant C,

kk"
Dg() < €

and therefore by k!/(4k)! < 1/(3k)!

00 /
$t|<zckkv _L ZCT L <€(;)”’2t¢a.

AT
k=0 )'
This example also shows the non-uniqueness for (1.1) because obviously we have another

solution u = 0.

2.3 Heat Equation With Potentials

In this section, we mainly investigate the time analyticity of the heat equation
with potentials (1.2). The main idea of this section is similar to the idea as explained in

Remark 11 of Section 2. First, let us define the weak solution.

Definition 22 We say v = u(z,t) € Lloc((tl,tg),ﬂfllo’cz(l\/[)) is a weak subsolution (weak

supersolution) to (1.2) if it satisfies,

to to
—/ /u(m,t)@tgzﬁ(x,t)dxdt—i—/ / Vu(z,t)Vo(x,t)dxdt
t1 M t1 M

+/t1 /MV(:n)u(m,t)dxdt <0 (>0),
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for any nonnegative ¢ € C° (M x (t1,t2)).

Especially, if ¢ € C° (M x (t1,t2)) and ¢(-, 2E2) = 1, then we can prove

t1+to
/ ’ / u(z, t)0é(z, t)dxdt+/ u(z, t1+t2)d
t1 M
t1+t2 t1+t2
/ /VU$tV¢)(mtdmdt+/ / u(z, t)dzdt <0 (> 0)

by testing with ¢n; and taking the limit j — oo, where n; = n;(t) € C2°(t1,t2) is a sequence

of nonnegative functions satisfying

lim n;(t) = Xty titiz) a-€.

j—)OO

We say u is a weak solution if it is both a weak subsolution and a weak supersolution.

Now for Theorem 3, we have some remarks first.

Remark 23 To be more precise, for any (xo,to) € M x (0,1/2], then in Theorem 3, it holds

BBkJrlkk
0Fu(ao.to)| < e 00,

for some constants By, Bs and Bs. Besides, in Theorem /, it holds

B Bk+1]€k B3d2(
tk
0

Zo, )

|0F u(o, to)| <
for some constants By, Bs and Bs.

Remark 24 By the method of Steklov average, or to be more precise, by Theorem 4.1
of [24] which states if the heat kernel Ty of (1.2) satisfies the L? Gaussian type upper
bound and, for any weak solution u of (1.2), dlu is also a weak solution of (1.2) for any

l=1,2,---. on the one hand, if V >0 and if I is the heat kernel of heat equation on the
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same manifold M, then by mazimal principle, 0 < I'yy < T', which means 'y satisfies this
Gaussian type upper bound condition considering (2.46) and the mean value inequality. On
the other hand, if V(-) € L4(B(0, R*)) for some q > %, it is well known that Ty also satisfies
this Gaussian type upper bound condition. Besides, we can prove ﬁgu € L%OC(M x (0,1)) by

combining (2.28) and (2.33) next. Therefore, Olu is locally Holder continuous, which means

u 18 smooth in time.
Now we begin to investigate Theorem 3.

Remark 25 In Theorem 3, we have an extra condition inlf/[ |B(x,1)| > 0 to use the Sobolev
e
inequality. To be precise, by Theorem 3.6 of [30], we can see for any A € (0,1), ¢ > 1 and

% < %, there exists some constant C' = C(d, M) such that

[ullerany < Cllullw, )

Also by Proposition 3.7 of [30], if d > q > 1, then for ¢* = qqu, we have

lull or oy < Cllullwy ,ou)-

Before embarking on the proof of theorem (3), we need to have some lemmas first.
The first one is about the Poincaré inequality which is a result of [5] and we can find it in

Theorem 5.6.5 of [38], e.g..

Lemma 26 Let M be a manifold satisfying same conditions as above Theorem 2.
Then for any 1 < p < oo, there exists some constant C = C(d,p, Ky) such that

for any ball B(xo,r) C M where 0 < r < 4,

[ @ spnlar<cr [ vi@par, (2.29
B(zo,r)

B(zo,r)
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x)dx
where fpzgr) = % is the mean value of f in B(xg,r).

Using this result, we have the following lemma about the Sobolev inequality:

Lemma 27 Let M be a manifold satisfying the conditions as above Theorem 2.
Then for any 1 < p < oo, f € C(B(xo,7)) where B(xo,7) C M with r < 1, there

exist some constants v, > p and C = C(d, p, Ko) such that

Yp—Pp
pU. Vp D
(/ |f|’fpppdz) <o IV f|Pda. (2.26)
B(zo,r) | B(xg,7)|"r /B(zor)

Proof. By Bishop-Gromov volume comparison theorem,
r\d r\d
1B(z,7)| < |B(z, )| (g) exp ((d— 1) Kor) < C|B(z, s)| (;) , (2.27)

when 0 < s < r < 4.

Combine (2.25) and (2.27), we can get (2.26) by Theorem 5.2.6 of [38] immediately.

Remark 28 Here v9 = d when d > 2 and v9 can be some number which is close to 2 when
d=1 ord=2. We use this Sobolev inequality for the mean value inequality in Lemma 31.

Unlike Remark 25, this is true for all dimensions but with extra condition r < 1.

Now for any (zo,tp) € M x (0,1/2], we introduce some regions similar to [45] first.

For any positive integer k and any 7 =1,2,--- ,k,

H]l — {(x,t)‘d(x7x0) < %E’t S [t(] - %7t0 + %]}7

12 = { (. 0)ld(, z0) < THOD ¢ ¢ [fy - GHOIM 4, 4 140500 |.

: : 1 2 1
So immediately Hj C Hj - Hj+1'

Then we have the following lemma to estimate [ [, |Oyu(z, t)|*dzdt.
J
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Lemma 29 For any j =1,2,--- ,k, there exists some positive constant C' such that

// |(9tu(1:,t)|2dxdt
H1
// ]Vuxt|dxdt+// Huxt)| dxdt.
H2

Proof. Let us define a smooth cut-off function ¢(!)(z, ) such that ¢™)(z,t) = 1 in HJ1 and

(2.28)

is supported in H ]2 We can also suppose there is some constant C' such that

k
Vo O + 000 )] <
0

We use ¢ = ¢(V) (z,t) below for the simplicity of notation. By assumption of cut-off function

¢ and Cauchy-Schwarz inequality, integration by parts in time,

// |Ou(z, t)|2p?dedt = // Opu(z, t)(Au(x,t) — V(x)u(z,t))p?drdt
= —/ Vowu(z, t)Vu(x, t)p>dzdt —/ Opu(x, t)Vu(z, t) Ve drdt
z

2
H;

- / V(z)0pu(z, t)u(z, t)p>dedt
i

< 3// |8tu(:v,t)\2¢2dmdt+0k// Vu(z, b)) dzdt
4. Juz to JJ)u2
// z)||u(z, t)|*pdxdt.

Then we can get a Caccioppoli type inequality (energy estimate) as below.
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Lemma 30 For any j =1,2,--- ,k, there exists some positive constant C' such that

sup

. . / (7+1)/to
te(to_(ﬁ—l)io ’t0+(J+1)t0) B(mo,Tf)

// ]Vuxt|dmdt+// Hu:):thxdt<// u(z, t)|*dzdt
Hl

(J+05)\F>
Vk

u?(z,t)pde

(2.29)

_2q _2 2(g—1)
+C <C* 2g—d 4 D*2¢—d (O'** 2¢—d

/ / u(z, t)|2dzdt.
Hl

J+1

(d(a:o, 0) +

Proof. Let us define another smooth cut-off function ¢ (x,t) such that ¢®(z,t) =1 in

Hj2 and is supported in H 31 +1- We can also suppose there is some constant C' such that

Vo (e, ) + 1062 )] < O
0

We use ¢ = ¢ (z,t) for the simplicity of notation in this proof. By integration by parts,

assumption about ¢ and (1.2),

//m [Vu(z, t)|?¢>dedt < le//H1 V(e t)|*6*dudt
//Hl xt!dwdt+// \V )u(z,t)] ¢2dxdt

Now we need to estimate the last term above. By Hoélder inequality, interpolation

(2.30)

inequality and Sobolev inequality, we know:
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2,2
/Buo,”“’f%ﬁ> V(@)u(z,1)|"¢"dz
q—1

1/q .
< IV ()|9dx (Jue, 1)[2¢%) ™7 da
- B(IO,(j+OjE)\/%) B(a:o,(”‘)j%\/%) ’

1/q 2%
q 2 9%
/Bm w00y, IV (@) dm) x (/B(IO,W;%J%)‘V(@@J))I dx)

’ vk

1/q
—2d
|V(x)|qu) C(d, q)eza—d /B s G105 |pu(a, t)?de  (2.31)
1’077)

2 9 )
X 2e (/B<<+f>f> V(pu(z,1))| dx_}—/B(ro,ijz\/%) [(pu(z,t))| dx)

1/q
—2d
+C A V(z)|%dx qu—d/ _ du(z,t)|?dz | .
( B(xo,<]+0'5)‘/t0)| ( )‘ ) ( B($07(J+0;/5%\/%)‘ ( )|

1

T 2q
(09 g ]V(x)\‘%ia:) and integrating with respect to time,
oA

// z)|u(z, t)|?pPdzdt < = // |Vu:vtgzbd:£dt—|—// u(z, t)|*dedt
H2
2
+C </B(x (j+0A5)\/Q) 14 ‘qde) // |pu(x,t)|"dzdt
0, Vk

< 1// |Vu(x,t)\2¢2dxdt+// lu(z, t)|>dzdt (2.32)
2 ) Jm2 to JJ)u2
. 2
+ (a ovncrHE (a0 + LELIVE) )

X //HQ |pu(, t)|*dxdt.

Plugging into (2.30), we yield ,
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// |Vu(z,t)|?dedt < — // u(z, t)|*dedt
H?
J

(j +o.5)¢%>2>

_2q _2 2(g=1)
+C (C* 2qg—d 4+ [*2¢—d C** 2¢—d

« //H \bu(z, t)2dadt.

Besides, we can also see

o1 2/ _ u?(z,t)?dx
t ( / B($07(]+\1/)E\/%) ( )

_ /B e \/%)u(x,t)(Au(x,t)—V(x)u(ac,t))d)de
Ok

<d(x0, 0) + (2.33)

vk

(2.34)

2
+/l?(x07(j+l>\/%)u (x,t)p0spdx

1 Ck )
< / S, Vutr, 0P e+ 5 s, fu(z, ) 2da

By integration by time and (2.33), we can get the (2.29) immediately. ®

Then we need the mean value inequality as follows.

Lemma 31 Assume M is a manifold satisfying same conditions as Theorem 3. Let u =
u(z,t) be a nonnegative weak subsolution to (2.33). Then for any0 <p < oo, 0 <r< R <1

and (xo,tp) € M x (0,1/2],

1
) 0F—1
sup Ju(z,t)P < C <R2>
Qr(z0.to) | B(zo, R)| 2

0*

1 . e e 20021 <j+0-5>\/%>2 m
X L CrE 4 DO E (d(o,0) + L)V
<|R—r12 (a0 + O 72

« / / () Pdadt,
r(zo,to0)

where 0* =1+ % Here vy is defined in Lemma 27.
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Proof. We can prove this one by Moser iteration. By Hélder inequality and Lemma 27,

we have for any w(z) € C°(B(zo, R)),

/ () P55 da
B(zo,R)
l/272

2vp v2 %
< / ()2 d / () 2da (2.35)
B(zo,R) B(zo,R)

2

2 v
<C <R2> / |Vw(x)|*dz (/ |w(:c)]2dx>
|B(wo, R)|2 ) /BGo.R) B(wo,R)

Let ¢ = 9(z,t) be a standard smooth cut-off function such that ) = 1 in Q,(xo, to)

and is supported in Qr(xo,tg). We can assume |Vi)|? + |0p)| < ﬁ. Then by integration

by parts and assumption about ¢ and (1.2),

O <1/2/ !U(vat)%?dl“) +/ IV (u(z, t))|*da
B(zo,R) B(zo,R)

S ) @l [ VG Peds
B(zo,R) B(zo,R)

+ / IV (@)l (e, £) 262d.
B(zo,R)

Combining (2.31) and (2.33), by integrating with respect to time, we yield

sup / (e, t)[24da + // IV (u(e, 1)) Pdedt
te(—R2,0) Y B(zo,R) Qr(=o,to)

. 2
1 q 2(¢—1) D)/t
<C <|R|2 +C* 2(127d + D* 2q2—dC’** 2q—d <d(x070) 4 U+05)0> )
—T

Vk
« / / lu(z, £)|2dzdt.
Qr(zo,to)

Let E(R) = (B(RQR)'?> and
o, v

1 2q 2 . 2 (j+0.5)vEo
F* = 4+ (*2¢—d + D*2¢-d(** 2¢—d [ ( 0 o Ve
R+ O DO (a0 + S

for simplicity of notataion. From inequality (2.35), we can see

6*
/ / (e, )2 dedt < CE(R) [ F* / / (o BPdzdt | . (2.36)
r(zo,t0) r(zo,t0)
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Now we have two cases.
Case (1): p > 2. In this case, we can see uP/? is also a nonnegative subsolution. Therefore,

(2.36) yields that:

0
po T * ulz Pl ' .
//Q;(xo,m (u(x, 1)) dedt < CE(R) (F //%(mo’to)( (z,t))Pd dt) (2.37)

Set for some positive constant 6 = < 1, w; = (1;5)1% so that > {°w; = (1 —0)R.

Set also 09 = R,0411 = 0 —w; = R— 211 wj. Applying (2.37) withp=p; =60",r =0;,R =

Oi+1 We obtain

6
/ / (u(z, 1))’ dzdt < CE(R)167F*° ( / / (u(m,t))eidxdt> .
Qo 44 (xos5to) Q5, (wo,to)

Hence, by iteration,

<//’ (z0,to0) (u(x7t))9i+1 dxdt> p—1-i

Ti+1

< (CE(R))®™"16%0 7 pr>0™’ / / (u(x, t))2dxdt,
Q'r(wo,t0)

where all the summations are taken from 0 to 4 and we can easily see 507177 converges.

Letting ¢ tend to infinity, we obtain

a0
sup u? < C(E(R))e—1 F*o-1 H“H%Q’R(a:o,to)'
Q. (zo0,to)

(2.38)
Then when p > 2, we can see uP/? is also a nonnegative subsolution, so

1 (%)
sup u” < C(E(R))7T F*o=T|[ul] o, ;
Q/T(ffmto) p,QR(i(),to)

which proves (2.13) for the case p > 2.
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Case (2): 0 < p < 2.
For this case, we can use the method of [22] or more precisely, Theorem 2.2.3 in the book
[38].

Fix 0 € (0,1) and set p = o + (1 — 0)/4. Then (2.38) applies

9
1 1 20—2
sup u < C (E(R))2(071) (1 + M) ||UH21Q:,R($07tO)‘

QL r(wo,to)

1- P/2 ’P/2

Now, as |lull2,g < |lullo o |lul[/5 for any parabolic cylinder Q, we get

9
20-2

1 1-p/2
lulooqr s <7 (14— ) Ilull'S% nto) (2.39)
(pR O'R) Q 0, 0)

where J = C’Hqu/2 E(R))Q“’l—l).

PQLR 360»750)(
Fix § = %, 00 =6R =rand 0441 = 0,4+ (R — 0;) /4. Then R—0; = (3/4)"(1-0)R.

Applying the above inequality (2.39) for each i yields

Hu‘|OO,Qf,.(:E0,to < (4/3)01/ (20— 2)!]}7*2(9 2||’LL||1 p/2

41 (@ost0)”
Hence by iteration, for ¢ = 1,2, ...
[l 00,2 (0.t0)
< (4/3)(9/(0—2))Zéﬁlj(l—p/z)j [JF* 29“12} o (- H H ’—5//2 ) o)

Letting 4 tend to infinity, we yield,

1 « 6
[llo,4 @osto) < C (E(R))PO=D F*O=0r |lull, o1

(Io,to) )

which proves inequality (2.13) for the case 0 < p < 2.
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2.3.1 Proof of Theorem 3

Now we are in a position to prove Theorem 3. Because diu(z,t) is also a weak

solution of (1.2) for any I =1,2,--- , k, we can put inequality (2.28) and (2.33) together to

A 27.2
// lﬁf_ﬁlu(x,t)]dedt < —— C // Bk Tu(z, )2 dxdt
Hl

Hj

Ck =) (g+05)~ﬁ>2
4+ — 0*2 d+C’D*2 dC**Z 4 ( d(zg,0) + F—-FL—
to ( " . (“O ) vk

« / / O (e, 1) 2dwdt
H1
21.2
<C k >// |a’f Tu(z, t)[>dadt

_4q _4 4(g=1)
+ <C’* 2¢—d 4 D*2q-d O** 2¢d (d(ajo,O) +

X // \6f_ju(:1:,t)]2dxdt.
H}!
it

By iteration,

/ / O u(a, t)dudt
Hl

219 Aa—1) . 4
sH(Ck oot 4 pratace S (d($0,0)+m>> (2.40)

Vk
// u(x,t) 2ala;dt
Hl

k+1

obtain,

(j+0.5)JtF>4
vk

By Lemma 5.2.7 of [38] or the book [51], we see for some constant D > 0 and any 0 < r < 1,

d(z,y)
|B(z,7)| < P55 By, ). (2.41)
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As |0Ful? is a weak subsolution to (1.2), by mean value inequality in Lemma 31, it holds

d—vo
k
|0Fu (o, tg)]? < CePU@00) <t>
0
==
— . 2
[ E Lot | DrEa o el (d(mo,O) 4 (]4'0'5)\/%) (2.42)
to NS

« / / Oz, t)2dadt.
i}

Combining these two inequalities (2.40) and (2.42), and applying the assumption

that u is of exponential growth of order 2, we yield,

2k+21.2k
A1 ATk e2A4d2(ac0,0)

‘an(.%'o,to)‘Q < t%k

Just note we put some terms involving d(xg,0) into e244d*(@0,0)

The proof for the conclusions about a; = & u(z,1/2) is the same as Theorem 2.

In this way, we have completed the proof of Theorem 3. m

Remark 32 To see the set of functions satisfying the condition 2.1 is nontrivial when

V(z) =2?% in R?, we give some examples here. For Hermite polynomials

an 2
H, — (—1)"e® —x,
(0) = (1) e

and
Un(z) = (2"0lV/m) 22 H, (2),

it is well-known that (D? — x2)y,(z) = —(2n + )b, (x) and thus
(D? =)y (2) = (=1)"(2n + 1)"4bn(2).

Therefore, 1y (z) satisfies the condition 2.1 as |(D? — 22)kiy, (z)| < CFEL.
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Remark 33 Theorem (3) is about the time analyticity when t € (0,1/2]. Because (1.2) is
a linear equation, it is a natural assumption that u is of exponential growth of order 2 in

€ [0,2], a longer time interval, then the solution should be time analytic in [0, 1].

Especially, when M = RY, there is no necessity to assume V € L'(R? B(0, R*))

and d > 3, instead we have the following corollary:

Corollary 34 Let M = R?. Assume V =V (x) satisfies the following conditions:
. . * d
(1) There exists some R* > 0 such that V(-) € LY(B(0,R*)) for some q > §.

(2) For some constant C** > 0, if d(x,0) > R*, then |V (x)| < C**d(z,0)* where o = 2—%.

Let

IVlLa(B(o,r*)) = C”

where C* is a positive constant and let u = u(xz,t) be a weak solution of equation (1.2) for

any dimension d > 1 on M x [0, 1] of exponential growth of order 2, namely
fu(, )] < A2 @O (e 1) € M x [0,1],

where Ay and Ay are some positive constants. Then u is analytic in t € (0,1/2] with radius
of convergence depending only on t, d, q, Ko, A2, a and C*.

Moreover, if t € (1/2 —6,1/2] for some small § > 0, we have
Z 0;( t — 1/2)
with (A —V)a;(z) = ajt1(z), and
laj(@)] = [(A = V)ag(x)| < A AL i @O 5 =012,

where constants As = As(d, q, Ko, A2, a, C*) and Ay = A4(Az, a, C*).
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Proof. The proof is almost the same as Theorem 3. There are just two differences.

The first one is to make a little change in (2.32), instead, we yield,

q
C (/B(xm(]uro.s)\/%)’ )| dx) // |pu(z,t) ‘ dxdt

<W N d(ggo,o)) +c*z§1d> //HQ \pu(z, ) 2dedt.

<C C**2

The second difference is in (2.31). Instead of Sobolev inequality, we use the Gagliardo-

Nirenberg interpolation inequality and Young’s inequality directly, which is
HU(wt)éHL%(Rd) < OV (u(-,t)o )I!Lg (reyllus )¢HL2(Rd

_—d_
< €llV(ul(-,1)9)| 2(ray + Ce2=au(-, £)@|| L2 (ra)-
The rest of the proof is exact same. m

As a special case, when V(x) > 0, we need to prove Theorem 4 now.

Remark 35 In Theorem 3, an interesting property is that the solution u = u(x,t) can be

not smooth in x at all. Actually, if M = R% and V(z) = ﬁ where A > 0, we have one

solution u(x,t) = |z|*4) where a(A) = 7(d72)+”2(d72)2+4A.

We can see this solution is

not smooth if a(A) is not an integer.

Similarly, we have a lemma about the mean value inequality using the same proof

as in Lemma 31:

Lemma 36 Assume M is a manifold satisfying same conditions as Theorem 4. Then for

any nonnegative weak subsolution u = u(x,t) to (1.2) where V> 0, for any 0 < p < oo,
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0<r<R<1and (xo,ty) € M x [-1,0], there exist some canstant C such that:

sup |u(z, t)[”
Q'r (xO 7t0)

R2 7 1 wo
so( ) (he) [ eopa
Bleo, B ot

where 8* =1+ % and vy 1s defined in Lemma 27.

Remark 37 As a very special example, we get the heat equation with inverse-square po-

tential when V(z) = W,
Bpu(z, t) — Au(z, t) + ‘m =0, Y(z,t)eMx[0,1].

It is well-konwn that this potential is a borderline one where the regularity theory differs
from the standard one. For the reqularity and mean value inequality of this equation in R?,
we can refer to [44], [56] and [43]. Actually, the inverse-square potential term ﬁ helps

with t.

2.3.2 Proof of Theorem 4

Proof. Now for any (xg,ty) € M x (0, 1], we introduce some regions first. For any

positive integer k and any 5 =1,2,--- |k,

H} = { (@, 0)l(@,20) < B2 1 € [t — Gp. 1]},

i40.5)+/% i4+0.5)t
Hj2 = {(w,t)|d(x,x0) < (j+\/%\/>07t € [tO - (jJer ) O7t0]} .
So immediately H]1 - HJ2 C H}H.

Denote by w](-l) (x,t) a standard smooth cut-off function supported in H JQ such that

¢j(-1)(x,t) =1in HJ1 and |8t¢§1)($,t)| + |V¢J(.1)(x,t)|2 < %’“ for some constant C.
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We denote ¢ = 1/1](-1)(36, t) for simplicity of notation below. Then by equation (1.2)

and integration by parts,

/ ((%u(w,t))ZdexdtS} / / \Vu(z,t)|0pb*drdt
H? 2)Jm2

4
+ € // (Opu(x, t))*p?dadt + — // \Vu(z, t) |} V| dedt
H? €1 Hj2

/ V(z)u?(z, )0 dadt.
H2

Using the assumption of ¢ and taking €¢; = %, we yield

// |8tu;vt|d:1:dt<<// |Vuxt|d:vdt—|—// wtdmdt) (2.43)
H? H?

Define another smooth cut-off function wj(-z) (z,t) supported in H Jl 41 such that

2 . 2 2
1/15- )(:1;,75) = 1in H7. We assume for some constant C, \6tw](- )(J:,t)\ + \Vw](- )(a:,t)\2 < %k.

We denote ) = 1&](-2)(37, t) for simplicity of notation below. Then by equation (1.2),

//m \VU(x,t)IQdexdtJr//m V(2)u?(z, £ dadt

+1

<€ // ]Vu z,t) 2 ddt + — // )| Vep|Pdadt
€2

+5 / /H . u?(z, )0 dadt.

By the assumption on 1 and taking e; = %, we can see,

// |Vu(x,t)] 2da:dt+/ V(z)u®(z,t)dzdt < // u(z, t)|*dzdt. (2.44)
H2 H2 Hl

Combine the inequalities (2.43) and (2.44), we have
2/{72
// |Ou(z, t)|2dedt < // u(z, t)|*dzdt.
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By Remark 24, dlu is also a weak solution of (1.1) for any nonnegative integer I.

2 2k2 2
// (Btku(ac,t)) dxdt < Czk // (Bf_lu(x,t)) dxdt
H} to Hy

2k 1.2k
<. < C% // u(z, t)?dzdt.
to Hl

k41
Therefore, by Lemma 36, (2.41)

k d/2+1
|0F u(xo, to) | <C< > ePd0.0) // 0Fu(x, t) | dadt
to 1 (zo,to)

Thence

2

d/2+1 2% 2 A2k+27.2k
<C <k> < > // 2 dedt < Z%Tk&f‘zd%%ﬁ).
o i, 12

The rest of the proof is the same as Theorem 2.

Remark 38 To make sure the set of functions satisfying condition 2.2 is nontrivial when

V(z) = W, we give some examples here. The first one is

s Iw\Q’
_Z 1+s

le

where s > 0. Now we give a lemma explaining ag(x) satisfies condition 2.2 in RY. We can

prove the following lemma by induction.

Lemma 39 Let the space M = R?, then there are two sequences of positive number aj k

and b; ;, where j, k are nonnegative integers satisfying

2d \* - 25— 2%k
A—W ag(x) = Y bjxll

j=k+1

and

[o.¢]
w) =Y ajlaT.
j=k

Besides, we have 0 < bj < a;, and

(o) o

< AFag(z) < CF i1t
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Then we can have another ezample a*(x) = 372, %, s > 0 which also

satisfies the condition (2.2). This is because if we let
a2 ww= 3 dyla
EE 2 Bl
j=k+1
then djmi1 = (—=1)7b;mi1 for any nonnegative integers j,m.
Especially, we can also prove the functions |x|>cos(|z|) and |z|sin(|z|) also satisfies

the condition (2.2) by the same method.
We have similar corollaries as Corollary 16 and Corollary 18 using the same proof.

Corollary 40 Let V. = V(z) be a potential function satisfying either the conditions in
Theorem 4 or V(x) > 0. Then the Cauchy problem for the backward heat equation with

potentials

u(z,t) + (A = V(x))u(z,t) =0

u(z,0) = a(z),

has a weak solution of exponential growth of order 2 in M x (0,0) for some 6 > 0 if and

only if there exist some constants As, A3 satisfying:
A—V(z) a(z)| < AL 'jeA3d2(x’0), i =0,1,2,...
2 J J

Corollary 41 Let V =V (x) satisfies the same conditions as Corollary 40 above. Then the

Cauchy problem
ou(z,t) — (A = V(x))u(z,t) =0

u(x,0) = a(zx)

has a weak solution of exponential growth of order 2, which is also analytic in time in

M x [0,0) for some § > 0 with a radius of convergence independent of = if and only if there
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exist some constants As, A3 satisfying:

(A= V(2)Y a(z)| < AT jeMT@O 520,12,

2.4 Nonlinear Heat Equations With Power Nonlinearity

This section is about some nonlinear heat equations with power nonlinearity of
order p (1.3) where p € (0,00). There are two main theorems 5 and 6 in this section and
the main tools to prove them are Lemmas 45 and 46. We first prove the case when the
solution u is bounded and p is an integer. Then we turn to the case when 0 < C3 < |u| < Cy
and p is any rational number.

For (1.3), since we assume the solution u is bounded, by standard theory, u is

actually smooth. We need a lemma about the time derivative of the heat kernel on M first.

Lemma 42 Let M be the same manifold as Theorem 5 above. Then for any xz,y € M,
0 <t <1 and any nonnegative integer k, there exist some constants C1 and C5 depending

only on M and d such that the heat kernel I'(x,t;y) of the heat equation
Oru — Au =0,

satisfies the following condition:

CFT1Lk=2/3  _c, a(a)?
|OFD (2, t;y)| < —= B

< me (2.45)

Remark 43 To our best knowledge, up to now, in the literature, one just have

~Csd(z,y)?
8Tz, 11y)] < O W) ~cate
1B VD)
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in the manifold case, where C(k) is not calculated explicitly. So here we obtain a more

accurate result.

Proof of Lemma 42. Fix any to € (0,1] and zo,yo € M, we would like to get
the estimates of aff(:z;o, to;yo). For any nonnegative integer k and j = 1,2,--- , k, we define

some space-time domains:

V2k 2k
|+ 0.5)v/To (j+0.5)
M2 U
2= {0 ) < UEEI p (- UH R0,
1 2 1
Then M; C M7 C M.

Following the method used in the proof of Theorem 4, for some constant C, it

2kk2k
/ / OF D (, £: ) [Pt < / / T(a, £ yo) [2dadt. (2.46)
v

Then we need to use the well-known result for the upper bound of the heat kernel which

holds

can be found in [42] or [38], which is

—Cld(z,y)?
te
3

[z, t;y) < m7

Vz,y € M and ¢ € (0, 1],

for some constants C% and Cj.

Now we have two cases.
Case (1): d(yo,xo) < V4kto.
In this case, using (2.41)

C2k’k,2k’
tQk // (z,t; yo) |*dzdt

D(k +1) t
02k+1/2k2k6 2kt 0 C2k+1k2k+1 —Cyd(zg,y0)%

< S e
15" Bwo, Vio)l T 15" [B(wo, Vo)
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for some constant C.

Case (2): d(yo, o) > V4kto.

In this case, because d(z, o) < (kt/l;—k\/%, \(f < d((x ’;Uyo)) < 2. Therefore,
CZkk,2k
t% // L (x,t;y0)|*dadt
2D(k+1)%tg
C2kk2kt0|B($o ]‘CLMB T —(3-2v3) (402
< V2k e 2t
- t5¥1 B (o, v/T0)[?
02k+1/2k2k+1 —Cyd(zq,y0)2 O2k+1}2k+1 —Cyd(zq,y0)>
S k-1 e S k-1 e
to | B(wo, Vo)l ty | B(wo, Vo)
Combine the above two cases,
C2k+1 k2k+1 —Cxd(zg,y)?
// |OFT (2, t; yo) | dadt < SET e o . (2.47)
M} to | B(wo, Vo)l

Then we recall a well-known parabolic mean value inequality which can be found, for in-
stance, in Theorem 14.7 of [48]. To be more precise, by the method of Lemma 31, for any
0 <p<ooand 0 <r < R < 1, any nonnegative subsolution u = u(x, t) of the heat equation

satisfies

sup u(z,t)P
Qr (IOatO)

1
2 7F—1
SC(R2> ( 2) // u(z, t)Pdzdt,
|B(zo, R)| 72 [ — 7l Qn(ao.to)

where 6* =1 + 722 and vy is defined in (2.26). Let u(z,t) = |0FT(z,t;y0)2, p=1,7=0

and R = /to/V/2k, we can see

OFT (0, o) ch /] (OFT (w, t: o)) dadt
‘B (.’L‘o \/7/\/7 ‘to Q\f/\ﬁ zo,t0)
(2.48)
de/2+1
< / / (OFT (z, t; o)) dardlt,
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where we have used the Bishop-Gromov volume comparison theorem in the last inequality.
By (2.46),(2.47) and (2.48), we see

02k+2k2k+d/2+2 —Cyd(zg,y0)>
T

OFT (0, to; ¥0))* < e
( t ( )) t%k]B(xo,\/tT))\Q

Thus,
C{H—lkku/?) —Cxd(z0,v0)2
t

T B e
t51B(x0, Vo)

for some C large enough, which finishes the proof of Lemma 42. =

OFT (0, to; yo)| <

Remark 44 By the estimate of the time derivative of heat kernel T'(x,t;y), we can see the
solution v = u(x,t) of heat equation uy — Au = 0 is analytic in time if u is of exponential

growth of order 2 directly.

Let (Z o ) = " Then we have a lemma which will be used
1,82, 51k iligl - (n—i1—ig—-—iy)!

frequently.

Lemma 45 For any integers n > 1 and k > 1, there exists some constant C' = C(k) such

that,

= (e

TR _ i <nyim >0 T2t T
X (n—ip —ig— - — ik)n*i1*i2*'"*ik*2/3 < Cnn—2/3,
This lemma is just an extension of the Lemma 3.2 of [19] and we can prove it by the

induction method and the Stirling formula.
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Proof.
n i — 2/3 12 2/3
g .. .Y
Zl 22 ... Zk:
Sk im<n,im>0 Y ’
X (n — 4] —lg— - — ik)n—11—12—~~—lk—2/3
Z < > i1 —2/3 Z ( n—1 >Z.i2—2/3 %
= . . 2
© . L 12y, 1k
i1=1 Xk oim<n—i1im>0
« (n — iy — g — e — ik)nfllfzgf---fzku/iB
7/6

(2 . n—1 n— n
<cz<)”‘°’ i <o S

a1 iy (n— )76

i1=1
) 1 \7/6 23
n 2/3 n—
<C .
<or s E (k) <o
i1=1
]
Then we have the following lemma to connect 9] (t"u) and 9] (t"u) for any positive
integer n.

Lemma 46 Let fi(t),f2(t), -, fx(t) be smooth functions. For any nonnegative integer n,

we have
(" f1(t) f2(t) - - fr(t))
_kz (k—l>z< 0 m )
0 )! m ) =g\t i
O (1 o (1)) -+~ O (41 fuy (1))0) ™ T i gy (1)),
k
Here for (h l2n zk) we always assume Y, i < n.
R =1

Proof. We can prove it by induction using Lemma 3.3 of [19].
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Remark 47 Especially, when f1 = fo=---= fr = f, it holds

(" fr (1))
1 ) o
:n;](_l)m(nf!m)! <km 1> ;) (WQ’ . ,ik_1> (2.49)

G (E1 £(1)) -0 (¢ f ey I (g B ),

Moreover, when f;(t) = f(t)% foranyi=1, -k, we have
HORRAGHOD
o = k—1 n—m
=) = 3 ()" )(m)z( o)

11,12,
. X k=1, —1.
O (L2 F(1)F) -+ By (¢ f () )OS (1) ) (2.50)
SR P
11,102, ylg—1
n>i >0
sF by >0

S ; . k=1, 1.
O (E1 F(1)F) - 0 (¢t fle) )OI (A () ).
We first establish the following proposition before embarking on the proof of The-

orem 5.

Proposition 48 Under the conditions of Theorem & above, for any integer n > 1, it holds
08 (Eu(e, )| e gy < N1/ 200212 (2.51)

for some sufficiently large constant N > 1.

Proof. By induction and by lemma 2.45, there exist some constant C such that for any

integer k > 1,

< Ok pE=2/3
oy

ot (erc.0)
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We shall prove the proposition inductively. As u is a solution, we have

u(:v,t):/ F(:E,t;y)u(y,O)dy—I—/t/ Dt — 5 y)uP(y, 5)dyds,
M 0 M
as a consequence,
of (t"u(x,t))
= [ ettt o+ or( [ | Tt sy, s)dyds)  (2:52)

=11 + Is.
It holds

‘Il‘ < C2c?+lnn—2/3 < Nn—2/3nn—2/3 (253)

for sufficiently large V.

To estimate I, similar to the inequality (3.7) from the paper [19], we yield

= kzn:() (Z) o /Ot /M (“ =) Tzt —s; y)) (s”*kup(y, s)) dyds

kzn::O <Z> o " /Ot /Mat’f ((t — )T (2, t — S;y)) (snfkup(y, S)) dyds
no (Z) ot /Ot /Maf (Skr(% SS?J)) <(t —s)"RuP(y,t — s)) dyds
() [ [ (rtamm) ot (e o7t ) e

Using Lemma 45 and equality 2.49, the it holds by induction

(2.54)

k

I
3 i

Ed

=0

0 (¢ (uP (2, 1)) | < pCE (O] (" ulw, 1))] + N3/ 40273,
and for k=1,...,n—1
O (5, 1)) |< NFVRE2E,
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Following the similar procedure as in the paper [19], we have
t n—1
’]2’ S/ C{L-‘rlnn—?/i’)cg + Z (Z) Cf+1kk—2/3 . Nn—k—l/S(n o k)n—k—2/3
0 k=1

+C (pCE 07 (2 = 5)ule,t = )| oo + N"3/40"2/%) ds (2:55)

< N334 4 opCh! /0 t 107 (s™u(-, 5))|| oo ds
for sufficiently large N depending on C4, Co,p, d and K.

Combining the estimates of I (2.53) and Iy (2.55), we can get (2.51) by applying
Gronwall’s inequality and finish the proof of the proposition. m

Now we begin the proof of the theorem 5.

2.4.1 Proof of Theorem 5

This part is the same as [19]. We just copy it down here for the convenience of
reading.
Note that
oy (tku> = (tk_lu) + toy (tk_lu) .

Taking k = n, we obtain

sup ||t0] (t"_lu(-,t))
te(0,1]

ey < N"(1+1/N)n".

By induction,

sup [ 07 u(-, 8[| oo apy < N™(1 4 1/N)"n" = (N +1)"n".
te(0,1]

The theorem is proved. m

To prove Theorem 6, we also have a proposition first using Lemmas 45 and 46.
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Proposition 49 Under the conditions of Theorem 6 above, for any integer n > 1, we have
|07 (t"u(e, ) | < N"H2nn=2/3,
for some sufficiently large constant N.

Proof. We shall prove the proposition inductively. First, we can get equality (2.52) in the

same way. Then similar to inequality (2.53), we see
|Il‘ < ]\77172/377@72/37

for sufficiently large V.

By equality (2.50) and Lemma 45, we can prove by induction, for any k& =

1,2, ,n—1
‘af(tku(x’t)l/qz)’ < ]\716—5/12]#@—2/37
and
atn(tnu(%t)l/qz) l of (t"u(z, 1)) 4+ Nn—19/24,,n-2/3
ww e | = al |
To be more precise, if we assume for any [ =1,2,--- ,k—1
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then

KCL |0 (o, %)
2—1 k! -1 k—m
< |0f (tFu(z,1))| + .<q2 > ( ' )
‘ t( ( | Z k; m)' m ;) 11,22, 5 lgo—1

Ni175/122-§172/3 . Niag—1-5/12 lq211 2/3Nk m-x27"-5/12
q2

(]{2 m — 2?2 )k m— El 1 zl

+ Z ( k )Ni1—5/12i§1—2/3 . Niap-1-5/12;%a 11 2/3
21,22, 5 lga—1 q2_

k>i; >0

—1.
/27 >0

Nk—z?irlil—wm(k m — 2?2 l)k m— El i zl
<O (¢ ulw, )] + N* 2,
Therefore by equality (2.49) and Lemma 45, we can prove by induction that for

any k=1,2,--- ,n—1

08 (FFu(, 1/ )] < RS2

and
8f(tnu($,t)l/q2) + Nn73/4nn72/3
u(x,t)t/ e

=q

Op (1" ul, ) /%)
u(x7 t)q1/q2

< q1 8?(75”’&(1‘,75)) ‘ +an3/4nn72/3’
q2 u(x,t)

for some constant IV large enough.
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Therefore by (2.54),

t
’12| S/ C4C?+1nn72/3
0
+o(L
q2

n—1
n — n—k— n—k—
+ ; <k>0{€+1kk‘ 2/3 . N k 1/3(77, _ ]{) k 2/3d8

O ((t — s)"u(,t —s))
u(-, t)l-ar/e

+ CZl/q2Nn—3/4nn—2/3
Lo (M)

t
<N 2y o7 sl ) d,
0
for sufficiently large N depending on C, C3, C4, p, d and K. Using the estimates of I, I
above and Gronwall’s inequality, we can finish the proof of Proposition 49. m

With this proposition at hand, we can prove the Theorem 6 immediately.

2.4.2 Proof of Theorem 6
The proof is exactly the same as the last part of the proof of Theorem 5.

Remark 50 For the case when 0 < p < 1, we can have a particular solution

(A=p)(t—3)"7 when L<t<1
u(x,t) =
0 when ogtg%,

which is not analytic at t = % We can use this example to say that u may not be allowed

to be 0 to get the time analyticity conclusion.

Remark 51 For the time analyticity at t = 0, according to the paper [39], even for some
polynomial functions f(u), the formal solutions for Owu(x,t) — Au(z,t) = f(u) are not in

general analytic at t = 0 even if the initial condition is analytic.

Remark 52 [t is maybe true that the conclusion in Theorem 6 can be extended to all the

real number p.
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Chapter 3

Time Analyticity for the Nonlocal

Parabolic Equations

3.1 Main Results and Outline

The next four theorems are the main results of this chapter. The first one is a

time analyticity result in the case of R,

Theorem 53 (a) Let po(t,x;y) be the heat kernel of equation (1.4). Then there exists a

positive constant C such that for any t € (0,1] and any nonnegative integer k,

Ck+H1pk 1
k
107 pa(t, z;y)| < th—1 1
(Vo4 |z —y

Tk (3.1)

(b) Assume that u = u(t,z) is a solution to (1.4) with polynomial growth of order

a— €, i.e.,
lut,z)| < C1 (14 |2|*79), Y(t,z) €[0,1] xR%, 0<a <2, e€ (0,a) (3.2)
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for a positive constant Cy. Then

u(t.a) = [ poltz = y)u(0.9)dy

is the unique smooth solution with initial data u(0,-). Moreover, u is time analytic for any

t € (0, 1] with the radius of convergence being independent of x.
(c) For any t € (1 —§,1] with a small § > 0, we have
oo A
(t—1)
u(t.) = 3 ay(a)
j=0
where ag(x) = u(l,x), aj41(x) = Lia;(x),

ja5(@)] = |(L3) ao(a)| < CLCEF (141277, j=0,1,2,....,

and Cy is a positive constant.

Remark 54 The estimate |aj(x)| in part (¢) of this theorem will be used for the solvability

of the backward nonlocal parabolic equations and the time analyticity at t = 0 in the last

section.
Remark 55 From the proof of this theorem, for a constant C' > 0, we have

OFu(t, z)] <

CkH1Ek (1 + |w|*e 1

= ; té/a>’ vt € (0,1]

under the growth condition (3.2).

Now let us focus on the heat kernel of the fractional Laplacian (—A)2

in R%.

Recall that the fractional heat kernel py (t, ) for us + (—A)*/?u(t, ) = 0 is given by

pa(t,x):(}(d,a)/ oHIER it g
Rd

which can be deduced by the Fourier transform.
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Theorem 56 The following statements are true for the fractional heat kernel p,(t, ) when
t>0.
(a) For any a > 0 and for any positive integer k, there exist positive constants C,

C4, and Cy such that

C1Cke (ko) C (k:a + d) } | 35)

k .
|8t poz(tvx)| < mln{ |Q:’k’o¢+d ) tk+d/()ér a

which implies that p,, is of Gevrey class in time of order a when x # 0 and py is analytic
in time when t > 0. Moreover, if 0 < a <1 and x # 0, then p is analytic in time for all
t > 0. Here I is the gamma function.

(b) For any a > 0 and for any positive integer k,

- (3.6)

C Ck-i—oz(k + a)k-‘rat C k+d
k . 1“9
laxpa(tv ‘T)| < min { |$|o¢+k+d  t(ktd) /o < ) ’

which implies that p,, s analytic in space at |x| # 0. Especially, when t # 0, py, is of Gevrey

class with order 1/« in space for any x.

Part (a) of the theorem shows that for any a € (0, 1], the fractional heat kernel is
time analytic down to ¢ = 0,z # 0, which is not true for the standard heat kernel.

By the above Theorem 56, we have

Corollary 57 If the unique smooth solution w = u(t,xz) to the fractional heat equation (1.8)
satisfies the growth condition (3.2) for some o € [1,2), then it is analytic in space for any
(t,z) € (0,1] x RY. Moreover, when o € (0,1), u is of Gevrey class of order 1/a in space

for any (t,x) € (0,1] x R

The last two theorems of the paper are in the setting of a complete Riemannian

manifold M. We impose the following two standard conditions on M:
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Condition (1): There exists a constant Cp > 0 such that for any ball B(x,r),

xg € M, r >0, and f € C*(B(xg,r)),

/B 1 el e < / V12 da, (3.7)
0,7

B(zo,r)

where

1
. / f dz.
@0 B0, )| Jn(eon
Condition (2): There exists a constant C* > 0 such that for any ball B(x,r),

x € M, and r > 0,

|B(z,2r)| < C*|B(x,r)|. (3.8)

The first condition is the Poincaré inequality. The second one is the doubling property of
the measure.

We aim to investigate the pointwise time analyticity of solutions to
opu(t,r) — L%(t,x) =0, a € (0,2), (¢,z) € [0,1] x M, (3.9)

where L% is defined as follows. Let A be the Laplace operator on M generating a Markov
semigroup P, which has a density E(t, z;y) i.e. the heat kernel of the standard heat equation

on M. Consider the a-stable subordination of P,
[e.9]
Py ::/ P uy(ds), t >0,
0
where pf is a probability measure on [0, 0c0) with the Laplace transform
o0 «@
/ e u(ds) = e X > 0.

0

Then L is the infinitesimal generator of P®.
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In particular, we will also study the fractional heat kernel p,(t, z;y) and its high

order time derivatives 0Fpa(t, z;y).

Theorem 58 Let M be a d—dimensional complete Riemannian manifold satisfying condi-

tions (3.7) and (3.8) and uw = u(t,z) be a mild solution to equation (3.9), i.e.,
tia) = [ palt.a:9)u(0.3) dy (3.10)
Assume that u is of polynomial growth of order (o —€) at t =0, i.e., for a constant C > 0,
lu(0,2)] < C(1+d(z,0)27¢), 0<e<a, z€M. (3.11)
Then for a constant C' > 0, it holds that

|OFu(t,z)] <

Ck+1kk (1—1—(1(1’,0)0‘_6 1

1 : + t€/a> ,V(t, 2) € (0,00) x M, (3.12)

which implies that u is time analytic in (0, 00) x M with the radius of convergence independent
of x.

We also obtain the time analyticity of the fractional heat kernel in the manifold
setting.

Theorem 59 Let M be a d—dimensional complete Riemannian manifold satisfying condi-
tions (3.7) and (3.8). Then for any t € (0,00), there exist positive constants Ci and Cs

such that the fractional heat kernel po(t,x;y) satisfies:

Clt C2t
< palt, z3y) < :
(d(z, 9)* + OBl d(z,y) + 1) (i, y)* + )| Bla, d(z,y) + /)
(3.13)
Moreover, for any integer k > 0, there exists a constant C > 0 such that
olany 1
|0F pa(t, 25 y)| < (3.14)

T (d(w, ) + 0B, da, ) + 070
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Here we remark that (3.13) is more or less known and our main contribution is (3.14).

Remark 60 [t is an interesting question whether the uniqueness result still holds in the
manifold case under the same growth condition. In the proof of Lemma 65, we use (1.5) as
an explicit formula for LE in RY. However, in M, we do not have such a formula for L® in

(3.9). Therefore, the proof in Lemma 65 does not work in this case.

Now we give an outline of the rest of this paper. In Section 3.2, we investigate
the pointwise time analyticity of a solution of (1.4) in the setting of R? and prove Theorem
53. In Section 3.3, by using the Fourier transform and contour integrals, we derive some
estimates of the fractional heat kernel p, (¢, z), which implies Theorem 56 and Corollary 57.
In Section 3.4, we turn to the setting of a manifold and obtain similar results, Theorems
58 and 59. In the proof, we use the subordination relation (3.58) and the estimates for
the standard heat kernel. Section 3.5 is devoted to some corollaries. One of them is about
a necessary and sufficient condition for the solvability of the backward nonlocal parabolic
equations. Another corollary gives a necessary and sufficient condition under which solutions
to (1.4) or (3.9) are time analytic at initial time ¢ = 0. Also for the nonlinear differential
equation (3.85) with power nonlinearity of order p, we prove that a solution u = wu(¢, ) is

time analytic in ¢ € (0, 1] if it is bounded in [0, 1] x M and p is a positive integer.

3.2 Nonlocal Parabolic Equations in R?

In this section, we prove Theorem 53 in the setting of R%. First, in Subsection
3.2.1, we prove that the fractional heat kernel p, and the mild solution u = u(t, z) to (1.4),

i.e. (3.10), are analytic in time. Next, we prove that u is the unique smooth solution in

61



Subsection 3.2.2. Finally, we finish the proof of Theorem 53 in Subsection 3.2.3. The proof

is divided into several lemmas for easy reading.

3.2.1 Time Analyticity of the Fractional Heat Kernel p, and Mild Solu-

tions

Lemma 61 Assume that k(-,-) satisfies (1.6) and (1.7). Then (3.1) is true. Moreover, if

the mild solution
u=u(t,r) = /Rd Pa(t, z;9)u(0,y) dy

is of polynomial growth of order o — € as in (3.2), then (3.3) holds.

Proof. From [11, (1.8), (1.14), and (1.10)], there exist constants C7 and Cy such that for
any t € (0,1] and z,y € R,

Clt C2t

= <pal(tz;y) < - (3.15)
(# + o — y[)** (1 + o — y[)**
and
Ca
|0tpa(t, z;y)| < —. (3.16)
(o + o — y)*F

Thus the conclusions of the lemma are true for £ = 1. Now we proceed by induction. For

any integer k > 1, we assume that

CF(k — 1)kt 1
th—2 (tl/a + |x —y

107 pa(t, 3y)| < t e (0,1].

|)d+oc’

Without loss of generality, we may assume that Cy < C''/2. Using the semigroup property

and (3.16), for any ¢t € (0,1] and 7 € (0,t), we know that

O pa(t,z;y) = L Opalt =7, ; 2)05 py (7, 25 y) dz.
R
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Therefore, by (3.16) and the inductive assumption, it holds that

Ck+1/2 k—1 k—1 1 1
bt < g | i
T Re (¢ =)Vt o —2)7 (7 + [y — 2])
(3.17)
_ (k=1)t
Then for any t € (0, 1], we take 7 = ==,
On one hand, if t > |z — y|“, then we have
Ck+1/2(l{7 _ 1)](2—1 1 1
po(t, zy)| < / dz
197 pact: 739 Th=2 rldte)/e fpa ((t—7) e+ \:c—Z’)dJra
k+3/4 k—1
_C Ik —1) 1 1 (3.18)
- Tk=2 rldta)/at — 7
Ck+7/8kk 1 Ck+1pk 1
<
>~ tk,‘—l t(d-l—()é)/oz — tk—l (tl/a + |LU _ y|)d+a

provided that C' is sufficiently large.

On the other hand, if t < |x — y|, by (3.17) and

RdC{z:|x—z|Z|x;y‘}U{z:|y—z|2|$;y|},
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we have

|afpa(ta$§y)|

Ck+1/2 1 1

k 1
/ dta ara
sle—z>la—yl/2} ((t — 7)YV + |z —2|)"7 (7Y + |y — 2])
Ck;—‘rl/Q k‘ 1 1 1
zly—2>le—yl/2} ((t = 7)YV + |z — 2]) 7" (7 + |y — 2])
Ck+1/2(k )k’ 1 1
—k—2 1o d+a/ 1o ara 0%
((t =)Mo o —yl/2)7 Hale—zize—yl/2) (T + |y — 2)
CFHL/2() _ )k—1 1 1
+ (k72 ) dta o 4z
T (TV/e + |z — y|/2) {=ly—2|>|z—y|/2} ((t )Y e — Z|)
Ck+3/4(k _ l)k‘fl 1 1
L (s e I
Ck+3/4(k _ 1)k—1 1 1
Th=2 (Tl/a+|x—y|/2)d+at_7'.
(3.19)
Noting 7 = @ and t < |z —y|% by (3.19), we can see that
COk+7/8 1k 1 Ck+1Lk 1
|0Fpalt, z3y)| < == < . 3.20
t th—1 |x_y|d+a th—1 (tl/a—i-‘.%'—y‘)dJra ( )
The combination of (3.18) and (3.20) completes the induction and gives (3.1).
Next we prove (3.3). We claim that
uta) = [ paltzs)u0.) dy (3.21)

the proof of which is postponed to the next subsection. Then we have

Ohutta) = [ obpa(t.a:)u(0.0) dy.
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This together with (3.1) implies that

Pluta)| < [ 19Fma(t,aia)lfu(0.0)| dy

Ck+lk‘k 1
< [ S (L [y ) dy

Ck+1k.k 1
S 1+ xa—e+ T — a—€ d
= e T e

- CkJrlkk l_i_‘x’afe 1
= k-1 ( t ts/a>’

i.e., u is time analytic when ¢ € (0,1]. m

3.2.2 Uniqueness of Solutions

In this subsection, we prove that the mild solution

utia) = [ polt.aip)u(0.9)dy

in Theorem 53 is unique among smooth solutions under the growth condition (3.2). This
will imply (3.21). The proof is based on Propositions 3.4 and 3.5 in [14], which we recall
here for the reader’s convenience. The idea is that once a solution is in C7 with a small
v € (0,1), then it is in C* with « € [1,2).

The first lemma is about the case when « € (1,2).

Lemma 62 (Proposition 3.4 in [14]) Let w¢(-) be a modulus of continuity of a function

f = f(t7 :Z:) n Q3/4(1a 1‘0), that is
|f(ta IL‘) - f(t/,l‘,)| < wf(max{\x - ZL‘/|, |t - t/|1/a})7 V(t,l‘), (t,a ZL‘/) S Q3/4(171'0)7
where Q. (t,x) = (t — r*,t) X B.(x). Assume that u is a smooth solution to

u(t,x) — LEu(t, x) = f(t,x), a € (1,2), (¢t,z) € [0,1] x RY,
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and u € C7([0,1] x R?) for some v € (0,1). Then it holds that

[4]8:01 /2 (1,20) F [P a1 /0,01 1,20) + 1050ll L (@1 1.20))

< CHuH'y/a,'y;[O,l]XRd +C wa(2_k)

k=1
for a constant C > 0. Here
ul?, o) (= sup u(t, )] ce zo))s
Waquatan = Sub 6l oo )
Duia1)/0.01/a(10) = eBual wwu(”x”“‘**”/a((1—<1/2>a,1>>’
x 1/2(T

and ||ully/aq0,1]xre 48 the CZéaﬂ norm in [0,1] x R%.
The second lemma is about the case when o = 1.

Lemma 63 (Proposition 3.5 in [14]) Assume that u is a smooth solution to
ug(t,z) — LEu(t,z) = f(t,z), a =1, (t,z) € [0,1] x RY,
and u € C7([0,1] x R?) for some v € (0,1). Then it holds that

[DU] oo (@ (1a0)) + 10etll Lo2(Qy n(1.20)) < Cllullyypo e + C Y wr(27F)
k=1
for a constant C' > 0.

The proof of the uniqueness starts with the following lemma.

Lemma 64 Assume that x(-,-) satisfies (1.6) and (1.7). For equation (1.4), suppose that

a smooth solution u = u(t,x) is of polynomial growth of order a — ¢, i.e.,

lu(t,z)] < C1 (14 |2|*7),¥(t,2) € [0,1] x RY, a € [1,2), € € (0, ). (3.22)
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Then for a constant C > 0 and for any o € R?, it holds that

W50, 5 (100) < C (L4 |20[*7) , €>0, (3.23)

where
(W10, p1m0) = s ults )l Lip(s, (o))

te(1—(1/2),1)

and Lip means the Lipschitz norm.

Proof. From Proposition 2.4 of [18] or Theorem 7.1 of [52], there is a small constant
v € (0,1) such that

() j07:@7 6 (1.0) < Cllull oo ((0,1); 4 (wa))s (3.24)

and

|u(t, )|
oo . w, = 7d
[ull oo ((0,1):21 (wa)) t:gﬁ) /Rd 1+ |z]dte T

_ 1
where Wo = W

By (3.24), the growth condition (3.22), and the space translation z — x+xq for any zg € R?,

we have

lu(t,  + xo)|
(U] /031 s(1,00) < € sUD /Rd de

te(0.1) (3.25)

(14 |z|*€ + |zo|*€) _
de < C(1 a9,
Rd 1 + \x!d"‘o‘ r= ( + ’$0| )

<C

The next step is to prove

[u]i;Qs/s(l,a:o) < O(1+ [mo])* (3.26)

We modify the proof of Theorem 1.1 of [14].
Take a cut-off function n = n(t, z) € C§°(Q7/5(1, w0)) satisfyingn = 1in Q5 6(1, 7o)

and ||@! Din||~ < C when i € {0,1,2} and j € {0,1}.
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Let (t,), (', 2") be two points in Q3/4(1,x0) and let v(t,z) := u(t,z)n(t,z). Then

in Q3/4(17 fUO),

0w = ndyu + Onu = nLiu + Omu = LEiv + h + Onu, (3.27)
where
h = gLfu — Liy = p_v_/ §(t, 2, y)r(z, y)
“ “ Rd [y|d+e
and
£t x,y) = ult,z +y)(n(t, ©) —n(t, z +y)). (3.28)

We are going to apply Lemma 62 or Lemma 63 to (3.27) in Q3/4(1, 7o) and obtain
corresponding estimates (3.26) in Q5/5(1,70). To this end, we only need to estimate the
Holder semi-norm of h in Q3/4(1, o).

First, when |y| <5/6 —3/4 = 1/12, by (3.28), we have

§(t @, y) =&t 2',y) = 0. (3.29)
By the assumptions on 7 and (3.28), it holds that

o Clu(, 2’ +y), |yl =1
€(t, 2", y)| < (3.30)
Clut, 2" +y)llyl, 1/12 <[yl < 1.

Now by the triangle inequality, we deduce that

|h(t7 1‘) - h(tlv le)’

|(£(t7 Zz, y) B g(tla $/7 y))/{)(l’, y)|
= /Rd |y|*e v

~ (3.31)
I

+/Rd ’E(t,,l'/,y)(li(l'/,y) — /i(‘r?y))‘ dy

|y’d+a

17
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By using (1.7), (3.22), (3.29), and (3.30), we have

Clu(t', 2’ + Kolz — 2|8 Clu(t', 2" +
lyle(1/12,1) ly| lyl>1 Y|
</ CL+ |20l + [y e — |7
= Jyle/12,) |y|d+a—t

01—|-ZE a—€_|_ya—5 e
o f SR e aay < 0+ e -
y|>

(3.32)

Now we estimate I. When 1/12 < |y| < 2, by the fundamental theorem of calculus, we have

1
E(t,x,y) —E(t, 2 y) = —y/ (u(t,z +y)Dn(t,x + sy) —u(t',2’ +y)Dn(t', 2" + sy)) ds.
0
Therefore, by (3.22), (3.25), and the triangle inequality, it holds that
|§(t7 €z, y) - 5 (t/7 IE/, y) |
1
<yl / u(t,z +y) —u(t', 2" +y)| |Dn(t', 2" + sy)| ds
0
1
+ [yl / u(t,x + )| | Dyt x + sy) — Dn(t', 2" + sy)| ds
0
< Clyl |u(t,z +y) —u(t',a" +y)| + Clyllut,z + y)| (|z — 2'| + [t = 1'])

< Clyl (14 fol*™) (| = @' + |t = ¢17) + Clyl(1 + Jao]*~) (Jo = @'| + [t = ¢])
(3.33)

When |y| > 2, by (3.28) and (3.25), we have

€t z,y) — € (U2 y)| = |ult,z+y) —u (2" +y)]
(3.34)

< O+ fool ™™ + ly1*™) (Jo = 2] + [t = 7).
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Thus, by (1.6), (3.33), (3.34), and (3.29), we infer that

1 a—e Y t_t/'y/oc
i< | Clyl(L+ aol" ™) (1 = /1" + |t = 07)
lyle(1/12,2) |y|dte
1 a—€ - t*t/
+/ Cly|(1 + [zo )C(l\fa z'| + | I)dy
lyle(1/12,2) Y|

(3.35)

Jr/ C(1+ [ao|*™ + [y|*™) (lo — a'|Y + |t — ¢'[7/) J
ly|>2 |y|d+e

< C(1+ o) (lo =27 + e — /).

Plugging (3.32) and (3.35) into (3.31), we deduce that
h(t,@) = b(t',2')] < OO+ [aol*™) (o — a7+t =]/,
where 4" = min{~, 8}, which implies that we can take the modulus of continuity as
wp(r) = C(1 + |zo|*)r?
for any r € (0,1). According to Lemma 62, it follows that

th(W) ZC (1+ Jo]*~) (Wil)yscamo“). (3.36)

Now we consider two cases.
Case (1): a € (1,2). In this case, we apply Lemma 62 to (3.27) in Q3/4(1, 7o)

with a scaling argument. From (3.25) and (3.36), we have

[Vliss(120) < Clltllieeopxre + Cloly oo e +02“h <2k+1>

< CHuHLOO(QNS(lJO)) + C[u]W/ameg(lﬂCO) + C(1 + |zo|*™) < C(1 + [20]*7),
by noting that v = 0 outside of Q7/5(1,20). Because n = 1 in Q5/3(1,0), we get (3.26)

immediately.
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Case (2): a = 1. In this case, we apply Lemma 63 with a scaling argument.

Using (3.25) and (3.36), we have
= 3
1Dl oo Qs s (1a0)) < ClIVllLo0 ((0,1)xRe) + ClV)y sj0,1)xRe + C Y wh et
k=1

< CHUHL‘X’(Qws(on)) + C[u]%’}’;Qws(l,Io) + C(1 + |20|*™¢) < C(1 + [20]*7),

which implies (3.26) again.
Finally, by the interpolation inequality, (3.26), and (3.22), we arrive at

a—€
Y

[T, s 120) < Clultiqs s (.20) T Cllullzoe(qs s 1a)) < C(1+ |zol)

which finishes the proof. m
Now we are ready to prove the uniqueness part of the theorem, which is stated as

follows.

Lemma 65 Assume that k(-,-) satisfies (1.6) and (1.7). Then there is an unique smooth
solution uw = u(t,x) to (1.4) satisfying the initial data u(0,-) and the polynomial growth

condition (3.2), which is given by

u(t,x) = /Rd palt, 2 y)u(0,y) dy, ¥(t,z) € (0,1] x R%.

Proof. By linearity, we just need to prove that if a smooth solution u satisfies (3.2) and
u(0,z) = 0, then u = 0.

Fix (tg,z0) € (0,1] x R%. By shifting the coordinates, we may assume zq = 0 and
it suffices to prove u(tg,0) = 0. Now let L* = (L%)* be the adjoint operator of L! and let

pi(t,z;s,y) be the heat kernel of L*, which by definition, satisfies
opl(t,m;8,y) — L*pi(t,z;8,y) =0, t > s and 2,y € R?
(3.37)
Pa(s,x;s,y) = 6(2,y).
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Because the heat kernels of L% and L* are independent of time, we have

pa(t#ﬁSSay) :pa(t_svx;ovy)a pZ(taxSSay) :pg(t_svx;ovy)' (338)
It is also known that
palt,;8,y) = pa(t,y; s,2), t > s, (3.39)

which can be seen as follows. For any tg, so € (0,1) with so < tg, using (3.37) and (3.38),

we have
to
[ [ Eipatt. .00t to. 250, 0) e
S0 Rd
to
= / / Lipa(t — s0,2;0,y)p5(to — £, 2,0, x) dzdt
S0 R4
to
:/ atpa(t—S()’Z;O,y)pZ(tO—t,Z;O,x)dZdt
S0 Rd

to
= pa(to — s0,;0,y) — pi(to — 50,430, 2) + / Pa(t — 50,2;0,y)0ips (to — t, 2;0, 1) dzdt.

S0

By the definition of the adjoint operator, (3.37), and (3.38), we reach (3.39). The integra-
tions above are justified due to known decay estimates of p, and p7,.

Then we take a cut-off function n = n(x) € C°(B2(0)) such that for a constant

n=1in B1(0) and |Dn|+|D*p| <C. (3.40)
We test (1.4) with p},(to — ¢, 2;0,0)n(x/R) and use (3.37) to get that
to
0= [ [ ult.owilto — t.a:0,0)n(/ ) des
0 JRd
to
—/ / Liu(t,x)ph(to — t,z;0,0)n(x/R) dxdt
0 R4
to
= u(tp,0) + / / u(t, z)(0wpy,) (to — t,x;0,0)n(x/R) dzdt
0 Rd
to
—/ / Liu(t, z)ph(to —t,x;0,0)n(z/R) dzdt.
0 Rd
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Therefore, using (3.37) and the definition of the adjoint operator, we infer that

u(to, 0) =

[zt a) it — tax0.00@/R) = itto = t.2:0.0)L% (ut.a)n(a/ R)) dadt
) /to / / u t T+ z pa(to —t,x;0, 0) (’f}(l‘/R) — n((x + z)/R)) Ii(iL‘,Z) doddt
Jo Jra Jre |

Z|d+a
to : - —
v./ / / u(t, y)ps(to t,x,O,O)(n(w/ﬁ) n(y/R))k(z,y x)dyd:vdt,
0 JrdJRd oyl

J1
(3.41)

where we took z = y — x in the last step. In the sequel, we omit p.v. when there is no
confusion.

Next, we aim to show that J; — 0 as R — oo, treating the cases o < 1 and o > 1
separately.

Case (1): a < 1. This case is simpler since the singularity in the integrand is

weaker. Using (3.2), (1.6), (3.39), and (3.40), we have

le/to/ / u(t, y)pa(to —t,2;0,0)(n(z/R) —n(y/R))k(z,y — x) dydzdt
0 JREJRA\Bp

|z — yl|dte

o | u(t, y)pa(to — t,7;0,0)(n(z/R) — n(y/R))k(x,y — z)
+/ /Rd /BR dydxdt

‘1‘ _ y’d—I—a

v —t,0;0,z) o
= C/ /d/d — y|dta (14 |y|*™°) dydzdt
R4 JRI\BR(z
to
pa t 0 O l‘) .
14 |y|*™°) dydzdt
R/ /Rd /BR (2) |x — y|d+a 1 ( ’ | )

to
pa t 0 0 {L‘) a—e e
<C/ /d/d —y[dta (1 + |z|* + |z — y|* ™) dydxdt
R JRA\ B (z

to
Palto — t,0;0,x) o _
1+ 2|+ |x — y|*™°) dydxdt
R/ /Rd /BR (z) |x_y|d+a ! ( | | | | )

fo 1 1 a—e
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where for the last step, we used (3.15) and

/ Palto — 1,0;0,2)(1 + [2°~) da
R (3.42)

C(t _t) a—e —€/x
S/ ((to—t)l/iﬂxl)d*“(”’x' )dz < C(1+(to—t)1 / )

Case (2): a > 1. In this case, by the substitution z — —z in the second line of

(3.41), we have

_ [P u(t,x — 2)pg(to — t,2;0,0) (n(z/R) — n((z — 2)/R)) k(z, 2)
J1 —/0 /Rd /Rd dzdxdt.

|Z’d+a

where we used k(z, ) = #(z, —z) in the last equation. Then by
u(t,z + z) <n (%) —77(96;2)) +u(t,z - 2) (77 <%) 7 <:r;22>>
— (ult,x — 2) — ult,z + 2)) <n (%) -n (fc]—%z»
u(t,z + z) <n <x£'z) —2n (%) +n <xéz)>

we can write

dzdxdt

/tﬂ/ / u(t,x — z) —u(t,z + 2)) (n(%) — n(E52)) Kz, 2)p}(to — t,2;0,0)
R JRd |2

|d+a

J2
/“’/ / u(t,z +2) (n(*57) = 20(5) + n(*F)) K@, 2)palto — 1,2:0,0)
it |Z’d+a .

J3

For the term J3, by (3.2), (3.39), and (3.40), we deduce

to t
1T < C 0:0:2) (1 4 Jafo=e 4 |20=¢) dadadt
d+a
R4 JRA\BR(0) Z|
fo —t,0;0,z)
1 e 7€) dzdxdt
Rg/ /Rd/BR z|d+0“2 (14 |z|* 4 |2|*7€) dzdx
to 1 1 a—e
SC/ /pa( —t,0;0, )<R6++gﬂ>dxdt—>0as1%—>oo,
0 JRd
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where we used (3.42) in the last step.

Finally, we estimate Jo. When a > 1, by (3.2), (3.23), and (3.42), we have

fo to —t,0;
!szgc/ / / Dollo ~H,00.2) (1 4 |yjae 4 |ofo=) dadat
0 JR JRI\BR(0) |2

c [P a(to —t,0;0, _
+2/ / / Pallo ~60:0.2) (1 4 |10~ dzdudt
R* Jo  Jra JBRr0) |2|

C [to «(to — t,0;0, B B
" / / / Pallo dra—1 x)(l + |2|*7C + [2]*7) dzdxdt
R Jo JriJBropsro) |7l

~~

Ja

to 1 1_|_|:E’oz—5
<C wlto —1,0:0,2) [ — + — 1) guat
= /0 /de(() x)<Re R ) &z

to
+ C/ / palto —,0;0,2) (1 — R'"™*)(1 + |29 + (R'™° — 1)) dxdt
R 0 Rd

—0 as R — oo.

When o = 1, we only need to estimate Jy slightly differently. By (3.42),
c o 1—e 1—e¢
Jy < ) pi(to —¢,0;0,2) (In(R)(1 +|z|" )+ (R —1)) dz -0 as R — oo.
0 R4

Combining these two cases and plugging into (3.41), we get u(to,0) = 0, which finishes the

proof. m

3.2.3 Completion of Proof of Theorem 53

Proof. We have proved part (a) and (b) of Theorem 53 in Lemmas 61 and 65.
Thus it remains to show part (c). First we fix a number R > 1 and let € Br(0),t € [1—0, 1]

for some small § > 0. For any positive integer j, Taylor’s theorem implies that

i-1 i 1y
ult,z) = 3 opu(t, ) = D g (3.43)
1=0

7! 4!
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where s = s(z,t,7) € [t,1]. By (3.3), for sufficiently small 6 > 0, the right-hand side of

(3.43) converges to 0 uniformly with respect to = € Br(0) as j — oo. Hence,
t — 1
Z@ju 1,x) )

i.e., u is analytic in time with radius 8. Denote a; = aj(z) = & u(1,z). By (3.3) again, we

have

1 J — 1 J
Opu(t, ) Zaﬁl - ) and Liu ZL”‘aj - ) ,
where both series converge uniformly with respect to (¢,z) € [1 — 4, 1] x Bg(0). Since u is

a solution of (1.4), this implies that L}a;(x) = aj41(x) with
Jaj ()] < CTH7 (14 [a] 7).

This completes the proof of Theorem 53. m

3.3 Fractional Heat Kernel Estimates on R?

In this section, we estimate the time and space derivatives of the fractional heat
kernel pq(t,x) for (1.8). The main tools are the Fourier transform and contour integrals.
We first state and prove the following lemma, which is needed for the proof of Theorem 56

and Corollary 57.

Lemma 66 (a) If >0, 8>0, and t > 0, there exist constants C, C1, and Cy such that

o CiC2p8  © B+d
—tg|* iz | ; 1~2
\/Rde e’ )¢ de| Smln{ P ,t(Ber)/aF( o > ) (3.44)

where I' is the gamma function.
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(b) Let B = (B1, B2, . . ., Ba) where 5; is a nonnegative integer with j € {1,2,...,d},

then we have

‘ o+|B] a+|B)
|/ e IE1% it B e | gmin{Cl(32 (at |7t __C F<|ﬁ|+d>}, (3.45)
Rd

]t 1B+ B+ D/ o

d
where &8 = 151 52'--§§d and |B] == > Bk.
k=1
Remark 67 When t = 0, the integrals in (3.44) and (3.45) can be understood as the limit

as t 0.

Proof of Lemma 66. The bound ;55T (%:4) on the right-hand side of (3.44) is

easily obtained as follows

_ a 4 _ o C B d
g« jikw| ¢ 1B tl¢] Be —
\/Rde e7l¢ B de| s/Rde €[ de t(MWF( u >

Similarly, the bound t(lmfd)/aF ('ﬁgd) on the right-hand side of (3.45) holds because

el el C 18] +d
tlE|* gikx ¢ B gl |18l ge —

We shall use the technique of contour integrals to obtain the first bounds in (3.44)

and (3.45), respectively. To simplify the calculation, without loss of generality, by rotating

i — (lzl Jal lz]
the coordinates, we assume that x = ( S T \/E)'

For any point § = (&1,&2,...,&4) and for any j € {1,2,...,d}, we consider ¢;
as a complex number with modulus 7; and argument (angle) ;. For a large R > 0 and

¢ = min{n/16,7/(16c)}, consider the regions in the complex plane:

PR = {me| m € (0, R),v € [0,4]}

T2 = {e’| mo € (0.R). € [x — 6.7}
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and denote

cd = {Rew‘ b e [o,¢]} and 12 = {Rew\ b el — qb,ﬂ]}.

We calculate the contour integrals of the functions e~*1* %67 |¢|# and e~tI" i€z ¢B
on the boundaries of the sectors Fg) and Fg). For the term [£|® in the above two functions,

where a = « or 3, we extend it to be a holomorphic function

J a/2
(Z f,%) in C,
k=1
which needs to be specified by choosing suitable branches. On one hand, when Re(¢;) > 0,
we select the branch so that the function w = 2%2 maps the sector with angles [0,2¢)] to
the sector with angles [0, a¢]. On the other hand, when Re(¢;) < 0, we make the function
w = 2%? map the sector with angles [—2¢, 0] to the sector with angles [—ag, 0].

The main idea is to use the contour integrals to equate the integrals on the rays
1j = 0,7 and the integrals on the rays 1; = ¢, m — ¢, respectively. The following are some
preliminary calculations on the rays ¢; = 5 — sgn (Re(;)) (g — gf)) and the arcs Cj(%l) or
C’g), respectively. Here sgn (-) is the sign function.

First, we consider the case when ;’s are on the rays 1); = § —sgn (Re(&;)) (g — (;S),
where we can write & = n; exp (5 — sgn (Re(§;)) (3 — ¢) i) with n; € [0, R]. In this case,

for any fixed & € TW UTY) | where k € {1,2,...,d}, we have

d a/2 a/2
(Z 513) — | e2sen (Re(ﬁj))iﬁ¢n]2, + Z 5}% 7 (3.46)
k=1 k)
where a = « or 3, and
i€r _ coxn [ W(E_o)i) a2l Ll A
e exp [ iexp ( 5 — sen (Re(&5)) (2 gb) z) nj 7 + %sz\/a . (3.47)
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Notice that if 1, = 5§ —sgn (Re(&)) (g — qb) for all k € {1,2,...,d}, it holds that

a/2

d a/2 d
(Z &3) _ (Z n]ze?sgn (Re(Ek))imﬁ) (3.48)
k=1 k=1
and

% = exp (@'kzi:lexp <7;Z —sgn (Re(&)) (g - qb) 2) Uk%) . (3.49)

Next, we treat the case when §; is on the arc C’g) or C’g), respectively.

By the definition of the regions Fg) and Fg), for any fixed & € Fg) U Fg), where
k # j and v; € [0,4] U [ — ¢, 7], the angle between R?e*¥i and Dkt €2 is less than /2,
so we have

[R2e% 43 62| > | R, (3.50)
ki

Moreover, since |arg(£2)| < 2¢ for any k # j, where arg(-) is the argument (angle), it

follows that

‘ arg (RQG%W + Zfz)’ < 2¢.
k#j

This together with (3.50) implies that

. o2
R cos (ap) < Re (RQeQWj + Z 5,%) . (3.51)
k#j
. _t(zd7 52)&/2 itw d 2 5/2 (]_)
Now we show that the integral of e k=1%k) e (Zk:l §k> on the arc Cp,

or Cg) tends to 0 as R tends to infinity.
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On the arc Cg), we can write &; = Re™s, where ; € [0, ¢]. By (3.46), (3.47), and

(3.51), we have

P d B/2

: - d V%7 iex

i | [ e E e (Z&%) %;
R k=1

< lim exp [ —t(R%e*¥i + E 2ya/2 exp | iRe™i 2L 4 E i

k#j k#j
5/2 (3.52)
X (R%Qi‘”ng,%) ‘z’Rewi dip;
k]
. B/2
<Clim | e tht cos(ad) | RF 4 ;w Rdy; =0

for any fixed & € T UTY, where k # j.

Similarly, on the arc C’g), where & = Re™i and v; € [1 — ¢, 7], we have

4\ B2
a/2 .
Jim_ /C " e (i )" pite (Z 5,2) d¢;| =0 (3.53)
R k=1

for any fixed & € Fg) U Fg)7 where k # j.

Combining (3.52) and (3.53) implies that we can apply contour integral to §; if

& € TWUT® for all k # j. Therefore, by (3.46), (3.47), (3.48), (3.49), (3.52), and (3.53),
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using d times of contour integrals, we infer that

/Rd e*t\€|aei51‘£|ﬂ d¢

d a/2
- ¥ /R B / exp( <e2mgn(sl)¢ng+zgg> )

sgn (§1)= k=2
X exp (z exp (m —sgn (Re(&)) (I - ¢> Z) Ed: ‘)
2 2 P \[
)

NP
% (e%sgn (fl)qﬁn% + Z§z> exp <7; — sgn (Re(& (

= ¥ :Z /Rexp(t<ze2zsgn(€k >a/2)

sgn (§1)=%1  sgn (§4)=

X p('zd: p(“—g (R(i))(ﬁ—@') m)
exX 2 4 exX B Sgn e(Ck 9 {2 nk\/(—i
k=1 e

d .
x (; e2isen 03’“”77;3) kHIexp (7; —sgn (Re(&)) (g — ¢>) Z) dn,

where R{ stands for the first quadrant of R and dn = dndns - - - dny. Plugging
a/2

d
Re (Z p2isgn (Ek)%h%) > |77|O‘ cos (Oé(b) s
k=1

> dmdgs - - - d&q (3.54)

and

d .
exp (z ;exp <2 —sgn (Re(&)) (5 — qb) z> nkl/%> ' = exp ( Zsm \|[|)

into (3.54), we have

d

| / e e eitr P e < 24 / e‘t'"‘“C°S<a¢>e_kglsm(w”k'z‘/ﬂlnlﬁdn
R R{
d Va4
co | ot ontany O Z
d
< CZ/ _tlnk‘a COS(Q¢) —Sln((b)ﬂk'x‘/f Bd’r/k;H/ —SIH((b)nl'x‘/\/»dn
1#k

Y / o cos(ad) = sin(@plal VA5, I,
0

- ‘x’d—l ‘.’L‘|d_1
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where

I— /0 o—tr° COS(aqb)e—Plz\/\/Epﬂdp < /0 e—ﬂ\xl/\/apﬁdp < 2 rB+1).
Therefore, we infer that
—tlE|* gigr |18 g¢| < C1C5 6 (3.56)
‘ Rde e~ ¢ 5‘ < W :

for some constants C1 and Cs, which is the first part on the right-hand side of (3.44).

Finally, we prove (3.45), which is a consequence of the following Claim.

Claim 68 For any B3 = (Bi1,...,04), where B; is a nonnegative integer, there exists a

constant C > 0 such that

(a+|B)>+AIL
,x|a+\ﬁ\+d

|/ e*tlﬁ\“eiﬁwéﬁdﬂ < ClBl+atl
R4
We prove this claim by induction. When |3| = 0, by integration by parts with respect to

&1, we see that

’/ e—t|§\ ezfxdé‘ _ Ckf ’ e—t|§| . él_ ez§$d£|
Rd lz| ' JRa ifgFe

Then using the method of contour integrals similarly to (3.55), we find that

—ele 81 ierge) o C
| Rde ,l‘|§’2—o¢e ¢l < |z[otd—1’
which implies
o Ct
—tlE]* ilT ge| < .
| Rde erdg| < |z[o+d

Without loss of generality, we assume that 8; > 0. For any positive integer k, we assume

that Claim 68 is true for any |3| < k. When |3| = k, by integration by parts with respect
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to &1, the induction assumption and (3.56), it holds that

| / e tEl® eifxgﬂdg‘

<V / o tel foﬁlgﬂdd taf‘ o el ige S eBe]
|z

2
\/30a+|g| L (a+ 18] — 1)etisl= 1t+tafclc“+'5| Yo+ 18] — 1)etiBi-1
|z |z[o-+HBI-1+d 7] |z[o+BlF+d=1
< cotlaie (@ £ BN
[z|o+IBI+d

Thus, we finished the proof of Claim 68 and therefore completed the proof of Lemma 66.
[ ]
Now we are ready to embark on the proof of Theorem 56.
Proof. By (3.4), the heat kernel p,(t,z) of the fractional heat equation (1.8)
satisfies
hpa(t.o)] = Old.0)]| [ e epotag],

which implies (3.5) by part (a) of Lemma 66. From the first bound % in (3.5),

we see that p, is of Gevrey class in time of order o when = # 0. By the second bound

CF(

tk:+d/a

) in (3.5), pq is analytic in time when ¢ > 0.
Furthermore, for any positive integer k, by (3.4), we have
1% pa(t, )] < C(d, a) Z| *oa(t,z)| = C(d, a) Z‘/ el stﬁkdf‘
|k|=k |k|=k
where k = (ky,. .., kq), ¢ = . § , and we sum over all the k satisfying |k| = k. By

(3.6) and the fact that we have (k+d 1) choices of k satisfying |k| = k, we infer that

_1 a+k a+k
I8’;pa(t,m)|§0(d,a)<’“+d )min{clcz (a+ k)t C© F<k+d>},

d—1 |x‘a+k+d ’ t(ker)/a a
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k+a k+a
which implies (3.6) for a sufficiently large constant Cy. By the bound CICQII‘Q(E,;O;) ' in

(3.6), pqo is analytic in space at |z| # 0. By the other bound t(,ﬁ%r () in (3.6), po is

«

of Gevrey class with order 1/« in space when t > 0 for any 2 € R%. m

Remark 69 Theorem 56 is consistent with the fact that the heat kernel of the heat equation
Ou — Au = 0 is of Gevrey class of order 2 at t = 0. Besides, when o = 1, it is well known
that py(t,z) = ——Yt———. By a direct computation, we see that pi(t,z) satisfies all the

(t24|z|2) D/

results in Theorem 56.

We end this section by proving Corollary 57.
Proof. By Theorem 53 and the growth condition (3.2), we know that there is an

unique solution to (1.8):

u(t.o) = [ paltiz = p)ul0.y) dy
R4
Therefore, by (3.6) and (3.2), we infer that

hutta)| < [ 19kpalta = )llu(0.)] dy

C k+d .
g/Bl(x)t(Hd)/ar( =0) eaa+ ol dy

ClC§+a(k + a)k—f—at B
+/ Ci(1+ |y|*“™) dy
RABy(z)  |T —yloThTd (™)

a—e L |a—e
< (M e el e =y dy

O +]a"=)  (k+d
— t(k+d)/a

C(L+|z|*¢) (k+ d) N / Chratl(k + a)ktet
RA\B ()

- )—|—Ck+a+2(k'+a)k+a(1—|—|:L‘|a_€)t,

which implies that u is analytic in space when « € [1,2) and u is of Gevrey class of order

1/a in space when a € (0,1). m
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3.4 Fractional Heat Equation on a Manifold

In this section, we prove Theorems 58 and 59 in the setting of M, which is a
d—dimensional, complete Riemannian manifold.

First we recall a well known lemma.

Lemma 70 Assume that Condition (3.8) is satisfied. Then for any D > 0, > 0, and

t > 0, there exists a positive constant C such that

_ Dd(z,y)?

e ! )8 B/2
/M|B($,\/f)|d( vy)P dy < Ct77=. (3.57)

Proof. We give the proof for completeness. By Condition (3.8), we have

/ d(x,y)’ dy
M

|B(x, V1)
/ e—Dd(x,y)Q/td( s —Dd(x,y)2/td( 'y
) |B(z, V)| M\B(z,vi) |B(x, V1)
< Cth/2 Z/ Do /td( 12 d
e+ ———F=—d(z,y)" dy
k-1 i<d(ey)<2tvi | B(x, V1))

<oy Z'B“f" D k)

<Cth? 4 Z CFe D@ 9k /1) < 01812,
k=1

where C* is the constant in Condition (3.8). m
We are ready to prove Theorem 58.
3.4.1 Proof of Theorem 58

Proof. It is well known that there is a connection between the heat kernel E (¢, x; y)

and the fractional heat kernel p, (¢, x;y), which can be found, for instance, in [5], i.e.,

paltaiy) = / E(s, 2 y)mi(s) ds,
0
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where 17;(s) is a density function of uf* satisfying
me(s) = 72y (%),

Therefore,

pa(t,az;y):/ E(s,x;y)t”/am(tﬁ/as) d3:/ E(t2/as,a;;y)m(s) ds. (3.58)
0 0

It is also known that there exists a constant C' such that

—a/2

0 < mi(s) < Cs 10257 (3.59)

which can be found, for instance, in Theorem 3.1 of [5], Theorem 37.1 in [13], or Lemma 1
of [29].

Then for any ¢ > 0, by (3.10) and (3.58), it holds that

u(t,x) = /M/OOO E(t*%s, z;9)m (s)u(0, y) dsdy. (3.60)

By Theorem 5.4.12 of [38], Conditions (3.7) and (3.8) imply that there exist constants C,

dy, ds, D1, and D5 such that

dye—Did(@y)?/t doe=D2d(@y)?/t
- <Etny) < —m——, 3.61
B = PEEY S e ) (361
and
C’e_DQd(xvy)2/t
KE(t, 1Y) < ———Frr. 3.62

86



From (3.11), (3.60), (3.61), (3.57), and (3.59), we infer that

weols [ B/, 2 ) (5) u(0, )| dsdy

o0 —ng(m,y /(t3/ %)
<c / / () (1 + d(z, 0)°=< + d(, y)*) dsdy
t2/a5)|

< C(1+d(z,0)79) / n1(s)ds + C/ 771(8)(t2/0‘5)(a_€)/2 ds
0 0

o)

< C(1 + d(x,0)°) /

m(s)ds + ct's" / s 1ma/2=s72 [(a=€)/2 g
0

0

< C(1+d(z,0)2¢) 4 Ccrla=a/e,

For any integer k£ > 0, we proceed by induction. First, we assume it is true that

_ CFk— 11 /(1 +d(x,00% ¢ 1
k—1 )
|07 u(t, z)| < = < . + tf/a) . (3.63)
Then for any ¢ > 0, by (3.10) and (3.58), it holds that
oFult, z;y) / / O E )%,z ) (s)0F u(r, y) dsdy, V7 € (0,t).  (3.64)
By (3.64), (3.63), and (3.62), we have
[OFult, 3 y)|
C e~ Dad(@y)?/((t=7)*/*s)
2/0‘ ! $)|0F tu(r,y)| dsd
</ / o e, ey MO ] dsdy
Ck+1/2 k: 1 0o —ngxy ((t—7)2/2s) 1 —|—d(:l? O)a—e 1
< ’ dsd
S k= 2t—T / / t—T)Z/as)m(S)( - +T€/O‘> sdy
Ck+l/2 k 1 o0 —ng(a:,y /((t—T)%/%s)
d " dsd
e W e e RV
=0 + I,
(3.65)

where we used the triangle inequality in the second inequality. By (3.57) and (3.59), we
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have

CHH1/2(f — 1)1 /1 + d(z,0)® e~ D2d()?/((1=7)2/%)
I —
' Th=2(t — 1) < T da)/ / V(t = 1)2as)] m(s) dyds
Ck+3/4(k l)k: 1 1+d($ O)
s Th=2(t — 1) < T +7'E/a>/0 m(s)ds
CHH3/4(k — P (14 d(x, 00 1
Th=2(t — 1) T rela )’
(3.66)
and

Ck+1/2 — 1)kl oo p = Dad(zy)?/(t-m)* %)
L = / / d(x,y)* " *m(s) dyds
T Uy =iy W

k+3/4 k—1 oo a—e
Cr+3/4(f — 1) / 2/ )( 12 a2 -l g (3.67)
“t-7) 0
Ck+7/8( _1)k-1
Th— l(t _ T)e/a
Now we set 7 = @ Consequently, by plugging (3.66) and (3.67) into (3.65), we conclude
that
|0 u(t, z; y)|
Ck+3/4(k _ 1)k—1 1+ d(a:, O)cx—e 1 Ck+7/8(k _ 1)k—1
Th=2(t — 1) T Te/e Th=1(t — 1)/
- CFIEF (1 +d(z,0)2¢ L1
= gkl t tela )’

which gives (3.12) immediately. m
The proof of Theorem 59 is divided into two parts: the proof of (3.13) and the

proof of (3.14). We start with the first part in the following subsection.

3.4.2 Proof of (3.13) in Theorem 59

Proof. By Condition (3.8), it is well known that when r < s,

1 log, C*
Bz = (5)

. 1B(z, 5)- (3.68)
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See, for example, Remark 4.2.2 of [60].

Therefore, by (3.58), (3.61), (3.59), and (3.68), we have

pa(t7x§y)
1 —Dad(z,y)2/(t?/%s) u 00 —Dod(x,y)?/(t2/*s)
</ Ce gTima/2g—sT0 ds+/ Ce
0o |B(x, Vt¥/as)|
_ /e
:/1 Ce Dzd(m7y1)2/(t2 s) |B($,t1/°‘)| Ctcagp sl g,
o BtV |B(z,Vi2as)|
/oo Ce—D2d(z,y)?/(t*/*s)
_.|_
1 [B(z, Vs

—1— _e—a/2
51 (:1:/26 s d

s
1 | B(x, Vt2/as)|

11— _s—a/2
1 a/2€ s ds

S

1 C c* 1 —a/2 & C —o/2
< —1-a/2 —s d / —1-a/2 —s d
_/0 |B(I‘7t1/a)|810g20*/28 & S+ ) |B(x’tl/a)|5 € S
C
< —— .
= |B(z, )]
(3.69)

If d(z,y) > '/, letting € = %, again by (3.58), (3.61), (3.59), and (3.68), we get

e [T CePYE @y T ()
pa(tamay)g/o ‘B([L‘,\/Ed(x,y)”( t2/01 > tQ/a d€

Ct 1 €_D2/E —1—a/2
— @r=d
T ) Bavewy© | ©

Ct & e~ D2/¢ —1-a/2
d
8 el Ml ey SR
. ct /1 e~D2/¢ |B(z,d(z,y))|
- d(xay>a 0 |B(l‘,d($,y))| ’B(l‘,\/gd(l’7y))’
Ct e~ D2/¢

Ty / B, d(@,9))]

é-flfa/ng

gflfa/ng

Ct 1 B_DQ/E —1—0{/2 Ct
d
=,y /0 |B(@, d(z,y))|(VE)' e o6 1 4wy B, da. )
< Ct
~ d(z,y)*|B(x, d(z, y))|

(3.70)

Thus, we proved the upper bound in (3.13).

Now we show the lower bound in (3.13). By Theorem 3.1 of [5], there exists a

89



constant sp = so(«) such that

as—l—a/2

m(s) > AT (

o) Vs > so. (3.71)

Without loss of generality, we assume that so > 1 in the sequel. Then we consider two
cases.

When /% > d(z,y), by (3.58), (3.61), (3.71), and (3.68), it holds that

paltaiy) = / E(/%s, 2 y)m (s) ds
0

oo Cdle_D1d(:E,y)2/(t2/as) a2 gy _ /oo Cdle—D1d(:E,y)2/(t2/as) |B($,t1/a)‘ a2y,
so  |Bla,Vi¥/as)] s |B(a, /)| \B(z, Vi2los),
—Dq o) Cdl 1 o C
> s a/2d > -
=er /30 |B(x, t1/e)] C*slogQC*/zs 5= |B(z, t1/)|
(3.72)
t2/o¢

When /¢ < d(z,y), letting £ = d“éz L again by (3.58), (3.61), (3.71), and (3.68),

we have
)= [ Cdye=P1/¢ (d(x,y>2s>‘1‘“/2 A, 9)° 4o
Js x, T,y te/a te/
e o Bz, VEd(z,y))| 2/ 2/

S ¢t /°O e D/ |B(x, d(z,y))|
—d(, ) Js, Bz, d(x,y)| Bz, vVEd(z,y))|

é-flfa/ng

(3.73)

Ct o e—D1/s0 a2
*4d
- d(z,y)* /50 |B(z, d(z,y))| (V)82 C*f 3

S Ct
~ d(z,y)*|B(z, d(z,y))|

Combining (3.72) and (3.73), we reach (3.13). m

Now in order to prove (3.14), we establish an estimate for high-order time deriva-

tives of the heat kernel E(¢,z;y) first.

Lemma 71 Let M be a d—dimensional complete Riemannian manifold satisfying Condi-

tions (3.7) and (3.8). Then for any x,y € M, t > 0, and any nonnegative integer k, there
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exist positive constants C1 and Co such that the heat kernel E(t,x;y) of the heat equation
Ou—Au=0

satisfies

3 PR d(zy)?/t
0y E(t, x5 y)| < e RARYT

~ t*]B(x, V1)
Remark 72 To our best knowledge, up to now, in the literature, one can only find the

coarser bounds

o) .
IFE(t, z;y)| < ———t——eCadl@n)/t
OFE T ) < B D

in the manifold case, where C(k) is not explicitly calculated. See, for instance, Theorem

5.4.12 in [38]. Here we obtain a more precise result.

Proof. The proof is similar to Lemma 4.1 of [58]. However, since we have different condi-
tions here and we have the estimate of df E(t,z;y) for all time ¢ > 0 instead of t € (0, 1],
the proof is a bit different. We present the proof here for the reader’s convenience.

Fix any tg > 0 and xg,yo € M. For any nonnegative integer k and j =1,2,...,k+

1, we define

it
]\4].1 = {(t,:c) 1t e <t0 — 32]2,750) ,d(x,l’o) < J

M2 = {(t,x) e (to _ WJ,%) Jd(z,30) < WE)}

1 2 1
Then M} € M? C M},,.

Following the proof of Lemma 4.1 of [58], for a constant C', we have

C2kk2k
// OFE(t, x5 y0)|? dedt < —r // \E(t, 2;y0)|* dedt. (3.74)
M £ My

Now to estimate the right-hand side of (3.74), we have two cases.
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Case 1: d(xo,yo0) < V4ktg. In this case, we need to use a well-known result which can
be found, for instance, in Lemma 5.2.7 of [38]: under Condition (3.8), for a constant C, we

have

|B(z,7)| < U=/ By, r)|, Yo,y € M and r > 0. (3.75)

By (3.61), (3.68), and (3.75), it holds that

C2k 2k 02k+1/2k’2k’B(x0, (k%ﬁN
— E(t,z;y0)|* dedt < T
t k+1 tO B min |B($7 \/%”2
z€B(o,(k+1)v/To/V2k)
(k+1
_ ok |Blao, g Bz, /D)
5! [ min Bz, Vio) ]

J:EB(CC(),(k-Fl)\/%/m)
. log2C*
BT Blao, Vio)| \ V2 VI /Tt B, V)

for a constant Cy, where we used the condition d(yg, z¢) < v/4kty in the last inequality.

Case 2: d(xo,y0) > v/4ktp. In this case, because d(z,z¢) < (kJ:}Q)*k\/tio in M}, ,, by the
triangle inequality, we have ‘Q < jé;y;)) < 2. Therefore, by (3.61), (3.68), and (3.75), it
holds that
2kk2k
Ct% // E(t, ; y0)|? dadt
2% 1.2k (k+1D)vto
_ C=k“%to| B(zo 2k gl —(3—2v2) D2d(z0,y0)2/(2t0)
- t%k min |B(x,/T0)|?
z€B(zo,(k+1)vEo/(2VE))
(k+Dvto
C2k+1/2 .2k | B(wo, ok )| | B(x0, vo)|? e—Cad(zo,y0)* /to
2 [Bleo, Vo)l min_ |B(e. V)P
z€B(wo,(k+1)v/to/(2Vk))
log2C*
C2k+3/4 2k 1 (k + 1) % <C<k+1)> e—C2d(z0,y0)* /to
25T [Blao, Vi)l \ vk Vi
C2k+1,2k+1

efc’zd(ivo,yo)Q/to

<
t5* | B(zo, Vio)|

for a constant Cs.
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Combining the above two cases, we get

C2k+11.2k+1 ,
// |OFE(t, x5 y0)|? dedt < ST e~ Ced(@omo)*/to, (3.76)
M} tg |B(xo, vio)l

Now we recall a well-known parabolic mean value inequality, which can be found,
for instance, in Theorem 14.7 of [48] or Theorem 5.2.9 of [38]. For 0 < r < R < 1, any

nonnegative subsolution u = u(t,z) of the heat equation satisfies

N RN e
sup u(t’ x) <C () <) // U(t,[L‘) dxdt,
Qr(to,z0) | B0, 7) |2/ R —r[? Qr(to,z0)

where v > 2is a constant and Q,(t, z) = (t—r%,t)xB(x,r). Letting u(t, z) = |OFE(t, z;y0)|%,

r N\ 0, and R = /to/(2k), using (3.68), we see that

|0F E(to, o3 yo)|* < // (OFE(t, =3 y0))” dadt
‘ (xo, to/ Qk ‘to QW t0,20)
B(
= Ck |B(zo. Vo // OFE(t, x5 10))? dadt
| B(wo, v/To) [to ‘B (xo to/ Qk‘ ‘ Q. fio7@R to,ro)
ck ( l092
< / / (OFE(t, 23 0))? dudt.
|B x()) ‘ tO Qm to,x(]

(3.77)
By (3.76) and (3.77), we obtain

O2k+2},2k+1+log (c*)/2

tg* 1B (w0, Vo) |

—Cad(z0,y0)? /to )

08 E(to, 0; y0)|> <

Thus,
C{H—l Lk—2/3

for a sufficiently large constant C, which finishes the proof of Lemma 71. =

|0F E(to, zo; y0)| < o~ Cad(zo,y0)%/to

To prove the time analyticity of the heat kernel p,(t,x;y), we use the following

result.
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Lemma 73 ([37] Proof of Proposition 1.4.2) Suppose that f = f(x) is real analytic at

xo € R, which satisfies near xg,

|
W @) < o

RE’ Y integer k > 0.

Assume that g = g(x) is real analytic at f(xg) € R which satisfies near f(xo),
(k) k! )
19" (y)| < C3§, V integer k > 0.

Here R and S are positive constants. Then h(z) = g(f(x)) is analytic near xo and satisfies

‘h(k)(mo)| < C1C5 k"(lJrCl/S)k

S510 Tk ,  Vinteger k > 0.
1

Now we are ready to prove (3.14) and thus completes the proof of Theorem 59.

3.4.3 Proof of (3.14) in Theorem 59
Proof. By (3.58), we have
Opaltiaig) = [ OB s zsy)m () ds (3.73)
0

We write E(t?/%s, x;y) = E(t,z;y) o (t*/%s) = g(t) o f(t), where g(t) := E(t,z;y) and

f(t) :=t¥s. Then by Lemma 71, for a constant C") > 0,

CW)kE! 2
kgt < —\CH —Codew/t  integer k > 0.
107 g(t)] < t’f|B(x,\/Z)|e integer k >

o—Cad(z,y)?/(12/*s)

Let G5 = |B(z,Vt2/2s)] and § = t*/s/C1). For f(t), it holds that
2k o142/ e
F P )] < (C’)t’l:.ts’ V integer k > 0

for a constant C®) > 0. Let C; = t>/s and R = t/C®). Then by Lemma 73, we have for

a constant C' > 0,

! k k) o—Cad(x,y)?/(t%/*s)
OE B, )| < —1Cs MULT /ST CRe
S+ R t* | B(x, VE2/os),
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Therefore, by (3.78), we deduce that

o (k| e—ng(x,y)Q/(tQ/as)

t* | B(z, Vi2/os)|

|0Fpa(t, z;y)| < /0 m(s)ds.

By the same calculations as (3.69) and (3.70), we deduce (3.14) immediately. m

3.5 Corollaries on Backward and Other Equations

In this last section, we present four corollaries, whose statements and proofs are
similar to the corresponding results in [19] and [58].
First we consider the Cauchy problem for the backward nonlocal parabolic equa-

tions

Opu + LEu =0, Vo € R?
(3.79)

u(0,z) = a(z)

with x(-,-) satisfying (1.6) and (1.7).
Corollary 74 FEquation (3.79) has a smooth solution u = u(t,z) of polynomial growth of
order a — ¢ in (0,8) x R? for some § > 0, i.e.,
lu(t,z)] < C(1+|z]*79), 0<e<a, (t,z) € (0,8) x RY, (3.80)
if and only if
(L) a(z)| < AR (14 |2)°79), k=0,1,2,... (3.81)
where Ay is a positive constant.

Proof.
On one hand, suppose that (3.79) has a smooth solution of polynomial growth

of order o« — €, say u = u(t,z). Then u(—t,x) is a solution of the nonlocal parabolic
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equations with polynomial growth of order o —e. By Theorem 53 and (3.80), (3.81) follows
immediately.
On the other hand, suppose that (3.81) holds. Then it is easy to check that
o0 . t-j
) =) (LyYa(z)=
j=0
is a smooth solution of the fraction heat equation for ¢t € (—4,0] with § sufficiently small.
Indeed, the bounds (3.81) guarantee that the above series and the series
. ,
ﬁ 3t
K ]+1 v K Ol
Z L; a(x) 7l and Z L)
7=0
all converge absolutely and uniformly in [—6,0] x Br(0) for any fixed R > 0. Hence, Oyu —

Lfu = 0. Moreover, u has polynomial growth of order o — € since

> , t - ti
<> (LEYalx ; <> AT (1 2)r) i <A (L+ 279 (3.82)
j=0 j=0 ’

provided that ¢ € [—4, 0] with ¢ sufficiently small. Thus, u(—t, ) is a solution to the Cauchy
problem of the backward nonlocal parabolic equations (3.79) of polynomial growth of order
a—¢ec m

We have another corollary below about the forward Cauchy problem for the non-

local parabolic equations

O — LEu =0, Vo € RY
(3.83)

u(0,x) = a(z).

The main point is the analyticity of solutions down to the initial time.

Corollary 75 FEquation (3.83) has a smooth solution uw = u(t,z) of polynomial growth of

order a — €, which is time analytic in [0,0) for some 6 > 0 with the radius of convergence
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independent of x if and only if
|(LE) a(z)] < AR (14 |21279), k=0,1,2,... (3.84)
for a positive constant Aj.

Proof. On one hand, assuming (3.84), we can see

o0

uH(ta) =) (LYa(e)—

J=0

is a smooth solution to (3.83) for ¢t € [0,0) with J sufficiently small. Moreover, if § is
sufficiently small, u* has polynomial growth of order a — € by (3.82), so u* is the unique
solution to (3.83) by part (b) of Theorem 53.
By Corollary 74, the backward problem (3.79) has a smooth solution v = v(t, )
in [0,6)x RY. Define the function U = U(t,z) by
u*(t,x), te€l0,0)

Ult,z) =
v(—t,x), te(=9,0].

It is straight forward to check that U(t, ) is a solution of the nonlocal parabolic equations
in (—=4,0) x R%. By Theorem 53, U(t, z) and hence u(t, ) is time analytic at t = 0 for some
0 >0.

On the other hand, suppose that u = u(t,x) is a solution of the equation (3.83),
which is analytic in time at t = 0 with the radius of convergence independent of . Then,
by definition, u has a power series expansion in a time interval (—¢,4), for some § > 0.

Hence (3.84) holds following the proof of Corollary 74. m

Remark 76 Since we have not proved the solution to (3.9) is unique, the proofs of the
above two corollaries cannot be applied to the manifold case. Therefore, we just restrict the

above two corollaries to the case of R%.
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For the following two corollaries, the operator L is either L on R?, or L* on M.
For convenience of notation, let X be either R% or M satisfying Conditions (3.7) and (3.8).

Then similar to Theorems 1.4 and 1.5 in [58], we have the following two corollaries.
Corollary 77 Let p be a positive integer and consider the equation
ur(t,x) — Lu(t,x) = uP(t,z) in (0,1] x X (3.85)
with the initial data u(0,-). Assume that u = u(t,z) is a mild solution, i.e.,
t
ut.) = [ paltmpudy+ [ [ palt— sz (s,y) dyds
b'e 0 JXx
and there exists a constant Cy such that
lu(t,z)| < Ca, V(t,z) €[0,1] x X.
Then u is time analytic in t € (0,1] and the radius of convergence is independent of .
Proof. From (3.1) or (3.14), we see by iteration that
10F pa(t, 2, )| g1 x) < CFHY2KE=2/3¢7k | integer k > 0, (3.86)
and thus, by the Leibniz rule, it holds that
108 (5ot 2, D1 x) < CHHEE23,  integer k > 0 (3.87)

for a sufficient large constant C.

The rest of the proof is the same as that of Theorem 1.4 in [58]. =

Corollary 78 For the equation (3.85) with p being any positive rational number, assume

that w = u(t, ) is a mild solution and there exist constants Cy and Co such that

0<Cr < |ult,2)] < Cy, Y(t,x) € [0,1] x X.
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Then w is time analytic in t € (0,1] and the radius of convergence is independent of x.

Proof. We also have (3.86) and (3.87). Then the rest of the proof is the same as that of

Theorem 1.5 in [58]. m

Remark 79 It is unclear to us whether a similar result holds when p is an irrational number
as we are unable to get an appropriate relation between Of (t"u) and O (t"uP), where n is
any positive integer. When p = q1/q2 is a rational number, in Lemma 4.5 of [58], the
author used O (t"u'/®) as a bridge between O (t™u) and OF (t"u?/®). Moreover, Lemma

78 cannot be used directly here. In fact, for any integer k > 0, if we assume that
[t"0fu| < N™nl ¥V positive integer n < k

for a constant N > 0, then by Lemma 73, we get

k
|t ok uP) < NFH1/2g) <1 A ) ,

min |u|

which cannot be used to obtain a positive radius of convergence.
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Chapter 4

Smooth Solutions to the Heat
Equation Which are Nowhere

Analytic in Time

4.1 Introduction

The study of the existence of nowhere-analytic smooth functions has a rich history
(see e.g. [2]) since the pioneering works du Bois-Reymond[20], Lerch[41] and Cellerier[8].
Later, many other examples were found with different methods, see e.g. [4, 25, 47, 54]. For
the heat equation, the space analyticity of the classical solution in a space-time domain is
usually expected as a consequence of parabolic regularity. But the time analyticity is more
delicate and is not true in general, see e.g. the well-known examples in Kowalevsky|[36]

and Tychonoff[53]. Under extra assumptions, however, many time-analyticity results for
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the heat equation, Navier-Stokes equations, and some other parabolic equations may still
be justified, see e.g. [55, 21, 23, 35, 46].

Recently, in [61, 19], it was discovered that for any complete and noncompact
Riemannnian manifold M whose Ricci curvature is bounded from below, solutions to the
heat equation on M with exponential growth of order 2 are analytic in time. In particular,
as a corollary to Theorem 2.1 in [19], for any time interval (a,b] C R, if u is a smooth
solution to the heat equation dyu — O?u = 0 on R x (a,b] that satisfies for two positive

constants A1 and A,
lu(z, t)e 2" < Ay, V(2,t) € R x (a,b], (4.1)

then u must be time analytic in ¢ € (a,b]. The growth restraint (4.1) is sharp due to the
Tychonoff’s non-uniqueness example with suitable modifications (e.g. see Remark 2.3 in [19]
for more details). Later, similar phenomena were also found in other types of PDEs[58, 17|
and in domains with boundary[16]. In particular, by denoting R™ = (0, 00), Theorem 2.1
in [16] implies that for any time interval (a,b] C R, if v is a smooth solution to the heat
equation on R* x (a,b] with the Dirichlet boundary condition v(0,¢) = 0 and with the
growth constraint |v(:L',t)|e*‘42"32 < A; for any (x,t) € RT x (a,b], then v is time analytic
inte(a,b.

The study of analyticity of solutions to PDEs has both a long history, see e.g. the
famous Cauchy-Kowalevsky theorem in [7, 36], and many applications, such as the time
reversibility, the solvability of backward equations and the control theory. One particular
application is about control problems involving heat type equations. For these problems,

it is well known that the set of reachable states, though hard to describe exactly, is just
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a little larger than the set of those that can be reached by the free heat flow. But until
the papers [61, 19], it’s even not clear how to characterize the latter in general (see. e.g.
the comment on page 1 in [40]). For a precise characterization of the reachable states by
the free heat flow, see Corollary 2.2 and Remark 2.5 in [19]. Later, an explicit formula was
derived for the control function by representing solutions with power series in time thanks
to the time analyticity, see Theorem 2.1 in [59].

In this paper, however, we discover that the time analyticity is hopeless for general
boundary conditions or without suitable growth conditions. More precisely, we construct
solutions to the heat equation on the half space-time plane {z > 0, t € R} that satisfy the
growth condition (4.1) but are nowhere analytic in time. As a byproduct, we also find a
solution to the heat equation on the whole space which is nowhere analytic in time and
almost satisfies the growth condition (4.1). This example will demonstrate the sharpness
of the growth condition (4.1) even if the solution is only required to be analytic in time at
a single point.

Denote the space-time domain €27 as

0 =R" xR. (4.2)

We will construct two bounded solutions to the heat equation on €y which are nowhere
analytic in time. Our first example (4.4) can be regarded as an extension to the space-
time case of du Bois-Reymond [20], which itself is based on the Weierstrass function: a
continuous but nowhere differentiable trigonometric series on R. Our second example (4.5)

takes advantage of the heat kernel ® on R, defined as in (4.3), and the method of the
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condensation of singularities [28, 6].

(4mt) Zexp (— %) if z€R,t>0,

O(x,t) = (4.3)
0 if zeR,t<0.

Although the construction of us is direct via the method of condensation of singularities,
we remark that the method of constructing u; in (4.4) by the Weierstrass type functions
may be more flexible to study other evolutionary PDEs such as the Schrodinger equation

and the wave equation.

Theorem 80 Define two functions uy,us : 1 — R by

o0

ui(x,t) = Z e e 2w gin (22k+1t - Qkx), (4.4)
k=1
o0

up(z,t) = Y 27F0(x+1,t—mp), (4.5)
k=1

where {ri}32, is an enumeration of all the rational numbers. Then for i = 1,2, u; €
C>(Q1) N L>®(2) and u; satisfies the heat equation on Q1. However, for any fived xg €

[0,00), the function u;(zg,-) is nowhere analytic in t € R.

The functions in Theorem 80 are only defined on ;. If we want to construct
smooth solutions to the heat equation on the whole plane €25 := R x R, then the solutions
have to break the growth constraint (4.1). In addition, it is well-known that this growth
constraint is sharp for everywhere time-analyticity. More precisely, for any § > 0, there

2438 .
Asz| but is not

exists a solution to the heat equation on 29 which grows slower than e
time analytic at some point. Then it is interesting to investigate the following question: Is

the growth condition (4.1) sharp for somewhere time-analyticity? The next result, which

is inspired by (4.4), gives a positive answer to this question.
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Theorem 81 Let Q9 =R X R and e € (0,1). Define we : Q2 — R by

oo
we(x,t) = Z e 2T g2 gy (22k+1t - Qk:c). (4.6)
k=1

Then we € C*°(Q2) and w, satisfies the heat equation on Qy. However, for any fized o € R,
the function we(xo, ) is nowhere analytic int € R. Meanwhile, there exist positive constants

Ay and Ao, which only depend on €, such that

1
su% lwe(w,t)| exp ( — A2|x\1+€) < Ay (4.7)
z,te

Remark 82 For any € € (0,1), the function w. in the above theorem, when restricted to
Q1 where x > 0, is also a bounded nowhere time-analytic solution to the heat equation on
Q1. Furthermore, for any 6 > 0, by choosing € = ﬁ, we 18 bounded by A16A2|"’“"‘2+5 but is

nowhere time-analytic on s.

4.2 Proofs of Theorems 80 and 81

4.2.1 Proof of Theorem 80

e We first study uy. It is straightforward to check that uy; € C*°(Q;) N L*°(2y) and uy

satisfies the heat equation on €. Next, for any fixed zg > 0, we define
h(t) = ul(:co,t), VteR.

Then it reduces to prove that A is not analytic at any point ¢ty € R. By Cauchy-

Hadamard theorem, it suffices to show

(n) 0
lim sup (’h(to)’> = 00. (4.8)
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For any integer m > 1, the (2m)" and the (2m + 1) derivatives of h at ty can be

written as
h(Qm) (tO) _ (71)m Z 6_2’9(1+zo)22m(2k+1) sin (22k+1t0 _ 2k$0>,
k=1
h(2m+1)(t0> _ (_l)m Z e_zk(1+xo)2(2m+1)(2k+l) cos (22k+1t0 _ 2k$0).
k=1

For any N € Z™, there exists a unique my € Z* such that
2N (1 + zo) < 4my < 2V (1 + z0) + 4. (4.9)
Define Fiy : ZT7 — R* as
Fy(k) = e 2" (1+z0) 92my (2k+1) (4.10)
Then
o0
W) (1) = (=)™ 3" Fy (k) sin (22k+1t0 - 2%0),
k=1

RO (1) = (=1 S 2% Ey (k) cos (22k+1t0 - 2’%0).
k=1

By the triangle inequality,

‘h(ZmN)(tD)‘ > FN(N)| sin (22N+1t0 — 2Nxo)‘ — Z Fn(k),
k#EN (4.11)
‘h(2mN+1)(t0)‘ > 22N+1FN(N)’ cos (22N+1to - QNIL‘U)‘ - Z 22 Py (k).
k£N

Since | sin(f)|+| cos(d)| > 1 for any 6 € R, adding the two inequalities in (4.11) yields
|hEm) (t0)| + [REm T (19)| > Fiy(N) — 4( > 22kFN(k)). (4.12)
k#N
By direct computation, it follows from (4.10) that for any k > 1,

Fy(k+1 24N
F(N(k) ) _ STy~ P [4my In2 — 25(1 + 20)]. (4.13)
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For any fixed N, thanks to the choice (4.9) of my and the fact that % <In2 <1,
Fn(N) is the largest term in the sequence {Fn(k)}r>1. Moreover, when N is large
enough, Fy(N) is much larger than the other terms in the sequence {Fn(k)}i>1.
Actually, it is not difficult to find a positive constant Ny, which only depends on x,
such that

1
> 2%y (k) < TogEv (), YN > N (4.14)
k£N

Plugging (4.14) into (4.12) leads to

’h(QmN)(to)’ + }h(2mN+1)(t0){ > —Fn(N), VN > Np. (4.15)

1
2
By (4.10),

Fn(N) = 672N(1+x0)22mN(2N+1) > 672N(1+x0)(2N)4mN'

Reorganizing (4.9) gives rise to

4(my — 1) N < dmy .
1+ 2z “1+x

(4.16)

Consequently,

4 4
() > —dm ((Amy = DY (= 1Y
- 1+ 29 - 1+ 29 '

Thus, for any N > Ny, it follows from (4.15) that

4m
‘h(2mN)(t0)‘ + ’h(QmN—i-l)(tO)’ > (mN - 1> N.

1+l’0

As a result,

’h(QmN)(tO)‘ + ’h(QmN+1)(t0)’ . |: (mN _ 1)2 :|2mN
— L )

4.17
(2my + 1)! 1+x0)2(2m]\[—|— 1 ( )

Since my — 0o as N — oo, then (4.8) follows immediately from (4.17).
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e Now we consider ug. Although the expression (4.5) looks complicated, the conclusion

follows directly from an elegant result in [54].

Lemma 83 ([54]) Let ¢ be a bounded C* function which is analytic on R\ {0} but
not analytic at 0. Assume there are positive constants g, A and L such that for any
t] > A,

Mt
B2 e < L. (4.18)

[o¢]
Let {ar}r>1 be a sequence of non-zero real numbers such that Y |ax| < oo. Let
k=1

{re}tr>1 be an enumeration of all the rational numbers. Define a function f: R — R
by

oo
Zakcp t—7k).

k=1

Then f € C*°(R) but f is nowhere analytic on R.

Next, we will apply Lemma 83 to prove the desired result for us. First, we recall that
the heat kernel ® is defined as in (4.3). In addition, by noticing = + 1 is away from
0 for any = > 0, we know for any integer n > 1, there exists some constant M,, > 0
such that

|02®(z + 1,t)| + |0)®(x + 1,¢)| < M,,, Vx>0,tcR.

As a result, us € C*°(Q1) N L>®(Q4) and uy satisfies the heat equation on Q; since

(0 — ) ug = (0 — 8%)(532_1‘@(1’ +1,t— m)

k=1

oo
=> 27RO, - 02)®(z+1,t — i) = 0.
k=1
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Then for any fixed z¢ > 0, define

o(t) = Bz +1,1), VteR.

According to classical estimates on the heat kernel ® (see e.g. formula (3.3) in [33]),

there exists some constant C' > 0 such that for any n € N,

crpn/2 2
Consequently,
on 2n,,n 22
00D, 8)] = 2Dz, 1) < 20 ~E | YmcR, t>0.

tnts

In particular, there exists some constant C'; > 0 such that for any n € N,

Cn n
07(t)] = 00D (zg + 1, 1) < Lo e @D/ yys g (4.19)
"2
So by choosing A =1 and §p = 20 , it follows from (4.19) that for any t > A,
0ot 5, Cint 1w 1
n! 0= nl (20" !l 27

Thanks to the Sterling formula, we conclude that there exists some constant L > 0
such that

|at:( Won o wisa (4.20)

Noticing that 07p(t) = 0 for any t < 0, so (4.20) is also valid for |[t| > A. Therefore,
(4.18) is justified for . Finally, in Lemma 83, by setting a; = 2%, we conclude that

the function

o 1 o0
2(20, ) 227@ vo+1,- =) = app(- — k)
k=1

is nowhere analytic in t € R.
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4.2.2 Proof of Theorem 81

Fix any € € (0,1), it is readily seen that we € C*°()3) and w, satisfies the heat
equation on Q.

Next, for any fixed zo € R, we will prove that the function w,(xo,-) is nowhere
analytic on R. Define h¢(t) = we(zo,t) for t € R. Then it reduces to prove h. is not analytic

at any point ty € R. By Cauchy-Hadamard theorem, it suffices to show

(n) .
lim sup <’h€<to)|> = 00. (4.21)

n—o0 n!
The proof of (4.21) is similar to that for the function u; in Theorem 80, so we will only
sketch the process. For any large N such that 2¢V > 24|z, there exists a unique my € Z+
such that

(2N 4+ 20)2" < dmy < (29 +29)2V +4. (4.22)
Define Fiy : ZT — RT as
Fr(k) = e 2" =2 aog2muy (2k+1) (4.23)
Then similar to (4.12), we have

|hEmN) (t0)| + [RE™N T (10)| > Fiv(N) — 4( > 22kFN(k))-
k£N

Thanks to the choice (4.22) of my, it is not difficult to find a positive constant Ny, which

only depends on xy and ¢, such that

> 2% Fy(k) < ﬁFN(N), YN > Np. (4.24)
kAN
Hence,
R (o) | + [RE™N T (1) ] > %FN(N), VN > Np. (4.25)
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Reorganizing (4.22) leads to

4(my — 1) oN < dmy

26N + g T 2N (420)
Based on (4.25) and (4.23), for any N > Ny,
’hEQmN)(tO)’ n |h£2m1\]+1)(t0)’ > %e_gmewe_sz02sz(2N+1)
> 6—2N(2€N+x0)(2N)4mN_
Then it follows from (4.26) that
B2 (1) + [RETNHD) (1) | > e~ tmw <4§n]1vN - 1))4mN . < m]év 1 >4mN.
N4z 2¢N + g

As a result,

[ t0)]| + [ ito)| { (my —1)? rmN (127

(2my +1)! L 2N +20)2(2mpy + 1) ' ’

When N — oo, it follows from (4.22) that my — oo and

mN o(1-e)N

— — .
(26N +$0)2 o0

Then (4.21) follows from (4.27).
Finally, we need to establish the growth constraint (4.7). Fix 0 < € < 1. Then it

suffices to find constants A; and As, which only depend on €, such that for any x > 0,
> 1
Z exp ( — o(1+k 4. 2’“9:) < Ajexp (A2 azHE).
k=1

Define g () = exp[2¥(x — 2¢%)] for any k& > 1. Then it reduces to justify

Z gi(z) < Ay exp (A; xH%). (4.28)
k=1
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If 0 < 2 <100, then it is readily seen that the above series in (4.28) is uniformly bounded
by a constant B; which only depends on ¢, so it reduces to consider the case when x > 100.

Define K € ZT to be the unique positive integer such that

1 T 1 T
cloms (grrey) <K < 1+ Jloms (o), (4.29)
which can be rewritten as
x K 2°x
In addition, since = > 100 and 0 < e < 1, K > 4/e¢ > 4. By direct computation,
Gr+1() ( k ek ol e
= exp (28 [z — 2k (21+e — 1 ) (4.31)
9k(z) : ( )

K
e Case 1: Estimate of > gi(x).
k=1

For any 1 < k < K — 1, it follows from (4.31) and (4.30) that gr11(z) > gr(z). As a

consequence,
K

> gi(x) < Kgi(z) < K exp(2Xa). (4.32)
k=1

Since z > 100 and K > 4, then K < exp(2%x). Moreover, we can see from (4.32) and

(4.30) that
K

1
2 B 1
> o) < e |2 iy ) | = enp (Bt ), (133)
k=1

where Bj is a constant which only depends on e.

o0

e Case 2: Estimate of > gi(z).
k=K+1
For any k > K, it follows from (4.31) and (4.30) that gx+1(z) < gi(z). In particular,

by choosing k = K and recalling (4.33), we know

1
g1 < g (z) < exp (Byz'Te). (4.34)
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From (4.30), we have 2 < (2!+¢ — 1)2¢F. Plugging this inequality into (4.31) yields

Gry1(T)

_ (ol+e k(oek _ oeK
(@) <exp [ — (2 —1)2%(2% — 2M)].

So for any k > K + 1,

Gry1(T)
gr()

This implies that for any k > K + 1,

() = i) grcia (o)
gk+1 <Z L1 7 ) ) 9K+1
< exp [ — (2° = 1282 )] gy (2)

< exp[— (2= 1)(2" K — 1)) gk ()

Thus, by setting j = k — K and adding j from 1 to oo,
° .
> gr(@) < grple ZGXP —1)(2 = 1)] = Bagr1(2),

k=K+2

where B3 is a positive constant which only depends on e.

Combining (4.33), (4.34) and (4.35) together leads to the desired estimate (4.28).
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Chapter 5

Conclusions

On one hand, under a growth condition, we proved the pointwise time analyticity
of several evolutionary partial differential equations. On the other hand, it may not true if
the growth condition fails, or if we put non-analytic condition on the boundary as shown
in Chapter 4. We also proved that the growth condition is sharp by showing that if the
growth condition of the biharmonic heat equation fails, we can construct two solutions, one
of which is not analytic in time. Surprisingly, for linear differential equations discussed
above, we obtain a necessary and sufficient condition such that the solution is time analytic
at t = 0. We also obtain a necessary and sufficient condition for the solvability of the
backward equations. However, we failed to get a similar condition for the nonlinear heat
equations, which we will need to do further research in the future. Moreover, for the
nonlinear equations with power nonlinearity of order p, we only proved the time analyticity
if the solution is bounded. We also only proved the case when p is a rational number, even if

we assume the solution is bounded from below and above. Therefore, some further research
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is still needed to see if we can remove the bounded condition or extend the rational p to all

real number.
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