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Background/Objectives—To examine whether trajectories of global cognitive function over 

time in studies that change assessment protocols may be modeled based on an individual’s 

performance relative to others in the study cohort.

Design—The Women’s Health Initiative Memory Study switched from an in-person interview 

with the Modified MiniMental State Exam (3MSE) to a telephone-based interview with the 

Telephone Interview for Cognitive Status (TICSm) for assessing global cognitive function during 

long term follow-up. Annual cognitive assessments from participants, ranked according to age- 

and race/ethnicity-adjusted performance levels, were used to identify distinct trajectories. 

Participants assigned to the resulting trajectories were compared for selected risk factor profiles.

Setting—Extended follow-up of a cohort originally enrolled in a clinical trial of postmenopausal 

hormone therapy

Participants—Women (N=2,561) aged 75 to 92 years

Results—Our approach grouped participants into five trajectories according to relative cognitive 

performance over time. These groups differed significantly according to three known risk factors 

for cognitive decline -- education level, APOE-ε4 genotype, and type 2 diabetes – and a biomarker 

based on brain structure that has been linked to increased cognitive decline and Alzheimer’s 

disease. Participants with consistently low relative levels of cognitive function over time and those 

whose relative performance over time declined to these levels tended to have poorer risk factor 

profiles.

Conclusion—Longitudinal measures of an individual’s relative performance across different 

assessment protocols for global cognitive function can be used to identify trajectories of change 

over time that appear to have internal validity with respect to known risk factors.

Keywords

Global cognitive function; Longitudinal trajectories; Assessment modalities; Risk factors

INTRODUCTION

In long-term studies of cognitive aging, assessment protocols may change. An example of 

this is the Women’s Health Initiative Memory Study (WHIMS), which began in 1996 as 

annual clinic-based assessments for global cognitive function with the Modified Mini-

Mental State Examination.1,2 WHIMS was an ancillary study to the larger Women’s Health 

Initiative (WHI) trials of postmenopausal hormone therapy.3 In 2008, the WHI ceased clinic 

visits and shifted to follow-up conducted primarily by mail and telephone. This 

reorganization led to a change in the instrument used to assess global cognitive function. 

WHIMS transitioned to the Women’s Health Initiative Memory Study of the Epidemiology 

of Cognitive Health Outcomes (WHIMS-ECHO), in which global cognitive function was 

assessed with the Telephone Interview for Cognitive Status (TICS-m).4,5 This change was 

supported by a validation study that demonstrated 3MSE and TICS-m yielded scores that 

were highly correlated.6 TICS-m scores have subsequently been used during WHIMS-

ECHO to provide long-term assessments of global cognitive function.7 Nevertheless, the 

question remains whether scores from the two measurement protocols can be bridged to 
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describe meaningful patterns of cognitive changes over time and across protocols. The focus 

of this manuscript is to address this practical issue.

One approach to this is calibration of the data from different measurement tools (i.e. 3MSE 

and TICS-m) onto a common metric.8,9 Gross, et al.9 identified four approaches towards this 

goal: 1) using elements (e.g., items) that are common across protocols; 2) standardizing 

individual test item scores according to cohort-wide means and standard deviations and 

summing cross-sectional measures to form a composite with which to assess trajectories; 3) 

using confirmatory factor analysis to identify common factors among batteries and treating 

scores as continuous measures; and 4) using confirmatory factor analysis treating scores as 

discrete measures. These four approaches are focused on ordering participants with respect 

to their absolute level of cognitive function. We take an alternative approach, instead using 

the two tests to provide measures of participants’ relative levels of cognitive function, i.e. 

how well they perform on tests compared with other study participants. In doing so, we 

assume that the two tests are assessing a common domain, i.e., global cognitive function, 

and that age- and race/ethnicity-adjusted participants’ rankings among the cohort provide a 

relative measure of cognitive functioning. The approach is most analogous to 2) above, but 

instead of using a z-score to define a participants’ performance relative to a cohort mean, we 

assign percentiles to reflect relative standing within the cohort providing assessments. This 

avoids the assumption that distributions can be homologized and that standard deviations for 

the two tests are commensurate.

To assess the this approach’s performance, we used trajectory analysis to group participants 

based on the longitudinal characteristics of their relative cognitive performance over time. 

We then examined the associations these groups have with known risk factors for cognitive 

decline. We use risk factors from the domains of socioeconomic status, metabolism, brain 

structure, and genetics to validate this approach. Our primary goal was to demonstrate that 

the longitudinal trajectories in relative global cognitive scores can be meaningfully estimated 

across the two protocols.

METHODS

Participants were recruited to join WHIMS during 1995–1998. They were 65–80 years old at 

the time of enrollment and had volunteered and met eligibility criteria for a randomized 

controlled clinical trial of postmenopausal hormone therapies based on conjugated equine 

estrogens, as part of the WHI.1 To join WHIMS, participants consented to annual clinic-

based cognitive assessments and adjudication of cognitive impairment (i.e. either mild 

cognitive impairment or probable dementia). In 2005, after active WHI therapies were 

discontinued for at least two years, participants were asked to consent to continue clinic-

based follow-up. By March of 2008, all clinic-based cognitive assessments were terminated, 

and participants were asked to consent to telephone-based cognitive assessments in 

WHIMS-ECHO.

Cognitive measures

In WHIMS, global cognitive function was measured with the Modified Mini Mental State 

Exam (3MSE),2 which includes 46 items that contribute to a total score that ranges from 0–
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100, with a higher score reflecting better cognitive functioning. Test items measure abstract 

reasoning, executive function, verbal recall, naming, praxis, temporal and spatial orientation, 

verbal fluency, visuo-constructional abilities, and writing.

In WHIMS-ECHO, global cognitive function was assessed with the Telephone Interview for 

Cognitive Status-modified (TICS-m), a widely-used measure of global cognitive 

functioning.5,9 It is a 14-question measure (range of scores 0 to 50; higher scores reflect 

better performance) with items assessing abstract reasoning, executive function, verbal 

recall, praxis, verbal fluency, and verbal memory.

We describe trajectories of relative cognitive performance across the change in protocols and 

use all measures collected during the time span of 5.5 years before and after the transition 

from WHIMS to WHIMS-ECHO, allocating them to one-year intervals.

Risk Factors for Cognitive Decline

We have selected three known risk factors to represent the domains of socioeconomic status, 

metabolism, and genetics. We also used a novel brain MRI marker that is predictive of 

cognitive decline and Alzheimer’s disease risk. Each of these four risk factors is separately 

related to the 3MSE and TICSm scores included in our analyses, with covariate adjustment 

for current age and race/ethnicity (all p<0.001).

Education—At enrollment to WHI, participants reported their educational attainment. We 

grouped these into four categories: less than 12 years (not high school graduate), high school 

graduate, some post high school education, and college graduate.

Type 2 Diabetes—At WHI enrollment, participants reported a history of type 2 diabetes, 

age of onset, and diabetes treatment. Fasting blood glucose was determined on a 5% sample 

of participants. During WHI follow-up, participants were periodically queried about diabetes 

treatment.10 For this report, participants were classified as having type 2 diabetes based on 

report of diabetes, diabetes treatment or, for those with fasting glucose measurements, if 

levels exceeded 126 mg/dl. The WHI reported good concordance between laboratory-based 

and self-reported diabetes.10 We categorized participants as having diabetes if they met this 

definition any time prior to the termination of the WHIMS protocol.

Genotype—Apolipoprotein E (APOE-ε4) genotypes were assigned based on rs429358 and 

rs7412 genotype results from imputation and harmonization of genetic data across WHI 

genome-wide association studies within the WHI Clinical Trials and Observational studies. 

Imputation was conducted using the 1000 Genomes Project reference panel and the MaCH 

algorithm as implemented in Minimac (R2>0.98 for each SNP in the study population)11 and 

based on the Illumina Omni Express and exome chips for the majority of WHIMS 

participants.

Structural brain biomarker—The initial WHIMS-MRI study was conducted 

approximately eight years following WHI randomization and three years, on average, 

following termination of the WHIMS CEE+MPA or 1.4 years following the CEE-Alone 

trials.12 It took place in a subset of 14 clinical sites in a subset of participants.13 The 
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WHIMS-MRI2 study was conducted 12.7 years post-WHI randomization, and 7.7 years, on 

average, following termination of the CEE+MPA trial or 6.1 years after CEE-Alone trial.14 

WHIMS-MRI2 scanning occurred 4.7 years, on average, following WHIMS-MRI initiation. 

WHIMS-MRI participants who continued WHI follow-up were invited to join WHIMS-

MRI2.

Casanova, et al.15 used machine-learning methods to develop novel markers of Alzheimer’s 

disease from structural magnetic resonance imaging database developed by the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI).16 The Alzheimer’s Disease Pattern Similarity 

(AD-PS) scores provide a high degree of specificity and sensitivity for classifying ADNI 

participants based on disease status (Alzheimer’s disease or normal cognition). AD-PS 

scores range from 0 to 1 and serve as an index, based on high dimensional structural MRI 

measures of gray matter volumes, to order individuals according to how closely they 

conform to patterns seen among images from individuals with Alzheimer’s disease in ADNI. 

AD-PS scores capture the presence of spatial patterns of grey matter tissue atrophy that 

discriminate between clinical AD cases and cognitively normal controls in the ADNI cohort. 

In the WHIMS MRI cohort, they identify individuals at increased risk for cognitive decline 

and cognitive impairment.

Statistical Methods

We analyzed cognitive function data collected within the 5.5 years before and after the 

transition from the clinic-based to telephone-based assessments (which occurred in 2008). 

We limited our analysis to participants who had at least two cognitive assessments with both 

the WHIMS and WHIMS-ECHO protocols during this time span (this includes some 

participants who died after at least two WHIMS-ECHO assessments). Separately for the 

3MSE and TICSm data, we generated residuals for these test scores from linear models with 

covariate adjustment for participants’ age at the time of the cognitive test and race/ethnicity. 

In addition, to control for any learning effects, we also adjusted for the number of prior 

assessments of the 3MSE or TICSm. Within each follow-up year, we then ranked 

participants according to these residuals, calculating their percentile standing relative to 

others who were assessed during that year.

We used a group-based trajectory modeling approach to identify clusters of longitudinal 

patterns of percentiles over time. Models were fitted using PROC TRAJ in SAS.17,18 This 

approach treats cluster membership as a latent class and, for a specified number of assumed 

classes, estimates the probability for each participant of their membership in classes, 

assigning them to the cluster with greatest probability. We chose to model trajectories with 

cubic splines. In modeling exercises, selection of the number of clusters to include in models 

can be guided by Bayesian Information Criteria.17 For our analyses, we pre-specified five 

clusters and additionally examined the fit of models with additional clusters.

RESULTS

Table 1 provides a description of the 2,561 participants included in our analysis. At the start 

of WHIMS-ECHO, i.e. mid-way through the span of time we use to assess trajectories, their 

mean (standard deviation) age was 80.8 (3.5) years, ranging from 75 to 92 years. The initial 
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MRI obtained on a subset (N=1,385) of participants occurred an average of 2.6 (0.3) years 

prior to this time; the second MRI (N=682) was obtained an average of 2.1 (0.4) years after 

this time. APOE-ε4 genotype was available for 1,800 participants: 21.3% had one ε4 allele 

and 1.4% had two ε4 alleles. At enrollment into the WHI trial, 4.9% of the participants met 

study criteria for type 2 diabetes. At the start of WHIMS-ECHO, type 2 diabetes prevalence 

had increased to 8.0%.

Table 2 provides raw means for the 3MSE and TICSm scores over time. These declined only 

slightly within the two timeframes. Note that relatively few 3MSE scores occurred in the 

year prior to the transition to WHIMS-ECHO. This is attributable to the necessary time to 

develop subcontracts, obtain IRB approval, and re-consent participants for the new protocol.

Figure 1 portrays the five trajectories fitted by the modeling approach. Participants were 

distributed fairly evenly among these clusters, with membership rates ranging from 17.5% to 

24.8%. Two clusters included participants with fairly constant relative performance over 

time: either consistently high (5: Consistently High), with mean scores ranging between 70–

80%ile over time, or consistently low (1: Consistently Low), with mean scores ranging 

between 20–30%ile over time. Two other clusters included participants whose relative 

cognitive performance declined over time, either from a relatively high initial level of 

performance (3: Decline to Median), or from a more moderate initial level of performance 

(2: Decline to Low). A final cluster of participants was described by a trajectory 

corresponding to relative improvement from around the 40%ile to the 60%ile (4: Relative 

Improvement). Note that this may not correspond to absolute improvement in scores, only to 

relative improvement (i.e. having less decline than other participants).

The Bayesian Information Criteria (BIC) value of fit for our 5–cluster model was 1021.75. A 

4-cluster model has BIC=806.51. We examined the fit of models in which greater numbers 

of clusters were assumed: BIC=1211.71 (6 Groups) and BIC=1291.70 (7 Groups). Given the 

large sample size, these additional clusters could be treated as distinct given Bayesian 

Information Criteria. However, we chose to pursue our five-cluster model because it was 

pre-specified and grouped participants who appeared to be relatively resilient to cognitive 

decline during follow-up. Our primary aim was to describe the feasibility of our 

methodological approach.

Table 3 examines differences in risk factor profiles for the five clusters. For each, significant 

differences exist among clusters. We did not fit a model in which all four risk factors were 

included because MRI and genotyping were only included in subsets of participants. 

However, as noted in a footnote to Table 3, including education and diabetes status (which 

were available for all participants) as covariates, did not diminish the statistical significance 

of relationships that AD-PS and APOE-ε4 had with trajectory clusters.

To portray these graphically and allow comparisons among risk factors, we defined cut-

points to connote relatively higher risk for each: lack of college, AD-PS score above the 75th 

percentile (AD-PS=0.46) for the cohort, presence of an APOE-ε4 allele, and diabetes at 

WHI baseline. We then used logistic regression to calculate the odds ratio for these risks 

defined by these cut-points each trajectory cluster relative to cluster 5 (consistently high 
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global cognitive function). Figure 2 portrays the results. For each risk factor cut-point, the 

confidence interval for the odds ratio of cluster 1 (consistently low global cognitive function) 

excluded 1. While not fully consistent, there tended to be a rough ordering across the four 

trajectory clusters relative to the fifth.

DISCUSSION

The work we describe suggests that transforming residual test scores into percentile ranks 

reflecting study participants’ performance relative to that of other study participants may 

offer a useful strategy for “bridging” pooled longitudinal data on global cognitive function 

when assessment tools and/or measurement strategies change within and across study 

protocols. Specifically, our findings suggest: a) the transformation of WHIMS and WHIMS-

ECHO 3MSE and TICSm data into relative percentile ranks fit nicely into an a priori 

planned five-cluster model; b) that the resulting clusters were clinically coherent and 

distinct; and c) group based trajectories of cognitive performance across the 10+ year 

observation period conformed to expectations regarding the presence/absence of known risk 

factors for age-related cognitive decline. An anonymous reviewer has noted that the slopes 

over the interval spanning the conversion from 3MSE to TICSm scores tend to be steeper 

(both positively and negatively) than among other intervals, which may reflect a 

heterogeneity in how individuals responded to the two different assessment modes.

It is noteworthy that the revealed differences in AD-PS scores and APOE-ε4 frequencies 

across the identified 5 clusters (Table 3) may offer some insights into the neurobiological 

underpinnings of these observed cognitive function trajectories. For instance, if we 

considered both Clusters 4 and 5 as two relatively resilient groups, the observed difference 

in AD-PS scores suggested these two groups (with an average increase by 0.13) might have 

the least progression of early neurodegeneration as compared to the other groups (with an 

average increase by 0.17–0.18). These two groups also carried the lowest genetic risk for 

AD as determined by APOE-ε4 alleles,19 which would predispose older women to less brain 

reserve at the inception (e.g., Cluster 1) or at a greater risk for cognitive decline (Clusters 2 

and 3) due to multiple APOE4-associated changes in brain regions (e.g., continuing 

hippocampal atrophy; cortical thinning), structural networks (e.g., compromised white 

matter integrity; altered intrinsic network dynamics) and neural function (e.g., reduced 

cerebrovascular blood flow; reduced metabolic activities).

While our results are promising, they are not sufficient to determine the validity of the group 

trajectories described in Figure 1. Specifically, our strategy converted individual 

performance on assessment instruments to relative scores that reflected individual 

participants’ performance level relative to the group at large. Using this strategy, one’s 

relative percentile standing in the group will change both as a function of variability in 

individual level performance (i.e., increase or decrease in cognitive functioning) but also as a 

function of changes in group composition. For example, should proportionally more 

participants with poor cognitive performance be lost to follow-up in a group, the cognitive 

trajectories of some remaining participants may appear to “decline” -- as the lower 

performing members leave the cohort during follow-up. While our approach may benefit 
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from the large size of the WHIMS sample, group-based trajectory models have been fitted 

successfully to much smaller samples20 and to ordinal data.21

Further, confirmatory research is needed to determine the accuracy and clinical validity of 

the group based trajectories characterized in this paper. Additional limitations include the 

observational design, which prohibits assumptions about causality in the observed 

associations between candidate risk factors and cluster membership/cognitive trajectory. 

While the study cohort was large and diverse, it is not a population-based sample.

It is unclear how our approach may be influenced by missing data (i.e. irregular patters of 

observation over time that may be affected by missed visit, lost follow-up, or death). All 

longitudinal analytical methods may be compromised by differential missingness. It is 

important to note that by ranking individuals with respect to others at the same stage of 

follow-up (i.e. not lost or deceased), we are capturing relative, not absolute cognitive 

function. Thus, an individual’s ranking may be influenced by missing data. Haviland, et al., 

report results from a simulation experiment to assess the impact of group-based trajectory 

modeling and found that while group membership was sensitive to missing data, the overall 

shape of modeled trajectories was not materially influenced by the missing data mechanisms 

they modeled. To assess the sensitivity of our findings to missing data, we restricted our 

analyses to the subset of individuals who had at least three cognitive assessments for both 

3MSE and TICSm. This reduced the total sample size from 2,561 to 2,015 (82%). When this 

subset was analyzed in the same manner, there was very little difference between the fitted 

trajectories and group memberships, and all risk factor relationships remained significant 

(p<0.001). This provides some reassurance that, whatever the missing data mechanisms that 

defined the composition of this subset compared with our analysis cohort, these did not 

materially affect our results.22

In conclusion, the strategy of transforming residual cognitive performance scores to 

percentile ranks to reflect relative performance may be useful for bridging data across 

changes in assessment protocols.
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Impact Statement

We certify that this work is novel. This research demonstrates that longitudinal 

trajectories of cognitive function can be developed in studies during which assessment 

protocols are changed over time. The internal validity of these trajectories is assessed by 

examining the risk factor profiles of individuals grouped into clusters aligned with these 

trajectories. Four risk factor relationships are examined, using representatives from the 

domains of demography, genetics, clinical assays, and brain structure.
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Figure 1. 
Characteristic patterns of changes in cognitive function over time spanning the MRI, as 

identified through trajectory analyses.
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Figure 2. 
Odds ratios and 95% confidence intervals for markers of increased risk for cognitive decline 

for each cluster relative to cluster 5 (Consistently High). The following categorizations were 

used: lack of college, ADPS score above the 75th percentile (ADPS=0.46) for the cohort, 

presence of an APOE-ε4 allele, and diabetes at WHI baseline.
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Table 1

Distribution of risk factors for cognitive deficits and dementia for participants contributing to the analysis.

Risk Factor for Cognitive Impairment
Mean (standard deviation) or N (Percent)

N=2,561

Age at WHIMS-ECHO start 80.8 (3.5)

Age at MRI

 MRI1 (N=1365) 78.5 (3.7)

 MRI2 (N=682) 82.8 (3.5)

Timing of MRI relative to WHIMS-ECHO

 MRI1 −2.6 (0.3)

 MRI2 2.1 (0.4)

Race/Ethnicity, N (%)

 American Indian 5 (0.2%)

 Asian 10 (1.9%)

 African-American 161 (6.3%)

 Hispanic/Latina 37 (1.4%)

 White 2289 (89.4%)

 Other/Multiple 34 (1.3%)

Education

 < High school 112 (4.4%)

 High school graduate 561 (21.9%)

 Some post-HS education 976 (38.1%)

 College graduate 912 (35.6%)

AD-PS Score

 MRI-1 (N=817) 0.33 (0.23)

 MRI-2 (N=567) 0.44 (0.26)

APOE-ε4, (N=1800)

 None 1390 (77.2%)

 1 allele 384 (21.3%)

 2 alleles 26 (1.4%)

Type 2 Diabetes

 At WHI enrollment 125 (4.9%)

 Prior to WHIMS-ECHO 205 (8.0%)
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Table 2

Raw 3MSE and TICSm scores by year.

Year 3MSE TICSm

N Score (SD) N Score (SD)

−5 2498 97.4 (2.9) 0

−4 2495 97.4 (2.8) 0

−3 2080 97.3 (3.0) 0

−2 2155 97.0 (3.2) 0

−1 2423 97.0 (3.2) 0

0 273 96.7 (4.3) 0

1 0 1846 34.9 (5.1)

2 0 2194 34.9 (5.1)

3 0 2222 34.6 (5.3)

4 0 2025 34.7 (5.3)

5 0 1782 34.7 (5.4)
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