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ABSTRACT OF THE DISSERTATION

Time Analyticity of Several Evolutionary Partial Differential Equations

by

Chulan Zeng

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2022

Dr. Qi S. Zhang, Chairperson

This thesis has been on the pointwise time analyticity of several evolutionary

partial differential equations, including the heat equation, the biharmonic heat equation,

the heat equation with potentials, some nonlinear heat equations and nonlocal parabolic

equations.

For the first there equations, we prove if u satisfies some growth conditions in

(x, t) ∈ M × [0, 1], then u is analytic in time (0, 1]. Here M is Rd or a complete noncom-

pact manifold with Ricci curvature bounded from below by a constant. Then we obtain a

necessary and sufficient condition such that u(x, t) is analytic in time at t = 0. Applying

this method, we also obtain a necessary and sufficient condition for the solvability of the

backward equations, which is ill-posed in general. An interesting point is that a solution

may be analytic in time even if it is not smooth in the space variable x, implying that the

analyticity of space and time can be independent. Actually, for general manifolds, space

analyticity may not hold since it requires certain bounds on curvature and its derivatives.
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For the nonlinear heat equation with power nonlinearity of order p, we prove that

a solution is analytic in time t ∈ (0, 1] if it is bounded in M × [0, 1] and p is a positive

integer. In addition, we investigate the case when p is a rational number with a stronger

assumption 0 < C3 ≤ |u(x, t)| ≤ C4. It is also shown that a solution may not be analytic

in time if it is allowed to be 0. As a lemma, we obtain an estimate of ∂kt Γ(x, t; y) where

Γ(x, t; y) is the heat kernel on a manifold, with an explicit estimation of the coefficients.

We also investigate pointwise time analyticity of solutions to nonlocal parabolic

equations in the settings of Rd and a complete Riemannian manifold M. On one hand,

in Rd, we prove that any solution u = u(t, x) to ut(t, x) − Lκαu(t, x) = 0, where Lκα is a

nonlocal operator of order α, is time analytic in (0, 1] if u satisfies the growth condition

|u(t, x)| ≤ C(1 + |x|)α−ε for any (t, x) ∈ (0, 1]×Rd and ε ∈ (0, α). We also obtain pointwise

estimates for ∂kt pα(t, x; y), where pα(t, x; y) is the fractional heat kernel. Furthermore, under

the same growth condition, we show that the mild solution is the unique solution. On the

other hand, in a manifold M, we also prove the time analyticity of the mild solution under

the same growth condition and the time analyticity of the fractional heat kernel, when

M satisfies the Poincaré inequality and the volume doubling condition. Moreover, we also

study the time and space derivatives of the fractional heat kernel in Rd using the method of

Fourier transform and contour integrals. We find that when α ∈ (0, 1], the fractional heat

kernel is time analytic at t = 0 when x 6= 0, which differs from the standard heat kernel.

As corollaries, we obtain sharp solvability condition for the backward nonlocal parabolic

equations and time analyticity of some nonlinear nonlocal parabolic equations with power

nonlinearity of order p. These results are related to those in [19] and [58] which deal with

viii



local equations. At last, we get some nowhere-analytic smooth solutions to the heat equation

in either half space or whole space.
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Chapter 1

Introduction

1.1 Motivation

The study of analyticity property of solutions to PDEs has been a classical topic.

Even though the spatial analyticity is usually true for generic solutions of the heat equation,

the time analyticity is harder to prove and is false in general. For instance, it is not hard to

construct a solution of the heat equation in a space-time cylinder in the Euclidean setting,

which is not time analytic in a sequence of moments. In fact, the time analyticity is not

a local property, rather it requires certain boundary or growth conditions on the solutions.

There is a vast literature on time-analyticity for the heat equation and other parabolic type

equations under various assumptions. See, for example, [46], [35], [23], [21], [55], [19], [61],

and [19] and the citations therein. One can also consider solutions in certain Lp spaces with

p ∈ (1,∞). See [50] for a large class of dissipative equations in the periodic setting. We also

mention that in [21], for any bounded domain Ω ⊂ Rd with analytic boundary, the authors
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proved that any solution of the high order heat equation
ut + (−∆)mu = 0, ∀(t, x) ∈ (0, 1]× Ω,

u = Du = · · · = Dm−1u = 0 on (0, 1]× ∂Ω, u(0, x) ∈ L2(Ω)

is time analytic in t ∈ (0, 1].

Recently new applications of time analyticity are found in control theory and in

the study of backward equations which is essential in stochastic analysis and mathematical

finance. A fundamental fact in control theory for heat type equations is that if a state is

reachable by the free equation then it is reachable by suitable control from any reasonable

initial value. The former is equivalent to the solvability of the free backward equation from

this state. However this backward solvability question has been vexing the control theory

community for years. As a matter of fact, in a recent paper [40], it was written:”However, it

is a quite hard task to decide whether a given state is the value at some time of a trajectory

of the system without control (free evolution). In practice, the only known examples of

such states are the steady states.” This problem for the heat equation was solved in [19] not

long ago. More precisely, in the paper [19] (see also [61]), it was proved that if a smooth

solution of the heat equation in (−2, 0] ×M is of exponential growth of order 2, then it is

time analytic in t ∈ [−1, 0]. Here M is either the Euclidean space or certain noncompact

manifolds. Also, an explicit condition is found on the solvability of the backward heat

equation from a given time, which is equivalent to the time analyticity of the solution of the

heat equation at that time. Lately, the time analyticity of solutions to the biharmonic heat

equation, the heat equation with potentials, and some nonlinear heat equations are proven

in [58]. See also [16] for other results about time analyticity of parabolic type differential

equations in the half space.
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1.2 Differential Equations We Study

In this thesis, we investigate the pointwise time analyticity of five differential

equations. The first one is the biharmonic heat equation

∂tu+ ∆2u = 0, ∀(x, t) ∈ M× [0, 1]. (1.1)

Here and below, M is Rd or a d demensional complete noncompact manifold with Ricci

curvature bounded from below by a constant. The second one is the heat equation with

potentials

∂tu(x, t)−∆u(x, t) + V (x)u(x, t) = 0, ∀(x, t) ∈ M× [0, 1], d ≥ 3. (1.2)

In one case, V = V (x) is a potential function in Lq(M) for some q ≥ 1, with some growth

conditions. In another case, we treat V (x) ≥ 0. The last equation is some nonlinear heat

equations with power nonlinearity of order p where p is some positive rational number,

ut(x, t)−∆u(x, t) = up(x, t), ∀(x, t) ∈ M× [0, 1]. (1.3)

The last equation for this part is fractional heat equations. For clarity, we will first treat

the fractional heat equations in the setting of Rd, which reads

ut(t, x)− Lκαu(t, x) = 0, α ∈ (0, 2), (t, x) ∈ [0, 1]× Rd, (1.4)

where Lκα is a nonlocal elliptic operator defined as follows.

Definition 1 We define

Lκαf(x) := p.v.

∫
Rd

(f(x+ z)− f(x))
κ(x, z)

|z|d+α
dz (1.5)

3



where p.v. means the principal value. Here κ = κ(x, z) on Rd×Rd is a measurable function

satisfying that

0 < κ0 ≤ κ(x, z) ≤ κ1, κ(x, z) = κ(x,−z), (1.6)

and for a constant β ∈ (0, 1),

|κ(x, z)− κ(y, z)| ≤ κ2|x− y|β, (1.7)

where κ0, κ1, and κ2 are positive constants.

The fraction Laplacian (−∆)α/2 is a typical example of Lκα. As a special case, we

also obtain the time and space derivative estimates of the fractional heat kernel pα(t, x) of

ut(t, x) + (−∆)α/2 u(t, x) = 0, α ∈ (0, 2), (t, x) ∈ [0, 1]× Rd. (1.8)

Our results involve both solutions and fractional heat kernels. We say that a function

pα(t, x; y) is a fractional heat kernel of the equation (1.4) in Rd, if

∂tpα(t, x; y) = Lκαpα(t, x; y), lim
t↘0

pα(t, x; y) = δ(x, y).

In [10], it was proved that the fractional heat kernel is unique under the condition that

|pα(t, x; y)| ≤ Ct(
t1/α + |x− y|

)d+α
,

for a constant C. In Lemma 65, we improve this uniqueness result by only requiring the

growth condition (3.2). The definition of the fractional heat kernel pα(t, x; y) on a manifold

M will be given in Section 3.4.

The last differential equation is the standard heat equation

∂tu−∆u = 0, ∀(x, t) ∈ R+ × [0, 1],

from which we get some solutions that are nowhere analytic in time.

4



1.3 Organization of This Thesis

In chapter 2, we will investigate the time analyticity of the biharmonic heat equa-

tion, the heat equation with potentials and some nonlinear heat equations. We proved that

under some growth condition, the solution to the above differential equations are analytic

in time. In chapter 3, we will investigate pointwise time analyticity of solutions to fractional

heat equations in the settings of Rd and a complete Riemannian manifold M satisfying the

standard Conditions (3.7) and (3.8). Chapter 4 is about two bounded solutions to the heat

equation in the half plane, which were nowhere analytic in time.

1.4 Notation

Let us collect some frequently used notation.

• If x is in Rd, then |x| =
√∑d

i=1 x
2
i and Br(x) is a ball of radius r centered at x.

• In M, B(x, r) denotes the geodesic ball of radius r centered at x and |B(x, r)| denotes

its volume. We define d(x, y) to be the geodesic distance of two points x, y ∈ M and

0 to be a reference point in M.

• pα(t, x; y) is the fractional heat kernel of equations (1.4), (1.8), or (3.9), and E(t, x; y)

is the heat kernel of the usual heat equation.

• Qr(x, t) = B(x, r)× (t− r2, t) and Q′r(x, t) = B(x, r)× (t− r4, t).

Please note throughout this paper, constant C may be different from case to case.

5



Chapter 2

Time Analyticity of the

Biharmonic Heat Equation, the

Heat Equation With Potentials and

Some Nonlinear Heat Equations

2.1 Main Results and Outline

Here are the main results of this Chapter. The first one is about the biharmonic

heat equation (1.1).

Theorem 2 Let M be a d dimensional, complete, noncompact Riemannian manifold such

that the Ricci curvature satisfies Ric ≥ −(d− 1)K0 for a nonnegative constant K0.

Let u = u(x, t) be a smooth solution of the biharmonic heat equation (1.1) on

6



M× [0, 1] of exponential growth of order 4
3 , namely

|u(x, t)| ≤ A1e
A2d

4
3 (x,0), ∀(x, t) ∈ M× [0, 1],

where A1 and A2 are positive constants. Then u is analytic in time t ∈ (0, 1] with radius of

convergence depending only on t, d, K0 and A2. Moreover, if t ∈ (1− δ, 1] for some small

δ > 0, we have

u(x, t) =

∞∑
j=0

aj(x)
(t− 1)j

j!

with −∆2aj(x) = aj+1(x), and

|aj(x)| =
∣∣(−∆2)ja0(x)

∣∣ ≤ A∗Aj+1
3 jje2A2d

4
3 (x,0), j = 0, 1, 2, . . .

where A3 = A3(d,K0, A2) and A∗ = A∗(A1, d, x0,M).

Then we have two main theorems about the heat equation with potentials (1.2). We define

the weak solution in the beginning of Section 3.

Theorem 3 Let M be a d dimensional, complete, noncompact, smooth Riemannian mani-

fold such that the Ricci curvature satisfies Ric ≥ −(d−1)K0 for some nonnegative constant

K0 and

inf
x∈M
|B(x, 1)| > 0.

Assume V = V (x) satisfies the following conditions:

(1) There exists some R∗ > 0 such that V (·) ∈ Lq(B(0, R∗)) for some q > d
2 .

(2) For some constant C∗∗ > 0, if d(x, 0) > R∗, then |V (x)| ≤ C∗∗d(x, 0)α where α = 2q−d
q−1

and d > 2.

(3) V (·) ∈ L1(M\B(0, R∗)) and assume ‖V ‖L1(M\B(0,R∗)) = D∗.

7



Let

‖V ‖Lq(B(0,R∗)) = C∗

where C∗ is a positive constant and let u = u(x, t) be a weak solution of equation (1.2) on

M× [0, 1] of exponential growth of order 2, namely

|u(x, t)| ≤ A1e
A2d2(x,0), ∀(x, t) ∈ M× [0, 1],

where A1 and A2 are some positive constants. Then u is analytic in t ∈ (0, 1/2] with radius

of convergence depending only on t, d, q, K0, A2, α and C∗.

Moreover, if t ∈ (1/2− δ, 1/2] for some small δ > 0, we have

u(x, t) =

∞∑
j=0

aj(x)
(t− 1/2)j

j!

with (∆− V )aj(x) = aj+1(x), and

|aj(x)| =
∣∣(∆− V )ja0(x)

∣∣ ≤ A1A
j+1
3 jjeA4d2(x,0), j = 0, 1, 2, . . . (2.1)

where constants A3 = A3(d, q,K0, A2, α, C
∗) and A4 = A4(A2, α, C

∗∗, D∗).

Here the extra condition d ≥ 3 can be removed in the case of Rd. We will explain in more

detail during the proof.

Theorem 4 Let M be a d dimensional, complete, noncompact Riemannian manifold such

that the Ricci curvature satisfies Ric ≥ −(d− 1)K0 for some nonnegative constant K0.

Let u = u(x, t) be a weak solution of the heat equation with nonnegative potentials

(1.2) where V = V (x) ≥ 0 on M× [0, 1]. If u is of exponential growth of order 2, namely

|u(x, t)| ≤ A1e
A2d2(x,0), ∀(x, t) ∈ M× [0, 1],

8



where A1 and A2 are positive constants, then u is analytic in t ∈ (0, 1] with radius depending

only on t, d, K0 and A2.

Moreover, if t ∈ (1− δ, 1] for some small δ > 0, we have

u(x, t) =

∞∑
j=0

aj(x)
(t− 1)j

j!

with (∆− V )aj(x) = aj+1(x), and

|aj(x)| =
∣∣ (∆− V )j a0(x)

∣∣ ≤ A1A
j+1
5 jje2A2d2(x,0), j = 0, 1, 2, . . . (2.2)

where A5 = A5(d,K0, A2).

We also have two theorems about some nonlinear heat equations with power nonlinearity

of order p.

Theorem 5 Let M be a d dimensional, complete, noncompact Riemannian manifold such

that the Ricci curvature satisfies Ric ≥ −(d− 1)K0 for some nonnegative constant K0.

Let u = u(x, t) be a solution to equation (1.3) where p is a positive integer. Suppose

u satisfies

|u(x, t)| ≤ C2 in M× [0, 1],

for some constant C2. Then u is analytic in time for any t ∈ (0, 1] with radius of conver-

gence independent of x.

Theorem 6 Let M be the same manifold as Theorem 5 above and p = q1/q2 for some

positive integers q1 and q2. Assume that a solution u = u(x, t) to the equation (1.3) satisfies

0 < C3 ≤ |u(x, t)| ≤ C4 in M× [0, 1],

9



where C3, C4 are some constants. Then u is analytic in time for any t ∈ (0, 1] with radius

of convergence independent of x.

Now we give a brief outline of this Chapter. In Section 2.2, we investigate the time

analyticity of the biharmonic heat equation (1.1). As a corollary, we obtain a necessary and

sufficient condition for the solvability of the backward biharmonic heat equation ∂tu−∆2u =

0. As another corollary, we also obtain a necessary and sufficient condition under which

the solution of (1.1) is analytic in time at initial time t = 0. Section 2.3 pertains the time

analyticity of the heat equation with potentials (1.2). We use similar methods and obtain

similar results as in Section 2.2. We demonstrate some solutions which may not be smooth

in space but analytic in time. Finally, Section 2.4 is about the time analyticity of some

nonlinear heat equations with power nonlinearity of order p (1.3). We prove that a solution

u = u(x, t) of (1.3) is analytic in time t ∈ (0, 1] if it is bounded in M × [0, 1] and p is a

positive integer. In addition, we investigate the case when p is a rational number with a

stronger assumption 0 < C3 ≤ |u(x, t)| ≤ C4. As necessary lemmas, for any nonnegative

integer k, we establish an explicit estimate of |∂kt Γ(x, t; y)| where Γ(x, t; y) is the heat kernel

on a manifold, and a connection between ∂kt (tkup) and ∂kt (tku).

2.2 Biharmonic Heat Equation

We now begin investigating the time analyticity of the biharmonic heat equation

(1.1). The main result in this section is Theorem 2. First, we have several remarks about

Theorem 2.

10



Remark 7 Just note we use the condition that u is of exponential growth of order 4
3 in the

computation of
∫∫

Γ1
k

(u(x, t))2 dxdt in (2.18).

Remark 8 For any smooth solution u = u(x, t) of the biharmonic heat equation (1.1) and

any (x0, t0) ∈ M× (0, 1], actually we can get

|∂kt u(x0, t0)| ≤ A∗Ak+1
3 kk

t
k+q/4−d/8
0

e2A2d4/3(x0,0),

where q =
[
d
2

]
+ 1 and [·] means the floor function. Thus, we can see at t = 0, this method

fails to prove the time analyticity.

Remark 9 Just note the radius of convergence does not depends on x because A3 is inde-

pendent of x.

Remark 10 The exponential growth of order 4
3 corresponds to the heat kernel estimate of

the biharmonic heat equation (1.1) which can be found in

[1]. Actually, we can expect that the solutions of high order Laplacian heat equation ut +

(−∆)mu = 0 are also analytic in time with exponential growth of order 2m
2m−1 for any integer

m ≥ 1.

Remark 11 Now we briefly go over the main idea of the proof of Theorem 2. For any

(x0, t0) ∈ M× (0, 1] and positive integer k, consider some regions for any j = 1, 2, · · · , k,

Γ1
j =

{
(x, t)|d(x, x0) <

jt
1/4
0

(2k)1/4 , t ∈ [t0 − jt0
2k , t0]

}
,

Γ2
j =

{
(x, t)|d(x, x0) <

(j+0.5)t
1/4
0

(2k)1/4 , t ∈ [t0 − (j+0.5)t0
2k , t0]

}
.

Immediately Γ1
j ⊂ Γ2

j ⊂ Γ1
j+1.

There are three main steps. We have a lemma for each step in the following.

11



The first step is to prove that for some constant C = C(d,K0) and any j = 1, 2, · · · , k,

∫∫
Γ1
j

|ut(x, t)|2dxdt ≤
Ck

t0

∫∫
Γ2
j

|∆u(x, t)|2dxdt.

The second step is to prove

∫∫
Γ2
j

|∆u(x, t)|2dxdt ≤ Ck

t0

∫∫
Γ1
j+1

|u(x, t)|2dxdt.

Then we can combine the above two inequalities and iterate to deduce

∫∫
Γ1

1

|∂kt u(x, t)|2dxdt ≤
(
Ck

t0

)2k ∫∫
Γ1
k+1

|u(x, t)|2dxdt.

The last step is to use the mean value inequality to get, for some constant C = C(d, x0,M),

|∂kt u(x0, t0)|2 ≤ C
(
k

t0

)1+q/2 ∫∫
Γ1

1

|∂ltu(x, t)|2dxdt

≤ C
(
k

t0

)1+q/2(Ck
t0

)2k ∫∫
Γ1
k+1

|u(x, t)|2dxdt,
(2.3)

which is exactly what we want.

2.2.1 Iterated Energy Estimates

Now we begin to estimate the L2
loc norm of |∂tu(x, t)|2.

Lemma 12 For any smooth solution u = u(x, t) of the biharmonic heat equation (1.1) and

any l = 1, 2, · · · , k, there exist some constant C such that

∫∫
Γ1
j

|∂tu(x, t)|2dxdt ≤ Ck

t0

∫∫
Γ2
j

|∆u(x, t)|2dxdt.

Proof. By Theorem 6.33 of the paper [9], there exists some smooth cut-off func-

tion ψ(1)(x, t) such that for some constant C,
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|∇ψ(1)(x, t)|2

ψ(1)(x, t)
≤ C
√
k√
t0
, |∂tψ(1)(x, t)|+ |∇ψ(1)(x, t)|4 + |∆ψ(1)(x, t)|2 ≤ Ck

t0
, (2.4)

and

0 ≤ ψ(1)(x, t) ≤ 1, ψ(1)(x, t) = 1 in Γ1
j , ψ

(1)(x, t) is supported in Γ2
j .

As we are doing the biharmonic heat equation instead of the heat equation, we need to have

the estimate for |∆ψ(1)(x, t)|2 which is why we need to cite the paper [9].

We use ψ instead of ψ(1)(x, t) in this proof for simplicity of notation. By Green’s formula,

integration by parts and equation (1.1), we find

∫∫
Γ2
j

|∂tu(x, t)|2ψ2dxdt = −
∫∫

Γ2
j

∂tu(x, t)∆2u(x, t)ψ2dxdt

= −
∫∫

Γ2
j

∆u(x, t)∆(∂tu(x, t)ψ2)dxdt

= −
∫∫

Γ2
j

∆u(x, t)
(
∆∂tu(x, t)ψ2 + 2∇∂tu(x, t)∇ψ2 + ∂tu(x, t)∆ψ2

)
dxdt

= −1

2

∫∫
Γ2
j

∂t(∆u(x, t))2ψ2dxdt− 2

∫∫
Γ2
j

∆u(x, t)∇∂tu(x, t)∇ψ2dxdt

−
∫∫

Γ2
j

∆u(x, t)∂tu(x, t)∆ψ2dxdt

=
1

2

∫∫
Γ2
j

(∆u(x, t))2∂tψ
2dxdt− 1

2

∫
B(x0,

(j+0.5)t
1/4
0

(2k)1/4
)
(∆u(x, t))2dx

∣∣∣∣
t=t0

− 2

∫∫
Γ2
j

∆u(x, t)∇∂tu(x, t)∇ψ2dxdt

− 2

∫∫
Γ2
j

∆u(x, t)∂tu(x, t)∆ψψdxdt− 2

∫∫
Γ2
j

∆u(x, t)∂tu(x, t)|∇ψ|2dxdt

≤ 1

2

∫∫
Γ2
j

(∆u(x, t))2∂tψ
2dxdt+ 2

∫∫
Γ2
j

∂tu(x, t)∇∆u(x, t)∇ψ2dxdt

+ 2

∫∫
Γ2
j

∆u(x, t)∂tu(x, t)∆ψψdxdt+ 2

∫∫
Γ2
j

∆u(x, t)∂tu(x, t)|∇ψ|2dxdt.

(2.5)

13



Next we can use the bounds for the cutoff function ψ and the Cauchy-Schwarz inequality

to get: ∫∫
Γ2
j

|∂tu(x, t)|2ψ2dxdt

≤ Ck

t0

∫∫
Γ2
j

|∆u(x, t)|2dxdt+ ε

∫∫
Γ2
j

|∂tu(x, t)|2ψ2dxdt

+
4

ε

∫∫
Γ2
j

|∇∆u(x, t)|2|∇ψ|2dxdt

+ ε

∫∫
Γ2
j

|∂tu(x, t)|2ψ2dxdt+
Ck

εt0

∫∫
Γ2
j

|∆u(x, t)|2dxdt

+ ε

∫∫
Γ2
j

|∂tu(x, t)|2ψ2dxdt+
Ck

εt0

∫∫
Γ2
j

|∆u(x, t)2|dxdt

=
Ck

t0
(1 +

2

ε
)

∫∫
Γ2
j

|∆u(x, t)|2dxdt+ 3ε

∫∫
Γ2
j

|∂tu(x, t)|2ψ2dxdt

+
4

ε

∫∫
Γ2
j

|∇∆u(x, t)|2|∇ψ|2dxdt.

(2.6)

Now we need to get the estimate for the term 4
ε

∫∫
Γ2
j
|∇∆u(x, t)|2|∇ψ|2dxdt as

above. For some small positive constants ε2 and ε3,

4

ε

∫∫
Γ2
j

|∇∆u(x, t)|2|∇ψ|2dxdt ≤ 4C
√
k

ε
√
t0

∫∫
Γ2
j

|∇∆u(x, t)|2ψdxdt

= −4C
√
k

ε
√
t0

∫∫
Γ2
j

∆2u(x, t)∆u(x, t)ψdxdt

− 4C
√
k

ε
√
t0

∫∫
Γ2
j

∇∆u(x, t)∆u(x, t)∇ψdxdt

≤ 2C
√
kε3

ε
√
t0

∫∫
Γ2
j

|∂tu(x, t)|2ψ2dxdt+
2C
√
k

εε3
√
t0

∫∫
Γ2
j

|∆u(x, t)|2dxdt

+
2C
√
kε2

ε
√
t0

∫∫
Γ2
j

|∇∆u(x, t)|2|∇ψ|2dxdt+
2C
√
k

εε2
√
t0

∫∫
Γ2
j

|∆u(x, t)|2dxdt.
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Take ε = 1/8, ε2 =
√
t0

C
√
k

and ε3 =
√
t0

64C
√
k
, we have

4

ε

∫∫
Γ2
j

|∇∆u(x, t)|2|∇ψ|2dxdt

≤ 1

2

∫∫
Γ2
j

|∂tu(x, t)|2ψ2dxdt+
2080C2k

t0

∫∫
Γ2
j

|∆u(x, t)|2dxdt.
(2.7)

By (2.6) and (2.7), we can get

∫∫
Γ2
j

|∂tu(x, t)|2ψ2dxdt ≤ Ck

t0

∫∫
Γ2
j

|∆u(x, t)|2dxdt,

which finishes the proof of Lemma (12).

Now we begin to estimate the L2
loc norm of |∆u(x, t)|2. We can get a Caccioppoli

type inequality (energy estimate) as follows.

Lemma 13 For any smooth solution u = u(x, t) of the biharmonic heat equation (1.1) and

any l = 1, 2, · · · , k, there exist some constant C such that

sup
t∈(t0− (j+1)t0

(2k)
,t0)

∫
B(x0,

(j+1)t
1/4
0

(2k)1/4
)
u2(x, t)ψ2dx+

∫∫
Γ2
j

|∆u(x, t)|2dxdt

≤ Ck

t0

∫∫
Γ1
j+1

|u(x, t)|2dxdt.

(2.8)

Proof. By Theorem 6.33 of the paper [9] again, there exists some smooth cut-off

function ψ(2)(x, t) satisfying the condition 2.4 and

0 ≤ ψ(2)(x, t) ≤ 1, ψ(2)(x, t) = 1 in Γ2
j , ψ

(2)(x, t) is supported in Γ1
j+1.

We denote the cuf-off function ψ(2)(x, t) by ψ again in this proof for the simplicity

of notation. Similar to (2.5) and (2.6), using Green’s formula, Cauchy-Schwarz inequality,
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integration by parts and assumption for the cut-off function ψ, we yield∫∫
Γ1
j+1

(∆u(x, t))2ψ2dxdt

≤
(

1 +
2

ε

)
Ck

t0

∫∫
Γ1
j+1

u2(x, t)dxdt+ 3ε

∫∫
Γ1
j+1

|∆u(x, t)|2ψ2dxdt

+
4

ε

∫∫
Γ1
j+1

|∇u(x, t)|2|∇ψ|2dxdt,

(2.9)

for any small positive constant ε.

Next we need to obtain the estimate for the term 4
ε

∫∫
Γ1
j+1
|∇u(x, t)|2|∇ψ|2dxdt.

By integration by parts and Cauchy-Schwarz inequality, for some small positive

constants ε2 and ε3,

4

ε

∫∫
Γ1
j+1

|∇u(x, t)|2|∇ψ|2dxdt ≤ 4C
√
k

ε
√
t0

∫∫
Γ1
j+1

|∇u(x, t)|2ψdxdt

≤ 2C
√
kε2

ε
√
t0

∫∫
Γ1
j+1

|∆u(x, t)|2ψ2dxdt+
2C
√
k

εε2
√
t0

∫∫
Γ1
j+1

u2(x, t)dxdt

+
2C
√
kε3

ε
√
t0

∫∫
Γ1
j+1

|∇u(x, t)|2|∇ψ|2dxdt+
2C
√
k

εε3
√
t0

∫∫
Γ1
j+1

u2(x, t)dxdt.

Take ε = 1
8 , ε2 =

√
t0

128C
√
k

and ε3 =
√
t0

C
√
k
, then

4

ε

∫∫
Γ1
j+1

|∇u(x, t)|2|∇ψ|2dxdt

≤ 1

4

∫∫
Γ1
j+1

|∆u(x, t)|2ψ2 +
4128C2k

t0

∫∫
Γ1
j+1

u2(x, t)dxdt.

(2.10)

Plugging (2.10) into (2.9), we can get inequality∫∫
Γ2
j

|∆u(x, t)|2dxdt ≤ Ck

t0

∫∫
Γ1
j+1

|u(x, t)|2dxdt. (2.11)

Besides, we can also see

∂t

1/2

∫
B(x0,

(j+1)t
1/4
0

(2k)1/4
)
u2(x, t)ψ2dx


=

∫
B(x0,

(j+1)t
1/4
0

(2k)1/4
)
−∆2u(x, t)u(x, t)ψ2dx+

∫
B(x0,

(j+1)t
1/4
0

(2k)1/4
)
u2(x, t)ψ∂tψdx.

(2.12)
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For the term
∫
B(x0,

(j+1)t
1/4
0

(2k)1/4
)
−∆2u(x, t)u(x, t)ψ2dx, we have, by integration by parts and

assumption for ψ,∫
B(x0,

(j+1)t
1/4
0

(2k)1/4
)
−∆2u(x, t)u(x, t)ψ2dx

≤ 1

8

∫
B(x0,

(j+1)t
1/4
0

(2k)1/4
)
(∆(u(x, t)ψ))2dx+

∫
B(x0,

(j+1)t
1/4
0

(2k)1/4
)
|∇u(x, t)∇ψ|2dx

+
Ck

t0

∫
B(x0,R)

|u(x, t)|2dx+
1

4

∫
B(x0,

(j+1)t
1/4
0

(2k)1/4
)
(u(x, t)∆ψ)2dx

+ 5

∫
B(x0,

(j+1)t
1/4
0

(2k)1/4
)
(∆u(x, t)ψ)2dx.

By integration about time in (2.12), using the assumption about ψ and (2.10), (2.11), we

can get the (2.8) immediately.

2.2.2 Mean Value Inequality for the Biharmonic Heat Equation (1.1)

We also need the following lemma about the mean value inequality.

Lemma 14 Let (x0, t0) be any point in M × (0, 1] and u = u(x, t) be any solution to the

biharmonic heat equation (1.1). Then for some constant C1 = C1(d, x0,M),

sup
Q′r(x0,t0)

|u(x, t)|2 ≤ C1

(R− r)2q+4

∫∫
Q′R(x0,t0)

u2(x, t)dxdt, (2.13)

where q =
[
d
2

]
+ 1 and 0 < r < R < 1.

Remark 15 Just note here the constant is dependent on x0 and M. This is because in the

following proof, we need to use the Sobolev inequality, make sure the all the gradients of

cut-off function ψ below is bounded, and make sure ∇ can commute with ∆. In Rd, due to

all of these peoperties satisfied, the constant C should be independend of x0 and M.
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Proof. Let r < R0 < R1 < R2 < R where R − R2 = R2 − R1 = R1 − R0 = R0 − r and

define a smooth cut-off function φ = φ(x, t) which is supported in Q′R0
(x0, t0) and φ = 1

in Q′r(x0, t0). Just note because the manifold is smooth in B(x0, 1), for any nonnegative

integer k, it holds for some constant C = C(x0, k,M),

|∇kRm| ≤ C(x0, k,M),

where Rm means the curvature tensor.

Since φ is smooth in B(x0, 1), for any positive integer i, there exist some constant

C(x0, i,M) depending on x0, i and M such that,

|∇iφ2| ≤ C(x0, i,M)

|R0 − r|i
, |∆iφ| ≤ C(x0, 2i,M)

|R0 − r|2i

|∇i∂tφ| ≤
C(x0, 4 + i,M)

|R0 − r|4+i
, |∆i∂tφ| ≤

C(x0, 2i+ 4,M)

|R0 − r|2i+4
,

where ∇ is the covariant derivative and ∇i means the i-th order covariant derivative.

We can also define a smooth cut-off function ψ = ψ(x, t) which is supported in Q′R1
(x0, t0)

and ψ = 1 in Q′R0
(x0, t0) satisfying similar condition as above.

Following the method in [15], we can use the Morrey type Sobolev inequality which

can be find in Theorem 2.7 of [30], which means there exist some constant C = C(d, x0,M)

that

sup
B(x0,R1)

|u(·, t)ψ| ≤ C‖u(·, t)ψ‖W q,2(B(x0,R1)).

Also, for some constant C = C(d), by the fundamental theorem of calculus, we

yield

sup
t∈(t0−R4

1,t0)

|u(x, ·)φ|2 ≤ sup
t∈(t0−R4

1,t0)

∫ t

t0−R4
1

∂t(u(x, ·)φ)2dt

≤
∫ t0

t0−R4
1

|∂tu(x, t)|2φ2dt+
C

(R− r)4

∫ t0

t0−R4
1

|u(x, t)|2dt

.
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Therefore for some C = C(d, x0,M),

sup
Q′r(x0,t0)

|u(x, t)|2 ≤ C
q∑
i=0

‖∇i(∂tu(·, ·)ψ +
C

(R− r)4
u(·, ·)ψ)‖W q,2(QR1

(x0,t0)). (2.14)

Then we need to apply the well-known Bochner’s formula and the related cummutation

formula to commute ∇ with ∆ and its high order version, see Proposition 3.2.1 of [60] e.g..

Using the above commutation formula,

∆∇if = ∇i∆f +Rij∇jf. (2.15)

By this formula, for any smooth function f and any cut-off function ψ which is supported

in B(x0, R2), there exist some constant C = C(d,K0) such that∫
B(x0,R2)

(∆f)2ψ2dx =
n∑

i,j=1

∫
B(x0,R2)

∇i∇if∇j∇jfψ2dx

= −
n∑

i,j=1

∫
B(x0,R2)

∇j∇i∇if∇jfψ2dx−
n∑

i,j=1

∫
B(x0,R2)

∇i∇if∇jf∇jψ2dx

=

n∑
i,j=1

∫
B(x0,R2)

∇i∇jf∇i∇jfψ2dx+

∫
B(x0,R2)

Ric (∇f,∇f)ψ2dx

+
n∑

i,j=1

∫
B(x0,R2)

∇i∇jf∇jf∇iψ2dx−
n∑

i,j=1

∫
B(x0,R2)

∇i∇if∇jf∇jψ2dx

≥ 1/2

∫
B(x0,R2)

∣∣∇2f
∣∣2 ψ2dx− C

∫
B(x0,R2)

|∇f |2 |∇ψ|2dx.

(2.16)
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By using formula (2.15) and its high order version repeatedly and (2.16) where we

separate (R1, R2) into q equal parts, we can get for some C = C(d, x0,M),

q∑
i=0

∫∫
Q′R1

(x0,t0)
|∇i(∂tu(x, t)ψ)|2 +

C

(R− r)4
|∇i(u(x, t)ψ)|2dxdt

≤
[ q
2

]∑
i=0

C

(R− r)2q−4i

∫∫
Q′R2

(x0,t0)
|∆i∂tu(x, t)|2dxdt

+

[ q
2

]∑
i=0

C

(R− r)2q−4i+4

∫∫
Q′R2

(x0,t0)
|∆iu(x, t)|2dxdt

+

[ q−1
2

]∑
i=0

C

(R− r)2q−4i−1

∫∫
Q′R2

(x0,t0)
|∇∆i∂tu(x, t)|2dxdt

+

[ q−1
2

]∑
i=0

C

(R− r)2q−4i+3

∫∫
Q′R2

(x0,t0)
|∇∆iu(x, t)|2dxdt.

(2.17)

By Lemma 12 and Lemma 13, we have for some constant C

∫∫
Q′R2

(x0,t0)
|ut(x, t)|2dxdt ≤

C

|R− r|4

∫∫
Q′R3

(x0,t0)
|u(x, t)|2dxdt.

Plugging (2.11) and (2.10) into (2.17), it holds for some constant C = C(x0,M),

q∑
i=0

∫∫
Q′R1

(x0,t0)
|∇i(∂t(u(x, t)ψ) + u(x, t)ψ)|2dxdt

≤ C

|R− r|4+2q

∫∫
Q′R3

(x0,t0)
|u(x, t)|2dxdt.

Plugging into (2.14), we can get (2.13) immediately.

2.2.3 Proof of Theorem 2

Now we are ready to prove Theorem 2. Combining Lemma 12 and Lemma 13, for

any l = 1, 2, · · · , k, we yield

∫∫
Γ1
j

|∂tu(x, t)|2dxdt ≤ C2k2

t20

∫∫
Γ1
j+1

|u(x, t)|2dxdt.
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Since ∂ltu is also a solution of (1.1), by iteration, we have∫∫
Γ1

1

(
∂kt u(x, t)

)2
dxdt ≤ C2k2

t20

∫∫
Γ1

2

(
∂k−1
t u(x, t)

)2
dxdt

≤ ... ≤
(
C2k2

t20

)k ∫∫
Γ1
k+1

u(x, t)2dxdt.

Using the mean value inequality (2.13), for some constant A3 = A3(d,K0, A2) and A∗ =

A∗(A1, d, x0,M),

|∂kt u(x0, t0)|2 ≤ C1

(
2k

t0

) 4+2q
4
∫∫

Q′

( t02k )
1/4

(x0,t0)
|∂kt u(x, t)|2dxdt

≤ C1

(
2k

t0

) 4+2q
4
(
C2k2

t20

)k ∫∫
Γ1
k

(u(x, t))2 dxdt

≤ C1

(
2k

t0

) 4+2q
4
(
C2k2

t20

)k
×A2

1e
4A2d4/3(x0,0)ekt

1+ d
4

0

≤ A∗2A2k+2
3 k2k

t
2k+q/2−d/4
0

e4A2d4/3(x0,0).

(2.18)

Thus,

|∂kt u(x0, t0)| ≤ A∗Ak+1
3 kk

t
k+q/4−d/8
0

e2A2d4/3(x0,0). (2.19)

Then we fix a number R ≥ 1 and let t ∈ [1 − δ, 1] for some small δ > 0. For any positive

integer j, Taylor’s theorem implies that

u(x, t)−
j−1∑
i=0

∂itu(x, 1)
(t− 1)i

i!
=

(t− 1)j

j!
∂jt u(x, s), (2.20)

where s = s(x, t, j) ∈ [t, 1]. By (2.19), for sufficiently small δ > 0, the right-hand side of

(2.20) converges to 0 uniformly for x ∈ B(0, R) as j →∞. Hence

u(x, t) =
∞∑
j=0

∂jt u(x, 1)
(t− 1)j

j!

i.e., u is analytic in time with radius δ. Denote aj = aj(x) = ∂jt u(x, 1). By (2.19) again, we
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have

∂tu(x, t) =
∞∑
j=0

aj+1(x)
(t− 1)j

j!
and ∆2u(x, t) =

∞∑
j=0

∆2aj(x)
(t− 1)j

j!

where both series converge uniformly for (x, t) ∈ B(0, R) × [1 − δ, 1]. Since u is a solution

of the biharmonic heat equation (1.1), it implies −∆2aj(x) = aj+1(x) with

|aj(x)| ≤ A1A
k+1
3 kke2A2d4/3(x,0).

This completes the proof of Theorem 2.

We can then reach two corollaries similar to Corollary 2.2 and Corollary 2.6 in the

paper [19].

Corollary 16 The Cauchy problem for the backward biharmonic heat equation
∂tu−∆2u = 0

u(x, 0) = a(x)

(2.21)

has a smooth solution of exponential growth of order 4
3 in M× (0, δ) for some δ > 0 if and

only if for any integer k ≥ 0,

|
(
∆2
)k
a(x)| ≤ Ak+1

3 kkeA2d
4
3 (x0,0), j = 0, 1, 2, . . . (2.22)

where A2, A3 are some positive constants.

Proof. Suppose (2.21) has a smooth solution of exponential growth of order 4
3 ,

say u = u(x, t). Then u(x,−t) is a solution of the biharmonic heat equation (1.1) with

polynomial growth of order 4
3 . By Theorem 2, (2.22) follows as (−1)j(∆2)ja(x) = aj(x) in

the theorem.
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On the other hand, suppose (2.22) holds. Then it is easy to check that

u(x, t) =
∞∑
j=0

(−1)j(∆2)ja(x)
tj

j!

is a smooth solution of the biharmonic heat equation for t ∈ [−δ, 0] with δ sufficiently small.

Indeed, the bounds (2.19) guarantee that the above series and the series

∞∑
j=0

(−1)j+1(∆2)j+1a(x)
tj

j!
and

∞∑
j=0

(−1)j(∆2)ja(x)
∂tt

j

j!

all converge absolutely and uniformly in B(0, R) × [−δ, 0] for any fixed R > 0. Hence

∂tu+ ∆2u = 0. Moreover u has exponential growth of order 4
3 since

|u(x, t)| ≤
∞∑
j=0

∣∣(∆2)ja(x)
∣∣ tj
j!
≤
∞∑
j=0

Aj+1
3 jjeA2d

4
3 (x0,0) t

j

j!
≤ A3e

A2d
4
3 (x0,0)

for some A3 provided that t ∈ [−δ, 0] with δ sufficiently small. Thus, u(x,−t) is a solution

to the Cauchy problem of the backward biharmonic heat equation (2.21) of exponential

growth of order 4
3 .

Remark 17 It is known that generally the Cauchy problem for the backward biharmonic

heat equation is not solvable. We can expect this corollary can be used in control theory,

Ricci flow, stochastic analysis and some other areas.

We have another corollary about time analyticity at initial time t = 0.

Corollary 18 For the Cauchy problem for the biharmonic heat equation
∂tu+ ∆2u = 0

u(x, 0) = a(x).

(2.23)
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It has a smooth solution u = u(x, t) of exponential growth of order 4
3 , which is

analytic in time in M× [0, δ) for some δ > 0 with a radius of convergence independent of x

if and only if

|
(
∆2
)k
a(x)| ≤ Ak+1

3 kkeA2d
4
3 (x0,0), k = 0, 1, 2, . . . , j = 0, 1, 2, . . . (2.24)

where A2, A3 are some positive constants.

Proof. Assuming (2.24), it is well-known that the problem (2.23) has a solution

u = u(x, t) =

∫
M
p(x, t; y)a(y)dy,

for some δ > 0 and t ∈ [0, δ] where p(x, t; y) is the heat kernel for the biharmonic heat

equation on M.

By Corollary 16, the following backward problem also has a solution
∂tv −∆2v = 0

v(x, 0) = a(x)

in M× [0, δ) for some sufficiently small δ > 0. Define the function U = U(x, t) by

U(x, t) =


u(x, t), t ∈ [0, δ)

v(x,−t), t ∈ (−δ, 0]

It is straight forward to check that U(x, t) is a solution of the biharmonic heat equation in

M× (δ, δ).

By the theorem 2, U(x, t) and hence u(x, t) is analytic in time at t = 0.

On the other hand, suppose u(x, t) is a solution of the equation (2.23), which is

analytic in time at t = 0 with a radius of convergence independent of x. Then, by definition,

u has a power series expansion in a time interval (−δ, δ), for some δ > 0. Hence, (2.24)

holds following the proof of Corollary 16.
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Remark 19 Recall the well-known Kovalevskaya counter-example
∂tu−∆u = 0, ∀(x, t) ∈ R× [0, 1]

u(x, 0) = 1
1+x2 ,

which says there are no analytic solutions in a neighborhood of the origin. We can extend

it to the case of the biharmonic heat equation.

Lemma 20 Any smooth solution to the biharmonic heat equation1.1
∂tu+ ∆2u = 0, ∀(x, t) ∈ R× [0, 1]

u(x, 0) = 1
1+x2 ,

is not analytic near origin.

Actually, if we have a analytic solution u near original, we can define

u(x, t) =
∑
k,l≥0

akl
tk

k!

xl

l!
.

By induction, we can prove

a(m, 2n) = (−1)m+n(4m+ 2n)!, for any nonnegative integers m,n.

Therefore

|a(n, 4n)|
n!(4n)!

=
(8n)!

n!(4n)!
→∞,

e solution is not analytic near origin.

This corollary partially solves the problem about time analyticity of the biharmonic heat

equation at t = 0.

Remark 21 We can give a non-uniqueness example similar to the well-known non-uniqueness

example for heat equation by A.N.Tychonov. To be precise, when M = R1, we can give a
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solution u of (1.1) which does not satisfy |u(x, t)| ≤ A1e
A2|x|4/3 in R1 × (0, 1] and is not

analytic at t = 0. It is

u(x, t) =
∞∑
k=0

(−1)kDk
t g(t)

x4k

(4k)!
,

where

g(t) =


e−t

−α
, for any α > 1, t > 0

0, t ≤ 0.

We can prove for some positive constant C,

|Dk
t g(t)| ≤ Ckk!

tk
e−

1
2tα ,

and therefore by k!/(4k)! ≤ 1/(3k)!

|u(x, t)| ≤
∞∑
k=0

Ckk!

tk
e−

1
2tα

x4k

(4k)!
≤
∞∑
k=0

Ck

tk
e−

1
2tα

x4k

(3k)!
≤ e

(
Cx4

t

)1/3
− 1

2tα .

This example also shows the non-uniqueness for (1.1) because obviously we have another

solution u = 0.

2.3 Heat Equation With Potentials

In this section, we mainly investigate the time analyticity of the heat equation

with potentials (1.2). The main idea of this section is similar to the idea as explained in

Remark 11 of Section 2. First, let us define the weak solution.

Definition 22 We say u = u(x, t) ∈ L2
loc((t1, t2),W 1,2

loc (M)) is a weak subsolution (weak

supersolution) to (1.2) if it satisfies,

−
∫ t2

t1

∫
M
u(x, t)∂tφ(x, t)dxdt+

∫ t2

t1

∫
M
∇u(x, t)∇φ(x, t)dxdt

+

∫ t2

t1

∫
M
V (x)u(x, t)dxdt ≤ 0 (≥ 0),
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for any nonnegative φ ∈ C∞c (M× (t1, t2)).

Especially, if φ ∈ C∞c (M× (t1, t2)) and φ(·, t1+t2
2 ) = 1, then we can prove

−
∫ t1+t2

2

t1

∫
M
u(x, t)∂tφ(x, t)dxdt+

∫
M
u(x,

t1 + t2
2

)dx

+

∫ t1+t2
2

t1

∫
M
∇u(x, t)∇φ(x, t)dxdt+

∫ t1+t2
2

t1

∫
M
V (x)u(x, t)dxdt ≤ 0 (≥ 0)

by testing with φηj and taking the limit j →∞, where ηj = ηj(t) ∈ C∞c (t1, t2) is a sequence

of nonnegative functions satisfying

lim
j→∞

ηj(t) = χ
(t1,

t1+t2
2

)
a.e.

We say u is a weak solution if it is both a weak subsolution and a weak supersolution.

Now for Theorem 3, we have some remarks first.

Remark 23 To be more precise, for any (x0, t0) ∈ M×(0, 1/2], then in Theorem 3, it holds

|∂kt u(x0, t0)| ≤ B1B
k+1
2 kk

tk0
eB3d2(x0,0).

for some constants B1, B2 and B3. Besides, in Theorem 4, it holds

|∂kt u(x0, t0)| ≤ B1B
k+1
2 kk

tk0
eB3d2(x0,0).

for some constants B1, B2 and B3.

Remark 24 By the method of Steklov average, or to be more precise, by Theorem 4.1

of [24] which states if the heat kernel ΓV of (1.2) satisfies the L2 Gaussian type upper

bound and, for any weak solution u of (1.2), ∂ltu is also a weak solution of (1.2) for any

l = 1, 2, · · · . on the one hand, if V ≥ 0 and if Γ is the heat kernel of heat equation on the
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same manifold M, then by maximal principle, 0 ≤ ΓV ≤ Γ, which means ΓV satisfies this

Gaussian type upper bound condition considering (2.46) and the mean value inequality. On

the other hand, if V (·) ∈ Lq(B(0, R∗)) for some q > d
2 , it is well known that ΓV also satisfies

this Gaussian type upper bound condition. Besides, we can prove ∂ltu ∈ L2
loc(M× (0, 1)) by

combining (2.28) and (2.33) next. Therefore, ∂ltu is locally Hölder continuous, which means

u is smooth in time.

Now we begin to investigate Theorem 3.

Remark 25 In Theorem 3, we have an extra condition inf
x∈M
|B(x, 1)| > 0 to use the Sobolev

inequality. To be precise, by Theorem 3.6 of [30], we can see for any λ ∈ (0, 1), q ≥ 1 and

1
q ≤

1−λ
d , there exists some constant C = C(d,M) such that

‖u‖Cλ(M) ≤ C‖u‖W1,q(M).

Also by Proposition 3.7 of [30], if d > q ≥ 1, then for q∗ = qd
d−q , we have

‖u‖Lq∗ (M) ≤ C‖u‖W1,q(M).

Before embarking on the proof of theorem (3), we need to have some lemmas first.

The first one is about the Poincaré inequality which is a result of [5] and we can find it in

Theorem 5.6.5 of [38], e.g..

Lemma 26 Let M be a manifold satisfying same conditions as above Theorem 2.

Then for any 1 ≤ p < ∞, there exists some constant C = C(d, p,K0) such that

for any ball B(x0, r) ⊂ M where 0 < r < 4,

∫
B(x0,r)

|f(x)− fB(x0,r)|
pdx ≤ Crp

∫
B(x0,r)

|∇f(x)|pdx, (2.25)
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where fB(x0,r) =

∫
B(x0,r)

f(x)dx

|B(x0,r)| is the mean value of f in B(x0, r).

Using this result, we have the following lemma about the Sobolev inequality:

Lemma 27 Let M be a manifold satisfying the conditions as above Theorem 2.

Then for any 1 ≤ p <∞, f ∈ C∞c (B(x0, r)) where B(x0, r) ⊂ M with r ≤ 1, there

exist some constants νp > p and C = C(d, p,K0) such that(∫
B(x0,r)

|f |
pνp
νp−pdx

) νp−p
νp

≤ Crp

|B(x0, r)|
p
νp

∫
B(x0,r)

|∇f |pdx. (2.26)

Proof. By Bishop-Gromov volume comparison theorem,

|B(x, r)| ≤ |B(x, s)|
(r
s

)d
exp

(
(d− 1)

√
K0r

)
≤ C|B(x, s)|

(r
s

)d
, (2.27)

when 0 < s < r < 4.

Combine (2.25) and (2.27), we can get (2.26) by Theorem 5.2.6 of [38] immediately.

Remark 28 Here ν2 = d when d > 2 and ν2 can be some number which is close to 2 when

d = 1 or d = 2. We use this Sobolev inequality for the mean value inequality in Lemma 31.

Unlike Remark 25, this is true for all dimensions but with extra condition r ≤ 1.

Now for any (x0, t0) ∈ M× (0, 1/2], we introduce some regions similar to [45] first.

For any positive integer k and any j = 1, 2, · · · , k,

H1
j =

{
(x, t)|d(x, x0) < j

√
t0√

2k
, t ∈ [t0 − jt0

2k , t0 + jt0
2k ]
}
,

H2
j =

{
(x, t)|d(x, x0) < (j+0.5)

√
t0√

2k
, t ∈ [t0 − (j+0.5)t0

2k , t0 + (j+0.5)t0
2k ]

}
.

So immediately H1
j ⊂ H2

j ⊂ H1
j+1.

Then we have the following lemma to estimate
∫∫
H1
j
|∂tu(x, t)|2dxdt.
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Lemma 29 For any j = 1, 2, · · · , k, there exists some positive constant C such that∫∫
H1
j

|∂tu(x, t)|2dxdt

≤ Ck

t0

∫∫
H2
j

|∇u(x, t)|2dxdt+
Ck

t0

∫∫
H1
j+1

|V (x)||u(x, t)|2dxdt.
(2.28)

Proof. Let us define a smooth cut-off function φ(1)(x, t) such that φ(1)(x, t) = 1 in H1
j and

is supported in H2
j . We can also suppose there is some constant C such that

|∇φ(1)(x, t)|2 + |∂tφ(1)(x, t)| ≤ Ck

t0
.

We use φ = φ(1)(x, t) below for the simplicity of notation. By assumption of cut-off function

φ and Cauchy-Schwarz inequality, integration by parts in time,∫∫
H2
j

|∂tu(x, t)|2φ2dxdt =

∫∫
H2
j

∂tu(x, t)(∆u(x, t)− V (x)u(x, t))φ2dxdt

= −
∫∫

H2
j

∇∂tu(x, t)∇u(x, t)φ2dxdt−
∫∫

H2
j

∂tu(x, t)∇u(x, t)∇φ2dxdt

−
∫∫

H2
j

V (x)∂tu(x, t)u(x, t)φ2dxdt

≤ 3

4

∫∫
H2
j

|∂tu(x, t)|2φ2dxdt+
Ck

t0

∫∫
H2
j

|∇u(x, t)|2|dxdt

+
Ck

t0

∫∫
H2
j

|V (x)||u(x, t)|2φdxdt.

Then we can get a Caccioppoli type inequality (energy estimate) as below.
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Lemma 30 For any j = 1, 2, · · · , k, there exists some positive constant C such that

sup
t∈(t0− (j+1)t0

2k
,t0+

(j+1)t0
2k

)

∫
B(x0,

(j+1)
√
t0√

k
)
u2(x, t)φ2dx

+

∫∫
H2
j

|∇u(x, t)|2dxdt+

∫∫
H2
j

|V (x)||u(x, t)|2dxdt ≤ Ck

t0

∫∫
H1
j+1

|u(x, t)|2dxdt

+ C

(
C∗

2q
2q−d +D∗

2
2q−dC∗∗

2(q−1)
2q−d

(
d(x0, 0) +

(j + 0.5)
√
t0√

k

)2
)

×
∫∫

H1
j+1

|u(x, t)|2dxdt.

(2.29)

Proof. Let us define another smooth cut-off function φ(2)(x, t) such that φ(2)(x, t) = 1 in

H2
j and is supported in H1

j+1. We can also suppose there is some constant C such that

|∇φ(2)(x, t)|2 + |∂tφ(2)(x, t)| ≤ Ck

t0
.

We use φ = φ(2)(x, t) for the simplicity of notation in this proof. By integration by parts,

assumption about φ and (1.2),∫∫
H1
j+1

|∇u(x, t)|2φ2dxdt ≤ 1

4

∫∫
H1
j+1

|∇u(x, t)|2φ2dxdt

+
Ck

t0

∫∫
H1
j+1

|u(x, t)|2dxdt+

∫∫
H1
j+1

|V (x)||u(x, t)|2φ2dxdt.

(2.30)

Now we need to estimate the last term above. By Hölder inequality, interpolation

inequality and Sobolev inequality, we know:
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∫
B(x0,

(j+0.5)
√
t0√

k
)
V (x)|u(x, t)|2φ2dx

≤

(∫
B(x0,

(j+0.5)
√
t0√

k
)
|V (x)|qdx

)1/q (∫
B(x0,

(j+0.5)
√
t0√

k
)

(
|u(x, t)|2φ2

) q
q−1 dx

) q−1
q

≤ C

(∫
B(x0,

(j+0.5)
√
t0√

k
)
|V (x)|qdx

)1/q

2ε2

(∫
B(x0,

(j+0.5)
√
t0√

k
)
|∇(φu(x, t))|2∗dx

) 2
2∗

+ C

(∫
B(x0,

(j+0.5)
√
t0√

k
)
|V (x)|qdx

)1/q

C(d, q)ε
−2d
2q−d

∫
B(x0,

(j+0.5)
√
t0√

k
)
|φu(x, t)|2dx

≤ C

(∫
B(x0,

(j+0.5)
√
t0√

k
)
|V (x)|qdx

)1/q

× 2ε2

(∫
B(x0,

(j+0.5)
√
t0√

k
)
|∇(φu(x, t))|2dx+

∫
B(x0,

(j+0.5)
√
t0√

k
)
|(φu(x, t))|2dx

)

+ C

(∫
B(x0,

(j+0.5)
√
t0√

k
)
|V (x)|qdx

)1/q (
ε
−2d
2q−d

∫
B(x0,

(j+0.5)
√
t0√

k
)
|φu(x, t)|2dx

)
.

(2.31)

By taking ε = 1
2
√
C

(∫
B(x0,

(j+0.5)
√
t0√

k
)
|V (x)|qdx

)− 1
2q

and integrating with respect to time,

∫∫
H2
j

V (x)|u(x, t)|2φ2dxdt ≤ 1

2

∫∫
H2
j

|∇u(x, t)|2φ2dxdt+
Ck

t0

∫∫
H2
j

|u(x, t)|2dxdt

+ C

(∫
B(x0,

(j+0.5)
√
t0√

k
)
|V (x)|qdx

) 2
2q−d ∫∫

H2
j

|φu(x, t)|2dxdt

≤ 1

2

∫∫
H2
j

|∇u(x, t)|2φ2dxdt+
Ck

t0

∫∫
H2
j

|u(x, t)|2dxdt

+

(
C∗

2q
2q−d + CD∗

2
2q−dC∗∗

2(q−1)
2q−d

(
d(x0, 0) +

(j + 0.5)
√
t0√

k

)2
)

×
∫∫

H2
j

|φu(x, t)|2dxdt.

(2.32)

Plugging into (2.30), we yield ,
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∫∫
H2
j

|∇u(x, t)|2dxdt ≤ Ck

t0

∫∫
H1
j+1

|u(x, t)|2dxdt

+ C

(
C∗

2q
2q−d +D∗

2
2q−dC∗∗

2(q−1)
2q−d

(
d(x0, 0) +

(j + 0.5)
√
t0√

k

)2
)

×
∫∫

H2
j

|φu(x, t)|2dxdt.

(2.33)

Besides, we can also see

∂t

(
1/2

∫
B(x0,

(j+1)
√
t0√

k
)
u2(x, t)φ2dx

)

=

∫
B(x0,

(j+1)
√
t0√

k
)
u(x, t)(∆u(x, t)− V (x)u(x, t))φ2dx

+

∫
B(x0,

(j+1)
√
t0√

k
)
u2(x, t)φ∂tφdx

≤ 1

2

∫
B(x0,

(j+1)
√
t0√

k
)
|∇u(x, t)|2φ2dx+

Ck

t0

∫
B(x0,

(j+1)
√
t0√

k
)
|u(x, t)|2dx

(2.34)

By integration by time and (2.33), we can get the (2.29) immediately.

Then we need the mean value inequality as follows.

Lemma 31 Assume M is a manifold satisfying same conditions as Theorem 3. Let u =

u(x, t) be a nonnegative weak subsolution to (2.33). Then for any 0 < p <∞, 0 < r < R < 1

and (x0, t0) ∈ M× (0, 1/2],

sup
Qr(x0,t0)

|u(x, t)|p ≤ C

(
R2

|B(x0, R)|
2
ν2

) 1
θ∗−1

×

(
1

|R− r|2
+ C∗

2q
2q−d +D∗

2
2q−dC∗∗

2(q−1)
2q−d

(
d(x0, 0) +

(j + 0.5)
√
t0√

k

)2
) θ∗

θ∗−1

×
∫∫

QR(x0,t0)
|u(x, t)|pdxdt,

where θ∗ = 1 + 2
ν2

. Here ν2 is defined in Lemma 27.
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Proof. We can prove this one by Moser iteration. By Hölder inequality and Lemma 27,

we have for any w(x) ∈ C∞c (B(x0, R)),∫
B(x0,R)

|w(x)|2(1+ 2
ν2

)
dx

≤

(∫
B(x0,R)

|w(x)|
2ν2
ν2−2dx

) ν2−2
ν2

(∫
B(x0,R)

|w(x)|2dx

) 2
ν2

≤ C

(
R2

|B(x0, R)|
2
ν2

)∫
B(x0,R)

|∇w(x)|2dx

(∫
B(x0,R)

|w(x)|2dx

) 2
ν2

(2.35)

Let ψ = ψ(x, t) be a standard smooth cut-off function such that ψ = 1 in Qr(x0, t0)

and is supported in QR(x0, t0). We can assume |∇ψ|2 + |∂tψ| ≤ C
|R−r|2 . Then by integration

by parts and assumption about ψ and (1.2),

∂t

(
1/2

∫
B(x0,R)

|u(x, t)|2ψ2dx

)
+

∫
B(x0,R)

|∇(u(x, t)ψ)|2dx

≤ C

|R− r|2

∫
B(x0,R)

|u(x, t)|2dx+ 4

∫
B(x0,R)

|∇u(x, t)|2ψ2dx

+

∫
B(x0,R)

|V (x)||u(x, t)|2ψ2dx.

Combining (2.31) and (2.33), by integrating with respect to time, we yield

sup
t∈(−R2,0)

∫
B(x0,R)

|u(x, t)|2ψ2dx+

∫∫
QR(x0,t0)

|∇(u(x, t)ψ)|2dxdt

≤ C

(
1

|R− r|2
+ C∗

2q
2q−d +D∗

2
2q−dC∗∗

2(q−1)
2q−d

(
d(x0, 0) +

(j + 0.5)
√
t0√

k

)2
)

×
∫∫

QR(x0,t0)
|u(x, t)|2dxdt.

Let E(R) =

(
R2

|B(x0,R)|
2
ν

)
and

F ∗ =
1

|R− r|2
+ C∗

2q
2q−d +D∗

2
2q−dC∗∗

2(q−1)
2q−d

(
d(x0, 0) +

(j + 0.5)
√
t0√

k

)2

for simplicity of notataion. From inequality (2.35), we can see∫∫
QR(x0,t0)

|u(x, t)ψ|2θ∗dxdt ≤ CE(R)

(
F ∗
∫∫

QR(x0,t0)
|u(x, t)|2dxdt

)θ∗
. (2.36)
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Now we have two cases.

Case (1): p ≥ 2. In this case, we can see up/2 is also a nonnegative subsolution. Therefore,

(2.36) yields that:

∫∫
Q′r(x0,t0)

(u(x, t))pθ dxdt ≤ CE(R)

(
F ∗
∫∫

Q′R(x0,t0)
(u(x, t))pdxdt

)θ
. (2.37)

Set for some positive constant δ = r
R < 1, ωi = (1−δ)R

2i
so that

∑∞
1 ωi = (1− δ)R.

Set also σ0 = R, σi+1 = σi−ωi = R−
∑i

1 ωj . Applying (2.37) with p = pi = θi, r = σi, R =

σi+1 we obtain

∫∫
Q′σi+1

(x0,t0)
(u(x, t))θ

i+1

dxdt ≤ CE(R)16iθF ∗θ
(∫∫

Q′σi (x0,t0)
(u(x, t))θ

i
dxdt

)θ
.

Hence, by iteration,(∫∫
Q′σi+1

(x0,t0)
(u(x, t))θ

i+1

dxdt

)θ−1−i

≤ (CE(R))Σθ−1−j
16Σjθ−1−j

F ∗Σθ
−j
∫∫

Q′R(x0,t0)
(u(x, t))2dxdt,

where all the summations are taken from 0 to i and we can easily see Σjθ−1−j converges.

Letting i tend to infinity, we obtain

sup
Q′r(x0,t0)

u2 ≤ C (E(R))
1
θ−1 F ∗

θ
θ−1 ‖u‖22,Q′R(x0,t0). (2.38)

Then when p > 2, we can see up/2 is also a nonnegative subsolution, so

sup
Q′r(x0,t0)

up ≤ C (E(R))
1
θ−1 F ∗

θ
θ−1 ‖u‖p

p,Q′R(x0,t0)
,

which proves (2.13) for the case p ≥ 2.
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Case (2): 0 < p < 2.

For this case, we can use the method of [22] or more precisely, Theorem 2.2.3 in the book

[38].

Fix σ ∈ (0, 1) and set ρ = σ + (1− σ)/4. Then (2.38) applies

sup
Q′σR(x0,t0)

u ≤ C (E(R))
1

2(θ−1)

(
1 +

1

(ρR− σR)4

) θ
2θ−2

‖u‖2,Q′ρR(x0,t0).

Now, as ‖u‖2,Q ≤ ‖u‖1−p/2∞,Q ‖u‖
p/2
p,Q for any parabolic cylinder Q, we get

‖u‖∞,Q′σR(x0,t0) ≤ J
(

1 +
1

(ρR− σR)4

) θ
2θ−2

‖u‖1−p/2∞,Q′ρR(x0,t0)
, (2.39)

where J = C‖u‖p/2
p,Q′ρR(x0,t0)

(E(R))
1

2(θ−1) .

Fix δ = r
R , σ0 = δR = r and σi+1 = σi+(R− σi) /4. Then R−σi = (3/4)i(1−δ)R.

Applying the above inequality (2.39) for each i yields

‖u‖∞,Q′σi (x0,t0) ≤ (4/3)θi/(2θ−2)JF ∗
θ

2θ−2 ‖u‖1−p/2∞,Q′σi+1
(x0,t0).

Hence by iteration, for i = 1, 2, . . .

‖u‖∞,Q′r(x0,t0)

≤ (4/3)(θ/(θ−2))
∑i−1

0 j(1−p/2)j
[
JF ∗

θ
2θ−2

]∑i−1
0 (1−p/2)j

‖u‖(1−p/2)i

∞,Q′σi (x0,t0).

Letting i tend to infinity, we yield,

‖u‖∞,Q′r(x0,t0) ≤ C (E(R))
1

p(θ−1) F ∗
θ

(θ−1)p ‖u‖p,Q′R(x0,t0),

which proves inequality (2.13) for the case 0 < p < 2.
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2.3.1 Proof of Theorem 3

Now we are in a position to prove Theorem 3. Because ∂ltu(x, t) is also a weak

solution of (1.2) for any l = 1, 2, · · · , k, we can put inequality (2.28) and (2.33) together to

obtain, ∫∫
H1
j

|∂k−j+1
t u(x, t)|2dxdt ≤ C2k2

t2k0

∫∫
H1
j+1

|∂k−jt u(x, t)|2dxdt

+
Ck

t0

(
C∗

2q
2q−d + CD∗

2
2q−dC∗∗

2(q−1)
2q−d

(
d(x0, 0) +

(j + 0.5)
√
t0√

k

)2
)

×
∫∫

H1
j+1

|∂k−jt u(x, t)|2dxdt

≤
(
C2k2

t20

)∫∫
H1
j+1

|∂k−jt u(x, t)|2dxdt

+

(
C∗

4q
2q−d +D∗

4
2q−dC∗∗

4(q−1)
2q−d

(
d(x0, 0) +

(j + 0.5)
√
t0√

k

)4
)

×
∫∫

H1
j+1

|∂k−jt u(x, t)|2dxdt.

By iteration,∫∫
H1

1

|∂kt u(x, t)|2dxdt

≤
k∏
j=1

(
C2k2

t20
+ C∗

4q
2q−d +D∗

4
2q−dC∗∗

4(q−1)
2q−d

(
d(x0, 0) +

(j + 0.5)
√
t0√

k

)4
)

×
∫∫

H1
k+1

|u(x, t)|2dxdt.

(2.40)

By Lemma 5.2.7 of [38] or the book [51], we see for some constant D > 0 and any 0 < r < 1,

|B(x, r)| ≤ eD
d(x,y)
r |B(y, r)|. (2.41)

37



As |∂kt u|2 is a weak subsolution to (1.2), by mean value inequality in Lemma 31, it holds

|∂kt u(x0, t0)|2 ≤ CeDd(x0,0)

(
k

t0

) d−ν2
2

×

(
k

t0
+ C∗

2q
2q−d +D∗

2
2q−dC∗∗

2(q−1)
2q−d

(
d(x0, 0) +

(j + 0.5)
√
t0√

k

)2
) ν2+2

2

×
∫∫

H1
1

|∂kt u(x, t)|2dxdt.

(2.42)

Combining these two inequalities (2.40) and (2.42), and applying the assumption

that u is of exponential growth of order 2, we yield,

|∂kt u(x0, t0)|2 ≤ A1A
2k+2
3 k2k

t2k0
e2A4d2(x0,0).

Just note we put some terms involving d(x0, 0) into e2A4d2(x0,0).

The proof for the conclusions about aj = ∂jt u(x, 1/2) is the same as Theorem 2.

In this way, we have completed the proof of Theorem 3.

Remark 32 To see the set of functions satisfying the condition 2.1 is nontrivial when

V (x) = x2 in Rd, we give some examples here. For Hermite polynomials

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
,

and

ψn(x) = (2nn!
√
π)−1/2e−x

2/2Hn(x),

it is well-known that (D2 − x2)ψn(x) = −(2n+ 1)ψn(x) and thus

(D2 − x2)kψn(x) = (−1)k(2n+ 1)kψn(x).

Therefore, ψn(x) satisfies the condition 2.1 as |(D2 − x2)kψn(x)| ≤ Ckk!.

38



Remark 33 Theorem (3) is about the time analyticity when t ∈ (0, 1/2]. Because (1.2) is

a linear equation, it is a natural assumption that u is of exponential growth of order 2 in

t ∈ [0, 2], a longer time interval, then the solution should be time analytic in [0, 1].

Especially, when M = Rd, there is no necessity to assume V ∈ L1(Rd B(0, R∗))

and d ≥ 3, instead we have the following corollary:

Corollary 34 Let M = Rd. Assume V = V (x) satisfies the following conditions:

(1) There exists some R∗ > 0 such that V (·) ∈ Lq(B(0, R∗)) for some q > d
2 .

(2) For some constant C∗∗ > 0, if d(x, 0) > R∗, then |V (x)| ≤ C∗∗d(x, 0)α where α = 2− 2d
q .

Let

‖V ‖Lq(B(0,R∗)) = C∗

where C∗ is a positive constant and let u = u(x, t) be a weak solution of equation (1.2) for

any dimension d ≥ 1 on M× [0, 1] of exponential growth of order 2, namely

|u(x, t)| ≤ A1e
A2d2(x,0), ∀(x, t) ∈ M× [0, 1],

where A1 and A2 are some positive constants. Then u is analytic in t ∈ (0, 1/2] with radius

of convergence depending only on t, d, q, K0, A2, α and C∗.

Moreover, if t ∈ (1/2− δ, 1/2] for some small δ > 0, we have

u(x, t) =
∞∑
j=0

aj(x)
(t− 1/2)j

j!

with (∆− V )aj(x) = aj+1(x), and

|aj(x)| =
∣∣(∆− V )ja0(x)

∣∣ ≤ A1A
j+1
3 jjeA4d2(x,0), j = 0, 1, 2, . . .

where constants A3 = A3(d, q,K0, A2, α, C
∗) and A4 = A4(A2, α, C

∗∗).
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Proof. The proof is almost the same as Theorem 3. There are just two differences.

The first one is to make a little change in (2.32), instead, we yield,

C

(∫
B(x0,

(j+0.5)
√
t0√

k
)
|V (x)|qdx

) 2
2q−d ∫∫

H2
j

|φu(x, t)|2dxdt

≤ C

(
C∗∗

2q
2q−d

(
(j + 0.5)

√
t0√

k
+ d(x0, 0)

)2

+ C∗
2q

2q−d

)∫∫
H2
j

|φu(x, t)|2dxdt.

The second difference is in (2.31). Instead of Sobolev inequality, we use the Gagliardo-

Nirenberg interpolation inequality and Young’s inequality directly, which is

‖u(·, t)φ‖
L

2q
q−1 (Rd)

≤ C‖∇(u(·, t)φ)‖
d
2q

L2(Rd)
‖u(·, t)φ‖

1− d
2q

L2(Rd)

≤ ε‖∇(u(·, t)φ)‖L2(Rd) + Cε
−d

2q−d ‖u(·, t)φ‖L2(Rd).

The rest of the proof is exact same.

As a special case, when V (x) ≥ 0, we need to prove Theorem 4 now.

Remark 35 In Theorem 3, an interesting property is that the solution u = u(x, t) can be

not smooth in x at all. Actually, if M = Rd and V (x) = A
|x|2 where A ≥ 0, we have one

solution u(x, t) = |x|α(A) where α(A) :=
−(d−2)+

√
(d−2)2+4A

2 . We can see this solution is

not smooth if α(A) is not an integer.

Similarly, we have a lemma about the mean value inequality using the same proof

as in Lemma 31:

Lemma 36 Assume M is a manifold satisfying same conditions as Theorem 4. Then for

any nonnegative weak subsolution u = u(x, t) to (1.2) where V ≥ 0, for any 0 < p < ∞,
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0 < r < R < 1 and (x0, t0) ∈ M× [−1, 0], there exist some canstant C such that:

sup
Qr(x0,t0)

|u(x, t)|p

≤ C

(
R2

|B(x0, R)|
2
ν2

) 1
θ∗−1 ( 1

|R− r|2

) θ∗
θ∗−1

∫∫
QR(x0,t0)

|u(x, t)|pdxdt,

where θ∗ = 1 + 2
ν2

and ν2 is defined in Lemma 27.

Remark 37 As a very special example, we get the heat equation with inverse-square po-

tential when V (x) = A
d(x,0)2 ,

∂tu(x, t)−∆u(x, t) +
Au(x, t)

d(x, 0)2
= 0, ∀(x, t) ∈ M× [0, 1].

It is well-konwn that this potential is a borderline one where the regularity theory differs

from the standard one. For the regularity and mean value inequality of this equation in Rd,

we can refer to [44], [56] and [43]. Actually, the inverse-square potential term A
|x|2 helps

with it.

2.3.2 Proof of Theorem 4

Proof. Now for any (x0, t0) ∈ M× (0, 1], we introduce some regions first. For any

positive integer k and any j = 1, 2, · · · , k,

H1
j =

{
(x, t)|d(x, x0) < j

√
t0√

2k
, t ∈ [t0 − jt0

2k , t0]
}
,

H2
j =

{
(x, t)|d(x, x0) < (j+0.5)

√
t0√

2k
, t ∈ [t0 − (j+0.5)t0

2k , t0]
}
.

So immediately H1
j ⊂ H2

j ⊂ H1
j+1.

Denote by ψ
(1)
j (x, t) a standard smooth cut-off function supported in H2

j such that

ψ
(1)
j (x, t) = 1 in H1

j and |∂tψ(1)
j (x, t)|+ |∇ψ(1)

j (x, t)|2 ≤ Ck
t0

for some constant C.
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We denote ψ = ψ
(1)
j (x, t) for simplicity of notation below. Then by equation (1.2)

and integration by parts,

∫∫
H2
j

(∂tu(x, t))2ψ2dxdt ≤ 1

2

∫∫
H2
j

|∇u(x, t)|∂tψ2dxdt

+ ε1

∫∫
H2
j

(∂tu(x, t))2ψ2dxdt+
4

ε1

∫∫
H2
j

|∇u(x, t)|2|∇ψ|2dxdt

+
1

2

∫∫
H2
j

V (x)u2(x, t)∂tψ
2dxdt.

Using the assumption of ψ and taking ε1 = 1
2 , we yield

∫∫
H1
j

|∂tu(x, t)|2dxdt ≤ Ck

t0

(∫∫
H2
j

|∇u(x, t)|2dxdt+

∫∫
H2
j

V (x)u2(x, t)dxdt

)
. (2.43)

Define another smooth cut-off function ψ
(2)
j (x, t) supported in H1

j+1 such that

ψ
(2)
j (x, t) = 1 in H2

j . We assume for some constant C, |∂tψ(2)
j (x, t)| + |∇ψ(2)

j (x, t)|2 ≤ Ck
t0

.

We denote ψ = ψ
(2)
j (x, t) for simplicity of notation below. Then by equation (1.2),

∫∫
H1
j+1

|∇u(x, t)|2ψ2dxdt+

∫∫
H1
j+1

V (x)u2(x, t)ψ2dxdt

≤ ε2
∫∫

H1
j+1

|∇u(x, t)|2ψ2dxdt+
1

ε2

∫∫
H1
j+1

|u(x, t)|2|∇ψ|2dxdt

+
1

2

∫∫
H1
j+1

u2(x, t)∂tψ
2dxdt.

By the assumption on ψ and taking ε2 = 1
2 , we can see,

∫∫
H2
j

|∇u(x, t)|2dxdt+

∫∫
H2
j

V (x)u2(x, t)dxdt ≤ Ck

t0

∫∫
H1
j+1

|u(x, t)|2dxdt. (2.44)

Combine the inequalities (2.43) and (2.44), we have

∫∫
H1
j

|∂tu(x, t)|2dxdt ≤ C2k2

t20

∫∫
H1
j+1

|u(x, t)|2dxdt.
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By Remark 24, ∂ltu is also a weak solution of (1.1) for any nonnegative integer l.

Thence ∫∫
H1

1

(
∂kt u(x, t)

)2
dxdt ≤ C2k2

t20

∫∫
H1

2

(
∂k−1
t u(x, t)

)2
dxdt

≤ ... ≤ C2kk2k

t2k0

∫∫
H1
k+1

u(x, t)2dxdt.

Therefore, by Lemma 36, (2.41)

|∂kt u(x0, t0)|2 ≤ C
(
k

t0

)d/2+1

eDd(x0,0)

∫∫
Q
k
− 1

2
(x0,t0)

|∂kt u(x, t)|2dxdt

≤ C
(
k

t0

)d/2+1(Ck
t0

)2k ∫∫
H1
k+1

(u(x, t))2 dxdt ≤ A2
1A

2k+2
5 k2k

t2k0
e4A2d2(x0,0).

The rest of the proof is the same as Theorem 2.

Remark 38 To make sure the set of functions satisfying condition 2.2 is nontrivial when

V (x) = A
d(x,0)2 , we give some examples here. The first one is

a0(x) =

∞∑
j=1

|x|2j

((2j)!)1+s
,

where s ≥ 0. Now we give a lemma explaining a0(x) satisfies condition 2.2 in Rd. We can

prove the following lemma by induction.

Lemma 39 Let the space M = Rd, then there are two sequences of positive number aj,k

and bj,k where j, k are nonnegative integers satisfying(
∆− 2d

|x|2

)k
a0(x) =

∞∑
j=k+1

bj,k|x|2j−2k

and

∆ka0(x) =
∞∑
j=k

aj,k|x|2j−2k.

Besides, we have 0 ≤ bj,k ≤ aj,k, and∣∣∣∣ (∆− 2d

|x|2

)k
a0(x)

∣∣∣∣ ≤ ∆ka0(x) ≤ Ckk!e4d|x|2 .
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Then we can have another example a∗(x) =
∑∞

j=1
(−1)j+1|x|2j

((2j)!)1+s , s > 0 which also

satisfies the condition (2.2). This is because if we let

(
∆− 2

|x|2

)k
a∗(x) =

∞∑
j=k+1

dj,k|x|2j−2k,

then dj,m+1 = (−1)j+1bj,m+1 for any nonnegative integers j,m.

Especially, we can also prove the functions |x|2cos(|x|) and |x|sin(|x|) also satisfies

the condition (2.2) by the same method.

We have similar corollaries as Corollary 16 and Corollary 18 using the same proof.

Corollary 40 Let V = V (x) be a potential function satisfying either the conditions in

Theorem 4 or V (x) ≥ 0. Then the Cauchy problem for the backward heat equation with

potentials 
∂tu(x, t) + (∆− V (x))u(x, t) = 0

u(x, 0) = a(x),

has a weak solution of exponential growth of order 2 in M × (0, δ) for some δ > 0 if and

only if there exist some constants A2, A3 satisfying:

∣∣∣(∆− V (x))j a(x)
∣∣∣ ≤ Aj+1

2 jjeA3d2(x,0), j = 0, 1, 2, . . .

Corollary 41 Let V = V (x) satisfies the same conditions as Corollary 40 above. Then the

Cauchy problem 
∂tu(x, t)− (∆− V (x))u(x, t) = 0

u(x, 0) = a(x)

has a weak solution of exponential growth of order 2, which is also analytic in time in

M× [0, δ) for some δ > 0 with a radius of convergence independent of x if and only if there
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exist some constants A2, A3 satisfying:

∣∣∣(∆− V (x))j a(x)
∣∣∣ ≤ Aj+1

2 jjeA3d2(x,0), j = 0, 1, 2, . . .

2.4 Nonlinear Heat Equations With Power Nonlinearity

This section is about some nonlinear heat equations with power nonlinearity of

order p (1.3) where p ∈ (0,∞). There are two main theorems 5 and 6 in this section and

the main tools to prove them are Lemmas 45 and 46. We first prove the case when the

solution u is bounded and p is an integer. Then we turn to the case when 0 < C3 ≤ |u| ≤ C4

and p is any rational number.

For (1.3), since we assume the solution u is bounded, by standard theory, u is

actually smooth. We need a lemma about the time derivative of the heat kernel on M first.

Lemma 42 Let M be the same manifold as Theorem 5 above. Then for any x, y ∈ M,

0 < t ≤ 1 and any nonnegative integer k, there exist some constants C1 and C5 depending

only on M and d such that the heat kernel Γ(x, t; y) of the heat equation

∂tu−∆u = 0,

satisfies the following condition:

|∂kt Γ(x, t; y)| ≤ Ck+1
1 kk−2/3

tk|B(x,
√
t)|
e
−C5d(x,y)2

t . (2.45)

Remark 43 To our best knowledge, up to now, in the literature, one just have

|∂kt Γ(x, t; y)| ≤ C(k)

tk|B(x,
√
t)|
e
−C5d(x,y)2

t
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in the manifold case, where C(k) is not calculated explicitly. So here we obtain a more

accurate result.

Proof of Lemma 42. Fix any t0 ∈ (0, 1] and x0, y0 ∈ M, we would like to get

the estimates of ∂kt Γ(x0, t0; y0). For any nonnegative integer k and j = 1, 2, · · · , k, we define

some space-time domains:

M1
j =

{
(x, t) : d(x, x0) <

j
√
t0√

2k
, t ∈

(
t0 −

jt0
2k
, t0

)}
,

M2
j =

{
(x, t) : d(x, x0) <

(j + 0.5)
√
t0√

2k
, t ∈

(
t0 −

(j + 0.5)t0
2k

, t0

)}
.

Then M1
j ⊂M2

j ⊂M1
j+1.

Following the method used in the proof of Theorem 4, for some constant C, it

holds ∫∫
M1

1

|∂kt Γ(x, t; y0)|2dxdt ≤ C2kk2k

t2k0

∫∫
M1
k+1

|Γ(x, t; y0)|2dxdt. (2.46)

Then we need to use the well-known result for the upper bound of the heat kernel which

can be found in [42] or [38], which is

Γ(x, t; y) ≤ C ′3e
−C′4d(x,y)2

t

|B(x,
√
t)|

, ∀x, y ∈ M and t ∈ (0, 1],

for some constants C ′3 and C ′4.

Now we have two cases.

Case (1): d(y0, x0) ≤
√

4kt0.

In this case, using (2.41)

C2kk2k

t2k0

∫∫
M1
k+1

|Γ(x, t; y0)|2dxdt

≤ C2k+1/2k2ke
D(k+1)2t0

2kt0

t2k−1
0 |B(x0,

√
t0)|

≤ C2k+1k2k+1

t2k−1
0 |B(x0,

√
t0)|

e
−C5d(x0,y0)2

t0 ,
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for some constant C.

Case (2): d(y0, x0) >
√

4kt0.

In this case, because d(x, x0) < (k+1)
√
t0√

2k
,
√

2−1√
2
< d(x,y0)

d(x0,y0) < 2. Therefore,

C2kk2k

t2k0

∫∫
M1
k+1

|Γ(x, t; y0)|2dxdt

≤
C2kk2kt0|B(x0,

(k+1)
√
t0√

2k
)|e

2D(k+1)2t0
2kt0

t2k0 |B(x0,
√
t0)|2

e
−(3−2

√
2)C′4d(x0,y0)2

2t0

≤ C2k+1/2k2k+1

t2k−1
0 |B(x0,

√
t0)|

e
−C5d(x0,y0)2

t0 ≤ C2k+1k2k+1

t2k−1
0 |B(x0,

√
t0)|

e
−C5d(x0,y0)2

t0 .

Combine the above two cases,

∫∫
M1

1

|∂kt Γ(x, t; y0)|2dxdt ≤ C2k+1k2k+1

t2k−1
0 |B(x0,

√
t0)|

e
−C5d(x0,y)2

t0 . (2.47)

Then we recall a well-known parabolic mean value inequality which can be found, for in-

stance, in Theorem 14.7 of [48]. To be more precise, by the method of Lemma 31, for any

0 < p <∞ and 0 < r < R < 1, any nonnegative subsolution u = u(x, t) of the heat equation

satisfies

sup
Qr(x0,t0)

u(x, t)p

≤ C

(
R2

|B(x0, R)|
2
ν2

) 1
θ∗−1 ( 1

|R− r|2

) θ∗
θ∗−1

∫∫
QR(x0,t0)

u(x, t)pdxdt,

where θ∗ = 1 + 2
ν2

and ν2 is defined in (2.26). Let u(x, t) = |∂kt Γ(x, t; y0)|2, p = 1, r = 0

and R =
√
t0/
√

2k, we can see

|∂kt Γ(x0, t; y0)|2 ≤ Ck∣∣∣B (x0,
√
t0/
√

2k
)∣∣∣ t0

∫∫
Q√t0/

√
2k(x0,t0)

(∂kt Γ(x, t; y0))2dxdt

≤ Ckd/2+1∣∣B (x0,
√
t0
)∣∣ t0

∫∫
Q√t0/

√
2k(x0,t0)

(∂kt Γ(x, t; y0))2dxdt,

(2.48)
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where we have used the Bishop-Gromov volume comparison theorem in the last inequality.

By (2.46),(2.47) and (2.48), we see

(∂kt Γ(x0, t0; y0))2 ≤ C2k+2k2k+d/2+2

t2k0 |B(x0,
√
t0)|2

e
−C5d(x0,y0)2

t0 .

Thus,

|∂kt Γ(x0, t0; y0)| ≤ Ck+1
1 kk−2/3

tk0|B(x0,
√
t0)|

e
−C5d(x0,y0)2

t0 ,

for some C1 large enough, which finishes the proof of Lemma 42.

Remark 44 By the estimate of the time derivative of heat kernel Γ(x, t; y), we can see the

solution u = u(x, t) of heat equation ut −∆u = 0 is analytic in time if u is of exponential

growth of order 2 directly.

Let
(

n
i1,i2,··· ,ik

)
:= n!

i1!i2!···(n−i1−i2−···−ik)! . Then we have a lemma which will be used

frequently.

Lemma 45 For any integers n > 1 and k > 1, there exists some constant C = C(k) such

that, ∑
Σkm=1im<n,im>0

(
n

i1, i2, · · · , ik

)
i
i1−2/3
1 i

i2−2/3
2 × · · ·

× (n− i1 − i2 − · · · − ik)n−i1−i2−···−ik−2/3 ≤ Cnn−2/3.

This lemma is just an extension of the Lemma 3.2 of [19] and we can prove it by the

induction method and the Stirling formula.
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Proof.

∑
Σkm=1im<n,im>0

(
n

i1, i2, · · · , ik

)
i
i1−2/3
1 i

i2−2/3
2 × · · ·

× (n− i1 − i2 − · · · − ik)n−i1−i2−···−ik−2/3

=

n∑
i1=1

(
n

i1

)
i
i1−2/3
1

∑
Σkm=2im<n−i1,im>0

(
n− i1

i2, · · · , ik

)
i
i2−2/3
2 × · · ·

× (n− i1 − i2 − · · · − ik)n−i1−i2−···−ik−2/3

≤ C
n−1∑
i1=1

(
n

i1

)
i
i1−2/3
1 (n− i1)n−i1−2/3 ≤ Cnn−2/3

n−1∑
i1=1

n7/6

i
7/6
1 (n− i1)7/6

≤ Cnn−2/3
n−1∑
i1=1

(
1

i1
+

1

n− i1

)7/6

≤ Cnn−2/3.

Then we have the following lemma to connect ∂nt (tnup) and ∂nt (tnu) for any positive

integer n.

Lemma 46 Let f1(t),f2(t),· · · ,fk(t) be smooth functions. For any nonnegative integer n,

we have

∂nt (tnf1(t)f2(t) · · · fk(t))

=
k−1∑
m=0

(−1)m
n!

(n−m)!

(
k − 1

m

)∑
il≥0

(
n−m

i1, i2, · · · , ik−1

)

∂i1t (ti1f1(t)) · · · ∂ik−1

t (tik−1fk−1(t))∂
n−m−Σk−1

l=1 il
t (tn−m−Σk−1

l=1 ilfk(t)).

Here for
(

n
i1,i2,··· ,ik

)
we always assume

k∑
l=1

il ≤ n.

Proof. We can prove it by induction using Lemma 3.3 of [19].
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Remark 47 Especially, when f1 = f2 = · · · = fk = f , it holds

∂nt (tnfk(t))

=
k−1∑
m=0

(−1)m
n!

(n−m)!

(
k − 1

m

)∑
il≥0

(
n−m

i1, i2, · · · , ik−1

)

∂i1t (ti1f(t)) · · · ∂ik−1

t (tik−1f(t))∂
n−m−Σk−1

l=1 il
t (tn−m−Σk−1

l=1 ilf(t)).

(2.49)

Moreover, when fi(t) = f(t)
1
k for any i = 1, · · · , k, we have

kf(t)
k−1
k ∂nt (tnf(t)

1
k )

= ∂nt (tnf(t))−
k−1∑
m=1

(−1)m
n!

(n−m)!

(
k − 1

m

)∑
il≥0

(
n−m

i1, i2, · · · , ik−1

)

∂i1t (ti1f(t)
1
k ) · · · ∂ik−1

t (tik−1f(t)
1
k )∂

n−m−Σk−1
l=1 il

t (tn−m−Σk−1
l=1 ilf(t)

1
k )

−
∑

n > il ≥ 0

Σk−1
l=1

il > 0

(
n

i1, i2, · · · , ik−1

)

∂i1t (ti1f(t)
1
k ) · · · ∂ik−1

t (tik−1f(t)
1
k )∂

n−Σk−1
l=1 il

t (tn−Σk−1
l=1 ilf(t)

1
k ).

(2.50)

We first establish the following proposition before embarking on the proof of The-

orem 5.

Proposition 48 Under the conditions of Theorem 5 above, for any integer n ≥ 1, it holds

‖∂nt (tnu(·, t))‖L∞(M) ≤ N
n−1/2nn−2/3 (2.51)

for some sufficiently large constant N ≥ 1.

Proof. By induction and by lemma 2.45, there exist some constant C1 such that for any

integer k > 1, ∥∥∥∂kt (tkΓ(·, t)
)∥∥∥

L1(M)
≤ Ck+1

1 kk−2/3.
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We shall prove the proposition inductively. As u is a solution, we have

u(x, t) =

∫
M

Γ(x, t; y)u(y, 0)dy +

∫ t

0

∫
M

Γ(x, t− s; y)up(y, s)dyds,

as a consequence,

∂nt (tnu(x, t))

=

∫
M
∂nt (tnΓ(x, t; y))u(y, 0)dy + ∂nt (

∫
M

∫ t

0
tnΓ(x, t− s; y)up(y, s)dyds)

:= I1 + I2.

(2.52)

It holds

|I1| ≤ C2C
n+1
1 nn−2/3 ≤ Nn−2/3nn−2/3 (2.53)

for sufficiently large N .

To estimate I2, similar to the inequality (3.7) from the paper [19], we yield

I2 =
n∑
k=0

(
n

k

)
∂nt

∫ t

0

∫
M

(
(t− s)kΓ(x, t− s; y)

)(
sn−kup(y, s)

)
dyds

=
n∑
k=0

(
n

k

)
∂n−kt

∫ t

0

∫
M
∂kt

(
(t− s)kΓ(x, t− s; y)

)(
sn−kup(y, s)

)
dyds

=

n∑
k=0

(
n

k

)
∂n−kt

∫ t

0

∫
M
∂ks

(
skΓ(x, s; y)

)(
(t− s)n−kup(y, t− s)

)
dyds

=

n∑
k=0

(
n

k

)∫ t

0

∫
M
∂ks

(
skΓ(x, s; y)

)
∂n−kt

(
(t− s)n−kup(y, t− s)

)
dyds.

(2.54)

Using Lemma 45 and equality 2.49, the it holds by induction

|∂nt (tn(up(x, t))) | ≤ pCp−1
2 |∂nt (tnu(x, t))|+Nn−3/4nn−2/3,

and for k = 1, . . . , n− 1

∣∣∣∂kt (tk(up(x, t)))∣∣∣≤ Nk−1/3kk−2/3.
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Following the similar procedure as in the paper [19], we have

|I2| ≤
∫ t

0
Cn+1

1 nn−2/3Cp2 +

n−1∑
k=1

(
n

k

)
Ck+1

1 kk−2/3 ·Nn−k−1/3(n− k)n−k−2/3

+ C
(
pCp−1

2 ‖∂nt ((t− s)nu(·, t− s))‖L∞ +Nn−3/4nn−2/3
)
ds

≤Nn−2/3nn−2/3t+ CpCp−1
2

∫ t

0
‖∂ns (snu(·, s))‖L∞ ds

(2.55)

for sufficiently large N depending on C1, C2,p, d and K0.

Combining the estimates of I1 (2.53) and I2 (2.55), we can get (2.51) by applying

Gronwall’s inequality and finish the proof of the proposition.

Now we begin the proof of the theorem 5.

2.4.1 Proof of Theorem 5

This part is the same as [19]. We just copy it down here for the convenience of

reading.

Note that

∂nt

(
tku
)

= n∂n−1
t

(
tk−1u

)
+ t∂nt

(
tk−1u

)
.

Taking k = n, we obtain

sup
t∈(0,1]

∥∥t∂nt (tn−1u(·, t)
)∥∥
L∞(M)

≤ Nn(1 + 1/N)nn.

By induction,

sup
t∈(0,1]

‖tn∂nt u(·, t)‖L∞(M) ≤ N
n(1 + 1/N)nnn = (N + 1)nnn.

The theorem is proved.

To prove Theorem 6, we also have a proposition first using Lemmas 45 and 46.
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Proposition 49 Under the conditions of Theorem 6 above, for any integer n ≥ 1, we have

∣∣∂nt (tnu(x, t))
∣∣ ≤ Nn−1/2nn−2/3,

for some sufficiently large constant N .

Proof. We shall prove the proposition inductively. First, we can get equality (2.52) in the

same way. Then similar to inequality (2.53), we see

|I1| ≤ Nn−2/3nn−2/3,

for sufficiently large N .

By equality (2.50) and Lemma 45, we can prove by induction, for any k =

1, 2, · · · , n− 1

∣∣∂kt (tku(x, t)1/q2)
∣∣ ≤ Nk−5/12kk−2/3,

and ∣∣∣∣∂nt (tnu(x, t)1/q2)

u(x, t)1/q2

∣∣∣∣ ≤ 1

q2

∣∣∣∣∂nt (tnu(x, t))

u(x, t)

∣∣∣∣+Nn−19/24nn−2/3.

To be more precise, if we assume for any l = 1, 2, · · · , k − 1

∣∣∂lt(tlu(x, t)1/q2)
∣∣ ≤ N l−5/12ll−2/3,
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then

kC
q2−1
q2

3 |∂kt (tku(x, t)
1
q2 )|

≤ |∂kt (tku(x, t))|+
q2−1∑
m=1

k!

(k −m)!

(
q2 − 1

m

)∑
il≥0

(
k −m

i1, i2, · · · , iq2−1

)

N i1−5/12i
i1−2/3
1 · · ·N iq2−1−5/12i

iq2−1−2/3
q2−1 Nk−m−Σ

q2−1
l=1 il−5/12

× (k −m− Σq2−1
l=1 il)

k−m−Σ
q2−1
l=1 il

+
∑

k > il ≥ 0

Σ
q2−1
l=1

il > 0

(
k

i1, i2, · · · , iq2−1

)
N i1−5/12i

i1−2/3
1 · · ·N iq2−1−5/12i

iq2−1−2/3
q2−1

Nk−Σ
q2−1
l=1 il−5/12(k −m− Σq2−1

l=1 il)
k−m−Σ

q2−1
l=1 il

≤ |∂mt (tmu(x, t))|+Nk−1/2.

Therefore by equality (2.49) and Lemma 45, we can prove by induction that for

any k = 1, 2, · · · , n− 1

∣∣∂kt (tku(x, t)q1/q2)
∣∣ ≤ Nk−1/3kk−2/3,

and ∣∣∣∣∂nt (tnu(x, t)q1/q2)

u(x, t)q1/q2

∣∣∣∣ ≤ q1

∣∣∣∣∂nt (tnu(x, t)1/q2)

u(x, t)1/q2

∣∣∣∣+Nn−3/4nn−2/3

≤ q1

q2

∣∣∣∣∂nt (tnu(x, t))

u(x, t)

∣∣∣∣+Nn−3/4nn−2/3,

for some constant N large enough.
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Therefore by (2.54),

|I2| ≤
∫ t

0
C4C

n+1
1 nn−2/3

+ C

(
q1

q2

∣∣∣∣∂nt ((t− s)nu(·, t− s))
u(·, t)1−q1/q2

∣∣∣∣
L∞(M)

+ C
q1/q2
4 Nn−3/4nn−2/3

)

+
n−1∑
k=1

(
n

k

)
Ck+1

1 kk−2/3 ·Nn−k−1/3(n− k)n−k−2/3ds

≤Nn−2/3nn−2/3t+ C

∫ t

0
‖∂ns (snu(·, s))‖L∞ ds,

for sufficiently large N depending on C1, C3, C4, p, d and K0. Using the estimates of I1, I2

above and Gronwall’s inequality, we can finish the proof of Proposition 49.

With this proposition at hand, we can prove the Theorem 6 immediately.

2.4.2 Proof of Theorem 6

The proof is exactly the same as the last part of the proof of Theorem 5.

Remark 50 For the case when 0 < p < 1, we can have a particular solution

u(x, t) =


(
(1− p)(t− 1

2)
) 1

1−p when 1
2 < t < 1

0 when 0 ≤ t ≤ 1
2 ,

which is not analytic at t = 1
2 . We can use this example to say that u may not be allowed

to be 0 to get the time analyticity conclusion.

Remark 51 For the time analyticity at t = 0, according to the paper [39], even for some

polynomial functions f(u), the formal solutions for ∂tu(x, t) − ∆u(x, t) = f(u) are not in

general analytic at t = 0 even if the initial condition is analytic.

Remark 52 It is maybe true that the conclusion in Theorem 6 can be extended to all the

real number p.
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Chapter 3

Time Analyticity for the Nonlocal

Parabolic Equations

3.1 Main Results and Outline

The next four theorems are the main results of this chapter. The first one is a

time analyticity result in the case of Rd.

Theorem 53 (a) Let pα(t, x; y) be the heat kernel of equation (1.4). Then there exists a

positive constant C such that for any t ∈ (0, 1] and any nonnegative integer k,

|∂kt pα(t, x; y)| ≤ Ck+1kk

tk−1

1(
t1/α + |x− y|

)d+α
. (3.1)

(b) Assume that u = u(t, x) is a solution to (1.4) with polynomial growth of order

α− ε, i.e.,

|u(t, x)| ≤ C1

(
1 + |x|α−ε

)
, ∀(t, x) ∈ [0, 1]× Rd, 0 < α < 2, ε ∈ (0, α) (3.2)
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for a positive constant C1. Then

u(t, x) =

∫
Rd
pα(t, x− y)u(0, y) dy

is the unique smooth solution with initial data u(0, ·). Moreover, u is time analytic for any

t ∈ (0, 1] with the radius of convergence being independent of x.

(c) For any t ∈ (1− δ, 1] with a small δ > 0, we have

u(t, x) =
∞∑
j=0

aj(x)
(t− 1)j

j!
,

where a0(x) = u(1, x), aj+1(x) = Lκαaj(x),

|aj(x)| =
∣∣∣(Lκα)j a0(x)

∣∣∣ ≤ C1C
j
2j
j
(
1 + |x|α−ε

)
, j = 0, 1, 2, . . . ,

and C2 is a positive constant.

Remark 54 The estimate |aj(x)| in part (c) of this theorem will be used for the solvability

of the backward nonlocal parabolic equations and the time analyticity at t = 0 in the last

section.

Remark 55 From the proof of this theorem, for a constant C > 0, we have

|∂kt u(t, x)| ≤ Ck+1kk

tk−1

(1 + |x|α−ε

t
+

1

tε/α

)
, ∀t ∈ (0, 1] (3.3)

under the growth condition (3.2).

Now let us focus on the heat kernel of the fractional Laplacian (−∆)
α
2 in Rd.

Recall that the fractional heat kernel pα(t, x) for ut + (−∆)α/2u(t, x) = 0 is given by

pα(t, x) = C(d, α)

∫
Rd
e−t|ξ|

α
eiξxdξ, (3.4)

which can be deduced by the Fourier transform.
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Theorem 56 The following statements are true for the fractional heat kernel pα(t, x) when

t ≥ 0.

(a) For any α > 0 and for any positive integer k, there exist positive constants C,

C1, and C2 such that

|∂kt pα(t, x)| ≤ min

{
C1C

kα
2 (kα)kα

|x|kα+d
,

C

tk+d/α
Γ

(
kα+ d

α

)}
, (3.5)

which implies that pα is of Gevrey class in time of order α when x 6= 0 and pα is analytic

in time when t > 0. Moreover, if 0 < α ≤ 1 and x 6= 0, then pα is analytic in time for all

t ≥ 0. Here Γ is the gamma function.

(b) For any α > 0 and for any positive integer k,

|∂kxpα(t, x)| ≤ min

{
C1C

k+α
2 (k + α)k+αt

|x|α+k+d
,

C

t(k+d)/α
Γ

(
k + d

α

)}
, (3.6)

which implies that pα is analytic in space at |x| 6= 0. Especially, when t 6= 0, pα is of Gevrey

class with order 1/α in space for any x.

Part (a) of the theorem shows that for any α ∈ (0, 1], the fractional heat kernel is

time analytic down to t = 0, x 6= 0, which is not true for the standard heat kernel.

By the above Theorem 56, we have

Corollary 57 If the unique smooth solution u = u(t, x) to the fractional heat equation (1.8)

satisfies the growth condition (3.2) for some α ∈ [1, 2), then it is analytic in space for any

(t, x) ∈ (0, 1] × Rd. Moreover, when α ∈ (0, 1), u is of Gevrey class of order 1/α in space

for any (t, x) ∈ (0, 1]× Rd.

The last two theorems of the paper are in the setting of a complete Riemannian

manifold M. We impose the following two standard conditions on M:
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Condition (1): There exists a constant C0 > 0 such that for any ball B(x0, r),

x0 ∈ M, r > 0, and f ∈ C∞(B(x0, r)),

∫
B(x0,r)

|f − fB(x0,r)|
2 dx ≤ C0r

2

∫
B(x0,r)

|∇f |2 dx, (3.7)

where

fB(x0,r) :=
1

|B(x0, r)|

∫
B(x0,r)

f dx.

Condition (2): There exists a constant C∗ > 0 such that for any ball B(x, r),

x ∈ M, and r > 0,

|B(x, 2r)| ≤ C∗|B(x, r)|. (3.8)

The first condition is the Poincaré inequality. The second one is the doubling property of

the measure.

We aim to investigate the pointwise time analyticity of solutions to

∂tu(t, x)− Lαu(t, x) = 0, α ∈ (0, 2), (t, x) ∈ [0, 1]×M, (3.9)

where Lα is defined as follows. Let ∆ be the Laplace operator on M generating a Markov

semigroup Pt which has a density E(t, x; y) i.e. the heat kernel of the standard heat equation

on M. Consider the α-stable subordination of Pt,

Pαt :=

∫ ∞
0

Ps µ
α
t (ds), t ≥ 0,

where µαt is a probability measure on [0,∞) with the Laplace transform

∫ ∞
0

e−λs µαt (ds) = e−tλ
α
, λ ≥ 0.

Then Lα is the infinitesimal generator of Pαt .
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In particular, we will also study the fractional heat kernel pα(t, x; y) and its high

order time derivatives ∂kt pα(t, x; y).

Theorem 58 Let M be a d−dimensional complete Riemannian manifold satisfying condi-

tions (3.7) and (3.8) and u = u(t, x) be a mild solution to equation (3.9), i.e.,

u(t, x) =

∫
M
pα(t, x; y)u(0, y) dy. (3.10)

Assume that u is of polynomial growth of order (α− ε) at t = 0, i.e., for a constant C > 0,

|u(0, x)| ≤ C(1 + d(x, 0)α−ε), 0 < ε < α, x ∈ M. (3.11)

Then for a constant C > 0, it holds that

|∂kt u(t, x)| ≤ Ck+1kk

tk−1

(
1 + d(x, 0)α−ε

t
+

1

tε/α

)
,∀(t, x) ∈ (0,∞)×M, (3.12)

which implies that u is time analytic in (0,∞)×M with the radius of convergence independent

of x.

We also obtain the time analyticity of the fractional heat kernel in the manifold

setting.

Theorem 59 Let M be a d−dimensional complete Riemannian manifold satisfying condi-

tions (3.7) and (3.8). Then for any t ∈ (0,∞), there exist positive constants C1 and C2

such that the fractional heat kernel pα(t, x; y) satisfies:

C1t

(d(x, y)α + t)|B(x, d(x, y) + t1/α)|
≤ pα(t, x; y) ≤ C2t

(d(x, y)α + t)|B(x, d(x, y) + t1/α)|
.

(3.13)

Moreover, for any integer k ≥ 0, there exists a constant C > 0 such that

|∂kt pα(t, x; y)| ≤ Ck+1k!

tk−1

1

(d(x, y)α + t)|B(x, d(x, y) + t1/α)|
. (3.14)
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Here we remark that (3.13) is more or less known and our main contribution is (3.14).

Remark 60 It is an interesting question whether the uniqueness result still holds in the

manifold case under the same growth condition. In the proof of Lemma 65, we use (1.5) as

an explicit formula for Lκα in Rd. However, in M, we do not have such a formula for Lα in

(3.9). Therefore, the proof in Lemma 65 does not work in this case.

Now we give an outline of the rest of this paper. In Section 3.2, we investigate

the pointwise time analyticity of a solution of (1.4) in the setting of Rd and prove Theorem

53. In Section 3.3, by using the Fourier transform and contour integrals, we derive some

estimates of the fractional heat kernel pα(t, x), which implies Theorem 56 and Corollary 57.

In Section 3.4, we turn to the setting of a manifold and obtain similar results, Theorems

58 and 59. In the proof, we use the subordination relation (3.58) and the estimates for

the standard heat kernel. Section 3.5 is devoted to some corollaries. One of them is about

a necessary and sufficient condition for the solvability of the backward nonlocal parabolic

equations. Another corollary gives a necessary and sufficient condition under which solutions

to (1.4) or (3.9) are time analytic at initial time t = 0. Also for the nonlinear differential

equation (3.85) with power nonlinearity of order p, we prove that a solution u = u(t, x) is

time analytic in t ∈ (0, 1] if it is bounded in [0, 1]×M and p is a positive integer.

3.2 Nonlocal Parabolic Equations in Rd

In this section, we prove Theorem 53 in the setting of Rd. First, in Subsection

3.2.1, we prove that the fractional heat kernel pα and the mild solution u = u(t, x) to (1.4),

i.e. (3.10), are analytic in time. Next, we prove that u is the unique smooth solution in
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Subsection 3.2.2. Finally, we finish the proof of Theorem 53 in Subsection 3.2.3. The proof

is divided into several lemmas for easy reading.

3.2.1 Time Analyticity of the Fractional Heat Kernel pα and Mild Solu-

tions

Lemma 61 Assume that κ(·, ·) satisfies (1.6) and (1.7). Then (3.1) is true. Moreover, if

the mild solution

u = u(t, x) =

∫
Rd
pα(t, x; y)u(0, y) dy

is of polynomial growth of order α− ε as in (3.2), then (3.3) holds.

Proof. From [11, (1.8), (1.14), and (1.10)], there exist constants C1 and C2 such that for

any t ∈ (0, 1] and x, y ∈ Rd,

C1t(
t1/α + |x− y|

)d+α
≤ pα(t, x; y) ≤ C2t(

t1/α + |x− y|
)d+α

(3.15)

and

|∂tpα(t, x; y)| ≤ C2(
t1/α + |x− y|

)d+α
. (3.16)

Thus the conclusions of the lemma are true for k = 1. Now we proceed by induction. For

any integer k > 1, we assume that

|∂k−1
t pα(t, x; y)| ≤ Ck(k − 1)k−1

tk−2

1(
t1/α + |x− y|

)d+α
, t ∈ (0, 1].

Without loss of generality, we may assume that C2 ≤ C1/2. Using the semigroup property

and (3.16), for any t ∈ (0, 1] and τ ∈ (0, t), we know that

∂kt pα(t, x; y) =

∫
Rd
∂tpα(t− τ, x; z)∂k−1

τ pα(τ, z; y) dz.
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Therefore, by (3.16) and the inductive assumption, it holds that

|∂kt pα(t, x; y)| ≤ Ck+1/2(k − 1)k−1

τk−2

∫
Rd

1(
(t− τ)1/α + |x− z|

)d+α

1(
τ1/α + |y − z|

)d+α
dz.

(3.17)

Then for any t ∈ (0, 1], we take τ = (k−1)t
k .

On one hand, if t > |x− y|α, then we have

|∂kt pα(t, x; y)| ≤ Ck+1/2(k − 1)k−1

τk−2

1

τ (d+α)/α

∫
Rd

1(
(t− τ)1/α + |x− z|

)d+α
dz

≤ Ck+3/4(k − 1)k−1

τk−2

1

τ (d+α)/α

1

t− τ

≤ Ck+7/8kk

tk−1

1

t(d+α)/α
≤ Ck+1kk

tk−1

1(
t1/α + |x− y|

)d+α

(3.18)

provided that C is sufficiently large.

On the other hand, if t < |x− y|α, by (3.17) and

Rd ⊂
{
z : |x− z| ≥ |x− y|

2

}
∪
{
z : |y − z| ≥ |x− y|

2

}
,
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we have

|∂kt pα(t, x; y)|

≤ Ck+1/2(k − 1)k−1

τk−2

∫
{z:|x−z|≥|x−y|/2}

1(
(t− τ)1/α + |x− z|

)d+α

1(
τ1/α + |y − z|

)d+α
dz

+
Ck+1/2(k − 1)k−1

τk−2

∫
{z:|y−z|≥|x−y|/2}

1(
(t− τ)1/α + |x− z|

)d+α

1(
τ1/α + |y − z|

)d+α
dz

≤ Ck+1/2(k − 1)k−1

τk−2

1(
(t− τ)1/α + |x− y|/2

)d+α

∫
{z:|x−z|≥|x−y|/2}

1(
τ1/α + |y − z|

)d+α
dz

+
Ck+1/2(k − 1)k−1

τk−2

1(
τ1/α + |x− y|/2

)d+α

∫
{z:|y−z|≥|x−y|/2}

1(
(t− τ)1/α + |x− z|

)d+α
dz

≤ Ck+3/4(k − 1)k−1

τk−2

1(
(t− τ)1/α + |x− y|/2

)d+α

1

τ

+
Ck+3/4(k − 1)k−1

τk−2

1(
τ1/α + |x− y|/2

)d+α

1

t− τ
.

(3.19)

Noting τ = (k−1)t
k and t < |x− y|α, by (3.19), we can see that

|∂kt pα(t, x; y)| ≤ Ck+7/8kk

tk−1

1

|x− y|d+α
≤ Ck+1kk

tk−1

1(
t1/α + |x− y|

)d+α
. (3.20)

The combination of (3.18) and (3.20) completes the induction and gives (3.1).

Next we prove (3.3). We claim that

u(t, x) =

∫
Rd
pα(t, x; y)u(0, y) dy, (3.21)

the proof of which is postponed to the next subsection. Then we have

∂kt u(t, x) =

∫
Rd
∂kt pα(t, x; y)u(0, y) dy.
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This together with (3.1) implies that

|∂kt u(t, x)| ≤
∫

Rd
|∂kt pα(t, x; y)||u(0, y)| dy

≤
∫

Rd

Ck+1kk

tk−1

1(
t1/α + |x− y|

)d+α
(1 + |y|α−ε) dy

≤
∫

Rd

Ck+1kk

tk−1

1(
t1/α + |x− y|

)d+α
(1 + |x|α−ε + |x− y|α−ε) dy

≤ Ck+1kk

tk−1

(1 + |x|α−ε

t
+

1

tε/α

)
,

i.e., u is time analytic when t ∈ (0, 1].

3.2.2 Uniqueness of Solutions

In this subsection, we prove that the mild solution

u(t, x) =

∫
Rd
pα(t, x; y)u(0, y) dy

in Theorem 53 is unique among smooth solutions under the growth condition (3.2). This

will imply (3.21). The proof is based on Propositions 3.4 and 3.5 in [14], which we recall

here for the reader’s convenience. The idea is that once a solution is in Cγ with a small

γ ∈ (0, 1), then it is in Cα with α ∈ [1, 2).

The first lemma is about the case when α ∈ (1, 2).

Lemma 62 (Proposition 3.4 in [14]) Let ωf (·) be a modulus of continuity of a function

f = f(t, x) in Q3/4(1, x0), that is

|f(t, x)− f(t′, x′)| ≤ ωf (max{|x− x′|, |t− t′|1/α}), ∀(t, x), (t′, x′) ∈ Q3/4(1, x0),

where Qr(t, x) = (t− rα, t)×Br(x). Assume that u is a smooth solution to

ut(t, x)− Lκαu(t, x) = f(t, x), α ∈ (1, 2), (t, x) ∈ [0, 1]× Rd,
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and u ∈ Cγ([0, 1]× Rd) for some γ ∈ (0, 1). Then it holds that

[u]xα;Q1/2(1,x0) + [Du]t(α−1)/α,Q1/2(1,x0) + ‖∂tu‖L∞(Q1/2(1,x0))

≤ C‖u‖γ/α,γ;[0,1]×Rd + C
∞∑
k=1

ωf (2−k)

for a constant C > 0. Here

[u]xα;Q1/2(1,x0) := sup
t∈(1−(1/2)α,1)

[u(t, ·)]Cα(B1/2(x0)),

[Du]t(α−1)/α,Q1/2(1,x0) := sup
x∈B1/2(x0)

[Du(·, x)]C(α−1)/α((1−(1/2)α,1)),

and ‖u‖γ/α,γ;[0,1]×Rd is the C
γ/α,γ
t,x norm in [0, 1]× Rd.

The second lemma is about the case when α = 1.

Lemma 63 (Proposition 3.5 in [14]) Assume that u is a smooth solution to

ut(t, x)− Lκαu(t, x) = f(t, x), α = 1, (t, x) ∈ [0, 1]× Rd,

and u ∈ Cγ([0, 1]× Rd) for some γ ∈ (0, 1). Then it holds that

[Du]L∞(Q1/2(1,x0)) + ‖∂tu‖L∞(Q1/2(1,x0)) ≤ C‖u‖γ,γ;[0,1]×Rd + C
∞∑
k=1

ωf (2−k)

for a constant C > 0.

The proof of the uniqueness starts with the following lemma.

Lemma 64 Assume that κ(·, ·) satisfies (1.6) and (1.7). For equation (1.4), suppose that

a smooth solution u = u(t, x) is of polynomial growth of order α− ε, i.e.,

|u(t, x)| ≤ C1

(
1 + |x|α−ε

)
, ∀(t, x) ∈ [0, 1]× Rd, α ∈ [1, 2), ε ∈ (0, α). (3.22)
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Then for a constant C > 0 and for any x0 ∈ Rd, it holds that

[u]x1;Q1/2(1,x0) ≤ C
(
1 + |x0|α−ε

)
, ε > 0, (3.23)

where

[u]x1;Q1/2(1,x0) := sup
t∈(1−(1/2)α,1)

‖u(t, ·)‖Lip(B1/2(x0))

and Lip means the Lipschitz norm.

Proof. From Proposition 2.4 of [18] or Theorem 7.1 of [52], there is a small constant

γ ∈ (0, 1) such that

[u]γ/α,γ;Q7/8(1,0) ≤ C‖u‖L∞((0,1);L1(ωα)), (3.24)

where ωα = 1
1+|x|d+α and

‖u‖L∞((0,1);L1(ωα)) = sup
t∈(0,1)

∫
Rd

|u(t, x)|
1 + |x|d+α

dx.

By (3.24), the growth condition (3.22), and the space translation x→ x+x0 for any x0 ∈ Rd,

we have

[u]γ/α,γ;Q7/8(1,x0) ≤ C sup
t∈(0,1)

∫
Rd

|u(t, x+ x0)|
1 + |x|d+α

dx

≤ C
∫

Rd

(1 + |x|α−ε + |x0|α−ε)
1 + |x|d+α

dx ≤ C(1 + |x0|α−ε).

(3.25)

The next step is to prove

[u]xα;Q5/8(1,x0) ≤ C(1 + |x0|)α−ε. (3.26)

We modify the proof of Theorem 1.1 of [14].

Take a cut-off function η = η(t, x) ∈ C∞0 (Q7/8(1, x0)) satisfying η = 1 inQ5/6(1, x0)

and ‖∂jtDiη‖L∞ ≤ C when i ∈ {0, 1, 2} and j ∈ {0, 1}.
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Let (t, x), (t′, x′) be two points in Q3/4(1, x0) and let v(t, x) := u(t, x)η(t, x). Then

in Q3/4(1, x0),

∂tv = η∂tu+ ∂tηu = ηLκαu+ ∂tηu = Lκαv + h+ ∂tηu, (3.27)

where

h = ηLκαu− Lκαv = p.v.

∫
Rd

ξ(t, x, y)κ(x, y)

|y|d+α
dy

and

ξ(t, x, y) = u(t, x+ y)(η(t, x)− η(t, x+ y)). (3.28)

We are going to apply Lemma 62 or Lemma 63 to (3.27) in Q3/4(1, x0) and obtain

corresponding estimates (3.26) in Q5/8(1, x0). To this end, we only need to estimate the

Hölder semi-norm of h in Q3/4(1, x0).

First, when |y| ≤ 5/6− 3/4 = 1/12, by (3.28), we have

ξ(t, x, y) = ξ(t′, x′, y) = 0. (3.29)

By the assumptions on η and (3.28), it holds that

|ξ(t′, x′, y)| ≤


C|u(t′, x′ + y)|, |y| ≥ 1

C|u(t′, x′ + y)||y|, 1/12 < |y| < 1.

(3.30)

Now by the triangle inequality, we deduce that

|h(t, x)− h(t′, x′)|

≤
∫
Rd

|(ξ(t, x, y)− ξ(t′, x′, y))κ(x, y)|
|y|d+α

dy︸ ︷︷ ︸
I

+

∫
Rd

|ξ(t′, x′, y)(κ(x′, y)− κ(x, y))|
|y|d+α

dy︸ ︷︷ ︸
II

.

(3.31)
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By using (1.7), (3.22), (3.29), and (3.30), we have

II ≤
∫
|y|∈(1/12,1)

C|u(t′, x′ + y)||y|κ2|x− x′|β

|y|d+α
dy +

∫
|y|>1

C|u(t′, x′ + y)|
|y|d+α

κ2|x− x′|β dy

≤
∫
|y|∈(1/12,1)

C(1 + |x0|α−ε + |y|α−ε)|x− x′|β

|y|d+α−1
dy

+

∫
|y|>1

C(1 + |x0|α−ε + |y|α−ε)
|y|d+α

|x− x′|β dy ≤ C(1 + |x0|α−ε)|x− x′|β.

(3.32)

Now we estimate I. When 1/12 ≤ |y| < 2, by the fundamental theorem of calculus, we have

ξ(t, x, y)− ξ(t′, x′, y) = −y
∫ 1

0

(
u(t, x+ y)Dη(t, x+ sy)− u(t′, x′ + y)Dη(t′, x′ + sy)

)
ds.

Therefore, by (3.22), (3.25), and the triangle inequality, it holds that

∣∣ξ(t, x, y)− ξ
(
t′, x′, y

)∣∣
≤ |y|

∫ 1

0

∣∣u(t, x+ y)− u(t′, x′ + y)
∣∣ ∣∣Dη(t′, x′ + sy)

∣∣ ds
+ |y|

∫ 1

0
|u(t, x+ y)|

∣∣Dη(t, x+ sy)−Dη(t′, x′ + sy)
∣∣ ds

≤ C|y|
∣∣u(t, x+ y)− u(t′, x′ + y)

∣∣+ C|y||u(t, x+ y)|
(
|x− x′|+ |t− t′|

)
≤ C|y|(1 + |x0|α−ε)

(
|x− x′|γ + |t− t′|γ/α

)
+ C|y|(1 + |x0|α−ε)

(
|x− x′|+ |t− t′|

)
.

(3.33)

When |y| ≥ 2, by (3.28) and (3.25), we have

∣∣ξ(t, x, y)− ξ
(
t′, x′, y

)∣∣ =
∣∣u(t, x+ y)− u

(
t′, x′ + y

)∣∣
≤ C(1 + |x0|α−ε + |y|α−ε)

(
|x− x′|γ + |t− t′|γ/α

)
.

(3.34)
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Thus, by (1.6), (3.33), (3.34), and (3.29), we infer that

I ≤
∫
|y|∈(1/12,2)

C|y|(1 + |x0|α−ε)
(
|x− x′|γ + |t− t′|γ/α

)
|y|d+α

dy

+

∫
|y|∈(1/12,2)

C|y|(1 + |x0|α−ε) (|x− x′|+ |t− t′|)
|y|d+α

dy

+

∫
|y|>2

C(1 + |x0|α−ε + |y|α−ε)
(
|x− x′|γ + |t− t′|γ/α

)
|y|d+α

dy

≤ C(1 + |x0|α−ε)
(
|x− x′|γ + |t− t′|γ/α

)
.

(3.35)

Plugging (3.32) and (3.35) into (3.31), we deduce that

|h(t, x)− h(t′, x′)| ≤ C(1 + |x0|α−ε)
(
|x− x′|γ′ + |t− t′|γ′/α

)
,

where γ′ = min{γ, β}, which implies that we can take the modulus of continuity as

ωh(r) = C(1 + |x0|α−ε)rγ
′

for any r ∈ (0, 1). According to Lemma 62, it follows that

∞∑
k=1

ωh

(
3

2k+1

)
≤
∞∑
k=1

C(1 + |x0|α−ε)
(

3

2k+1

)γ′
≤ C(1 + |x0|α−ε). (3.36)

Now we consider two cases.

Case (1): α ∈ (1, 2). In this case, we apply Lemma 62 to (3.27) in Q3/4(1, x0)

with a scaling argument. From (3.25) and (3.36), we have

[v]xα;Q5/8(1,x0) ≤ C‖v‖L∞([0,1]×Rd) + C[v]γ/α,γ;[0,1]×Rd + C
∞∑
k=1

ωh

(
3

2k+1

)

≤ C‖u‖L∞(Q7/8(1,x0)) + C[u]γ/α,γ;Q7/8(1,x0) + C(1 + |x0|α−ε) ≤ C(1 + |x0|α−ε),

by noting that v = 0 outside of Q7/8(1, x0). Because η = 1 in Q5/8(1, x0), we get (3.26)

immediately.
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Case (2): α = 1. In this case, we apply Lemma 63 with a scaling argument.

Using (3.25) and (3.36), we have

‖Dv‖L∞(Q5/8(1,x0)) ≤ C‖v‖L∞([0,1]×Rd) + C[v]γ,γ;[0,1]×Rd + C
∞∑
k=1

ωh

(
3

2k+1

)

≤ C‖u‖L∞(Q7/8(1,x0)) + C[u]γ,γ;Q7/8(1,x0) + C(1 + |x0|α−ε) ≤ C(1 + |x0|α−ε),

which implies (3.26) again.

Finally, by the interpolation inequality, (3.26), and (3.22), we arrive at

[u]x1;Q1/2(1,x0) ≤ C[u]xα;Q5/8(1,x0) + C‖u‖L∞(Q5/8(1,x0)) ≤ C(1 + |x0|)α−ε,

which finishes the proof.

Now we are ready to prove the uniqueness part of the theorem, which is stated as

follows.

Lemma 65 Assume that κ(·, ·) satisfies (1.6) and (1.7). Then there is an unique smooth

solution u = u(t, x) to (1.4) satisfying the initial data u(0, ·) and the polynomial growth

condition (3.2), which is given by

u(t, x) =

∫
Rd
pα(t, x; y)u(0, y) dy, ∀(t, x) ∈ (0, 1]× Rd.

Proof. By linearity, we just need to prove that if a smooth solution u satisfies (3.2) and

u(0, x) = 0, then u ≡ 0.

Fix (t0, x0) ∈ (0, 1]×Rd. By shifting the coordinates, we may assume x0 = 0 and

it suffices to prove u(t0, 0) = 0. Now let L∗ = (Lκα)∗ be the adjoint operator of Lκα and let

p∗α(t, x; s, y) be the heat kernel of L∗, which by definition, satisfies
∂tp
∗
α(t, x; s, y)− L∗p∗α(t, x; s, y) = 0, t > s and x, y ∈ Rd

p∗α(s, x; s, y) = δ(x, y).

(3.37)
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Because the heat kernels of Lκα and L∗ are independent of time, we have

pα(t, x; s, y) = pα(t− s, x; 0, y), p∗α(t, x; s, y) = p∗α(t− s, x; 0, y). (3.38)

It is also known that

pα(t, x; s, y) = p∗α(t, y; s, x), t ≥ s, (3.39)

which can be seen as follows. For any t0, s0 ∈ (0, 1) with s0 ≤ t0, using (3.37) and (3.38),

we have∫ t0

s0

∫
Rd
Lκαpα(t, z; s0, y)p∗α(t0, z; t, x) dzdt

=

∫ t0

s0

∫
Rd
Lκαpα(t− s0, z; 0, y)p∗α(t0 − t, z; 0, x) dzdt

=

∫ t0

s0

∫
Rd
∂tpα(t− s0, z; 0, y)p∗α(t0 − t, z; 0, x) dzdt

= pα(t0 − s0, x; 0, y)− p∗α(t0 − s0, y; 0, x) +

∫ t0

s0

pα(t− s0, z; 0, y)∂tp
∗
α(t0 − t, z; 0, x) dzdt.

By the definition of the adjoint operator, (3.37), and (3.38), we reach (3.39). The integra-

tions above are justified due to known decay estimates of pα and p∗α.

Then we take a cut-off function η = η(x) ∈ C∞c (B2(0)) such that for a constant

C,

η = 1 in B1(0) and |Dη|+ |D2η| ≤ C. (3.40)

We test (1.4) with p∗α(t0 − t, x; 0, 0)η(x/R) and use (3.37) to get that

0 =

∫ t0

0

∫
Rd
ut(t, x)p∗α(t0 − t, x; 0, 0)η(x/R) dxdt

−
∫ t0

0

∫
Rd
Lκαu(t, x)p∗α(t0 − t, x; 0, 0)η(x/R) dxdt

= u(t0, 0) +

∫ t0

0

∫
Rd
u(t, x)(∂tp

∗
α)(t0 − t, x; 0, 0)η(x/R) dxdt

−
∫ t0

0

∫
Rd
Lκαu(t, x)p∗α(t0 − t, x; 0, 0)η(x/R) dxdt.
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Therefore, using (3.37) and the definition of the adjoint operator, we infer that

u(t0, 0) =∫ t0

0

∫
Rd
Lκα(u(t, x))(p∗α(t0 − t, x; 0, 0)η(x/R))− p∗α(t0 − t, x; 0, 0)Lκα (u(t, x)η(x/R)) dxdt

= p.v.

∫ t0

0

∫
Rd

∫
Rd

u(t, x+ z)p∗α(t0 − t, x; 0, 0) (η(x/R)− η((x+ z)/R))κ(x, z)

|z|d+α
dzdxdt

= p.v.

∫ t0

0

∫
Rd

∫
Rd

u(t, y)p∗α(t0 − t, x; 0, 0)(η(x/R)− η(y/R))κ(x, y − x)

|x− y|d+α
dydxdt︸ ︷︷ ︸

J1

,

(3.41)

where we took z = y − x in the last step. In the sequel, we omit p.v. when there is no

confusion.

Next, we aim to show that J1 → 0 as R→∞, treating the cases α < 1 and α ≥ 1

separately.

Case (1): α < 1. This case is simpler since the singularity in the integrand is

weaker. Using (3.2), (1.6), (3.39), and (3.40), we have

J1 =

∫ t0

0

∫
Rd

∫
Rd\BR(x)

u(t, y)p∗α(t0 − t, x; 0, 0)(η(x/R)− η(y/R))κ(x, y − x)

|x− y|d+α
dydxdt

+

∫ t0

0

∫
Rd

∫
BR(x)

u(t, y)p∗α(t0 − t, x; 0, 0)(η(x/R)− η(y/R))κ(x, y − x)

|x− y|d+α
dydxdt

≤ C
∫ t0

0

∫
Rd

∫
Rd\BR(x)

pα(t0 − t, 0; 0, x)

|x− y|d+α
(1 + |y|α−ε) dydxdt

+
C

R

∫ t0

0

∫
Rd

∫
BR(x)

pα(t0 − t, 0; 0, x)

|x− y|d+α−1
(1 + |y|α−ε) dydxdt

≤ C
∫ t0

0

∫
Rd

∫
Rd\BR(x)

pα(t0 − t, 0; 0, x)

|x− y|d+α
(1 + |x|α−ε + |x− y|α−ε) dydxdt

+
C

R

∫ t0

0

∫
Rd

∫
BR(x)

pα(t0 − t, 0; 0, x)

|x− y|d+α−1
(1 + |x|α−ε + |x− y|α−ε) dydxdt

≤ C
∫ t0

0

∫
Rd
pα(t0 − t, 0; 0, x)

(
1

Rε
+

1 + |x|α−ε

Rα

)
dxdt→ 0 as R→∞,
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where for the last step, we used (3.15) and∫
Rd
pα(t0 − t, 0; 0, x)(1 + |x|α−ε) dx

≤
∫

Rd

C(t0 − t)(
(t0 − t)1/α + |x|

)d+α
(1 + |x|α−ε) dx ≤ C

(
1 + (t0 − t)1−ε/α

)
.

(3.42)

Case (2): α ≥ 1. In this case, by the substitution z → −z in the second line of

(3.41), we have

J1 =

∫ t0

0

∫
Rd

∫
Rd

u(t, x− z)p∗α(t0 − t, x; 0, 0) (η(x/R)− η((x− z)/R))κ(x, z)

|z|d+α
dzdxdt.

where we used κ(x, z) = κ(x,−z) in the last equation. Then by

u(t, x+ z)

(
η
( x
R

)
− η

(
x+ z

R

))
+ u(t, x− z)

(
η
( x
R

)
− η

(
x− z
R

))
= (u(t, x− z)− u(t, x+ z))

(
η
( x
R

)
− η

(
x− z
R

))
− u(t, x+ z)

(
η

(
x+ z

R

)
− 2η

( x
R

)
+ η

(
x− z
R

))
,

we can write

J1 =

1

2

∫ t0

0

∫
Rd

∫
Rd

(u(t, x− z)− u(t, x+ z))
(
η( xR)− η(x−zR )

)
κ(x, z)p∗α(t0 − t, x; 0, 0)

|z|d+α
dzdxdt︸ ︷︷ ︸

J2

+
1

2

∫ t0

0

∫
Rd

∫
Rd

−u(t, x+ z)
(
η(x+z

R )− 2η( xR) + η(x−zR )
)
κ(x, z)p∗α(t0 − t, x; 0, 0)

|z|d+α
dzdxdt︸ ︷︷ ︸

J3

.

For the term J3, by (3.2), (3.39), and (3.40), we deduce

|J3| ≤ C
∫ t0

0

∫
Rd

∫
Rd\BR(0)

pα(t0 − t, 0; 0, x)

|z|d+α
(1 + |x|α−ε + |z|α−ε) dzdxdt

+
C

R2

∫ t0

0

∫
Rd

∫
BR(0)

pα(t0 − t, 0; 0, x)

|z|d+α−2
(1 + |x|α−ε + |z|α−ε) dzdxdt

≤ C
∫ t0

0

∫
Rd
pα(t0 − t, 0; 0, x)

(
1

Rε
+

1 + |x|α−ε

Rα

)
dxdt→ 0 as R→∞,
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where we used (3.42) in the last step.

Finally, we estimate J2. When α > 1, by (3.2), (3.23), and (3.42), we have

|J2| ≤ C
∫ t0

0

∫
Rd

∫
Rd\BR(0)

pα(t0 − t, 0; 0, x)

|z|d+α
(1 + |x|α−ε + |z|α−ε) dzdxdt

+
C

R2

∫ t0

0

∫
Rd

∫
BR(0)

pα(t0 − t, 0; 0, x)

|z|d+α−2
(1 + |x|α−ε) dzdxdt

+
C

R

∫ t0

0

∫
Rd

∫
BR(0)\BR(0)

pα(t0 − t, 0; 0, x)

|z|d+α−1
(1 + |x|α−ε + |z|α−ε) dzdxdt︸ ︷︷ ︸

J4

≤ C
∫ t0

0

∫
Rd
pα(t0 − t, 0; 0, x)

(
1

Rε
+

1 + |x|α−ε

Rα

)
dxdt

+
C

R

∫ t0

0

∫
Rd
pα(t0 − t, 0; 0, x)

(
(1−R1−α)(1 + |x|α−ε) + (R1−ε − 1)

)
dxdt

→ 0 as R→∞.

When α = 1, we only need to estimate J4 slightly differently. By (3.42),

J4 ≤
C

R

∫ t0

0

∫
Rd
p1(t0 − t, 0; 0, x)

(
ln(R)(1 + |x|1−ε) + (R1−ε − 1)

)
dx→ 0 as R→∞.

Combining these two cases and plugging into (3.41), we get u(t0, 0) = 0, which finishes the

proof.

3.2.3 Completion of Proof of Theorem 53

Proof. We have proved part (a) and (b) of Theorem 53 in Lemmas 61 and 65.

Thus it remains to show part (c). First we fix a number R ≥ 1 and let x ∈ BR(0), t ∈ [1−δ, 1]

for some small δ > 0. For any positive integer j, Taylor’s theorem implies that

u(t, x)−
j−1∑
i=0

∂itu(1, x)
(t− 1)i

i!
=

(t− 1)j

j!
∂jt u(s, x), (3.43)
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where s = s(x, t, j) ∈ [t, 1]. By (3.3), for sufficiently small δ > 0, the right-hand side of

(3.43) converges to 0 uniformly with respect to x ∈ BR(0) as j →∞. Hence,

u(t, x) =
∞∑
j=0

∂jt u(1, x)
(t− 1)j

j!

i.e., u is analytic in time with radius δ. Denote aj = aj(x) = ∂jt u(1, x). By (3.3) again, we

have

∂tu(t, x) =
∞∑
j=0

aj+1(x)
(t− 1)j

j!
and Lκαu(t, x) =

∞∑
j=0

Lκαaj(x)
(t− 1)j

j!
,

where both series converge uniformly with respect to (t, x) ∈ [1− δ, 1]× BR(0). Since u is

a solution of (1.4), this implies that Lκαaj(x) = aj+1(x) with

|aj(x)| ≤ Cj+1jj(1 + |x|α−ε).

This completes the proof of Theorem 53.

3.3 Fractional Heat Kernel Estimates on Rd

In this section, we estimate the time and space derivatives of the fractional heat

kernel pα(t, x) for (1.8). The main tools are the Fourier transform and contour integrals.

We first state and prove the following lemma, which is needed for the proof of Theorem 56

and Corollary 57.

Lemma 66 (a) If α > 0, β ≥ 0, and t ≥ 0, there exist constants C, C1, and C2 such that

∣∣ ∫
Rd
e−t|ξ|

α
eiξx|ξ|βdξ

∣∣ ≤ min

{
C1C

β
2 β

β

|x|β+d
,

C

t(β+d)/α
Γ

(
β + d

α

)}
, (3.44)

where Γ is the gamma function.
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(b) Let β = (β1, β2, . . . , βd) where βj is a nonnegative integer with j ∈ {1, 2, . . . , d},

then we have

∣∣ ∫
Rd
e−t|ξ|

α
eiξxξβdξ

∣∣ ≤ min

{
C1C

α+|β|
2 (α+ |β|)α+|β|t

|x|α+|β|+d ,
C

t(|β|+d)/α
Γ

(
|β|+ d

α

)}
, (3.45)

where ξβ = ξβ1
1 ξβ2

2 · · · ξ
βd
d and |β| :=

d∑
k=1

βk.

Remark 67 When t = 0, the integrals in (3.44) and (3.45) can be understood as the limit

as t↘ 0.

Proof of Lemma 66. The bound C
t(β+d)/αΓ

(
β+d
α

)
on the right-hand side of (3.44) is

easily obtained as follows

∣∣ ∫
Rd
e−t|ξ|

α
eiξx|ξ|βdξ

∣∣ ≤ ∫
Rd
e−t|ξ|

α |ξ|βdξ =
C

t(β+d)/α
Γ

(
β + d

α

)
.

Similarly, the bound C
t(|β|+d)/α

Γ
(
|β|+d
α

)
on the right-hand side of (3.45) holds because

∣∣ ∫
Rd
e−t|ξ|

α
eiξxξβdξ

∣∣ ≤ ∫
Rd
e−t|ξ|

α |ξ||β|dξ =
C

t(|β|+d)/α
Γ

(
|β|+ d

α

)
.

We shall use the technique of contour integrals to obtain the first bounds in (3.44)

and (3.45), respectively. To simplify the calculation, without loss of generality, by rotating

the coordinates, we assume that x = ( |x|√
d
, |x|√

d
, . . . , |x|√

d
).

For any point ξ = (ξ1, ξ2, . . . , ξd) and for any j ∈ {1, 2, . . . , d}, we consider ξj

as a complex number with modulus ηj and argument (angle) ψj . For a large R > 0 and

φ := min{π/16, π/(16α)}, consider the regions in the complex plane:

Γ
(1)
R =

{
η0e

iψ
∣∣ η0 ∈ (0, R), ψ ∈ [0, φ]

}
,

Γ
(2)
R =

{
η0e

iψ
∣∣ η0 ∈ (0, R), ψ ∈ [π − φ, π]

}
,
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and denote

C
(1)
R =

{
Reiψ

∣∣ ψ ∈ [0, φ]
}

and C
(2)
R =

{
Reiψ

∣∣ ψ ∈ [π − φ, π]
}
.

We calculate the contour integrals of the functions e−t|ξ|
α
eiξx|ξ|β and e−t|ξ|

α
eiξxξβ

on the boundaries of the sectors Γ
(1)
R and Γ

(2)
R . For the term |ξ|a in the above two functions,

where a = α or β, we extend it to be a holomorphic function(
d∑

k=1

ξ2
k

)a/2
in Cd,

which needs to be specified by choosing suitable branches. On one hand, when Re(ξj) > 0,

we select the branch so that the function w = za/2 maps the sector with angles [0, 2φ] to

the sector with angles [0, aφ]. On the other hand, when Re(ξj) < 0, we make the function

w = za/2 map the sector with angles [−2φ, 0] to the sector with angles [−aφ, 0].

The main idea is to use the contour integrals to equate the integrals on the rays

ψj = 0, π and the integrals on the rays ψj = φ, π − φ, respectively. The following are some

preliminary calculations on the rays ψj = π
2 − sgn (Re(ξj))

(
π
2 − φ

)
and the arcs C

(1)
R or

C
(2)
R , respectively. Here sgn (·) is the sign function.

First, we consider the case when ξj ’s are on the rays ψj = π
2−sgn (Re(ξj))

(
π
2 − φ

)
,

where we can write ξj = ηj exp
(
πi
2 − sgn (Re(ξj))

(
π
2 − φ

)
i
)

with ηj ∈ [0, R]. In this case,

for any fixed ξk ∈ Γ
(1)
R ∪ Γ

(2)
R , where k ∈ {1, 2, . . . , d}, we have(

d∑
k=1

ξ2
k

)a/2
=

e2sgn (Re(ξj))iπφη2
j +

∑
k 6=j

ξ2
k

a/2

, (3.46)

where a = α or β, and

eiξx = exp

i exp

(
πi

2
− sgn (Re(ξj))

(π
2
− φ

)
i

)
ηj
|x|√
d

+
∑
k 6=j

iξk
|x|√
d

 . (3.47)

78



Notice that if ψk = π
2 − sgn (Re(ξk))

(
π
2 − φ

)
for all k ∈ {1, 2, . . . , d}, it holds that(

d∑
k=1

ξ2
k

)a/2
=

(
d∑

k=1

η2
ke

2sgn (Re(ξk))iπφ

)a/2
(3.48)

and

eiξx = exp

(
i

d∑
k=1

exp

(
πi

2
− sgn (Re(ξk))

(π
2
− φ

)
i

)
ηk
|x|√
d

)
. (3.49)

Next, we treat the case when ξj is on the arc C
(1)
R or C

(2)
R , respectively.

By the definition of the regions Γ
(1)
R and Γ

(2)
R , for any fixed ξk ∈ Γ

(1)
R ∪ Γ

(2)
R , where

k 6= j and ψj ∈ [0, φ] ∪ [π − φ, π], the angle between R2e2iψj and
∑

k 6=j ξ
2
k is less than π/2,

so we have ∣∣∣R2e2iψj +
∑
k 6=j

ξ2
k

∣∣∣ ≥ |R2e2iψj |. (3.50)

Moreover, since | arg(ξ2
k)| ≤ 2φ for any k 6= j, where arg(·) is the argument (angle), it

follows that ∣∣∣ arg
(
R2e2iψj +

∑
k 6=j

ξ2
k

)∣∣∣ ≤ 2φ.

This together with (3.50) implies that

Rα cos (αφ) ≤ Re
(
R2e2iψj +

∑
k 6=j

ξ2
k

)α/2
. (3.51)

Now we show that the integral of e−t(
∑d
k=1 ξ

2
k)
α/2

eiξx
(∑d

k=1 ξ
2
k

)β/2
on the arc C

(1)
R

or C
(2)
R tends to 0 as R tends to infinity.
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On the arc C
(1)
R , we can write ξj = Reiψj , where ψj ∈ [0, φ]. By (3.46), (3.47), and

(3.51), we have

lim
R→∞

∣∣∣∣∣∣
∫
C

(1)
R

e−t(
∑d
k=1 ξ

2
k)
α/2

eiξx

(
d∑

k=1

ξ2
k

)β/2
dξj

∣∣∣∣∣∣
≤ lim

R→∞

∫ φ

0

∣∣∣∣∣∣exp

−t(R2e2iψj +
∑
k 6=j

ξ2
k)α/2

∣∣∣∣∣∣
∣∣∣∣∣∣exp

iReiψj |x|√
d

+
∑
k 6=j

iξk
|x|√
d

∣∣∣∣∣∣
×

∣∣∣∣∣∣∣
R2e2iψj +

∑
k 6=j

ξ2
k

β/2
∣∣∣∣∣∣∣
∣∣∣iReiψj ∣∣∣ dψj

≤ C lim
R→∞

∫ φ

0
e−tR

α cos(αφ)

Rβ +

∑
k 6=j
|ξk|2

β/2
Rdψj = 0

(3.52)

for any fixed ξk ∈ Γ
(1)
R ∪ Γ

(2)
R , where k 6= j.

Similarly, on the arc C
(2)
R , where ξj = Reiψj and ψj ∈ [π − φ, π], we have

lim
R→∞

∣∣∣∣∣∣
∫
C

(2)
R

e−t(
∑d
k=1 ξ

2
k)
α/2

eiξx

(
d∑

k=1

ξ2
k

)β/2
dξj

∣∣∣∣∣∣ = 0 (3.53)

for any fixed ξk ∈ Γ
(1)
R ∪ Γ

(2)
R , where k 6= j.

Combining (3.52) and (3.53) implies that we can apply contour integral to ξj if

ξk ∈ Γ
(1)
R ∪ Γ

(2)
R for all k 6= j. Therefore, by (3.46), (3.47), (3.48), (3.49), (3.52), and (3.53),
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using d times of contour integrals, we infer that∫
Rd
e−t|ξ|

α
eiξx|ξ|β dξ

=
∑

sgn (ξ1)=±1

∫
Rd−1

∫ ∞
0

exp

−t(e2isgn (ξ1)φη2
1 +

d∑
k=2

ξ2
k

)α/2
× exp

(
i exp

(
πi

2
− sgn (Re(ξ1))

(π
2
− φ

)
i

)
η1
|x|√
d

+
d∑

k=2

iξk
|x|√
d

)

×

(
e2isgn (ξ1)φη2

1 +
d∑

k=2

ξ2
k

)β/2
exp

(
πi

2
− sgn (Re(ξ1))

(π
2
− φ

)
i

)
dη1dξ2 · · · dξd

= · · · =
∑

sgn (ξ1)=±1

· · ·
∑

sgn (ξd)=±1

∫
Rd1

exp

−t( d∑
k=1

e2isgn (ξk)φη2
k

)α/2
× exp

(
i

d∑
k=1

exp

(
πi

2
− sgn (Re(ξk))

(π
2
− φ

)
i

)
ηk
|x|√
d

)

×

(
d∑

k=1

e2isgn (ξk)φη2
k

)β/2 d∏
k=1

exp

(
πi

2
− sgn (Re(ξk))

(π
2
− φ

)
i

)
dη,

(3.54)

where Rd
1 stands for the first quadrant of Rd and dη = dη1dη2 · · · dηd. Plugging

Re

(
d∑

k=1

e2isgn (ξk)φη2
k

)α/2
≥ |η|α cos (αφ) ,

and∣∣∣∣∣exp

(
i

d∑
k=1

exp

(
πi

2
− sgn (Re(ξk))

(π
2
− φ

)
i

)
ηk
|x|√
d

)∣∣∣∣∣ = exp

(
−

d∑
k=1

sin(φ)ηk
|x|√
d

)

into (3.54), we have

∣∣ ∫
Rd
e−t|ξ|

α
eiξx|ξ|βdξ

∣∣ ≤ 2d
∫

Rd1

e−t|η|
α cos(αφ)e

−
d∑
k=1

sin(φ)ηk|x|/
√
d
|η|βdη

≤ C
∫

Rd1

e−t|η|
α cos(αφ)e

−
d∑
k=1

sin(φ)ηk|x|/
√
d

d∑
k=1

ηβkdη

≤ C
d∑

k=1

∫ ∞
0

e−t|ηk|
α cos(αφ)e− sin(φ)ηk|x|/

√
dηβkdηk

∏
i 6=k

∫
Rd−1

1

e− sin(φ)ηi|x|/
√
ddηi

≤ C

|x|d−1

∫ ∞
0

e−tρ
α cos(αφ)e− sin(φ)ρ|x|/

√
dρβdρ =

C

|x|d−1
× I,

(3.55)
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where

I =

∫ ∞
0

e−tρ
α cos(αφ)e−ρ|x|/

√
dρβdρ ≤

∫ ∞
0

e−ρ|x|/
√
dρβdρ ≤ Cβ

|x|β+1
Γ(β + 1).

Therefore, we infer that

∣∣ ∫
Rd
e−t|ξ|

α
eiξx|ξ|βdξ

∣∣ ≤ C1C
β
2 β

β

|x|β+d
(3.56)

for some constants C1 and C2, which is the first part on the right-hand side of (3.44).

Finally, we prove (3.45), which is a consequence of the following Claim.

Claim 68 For any β = (β1, . . . , βd), where βi is a nonnegative integer, there exists a

constant C > 0 such that

∣∣ ∫
Rd
e−t|ξ|

α
eiξxξβdξ

∣∣ ≤ C |β|+α+1 (α+ |β|)α+|β|t

|x|α+|β|+d .

We prove this claim by induction. When |β| = 0, by integration by parts with respect to

ξ1, we see that

∣∣ ∫
Rd
e−t|ξ|

α
eiξxdξ

∣∣ =
α
√
dt

|x|
∣∣ ∫

Rd
e−t|ξ|

α ξ1

i|ξ|2−α
eiξxdξ

∣∣.
Then using the method of contour integrals similarly to (3.55), we find that

∣∣ ∫
Rd
e−t|ξ|

α ξ1

i|ξ|2−α
eiξxdξ

∣∣ ≤ C

|x|α+d−1
,

which implies ∣∣ ∫
Rd
e−t|ξ|

α
eiξxdξ

∣∣ ≤ Ct

|x|α+d
.

Without loss of generality, we assume that β1 > 0. For any positive integer k, we assume

that Claim 68 is true for any |β| < k. When |β| = k, by integration by parts with respect
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to ξ1, the induction assumption and (3.56), it holds that

∣∣ ∫
Rd
e−t|ξ|

α
eiξxξβdξ

∣∣
≤
∣∣√d
|x|

∫
Rd
e−t|ξ|

α
eiξx

β1

iξ1
ξβdξ

∣∣+
tα
√
d

|x|
∣∣ ∫

Rd
e−t|ξ|

α
eiξx

ξ1

|ξ|2−α
ξβdξ

∣∣
≤
√
d

|x|
Cα+|β|−1 (α+ |β| − 1)α+|β|−1t

|x|α+|β|−1+d
+
tα
√
d

|x|
C1C

α+|β|−1
2 (α+ |β| − 1)α+|β|−1

|x|α+|β|+d−1

≤ Cα+|β|+1 (α+ |β|)α+|β|t

|x|α+|β|+d .

Thus, we finished the proof of Claim 68 and therefore completed the proof of Lemma 66.

Now we are ready to embark on the proof of Theorem 56.

Proof. By (3.4), the heat kernel pα(t, x) of the fractional heat equation (1.8)

satisfies

|∂kt pα(t, x)| = C(d, α)
∣∣ ∫

Rd
e−t|ξ|

α
eiξx|ξ|αkdξ

∣∣,
which implies (3.5) by part (a) of Lemma 66. From the first bound

C1Ckα2 (kα)kα

|x|kα+d in (3.5),

we see that pα is of Gevrey class in time of order α when x 6= 0. By the second bound

C
tk+d/αΓ

(
kα+d
α

)
in (3.5), pα is analytic in time when t > 0.

Furthermore, for any positive integer k, by (3.4), we have

|∂kxpα(t, x)| ≤ C(d, α)
∑
|k|=k

|∂kxpα(t, x)| = C(d, α)
∑
|k|=k

∣∣ ∫
Rd
e−t|ξ|

α
eiξxξkdξ

∣∣,
where k = (k1, . . . , kd), ξ

k = ξk1
1 . . . ξkdd , and we sum over all the k satisfying |k| = k. By

(3.6) and the fact that we have
(
k+d−1
d−1

)
choices of k satisfying |k| = k, we infer that

|∂kxpα(t, x)| ≤ C(d, α)

(
k + d− 1

d− 1

)
min

{
C1C

α+k
2 (α+ k)α+kt

|x|α+k+d
,

C

t(k+d)/α
Γ

(
k + d

α

)}
,
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which implies (3.6) for a sufficiently large constant C2. By the bound
C1C

k+α
2 (k+α)k+αt

|x|α+k+d in

(3.6), pα is analytic in space at |x| 6= 0. By the other bound C
t(k+d)/αΓ

(
k+d
α

)
in (3.6), pα is

of Gevrey class with order 1/α in space when t > 0 for any x ∈ Rd.

Remark 69 Theorem 56 is consistent with the fact that the heat kernel of the heat equation

∂tu−∆u = 0 is of Gevrey class of order 2 at t = 0. Besides, when α = 1, it is well known

that p1(t, x) = Ct

(t2+|x|2)(d+1)/2 . By a direct computation, we see that p1(t, x) satisfies all the

results in Theorem 56.

We end this section by proving Corollary 57.

Proof. By Theorem 53 and the growth condition (3.2), we know that there is an

unique solution to (1.8):

u(t, x) =

∫
Rd
pα(t, x− y)u(0, y) dy.

Therefore, by (3.6) and (3.2), we infer that

|∂kxu(t, x)| ≤
∫

Rd
|∂kxpα(t, x− y)||u(0, y)| dy

≤
∫
B1(x)

C

t(k+d)/α
Γ

(
k + d

α

)
C1(1 + |y|α−ε) dy

+

∫
Rd\B1(x)

C1C
k+α
2 (k + α)k+αt

|x− y|α+k+d
C1(1 + |y|α−ε) dy

≤ C(1 + |x|α−ε)
t(k+d)/α

Γ

(
k + d

α

)
+

∫
Rd\B1(x)

Ck+α+1(k + α)k+αt

|x− y|α+d
(1 + |x|α−ε + |x− y|α−ε) dy

≤ C(1 + |x|α−ε)
t(k+d)/α

Γ

(
k + d

α

)
+ Ck+α+2(k + α)k+α(1 + |x|α−ε)t,

which implies that u is analytic in space when α ∈ [1, 2) and u is of Gevrey class of order

1/α in space when α ∈ (0, 1).
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3.4 Fractional Heat Equation on a Manifold

In this section, we prove Theorems 58 and 59 in the setting of M, which is a

d−dimensional, complete Riemannian manifold.

First we recall a well known lemma.

Lemma 70 Assume that Condition (3.8) is satisfied. Then for any D > 0, β ≥ 0, and

t > 0, there exists a positive constant C such that∫
M

e−
Dd(x,y)2

t

|B(x,
√
t)|
d(x, y)β dy ≤ Ctβ/2. (3.57)

Proof. We give the proof for completeness. By Condition (3.8), we have∫
M

e−Dd(x,y)2/t

|B(x,
√
t)|

d(x, y)β dy

=

∫
B(x,

√
t)

e−Dd(x,y)2/t

|B(x,
√
t)|

d(x, y)β dy +

∫
M\B(x,

√
t)

e−Dd(x,y)2/t

|B(x,
√
t)|

d(x, y)β dy

≤ Ctβ/2 +

∞∑
k=1

∫
2k−1

√
t≤d(x,y)≤2k

√
t

e−Dd(x,y)2/t

|B(x,
√
t)|

d(x, y)β dy

≤ Ctβ/2 +
∞∑
k=1

|B(x, 2k
√
t)|

|B(x,
√
t)|

e−D(2k−1)2
(2k
√
t)β

≤ Ctβ/2 +
∞∑
k=1

C∗ke−D(2k−1)2
(2k
√
t)β ≤ Ctβ/2,

where C∗ is the constant in Condition (3.8).

We are ready to prove Theorem 58.

3.4.1 Proof of Theorem 58

Proof. It is well known that there is a connection between the heat kernel E(t, x; y)

and the fractional heat kernel pα(t, x; y), which can be found, for instance, in [5], i.e.,

pα(t, x; y) =

∫ ∞
0

E(s, x; y)ηt(s) ds,
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where ηt(s) is a density function of µαt satisfying

ηt(s) = t−2/αη1(t−2/αs).

Therefore,

pα(t, x; y) =

∫ ∞
0

E(s, x; y)t−2/αη1(t−2/αs) ds =

∫ ∞
0

E(t2/αs, x; y)η1(s) ds. (3.58)

It is also known that there exists a constant C such that

0 ≤ η1(s) ≤ Cs−1−α/2e−s
−α/2

, (3.59)

which can be found, for instance, in Theorem 3.1 of [5], Theorem 37.1 in [13], or Lemma 1

of [29].

Then for any t > 0, by (3.10) and (3.58), it holds that

u(t, x) =

∫
M

∫ ∞
0

E(t2/αs, x; y)η1(s)u(0, y) dsdy. (3.60)

By Theorem 5.4.12 of [38], Conditions (3.7) and (3.8) imply that there exist constants C,

d1, d2, D1, and D2 such that

d1e
−D1d(x,y)2/t

|B(x,
√
t)|

≤ E(t, x; y) ≤ d2e
−D2d(x,y)2/t

|B(x,
√
t)|

, (3.61)

and

|∂tE(t, x; y)| ≤ C

t

e−D2d(x,y)2/t

|B(x,
√
t)|

. (3.62)
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From (3.11), (3.60), (3.61), (3.57), and (3.59), we infer that

|u(t, x)| ≤
∫

M

∫ ∞
0
|E(t2/αs, x; y)|η1(s)|u(0, y)| dsdy

≤ C
∫

M

∫ ∞
0

e−D2d(x,y)2/(t2/αs)

|B(x,
√
t2/αs)|

η1(s)(1 + d(x, 0)α−ε + d(x, y)α−ε) dsdy

≤ C(1 + d(x, 0)α−ε)

∫ ∞
0

η1(s) ds+ C

∫ ∞
0

η1(s)(t2/αs)(α−ε)/2 ds

≤ C(1 + d(x, 0)α−ε)

∫ ∞
0

η1(s) ds+ Ct
α−ε
α

∫ ∞
0

s−1−α/2e−s
−α/2

s(α−ε)/2 ds

≤ C(1 + d(x, 0)α−ε) + Ct(α−ε)/α.

For any integer k > 0, we proceed by induction. First, we assume it is true that

|∂k−1
t u(t, x)| ≤ Ck(k − 1)k−1

tk−2

(
(1 + d(x, 0)α−ε

t
+

1

tε/α

)
. (3.63)

Then for any t > 0, by (3.10) and (3.58), it holds that

∂kt u(t, x; y) =

∫
M

∫ ∞
0

∂tE((t− τ)2/αs, x; y)η1(s)∂k−1
τ u(τ, y) dsdy, ∀τ ∈ (0, t). (3.64)

By (3.64), (3.63), and (3.62), we have

|∂kt u(t, x; y)|

≤
∫

M

∫ ∞
0

2s

α
(t− τ)2/α−1 C

(t− τ)2/αs

e−D2d(x,y)2/((t−τ)2/αs)

|B(x,
√

(t− τ)2/αs)|
η1(s)|∂k−1

t u(τ, y)| dsdy

≤ Ck+1/2(k − 1)k−1

τk−2(t− τ)

∫
M

∫ ∞
0

e−D2d(x,y)2/((t−τ)2/αs)

|B(x,
√

(t− τ)2/αs)|
η1(s)

(
1 + d(x, 0)α−ε

τ
+

1

τ ε/α

)
dsdy

+
Ck+1/2(k − 1)k−1

τk−1(t− τ)

∫
M

∫ ∞
0

e−D2d(x,y)2/((t−τ)2/αs)

|B(x,
√

(t− τ)2/αs)|
η1(s)d(x, y)α−ε dsdy

:= I1 + I2,

(3.65)

where we used the triangle inequality in the second inequality. By (3.57) and (3.59), we
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have

I1 =
Ck+1/2(k − 1)k−1

τk−2(t− τ)

(
1 + d(x, 0)α−ε

τ
+

1

τ ε/α

)∫ ∞
0

∫
M

e−D2d(x,y)2/((t−τ)2/αs)

|B(x,
√

(t− τ)2/αs)|
η1(s) dyds

≤ Ck+3/4(k − 1)k−1

τk−2(t− τ)

(
1 + d(x, 0)α−ε

τ
+

1

τ ε/α

)∫ ∞
0

η1(s) ds

≤ Ck+3/4(k − 1)k−1

τk−2(t− τ)

(
1 + d(x, 0)α−ε

τ
+

1

τ ε/α

)
,

(3.66)

and

I2 =
Ck+1/2(k − 1)k−1

τk−1(t− τ)

∫ ∞
0

∫
M

e−D2d(x,y)2/((t−τ)2/αs)

|B(x,
√

(t− τ)2/αs)|
d(x, y)α−εη1(s) dyds

≤ Ck+3/4(k − 1)k−1

τk−1(t− τ)

∫ ∞
0

(
(t− τ)2/αs

)(α−ε)/2
s−1−α/2e−s

−α/2
ds

≤ Ck+7/8(k − 1)k−1

τk−1(t− τ)ε/α
.

(3.67)

Now we set τ = (k−1)t
k . Consequently, by plugging (3.66) and (3.67) into (3.65), we conclude

that

|∂kt u(t, x; y)|

≤ Ck+3/4(k − 1)k−1

τk−2(t− τ)

(
1 + d(x, 0)α−ε

τ
+

1

τ ε/α

)
+
Ck+7/8(k − 1)k−1

τk−1(t− τ)ε/α

≤ Ck+1kk

tk−1

(
1 + d(x, 0)α−ε

t
+

1

tε/α

)
,

which gives (3.12) immediately.

The proof of Theorem 59 is divided into two parts: the proof of (3.13) and the

proof of (3.14). We start with the first part in the following subsection.

3.4.2 Proof of (3.13) in Theorem 59

Proof. By Condition (3.8), it is well known that when r ≤ s,

|B(x, r)| ≥ 1

C∗

(r
s

)log2 C
∗

|B(x, s)|. (3.68)
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See, for example, Remark 4.2.2 of [60].

Therefore, by (3.58), (3.61), (3.59), and (3.68), we have

pα(t, x; y)

≤
∫ 1

0

Ce−D2d(x,y)2/(t2/αs)

|B(x,
√
t2/αs)|

s−1−α/2e−s
−α/2

ds+

∫ ∞
1

Ce−D2d(x,y)2/(t2/αs)

|B(x,
√
t2/αs)|

s−1−α/2e−s
−α/2

ds

=

∫ 1

0

Ce−D2d(x,y)2/(t2/αs)

|B(x, t1/α)|
|B(x, t1/α)|
|B(x,

√
t2/αs)|

s−1−α/2e−s
−α/2

ds

+

∫ ∞
1

Ce−D2d(x,y)2/(t2/αs)

|B(x,
√
t2/αs)|

s−1−α/2e−s
−α/2

ds

≤
∫ 1

0

C

|B(x, t1/α)|
C∗

slog2 C
∗/2

s−1−α/2e−s
−α/2

ds+

∫ ∞
1

C

|B(x, t1/α)|
s−1−α/2e−s

−α/2
ds

≤ C

|B(x, t1/α)|
.

(3.69)

If d(x, y) ≥ t1/α, letting ξ = st2/α

d(x,y)2 , again by (3.58), (3.61), (3.59), and (3.68), we get

pα(t, x; y) ≤
∫ ∞

0

Ce−D2/ξ

|B(x,
√
ξd(x, y))|

(
d(x, y)2ξ

t2/α

)−1−α/2
d(x, y)2

t2/α
dξ

=
Ct

d(x, y)α

∫ 1

0

e−D2/ξ

|B(x,
√
ξd(x, y))|

ξ−1−α/2dξ

+
Ct

d(x, y)α

∫ ∞
1

e−D2/ξ

|B(x,
√
ξd(x, y))|

ξ−1−α/2dξ

≤ Ct

d(x, y)α

∫ 1

0

e−D2/ξ

|B(x, d(x, y))|
|B(x, d(x, y))|
|B(x,

√
ξd(x, y))|

ξ−1−α/2dξ

+
Ct

d(x, y)α

∫ ∞
1

e−D2/ξ

|B(x, d(x, y))|
ξ−1−α/2dξ

≤ Ct

d(x, y)α

∫ 1

0

e−D2/ξ

|B(x, d(x, y))|(
√
ξ)log2 C

∗ ξ
−1−α/2dξ +

Ct

d(x, y)α|B(x, d(x, y))|

≤ Ct

d(x, y)α|B(x, d(x, y))|
.

(3.70)

Thus, we proved the upper bound in (3.13).

Now we show the lower bound in (3.13). By Theorem 3.1 of [5], there exists a
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constant s0 = s0(α) such that

η1(s) ≥ αs−1−α/2

4Γ(1− α/2)
, ∀s > s0. (3.71)

Without loss of generality, we assume that s0 ≥ 1 in the sequel. Then we consider two

cases.

When t1/α ≥ d(x, y), by (3.58), (3.61), (3.71), and (3.68), it holds that

pα(t, x; y) =

∫ ∞
0

E(t2/αs, x; y)η1(s) ds

≥
∫ ∞
s0

Cd1e
−D1d(x,y)2/(t2/αs)

|B(x,
√
t2/αs)|

s−1−α/2 ds =

∫ ∞
s0

Cd1e
−D1d(x,y)2/(t2/αs)

|B(x, t1/α)|
|B(x, t1/α)|
|B(x,

√
t2/αs)|

s−1−α/2 ds

≥ e
−D1
s0

∫ ∞
s0

Cd1

|B(x, t1/α)|
1

C∗slog2 C
∗/2

s−1−α/2 ds ≥ C

|B(x, t1/α)|
.

(3.72)

When t1/α < d(x, y), letting ξ = st2/α

d(x,y)2 , again by (3.58), (3.61), (3.71), and (3.68),

we have

pα(t, x; y) ≥
∫ ∞
s0

Cd1e
−D1/ξ

|B(x,
√
ξd(x, y))|

(
d(x, y)2ξ

t2/α

)−1−α/2
d(x, y)2

t2/α
dξ

≥ Ct

d(x, y)α

∫ ∞
s0

e−D1/ξ

|B(x, d(x, y))|
|B(x, d(x, y))|
|B(x,

√
ξd(x, y))|

ξ−1−α/2dξ

≥ Ct

d(x, y)α

∫ ∞
s0

e−D1/s0

|B(x, d(x, y))|(
√
ξ)log2 C

∗ ξ
−1−α/2dξ

≥ Ct

d(x, y)α|B(x, d(x, y))|
.

(3.73)

Combining (3.72) and (3.73), we reach (3.13).

Now in order to prove (3.14), we establish an estimate for high-order time deriva-

tives of the heat kernel E(t, x; y) first.

Lemma 71 Let M be a d−dimensional complete Riemannian manifold satisfying Condi-

tions (3.7) and (3.8). Then for any x, y ∈ M, t > 0, and any nonnegative integer k, there
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exist positive constants C1 and C2 such that the heat kernel E(t, x; y) of the heat equation

∂tu−∆u = 0

satisfies

|∂kt E(t, x; y)| ≤ Ck+1
1 kk−2/3

tk|B(x,
√
t)|
e−C2d(x,y)2/t.

Remark 72 To our best knowledge, up to now, in the literature, one can only find the

coarser bounds

|∂kt E(t, x; y)| ≤ C(k)

tk|B(x,
√
t)|
e−C2d(x,y)2/t

in the manifold case, where C(k) is not explicitly calculated. See, for instance, Theorem

5.4.12 in [38]. Here we obtain a more precise result.

Proof. The proof is similar to Lemma 4.1 of [58]. However, since we have different condi-

tions here and we have the estimate of ∂kt E(t, x; y) for all time t > 0 instead of t ∈ (0, 1],

the proof is a bit different. We present the proof here for the reader’s convenience.

Fix any t0 > 0 and x0, y0 ∈ M. For any nonnegative integer k and j = 1, 2, . . . , k+

1, we define

M1
j =

{
(t, x) : t ∈

(
t0 −

jt0
2k
, t0

)
, d(x, x0) <

j
√
t0√

2k

}
,

M2
j =

{
(t, x) : t ∈

(
t0 −

(j + 0.5)t0
2k

, t0

)
, d(x, x0) <

(j + 0.5)
√
t0√

2k

}
.

Then M1
j ⊂M2

j ⊂M1
j+1.

Following the proof of Lemma 4.1 of [58], for a constant C, we have

∫∫
M1

1

|∂kt E(t, x; y0)|2 dxdt ≤ C2kk2k

t2k0

∫∫
M1
k+1

|E(t, x; y0)|2 dxdt. (3.74)

Now to estimate the right-hand side of (3.74), we have two cases.
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Case 1: d(x0, y0) ≤
√

4kt0. In this case, we need to use a well-known result which can

be found, for instance, in Lemma 5.2.7 of [38]: under Condition (3.8), for a constant C, we

have

|B(x, r)| ≤ eCd(x,y)/r|B(y, r)|, ∀x, y ∈ M and r > 0. (3.75)

By (3.61), (3.68), and (3.75), it holds that

C2kk2k

t2k0

∫∫
M1
k+1

|E(t, x; y0)|2 dxdt ≤
C2k+1/2k2k|B(x0,

(k+1)
√
t0√

2k
)|

t2k−1
0 min

x∈B(x0,(k+1)
√
t0/
√

2k)
|B(x,

√
t0)|2

=
C2k+1/2k2k

t2k−1
0

|B(x0,
(k+1)

√
t0√

2k
)|

|B(x0,
√
t0)|2

|B(x0,
√
t0)|2

min
x∈B(x0,(k+1)

√
t0/
√

2k)
|B(x,

√
t0)|2

≤ C2k+3/4k2k

t2k−1
0 |B(x0,

√
t0)|

(
k + 1√

2k

)log2C∗

exp

(
2C(k + 1)√

2k

)
≤ C2k+1k2k+1

t2k−1
0 |B(x0,

√
t0)|

e−C2d(x0,y0)2/t0

for a constant C2, where we used the condition d(y0, x0) ≤
√

4kt0 in the last inequality.

Case 2: d(x0, y0) >
√

4kt0. In this case, because d(x, x0) < (k+1)
√
t0√

2k
in M1

k+1, by the

triangle inequality, we have
√

2−1√
2
< d(x,y0)

d(x0,y0) < 2. Therefore, by (3.61), (3.68), and (3.75), it

holds that

C2kk2k

t2k0

∫∫
M1
k+1

|E(t, x; y0)|2 dxdt

≤
C2kk2kt0|B(x0,

(k+1)
√
t0√

2k
)|

t2k0 min
x∈B(x0,(k+1)

√
t0/(2

√
k))
|B(x,

√
t0)|2

e−(3−2
√

2)D2d(x0,y0)2/(2t0)

≤ C2k+1/2k2k

t2k−1
0

|B(x0,
(k+1)

√
t0√

2k
)|

|B(x0,
√
t0)|2

|B(x0,
√
t0)|2

min
x∈B(x0,(k+1)

√
t0/(2

√
k))
|B(x,

√
t0)|2

e−C2d(x0,y0)2/t0

≤ C2k+3/4k2k

t2k−1
0

1

|B(x0,
√
t0)|

(
k + 1√

2k

)log2C∗

exp

(
C(k + 1)√

k

)
e−C2d(x0,y0)2/t0

≤ C2k+1k2k+1

t2k−1
0 |B(x0,

√
t0)|

e−C2d(x0,y0)2/t0

for a constant C2.
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Combining the above two cases, we get

∫∫
M1

1

|∂kt E(t, x; y0)|2 dxdt ≤ C2k+1k2k+1

t2k−1
0 |B(x0,

√
t0)|

e−C2d(x0,y0)2/t0 . (3.76)

Now we recall a well-known parabolic mean value inequality, which can be found,

for instance, in Theorem 14.7 of [48] or Theorem 5.2.9 of [38]. For 0 < r < R < 1, any

nonnegative subsolution u = u(t, x) of the heat equation satisfies

sup
Qr(t0,x0)

u(t, x) ≤ C
(

R2

|B(x0, r)|2/ν

)ν/2(
1

|R− r|2

)(ν+2)/2 ∫∫
QR(t0,x0)

u(t, x) dxdt,

where ν > 2 is a constant andQr(t, x) = (t−r2, t)×B(x, r). Letting u(t, x) = |∂kt E(t, x; y0)|2,

r ↘ 0, and R =
√
t0/(2k), using (3.68), we see that

|∂kt E(t0, x0; y0)|2 ≤ Ck∣∣∣B (x0,
√
t0/(2k)

)∣∣∣ t0
∫∫

Q√
t0/(2k)

(t0,x0)
(∂kt E(t, x; y0))2 dxdt

=
Ck

|B(x0,
√
t0)|t0

|B(x0,
√
t0)|∣∣∣B (x0,

√
t0/(2k)

)∣∣∣
∫∫

Q√
t0/(2k)

(t0,x0)
(∂kt E(t, x; y0))2 dxdt

≤
Ck
(√

2k
)log2(C∗)∣∣B(x0,
√
t0)
∣∣ t0

∫∫
Q√

t0/(2k)
(t0,x0)

(∂kt E(t, x; y0))2 dxdt.

(3.77)

By (3.76) and (3.77), we obtain

|∂kt E(t0, x0; y0)|2 ≤ C2k+2k2k+1+log2(C∗)/2

t2k0 |B(x0,
√
t0)|2

e−C2d(x0,y0)2/t0 .

Thus,

|∂kt E(t0, x0; y0)| ≤ Ck+1
1 kk−2/3

tk0|B(x0,
√
t0)|

e−C2d(x0,y0)2/t0

for a sufficiently large constant C1, which finishes the proof of Lemma 71.

To prove the time analyticity of the heat kernel pα(t, x; y), we use the following

result.
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Lemma 73 ([37] Proof of Proposition 1.4.2) Suppose that f = f(x) is real analytic at

x0 ∈ R, which satisfies near x0,

|f (k)(x)| ≤ C1
k!

Rk
, ∀ integer k ≥ 0.

Assume that g = g(x) is real analytic at f(x0) ∈ R which satisfies near f(x0),

|g(k)(y)| ≤ C3
k!

Sk
, ∀ integer k ≥ 0.

Here R and S are positive constants. Then h(x) = g(f(x)) is analytic near x0 and satisfies

|h(k)(x0)| ≤ C1C3

S + C1

k!(1 + C1/S)k

Rk
, ∀ integer k ≥ 0.

Now we are ready to prove (3.14) and thus completes the proof of Theorem 59.

3.4.3 Proof of (3.14) in Theorem 59

Proof. By (3.58), we have

∂nt pα(t, x; y) =

∫ ∞
0

∂nt E(t2/αs, x; y)η1(s) ds. (3.78)

We write E(t2/αs, x; y) = E(t, x; y) ◦ (t2/αs) = g(t) ◦ f(t), where g(t) := E(t, x; y) and

f(t) := t2/αs. Then by Lemma 71, for a constant C(1) > 0,

|∂kt g(t)| ≤ (C(1))kk!

tk|B(x,
√
t)|
e−C2d(x,y)2/t, ∀ integer k ≥ 0.

Let C3 = e−C2d(x,y)2/(t2/αs)

|B(x,
√
t2/αs)|

and S = t2/αs/C(1). For f(t), it holds that

|f (k)(t)| ≤ (C(2))kk!t2/αs

tk
, ∀ integer k ≥ 0

for a constant C(2) > 0. Let C1 = t2/αs and R = t/C(2). Then by Lemma 73, we have for

a constant C > 0,

|∂kt E(t2/αs, x; y)| ≤ C1C3

S + C1

k!(1 + C1/S)k

Rk
≤ Ckk!

tk
e−C2d(x,y)2/(t2/αs)

|B(x,
√
t2/αs)|

.
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Therefore, by (3.78), we deduce that

|∂kt pα(t, x; y)| ≤
∫ ∞

0

Ckk!

tk
e−C2d(x,y)2/(t2/αs)

|B(x,
√
t2/αs)|

η1(s) ds.

By the same calculations as (3.69) and (3.70), we deduce (3.14) immediately.

3.5 Corollaries on Backward and Other Equations

In this last section, we present four corollaries, whose statements and proofs are

similar to the corresponding results in [19] and [58].

First we consider the Cauchy problem for the backward nonlocal parabolic equa-

tions 
∂tu+ Lκαu = 0, ∀x ∈ Rd

u(0, x) = a(x)

(3.79)

with κ(·, ·) satisfying (1.6) and (1.7).

Corollary 74 Equation (3.79) has a smooth solution u = u(t, x) of polynomial growth of

order α− ε in (0, δ)× Rd for some δ > 0, i.e.,

|u(t, x)| ≤ C(1 + |x|α−ε), 0 < ε < α, (t, x) ∈ (0, δ)× Rd, (3.80)

if and only if

| (Lκα)k a(x)| ≤ Ak+1
1 kk

(
1 + |x|α−ε

)
, k = 0, 1, 2, . . . (3.81)

where A1 is a positive constant.

Proof.

On one hand, suppose that (3.79) has a smooth solution of polynomial growth

of order α − ε, say u = u(t, x). Then u(−t, x) is a solution of the nonlocal parabolic

95



equations with polynomial growth of order α− ε. By Theorem 53 and (3.80), (3.81) follows

immediately.

On the other hand, suppose that (3.81) holds. Then it is easy to check that

u(t, x) =

∞∑
j=0

(Lκα)ja(x)
tj

j!

is a smooth solution of the fraction heat equation for t ∈ (−δ, 0] with δ sufficiently small.

Indeed, the bounds (3.81) guarantee that the above series and the series

∞∑
j=0

(Lκα)j+1a(x)
tj

j!
and

∞∑
j=0

(Lκα)ja(x)
∂tt

j

j!

all converge absolutely and uniformly in [−δ, 0]×BR(0) for any fixed R > 0. Hence, ∂tu−

Lκαu = 0. Moreover, u has polynomial growth of order α− ε since

|u(t, x)| ≤
∞∑
j=0

∣∣(Lκα)ja(x)
∣∣ tj
j!
≤
∞∑
j=0

Aj+1
1 jj

(
1 + |x|α−ε

) tj
j!
≤ A1

(
1 + |x|α−ε

)
(3.82)

provided that t ∈ [−δ, 0] with δ sufficiently small. Thus, u(−t, x) is a solution to the Cauchy

problem of the backward nonlocal parabolic equations (3.79) of polynomial growth of order

α− ε.

We have another corollary below about the forward Cauchy problem for the non-

local parabolic equations 
∂tu− Lκαu = 0, ∀x ∈ Rd

u(0, x) = a(x).

(3.83)

The main point is the analyticity of solutions down to the initial time.

Corollary 75 Equation (3.83) has a smooth solution u = u(t, x) of polynomial growth of

order α − ε, which is time analytic in [0, δ) for some δ > 0 with the radius of convergence
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independent of x if and only if

| (Lκα)k a(x)| ≤ Ak+1
1 kk

(
1 + |x|α−ε

)
, k = 0, 1, 2, . . . (3.84)

for a positive constant A1.

Proof. On one hand, assuming (3.84), we can see

u∗(t, x) =

∞∑
j=0

(Lκα)ja(x)
tj

j!

is a smooth solution to (3.83) for t ∈ [0, δ) with δ sufficiently small. Moreover, if δ is

sufficiently small, u∗ has polynomial growth of order α − ε by (3.82), so u∗ is the unique

solution to (3.83) by part (b) of Theorem 53.

By Corollary 74, the backward problem (3.79) has a smooth solution v = v(t, x)

in [0, δ)× Rd. Define the function U = U(t, x) by

U(t, x) =


u∗(t, x), t ∈ [0, δ)

v(−t, x), t ∈ (−δ, 0].

It is straight forward to check that U(t, x) is a solution of the nonlocal parabolic equations

in (−δ, δ)×Rd. By Theorem 53, U(t, x) and hence u(t, x) is time analytic at t = 0 for some

δ > 0.

On the other hand, suppose that u = u(t, x) is a solution of the equation (3.83),

which is analytic in time at t = 0 with the radius of convergence independent of x. Then,

by definition, u has a power series expansion in a time interval (−δ, δ), for some δ > 0.

Hence (3.84) holds following the proof of Corollary 74.

Remark 76 Since we have not proved the solution to (3.9) is unique, the proofs of the

above two corollaries cannot be applied to the manifold case. Therefore, we just restrict the

above two corollaries to the case of Rd.
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For the following two corollaries, the operator L is either Lκα on Rd, or Lα on M.

For convenience of notation, let X be either Rd or M satisfying Conditions (3.7) and (3.8).

Then similar to Theorems 1.4 and 1.5 in [58], we have the following two corollaries.

Corollary 77 Let p be a positive integer and consider the equation

ut(t, x)− Lu(t, x) = up(t, x) in (0, 1]×X (3.85)

with the initial data u(0, ·). Assume that u = u(t, x) is a mild solution, i.e.,

u(t, x) =

∫
X
pα(t, x; y)u(0, y) dy +

∫ t

0

∫
X
pα(t− s, x; y)up(s, y) dyds

and there exists a constant C2 such that

|u(t, x)| ≤ C2, ∀(t, x) ∈ [0, 1]×X.

Then u is time analytic in t ∈ (0, 1] and the radius of convergence is independent of x.

Proof. From (3.1) or (3.14), we see by iteration that

‖∂kt pα(t, x, ·)‖L1(X) ≤ Ck+1/2kk−2/3t−k, ∀ integer k ≥ 0, (3.86)

and thus, by the Leibniz rule, it holds that

‖∂kt (tkpα(t, x, ·))‖L1(X) ≤ Ck+1kk−2/3, ∀ integer k ≥ 0 (3.87)

for a sufficient large constant C.

The rest of the proof is the same as that of Theorem 1.4 in [58].

Corollary 78 For the equation (3.85) with p being any positive rational number, assume

that u = u(t, x) is a mild solution and there exist constants C1 and C2 such that

0 ≤ C1 ≤ |u(t, x)| ≤ C2, ∀(t, x) ∈ [0, 1]×X.
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Then u is time analytic in t ∈ (0, 1] and the radius of convergence is independent of x.

Proof. We also have (3.86) and (3.87). Then the rest of the proof is the same as that of

Theorem 1.5 in [58].

Remark 79 It is unclear to us whether a similar result holds when p is an irrational number

as we are unable to get an appropriate relation between ∂nt (tnu) and ∂nt (tnup), where n is

any positive integer. When p = q1/q2 is a rational number, in Lemma 4.5 of [58], the

author used ∂nt (tnu1/q2) as a bridge between ∂nt (tnu) and ∂nt (tnuq1/q2). Moreover, Lemma

73 cannot be used directly here. In fact, for any integer k > 0, if we assume that

|tn∂nt u| ≤ Nnn! ∀ positive integer n ≤ k

for a constant N > 0, then by Lemma 73, we get

|tk∂kt up| ≤ Nk+1/2k!

(
1 +

1

min |u|

)k
,

which cannot be used to obtain a positive radius of convergence.
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Chapter 4

Smooth Solutions to the Heat

Equation Which are Nowhere

Analytic in Time

4.1 Introduction

The study of the existence of nowhere-analytic smooth functions has a rich history

(see e.g. [2]) since the pioneering works du Bois-Reymond[20], Lerch[41] and Cellerier[8].

Later, many other examples were found with different methods, see e.g. [4, 25, 47, 54]. For

the heat equation, the space analyticity of the classical solution in a space-time domain is

usually expected as a consequence of parabolic regularity. But the time analyticity is more

delicate and is not true in general, see e.g. the well-known examples in Kowalevsky[36]

and Tychonoff[53]. Under extra assumptions, however, many time-analyticity results for
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the heat equation, Navier-Stokes equations, and some other parabolic equations may still

be justified, see e.g. [55, 21, 23, 35, 46].

Recently, in [61, 19], it was discovered that for any complete and noncompact

Riemannnian manifold M whose Ricci curvature is bounded from below, solutions to the

heat equation on M with exponential growth of order 2 are analytic in time. In particular,

as a corollary to Theorem 2.1 in [19], for any time interval (a, b] ⊆ R, if u is a smooth

solution to the heat equation ∂tu − ∂2
xu = 0 on R × (a, b] that satisfies for two positive

constants A1 and A2,

|u(x, t)|e−A2x2 ≤ A1, ∀ (x, t) ∈ R× (a, b], (4.1)

then u must be time analytic in t ∈ (a, b]. The growth restraint (4.1) is sharp due to the

Tychonoff’s non-uniqueness example with suitable modifications (e.g. see Remark 2.3 in [19]

for more details). Later, similar phenomena were also found in other types of PDEs[58, 17]

and in domains with boundary[16]. In particular, by denoting R+ = (0,∞), Theorem 2.1

in [16] implies that for any time interval (a, b] ⊆ R, if v is a smooth solution to the heat

equation on R+ × (a, b] with the Dirichlet boundary condition v(0, t) = 0 and with the

growth constraint |v(x, t)|e−A2x2 ≤ A1 for any (x, t) ∈ R+ × (a, b], then v is time analytic

in t ∈ (a, b].

The study of analyticity of solutions to PDEs has both a long history, see e.g. the

famous Cauchy-Kowalevsky theorem in [7, 36], and many applications, such as the time

reversibility, the solvability of backward equations and the control theory. One particular

application is about control problems involving heat type equations. For these problems,

it is well known that the set of reachable states, though hard to describe exactly, is just
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a little larger than the set of those that can be reached by the free heat flow. But until

the papers [61, 19], it’s even not clear how to characterize the latter in general (see. e.g.

the comment on page 1 in [40]). For a precise characterization of the reachable states by

the free heat flow, see Corollary 2.2 and Remark 2.5 in [19]. Later, an explicit formula was

derived for the control function by representing solutions with power series in time thanks

to the time analyticity, see Theorem 2.1 in [59].

In this paper, however, we discover that the time analyticity is hopeless for general

boundary conditions or without suitable growth conditions. More precisely, we construct

solutions to the heat equation on the half space-time plane {x ≥ 0, t ∈ R} that satisfy the

growth condition (4.1) but are nowhere analytic in time. As a byproduct, we also find a

solution to the heat equation on the whole space which is nowhere analytic in time and

almost satisfies the growth condition (4.1). This example will demonstrate the sharpness

of the growth condition (4.1) even if the solution is only required to be analytic in time at

a single point.

Denote the space-time domain Ω1 as

Ω1 = R+ × R. (4.2)

We will construct two bounded solutions to the heat equation on Ω1 which are nowhere

analytic in time. Our first example (4.4) can be regarded as an extension to the space-

time case of du Bois-Reymond [20], which itself is based on the Weierstrass function: a

continuous but nowhere differentiable trigonometric series on R. Our second example (4.5)

takes advantage of the heat kernel Φ on R, defined as in (4.3), and the method of the
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condensation of singularities [28, 6].

Φ(x, t) =


(4πt)−

1
2 exp

(
− x2

4t

)
if x ∈ R, t > 0,

0 if x ∈ R, t ≤ 0.

(4.3)

Although the construction of u2 is direct via the method of condensation of singularities,

we remark that the method of constructing u1 in (4.4) by the Weierstrass type functions

may be more flexible to study other evolutionary PDEs such as the Schrödinger equation

and the wave equation.

Theorem 80 Define two functions u1, u2 : Ω1 → R by

u1(x, t) =

∞∑
k=1

e−2ke−2kx sin
(
22k+1t− 2kx

)
, (4.4)

u2(x, t) =

∞∑
k=1

2−kΦ(x+ 1, t− rk), (4.5)

where {rk}∞k=1 is an enumeration of all the rational numbers. Then for i = 1, 2, ui ∈

C∞(Ω1) ∩ L∞(Ω1) and ui satisfies the heat equation on Ω1. However, for any fixed x0 ∈

[0,∞), the function ui(x0, ·) is nowhere analytic in t ∈ R.

The functions in Theorem 80 are only defined on Ω1. If we want to construct

smooth solutions to the heat equation on the whole plane Ω2 := R× R, then the solutions

have to break the growth constraint (4.1). In addition, it is well-known that this growth

constraint is sharp for everywhere time-analyticity. More precisely, for any δ > 0, there

exists a solution to the heat equation on Ω2 which grows slower than eA2|x|2+δ
but is not

time analytic at some point. Then it is interesting to investigate the following question: Is

the growth condition (4.1) sharp for somewhere time-analyticity? The next result, which

is inspired by (4.4), gives a positive answer to this question.
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Theorem 81 Let Ω2 = R× R and ε ∈ (0, 1). Define wε : Ω2 → R by

wε(x, t) =
∞∑
k=1

e−2(1+ε)k
e−2kx sin

(
22k+1t− 2kx

)
. (4.6)

Then wε ∈ C∞(Ω2) and wε satisfies the heat equation on Ω2. However, for any fixed x0 ∈ R,

the function wε(x0, ·) is nowhere analytic in t ∈ R. Meanwhile, there exist positive constants

A1 and A2, which only depend on ε, such that

sup
x,t∈R

|wε(x, t)| exp
(
−A2|x|1+ 1

ε
)
≤ A1. (4.7)

Remark 82 For any ε ∈ (0, 1), the function wε in the above theorem, when restricted to

Ω1 where x ≥ 0, is also a bounded nowhere time-analytic solution to the heat equation on

Ω1. Furthermore, for any δ > 0, by choosing ε = 1
1+δ , wε is bounded by A1e

A2|x|2+δ
but is

nowhere time-analytic on Ω2.

4.2 Proofs of Theorems 80 and 81

4.2.1 Proof of Theorem 80

• We first study u1. It is straightforward to check that u1 ∈ C∞(Ω1) ∩ L∞(Ω1) and u1

satisfies the heat equation on Ω1. Next, for any fixed x0 ≥ 0, we define

h(t) = u1(x0, t), ∀ t ∈ R.

Then it reduces to prove that h is not analytic at any point t0 ∈ R. By Cauchy-

Hadamard theorem, it suffices to show

lim sup
n→∞

(
|h(n)(t0)|

n!

) 1
n

=∞. (4.8)
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For any integer m ≥ 1, the (2m)th and the (2m + 1)th derivatives of h at t0 can be

written as

h(2m)(t0) = (−1)m
∞∑
k=1

e−2k(1+x0)22m(2k+1) sin
(
22k+1t0 − 2kx0

)
,

h(2m+1)(t0) = (−1)m
∞∑
k=1

e−2k(1+x0)2(2m+1)(2k+1) cos
(
22k+1t0 − 2kx0

)
.

For any N ∈ Z+, there exists a unique mN ∈ Z+ such that

2N (1 + x0) ≤ 4mN < 2N (1 + x0) + 4. (4.9)

Define FN : Z+ → R+ as

FN (k) = e−2k(1+x0)22mN (2k+1). (4.10)

Then

h(2mN )(t0) = (−1)mN
∞∑
k=1

FN (k) sin
(

22k+1t0 − 2kx0

)
,

h(2mN+1)(t0) = (−1)mN
∞∑
k=1

22k+1FN (k) cos
(

22k+1t0 − 2kx0

)
.

By the triangle inequality,

∣∣h(2mN )(t0)
∣∣ ≥ FN (N)

∣∣ sin (22N+1t0 − 2Nx0

)∣∣−∑
k 6=N

FN (k),

∣∣h(2mN+1)(t0)
∣∣ ≥ 22N+1FN (N)

∣∣ cos
(
22N+1t0 − 2Nx0

)∣∣−∑
k 6=N

22k+1FN (k).

(4.11)

Since | sin(θ)|+ | cos(θ)| ≥ 1 for any θ ∈ R, adding the two inequalities in (4.11) yields

∣∣h(2mN )(t0)
∣∣+
∣∣h(2mN+1)(t0)

∣∣ ≥ FN (N)− 4
(∑
k 6=N

22kFN (k)
)
. (4.12)

By direct computation, it follows from (4.10) that for any k ≥ 1,

FN (k + 1)

FN (k)
=

24mN

e2k(1+x0)
= exp

[
4mN ln 2− 2k(1 + x0)

]
. (4.13)
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For any fixed N , thanks to the choice (4.9) of mN and the fact that 1
2 < ln 2 < 1,

FN (N) is the largest term in the sequence {FN (k)}k≥1. Moreover, when N is large

enough, FN (N) is much larger than the other terms in the sequence {FN (k)}k≥1.

Actually, it is not difficult to find a positive constant N0, which only depends on x0,

such that ∑
k 6=N

22kFN (k) ≤ 1

100
FN (N), ∀N ≥ N0. (4.14)

Plugging (4.14) into (4.12) leads to

∣∣h(2mN )(t0)
∣∣+
∣∣h(2mN+1)(t0)

∣∣ ≥ 1

2
FN (N), ∀N ≥ N0. (4.15)

By (4.10),

FN (N) = e−2N (1+x0)22mN (2N+1) ≥ e−2N (1+x0)(2N )4mN .

Reorganizing (4.9) gives rise to

4(mN − 1)

1 + x0
< 2N ≤ 4mN

1 + x0
. (4.16)

Consequently,

FN (N) ≥ e−4mN

(
4(mN − 1)

1 + x0

)4mN

≥ 2

(
mN − 1

1 + x0

)4mN

.

Thus, for any N ≥ N0, it follows from (4.15) that

∣∣h(2mN )(t0)
∣∣+
∣∣h(2mN+1)(t0)

∣∣ ≥ (mN − 1

1 + x0

)4mN

.

As a result, ∣∣h(2mN )(t0)
∣∣+
∣∣h(2mN+1)(t0)

∣∣
(2mN + 1)!

≥
[

(mN − 1)2

(1 + x0)2(2mN + 1)

]2mN

. (4.17)

Since mN →∞ as N →∞, then (4.8) follows immediately from (4.17).
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• Now we consider u2. Although the expression (4.5) looks complicated, the conclusion

follows directly from an elegant result in [54].

Lemma 83 ([54]) Let ϕ be a bounded C∞ function which is analytic on R \ {0} but

not analytic at 0. Assume there are positive constants δ0, A and L such that for any

|t| > A,

sup
n≥0

∣∣∂nt ϕ(t)
∣∣

n!
δn0 < L. (4.18)

Let {ak}k≥1 be a sequence of non-zero real numbers such that
∞∑
k=1

|ak| < ∞. Let

{rk}k≥1 be an enumeration of all the rational numbers. Define a function f : R→ R

by

f(t) =
∞∑
k=1

akϕ(t− rk).

Then f ∈ C∞(R) but f is nowhere analytic on R.

Next, we will apply Lemma 83 to prove the desired result for u2. First, we recall that

the heat kernel Φ is defined as in (4.3). In addition, by noticing x + 1 is away from

0 for any x ≥ 0, we know for any integer n ≥ 1, there exists some constant Mn > 0

such that

|∂nxΦ(x+ 1, t)|+ |∂nt Φ(x+ 1, t)| ≤Mn, ∀ x ≥ 0, t ∈ R.

As a result, u2 ∈ C∞(Ω1) ∩ L∞(Ω1) and u2 satisfies the heat equation on Ω1 since

(∂t − ∂2
x)u2 = (∂t − ∂2

x)

( ∞∑
k=1

2−kΦ(x+ 1, t− rk)
)

=

∞∑
k=1

2−k(∂t − ∂2
x)Φ(x+ 1, t− rk) = 0.
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Then for any fixed x0 ≥ 0, define

ϕ(t) = Φ(x0 + 1, t), ∀ t ∈ R.

According to classical estimates on the heat kernel Φ (see e.g. formula (3.3) in [33]),

there exists some constant C > 0 such that for any n ∈ N,

|∂nxΦ(x, t)| ≤ Cnnn/2

t(n+1)/2
e−

x2

8t , ∀x ∈ R, t > 0.

Consequently,

|∂nt Φ(x, t)| = |∂2n
x Φ(x, t)| ≤ 2nC2nnn

tn+ 1
2

e−
x2

8t , ∀x ∈ R, t > 0.

In particular, there exists some constant C1 > 0 such that for any n ∈ N,

|∂nt ϕ(t)| = |∂nt Φ(x0 + 1, t)| ≤ Cn1 n
n

tn+ 1
2

e−(x0+1)2/(8t), ∀ t > 0. (4.19)

So by choosing A = 1 and δ0 = 1
2C1

, it follows from (4.19) that for any t > A,

|∂nt ϕ(t)|
n!

δn0 ≤
Cn1 n

n

n!

1

(2C1)n
=
nn

n!

1

2n
.

Thanks to the Sterling formula, we conclude that there exists some constant L > 0

such that

|∂nt ϕ(t)|
n!

δn0 < L, ∀ t > A. (4.20)

Noticing that ∂nt ϕ(t) = 0 for any t < 0, so (4.20) is also valid for |t| > A. Therefore,

(4.18) is justified for ϕ. Finally, in Lemma 83, by setting ak = 1
2k

, we conclude that

the function

u2(x0, ·) =

∞∑
k=1

1

2k
Φ(x0 + 1, · − rk) =

∞∑
k=1

akϕ(· − rk)

is nowhere analytic in t ∈ R.

108



4.2.2 Proof of Theorem 81

Fix any ε ∈ (0, 1), it is readily seen that wε ∈ C∞(Ω2) and wε satisfies the heat

equation on Ω2.

Next, for any fixed x0 ∈ R, we will prove that the function wε(x0, ·) is nowhere

analytic on R. Define hε(t) = wε(x0, t) for t ∈ R. Then it reduces to prove hε is not analytic

at any point t0 ∈ R. By Cauchy-Hadamard theorem, it suffices to show

lim sup
n→∞

(
|h(n)
ε (t0)|
n!

) 1
n

=∞. (4.21)

The proof of (4.21) is similar to that for the function u1 in Theorem 80, so we will only

sketch the process. For any large N such that 2εN ≥ 2+ |x0|, there exists a unique mN ∈ Z+

such that (
2εN + x0

)
2N ≤ 4mN <

(
2εN + x0

)
2N + 4. (4.22)

Define FN : Z+ → R+ as

FN (k) = e−2(1+ε)k
e−2kx022mN (2k+1). (4.23)

Then similar to (4.12), we have

∣∣h(2mN )
ε (t0)

∣∣+
∣∣h(2mN+1)
ε (t0)

∣∣ ≥ FN (N)− 4
(∑
k 6=N

22kFN (k)
)
.

Thanks to the choice (4.22) of mN , it is not difficult to find a positive constant N0, which

only depends on x0 and ε, such that

∑
k 6=N

22kFN (k) ≤ 1

100
FN (N), ∀N ≥ N0. (4.24)

Hence, ∣∣h(2mN )
ε (t0)

∣∣+
∣∣h(2mN+1)
ε (t0)

∣∣ ≥ 1

2
FN (N), ∀N ≥ N0. (4.25)
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Reorganizing (4.22) leads to

4(mN − 1)

2εN + x0
< 2N ≤ 4mN

2εN + x0
. (4.26)

Based on (4.25) and (4.23), for any N ≥ N0,

∣∣h(2mN )
ε (t0)

∣∣+
∣∣h(2mN+1)
ε (t0)

∣∣ ≥ 1

2
e−2(1+ε)N

e−2Nx022mN (2N+1)

≥ e−2N (2εN+x0)(2N )4mN .

Then it follows from (4.26) that

∣∣h(2mN )
ε (t0)

∣∣+
∣∣h(2mN+1)
ε (t0)

∣∣ ≥ e−4mN

(
4(mN − 1)

2εN + x0

)4mN

≥
(
mN − 1

2εN + x0

)4mN

.

As a result,

∣∣h(2mN )
ε (t0)

∣∣+
∣∣h(2mN+1)
ε (t0)

∣∣
(2mN + 1)!

≥
[

(mN − 1)2

(2εN + x0)2(2mN + 1)

]2mN

. (4.27)

When N →∞, it follows from (4.22) that mN →∞ and

mN

(2εN + x0)2
∼ 2(1−ε)N →∞.

Then (4.21) follows from (4.27).

Finally, we need to establish the growth constraint (4.7). Fix 0 < ε < 1. Then it

suffices to find constants A1 and A2, which only depend on ε, such that for any x ≥ 0,

∞∑
k=1

exp
(
− 2(1+ε)k + 2kx

)
≤ A1 exp

(
A2 x

1+ 1
ε
)
.

Define gk(x) = exp[2k(x− 2εk)] for any k ≥ 1. Then it reduces to justify

∞∑
k=1

gk(x) ≤ A1 exp
(
A2 x

1+ 1
ε
)
. (4.28)
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If 0 ≤ x ≤ 100, then it is readily seen that the above series in (4.28) is uniformly bounded

by a constant B1 which only depends on ε, so it reduces to consider the case when x > 100.

Define K ∈ Z+ to be the unique positive integer such that

1

ε
log2

( x

21+ε − 1

)
≤ K < 1 +

1

ε
log2

( x

21+ε − 1

)
, (4.29)

which can be rewritten as

x

21+ε − 1
≤ 2εK <

2εx

21+ε − 1
. (4.30)

In addition, since x > 100 and 0 < ε < 1, K ≥ 4/ε > 4. By direct computation,

gk+1(x)

gk(x)
= exp

(
2k
[
x− 2εk(21+ε − 1)

])
. (4.31)

• Case 1: Estimate of
K∑
k=1

gk(x).

For any 1 ≤ k ≤ K − 1, it follows from (4.31) and (4.30) that gk+1(x) ≥ gk(x). As a

consequence,
K∑
k=1

gk(x) ≤ KgK(x) ≤ K exp(2Kx). (4.32)

Since x > 100 and K > 4, then K ≤ exp(2Kx). Moreover, we can see from (4.32) and

(4.30) that
K∑
k=1

gk(x) ≤ exp

[
2

(
2εx

21+ε − 1

) 1
ε

x

]
= exp

(
B2 x

1+ 1
ε
)
, (4.33)

where B2 is a constant which only depends on ε.

• Case 2: Estimate of
∞∑

k=K+1

gk(x).

For any k ≥ K, it follows from (4.31) and (4.30) that gk+1(x) ≤ gk(x). In particular,

by choosing k = K and recalling (4.33), we know

gK+1 ≤ gK(x) ≤ exp
(
B2 x

1+ 1
ε
)
. (4.34)

111



From (4.30), we have x ≤ (21+ε − 1)2εK . Plugging this inequality into (4.31) yields

gk+1(x)

gk(x)
≤ exp

[
− (21+ε − 1)2k(2εk − 2εK)

]
.

So for any k ≥ K + 1,

gk+1(x)

gk(x)
≤ exp

[
− (21+ε − 1)2k(2ε(K+1) − 2εK)

]
≤ exp

[
− 2k(2ε − 1)

]
.

This implies that for any k ≥ K + 1,

gk+1(x) =

( k∏
i=K+1

gi+1(x)

gi(x)

)
gK+1(x)

≤ exp
[
− (2ε − 1)2K+1(2k−K − 1)

]
gK+1(x)

≤ exp
[
− (2ε − 1)(2k−K − 1)

]
gK+1(x)

Thus, by setting j = k −K and adding j from 1 to ∞,

∞∑
k=K+2

gk(x) ≤ gK+1(x)
∞∑
j=1

exp
[
− (2ε − 1)(2j − 1)

]
= B3 gK+1(x), (4.35)

where B3 is a positive constant which only depends on ε.

Combining (4.33), (4.34) and (4.35) together leads to the desired estimate (4.28).
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Chapter 5

Conclusions

On one hand, under a growth condition, we proved the pointwise time analyticity

of several evolutionary partial differential equations. On the other hand, it may not true if

the growth condition fails, or if we put non-analytic condition on the boundary as shown

in Chapter 4. We also proved that the growth condition is sharp by showing that if the

growth condition of the biharmonic heat equation fails, we can construct two solutions, one

of which is not analytic in time. Surprisingly, for linear differential equations discussed

above, we obtain a necessary and sufficient condition such that the solution is time analytic

at t = 0. We also obtain a necessary and sufficient condition for the solvability of the

backward equations. However, we failed to get a similar condition for the nonlinear heat

equations, which we will need to do further research in the future. Moreover, for the

nonlinear equations with power nonlinearity of order p, we only proved the time analyticity

if the solution is bounded. We also only proved the case when p is a rational number, even if

we assume the solution is bounded from below and above. Therefore, some further research
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is still needed to see if we can remove the bounded condition or extend the rational p to all

real number.
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Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser
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2020.

[41] M. Lerch. Ueber die Nichtdifferentiirbarkeit gewisser Functionen. J. Reine Angew.
Math., 103:126–138, 1888.

[42] P. Li and S.T. Yau. On the parabolic kernel of the Schrödinger operator. Acta Math.,
156(3-4):153–201, 1986.

[43] Z. Li and X. Pan. Some remarks on regularity criteria of axially symmetric Navier-
Stokes equations. Commun. Pure Appl. Anal., 18(3):1333–1350, 2019.

117



[44] Z. Li and Q. S. Zhang. Regularity of weak solutions of elliptic and parabolic equations
with some critical or supercritical potentials. J. Differential Equations, 263(1):57–87,
2017.

[45] F. Lin and Q. S. Zhang. On ancient solutions of the heat equation. Comm. Pure Appl.
Math., 72(9):2006–2028, 2019.

[46] K. Masuda. On the analyticity and the unique continuation theorem for solutions of
the Navier-Stokes equation. Proc. Japan Acad., 43:827–832, 1967.

[47] D. Morgenstern. Unendlich oft differenzierbare nicht-analytische Funktionen. Math.
Nachr., 12:74, 1954.

[48] Li P. Geometric analysis, volume 134 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 2012.

[49] A. Pringsheim. Zur Theorie der Taylor’schen Reihe und der analytischen Functionen
mit beschränktem Existenzbereich. Math. Ann., 42(2):153–184, 1893.

[50] K. Promislow. Time analyticity and Gevrey regularity for solutions of a class of dissi-
pative partial differential equations. Nonlinear Anal., 16(11):959–980, 1991.

[51] R. Schoen and S.T. Yau. Lectures on differential geometry. Conference Proceedings and
Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA, 1994.
Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia
Qing Zhong and Yi Chao Xu, Translated from the Chinese by Ding and S. Y. Cheng,
With a preface translated from the Chinese by Kaising Tso.

[52] R. W. Schwab and L. Silvestre. Regularity for parabolic integro-differential equations
with very irregular kernels. Anal. PDE, 9(3):727–772, 2016.
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