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Feature-space selection with banded ridge regression

Tom Dupré la Toura, Michael Eickenberga,b, Anwar O. Nunez-Elizaldea, Jack L. Gallanta,c,*

aHelen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA

bCenter for Computational Mathematics, Flatiron Institute, 162 5th Ave, New York, NY 10100, 
USA

cDepartment of Psychology, University of California, Berkeley, CA 94720, USA

Abstract

Encoding models provide a powerful framework to identify the information represented in 

brain recordings. In this framework, a stimulus representation is expressed within a feature 

space and is used in a regularized linear regression to predict brain activity. To account for a 

potential complementarity of different feature spaces, a joint model is fit on multiple feature 

spaces simultaneously. To adapt regularization strength to each feature space, ridge regression is 

extended to banded ridge regression, which optimizes a different regularization hyperparameter 

per feature space. The present paper proposes a method to decompose over feature spaces the 

variance explained by a banded ridge regression model. It also describes how banded ridge 

regression performs a feature-space selection, effectively ignoring non-predictive and redundant 

feature spaces. This feature-space selection leads to better prediction accuracy and to better 

interpretability. Banded ridge regression is then mathematically linked to a number of other 

regression methods with similar feature-space selection mechanisms. Finally, several methods 

are proposed to address the computational challenge of fitting banded ridge regressions on large 

numbers of voxels and feature spaces. All implementations are released in an open-source Python 

package called Himalaya.
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1. Introduction

A fundamental problem in neuroscience is to identify the informaion represented in different 

brain areas. In the encoding model framework, this identification amounts to finding the 

features of the stimulus (or task) that predict the activity in each brain area (Naselaris 

et al., 2011; Wu et al., 2006). Encoding models have been used extensively to predict 

blood oxygen level dependent (BOLD) signals in functional magnetic resonance imaging 

(fMRI). When encoding models are used independently to model each spatial sample in 

fMRI recordings (i.e. on each voxel), they are called voxelwise encoding models. Voxelwise 

encoding models have been used to predict BOLD activity generated by visual images 

and videos (Eickenberg et al., 2016; Hansen et al., 2004; Huth et al., 2012; Kay et al., 

2008; Lescroart and Gallant, 2019; Nishimoto et al., 2011; Wen et al., 2018), music (Kell 

et al., 2018), semantic concepts (Huth et al., 2016; Mitchell et al., 2008; Wehbe et al., 

2014) and narrative language (de Heer et al., 2017; Deniz et al., 2019; Huth et al., 2016; 

Jain and Huth, 2018). Encoding models have also been applied to data acquired using 

other neuroimaging techniques, such as neuro-physiological recordings (see Wu et al., 2006 

and references therein), calcium imaging (Miri et al., 2011; Oldfield et al., 2020; Pinto 

and Dan, 2015), magneto-encephalography (Schwartz et al., 2019; Yang et al., 2019), and 

electro-corticography (Holdgraf et al., 2016, 2017).

In the encoding model framework, brain activity is recorded while subjects perceive a 

stimulus or perform a task. Then, a set of features (also known as a feature space) is 

extracted from the stimulus or task at each point in time. For example, a video might be 

represented in terms of amount of motion in each part of the screen (Nishimoto et al., 2011), 

or in terms of semantic categories of the objects and actions present in the scene (Huth et 

al., 2012). Each feature space corresponds to a different representation of the stimulus- 

or task-related information. The encoding model framework aims to identify if each 

representation is similarly encoded in brain activity. Each feature space thus corresponds to 

a hypothesis about the stimulus- or task-related information encoded in brain activity. To test 

the hypothesis associated with a feature space, a regression model is trained to predict brain 

activity from the feature space. If the regression model predicts brain activity significantly in 

a voxel, then one may conclude that the information represented in the feature space is also 

represented in brain activity (Naselaris et al., 2011; Wu et al., 2006) (see more details about 

encoding models in Section 2).

Comparing the prediction accuracy of different feature spaces amounts to comparing 

competing hypotheses. In each brain voxel, the best-predicting feature space corresponds 

to the best hypothesis about the information encoded in this voxel. However, it is important 

not to view feature-space comparison as a winner-take-all situation. It is possible (and in fact 

common) to find that a brain area represents multiple feature spaces simultaneously. To take 
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this possibility into account, a joint regression is fit on multiple feature spaces. The joint 

regression automatically combines the information from all feature spaces to maximize the 

joint prediction accuracy. Then, a variance decomposition method (e.g. variance partitioning 

Çukur et al., 2016; de Heer et al., 2017; LeBel et al., 2021; Lescroart and Gallant, 2019; 

Lescroart et al., 2015) is used to decompose the variance explained by the joint model into 

separate contributions from each feature space. However, variance partitioning is limited 

in practice to small numbers of feature spaces m (e.g. 2 or 3), because it decomposes the 

variance into 2m − 1 values that are hard to interpret. There is a need for a method to 

decompose the variance over larger numbers of feature spaces.

The regression model trained to predict brain activity from a feature space is usually 

regularized in order to improve generalization. The most common regularized regression 

model is ridge regression (see more details in Section 2.2). However, ridge regression 

is not suited to fit joint models on multiple feature spaces, because it uses the same 

regularization hyperparameter for all feature spaces. In practice, it is rare for all feature 

spaces to require the same level of regularization, because the optimal level of regularization 

depends on factors such as the number of features, the feature covariances, and the 

predictive power of the feature space. To address this challenge, ridge regression is 

naturally extended to use a separate regularization level per feature space. This extension 

is called banded ridge regression (Nunez-Elizalde et al., 2019). By learning a separate 

regularization hyperparameter for every feature space, banded ridge regression can optimize 

regularization strength separately for each feature space. As a side effect, learning separate 

hyperparameters leads to a feature-space selection mechanism that was not described in the 

original paper (Nunez-Elizalde et al., 2019). There is a need for a proper description of this 

mechanism.

Another challenge with banded ridge regression is its computational cost. Because this 

method requires the optimization of a separate hyperparameter for every feature space, 

the optimization algorithm is necessarily more complicated than that used for simple 

ridge regression. For example, using a grid search (as is common in ridge regression) 

is impractical in banded ridge regression with more than three or four feature spaces 

because its computational cost scales exponentially with the number of feature spaces. This 

computational challenge is particularly difficult when modeling hundreds of thousands of 

voxels independently. There is a need for an algorithm to efficiently fit models with banded 

ridge regression.

Overview of the paper

This work expands on earlier banded ridge regression work from our laboratory (Nunez-

Elizalde et al., 2019) in three ways, described respectively in the three sections.

Section 2 first provides a brief overview of the encoding model framework. Then, it 

proposes an alternative method to variance partitioning, to decompose variance over large 

numbers of feature spaces. The proposed method is based on the product measure (Hoffman, 

1960; Pratt, 1987), whose computational cost scales linearly with the number of feature 

spaces. This variance decomposition can be applied to any linear regression fitting method, 

including ridge regression and banded ridge regression.
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Section 3 reviews banded ridge regression, and describes how it performs a feature-space 

selection by discarding non-predictive or redundant feature spaces. This feature-space 

selection mechanism explains how banded ridge regression is able to effectively disentangle 

correlated feature spaces (Nunez-Elizalde et al., 2019). Then, it discusses the relationship 

between banded ridge regression and other regression methods with a similar feature-space 

selection mechanism, such as automatic relevance determination, multiple-kernel learning, 

and the group lasso.

Section 4 addresses the practical challenge of solving banded ridge regressions with many 

feature spaces on large numbers of voxels. Two methods are proposed to efficiently 

solve banded ridge regression. The first uses hyperparameter random search over a 

Dirichlet distribution, while the second uses hyperparameter gradient descent with implicit 

differentiation. Both methods provide speed improvements of several orders of magnitude 

compared to the Bayesian search proposed earlier (Nunez-Elizalde et al., 2019). Finally, all 

implementations are made available in an open-source Python package called Himalaya,1 

with both CPU and GPU support, rigorous unit-testing, and extensive documentation.

This paper focuses on fMRI datasets and the associated terminology. However, the methods 

presented here can also be applied to data acquired using other neuroimaging modalities, 

and more generally to any similarly structured regression setting. The methods could even be 

used to integrate across multiple neuroimaging modalities Rasero et al. (2021).

2. Variance decomposition over feature spaces

This section starts with a brief overview of the encoding model framework, introducing key 

concepts such as linear regression, ridge regression, explained variance, and feature-space 

comparison (see also Fig. 1). Then, it explains the benefit of fitting joint models over 

multiple feature spaces, and discusses how to decompose the explained variance over feature 

spaces by adapting the product measure (Hoffman, 1960; Pratt, 1987).

2.1. Linear regression

The regression method used in encoding models is often linear in the parameters. Using 

linear regression has several benefits compared to non-linear regression. The main benefit 

is to only focus on explicit representations (Ivanova et al., 2021; Kamitani and Tong, 2005; 

Kriegeskorte and Kievit, 2013; Naselaris et al., 2011; Wu et al., 2006; King et al., 2018). 

With non-linear regression, some features might be able to predict brain activity even though 

they do not explicitly encode the same information as the brain region (e.g. pixel features 

do not explicitly encode the semantic content of an image, even though semantic content 

can be extracted from the pixels). Restricting the regression method to be linear is thus a 

way to only consider features that explicitly represent brain activity. Additionally, linearity 

enables the use of various methods to interpret the regression model, such as variance 

partitioning or feature importance methods (see Section 2.5). Finally, linear regression 

methods are computationally efficient and robust to small sample sizes that are common in 

neuroimaging studies. Note that encoding models that use linear regression are sometimes 

1https://github.com/gallantlab/himalaya.
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called linearized encoding models (Naselaris et al., 2011; Wu et al., 2006), to emphasize that 

feature extraction can be non-linear.

Mathematically, let us note X ∈ ℝn × p the matrix of features, with n samples and p features, 

and y ∈ ℝn the brain activity vector (or target vector). Linear regression seeks a weight 

vector b ∈ ℝp such that the target vector is approximated as a linear combination of the 

features y ≈ Xb. It is standard to model the error as additive Gaussian white noise, so that 

y = Xb + ε, with a noise vector ε ∈ ℝn drawn from a centered Gaussian distribution. (The 

Gaussian assumption is reasonable for de-trended fMRI recordings, but might not be valid 

for single-trial neurophysiology). This regression method is called ordinary least squares, 

and can be written as an optimization problem

b* = argmin
b

‖y − Xb‖2
2, (1)

where a 2
2 = ∑iai2 is the squared L2 norm.

The main limitation of ordinary least squares is that it is unstable in some situations. To 

understand this issue, note that solving ordinary least squares amounts to inverting the 

eigenvalues σi of the matrix X ⊤X. When features are correlated, some eigenvalues can be 

small, which reduces the stability of the inversion (a small change in the features can have a 

large effect on the result). In some cases, some eigenvalues can even be equal to zero, which 

makes the inversion ill-defined. Eigenvalues equal to zero can arise when some features 

are fully redundant (e.g. one feature being the sum of two other features), or when the 

number of independent features is greater than the number of samples (p > n). The system is 

then called underdetermined, and the optimization problem has infinitely many solutions, of 

which most do not generalize well to new data. To solve these issues, ordinary least squares 

can be extended into ridge regression (Hoerl and Kennard, 1970).

2.2. Ridge regression

Ridge regression (Hoerl and Kennard, 1970) is a generalization of ordinary least squares 

which adds a regularization term to the optimization problem. The optimization problem 

becomes

b* = argmin
b

‖y − Xb‖2
2 + λ‖b‖2

2, (2)

where λ > 0 is a hyperparameter controlling the regularization strength. This regularization 

improves the robustness of the model by adding a positive value λ to all eigenvalues σi ≥ 

0 of X⊤X before the matrix inversion. Inverting σi + λ instead of σi reduces the instability 

caused by small eigenvalues, and allows inverting underdetermined systems (where σi = 

0). Small eigenvalues and underdetermined systems are common when using large numbers 

of features. Because naturalistic stimuli often involve large numbers of highly correlated 

features, this regularization scheme facilitates the analysis of naturalistic experiments and so 

increases ecological validity (Huth et al., 2016; Sonkusare et al., 2019; Wu et al., 2006).
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In ridge regression, the regularization hyperparameter λ must be estimated from the data. 

If the estimated value is too low then the model will tend to overfit to noise in the data, 

and if it is too high then the model will not predict as well as it might. The regularization 

parameter is typically selected through a grid search with cross-validation (Hastie et al., 

2009, Ch. 7). First, a set of hyperparameter candidates λ is defined, typically over a grid 

of logarithmically spaced values to span multiple orders of magnitude. Then, the data set is 

split into a training set (Xtrain, ytrain) and a validation set (Xval, yval). The regression model 

is fit on the training set, and its prediction accuracy is evaluated on the validation set. This 

process is performed for all hyperparameter candidates, and the candidate leading to the 

highest prediction accuracy is selected. To improve the robustness of the hyperparameter 

selection, the prediction accuracy is usually averaged over multiple splits of the data into a 

training and a validation set. Finally, a ridge regression is fit on the full data set using the 

selected hyperparameter.

Ridge regression is the most popular regression method in voxelwise encoding models. 

Other popular linear regression methods include the lasso (Tibshirani, 1996) or linear 

support-vector machines (Cortes and Vapnik, 1995). However, both methods have a much 

larger computational cost than ridge regression. In particular, their computational cost 

increases linearly with the number of voxels. Because a typical fMRI dataset contains 

about 105 voxels, fitting an independent regression model on each voxel is computationally 

challenging. In the case of ridge regression, the computational bottleneck (inverting the 

linear system) can be shared for all voxels (see Section 4.1 for more details). This is not the 

case in the lasso or in support-vector machines. For these reasons, solving ridge regression 

on large numbers of voxels is fast compared to solving the lasso or linear support-vector 

machines.

2.3. Explained variance

To estimate the prediction accuracy of a model, the model prediction is compared with the 

recorded brain response. However, encoding models that are relatively more complex are 

more likely to fit noise in the training data and so they may not generalize well to new 

data. To avoid artificially inflated performances due to overfitting, this comparison should be 

performed on a separate data set not used during model training nor during hyperparameter 

optimization. The ability to evaluate a model on a separate data set is critical to the encoding 

model framework. It provides a principled way to build complex models while controlling 

the amount of overfitting. This separate data set is either called the test set or the validation 
set depending on the community. This paper uses the term test set.

The two standard metrics to quantify prediction accuracy of linear regression models are 

the R2 score and the Pearson correlation r. This paper only uses the R2 score, due to the 

possibility to decompose the R2 score over feature spaces (see Section 2.5). The R2 score is 

generally defined as

R2 = 1 − ‖y − y‖2
2

‖y − ymean‖2
2 . (3)
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The R2 score is usually interpreted as the explained variance, i.e. the part of the variance 

that is explained by the model. This interpretation originates from ordinary least squares, 

where the prediction vector y and the error vector y − y are always orthogonal on the train 

set. Indeed, y is the vector that minimizes the error ‖y − y‖2
2 so it is the orthogonal projection 

of y over the subspace of all linear combinations of X. Because of this orthogonality, the 

variance of the brain activity vector y on the train set can be decomposed between the 

variance of the prediction vector and the variance of the error vector

var(y) = var(y) + var(y − y) . (4)

Because (y − y) is zero-mean in ordinary least square on the train set, we get 

var(y − y) = ‖y − y‖2
2/n. Then, dividing (4) by var (y) leads to

R2 = var(y)
var(y) , (5)

which is naturally interpreted as the explained variance ratio. However, in the test set and 

in the case of regularized regression methods such as ridge regression, the prediction vector 

y and the error vector y − y are not always orthogonal. Therefore, Eqs. (3) and (5) are not 

equivalent, and only (5) corresponds to the explained variance ratio. The definition in (3) is 

however preferred because it is more general (Kvålseth, 1985), and it is still (improperly) 

interpreted as the explained variance.

The R2 score takes values in (−∞, 1]. Larger values are better, and a value of 1 corresponds 

to a perfect prediction. A value of 0 corresponds to the baseline prediction of a constant 

signal equal to the mean value of y. Negative values can be obtained when the variance of 

the error ‖y − y‖2
2 is larger than the variance of the signal ‖y − ymean‖2

2. This is often (though 

not always) a sign of overfitting.

Noise floor—Accurate interpretation of the R2 score requires comparison to a lower bound 

given by the statistical significance threshold, and an upper bound given by the noise ceiling. 

The statistical significance threshold is often estimated by first randomly permuting the 

prediction and then computing the R2 score for each permuted prediction. This produces 

a distribution of R2 scores under the null hypothesis that the predictions are independent 

of the recorded brain activity. The statistical significance threshold can be identified from 

this distribution for any critical p-value that the experimenter might choose. Because this 

threshold reflects what would be expected to be obtained by chance alone, it is also called 

the noise floor.

Importantly, a statistically significant value does not necessarily correspond to a strong 

effect size. Any small effect can be significant if the dataset is large enough. Therefore, the 

effect size should always be reported along with the significance threshold. The R2 score 

gives an intuitive quantification of the effect size as the ratio of variance explained by the 

model.
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Noise ceiling: Second, it is necessary to estimate an upper bound for the R2 score. In theory 

the R2 score can reach a value as high as 1, but this is never achieved in practice when there 

is noise in the data. Therefore, interpretation of the R2 score also requires estimating the 

upper bound on possible values of R2, the noise ceiling. If brain responses are stationary 

with respect to repetitions of the experiment then this upper bound can be estimated by 

repeating the same experiment several times. Given stationarity, some fraction of the brain 

response will be identically reproduced over repetitions (the reproducible signal), while the 

rest will vary across repetitions (the noise). Because an encoding model can only explain 

reproducible signals and not noise, the variance of the reproducible signal can be used 

to estimate the variance that could be potentially explained by an ideal encoding model. 

The explainable variance can then be used to compute the maximum R2 score that can be 

obtained with an encoding model (Hsu et al., 2004; Sahani and Linden, 2003; Schoppe et al., 

2016).

2.4. Feature-space comparison

A key element of the encoding model framework is the ability to compare different feature 

spaces based on their prediction accuracies. A feature space is a set of features that reflects 

information contained in the experimental stimulus or task. For example, stimulus-related 

features might be obtained by computing the spatio-temporal wavelet transform of images 

and videos (Kay et al., 2008; Nishimoto et al., 2011), by labeling the actions and objects 

present in visual scenes (Huth et al., 2012), or by computing word embeddings that capture 

the semantic properties of speech (Deniz et al., 2019; Huth et al., 2016; Wehbe et al., 2014). 

Task-related features might be defined as indicator variables of attention tasks (Çukur et 

al., 2013), behavioral states of a video game task (Zhang et al., 2021), or progress during a 

navigation task (Zhang and Gallant, 2020).

In principle a feature space could reflect any type of stimulus- or task-related information 

that might potentially be represented in the brain. Thus, a feature space can be viewed as a 

specific scientific hypothesis about functional brain representations. To test the hypothesis 

associated with some specific feature space, a regression model is trained to predict brain 

activity from that feature space. When the regression model has significant prediction 

accuracy in a particular brain voxel, it suggests that the information represented in the 

features correlates with the functional activity measured in that brain voxel (Naselaris et al., 

2011; Wu et al., 2006).

Multiple hypotheses can be tested on the same dataset by instantiating multiple feature 

spaces and then comparing their prediction accuracies. If the prediction accuracy of one 

feature space is significantly higher than the performance of other feature spaces, then it 

is common to conclude that the corresponding hypothesis provides the best description 

about how information is represented in the voxel (Çukur et al., 2016; de Heer et al., 

2017; Lescroart et al., 2015; Nishimoto et al., 2011). However, this approach ignores the 

possibility that a feature space with lower performance might reflect some information that 

is represented in the brain, but which is not captured by the best predicting feature space. In 

this case, both feature spaces would be complementary, in the sense that using both of them 
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jointly would provide a better description of brain function than would be obtained by using 

either one individually.

By fitting a joint model using multiple feature spaces simultaneously, it becomes possible to 

optimize the use of each feature space within the model. A joint model maximizes the model 

prediction accuracy, taking into account potential complementarity of feature spaces. One 

can then make inferences about the information encoded in a given voxel by decomposing 

the prediction accuracy of the joint model over the feature spaces.

2.5. Variance decomposition

In a joint model, it is likely that all feature spaces will not contribute equally to the 

prediction. Some feature spaces might predict a large fraction of brain activity while 

other feature spaces might have almost no effect. To interpret a joint model, it is thus 

essential to quantify the relative importance of each feature space in the model. However, 

most work on this issue has focused on the importance of individual features, not feature 

spaces. Many feature importance measures have been proposed and discussed in the linear 

regression literature (see reviews in Grömping, 2015; Nathans et al., 2012). The most 

common approach is to standardize the features to zero mean and unit variance, and to then 

use the magnitude of the regression weights bj* as a feature importance measure. Another 

commonly used feature importance measure is the correlation coefficient r (Xj, y) between 

feature Xj and the target vector y (e.g. the activity of one voxel). Both measures quantify 

different aspects of feature importance, but they also have limitations (see Grömping, 2015 

for further discussion).

One limitation of both feature importance measures described above is that they are 

not variance decompositions. To be a variance decomposition, a measure must have two 

properties. First, the sum over the feature importance measure for all features must be 

equal to the R2 score of the model. Second, when all features are orthogonal then the 

importance of each feature must be equal to the R2 score obtained using each feature alone. 

With these two properties, a feature importance measure can be naturally summed over 

multiple features, to get the relative importance of entire feature spaces. Multiple feature 

importance measures have these two properties, and each has different limitations (see a list 

of properties and measures in Grömping (2015)). One variance decomposition measure is 

called variance partitioning, and has been used in the past in voxelwise encoding models. 

However, variance partitioning is impractical for more than 2 or 3 feature spaces (see 

Section 2.7). Therefore, this paper focuses on the product measure (described in the next 

section), because its computational cost scales linearly with the number of feature spaces.

2.6. The product measure

The product measure (Hoffman, 1960; Pratt, 1987) is a feature importance measure. It is 

defined as the product b jr xj, y  where b j is the regression weight associated with feature xj, 

and r (xj, y) is the correlation between feature xj and the target vector y. (This definition 

assumes that y and all features xj are standardized to have zero mean and unit variance.) 

Importantly, when the linear regression is fit with ordinary least squares, the product 
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measure is a variance decomposition on the training set. Indeed, when summing over 

features j, we have

∑
j

b jr xj, y = ∑
j

b j∑
t

xj[t]y[t] = ∑
t

y[t]y[t], (6)

where y [t] is the value of y at time t. On the other hand, the R2 can be written

R2 = 1 −
∑t (y[t] − y[t])2

∑t (y[t] − ymean)2 =
∑ty[t](2y[t] − y[t])

∑ty[t]2 = ∑
t

y[t]y[t] . (7)

Here, the first equality uses the fact that y is zero-mean. The second equality uses the fact 

that with ordinary least squares and on the train set, the error vector y − y is orthogonal 

to the target vector y, that is ∑t (y[t] − y[t])y[t] = 0, and that. Using both (6) and (7), the 

sum of the product measure over features is equal to the R2 score. Moreover, when all 

features xj are orthogonal, the product measure decomposition is identical to using the R2 

scores computed on each features alone. With these two properties the product measure is a 

variance decomposition, and it can be naturally summed over multiple features to obtain the 

relative importance of entire feature spaces.

Unfortunately, the variance decomposition property holds only for ordinary least squares and 

on the training set. Therefore, the product measure is not a variance decomposition when 

using a regularized regression method or when computing the R2 score on a held-out test 

set. To fix this issue, we propose here another definition of the product measure. If y is 

zero-mean, we can write

R2 =
∑ty[t](2y[t] − y[t])

∑ty[t]2 . (8)

Then, we decompose the prediction y into y = ∑jyj, where yj = Xjbj is the sub-prediction 

computed on feature space Xj alone using the weights bj of the joint model. From this 

decomposition, we define the variance explained by feature space j as

Rj
2 =

∑tyj[t](2y[t] − y[t])
∑ty[t]2 . (9)

Using this new definition, the variance explained R2 by the joint model is the sum of 

the product measure over feature spaces: ∑jRj
2 = R2 Moreover, when the sub-predictions 

yj are all orthogonal, the decomposition is identical to using the R2 scores computed on 

each subprediction, Rj
2 = R2 yj . With these two properties the adapted product measure is 

a variance decomposition. Note that our new definition of the product measure is equal to 

the original definition in the case of ordinary least squares and on the training set. For this 

reason, this paper simply refers to it as the product measure.
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One problem with the product measure is that it can yield negative values, even when the 

R2 score is positive (Thomas et al., 1998). Negative values that are small relative to other 

values of the same decomposition might be ignored, but larger negative values are harder to 

interpret. Large negative values can occur when the regression model uses a positive weight 

on a feature negatively correlated with the target, or a negative weight on a feature positively 

correlated with the target. For example, given an orthonormal basis (u, v), two features x1 

= u – v and x2 = −u + 2v can be used to predict y = v with a regression model y = x1 + x2. 

The feature x1 is negatively correlated with the target, but it is used with a positive weight 

in the model. Thus, the sub-prediction y1 = x1 is projected negatively on y, which leads to 

a negative share R1
2. When considering the relative importance of entire feature spaces, this 

situation can sometimes be resolved by removing or merging feature spaces in the joint 

model. Note that this limitation of the product measure is also shared with many variance 

decomposition measures, including the variance partitioning measure described in the next 

subsection.

2.7. Other variance decomposition measures

Several other variance decomposition measures have been proposed in the linear regression 

literature, and in theory they could substitute for the product measure. One commonly used 

measure for variance decomposition of fMRI data is variance partitioning (Çukur et al., 

2016; Greene et al., 2016; Groen et al., 2018; de Heer et al., 2017; LeBel et al., 2021; 

Lescroart and Gallant, 2019; Lescroart et al., 2015; Snoek et al., 2019). This method is 

also known as commonality analysis in the statistics literature (Bring, 1995; Mayeske, 

1969; Mood, 1969; Nathans et al., 2012). Variance partitioning decomposes the explained 

variance into shared and unique components for each feature space, providing a more 

nuanced interpretation of the contribution of each feature space to predictions. However, 

variance partitioning decomposes the variance into 2m − 1 values which are hard to interpret 

when the number of feature spaces m is large. To create these 2m − 1 values, variance 

partitioning requires fitting a separate regression model on every subselection of feature 

spaces, which leads to 2m − 1 regression models. The examples shown in this paper use 

up to 22 separate feature spaces. It would be impossible to use variance partitioning to 

understand the contributions of so many feature spaces. However, the product measure can 

still be used even in extreme cases such as this.

3. Banded ridge regression and feature-space selection

The previous section motivates the use of joint models fit over multiple feature spaces 

simultaneously, and proposes to use the product measure to decompose the variance 

explained by the model over feature spaces. This section tackles an additional challenge 

when fitting joint models, which is that different feature spaces might require different 

regularization strengths. This challenge can be solved using banded ridge regression (Nunez-

Elizalde et al., 2019), which optimizes a separate regularization hyperparameter per feature 

space. Interestingly, this hyperparameter optimization leads to a feature-space selection 

mechanism. This section describes this feature-space selection mechanism, proposes a 

metric to quantify feature-space selection, and demonstrates its effect on two examples. 
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Finally, a discussion presents the link between banded ridge regression and other regression 

methods with a similar feature-space selection mechanism.

3.1. A need for multiple regularization hyperparameters

When fitting a regularized regression such as ridge regression, the regularization strength 

has a large impact on the model prediction accuracy. When the regularization is too 

strong, then regression coefficients are too biased toward zero and so relevant features 

may be underused. On the other hand, when the regularization is too weak, then the 

model may overfit the training set and so generalization performance will be reduced. 

Therefore, the regularization strength must be optimized for the dataset under consideration. 

In particular, the optimal regularization strength depends on many characteristics of the 

feature space, such as its covariance, its number of features, or its predictive power. When 

fitting a joint model over multiple feature spaces simultaneously, ridge regression uses a 

single regularization hyperparameter and so it does not account for the different levels of 

regularization required for each feature space.

To solve this issue, ridge regression can be extended to banded ridge regression (Nunez-

Elizalde et al., 2019), a special case of the more general Tikhonov regression (Tikhonov 

et al., 1977). Banded ridge regression uses a separate regularization hyperparameter per 

feature space (Fig. 2), and it learns these hyperparameters using cross-validation. Through 

these multiple hyperparameters, banded ridge regression is able to optimize the level of 

regularization for each feature space separately.

Banded ridge regression has been proposed multiple times in the scientific literature, either 

with a Bayesian approach (Ignatiadis and Lolas, 2020; van Nee et al., 2021; Perrakis et al., 

2020) or with a frequentist approach (Nunez-Elizalde et al., 2019; van de Wiel et al., 2021). 

In the Bayesian approach, a prior assumption is made on the regularization hyperparameter 

distribution to simplify the optimization problem. In the frequentist approach, no prior 

assumption is made on the hyperparameter distribution, and the hyperparameters are 

optimized based on the average cross-validated prediction accuracy. The present paper 

uses the frequentist approach. Note that banded ridge regression is sometimes called group-
regularized ridge regression (van de Wiel et al., 2021). However, the present paper uses the 

term banded ridge regression (Nunez-Elizalde et al., 2019) because in Neuroscience studies, 

“group ” is most often used for groups of subjects and not groups of features.

3.2. Banded ridge regression - model definition

In banded ridge regression, the features are grouped into m feature spaces. A feature space 

i is formed by a matrix of features Xi ∈ ℝn × pi, with n samples and pi features. Each feature 

space is associated with a different regularization hyperparameter λi > 0. To model brain 

activity y ∈ ℝn on a particular voxel, banded ridge regression computes the weights bi* ∈ ℝi
p

(concatenated into b* ∈ ℝp with p = ∑i pi) defined as

b* = argmin
b

∑
i

Xibi − y
2

2 + ∑
i

λi bi 2
2 . (10)
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Similarly to ridge regression, the parameters bi* are learned on the training data set, 

and the hyperparameters λi are learned by cross-validation (Nunez-Elizalde et al., 2019). 

Because banded ridge regression has multiple hyperparameters λi, the optimization is 

more challenging than in ridge regression. (Different strategies for optimizing banded ridge 

regression are presented in Section 4.)

The benefit of banded ridge regression is its ability to optimize separately the regularization 

strength of each feature space. This optimization is equivalent to optimizing the relative 

scale of each feature space. To see this equivalence, the model definition can be rewritten 

with a change of variable bi = bi λi/μ, and Xi = Xi μ/λi where μ > 0 is an arbitrary 

scalar. The equation becomes b* = argminb‖∑iXibi − y‖2
2 + μ∑i‖bi‖2

2. One can then rewrite 

b* = argminb‖Xb − y‖2
2 + μ‖b‖2

2 by concatenating X = X1, …, Xm  and b = b1, …, bm . This 

equation reveals that banded ridge regression is equivalent to performing ridge regression 

on the scaled features X Hansen, 1998; Nunez-Elizalde et al., 2019), with a regularization 

strength μ.

3.3. A feature-space selection mechanism

Banded ridge regression extends ridge regression to adapt the regularization hyperparameter 

for each feature space. Importantly, the optimization of multiple regularization 

hyperparameters also leads to a feature-space selection mechanism. Feature-space selection 

consists in selecting a subset of feature spaces to be used in the regression, and ignoring 

the rest of the feature spaces. When a feature space has little predictive power, removing 

it from the joint model can improve generalization performance by reducing the possibility 

of overfitting to these features. During cross-validation, banded ridge regression is able to 

learn to ignore some feature spaces, in order to improve generalization performance. To 

ignore a feature space i, banded ridge regression sets a large value for the regularization 

hyperparameter λi, and the coefficients bi* are shrunk toward zero. This process effectively 

removes the feature space i from the model.

With its feature-space selection mechanism, banded ridge regression can select feature 

spaces that have good predictive power, and suppress those that have little predictive power 

or that are redundant with other feature spaces. For example, given three correlated feature 

spaces, banded ridge regression is able to automatically choose between (a) splitting the 

variance between all three feature spaces, (b) ignoring a redundant feature space and only 

using the two other ones, or (c) using only one feature space. This example is demonstrated 

in simulated examples in Appendix 2.4. The feature-space selection thus follows the 

principle of parsimony (Occam’s razor), while allowing multiple feature spaces to be used 

jointly.

In voxelwise encoding models, the feature-space selection can be performed independently 

on each voxel. The joint model is thus able to select different feature spaces depending on 

the voxel. To illustrate this powerful property, Nunez-Elizalde et al. (2019) presented the 

following example (although not explaining it as a feature-space selection mechanism). In 

their analysis, two feature spaces were used to predict brain activity during a visual task 
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recorded with fMRI. The first feature space was a low-level representation of motion in 

the stimulus (motion energy, Nishimoto et al., 2011), and the second feature space was 

a semantic representation of the objects and actions present in the scene (Huth et al., 

2012). Because the dataset used naturalistic stimuli, the two feature spaces are correlated. 

Because of these correlations, a regression model fit with the semantic feature space had 

significant prediction accuracy in low-level visual areas. This model could lead to the 

incorrect interpretation that low-level visual areas contain visual semantic representations. 

To address this issue, both feature spaces were used in a joint model fit with banded ridge 

regression. The joint model ignored the semantic feature space in low-level visual areas, 

ignored the low-level feature space in visual semantic areas, and used both feature spaces in 

other visual areas. This example illustrates how having a different feature-space selection in 

each voxel can avoid incorrect interpretations due to correlations in naturalistic stimuli.

3.4. Example A: feature-space selection in simulated examples

To illustrate the feature-space selection mechanism of banded ridge regression, four 

simulated signals were generated from three simulated feature spaces. In two simulated 

signals, only a subset of the three feature spaces had predictive power. In two other 

simulated signals, some feature spaces were redundant with other feature spaces. The goal 

of these simulations is to demonstrate that banded ridge regression is able to ignore the 

non-predictive or redundant feature spaces.

Compared models—Three different regression models are compared. For the first model, 

a separate ridge regression model was fit on each feature space independently, and the best 

feature space per voxel was selected based on the cross-validation prediction accuracy. This 

first model implements the simple winner-take-all model comparison procedure described in 

Section 2.4, and it does not use a joint model or variance decomposition. The second model 

is a ridge regression model fit jointly on all feature spaces. This second model takes into 

account a possible complementarity of feature spaces, but the ridge regularization does not 

lead to any feature-space selection. The third model is a banded ridge regression model fit 

on all feature spaces jointly. This third model takes into account a possible complementarity 

of feature spaces, and the banded ridge regularization leads to a feature-space selection as 

described in Section 3.3.

For each model, prediction accuracy was measured by the explained variance (R2-score) 

on a separate test set. The explained variance was then decomposed over the three feature 

spaces using the product measure. The results are shown in Fig. 3.

Simulations with non-predictive feature spaces—In the first two simulations, some 

feature spaces are non-predictive. The ridge regression model fit on the best feature space is 

not affected by these non-predictive feature spaces, but it cannot use multiple feature spaces 

jointly. The ridge regression model fit on all feature spaces is able to use multiple feature 

spaces jointly, but it tends to overfit the non-predictive feature spaces, which reduces its 

prediction accuracy. The banded ridge regression model fit on all feature spaces leads to 

the best prediction accuracy, because it is able to use multiple feature spaces jointly while 

ignoring the non-predictive ones.
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Simulations with non-predictive feature spaces—In the other two simulations, some 

feature spaces are redundant with other feature spaces. The ridge regression model fit on 

all feature spaces is not affected by this redundancy, and the shared variance is equally 

decomposed between the feature spaces. In the case of the banded ridge regression model fit 

on all feature spaces, if one feature space is strictly better than another, it is selected and the 

other is ignored. However, if two feature spaces are identical, banded ridge regression is not 

able to choose between using (i) the first feature space, (ii) the second feature space, or (iii) 

both at the same time. All three possibilities lead to similar cross-validation scores. The final 

variance decomposition might thus depend on minor elements such as the initialization in 

hyperparameter gradient descent, the Dirichlet concentration in the hyperparameter random 

search, or small variations between the two feature spaces.

3.5. Quantifying feature-space selection

In Sections 3.6 and 3.7, two additional examples are proposed to demonstrate the feature-

space selection mechanism in banded ridge regression. For the sake of demonstration, these 

examples need a metric to quantify the number of feature spaces effectively used in the 

model. One candidate metric is to count the number of feature spaces with a non-zero 

effect on the prediction. However, because the hyperparameters optimized by banded ridge 

regression never reach infinity, the coefficients b* are never exactly zero, even for feature 

spaces that are effectively ignored. For this reason, all feature spaces have non-zero values in 

the variance decomposition, and one cannot simply count the number of non-zero values.

To address this issue, we leverage a metric called the effective rank (Bartlett et al., 2020; 

Roy and Vetterli, 2007; Langeberg et al., 2019). Starting from a variance decomposition 

ρ ∈ ℝm (for example, using the product measure as described in Section 2.6), negative values 

are first clipped to zero, and the variance decomposition vector is normalized to sum to one. 

Then, the effective rank is computed, as defined in Roy and Vetterli (2007) (see Appendix 

A.1 for alternative definitions)

m = exp −∑
i

ρilog ρi . (11)

The effective rank is a continuous function of the m variance decomposition values pi, 

with values in the interval [1, m]. The effective rank is equal to k when the variance 

decomposition is equally split between k feature spaces. Thus, the effective rank is used 

in the following two examples to quantify the feature-space selection in banded ridge 

regression. (Note that the effective rank is independent of the number of features in each 

feature space. The following two examples only use the effective rank to measure feature-
space selection.)

3.6. Example B: feature-space selection over 22 feature spaces

This subsection presents a second example to demonstrate the feature-space selection 

mechanism in banded ridge regression. The example uses an fMRI dataset recorded while 

a subject watched several short films (Nunez-Elizalde et al., 2018). The dataset contains 
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brain responses of 85,483 cortical voxels recorded every two seconds. The brain responses 

were modeled using 22 feature spaces extracted from the stimuli (Nunez-Elizalde et al., 

2018). Examples of feature spaces are the spatio-temporal wavelet transform magnitudes 

of visual stimuli (Nishimoto et al., 2011), hierarchical classification of objects present in 

the scenes (Huth et al., 2012), and word embeddings of speech content (Huth et al., 2016) 

(see Appendix A.2 for a list of all 22 feature spaces). Of the 4379 total time samples, 3572 

samples were used in the train set and 807 samples in the test set.

Compared models—This example compares the same three models used in Example A 

(Section 3.4): (1) ridge regression fit on the best predicting feature space per voxel, (2) ridge 

regression fit jointly on all feature spaces, and (3) banded ridge regression fit jointly on all 

feature spaces.

Hyperparameter optimization—For the ridge regression models, the regularization 

hyperparameter λ was optimized over a grid-search with 30 values spaced logarithmically 

from 10−5 to 1020. This range was large enough to ensure that the algorithm explored 

many different possible regularization strengths for each feature space. For banded ridge 

regression, the hyperparameters were optimized with the hyperparameter random-search 

solver described in Section 4.5, using the settings described in Section 4.8.

Because neighboring time samples are correlated in fMRI recordings, any cross-validation 

scheme should avoid separating correlated time samples into the train and validation sets. 

Therefore, time samples recorded consecutively were grouped together into “runs ”, and a 

leave-one-run-out cross-validation scheme was used to optimize the hyperparameters. After 

hyperparameter optimization, all models were refit on the entire training dataset with the 

optimized hyperparameters.

Prediction accuracy comparison—The three models were first compared in terms 

of prediction accuracy. To estimate prediction accuracy, the explained variance (R2) was 

computed on a separate test set that was not used during model fitting. The results are shown 

in Fig. 4. The left panel compares prediction accuracy of the banded ridge regression model 

to the winner-take-all ridge regression model. The banded ridge regression outperforms the 

winner-take-all model, especially for voxels that have relatively more accurate predictions. 

The right panel compares prediction accuracy of the banded ridge regression model to the 

ridge regression model that learned a single regularization value for all 22 feature spaces. 

Here again, the banded ridge regression model outperforms the ridge regression model. 

These results show that prediction accuracy is improved when multiple feature spaces are fit 

simultaneously and when each space is fit using an optimal regularization parameter for that 

specific space.

Effective rank comparison—We propose that banded ridge regression produces more 

accurate predictions than ridge regression because banded ridge regression performs feature-

space selection. To quantify feature-space selection, the effective rank (see Section 3.5) 

was computed on each voxel with positive explained variance. The effective rank gives a 

continuous measure of the number of feature spaces used in the model.
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The top row of Fig. 5 compares the effective rank m (horizontal) and the explained variance 

R2 (vertical) on each of the three models. In the winner-take-all ridge regression model, the 

effective rank is always equal to 1, because the model only uses the best feature space per 

voxel. In the ridge regression model fit on all 22 feature spaces, most values of the effective 

rank are between 2.4 and 10.3 (5th and 95th percentiles) for the best-predicted voxels (R2 

> 0. 05). These effective rank values are high because ridge regression does not remove 

redundant feature spaces, so many feature spaces contribute to the explained variance. In the 

banded ridge regression model, most values of the effective rank are between 1.0 and 3.7 

(5th and 95th percentiles) for the best-predicted voxels (R2 > 0. 05). These results indicate 

that banded ridge regression effectively uses fewer feature spaces than ridge regression, but 

that banded ridge regression can still use multiple feature spaces jointly when necessary.

Variance decomposition comparison—In the previous paragraph, the feature-space 

selection of banded ridge regression is measured with the effective rank. To understand 

more intuitively what the effective rank measures, the variance decomposition results can be 

visualized for voxels of increasing effective rank. The variance decomposition results were 

computed by first selecting a subset of best-predicted voxels (R2 > 0. 05). Then, the product 

measure (as defined in Section 2.6) was used to compute the variance decomposition, 

ρ ∈ ℝm, of these voxels. In this setting, negative values, if present, were very small, and 

could be clipped to 0. The results were normalized to sum to one to obtain the relative 

contribution of each feature space to the explained variance. Next, for each voxel separately, 

the 22 feature spaces were sorted by their relative contribution (ρ1 ≥ ρ2 ≥ … > ρm).

The bottom row of Fig. 5 shows the normalized variance decomposition as stacked areas, 

where voxels are sorted along the horizontal axis by their effective rank m. For example, 

the first stacked area (dark blue) corresponds to the relative contribution of the first feature 

space (i.e. the feature space with the highest relative contribution). In the winner-take-all 

ridge regression model, the first feature space contributes 100% of the explained variance in 

every voxel. In the ridge regression model fit on all 22 feature spaces, the first feature space 

contributes between 20% and 90% of the explained variance. In banded ridge regression, the 

first feature space contributes between 30% and 100% of the explained variance. Overall, 

these results indicate that banded ridge regression leads to fewer feature spaces being 

effectively used than with ridge regression, but that banded ridge regression can still use 

multiple feature spaces jointly when necessary.

3.7. Example C: feature-space selection over 7 neural network layers

This subsection presents a third example to further demonstrate the feature-space selection 

mechanism in banded ridge regression. It reuses part of the results described in a previous 

conference publication of our lab (Dupré la Tour et al., 2021). This example uses an fMRI 

dataset recorded while a subject watched short movie clips (Nishimoto et al., 2011). The 

dataset (Huth et al., 2022) contains brain responses of 73,211 cortical voxels recorded every 

two seconds. The brain responses were modeled using 7 feature spaces extracted from the 

stimuli using intermediate layers of a pre-trained convolutional neural network (CNN) (see 

the feature extraction paragraph below). Of the 3870 total time samples, 3600 samples were 

used in the train set and 270 samples in the test set.
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Several previous studies have used these sorts of features to compare visual representations 

in CNNs versus the visual cortex. For example, several studies have used this approach to 

argue that early CNN layers best predict brain activity in low-level visual areas; late layers 

best predict brain activity in intermediate and higher-level visual areas; and that the CNN 

layer that best describe visual tuning changes gradually across the cortical visual hierarchy 

(Cichy et al., 2016; Eickenberg et al., 2016; Güçlü and van Gerven, 2015; Nonaka et al., 

2021; St-Yves and Naselaris, 2018; Wen et al., 2018; Yamins et al., 2014; Yamins and 

DiCarlo, 2016; Zhang et al., 2019; Zhuang et al., 2021; Agrawal et al., 2014). This approach 

has also been used to map the hierarchical representation of features in speech (Kell et al., 

2018; Millet and King, 2021) and language (Jain and Huth, 2018; Toneva and Wehbe, 2019).

One limitation of using CNNs as sources of features for modeling brain data is that the 

features represented in different layers of a CNN are usually strongly correlated. Thus, 

different encoding models trained with features from different CNN layers have similar 

prediction accuracies (Eickenberg et al., 2016; Jain and Huth, 2018; Toneva and Wehbe, 

2019; Wang et al., 2019). It is then not clear how to interpret these different models, 

and disentangle their relative contributions. Most studies ignore this issue and select the 

best-predicting layer for each voxel (Eickenberg et al., 2016; Güçlü and van Gerven, 2015; 

Kell et al., 2018; Wen et al., 2018; Zhang et al., 2019; Agrawal et al., 2014; Schrimpf et al., 

2020), but this winner-take-all approach is oversimplistic, not robust to noise, and ignores 

potential complementarities between layers. Some studies use variance partitioning (Groen 

et al., 2018) or canonical component analysis (Yang et al., 2019) to disentangle the different 

layers, but these approaches cannot disentangle more than two or three layers. The present 

example demonstrates how variance decomposition and banded ridge regression can be used 

to disentangle the contributions of many different CNN layers. The obtained contributions 

of all CNN layers can then be aggregated into a continuous layer mapping with increased 

smoothness over the cortical surface.

Feature extraction—To extract features, each image of the stimuli was first presented to a 

pretrained image-based CNN “Alexnet ” (Krizhevsky et al., 2012). Then, the activations of a 

CNN layer were extracted (after ReLU and max-pooling layers). Features were extracted 

frame by frame, and thus needed to be down-sampled to the brain imaging sampling 

frequency (typically 0.5 Hz). To avoid removing high-frequency information, the layer 

activations were filtered with eight complex-valued band-pass filters (of frequency bands 

[0, 0.5], [0.5, 1.5], …, [6.5, 7.5] Hz) (see more details in Dupré la Tour et al., 2021). 

These band-pass filters were designed to preserve information from different temporal 

frequency bands, similarly to spatio-temporal features from Nishimoto et al. (2011). Then, 

the amplitude of each filtered complex-valued signal was computed to extract the envelope 

of the signal (the envelope is the slowly varying amplitude modulation of the high-frequency 

signal). Next, the envelope was down-sampled to the fMRI sampling frequency with an 

anti-aliasing low-pass filter. Next, a compressive nonlinearity x ↦ log (1 + x) was applied, 

and features were centered individually along the train set. Finally, to account for the delay 

between the stimulus and the hemodynamic response, features were duplicated with four 

temporal delays of d ∈ {2, 4, 6, 8} seconds. This process was repeated on seven CNN layers, 

to create seven separate feature spaces.
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Compared models—This example compares the same three models used in Example 

A (Section 3.4): (1) ridge regression fit on the best predicting layer per voxel, (2) ridge 

regression fit jointly on all layers, and (3) banded ridge regression fit jointly on all layers.

Hyperparameter optimization—The hyperparameter optimization settings were 

identical to the ones in Example B (Section 3.6).

Prediction accuracy comparison—The three models were first compared in terms 

of prediction accuracy. To estimate prediction accuracy, the explained variance (R2) was 

computed on a separate test set that was not used during model fitting. A detailed 

comparison of the prediction accuracy of these three models can be found in Dupré la 

Tour et al. (2021) and is omitted here for the sake of brevity. In particular, the study shows 

that the banded ridge regression model outperforms both the ridge regression model fit on 

the best feature space, and the ridge regression model fit on all the feature spaces.

Feature-space selection comparison—Again, we propose that banded ridge 

regression produces more accurate predictions than ridge regression because banded ridge 

regression performs a feature-space selection. To visualize feature-space selection, the 

explained variance was decomposed over the seven feature spaces (i.e. over the seven CNN 

layers) using the product measure (described in Section 2.6).

Fig. 6 a shows examples of this variance decomposition on four well-predicted voxels. 

In ridge regression fit on the best layer, because the model uses only one layer, the 

variance decomposition is concentrated in a single contribution, and ignores potential layer 

complementarity. In ridge regression fit jointly on all layers, the variance decomposition 

is spread across all seven layers, showing that the model uses all layers to make the 

predictions. In banded ridge regression, the variance decomposition is concentrated on a 

small number of layers. The model contains a feature-space selection mechanism, leading to 

sparsity at the layer level, yet allowing multiple layers to be used for complementarity and 

robustness.

To quantify feature-space selection, the effective rank (see Section 3.5) was computed over 

all significantly predicted voxels (p < 0. 01, permutation test). Comparing the distribution of 

effective rank over voxels, Fig. 6 b shows that on each voxel, banded ridge regression used 

fewer layers than ridge regression.

Layer mapping comparison—The three models can also be compared in terms of layer 

mapping. To describe similarities of representations between CNNs and the visual cortex, it 

is common to use the index of the best predicting layer as a layer mapping metric on each 

voxel (Cichy et al., 2016; Dupré la Tour et al., 2021; Eickenberg et al., 2016; Güçlü and van 

Gerven, 2015; Wen et al., 2018; Yamins et al., 2014; Yamins and DiCarlo, 2016; Agrawal et 

al., 2014). As many studies have shown, plotting this layer mapping on the cortex reveals a 

gradient over the cortical surface (7). However, because of correlation between layers, two 

layers can lead to very similar prediction accuracies. In this case, the best-layer selection 

picks one layer over the other, even if the prediction accuracy difference is small. The 

best-layer selection is thus non-robust.
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To solve this issue, we extend the definition of layer mapping using a weighted average 

of layer indices, where the weights are the variance decomposition results. Starting from 

a variance decomposition ρ ∈ ℝm, where m is the number of layers, negative values are 

clipped to zero, and p is normalized to sum to one. Then, the layer mapping is computed as a 

weighted average s = ∑i = 1
m iρi. This weighted average leads to a continuous layer mapping, 

which increases both its robustness and its ability to describe gradual changes over the 

cortical surface.

The weighted average can be computed on any joint model, either fit with ridge regression 

(Fig. 7 a) or with banded ridge regression (Fig. 7). In both cases, the continuous layer 

mapping results in a smoother gradient of layer mapping across the cortical surface. 

However, the layer mapping estimated by the ridge regression model is biased toward 

middle values, because the ridge regression model tends to use all layers. Banded ridge 

regression reduces this bias toward middle values thanks to its feature-space selection 

mechanism.

3.8. Other models with feature-space selection mechanisms

Feature space selection is an important aspect of many regression algorithms. In the statistics 

literature, feature-space selection is called group sparsity. This subsection reviews a number 

of models that induce group sparsity, and it describes how each model is related to banded 

ridge regression.

Automatic relevance determination—Automatic relevance determination (MacKay, 

1994; Neal, 1995) is a framework initially developed for Bayesian neural networks 

(MacKay, 1992b), a class of neural networks where all parameters have explicit prior 

distributions. In automatic relevance determination, a separate hyperparameter is optimized 

on each input feature (or each group of features). This hyperparameter optimization induces 

a feature (or feature-space) selection, automatically determining which features (or feature 

spaces) are most relevant.

Automatic relevance determination was later applied to Bayesian ridge regression (Box and 

Tiao, 1973; MacKay, 1992a), a formulation of ridge regression where all parameters and 

hyperparameters have explicit prior distributions. Using automatic relevance determination 

on Bayesian ridge regression produces a model called sparse Bayesian learning (Tipping, 

2001; Wipf and Nagarajan, 2007). Sparse Bayesian learning is the direct Bayesian 

equivalent of banded ridge regression. The main benefit of the Bayesian framework is 

that all hyperparameters have explicit priors, which leads to efficient optimization solvers 

without cross-validation (Ignatiadis and Lolas, 2020; van Nee et al., 2021; Perrakis 

et al., 2020). However, the lack of cross-validation increases the risk of overfitting. 

In contrast, banded ridge regression does not make assumptions about hyperparameter 

prior distributions. To optimize the hyperparameters, banded ridge regression uses cross-

validation to select hyperparameters with the best generalization performance.

Multiple-kernel learning—Multiple-kernel learning (Bach et al., 2004; Lanckriet et al., 

2004) is a framework that was developed for use with support vector machines (Boser et 
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al., 1992), a class of versatile models for classification and regression. In support vector 

machines, the features X are only used through a pairwise similarity matrix K(X) called 

the kernel matrix. In the kernel matrix, each entry is a pairwise similarity between two 

samples K(X)ij = k (Xi, Xj), where k is a kernel function. Different kernel functions can be 

used depending on the problem at hand, for example the linear kernel k (x, y) = x⊤y, or 

the radial-basis-function kernel k (x, y) = exp (−‖x − y‖2/2σ2) of size σ. Because different 

kernels (or different kernel hyperparameters) can lead to different predictive performances, 

a cross-validation is generally performed to select the best kernel. To leverage the strength 

of multiple kernels jointly, the multiple-kernel learning framework uses a weighted kernel 

K = ∑iγiKi, where γi are positive kernel weights learned by the model. If a kernel weight γi 

has a value close to zero, the associated kernel Ki has little effect in the model. Therefore, 

learning the kernel weights leads to a kernel-selection mechanism, where only a subset of 

the kernels are effectively used by the model. If the different kernels are built on different 

feature spaces, the kernel-selection mechanism corresponds to a feature-space selection 

mechanism.

This framework has also been applied to ridge regression (Hoerl and Kennard, 1970). To 

do so, ridge regression is first re-formulated as a kernel ridge regression (Saunders et al., 

1998) with a linear kernel (see more details in Section 4.2). Then, the multiple-kernel 

frame-work is used to produce a model called multiple-kernel ridge regression (Bach, 

2008). Interestingly, multiple-kernel ridge regression is almost equivalent to banded ridge 

regression. This quasi-equivalence is described in further details in Appendix A.3.

Group lasso—The group lasso (Yuan and Lin, 2006) is a generalization of the lasso 

(Tibshirani, 1996). The lasso is a linear regression model similar to ridge regression but 

with a different regularization term. The lasso is defined as b* = argminb‖Xb − y‖2
2 + λ‖b‖1, 

where ‖b‖1 = ∑j |bj| is the L1 norm. Due to the geometry of the L1 norm, the lasso is known 

to induce a feature selection (Tibshirani, 1996). The group lasso is a generalization of the 

lasso which extends this selection mechanism to feature spaces. The group lasso is defined 

as b* = argminb‖Xb − y‖2
2 + λ‖b‖2, 1, where ‖b‖2,1 = ∑i ‖bi‖2 is the L2, 1 norm. Due to the 

geometry of the L2, 1 norm, the group lasso induces a feature-space selection. (To induce 

both a feature selection and a feature-space selection, the group lasso can be extended to 

the sparse group lasso Simon et al., 2013.) A notable variant of the group lasso is the 

squared group lasso (Bach, 2008), which uses the squared-L2, 1 norm ‖b‖2, 1
2 = ∑i‖bi‖2

2. 

The squared group lasso also induces a feature-space selection.

Interestingly, the squared group lasso has been shown to be equivalent to multiple-kernel 

ridge regression (Bach, 2008; Rakotomamonjy et al., 2008). Because banded ridge 

regression is quasi-equivalent to multiple-kernel ridge regression, it is also quasi-equivalent 

to the squared group lasso. The details of this quasi-equivalence are described in Appendix 

A.3.
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4. Efficient banded ridge regression solvers

As shown in the previous section, banded ridge regression and its feature-space selection 

mechanism provide a powerful framework for fitting complex encoding models to brain 

data. However, one obstacle to widespread adoption of this framework is that solving banded 

ridge regression remains a computational challenge. This section presents several methods 

for solving banded ridge regression efficiently, and proposes an empirical comparison of 

these methods. All methods are implemented in an open-source Python package called 

Himalaya.

4.1. Ridge regression solver

Before considering banded ridge regression, it is useful to recall how to solve ridge 

regression. Let X ∈ ℝn × p be the matrix of features, with n samples and p features, 

y ∈ ℝn the brain activity vector in one particular voxel, and λ > 0 a fixed regularization 

hyperparameter. Ridge regression (Hoerl and Kennard, 1970) considers the weight vector 

b* ∈ ℝp defined by the optimization problem

b* = argmin
b

‖y − Xb‖2
2 + λ‖b‖2

2 . (12)

This optimization problem has a closed-form solution b* = My, where 

M = X⊤X + λIp
−1X⊤ ∈ ℝp × n.

Efficient solver for multiple voxels—In the closed-form solution above, the resolution 

matrix M does not depend on the brain activity vector y. Therefore, when fitting a ridge 

regression on each voxel independently, the matrix M can be precomputed and reused on 

all voxels. Reusing M on all voxels dramatically reduces the computations compared to 

solving a linear system per voxel. With t voxels, the pre-computation reduces the complexity 

of solving the full system from (p3t + p2nt) to (p3 + p2n + pnt). To further decrease the 

computation time, one can concatenate all voxels into a matrix Y and write in matrix form 

B* = MY. The matrix form uses a matrix-matrix multiplication that is very fast on modern 

hardware, rather than multiple matrix-vector multiplications that would be inevitably slower. 

Using these methods, ridge regression can be solved efficiently on large numbers of voxels.

Efficient solver for multiple hyperparameters—In ridge regression, the optimal value 

for the hyperparameter λ is unknown, so it is typically selected through a grid-search with 

cross-validation (see Section 2.2). Thus, there is a need to solve the model efficiently for 

multiple hyperparameters λ. To do so, the training input matrix can be decomposed using 

the singular value decomposition (Golub and Reinsch, 1971; Hastie and Tibshirani, 2004; 

Rifkin and Lippert, 2007), Xtrain = USV⊤, where U ∈ ℝn × p is orthonormal, S ∈ ℝp × p is 

diagonal, and V ∈ ℝp × p is orthonormal. (The matrix sizes are given here assuming that p 
≤ n.) Then, for each hyperparameter λ, the resolution matrix is given by M(λ) = V (S2 + 

λIp)−1 SU⊤. This expression is inexpensive to compute because (S2 + λIp)−1 S is diagonal. 

By using the singular value decomposition and looping over r values of λ, the complexity of 
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computing the resolution matrix decreases from  (p3r + pnr) to (p2nr). Using this method, 

ridge regression can be solved efficiently even when the hyperparameter grid search is large.

To evaluate each hyperparameter, the predictions on the validation set can be computed with 

yval(λ) = XvalM(λ)Y train = XvalV S2 + λIp
−1SU⊤Y train. The optimal order to compute this 

matrix product depends on p, nval, ntrain, and t.. To further decrease the computation time, 

the loop over hyperparameters λ can also be implemented with a tensor product.

4.2. Kernel ridge regression solver

Solving ridge regression as described in Section 4.1 requires  (p3) operations, and this 

can become expensive when the number of features p is large. Fortunately, if the number 

of features is larger than the number of time samples (p > n), ridge regression can be 

reformulated to be solved more efficiently. By the Woodbury matrix identity, b* can be 

rewritten b* = X⊤(XX⊤ + λIn)−1 y, or b* = X⊤ ω* for some w* ∈ ℝn. Given the linear 

kernel K = XX⊤ ∈ ℝn × n, this leads to the equivalent formulation

w* = argmin
w

‖y − Kw‖2
2 + λw⊤Kw . (13)

This model is called kernel ridge regression (Saunders et al., 1998), and can be used with 

arbitrary positive semidefinite kernels K. When the kernel is linear (K = XX⊤), kernel ridge 

regression is equivalent to ridge regression.

The kernel formulation has a closed-form solution, ω* = (K + λIn)−1y. Interestingly, this 

closed-form solution requires inverting a (n × n) matrix, whereas solving ridge regression 

requires inverting a (p × p) matrix. Specifically, the computational complexity of the 

multiple-voxel case is (n3 + pn2 + n2t) for kernel ridge regression, and (p3 + p2n + 

pnt) for ridge regression. It is thus more efficient to use the kernel formulation when the 

number of features is larger than the number of time samples p > n, and it is more efficient 

to use the regular formulation otherwise.

Efficient solver for multiple voxels—Similarly to ridge regression, the resolution 

matrix M = (K + λIn)−1 can be precomputed and efficiently applied to all voxels. To further 

decrease the computation time, one can again concatenate all voxels into a matrix Y and 

write in matrix form ω* = MY. Using these methods, kernel ridge regression can be solved 

efficiently on large numbers of voxels.

Efficient solver for multiple hyperparameters—Similarly to ridge regression, the 

hyperparameter λ is unknown and needs to be selected with cross-validation. To efficiently 

solve kernel ridge regression during hyperparameter grid search, λ, the training kernel 

Ktrain = XtrainXtrain
⊤  can be diagonalized into Ktrain = U DU⊤, where D ∈ ℝn × n is diagonal, 

and U ∈ ℝn × n is orthogonal. Then, for each hyperparameter candidate λ, the resolution 

matrix can be inverted with (K + λIn)−1 = U(D + λIn)−1 U⊤. Here, the kernel 

diagonalization replaces the matrix inversion with a matrix multiplication, which is less 

computationally expensive. However, it does not change the computational complexity, 
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which is (n3r) for r values of λ. Using this method, kernel ridge regression can be solved 

efficiently even when searching through many different values of the hyperparameters.

Finally, search can also be sped up when computing predictions on the validation set 

yval(λ) = KvalU D + λIn
−1U⊤Y train, where Kval  = XvalXtrain

⊤ . The speed-up depends on the 

optimal order to compute this matrix product, which depends on p, nval, ntrain, and t.

4.3. Banded ridge regression solver

As discussed in Section 3.2, banded ridge regression is a natural extension of ridge 

regression, where the features are grouped into m feature spaces. A feature space i is formed 

by a matrix of features Xi ∈ ℝn × pi, with n samples and pi features, and is associated with a 

regularization hyperparameter λi > 0. To model brain activity y ∈ ℝn on a particular voxel, 

banded ridge regression considers the weights bi* ∈ ℝi
p (concatenated into b* ∈ ℝp with p = 

∑i pi) defined as

b* = argmin
b

∑
i

Xibi − y
2

2 + ∑
i

λi bi 2
2 . (14)

For a fixed hyperparameter vector λ ∈ ℝ+
m banded ridge regression has a closed-form 

solution b* = (X⊤X + Dλ)−1 X⊤y, where Dλ ∈ ℝp × p is a diagonal matrix with λi repeated 

pi times, and X = X1, …, Xm ∈ ℝn × p is the concatenation of the Xi.

Efficient solver for multiple hyperparameters—Because the hyperparameters in 

banded ridge regression λ ∈ ℝ+
m are optimized by cross-validation, hyperparameter 

optimization must be implemented efficiently. However, the trick used in ridge regression 

to factorize computations for all hyperparameter candidates cannot be used in banded 

ridge regression. Indeed, with more than one hyperparameter (m > 1), the singular value 

decomposition of X does not codiagonalize Dλ. We thus propose two other methods to solve 

banded ridge regression efficiently: hyperparameter random search (described in Section 

4.5), and hyperparameter gradient descent (described in Section 4.6).

4.4. Multiple-kernel ridge regression

For maximal efficiency, the proposed banded ridge regression solvers are described with 

the kernel formulation of banded ridge regression, called multiple-kernel ridge regression 

(see Appendix A.3). This formulation uses kernels, and leads to more efficient solvers than 

banded ridge regression when p > n. In standard ridge regression, when the number of 

features is larger than the number of samples p > n, ridge regression can be solved more 

efficiently using kernel ridge regression (see Section 4.2). Similarly, when p > n, banded 

ridge regression can be solved more efficiently through its equivalent kernel formulation.

As described in Appendix A.3, multiple-kernel ridge regression uses a set of kernels (K1, …, 

Km) with Ki ∈ ℝn × n, a regularization strength μ > 0; and a kernel weight vector γ defined 

on the simplex Δm − 1 = γ ∈ ℝ+
m, ∑i = 1mγi = 1 . Then, to model brain activity y ∈ ℝn on 
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a particular voxel, multiple-kernel ridge regression considers the dual coefficients w* ∈ ℝn

defined by

w* = argmin
w

∑
i

γiKiw − y
2

2 + μw⊤∑
i

γiKiw . (15)

The brain activity is then modeled using y = ∑iγiKiw* To ensure that the kernel formulation 

is equivalent to banded ridge regression, the kernels need to be defined using one linear 

kernel Ki = XiXi
⊤ per feature space i. The correspondence with banded ridge regression 

hyperparameters is given by μ = (∑i1/λi)−1 and γi = μ ∕ λi.

In the following two subsections, two solvers for multiple-kernel ridge regression are 

proposed. Both methods are summarized in Fig. 8, using a simulated toy example. Because 

the datasets used in this paper are in the setting p > n, these two methods are described for 

multiple-kernel ridge regression. To be more efficient when p < n, similar methods could be 

derived for banded ridge regression.

4.5. Method 1: hyperparameter random search

The first proposed method to solve banded ridge regression is hyperparameter random 

search (Bergstra and Bengio, 2012). Hyperparameter random search consists in randomly 

sampling hyperparameter candidates, and then selecting the candidates that produce the 

lowest cross-validation error. It is often more efficient than grid search, because the random 

sampling of hyperparameter space is less redundant. For example, when adding useless 

hyperparameters to a search, a grid search becomes less efficient, while random search 

efficiency remains unchanged (Bergstra and Bengio, 2012).

In the specific case of multiple-kernel ridge regression, m hyperparameters are optimized, 

parameterized with γ ∈ Δm −1 and μ > 0. Formally, the training and validation loss functions 

are defined as

ℒtrain(w, γ, μ) = ∑
i = 1

m
γiKtrain, iw − ytrain

2

2
+ μw⊤ ∑

i = 1

m
γiKtrain, iw, (16)

ℒval w*(γ, μ), γ, μ = ∑
i = 1

m
γiKval, iw*(γ, μ) − yval

2

2
, (17)

where ω* (γ, μ) = argminω ℒtrain (ω, γ, μ), and for each feature space i, Ktrain, i = Xtrain, 

iXtrain
⊤ , i is the training kernel, and Kval, i = Xval, iXtrain

⊤ , i is the validation cross-kernel.

With this parameterization, hyperparameter random search is particularly efficient for 

multiple voxels. For each potential value of the kernel weights γ ∈ Δm−1, the subproblem is 

a kernel ridge regression. Using the computational tricks described in Section 4.2, this kernel 

ridge regression is solved efficiently for multiple voxels and for multiple regularization 

parameters μ.
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Dirichlet distribution—The kernel weights vector γ is defined on the simplex Δm −1. To 

generate a candidate γ for random search, the Dirichlet distribution is used. The Dirichlet 

distribution is specifically defined on the simplex, and it is parametrized to prioritize 

different levels of sparsity. Its probability density function is parameterized by a set of 

concentration parameters α ∈ ℝ+
m, and reads p(γ) = B(α)−1∏i = 1

m γi
αi − 1

, where B(α) is a 

normalization factor written with the gamma function γ. Because in the encoding model 

framework there is no prior reason to favor one feature space over another, the same value αi 

is used for all dimensions. The value αi = 1 for all i leads to a uniform distribution over the 

simplex. Smaller values increase the density near corners and edges of the simplex, leading 

to kernel weights that prioritize smaller subsets of kernels.

Full algorithm—The steps to implement hyperparameter random search are as follows. 

First, a set of candidates for μ is defined. These are most often specified on a unidimensional 

grid of logarithmically spaced values (e.g. {1, 10, 100}). Second, a set of candidates for γ is 

defined, sampled from the Dirichlet distribution. Third, for each candidate γ, the weighted-

average kernel K = ∑i γiKi is computed. With this single kernel, a kernel ridge regression 

is solved for all cross-validation splits, all regularizations μ, and all voxels. Fourth, the 

validation losses are averaged over splits, and their minimum is taken over regularizations μ. 

Finally, the hyperparameters μ and γ that minimize the average validation loss are selected 

on each voxel independently. (The entire algorithm is listed in pseudo-code in Appendix 

A.7.) Note that this algorithm is equivalent to the one described in van de Wiel et al. (2021), 

except for the use of the Dirichlet distribution.

Hyperparameter random search is particularly efficient for large numbers of voxels, because 

the most costly computations can be factorized and reused on each voxel. This property is 

critical in voxelwise encoding models, where a separate model is fit independently on about 

105 voxels or more. However, hyperparameter random search has limited efficiency when 

the number of dimensions m (the number of feature spaces) increases. Indeed, the number 

of samples required to cover a m-dimensional space is of the order of (em). Therefore, 

hyperparameter random search is not efficient when using large numbers of feature spaces. 

To address this issue, we propose a second method to optimize hyperparameters in multiple-

kernel ridge regression.

4.6. Method 2: hyperparameter gradient descent

Because hyperparameter random search has limited efficiency when the number of feature 

spaces is large, we propose a second method to solve banded ridge regression. The 

second method is hyperparameter gradient descent (Bengio, 2000). Hyperparameter gradient 

descent is a method that iteratively improves hyperparameters. At each iteration, the update 

is based on the gradient of the cross-validation loss ℒval with respect to hyperparameters. 

Thus, the updated hyperparameters progressively converge toward the hyperparameters that 

minimize the cross-validation loss. The gradient of the cross-validation loss ℒval with 

respect to hyperparameters can be computed with implicit differentiation (Chapelle et al., 

2002; Foo et al., 2007; Larsen et al., 1996), as described in details in Appendix A.4.
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In the specific case of multiple-kernel ridge regression, the method is used to optimize m 
hyperparameters. In Section 4.5, the hyperparameters are parameterized with γ ∈ Δm −1 and 

μ > 0, but this parameterization is inefficient for gradient descent. Indeed, gradient descent 

does not guarantee that the updated hyperparameters satisfy the constraints γ ∈ Δm −1 and 

μ > 0. Thus, after each gradient descent update, an additional step is required to project 

the hyperparameters on their constrained subspace. Projecting μ on the positive subspace is 

computationally cheap, but projecting γ on the simplex Δm −1 is more expensive. To avoid 

this cost, another parameterization is used here, defining δi = log(γi ∕ μ). Because δ ∈ ℝm

is unconstrained, no additional projection step is required. Furthermore, the logarithm 

improves the gradient conditioning, because γi ∕ μ typically spans multiple orders of 

magnitude. The training and validation loss functions are then defined as

ℒtrain(w, δ) = ∑
i = 1

m
eδiKtrain, iw − ytrain

2

2
+ w⊤ ∑

i = 1

m
eδiKtrain, iw, (18)

ℒval w*(δ), δ = ∑
i = 1

m
eδiKval, iw*(δ) − yval

2

2
, (19)

where ω* (δ) = argminω ℒtrain (ω, δ), and for each feature space i, Ktrain, i = Xtrain, iXtrain
⊤ , 

i is the training kernel, and Kval, i = Xval, iXtrain
⊤ , i is the validation cross-kerne. Note that 

the optimization problem (19) is identical to (17), up to a reparametrization. See Appendix 

A.4 for the computation of the gradient of the cross-validation loss ℒval with respect to 

hyperparameters δ.

4.7. Computational complexity comparison

One straightforward way to evaluate different optimization methods is to compare them in 

terms of computational complexity. For example, one can estimate the computational cost 

of increasing the number of voxels or the number of feature spaces. Table 1 summarizes the 

computational complexity of the methods presented above for optimizing hyperparameters 

for multiple-kernel ridge regression: random search and gradient descent.

The most important difference between both proposed methods is the complexity with 

respect to the number of voxels v. In random search, the diagonalization is the most 

expensive operation, but it is done only once for all voxels. Therefore, the computational 

cost of random search remains almost the same for small or large numbers of voxels. On 

the contrary in gradient descent, the gradient computations are proportional to the number 

of voxels v. Therefore, the computational cost of gradient descent is low for small numbers 

of voxels, and high for large numbers of voxels. Comparing both methods, gradient descent 

is likely to be faster than random search for small numbers of voxels, and random search is 

likely to be faster than gradient descent for large numbers of voxels.

Another key parameter that affects computational complexity is the number of kernels m 
(i.e. the number of feature spaces in banded ridge regression). In the case of random search, 

la Tour et al. Page 27

Neuroimage. Author manuscript; available in PMC 2023 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the computational cost per iteration is barely affected by m, but the required number of 

iterations in a random search grows exponentially with m. In the case of gradient descent, 

the number of iterations required to reach convergence is invariant with respect to m, but the 

computation of each iteration is proportional to m. Comparing both methods, random search 

is likely to be faster than gradient descent for small numbers of feature spaces, and gradient 

descent is likely to be faster than random search for large numbers of feature spaces.

Note that in gradient descent, although the Lipschitz constant computation is inexpensive 

compared to the other steps, its complexity follows m2. Its cost might therefore become 

prohibitive for large numbers of feature spaces m, and an adaptive step-size strategy might 

become necessary (see for instance Pedregosa, 2016). In the example presented in Section 

4.8, the Lipschitz constant was computed for up to m = 22 feature spaces, which is probably 

sufficient for most applications.

4.8. Banded ridge regression solver comparison

To demonstrate the computational efficiency of the proposed solvers, different banded ridge 

regression solvers were compared on three fMRI datasets. The number of time samples, 

feature spaces, cross-validation splits, and voxels of each dataset are detailed in Table 2. 

The stimuli used in each dataset were silent natural short clips watched with fixation (“short-
clips” dataset) (Huth et al., 2012; 2022), natural stories listened with eyes closed (“stories” 
dataset) (Huth et al., 2016), and non-silent natural short films watched with eye tracking 

(“short-films” dataset) (Nunez-Elizalde et al., 2018). Each dataset contained a number of 

manually engineered feature spaces, such as spatio-temporal wavelet transform magnitudes 

of visual stimuli (Nishimoto et al., 2011), hierarchical classification of objects present in the 

scenes (Huth et al., 2012), or word embeddings of speech content (Huth et al., 2016).

In all datasets, the number of features was larger than the number of time samples. Thus, all 

solvers used the multiple-kernel ridge regression formulation. A separate linear kernel was 

defined per feature space, and the different solvers described in Section 4.5, Section 4.6, and 

Appendix A.5 were compared.

Compared methods—In this example, nine different methods were empirically 

compared. The first three methods were used as baselines, and did not use banded ridge 

regression. The first baseline method used a ridge regression model fit on all feature spaces 

jointly, and with a hyperparameter μ shared across all voxels (as in Huth et al., 2016). The 

second baseline method used a ridge regression model fit on all feature spaces jointly, and 

with a different hyperparameter μ per voxel. In the third baseline, a separate ridge regression 

model was first fit on each feature space. Then, the best feature space was selected for each 

voxel independently, as measured by the average cross-validation loss.

The other six compared methods were fitting a banded ridge regression model, formulated 

as a multiple-kernel ridge regression. They only differed in the method used to 

solve the optimization problem. The hyperparameter gradient-descent was used with 

three variants, using either the direct gradient approximation (“direct”), the conjugate 

gradient approximation (Pedregosa, 2016) (“conjugate”), or the finite Neumann series 

approximation (Lorraine et al., 2019) (“Neumann”). The hyperparameter random search 
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was used as described in Section 4.5. The proposed methods were also compared to the 

Tikreg2 implementation published previously by our group (Nunez-Elizalde et al., 2019), 

which explores hyperparameter space using Bayesian optimization of the average voxel 

performance (see more details in Appendix A.5). All methods were implemented on GPU, 

except the Tikreg implementation, which was only available on CPU. To give a fair 

comparison with the Tikreg implementation, the hyperparameter random search was also 

run on CPU.

Hyperparameter optimization—For the ridge regression models, the regularization 

hyperparameter λ was optimized over a grid-search with 20 values spaced logarithmically 

from 10−5 to 1015. This range was large enough to explore many different possible 

regularization strengths for each feature space. For hyperparameter random search, the 

Dirichlet concentration α alternated between three values [0.1/m; (0.1/m); 1], to explore 

both small and large subsets of kernels. A scaling by 1 ∕ m was used to get consistent 

kernel subset sizes over the different datasets. A grid of 20 values was used for μ, spaced 

logarithmically from 10−5 to 1015.

All gradient descent methods were initialized with the optimal regularization 

hyperparameter of the ridge regression baseline, computed on each voxel independently. 

For the conjugate gradient approximation, a decreasing precision ε was used with an 

exponential schedule (Pedregosa, 2016) going from 101 to 10−1, for both subproblems (other 

precision schedules were tested and led to slower convergence). The other gradient-descent 

approximations used a single iteration of gradient descent to update the dual weights. The 

Neumann approximation was used with k = 5 (other values were tested and led to slower 

convergence).

As in previous examples, a leave-one-run-out cross-validation scheme was used, and the 

model was refit on the entire training dataset with the best hyperparameters. The solver 

comparison was performed on a Nvidia Titan X GPU (12 GB RAM). Because Tikreg was 

only available on CPU, the random-search solver was also run on CPU along with Tikreg, 

using a 8-core Intel CPU (3.4 GHz, 30 GB RAM).

Method evaluation—To evaluate the different methods, two criteria were used. The first 

criterion was the convergence of the validation loss ℒval averaged across cross-validation 

splits. The convergence of the validation loss over time is useful to compare the speed 

of the different methods to solve the optimization problem. The second criterion was the 

generalization R2 score on a test data set not used in model fitting. The generalization score 

is useful to verify that the changes in the validation loss are meaningful and not merely 

overfitting. The generalization score is also useful to compare banded ridge regression with 

the different baseline methods based on ridge regression. Note that in all three datasets, 

most voxels did not get any predictive power from the available feature spaces. Thus, the 

scores are averaged on a selection of best predicted voxels, selected using the top 10% 

generalization scores of ridge regression with shared regularization μ. Durations correspond 

to computations on all voxels.

2https://github.com/gallantlab/tikreg.
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Results.: The results of the method comparison are displayed in Fig. 9. First, the 

Bayesian search implemented in Tikreg appeared several orders of magnitude slower 

than the proposed methods. This difference is not only due to the GPU implementation, 

because Tikreg’s Bayesian search was also slower than random search run on CPU. 

Bayesian search also sometimes generalized poorly (short-clips and short-films datasets). 

This poor generalization can be explained by the optimization being stopped early due to 

computational constraints. Another possible explanation is that Bayesian search is solving an 

approximation of the problem, while the proposed methods solve the correct problem (see 

Appendix A.5).

Among the proposed methods, random search was faster than gradient descent, even for a 

medium number of feature spaces m = 22 (short-films dataset). This might be attributed to 

the factorization over voxels of random search, which is critical for large numbers of voxels 

v ≈ 105. This is especially important as the number of voxels can grow even larger for higher 

resolution fMRI (up to 107 in recent datasets (Feinberg et al., 2018). However, it is expected 

that gradient descent outperforms random search for larger numbers of feature spaces.

The comparison of the three gradient-descent approximations was not conclusive. On the 

stories dataset, both direct and Neumann approximations did not generalize as well as other 

solvers. On the short-clips and short-films datasets, the direct gradient was faster, though one 

would need further convergence to compare generalization. Importantly, the direct gradient 

approximation performed well in two out of three datasets. This result is surprising, as the 

direct gradient is a strong approximation with no guarantee to converge toward a correct 

solution.

Finally, banded ridge regression generalized better than all ridge regression baselines. This 

improvement can be explained by the feature-space selection mechanism of banded ridge 

regression, which effectively removes non-predictive and redundant feature spaces, while 

still allowing multiple feature spaces to be complementary.

4.9. Recommended strategy

Based on the empirical solver comparison, we recommend using random search to 

efficiently solve banded ridge regression on large numbers of voxels. However, the 

convergence of random search is fast in the first iterations but slower afterward. Moreover, 

the Dirichlet sampling used in random search introduces a prior which biases the 

hyperparameter optimization. To find more precise feature-space selection and fix the prior 

bias, one can use gradient descent to refine the solution on a selection of best performing 

voxels. To do so, the hyperparameters selected by random search can be used to initialize 

gradient descent. This refinement can lead to a better feature-space selection, and thus 

improve the variance decomposition interpretation. To limit the computational cost of the 

gradient-descent refinement, the refinement can be performed only on a selection of best-

predicted voxels, as measured by the cross-validation loss.
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4.10. Python package

All methods described in this paper are implemented in an open-source Python package 

called Himalaya.3 All methods are both available through a functional API and through 

a class API compatible with Scikit-learn (Pedregosa et al., 2011). Moreover, to use either 

CPU or GPU resources, the package can be used seamlessly with different computational 

backends based on Numpy (Harris et al., 2020), Pytorch (Paszke et al., 2019), or Cupy 
(Nishino and Loomis, 2017). Finally, the package includes extensive documentation, 

rigorous unit testing (including Scikit-learn’s estimator checks), and a gallery of examples to 

facilitate its use.

5. Conclusion

Banded ridge regression is a natural extension to ridge regression that takes into account any 

predefined group structure in the features. In neuroimaging studies using encoding models, 

a group structure is naturally defined when different feature spaces correspond to different 

hypotheses or different representations of the stimuli and tasks. Banded ridge regression is 

able to adapt regularization to this structure and to learn optimal scalings for each feature 

space. These optimal scalings are learned by cross-validation, a principled method that 

focuses on maximizing generalization to unseen datasets. Banded ridge regression is thus 

a robust model that adapts regularization to predefined group structures in the features to 

maximize generalization in linear encoding models.

In this paper, we argue that the feature-space selection mechanism of banded ridge 

regression partly explains its good performance. By learning optimal feature-space scalings 

during cross-validation, banded ridge regression is able to ignore some non-predictive or 

redundant feature spaces. Ignoring these feature spaces reduces the tendency to overfit, 

and focuses prediction on feature spaces that are most likely to generalize. Moreover, 

this feature-space selection improves interpretability, because it reduces the number of 

feature spaces that contribute to model predictions. This feature-space selection is especially 

interesting when using naturalistic stimuli that are often best modeled using highly 

correlated feature spaces. Because banded ridge regression disentangles correlated feature 

spaces it clarifies which specific feature spaces best predict brain activity.

In this paper we also relate feature-space selection to a large literature of sparsity-inducing 

linear regression methods. In algorithms ranging from automatic relevance determination to 

multiple-kernel learning and the group lasso, the selection of feature spaces (or features) 

has been shown multiple times to lead to better generalization and better interpretation. 

In the encoding model framework, generalization to unseen data is a powerful way to 

validate the model and to improve reproducibility. Generalization performance also serves 

as a guide for model selection and interpretation. By maximizing both interpretation and 

generalization, banded ridge regression is a powerful tool for data-driven analysis of rich 

naturalistic experiments in neuroimaging encoding models.

3https://github.com/gallantlab/himalaya.
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Finally, we demonstrate how the computational cost of banded ridge regression can be 

largely reduced compared to the original implementation. Our proposed methods use 

principled algorithms such as hyperparameter random search and hyperparameter gradient 

descent. In particular, we show how to use these algorithms to fit a separate banded ridge 

regression on each voxel independently, scaling efficiently to large numbers of voxels. With 

the advent of layer-specific 7T BOLD fMRI at sub-millimeter resolution, the number of 

voxels is expected to increase by one or two orders of magnitude compared to the 3T fMRI 

datasets used in this work. Using efficient algorithms implemented on GPU is thus critical 

to be able to scale the analysis to the new orders of magnitude of data to come in the future. 

To facilitate dissemination, all algorithm implementations are released in an open-source, 

GPU-compatible Python package called Himalaya.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the encoding model framework. (a) The encoding model framework uses a 

regression model to predict a brain activity y ∈ ℝn with features X ∈ ℝn × p extracted from 

the stimulus (or task). The regression model is usually linear (see Section 2.1), y ≈ Xb, with 

a weight vector b ∈ ℝp. Regularization can be also used to improve the regression model (see 

Section 2.2). (b) A cornerstone of the encoding model framework is the separation of the 

data into a train set and a test set. The regression model is fit on the train set only. Then, 

the fit model is used to predict brain activity on the test set. Finally, the prediction accuracy 

is evaluated on the test set by comparing the prediction vector with the recorded brain 

activity. The prediction accuracy is quantified for instance with the R2 score, which can be 

interpreted as the explained variance (see Section 2.3). (c) When multiple feature spaces 

are available, a separate model can be fit on each feature space, to compare the prediction 

accuracy of each model (see Section 2.4). However, considering only the best-predicting 

feature space ignores the possibility that feature spaces can be complementary. (d) To 

take into account complementarity between feature spaces, a joint regression can be fit on 

multiple feature spaces simultaneously. The feature spaces are concatenated into a large 

feature matrix X, and a single weight vector b is learned. (e) Then, the prediction vector 

y can be decomposed into a sum of partial predictions from each feature space yi = Xi bi. 

Finally, the explained variance R2 can be decomposed into the contribution of each feature 

space (see Section 2.5), for instance using the product measure (see Section 2.6) or variance 

partitioning (see Section 2.7).
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Fig. 2. 
Ridge regression and banded ridge regression. In both regression methods, the brain activity 

vector y ∈ ℝn is approximated as a linear sum of the input features X ∈ ℝn × p, using a 

weight vector b ∈ ℝp specifically y ≈ Xb. In ridge regression, the weight vector is computed 

with b* = (X⊤ X + λIp)
−1X⊤y, where λ > 0 is a regularization hyperparameter common to 

all features, and Ip ∈ ℝp × p is the identity matrix. In banded ridge regression, features are 

grouped into different feature spaces of size pi, and a different regularization hyperparameter 

λi > 0 is used for each feature space i. The weight vector is then computed with b* = (X⊤X 

+ Dλ)−1 X⊤y, where Dλ ∈ ℝp × p is a diagonal matrix with λi repeated pi times. In banded 

ridge regression, the optimal λi for each feature space are learned by cross-validation. 

Banded ridge regression is thus able to select the feature spaces relevant for prediction, and 

optimally scales them to maximize cross-validated prediction accuracy.
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Fig. 3. 
Feature-space selection in four simulated examples. To demonstrate the feature-space 

selection of banded ridge regression, three different models were fit on four simulated 

examples, each containing three feature spaces (A, B, C). For each model, prediction 

accuracy was measured by the explained variance (R2-score) on a separate test set, using 

a box plot to show the distribution of score over 100 repetitions of the simulation. The box 

plot indicates the distribution median (orange bar), the first and third quartiles (box borders), 

and the 5th and 95th percentiles (whiskers). The explained variance was decomposed over 

the three feature spaces using the product measure, using a geometric median to find a 

typical decomposition over 100 repetitions. (Top left) In the first simulation, the only 

predictive feature space is A. All three models recover the correct variance decomposition. 

The prediction accuracy is lower for the ridge regression model fit on all feature spaces 

than for the two other models, because the model is affected by noise in the non-predictive 

feature spaces (B, C). (Bottom left) In the second simulation, two feature spaces have 

predictive power (A, B). The ridge regression model fit on the best feature space only uses 

feature space A, which leads to low prediction accuracy. The ridge regression model fit on 

all feature spaces recover the correct variance decomposition, but its prediction accuracy is 

affected by noise in the non-predictive feature space C. The banded ridge regression model 

fit on all feature spaces recovers the correct variance decomposition, and correctly ignores 

the non-predictive feature space C to maximize prediction accuracy. (Top right) In the third 

simulation, all three feature spaces are predictive, but feature space B is a subset of A. The 

ridge regression model fit on all feature spaces uses all three feature spaces, whereas the 

banded ridge regression model fit on all feature spaces only uses feature spaces A and C, 

detecting that B is redundant with A. (Bottom right) In the fourth simulation, all three 

feature spaces are predictive, but feature spaces A and B are identical. The ridge regression 

model fit on all feature spaces uses A and B equally. The banded ridge regression model fit 

on all feature spaces uses either (A, B, C), or only (A, C), or only (B, C), depending on the 

repetition, because all three possibilities lead to similar cross-validation scores.
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Fig. 4. 
Comparison of prediction accuracy of three different regression models. Three different 

models were fit using 22 feature spaces to predict brain activity of a subject watching 

several short films (Nunez-Elizalde et al., 2018). The prediction accuracy of each model 

was measured by the explained variance (R2 score) computed on a separate test set. Each 

panel compares two models using a 2D histogram over voxels. The diagonal indicates equal 

performance for both models. (Left) Comparison of ridge regression fit on the best feature 

space per voxel (horizontal) to banded ridge regression fit on all feature spaces (vertical). 

The mass of the histogram is above the diagonal, indicating better performance for banded 

ridge regression. It shows that prediction accuracy was improved when multiple feature 

spaces were fit simultaneously with a separate hyperparameter per feature space, instead 

of using only the best predicting feature space per voxel. (Right) Comparison of ridge 

regression fit on all feature spaces (horizontal) to banded ridge regression fit on all feature 

spaces (vertical). The mass of the histogram is again above the diagonal, indicating better 

performance for banded ridge regression. In both cases, learning a separate regularization 

per feature space improves the performance of the regression model, especially for voxels 

that have relatively more accurate predictions.

la Tour et al. Page 41

Neuroimage. Author manuscript; available in PMC 2023 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Feature-space selection over 22 feature spaces in three different regression models. To 

describe the feature-space selection mechanism in banded ridge regression, feature-space 

selection is quantified using the effective rank m. The effective rank is a measure that 

quantifies the number of feature spaces effectively used by a model in a particular voxel. The 

three columns correspond to three different models. The (top row) shows a 2D histogram 

over voxels with R2 ≥ 0, comparing the effective rank m (horizontal) and the explained 

variance R2 (vertical). This plot describes the range of values obtained with the effective 

rank. The (bottom row) shows the variance decomposition over feature spaces, for voxels 

with R2 ≥ 0. 05. For each voxel, the 22 feature spaces are sorted by contribution to 

the variance decomposition. Then, voxels are sorted by effective rank m. The variance 

decomposition of each voxel is then displayed using stacked areas. This plot gives an 

intuitive view of what is captured by the effective rank metric. (Left) Ridge regression on 

the best feature space. On each voxel, the best performing feature space is selected. The 

effective rank is thus always equal to 1. This winner-take-all selection ignores the possibility 

that different feature spaces might be complementary on some voxels. (Middle) Ridge 

regression. Many feature spaces contribute to part of the variance, as captured by larger 

effective rank values. This model does not remove redundant feature spaces. (Right) Banded 

ridge regression. This model contains an implicit feature-space selection mechanism, as 

indicated by the lower effective rank values. This feature-space selection helps remove 

redundant feature spaces, while still allowing multiple feature spaces to be used jointly.
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Fig. 6. 
Feature-space selection on seven convolutional neural networks layers. Seven feature spaces 

were extracted from a movie stimulus based on activations from seven layers of a pretrained 

CNN (Alexnet (Krizhevsky et al., 2012)). These feature spaces were then used in three 

different encoding models to predict brain responses to the movie stimulus. The product 

measure was then used to decompose the explained variance (R2 score) over the seven 

layers. (a) Comparison of three models in four voxels of brain activity. The first model (top 
row) uses ridge regression fit on the best layer only, ignoring potential complementarity 

between layers. The second model (middle row) uses ridge regression fit jointly on all 

layers. The variance decomposition shows that this second model uses almost all layers to 

make the predictions. The third model (bottom row) uses banded ridge regression fit jointly 

on all layers. The variance decomposition shows that this third model uses only two or three 

layers to make the predictions. Indeed, banded ridge regression performs a feature-space 

selection, yet allows multiple layers to be used simultaneously. Two gray lines are also given 

as references, showing the prediction accuracy of a ridge regression model fit on a single 

layer. These two prediction accuracies are computed either on the train set or on the test set. 

(b) To quantify the number of layers effectively used by each model, the effective rank was 

computed on the variance decomposition. The 2D histogram of effective rank over voxels 

shows that banded ridge regression (vertical) used fewer feature-spaces (smaller effective 

rank) than ridge regression (horizontal) in almost all voxels.
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Fig. 7. 
Mapping convolutional neural network layers to the visual cortex. Seven feature spaces were 

extracted from a movie stimulus based on activations from seven layers of a pretrained CNN 

(Alexnet Krizhevsky et al., 2012). These feature spaces were then used in three different 

encoding models to predict brain responses to the movie stimulus. Using the fit models, 

these layers were then mapped to each voxel in the visual cortex. The layer mapping 

of each voxel is computed as a weighted average of the layer indices, weighted by the 

decomposition over layers of the explained variance. For visualization, the layer mapping 

is projected on a flattened cortical surface using Pycortex (Gao et al., 2015). (a) The first 

model uses ridge regression fit on the best layer only. This winner-take-all approach gives 

a non-robust estimate of layer mapping, because the best-layer selection can flip from one 

layer to another due to small variations in prediction accuracy. (b) The second model uses 

ridge regression fit jointly on all layers. It leads to a continuous measure of layer mapping, 

with a smooth gradient over the cortical surface. However, fitting the joint model with 

ridge regression gives a biased estimate of layer mapping toward middle values, because 

its variance decomposition tends to use all layers. (c) The third model uses banded ridge 

regression fit jointly on all layers. Fitting with banded ridge regression mitigates the bias 

toward middle values thanks to its feature-space selection. (a’, c’) Zoomed views of (a, c). 

(d) Correspondence with the CNN architecture. The layer mapping is derived from the layer 

indices of a pretrained Alexnet model.
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Fig. 8. 
Overview of the two proposed methods to learn hyperparameters in banded ridge regression. 

In banded ridge regression, a different regularization hyperparameter λi > 0 is used 

on each feature space i. All hyperparameters are learned using cross-validation. These 

hyperparameters can be reparameterized into a regularization strength μ = ∑i = 1
m λi

−1 −1
, 

and a set of kernel weights γi = μ ∕ λi. The kernel weight vector is thus defined on the 

“simplex ” Δm − 1 = γ ∈ ℝ+
m, ∑i = 1

m γi = 1 . The figure presents the simplex with m = 3, 

which is a 2-dimensional surface in the shape of a triangle. (a) Ground truth. Ground-truth 

kernel weights on the simplex Δ2, for 40 different voxels. Brain activity was simulated 

on 40 voxels, as a function of three feature spaces. On each voxel, the three feature 

spaces were balanced using a ground-truth kernel-weights vector γ ∈ Δ2. Note that the 

ground-truth kernel weights are not necessarily the solution of the optimization problem, 

because the simulated dataset has a finite size. (b) Random search. The random-search 

method randomly samples candidates from the simplex, and selects for each voxel the 

candidate leading to the best cross-validation loss. The method is fast because it factorizes 

computations over all voxels. However, the results directly depend on the random sampling 

of candidates. (c) Gradient descent. The gradient-descent method iteratively optimizes the 

kernel weights for each voxel independently, using the gradient of the cross-validation loss. 

The method is more reliable than random search, but it can be slower because it considers 

each voxel independently.
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Fig. 9. 
Convergence and generalization of different banded ridge regression solvers, on three 

different fMRI datasets. All x-axes indicate duration in logarithmic scale. All methods 

were run on GPU, except when plotted with dashed lines. (Top row) Convergence over 

time, as measured with the negative validation loss (−ℒval) (higher is better), averaged 

over splits and voxels. Convergence over time measures the speed of convergence of the 

different methods used to fit banded ridge regression. Random search is the fastest method 

on all three datasets, thanks to its efficient factorization over voxels. In particular, it is 

more efficient than Tikreg’s Bayesian search by several orders of magnitude, even when 

performed on CPU. (Bottom row) Generalization performances over time, as measured 

by the R2 score computed on a test set (higher is better), averaged over voxels. The 

generalization score is useful to verify that the changes in the validation loss are meaningful 

and not merely overfitting. The generalization score is also useful to compare banded ridge 

regression with different baseline models. Overall, banded ridge regression reaches higher 

generalization scores than the ridge regression baselines. The proposed solvers also reach 

higher generalization scores than Tikreg’s Bayesian search, given a reasonable time budget.
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Table 1

Dominant computational complexities per iteration, for both hyperparameter optimization methods.

Random search

Kernel sum O mntrain
2

Diagonalization O ntrain
3 s

Predictions (nvalntrain(ntrain + v)rs)

Gradient descent

Lipschitz for w (only once) O mntrain
3 s

Gradient (mntrain (ntrain + nval)vs)

Lipschitz for S (m2nvalvs)

The computational cost of the dominant computations changes when the size of the problem varies. The computational complexities give the order 
of change in computational cost when each dimension of the problem varies. Here, the different dimensions are the number of kernels m (i.e. the 
number of feature spaces), the number of training samples n train, the number of validation samples nval, the number of voxels v, the number of 

regularization candidates (for μ) r, and the number of cross-validation splits s. Importantly, the random-search diagonalization, which is the most 
expensive computation in the random-search method, is independent of the number of voxels v. On the contrary, the gradient-descent gradient 
computation is proportional to v. Therefore, gradient descent is fast for small numbers of voxels, but as the number of voxels increases, random 
search becomes more and more competitive compared to gradient descent.
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Table 2

Main dimensions of the three datasets used in our example.

Dataset ntrain + nval n test m S v

short-clips 3600 270 2 12 73,221

stories 3737 291 4 10 73,165

short-films 3572 807 22 12 85,483

The dimensions include the number of training time samples ntrain + nval, the number of testing time samples ntest, the number of feature spaces 

m, the number of cross-validation splits s, and the number of voxels v. All datasets had a large number of voxels (v ≈ 105). The largest number of 
feature spaces is m = 22 (see Appendix A.2 for a list of the 22 feature spaces).
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