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TensorView for MATLAB: Visualizing tensors with Euler angle 
decoding

Leo Svenningssona,**, Leonard J. Muellerb,*

aDivision of Physical Chemistry, Lund University, Lund, Sweden

bDepartment of Chemistry, University of California, Riverside, CA, USA

Abstract

TensorView for MATLAB is a GUI-based visualization tool for depicting second-rank Cartesian 

tensors as surfaces on three-dimensional molecular models. Both ellipsoid and ovaloid tensor 

display formats are supported, and the software allows for easy conversion of Euler angles from 

common rotation schemes (active, passive, ZXZ, and ZYZ conventions) with visual feedback. 

In addition, the software displays all four orientation-equivalent Euler angle solutions for the 

placement of a single tensor in the molecular frame and can report relative orientations of two 

tensors with all 16 orientation-equivalent Euler angle sets that relate them. The salient relations 

are derived and illustrated through several examples. TensorView for MATLAB expands and 

complements the earlier implementation of TensorView within the Mathematica programming 

environment and can be run without a MATLAB license. TensorView for MATLAB is available 

through github at https://github.com/LeoSvenningsson/TensorViewforMatlab, and can also be 

accessed directly via the NMRbox resource.
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1. Introduction

The visualization of tensor properties as surfaces on three-dimensional models highlights 

the geometric relationship between the tensor components and essential aspects of the 

underlying molecular and electronic structure [1–7]. In magnetic resonance, the depiction of 

tensors – such as the chemical shielding/shift, dipolar, quadrupolar, electron g, hyperfine, 

diffusion, and anisotropic atomic displacement parameters [8–21] – underscores this 

connection. Such visual representations can be a significant aid in conveying these 

geometric relationships in scientific communciaton that is relevant for magnetic resonance 

as well as other fields, as tensors are ubiquitous across the sciences.
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Previously, one of us (LJM) published a Mathematica based software tool called TensorView 

to display second-rank Cartesian tensors directly upon the molecular framework, taking 

as input the molecular coordinates and tensor elements [5]. Multiple examples were 

demonstrated, and applications from other labs have shown even more, including 11B, 
13C, 17O, 19F, and 29Si chemical shielding/shift tensors [22,23,23–26], 17O and 45Sc 

quadrupolar coupling tensors [26,27], electron g and hyperfine coupling tensors [17], and 

atomic root-mean-square displacement tensors (anisotropic displacement parameters) [21]. 

To enable a still greater number of applications, we have ported the principles of TensorView 

to MATLAB and constructed a GUI that runs with the free MATLAB compiler on 

Windows and Mac. The two implementations of TensorView will be distinguished below as 

TensorView.nb (Mathematica) and Tensorview.mlapp (MATLAB). Tensorview.mlapp reads 

atom coordinate files in either protein data bank (.pdb) or molecular coordinate (.xyz) format 

and produces a 3D model of the molecule and a user supplied tensor, which may have 

been determined experimentally or computationally [28,29]. The 3D model can be exported 

in .glb and .wrl format for use with dedicated 3D visualization software, such as the free 

Blender software [30]. The Github repository contains all of the source files and a script 

version that can be directly built into other MATLAB pipelines. TensorView for MATLAB is 

also available for ready access through the NMRbox resource [31].

Several issues important to the description and depiction of second-rank Cartesian tensors 

are first considered below in the context of the Tensorview.mlapp interface, including 

tensor symmetry, principal axis system, tensor shape, and Euler angle conventions. A more 

comprehensive discussion of these topics is given in the original TensorView paper [5]. 

Unique to Tensorview.mlapp is a module that can switch between the common rotation 

systems: active ZXZ, passive ZXZ, active ZYZ, and passive ZYZ. Active and passive denote 

if the rotation is applied to the object or the reference frame, respectively, and have been 

discussed and reviewed extensively [32,33]. Tensorview.mlapp also provides the option to 

simultaneously display multiple tensors, along with a list of the Euler angles that relate their 

relative orientation. There are 16 sets of orientation-equivalent Euler angles that describe the 

same relative orientation of 2 second-rank Cartesian tensors; as an aid to bridge Euler angle 

information from external sources, Tensorview.mlapp lists them all. These are derived along 

with several other useful relationships between Euler angles and conventions in Section 

5. Finally, in Section 6 we describe in some detail the numerical methods employed in 

Tensorview.mlapp for the determination of the Euler angles, paying particular attention to 

the complications that arise for degenerate principal axis components under the various 

conventions.

2. The MATLAB graphical user interface

The MATLAB based GUI interface of version 1.15 of Tensorview.mlapp is shown in Fig.1 

The tensor field uses A to signify a general 3×3 Cartesian tensor, written in the molecular 

coordinate frame AMF ,
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generalform: AMF =
A11

MF A12
MF A13

MF

A21
MF A22

MF A23
MF

A31
MF A32

MF A33
MF

(1)

symmetricform: AMF = A + A T

2 . (2)

Tensors can be entered in either symmetric or general forms, although any operation within 

the GUI will return the symmetric form with: A12 = A21, A13 = A31 and A23 = A32. Clicking on 

the “Molecular Frame – > Euler” button under the central Euler angle tab generates a list of 

the principal axis system (PAS) components - the eigenvalues of the symmetric component 

of the tensor. These can be ordered in an ascending or descending form to correspond to 

the Haeberlen, Mehring, or IUPAC conventions [9,10,34]. The corresponding Euler angles 

that relate the PAS and molecular frames are given in the chosen rotation convention. In all 

cases,

AMF = R α, β, γ APASR−1 α, β, γ (3)

where

APAS =
A11

PAS 0 0
0 A22

PAS 0
0 0 A33

PAS

(4)

and R is the rotation matrix. While the definition (and numerical values) of the Euler 

angles changes within the various rotational conventions, the actual rotation matrix elements 

themselves will have the same numerical values regardless of the convention chosen [33].

There are several additional options at this point. Clicking on “Molecular Frame <– 

Euler” regenerates the molecular frame tensor from the PAS components and Euler angles. 

Note, however, that this gives only the symmetric tensor components (the anti-symmetric 

components are not part of the PAS). This operation also provides an alternate manner 

for entering a tensor using the PAS components and Euler angles. Second, selecting the 

“Shielding <–> Shift” button replaces the PAS components with their negative values plus 

the chemical shift reference, which is entered in the corresponding box. This can be used 

to subsequently generate the chemical shift tensor, δ, in the molecular frame from an initial 

chemical shielding tensor, σ, or vice versa. The central “Dipolar tensor” tab can also be used 

to generate a dipolar tensor in the molecular frame directly from the coordinates of two 

atoms. Note that this tensor is normalized with PAS components of −1, −1, and 2.

TensorView supports two conventions for the display of tensor surfaces: the historic 

ellipsoidal representation [10], and the more technically correct ovaloid form [5,35,36]. 

An example of the two display formats is shown in Fig. 2, where the differences between 

the ovaloid and ellipsoidal surfaces are apparent. The ovaloid form is the actual shape of a 
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symmetric second-rank Cartesian tensor, meaning that the distance from the tensor center 

to any point on the surface is proportional to the strength of the interaction (shielding here) 

when the magnetic field is applied along that direction in space. This shape was originally 

noted by Hansen and Bouman [35] as well as Radaglia [36] and Aschbach [37], and the 

equation for this surface has been written down explicitly by Young et al. [5]. The ellipsoidal 

representation is ubiquitous in the NMR literature, but can be misleading since the model 

does not appropriately accommodate the combination of positive and negative tensor values. 

Still, its prevalence argues for inclusion as a display option, and it may be preferred for 

aesthetic reasons in certain cases.

Fig. 2 also highlights that the tensors themselves are symmetric with respect to 180° 

rotations about the PAS X, Y, or Z axes. Thus, the Euler angles for positioning the tensor 

in the molecular frame are not unique [5], and Tensorview.mlapp list all 4 orientation-

equivalent Euler angle solutions under “Equivalent Angles.” Here equivalent does not mean 

that the rotation matrices are the same, but rather that they all produce the equivalent 

molecular frame tensors from the PAS components and the given Euler angles according to 

Eq. (3). This point is discussed in more detail in Section 4.

To display the tensor on the molecular model, one first imports a coordinate file using the 

top left “Load” button and enters the molecular coordinates for centering the tensor under 

“Tensor coordinates.” The tensor size relative to the molecule is set through the “Tensor 

scaling,” which is the scaled length of the largest principal axis component in units of 

Angstroms. “Get 3D model” opens the MATLAB 3D display window with the chosen 

elements rendered (molecule and/or tensor).

Tensorview.mlapp has the ability to display multiple tensors simultaneously. Additional 

tensors can be added to the 3D object by selecting the “Additional tensors” check box, 

adding the tensor details, and executing “Get 3D model.” A relative scaling can be applied 

when displaying multiple tensors by adjusting the “Tensor scaling” value. As new tensors 

are generated they can be added to the tensor list pane on the right for easy recall using 

“Tensor –> List” and “Tensor <– List,” respectively. The tensor lists can be saved from 

the pane as well. Users are encouraged to open the simple text files and may find them a 

convenient route for bringing in multiple tensors for display, along with their placement, 

scaling, and color. Although at this point TensorView.mlapp does not support direct import 

from the various computational program output files, the simple nature of the data file 

allows for facile creation either by hand or with custom scripts that can be tailored to the end 

users’ specific interest.

3. Examples of tensors from theory and experiment

As a first example, Fig. 3 depicts the chemical shielding tensor for the side branching 

carbon on the thiophene ring in the electrically conductive polymer poly(3-hexylthiophene) 

(P3HT). This tensor and its orientation were derived experimentally [38]. For electrically 

conductive macromolecules such as this [39,40], electron mobility is partially correlated 

with the residual dipolar coupling tensor [41]. At the same time, anisotropic conductivity 

is correlated to the molecular orientation distribution [42], which can be inferred from the 

Svenningsson and Mueller Page 4

Solid State Nucl Magn Reson. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chemical shift anisotropy [14,15]. Both the chemical shift principal axis components and the 

tensor orientation (Euler angles) relative to the molecular frame are crucial in the study of 

macromolecular anisotropy of films and fibers using NMR.

As a second example, Fig. 4 shows one the backbone amide chemical shielding tensors in 

the tripeptide Ala-Ala-Ala, calculated by Young et al. [5]. The least shielded component, σ11, 

lies in the amide plane and is tilted by 18° from the N−H bond vector. The most shielded 

component, σ33, is found to be nearly perpendicular to the peptide plane, while σ22 lies close 

to the plane. This contrasts with Gly-Gly, where the σ33 and σ22 components are rotated by 

ca. 90° about the axis of σ11 [43]. For peptides, σ11 is found in general to remain within a few 

degrees of this orientation, while σ22 and σ33 vary as the secondary structure and amino acid 

composition change [43].

4. Multiple tensors and relative orientations

The multiple-tensor display feature highlights the relative orientations of tensors to the 

molecular frame as well as to each other. The relative orientation of tensors plays critical 

roles in describingtensor correlation experiments in solid state NMR [44–46] and in the 

analysis of cross-correlated relaxation effects in TROSY and quadrupolar central transition 

(QCT) NMR in solution [47,48]. For example, Fig. 5(a) shows the relative orientation 

of the 17O quadrupolar and chemical shielding tensors for the carboxylate group of the 

bound α-aminoacrylate intermediate in the active site of the enzyme tryptophan synthase 

[49]. Here, both the magnitudes and the orientations of the tensors come into play in 

analyzing the 17O QCT NMR data [48]. Multiple programs, including TensorView.nb 

[5] and EFGShield [2], can report the relative orientation of two tensors. In this case, 

TensorView.nb reports the relative orientation of the shielding tensor in the PAS of the 

EFG tensor as ΩCS
EFG = α = 4.1∘, β = 89.7∘, γ = 154.7∘ . EFGShield reports the same relative 

orientation as ΩCS
EFG = α = 175.9∘, β = 89.7∘, γ = 205.1∘ . Both programs state that they are using 

the same active ZYZ rotational convention with shielding eigenvalues sorted according to 

σ33 > σ22 > σ11 and the EFG sorted as V 33 > V 22 > V 11 . At first these seem inconsistent, but 

by using Tensorview.mlapp to display the EFG and shielding tensors in the PAS of the 

EFG tensor (in which case ΩEFG
EFG = α = 0∘, β = 0∘, γ = 0∘  and ΩCS

EFG are given above), it can 

be readily verified that the relative orientations are indeed the same, although the absolute 

orientations of the PAS are rotated (Fig. 5(b)). There are in fact 16 orientation-equivalent 

Euler angle sets that describe the relative orientation of two symmetric second-rank tensors. 

These correspond to the four possible ways of placing the PAS axes on each tensor [5]. As 

reconciling the various reported Euler angles for a single tensor in the molecular frame or 

the relative orientation of two tensors can be a challenge, we detail the general relationships 

for equivalent Euler angle sets in the following section.

5. Orientation-equivalent Euler angle sets

5.1. A few conventions and important relations

By convention Euler angles are chosen such that
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0 ≤ α ≤ 2π (5)

0 ≤ β ≤ π (6)

0 ≤ γ ≤ 2π (7)

Should either α or γ fall outside that range they can be adjusted by adding multiples of 2π. 

Negative values of β may similarly be adjusted, while π ≤ β ≤ 2π can be converted by noting 

that in both the active and passive ZYZ and ZXZ rotation conventions

R α, β, γ = R α + π, 2π − β, γ + π (8)

It is also handy to note the following relationships between active and passive rotations:

Ractive  α, β, γ = Rpassive  − γ, − β, − α = Rpassive  π − γ, β, π − α (9)

And the simple relationship between the ZYZ and ZXZ conventions (both active and 

passive) [50]:

RZYZ α, β, γ = RZXZ α + π/2, β, γ − π/2 (10)

RZXZ α, β, γ = RZYZ α − π/2, β, γ + π/2 (11)

All of the above can be verified by direct substitution into the corresponding rotation 

matrices, which are explicitly written out in their active forms in Section 6. Other 

conventions for describing orientations and rotations, such as the direction cosine matrix 

[50] and Cayley-Klein parameters/quaternions [50,51], are potential features for future 

versions of TensorView.mlapp.

5.2. The rotation of a single 2nd rank tensor

As described in the original TensorView paper, the symmetry of a second-rank Cartesian 

tensor to 180° rotations about each of the PAS axes leads to a set of 4 orientation-equivalent 

Euler angles solutions relating the lab and PAS frames [5]. By this, we mean that any choice 

of Euler angles from this set leads to an equivalent physical orientation of the tensor in 

the lab frame (although the PAS axes may point in different directions); or, said another 

way, that the application of the corresponding rotation matrices results in the same lab 

frame tensor as given in Eq. (3). This set of angles can be solved for by finding the angles 

that satisfy the following equations in which an initial 180° rotation is given about an axis 

aligned along the PAS X,Y, and Z axes prior to the general rotation Ω = α1, β1, γ1 .

R α1, β1, γ1 (12)

R α2, β2, γ2 = R α1, β1, γ1 Rx π (13)
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R α3, β3, γ3 = R α1, β1, γ1 Ry π (14)

R α4, β4, γ4 = R α1, β1, γ1 Rz π (15)

Because of the order in which the rotations are given, the initial π rotation can be written in 

either the lab (xyz) or PAS (XYZ) frames - they are equivalent at this point.

For the active ZYZ rotation convention, the orientation-equivalent rotations correspond to

Ω1 = α1, β1, γ1 (16)

Ω2 = α2, β2, γ2 = α1 + π, π − β1, 2π − γ1 (17)

Ω3 = α3, β3, γ3 = α1 + π, π − β1, π − γ1 (18)

Ω4 = α4, β4, γ4 = α1, β1, γ1 + π , (19)

while for the passive ZYZ convention, they are

Ω1 = α1, β1, γ1 (20)

Ω2 = α2, β2, γ2 = 2π − α1, π − β1, γ1 + π (21)

Ω3 = α3, β3, γ3 = π − α1, π − β1, γ1 + π (22)

Ω4 = α4, β4, γ4 = α1 + π, β1, γ1 . (23)

The same solutions hold for the active and passive ZXZ conventions, respectively, although 

the association with the rotations is switched for Ω2 and Ω3. Note that if the initial set of 

Euler angle Ω1 = α1, β1, γ1  satisfies

0 ≤ α1 ≤ π (24)

0 ≤ β1 ≤ π (25)

0 ≤ γ1 ≤ π (26)

(which is always one of the solutions) then the orientation-equivalent Euler angles will fall 

within the canonical ranges.
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It is important to note that there will be additional orientation-equivalent Euler angle sets 

when the tensor itself is axially symmetric, with any two of the tensor principal components 

equal. This degeneracy leads to an unconstrained degree of freedom in specifying the 

orientation. For example, when the unique principal component is along the Z-axis, the 

γ Euler angle is unconstrained and can be chosen arbitrarily in the active ZYZ and ZXZ 

conventions; similarly for the α angle in the passive conventions. This means that any choice 

of those angles will result in the same orientation for the tensor in the molecular frame, or 

the same lab frame tensor according to Eq. (3). When the unique component is chosen to 

define the PAS X axis, there is no simple mapping of the degree of freedom to a single Euler 

angle. This will be discussed in more detail in Section 6.

5.3. The relative orientation of two 2nd rank tensors

To describe the orientation of tensor B in the PAS of tensor A, denoted BA, we begin by 

aligning the system such that the PAS of tensor A corresponds to the laboratory frame and 

describe the orientation of tensor B within that frame using the Euler angles in the usual 

way. In this case

Alab = APAS = AA = RA
−1AMFRA (27)

and

BA = RA
−1BMFRA (28)

The relative orientation of B to A is defined by the rotation of tensor B such that

BA = RrelBBRrel
−1 (29)

Considering that

BMF = RBBBRB
−1 (30)

and inserting equations (29) and (30) into (28) we obtain the relative rotation matrix

Rrel = RA
−1RB (31)

There are 4 orientation-equivalent Euler angle sets for both RA and RB. As described above, 

these correspond to an initial π rotation of the system about an axis aligned along the tensor 

PAS X, Y, or Z axis. The full set of relative orientation-equivalent Euler angles relating the 

orientation of tensor B in the PAS of tensor A can therefore be determined by finding the 

angles that satisfy the following equations:

R α1, β1, γ1 = Rrel = RA
−1RB (32)

R α2, β2, γ2 = R α1, β1, γ1 Rx π (33)
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R α3, β3, γ3 = R α1, β1, γ1 Ry π (34)

R α4, β4, γ4 = R α1, β1, γ1 Rz π (35)

R α5, β5, γ5 = Rx π R α1, β1, γ1 (36)

R α6, β6, γ6 = Rx π R α1, β1, γ1 Rx π (37)

R α7, β7, γ7 = Rx π R α1, β1, γ1 Ry π (38)

R α8, β8, γ8 = Rx π R α1, β1, γ1 Rz π (39)

R α9, β9, γ9 = Ry π R α1, β1, γ1 (40)

R α10, β10, γ10 = Ry π R α1, β1, γ1 Rx π (41)

R α11, β11, γ11 = Ry π R α1, β1, γ1 Ry π (42)

R α12, β12, γ12 = Ry π R α1, β1, γ1 Rz π (43)

R α13, β13, γ13 = Rz π R α1, β1, γ1 (44)

R α14, β14, γ14 = Rz π R α1, β1, γ1 Rx π (45)

R α15, β15, γ15 = Rz π R α1, β1, γ1 Ry π (46)

R α16, β16, γ16 = Rz π R α1, β1, γ1 Rz π (47)

Again because of the order in which the rotations are given, the first π rotation can be 

written in either the coordinate frame of the lab (xyz) or the PAS of tensor B (XYZ). The 

final rotation, however, must be written in the lab frame, which corresponds to the PAS of 

tensor A. For the active ZYZ convention, the relative-orientation equivalent Euler angle set 

corresponds to:

Ω1 = α1, β1, γ1 (48)
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Ω2 = α2, β2, γ2 = α1 + π, π − β1, 2π − γ1 (49)

Ω3 = α3, β3, γ3 = α1 + π, π − β1, π − γ1 (50)

Ω4 = α4, β4, γ4 = α1, β1, γ1 + π (51)

Ω5 = α5, β5, γ5 = 2π − α1, π − β1, γ1 + π (52)

Ω6 = α6, β6, γ6 = π − α1, β1, π − γ1 (53)

Ω7 = α7, β7, γ7 = π − α1, β1, 2π − γ1 (54)

Ω8 = α8, β8, γ8 = 2π − α1, π − β1, γ1 (55)

Ω9 = α9, β9, γ9 = π − α1, π − β1, γ1 + π (56)

Ω10 = α10, β10, γ10 = 2π − α1, β1, π − γ1 (57)

Ω11 = α11, β11, γ11 = 2π − α1, β1, 2π − γ1 (58)

Ω12 = α12, β12, γ12 = π − α1, π − β1, γ1 (59)

Ω13 = α13, β13, γ13 = α1 + π, β1, γ1 (60)

Ω14 = α14, β14, γ14 = α1, π − β1, 2π − γ1 (61)

Ω15 = α15, β15, γ15 = α1, π − β1, π − γ1 (62)

Ω16 = α16, β16, γ16 = α1 + π, β1, γ1 + π (63)

This set of relative-orientation equivalent Euler angles also applies to the passive ZYZ 

convention and both the active and passive ZXZ conventions (although the numerical values 

of the angles change with the various conventions). These are all of the possible solutions 

when each of the tensors has no degenerate principal components. When degenerate 

components are present, there will be additional relative-orientation equivalent solutions that 

reflect the degrees of freedom in the choice of the Euler angles as discussed in the following 

Svenningsson and Mueller Page 10

Solid State Nucl Magn Reson. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



section. Tensorview.mlapp lists all 16 orientation-equivalent Euler angle sets for the relative 

orientation of two tensors under the “Relative tensors” tab. This data can be exported using 

the “Save Relative Angles” button.

Returning to the example above for the aminoacrylate intermediate in tryptophan synthase, 

TensorView.nb reports a relative orientation of ΩCS
EFG = α1 = 4.1∘, β1 = 89.7∘, γ1 = 154.7∘  in 

the PAS of the EFG tensor. EFGShield reports the same relative orientation as 

ΩCS
EFG = α2 = 175.9∘, β2 = 89.7∘, γ2 = 205.1∘ . Using the equivalence set above, we can now verify 

that these two sets of Euler angles correspond to the same relative orientation.

6. Tensor symmetries and the numerical calculation of Euler angles

The fundamental design principles and approach of TensorView have already been described 

by Mueller [5]. Tensorview.mlapp follows many of the same conventions but takes a 

different approach to the calculation of Euler angles. The numerical methods employed 

in Tensorview.mlapp are briefly described below, with particular attention paid to the 

complications that arise for degenerate principal axis components under the various 

conventions.

The molecular frame tensor can be decomposed into its principal axis components from its 

eigenvalues, and the rotation matrix is derived from the sorted eigenvectors corresponding to 

the chosen ascending or descending order of the PAS tensor,

AMF = R α, β, γ APASR−1 α, β, γ (64)

From the rotation matrix, i.e., the eigenvectors, we can find the Euler angles by inference to 

the matrix elements.

As an example, consider the active ZYZ Euler rotation matrix

Ractive 
ZY α, β, γ = Rz α Ry β Rz γ

  =
cosα −sinα 0
sinα cosα 0

0 0 1

cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

cosγ −sinγ 0
sinγ cosγ 0

0 0 1

  =
cosαcosβcosγ − sinαsinγ −sinαcosγ − cosαcosβsinγ cosαsinβ
sinαcosβcosγ + cosαsinγ cosαcosγ − sinαcosβsinγ sinαsinβ

−sinβcosγ sinβsinγ cosβ

(65)

From Equation (65) we can easily calculate β since:

β = cos−1 R33 (66)

The variables α and γ are less obvious since we have to sort out the multitude of solutions 

that go with β [52]. One way to solve all cases when cosβ ≠ 0 is shown in Equations (67) and 

(68). The MATLAB atan2 function takes into account the individual signs of the usual y/x
form of the tangent function. The resulting angle is then determined between − π, π .
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α = atan2 R22

sin β , R13

sin β (67)

γ = atan2 R32

sin β , −R31

sin β (68)

If β = 0, also known as a “gimbal lock” in some fields, the two rotations α and γ revolves 

around the same axis, so we choose γ = 0, and α is calculated as

α = cos−1 R11  if  β = 0 . (69)

A special case occurs for the symmetrical eigenvalue in the form A11
PAS = A22

PAS or A22
PAS = A33

PAS, 

depending on how they are sorted. In an active rotation with the unique axis in the Z-

direction, i.e., A11
PAS = A22

PAS, the last rotation around A33
PAS by γ is unconstrained and can be set to 

0. Conversely, when the eigenvalues are sorted with the unique axis in the X-direction, i.e., 

A22
PAS = A33

PAS, no easy simplification of the solution can be made due to degenerate solutions 

on a non-intuitive symmetry line. The eigenvalue solver in MATLAB will find one (correct) 

solution based on floating point jittering, though it is challenging to compare with other 

software and solutions in such conditions. We therefore do not take this approach. Instead 

one can find solutions for α = 0 in the equality for the active ZYZ rotation:

AMF = Ractive 0, β, γ APASRactive
−1 0, β, γ (70)

Where solutions can be found from elements of the tensor valued Equation (70), for 

example:

A22
MF = A22

PAS + A11
PASsin2γ − A22

PASsin2γ (71)

Two solution can be found from solving

γ = sin−1 ± A22
MF − A22

PAS

A11
PAS − A22

PAS (72)

And then β is calculated from

β = atan2 −A23
MF

sin γ cos γ A11
PAS − A22

PAS , A12
MF

sin γ cos γ A11
PAS − A22

PAS (73)

Only one solution for β is correct for a chosen γ which we select as the positive solutions for 

γ. If A23
MF = A12

MF = 0 we can solve

β = sin−1 ± A33
MF − A33

PAS

A11
PAS − A33

PAS + A22
PAS − A11

PAS sin2γ
(74)
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with the solutions crosschecked against AMF. Also observing that degenerate solutions for β
exists for γ = ± π/2, we can choose β = 0.

For active ZXZ, with

Ractive 
ZXZ α, β, γ = Rz α Rx β Rz γ

=
cosα −sinα 0
sinα cosα 0

0 0 1

1 0 0
0 cosβ −sinβ
0 sinβ cosβ

cosγ −sinγ 0
sinγ cosγ 0

0 0 1

=
cosαcosγ − sinαcosβsinγ −sinαcosβcosγ − cosαsinγ sinαsinβ
cosαcosβsinγ + sinαcosγ cosαcosβcosγ − sinαsinγ −cosαsinβ

sinβsinγ sinβcosγ cosβ
,

(75)

we similarly obtain

γ = sin−1 ± A11
MF − A11

PAS

A22
PAS − A11

PAS (76)

and

β = atan2 A31
MF

sin γ cos γ A11
PAS − A22

PAS , A21
MF

sin γ cos γ A11
PAS − A22

PAS (77)

If A31
MF = A21

MF = 0 we can solve

β = sin−1 ± A22
MF − A22

PAS + A22
PAS − A11

PAS sin2γ
A33

PAS − A22
PAS + A22

PAS − A11
PAS sin2γ

(78)

again observing that degenerate solutions for β exists for γ = 0 or γ = π, where we can 

choose β = 0.

It is noteworthy that we can also solve active ZYZ equations A22
PAS = A33

PAS by setting γ = 0
but cannot with an active ZXZ rotation due to the final non-zero rotation X  being a 

rotation around the unique axis. The degeneracy of the aforementioned symmetrical tensor 

problem can introduce confusion when using eigenvalue solvers by finding solutions on a 

non-intuitive symmetry line. Therefore, readers who seek to solve similar problems on their 

own should pay particular attention to these cases. Fig. 6 shows an active ZYZ rotation 

scheme with ascending and descending tensor eigenvalue sorting with the tensors being 

processed in Blender [30] and the 3D models arranged in PowerPoint.

The procedure to obtain consistent angle solutions must also be considered when calculating 

relative angles of two tensors. We may have one or two tensors with symmetrical 

eigenvalues where simplifications from rotational symmetries become somewhat intricate. 

For axially symmetric relative tensors it is also convenient to find solutions for some angles 

that can be set to zero. When both tensors are axially symmetric, and a ZYZ rotation is used, 

we can set α = 0 and γ = 0; the angle β is then
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β = sin−1 ± B33
A − B33

PAS

B11
PAS − B33

PAS (79)

which can be derived from Equation (29). For ZXZ rotations we have to resort to a 

combination of solutions shown in Table 1. The rotations are mainly selected to avoid 

unnecessary rotations around the symmetrical tensor axis, though we acknowledge that other 

solutions also exists.

When only one of the two tensors are axially symmetric, we can reuse the “Molecular Frame 

–> Euler” pipeline in the following way. If tensor B is axially symmetrical then the relative 

orientation of tensor B in the PAS of tensor A, BA, is used in the pipeline. When tensor 

A is axially symmetrical we can simply obtain the passive angles for AB, i.e. the relative 

orientation or tensor A in the PAS of tensor B, since the reference frame rotation of tensor B
is the same as the object rotation of tensor A.

The choices we have made here for how to handle axially symmetric tensors may not 

correspond to the choices made by other software developers. Ultimately, when checking 

whether two sets of Euler angles describe equivalent orientations, it may be best to directly 

compare the results of Eq. (3) or visually inspect the tensor in the molecular frame. When 

comparing two sets of relative orientations, it may also be most facile to display both sets of 

tensors and check that one set can be rotated onto the other using visual feedback.

7. Conclusion

TensorView for MATLAB provides a straightforward and intuitive GUI to visualize tensors 

in a molecular context, while offering tools to explore the intricacies of 3D rotations 

of second rank tensors using different rotation conventions. The representation of tensor 

properties directly as 3D surfaces on molecular models highlights the relationship between 

the physical phenomena and the underlying molecular and electronic structures that can 

help build molecular level insights and enable effective scientific communication. Several 

relationships between Euler angles in various conventions have also been derived and 

written down explicitly to facilitate the comparison of results from various computational 

and modeling software. TensorView for MATLAB provides a licence-free molecular 3D 

modelling tool that is universally accessible through Github and within the NMRbox 

resource.
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Fig. 1. 
The graphical user interface of TensorView for MATLAB.
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Fig. 2. 
(a) Ovaloid and (b) ellipsoid representations of a chemical shielding tensor from Ref. [5] 

in which σ11  =   − 83.2 ppm, σ22  =  43.7 ppm, and σ33  = 66.8 ppm. The corresponding principal 

axes are shown in red, green, and blue, respectively. While the use of ellipsoids is ubiquitous 

in the NMR literature, the true form of a symmetric second-rank Cartesian tensor is an 

ovaloid.
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Fig. 3. 
A polythiophene (P3HT) chain with the chemical shift anisotropy tensor for the side chain 

branching carbon shown in orange. δ11  = 215 ppm, δ22 = 151 ppm, and δ33  = 42ppm. The tensor 

is oriented relative to the molecular frame by passive ZYZ Euler angles α  = 38°, β  = 84°, 
and γ  = 180°. Here, the z-axis of the molecular frame defines the polymer backbone.
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Fig. 4. 
The tripeptide Ala-Ala-Ala in the extended conformation with backbone torsion angles 

φ  = ψ  = 180°. The backbone amide shielding tensor is shown along with its PAS. The least 

shielded component lies in the amide plane and is tilted by 18°from the N–H bond vector.
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Fig. 5. 
(a) The 17O quadrupolar (blue) and chemical shielding (orange) tensors for the 

carboxylate group of the bound α-aminoacrylate intermediate in the active site of 

the enzyme tryptophan synthase. Concentrating on the distal oxygen, Tensorview.nb 

reports an orientation of ΩCS
EFG = α1 = 4.1∘, β1 = 89.7∘, γ1 = 154.7∘  for the chemical shielding 

tensor relative to the EFG tensor, while EFGShield reports the relative orientation as 

ΩCS
EFG = α2 = 175.9∘, β2 = 89.7∘, γ2 = 205.1∘  using the same stated conventions. (b) The two 

relative orientations can be shown to be equivalent by noting that the second system (both 

EFG and CS) can be superimposed on the first after a 180° rotation about an axis directed 

along the EFG tensor PAS X-axis (red).
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Fig. 6. 
Sequence of ZYZ active rotations using two different sorting conventions for chemical 

shielding tensors −83,44,67  ppm A11
PAS, A22

PAS, A33
PAS  ascending sort and an axially symmetric 

tensor A11
PAS = A22

PAS. Only the top “ascending eigen value tensor” obtain rotation on the 

symmetry axis for the axially symmetrical tensor.
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Table 1

ZXZ rotation simplifications for relative orientations of two axi-symmetrical tensors.

ZXZ α β γ

uniqueB33
PAS 90°

sin−1 ± B33
A − B33

PAS

B11
PAS − B33

PAS

0

uniqueB11
PAS 0 90°

sin−1 ± B33
A − B33

PAS

B11
PAS − B33

PAS
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