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A B S T R A C T   

Wetland CH4 emissions are among the most uncertain components of the global CH4 budget. The complex nature 
of wetland CH4 processes makes it challenging to identify causal relationships for improving our understanding 
and predictability of CH4 emissions. In this study, we used the flux measurements of CH4 from eddy covariance 
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Causal inference 
Machine learning 

towers (30 sites from 4 wetlands types: bog, fen, marsh, and wet tundra) to construct a causality-constrained 
machine learning (ML) framework to explain the regulative factors and to capture CH4 emissions at sub- 
seasonal scale. We found that soil temperature is the dominant factor for CH4 emissions in all studied wetland 
types. Ecosystem respiration (CO2) and gross primary productivity exert controls at bog, fen, and marsh sites 
with lagged responses of days to weeks. Integrating these asynchronous environmental and biological causal 
relationships in predictive models significantly improved model performance. More importantly, modeled CH4 
emissions differed by up to a factor of 4 under a +1◦C warming scenario when causality constraints were 
considered. These results highlight the significant role of causality in modeling wetland CH4 emissions especially 
under future warming conditions, while traditional data-driven ML models may reproduce observations for the 
wrong reasons. Our proposed causality-guided model could benefit predictive modeling, large-scale upscaling, 
data gap-filling, and surrogate modeling of wetland CH4 emissions within earth system land models.   

1. Introduction 

Methane (CH4) has been the second most important contributor to 
post-industrial global warming after carbon dioxide (CO2), with a Global 
Warming Potential (GWP) of 28-34 times of CO2 over a 100-year time 
horizon (Bergamaschi et al., 2013; IPCC, 2013). Wetland CH4 emissions 
are the largest natural global sources, contributing around 20-30% to 
global emissions (Bousquet et al., 2006; Chen and Prinn, 2006; Saunois 
et al., 2020). Global warming (Koffi et al., 2020), anthropogenic emis-
sions (Boothroyd et al., 2017), wetland expansion (Zhang et al., 2017), 
and increasing methanogenic substrate availability (Schuur et al., 2008) 
are expected to increase CH4 emissions and thereby amplify climate 
warming (Tao et al., 2020). Freshwater wetlands remain the largest and 
most uncertain natural CH4 source to the atmosphere (Peltola et al., 
2019; Saunois et al., 2020), but with considerable discrepancies among 
bottom-up biogeochemistry models, top-down atmospheric inversion 
models, and data-driven machine learning models (Koffi et al., 2020; 
Peltola et al., 2019; Saunois et al., 2020). Therefore, improvements in 
the understanding of uncertainty sources and development of robust 
modeling frameworks for CH4 emissions are required to estimate 
present-day and future wetland CH4 emissions (Dean et al., 2018). 

Wetland CH4 emissions are affected by multiple environmental (e.g., 
temperature, redox conditions) and biological (e.g., plant photosyn-
thesis, microbial enzyme activity) factors (Delwiche et al., 2021; Knox 
et al., 2021). Wetland CH4 is produced by methanogens under anaerobic 
conditions (Mayer and Conrad, 1990), with the production rate 
controlled by multiple drivers such as temperature, availability of sub-
strate (Bergman et al., 2000; Schaufler et al., 2010; Whalen, 2005), O2, 
and alternative electron acceptors (Pasut et al., 2021). After production, 
CH4 can be emitted to the atmosphere through various pathways (e.g., 
diffusion, ebullition, plant aerenchyma transport) that are affected by 
temperature, water depth, air pressure, and plant aerenchyma proper-
ties (Bastviken, 2009; Knox et al., 2021; Morin et al., 2014; Rey-Sanchez 
et al., 2018; Villa et al., 2020). CH4 can be oxidized by aerobic bacteria 
when passing through oxic soil or water during transport (Wahlen, 
1993) or even via anaerobic pathways (anaerobic oxidation of methane, 
AOM) (Fan et al., 2021). The impacts of environmental and biological 
factors on CH4 emissions are often non-linear and operate over a range 
of time scales (Sturtevant et al., 2016). For example, the response of CH4 
production to temperature is observed to be hysteretic (Chang et al., 
2021) due to seasonal substrate availability and microbial activity 
(Chang et al., 2020). The response of CH4 emissions to GPP may be 
delayed and the relationship between them has been observed to be 
lagged by hours to days (Hatala et al., 2012a; Rinne et al., 2018), while 
CH4 emission responses to water table fluctuations can be lagged by days 
to months (Chen et al., 2021; Goodrich et al., 2015; Sturtevant et al., 
2016). The multi-driver dependency, nonlinearity, and time-lagged 
characteristics make it challenging to understand how CH4 emissions 
interact with environmental and biological factors and to accurately 
represent them in predictive models (Kim et al., 2020; Sturtevant et al., 
2016; Turner et al., 2021). 

In most ecosystem biogeochemical models, wetland CH4 production 
is represented as a function of net primary production and/or 

heterotrophic respiration (as a proxy for microbial activity), with both 
constrained by environmental scalars (Melton et al., 2013; Wania et al., 
2013; Xu et al., 2016). For example, temperature sensitivity scalars have 
been proposed based on observed CH4 emissions (Yvon-Durocher et al., 
2014). However, in situ observations reveal high variability and uncer-
tainty in CH4 emissions even with nearly identical environmental con-
ditions (Chadburn et al., 2020; Granberg et al., 1997; Hemes et al., 2018; 
Koch et al., 2014; Rinne et al., 2018; Villa et al., 2021; Zona et al., 2016), 
implying much more complex functional relationships between CH4 
emissions and environmental and biological factors. A few ecosystem 
models explicitly represent more of the underlying microbial, plant, and 
abiotic processes leading to wetland CH4 emissions (e.g., ecosys (Grant 
et al., 2015; Grant et al., 2017a; Grant et al., 2017b), BAMS4 (Pasut 
et al., 2021), and JSBACH-methane (Castro-Morales et al., 2018)) and 
confirm that these nonlinear interactions should be considered to 
improve model predictions of methane emissions (Chang et al., 2019). 

In addition to the ecosystem biogeochemical models, Machine 
Learning (ML) models are becoming useful tools for capturing complex 
nonlinear relationships, and have achieved good performance in gap 
filling CH4 emission data (Hatala et al., 2012a; Hatala et al., 2012b; 
Irvin et al., 2021; Kim et al., 2020; Knox et al., 2019; Morin et al., 2014) 
and spatial upscaling (Peltola et al., 2019). However, widely-applied ML 
frameworks do not accurately represent lagged CH4 emission de-
pendencies (Kim et al., 2020). Including lagged variables as predictors 
may improve ML model performance, but risks overfitting, especially for 
multiple-driver dominated ecosystems with limited temporal observa-
tions (Kim et al., 2020). Furthermore, commonly used ML models do not 
consider causality constraints (Pearl, 2019; Reichstein et al., 2019). 
Such ML models may fit an observational dataset well while not being 
driven by causal relationships (Pearl, 2019; Runge et al., 2019a). In this 
study, we explore whether an ML model that represents lagged re-
sponses and considers underlying causal relationships can improve 
process understanding and wetland CH4 emission predictions. 

We used CH4 emission measurements at 30 eddy covariance towers 
covering 4 wetland types (bog, fen, marsh, and wet tundra), to test three 
hypotheses: (1) It is possible to infer with statistical confidence causal 
relationships between drivers and CH4 emissions. (2) The environmental 
drivers significantly affecting methane emissions differ among the 
wetlands by their type and location. (3) Future model predictions that 
are well calibrated based on current flux observations, but differ in their 
assumed causal relationships between drivers and methane emissions, 
will diverge significantly. To test these hypotheses, we develop an in-
tegrated framework that combines causality and ML to improve un-
derstanding of causal relationships affecting CH4 emissions and 
modeling of wetland CH4 emissions across various wetland ecosystems. 
In this work, a causal relationship exists between predictor (X) and CH4 
emissions if, when excluding the confounding effects from other pre-
dictors and from the history of CH4 emissions, knowing the predictor (X) 
could significantly reduce the uncertainty in predicting CH4 emissions 
(Abdul Razak and Jensen, 2014; Runge et al., 2019a). The overarching 
goal of this study is to develop, train, and validate a ML model to 
improve predictive modeling of wetland CH4 emission for diverse 
wetlands. 

K. Yuan et al.                                                                                                                                                                                                                                    
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2. Methodology 

2.1. Study sites and data description 

The dataset used in this study is from the FLUXNET-CH4 synthesis 
activity, which compiles, standardizes, and gap-fills available daily eddy 
covariance CH4 emission data, via the regional networks of AmeriFlux, 
EuroFlux, OzFlux, and AsiaFlux (Delwiche et al., 2021; Knox et al., 
2019). We focus on four types of natural freshwater wetlands (bog, fen, 
marsh, and wet tundra), and use 30 wetland sites, each with at least one 
year of CH4 observations (Fig. 1; Table 1). The wetland classification is 
based on the site-specific literature (Delwiche et al., 2021). Daily CH4 
emissions (FCH4 ) and 13 potential drivers are considered in our analysis: 
Air Temperature (Ta), Topsoil Temperature (Ts) (detailed information of 
soil temperature depth can be seen in Delwiche et al. (2021)), Water 
Table Depth (Dwt), Precipitation (P), Soil Water Content (θ), Relative 
Humidity (RH), Vapor Pressure Deficit (VPD), Atmospheric Pressure 
(PA), Wind Speed (WS), and Incoming Shortwave Radiation (SW); and 
biological factors: Gross Primary Production (GPP), Ecosystem Respi-
ration (RECO), and Net Ecosystem Exchange (NEE) (See variable 
availability for each site in Table S1). These variables are widely 
acknowledged as important driving factors for wetland CH4 emissions 
(Knox et al., 2021; Oertel et al., 2016). Details of data standardization 
for the FLUXNET-CH4 dataset are presented in Knox et al. (2019). In this 
study, we used the observed non-gap-filled measurements to maintain 
the original dynamic patterns and avoid potential biases from the 
gap-filling algorithms that have their own assumed causal relationships. 

2.2. Transfer entropy analysis 

We employ a transfer entropy approach with PCMCI framework 
(Runge et al., 2019b) to identify non-linear directional relationships 
between environmental and biological factors and FCH4 . Transfer en-
tropy is a powerful tool to reveal the causality for non-linear and 
asynchronous systems (Bouskill et al., 2020; Liu et al., 2019; Schreiber, 
2000). The approach quantifies information entropy flow from source 
variables (e.g., Ta) to the target variable (FCH4 ) by measuring the infor-
mation entropy reduction in the target variables when excluding effects 
from various confounders (Yuan et al., 2022; Li et al., 2022). If transfer 
entropy is statistically significant, the causal relationship from a source 
variable to the target variable is confirmed. For each pair of variables of 
interest, we calculate the transfer entropy (T) from source variable X to a 
target variable Y considering the confounders of Z (Schreiber, 2000): 

T(X→Y) =
∑

yt ,z,x
[l]
t

p
(
yt, z, x[l]t

)
log2

p
(

yt|
(

z, x[l]t

))

p(yt|z)
(1)  

where l is the corresponding time lag of source variable X. p is the 
probability density. Compared with the linear and nonlinear correlation 
based methods (e.g., mutual information in Knox et al. (2021)), transfer 
entropy can explicitly exclude confounding effects when detecting the 
causal strength from one variable to FCH4 through removing shared in-
formation between confounders (Z) and the target variable (Y). 

In theory, all potential confounders should be included when iden-
tifying causal relationships. However, in practice, too many confounders 
will cause high dimensionality and statistical instability issues (Runge 
et al., 2019a; Yuan et al., 2021). For simplicity, previous studies often 
considered the immediate history of a target variable as the confounder, 
assuming that it contributes the most confounding information to the 
target (Ruddell and Kumar, 2009; Yuan et al., 2021). However, wetland 
FCH4 can be jointly regulated by multiple factors including the history of 
FCH4 . To minimize the interferences from important confounders and to 
avoid high dimensionality, we adaptively considered three confounders 
that have the strongest control on the variation of FCH4 through the 
PCMCI framework (Runge et al., 2019b). PCMCI contains two key steps: 
(1) PC (named after its inventors Peter and Clark) (Spirtes et al., 2000) 
and (2) Momentary Conditional Independency (MCI) (Runge et al., 
2019b). To infer the causal strength from a source variable to the target 
variable, we firstly used the transfer entropy method in PC to rank the 
contribution of all potential confounders (e.g., air temperature, soil 
water content) with relative lower dimensionality (Spirtes et al., 2000), 
and used transfer entropy in MCI to calculate the causal strength from a 
source variable to the target variable by excluding the information en-
tropy from the most important confounders (Runge et al., 2019b). We 
iteratively conducted the causal inference process for each variable to 
obtain the causal strength (Fig. S1). 

The shuffled surrogate method (Kantz and Schürmann, 1996) was 
employed to test the statistical significance of transfer entropy. This 
method randomly shuffles source and target time series to destroy time 
correlations. Shuffled surrogate transfer entropy was computed 100 
times through Monte Carlo simulations. A one-tailed significance test is 
then applied to determine the 95% confidence of the transfer entropy 
(Ruddell and Kumar, 2009). 

2.3. CH4 emission predictive models 

We develop a causality constrained interpretable ML model based on 
the Long-Short-Term-Memory framework (Guo et al., 2019a; Hochreiter 
and Schmidhuber, 1997; Li et al., 2020) for prediction (hereafter 
causal-LSTM). We compared the causal-LSTM model performance, in-
ternal functional relationships, and model sensitivity against its baseline 
LSTM model (described below), to illustrate the benefit of including 
causality constraints in prediction. 

2.3.1. Baseline model 
The baseline naïve LSTM model has been widely used in time 

sequence predictions (Alahi et al., 2016; Li et al., 2020). One of the 
advanced features of LSTM is the gate mechanism that controls the in-
formation flow to be memorized or forgotten, which enables capturing 
short-term and long-term dependencies underlying data sequences. 
Here, we use the LSTM model for prediction, given the lagged responses 
of emissions to environmental and biological factors. The recursive 
representations of LSTM and prediction can be represented as: 

ht, ct = f (xt, ht− 1, ct− 1)

Ŷ T+1 = WlhT + bl
(2)  

where xt (t is time step, 0<t ≤ T) is the input vector, ct is the cell memory 
state vector, and ht represents the hidden state vector with useful 

Fig. 1. (a) Geographic locations and wetland types of the 30 selected eddy 
covariance sites. (b) Mean annual temperature and precipitation of each site. 
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information for predictions. In this study, xt represents the biotic and 
abiotic drivers across sites; hT is the hidden state vector at the last time 
step T; ŶT+1 is the predicted FCH4 at the time step T+1; and Wl and bl are 
the parameters that need to be learned. The f in Eq. (2) is an integrated 
function that includes five individual equations: 

ft = σ
(
Wxf xt + Whf ht− 1 + bf

)

it = σ(Wxixt + Whiht− 1 + bi)

ot = σ(Wxoxt + Whoht− 1 + bo)

ct = ft ⊙ ct− 1 + it ⊙ tanh(Wxcxt + Whcht− 1 + bc)

ht = ot ⊙ tanh(ct)

(3)  

where ft, it, and ot are gating vectors that control how much information 
for the cell memory to forget, input/update, and output, respectively; σ 
is the sigmoid activation function; ⊙ is element-wise product; Wxf, Whf, 
Wxi, Whi, Wxo, Who, Wxc, and Whc are linear transformation matrices that 
need to be learned; and bf, bi, bo, and bc are corresponding bias vectors 
obtained through model training. 

For the LSTM, we used the recursive feature elimination (RFE) 
method (Guyon et al., 2002) to remove spurious predictors. Specifically, 
we iteratively removed one predictor, used the remained predictors to 
train the LSTM, and calculated the correlation coefficient between 

Table 1 
FLUXNET-CH4 site information of the 30 sites used in this analysis.  

Wetland 
Type 

Site ID Site name IGBP LAT LON Startyear Endyear Data DOI References 

Bog CA- 
SCB 

Scotty Creek Bog WET 61 -121 2014 2017 DOI: 10.18140/FLX/ 
1669613 

(Sonnentag and Helbig, 
2020a) 

CA- 
SCC 

Scotty Creek Landscape ENF 61 -121 2013 2016 DOI: 10.18140/FLX/ 
1669628 

(Sonnentag and Helbig, 
2020b) 

DE- 
SfN 

Schechenfilz Nord WET 48 11.33 2012 2014 DOI: 10.18140/FLX/ 
1669635 

(Schmid and Klatt, 2020) 

FI-Si2 Siikaneva II WET 62 24.2 2012 2016 DOI: 10.18140/FLX/ 
1669639 

(Vesala et al., 2020a) 

JP- 
BBY 

Bibai bog WET 43 141.8 2015 2018 DOI: 10.18140/FLX/ 
1669646 

(Ueyama et al., 2020) 

NZ- 
Kop 

Kopuatai WET -37 175.6 2012 2015 DOI: 10.18140/FLX/ 
1669652 

(Campbell and Goodrich, 
2020) 

US- 
BZB 

Bonanza Creek Thermokarst Bog WET 65 -148 2014 2016 DOI: 10.18140/FLX/ 
1669668 

(Euskirchen and Edgar, 
2020a) 

US-Uaf University of Alaska, Fairbanks ENF 65 -148 2011 2018 DOI: 10.18140/FLX/ 
1669701 

(Iwata et al., 2020) 

Fen DE- 
Hte 

Huetelmoor/Rodewiese WET 54 12.18 2011 2018 DOI: 10.18140/FLX/ 
1669634 

(Koebsch and Jurasinski, 
2020) 

DE-Zrk Zarnekow WET 54 12.89 2013 2018 DOI: 10.18140/FLX/ 
1669636 

(Sachs and Wille, 2020) 

FI-Lom Lompolojänkkä WET 68 24.21 2006 2010 DOI: 10.18140/FLX/ 
1669638 

(Lohila et al., 2020) 

FI-Sii Siikaneva I (FI-Sii) WET 62 24.19 2013 2018 DOI: 10.18140/FLX/ 
1669640 

(Vesala et al., 2020b) 

SE-Deg Degero WET 64 19.56 2014 2018 DOI: 10.18140/FLX/ 
1669659 

(Nilsson and Peichl, 2020) 

SE-St1 Stordalen Mire WET 65 19.05 2012 2014 DOI: 10.18140/FLX/ 
1669660 

(Jansen et al., 2020) 

US- 
BZF 

Bonanza Creek Rich Fen WET 65 -148 2014 2016 DOI: 10.18140/FLX/ 
1669669 

(Euskirchen and Edgar, 
2020b) 

US-Los Lost Creek WET 46 -90 2014 2018 DOI: 10.18140/FLX/ 
1669682 

(Desai and Thom, 2020) 

Marsh US- 
DPW 

Disney Wilderness Preserve Wetland WET 28 -81.4 2013 2017 DOI: 10.18140/FLX/ 
1669672 

(Hinkle and Bracho, 2020) 

US- 
LA2 

Salvador WMA Freshwater Marsh WET 30 -90.3 2011 2013 DOI: 10.18140/FLX/ 
1669681 

(Holm et al., 2020) 

US- 
Myb 

Mayberry Wetland WET 30 -122 2011 2018 DOI: 10.18140/FLX/ 
1669685 

(Matthes et al., 2020) 

US- 
ORv 

Olentangy River Wetland Research 
Park 

WET 40 -83 2011 2015 DOI: 10.18140/FLX/ 
1669689 

(Bohrer and Morin, 2020) 

US-Sne Sherman Island Restored Wetland GRA 38 -122 2016 2018 DOI: 10.18140/FLX/ 
1669693 

(Shortt et al., 2020) 

US- 
Tw1 

Twitchell Wetland West Pond WET 38 -122 2011 2018 DOI: 10.18140/FLX/ 
1669696 

(Valach et al., 2020) 

US- 
Tw4 

Twitchell East End Wetland WET 38 -122 2013 2018 DOI: 10.18140/FLX/ 
1669698 

(Eichelmann et al., 2020) 

US- 
WPT 

Winous Point North Marsh WET 41 -83 2011 2013 DOI: 10.18140/FLX/ 
1669702 

(Chen and Chu, 2020) 

Wet tundra RU- 
Ch2 

Chersky Reference WET 69 161.4 2014 2016 DOI: 10.18140/FLX/ 
1669654 

(Göckede, 2020; Göckede 
et al., 2019) 

US- 
Beo 

Barrow Environmental Observatory 
(BEO) tower 

WET 71 -157 2013 2014 DOI: 10.18140/FLX/ 
1669664 

(Zona and Oechel, 2020a) 

US-Bes Barrow-Bes (Biocomplexity 
Experiment South tower) 

WET 71 -157 2013 2015 DOI: 10.18140/FLX/ 
1669665 

(Zona and Oechel, 2020b) 

US-ICs Imnavait Creek Watershed Wet Sedge 
Tundra 

WET 69 -149 2014 2016 DOI: 10.18140/FLX/ 
1669678 

(Euskirchen et al., 2020) 

US-Ivo Ivotuk WET 68 -156 2013 2016 DOI: 10.18140/FLX/ 
1669679 

(Zona and Oechel, 2020c) 

US- 
NGB 

NGEE Arctic Barrow SNO 71 -157 2012 2018 DOI: 10.18140/FLX/ 
1669687 

(Torn and Dengel, 2020)  
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observations and predictions after removing the predictor. Then, we 
removed the weakest predictor which showed the lowest impacts on 
model performance, and repeated the predictor elimination process 
until only one predictor was left. Finally, we present LSTM modeling 
results based on the subset of predictors selected by RFE method that 
have the highest model performance. 

2.3.2. Causality constrained LSTM 
Although baseline LSTM is capable of capturing short-term and long- 

term dependencies in the input time series, it works as a black-box and 
cannot explicitly select important driving variables and lacks inter-
pretability of its predictions. Also, the dependencies identified within 
the LSTM model are based on correlations rather than causality (a more 
informative directional relationship). To this end, the LSTM model can 
be improved through attention mechanism, an effective weight assign-
ment method, to increase its transparency (Alahi et al., 2016; Guo et al., 
2019a; Li et al., 2020; Liang et al., 2018; Qin et al., 2017; Vaswani et al., 
2017). The weight mechanism explicitly and dynamically assigns larger 
weights to more important variables, thereby improving model perfor-
mance and interpretability (Guo et al., 2019a; Li et al., 2020). However, 
without the guide or constraint of causality, the correlation-based ML 
models may represent wrong processes (e.g., mis-capture dominant 
causal drivers) (Moraffah et al., 2020; Pearl, 2019; Runge et al., 2019b), 
making the model unreliable, especially for predictions using multiple 
drivers with similar seasonal trends (confounding) information under 
climate change (Runge et al., 2019a). In addition, we further imposed 
additional constraints using causal relationships from input variables to 
the target variable and led to the causal-LSTM model. The causal-LSTM 
model first calculated the causal relationship using transfer entropy. 
And then through optimization, it reduced the model biases on both 
prediction error and structure difference between model captured var-
iable dependency and observation-based causal strength. Below, we 
introduce the weight assignment mechanism (attention mechanism) in 
the LSTM approach and describe details of how we incorporate causality 
constraints in the model. 

Similar to the baseline LSTM, the ith driving variable at time step t 
can be iteratively transformed to a hidden state vector ht

i through the 
gate mechanism Guo et al., 2019a; Hochreiter and Schmidhuber, 1997; 
Li et al., 2020; Qin et al., 2017). To represent the importance of the ith 
variable at time step t, a weight, wi

t or wi
t is dynamically calculated 

through Eqs. (4) and ((5), and assigned to ht
i. Then, the weighted sum-

mation hsum
i of ht

i across time steps is obtained to represent the summa-
rized information for the ith driving variable: 

wi
t = tanh

(
Wphi

t

)
(4)  

wi
t =

ewi
t

∑T
t0=1ewi

t0

(5)  

hi
sum =

∑T

t=1
wi′

t hi
t (6) 

Where Wp is a parameter matrix that needs to be learned, and tanh is 
the hyperbolic tangent function. T is the total number of time steps. 

To further represent the relative importance of the ith driving vari-
able compared to other driving variables, a weight, αi, is obtained and 
normalized as αi

′ : 

αi = tanh
(
Wa

[
hi

sum, hi
T

])
(7)  

αi
′

=
eαi

∑n
j=1eαj

(8)  

where Wa is a learnable parameter matrix. 
Finally, using the weighted sum of all driving variables, the model 

generates the prediction ŶT+1: 

oi = Wo
[
hi

sum, h
i
T

]
+ bo (9)  

Ŷ T+1 =
∑n

i=1
oiαi

′ (10)  

where the linear function with weight Wo and bias bo, along with weight 
αi

′ produce the final prediction. 
To make the internal structure of the model more consistent with 

underlying physical processes, we use transfer entropy inferred causal 
relationships to constrain the variable importance (variable weight) in 
the predictive model. A larger transfer entropy from a driver (e.g., soil 
temperature) to FCH4 implies variations of the driver can cause larger 
variations in CH4 emissions, compared to other drivers (Ruddell and 
Kumar, 2009). Similarly, a larger variable weight (αi

′ ) indicates that the 
ith variable plays more important roles in modeling the target variable 
(Guo et al., 2019a; Li et al., 2020; Liang et al., 2018; Qin et al., 2017). To 
guide the model to learn dependencies between causally dominant 
drivers and FCH4 , we measure the difference between transfer entropy 
inferred feature importance vector αTE and that of the model captured 
feature importance vector αk for each sample k, and integrate the dif-
ference along with modeled errors into the final loss function (Eq. (11)). 
In the vector αTE, αTEi represents the transfer entropy from the ith driving 
variable to FCH4 . In αk, αk,i represents the ith variable weight, αi

′ , for a 
sample k. Each vector is divided by its summation to obtain a probability 
distribution ranging from 0 to 1, and KL-Divergence (Kullback and 
Leibler, 1951) (the second item in the loss function, Eq. (11)) is used to 
measure the distribution difference between the two vectors: 

Loss =
1
N

∑N

k=1
(Ŷ k − Yk)

2
+ λ

∑N

k=1

∑n

i=1
αTEi

⃒
⃒
⃒
⃒log

αTEi

αk,i
(11)  

where λ is a structural punishment parameter, and a larger λ means that 
the model puts more emphasis on structural similarity instead of errors. 
In Eq. (11), the first right hand side term is the errors between obser-
vations and predictions, while the second term is the structural simi-
larity between causality inferred feature importance and importance the 
model captured. N is the number of predicted data samples, and n is the 
number of variables. The baseline LSTM uses only the first term on the 
right-hand side for the loss function, while the causal-LSTM has addi-
tional constraint from causal relationships via the second term (Eq. 
(11)). 

The model parameters are learned via a back-propagation algorithm 
(Rumelhart et al., 1986) by minimizing the integrated loss (Eq. (11)) 
with a variational dropout to avoid overfitting (Gal and Ghahramani, 
2016). We used the intra-site validation scheme to test model perfor-
mance on capturing intra-site temporal variations of FCH4 . Specifically, 
in each experiment, for each site, we randomly sampled 80% of data as a 
training dataset, remained 10% as a validation dataset (used to avoid 
overfitting during training (Prechelt, 1998)), and retained the remaining 
10% as a test dataset (a holdout dataset used to unbiasedly evaluate the 
final model). We repeated each experiment 20 times to reduce model 
bias due to random data selection. We compared the model performance 
with different λ values (Fig. S2), and selected the best one (λ=0.005) 
that has the lowest prediction errors. To evaluate the lag effects for 
model improvement, we varied the lengths (one-week vs. one-month) of 
time series input used in the models. In addition, we also used the 
leave-one-site-out scheme (here referred as inter-site validation) (Jung 
et al., 2011) to test model performance on spatial extrapolation of FCH4 

on each tested site. Other detailed experimental settings of each model 
are listed in Table S2. 

3. Results 

3.1. Causal relationships derived from transfer entropy 

Transfer entropy analysis revealed that daily FCH4 was most strongly 
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driven by soil temperature (Ts) in the four analyzed wetland ecosystem 
types (bog, fen, marsh, and wet tundra; Fig. 2a), with a range of different 
time lags. The statistics of dominant drivers at each individual site also 
showed that Ts dominated in most sites (Fig. S3). Furthermore, the 
strength of the Ts → FCH4 relationship declined with increasing mean air 
temperature (slope = -0.0014, R value = -0.63, p value <0.05) (Fig. 2b). 
This inverse relationship suggested that CH4 emissions in colder regions 
were more sensitive to temperature than in warmer areas. The control 
from air temperature (Ta) was weaker than that from Ts and was 
prominent only at fen and marsh wetlands (Fig. 2a). 

Two biological factors, Ecosystem Respiration (RECO) and plant 
Gross Primary Production (GPP), also exerted strong controls on daily 
FCH4 in bog, fen, and marsh wetlands. These strong relationships be-
tween FCH4 and vegetation carbon turnover are consistent with the 
findings of many previous studies (Hatala et al., 2012a; Mitra et al., 
2020; Rinne et al., 2018). Plant GPP stimulates CH4 production indi-
rectly by providing carbon input, mainly via root exudates fueling mi-
crobial activity, which produces substrates (such as acetate and CO2) for 
acetotrophic and hydrogenotrophic methanogenesis (Bastviken, 2009; 
Mitra et al., 2020; Ström et al., 2012; Whiting and Chanton, 1993). 
Additionally, GPP can be seen as a proxy of plant-mediated CH4 trans-
port via aerenchyma tissue (Bastviken, 2009; King et al., 1998; Turetsky 
et al., 2014). Previous studies argued that the relationship between GPP 
and FCH4 may be due to covariation with confounding drivers (e.g., soil 
temperature) (Chang et al., 2021; Knox et al., 2019). In this study, we 
confirmed the existence of a strong coupling from GPP and RECO with 
FCH4 by removing confounding effects when identifying the causal re-
lationships across multiple wetland types. 

Compared with temperature and biological factors, the controls from 
other variables on FCH4 were much weaker (Figs. 2a, S3) and less 
consistent across wetland types. For example, VPD controlled FCH4 more 
at bog and fen ecosystems, while PA showed weak causal relationships 
with FCH4 across all sites. For water-related factors, significant controls 
on FCH4 existed only at a few sites, which may be attributed to limited 
observations of water table depth (Dwt, 16 sites) and soil water content 
(θ, 9 sites), and limited variations of soil wetness across studied sites 
(more details are discussed in Section 4.1). 

3.2. FCH4 predictions with causal constraints 

Because causal relationships varied across wetland ecosystems, we 
trained independent ML models for each wetland type (bog, fen, marsh, 
and wet tundra). Two types models were considered: Long Short-Term 
Memory (LSTM) and causality-constrained interpretable LSTM (causal- 
LSTM). We found that Causal-LSTM performed consistently better than 

LSTM for all four wetland types with higher Pearson correlation coef-
ficient (R) and lower relative MAE (mean absolute error) when inputting 
four weeks of historical drivers (Table S3 and S4). For example, R values 
in LSTM ranged from 0.861 to 0.908 and relative MAE ranged from 
0.271 to 0.433, while R in causal-LSTM ranged from 0.904 to 0.921 and 
relative MAE ranged from 0.217 to 0.368 (Fig. 3, Tables S3 and S4). 
Consistently, with one week of inputs, the causal-LSTM also showed 
significantly higher R and lower relative MAE compared with LSTM in 
all wetland types (p < 0.05, Tables S5 and S6). We also compared the 
causal-LSTM approach with four other widely used ML algorithms 
(random forest, decision tree, artificial neural networks, and support 
vector machine), and found that causal-LSTM had the highest prediction 
accuracy (Fig. S4), with R value of 0.94 between observations and 
predictions of causal-LSTM across all sites (Fig. S5). 

For model evaluation with the inter-site validation scheme, causal- 
LSTM also performed reasonably well with R value of 0.75 between 
observations and predictions (Fig. S6) and lower biases than that of 
LSTM (Table S7). However, the inter-site validation performance of 
causal-LSTM dropped, compared with the intra-site validation scheme 

Fig. 2. (a) Causal relationships between environmental and biological factors and daily FCH4 averaged across sites within four wetland ecosystems. Colors in the grid 
squares show the strength of transfer entropy (normalized to range from 0 to 1) from each variable to FCH4 ; darker colors represent larger values (a grey grid means 
that the observation data is unavailable). (b) Relationship between the strength of Ts → FCH4 relationships and site Mean Annual Temperature (MAT); the grey bounds 
show a 95% confidence interval. 

Fig. 3. Model performance comparison with different input lengths for LSTM 
(green and purple boxes) and causal-LSTM (yellow and red boxes), in terms of 
(a) correlation coefficient (R), and (b) relative MAE between predictions and 
observations. The boxes represent 25th to 75th percentiles, and the whiskers 
represent 5th to 95th percentiles of R or MAE for each wetland type. 
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especially for the marsh (the mean R value dropped to 0.81 in bog, 0.81 
in fen, 0.86 in wet tundra, and 0.69 in marsh), which may be due to the 
strong spatial heterogeneity of FCH4 magnitude (e.g., mean CH4 emission 
ranged from 2.706 nmol m− 2 s− 1 to 165.472 nmol m− 2 s− 1 across 
different sites) and environmental conditions (e.g., annual precipitation 
in marsh varied from ~200 to ~1400 mm/year). Overall, we conclude 
that the causal-LSTM provides the most effective approach to model 
wetland FCH4 . 

The results showed that model performance tended to be improved 
as the length of input time series increased from one to four weeks for 
both causal-LSTM (Fig. 3a and b, yellow vs. red bars) and LSTM models 
(Fig. 3a and b, green vs. purple bars). For R, the performance of both 
models at bog, and marsh was significantly (p < 0.05; Tables S8 and S9) 
improved as the input data length increased. Similarly, in terms of 
relative MAE, the causal-LSTM model showed significantly lower biases 
(p < 0.05; Table S10) in bog, marsh, and wet tundra ecosystems, and 
LSTM showed significant lower biases in bog and wet tundra (p<0.05, 
Table S11). Overall, longer histories of drivers (i.e., memories) can 
provide additional information for predictions, especially in bog, marsh, 
and wet tundra. 

4. Discussions 

4.1. Soil temperature versus soil water control on FCH4 

Wetland CH4 emissions are regulated by multiple biotic (i.e., pro-
duction, oxidation) and abiotic (i.e., advection, diffusion) processes, 
with each posting different dependencies on environmental factors. 
Therefore, the emergent relationships between wetland methane emis-
sions and the corresponding environmental factors are expected to be 
complex and diverse across different wetland ecosystem types and 
across sites with different climate conditions (Turetsky et al., 2014). 
Among those environmental variables, previous studies have identified 
temperature and soil water content as major abiotic drivers for wetland 
CH4 emissions (Knox et al., 2021; Song et al., 2011; Strachan et al., 
2015) because soil water saturation and warm soil conditions are two 
prerequisites for anaerobic production of wetland CH4 (Riley et al., 
2011). 

Here, we found strong soil temperature control on CH4 emissions 
across bog, fen, marsh, and wet tundra ecosystems. The stronger causal 
relationship of Ts → FCH4 compared to Ta → FCH4 is consistent with the 
hypothesis that air temperature may decouple from soil temperature in 
colder ecosystems (e.g., wet tundra) due to snow insulation of the 
ground (Kim et al., 2007). Similar strong correlations between Ts and 
wetland FCH4 have been reported in numerous site-level studies (Gran-
berg et al., 1997; Knox et al., 2021; Morin, 2019). 

We also found relatively weak control from soil water related vari-
ables (Fig. 2), admit low confidence because of limited data. For 
example, soil water content had weak control in fen ecosystems, and 
water table depth had moderate control in bog and marsh ecosystems, 
but not in fen or wet tundra ecosystems. The lack of sensitivity may 
partly be due to the data quality of water related variables (Dwt is 
available in ~50% of our studied 30 sites, and θ is available in only 
~30% of the 30 sites (Table S1)). Another potential reason is the fact 
that the sites used in this study all experienced relatively low variation of 
Dwt (mean standard deviation is 10.6 cm). Strong seasonal fluctuations 
of soil water are more expected at rice paddy or tropical swamp eco-
systems (Jauhiainen et al., 2005; Mezbahuddin et al., 2014), which are 
not included in this study. For example, water table depth could vary 
~80 cm at a managed rice paddy site in northern California and plays an 
important role in driving CH4 emissions during both growing season and 
fallow periods (Knox et al., 2016). Although not frequently occurred, 
extreme droughts may result in significantly different water table at fen 
and bog sites that will reduce the methane emission (Brown et al., 2014; 
Rinne et al., 2020). However, ML model was trained with majority of the 
data to capture non-extreme conditions. In addition, we note that 

several studies reported weak dependencies between Dwt and FCH4 

(Jackowicz-Korczyński et al., 2010; Rinne et al., 2007; Rinne et al., 
2018). Given the limitations in sites and water-related data availability, 
our results highlight the need for more eddy covariance and ancillary 
measurements in bog, fen, marsh, and wet tundra ecosystems, particu-
larly measurements under long-term drying and rewetting conditions, or 
experiencing natural flooding and water table fluctuation. These ob-
servations will facilitate a more complete picture of how various factors 
affect wetland CH4 emissions within these wetland ecosystems. 

4.2. Causal relationships inform model evaluation and development 

In addition to commonly used model evaluation metrics (e.g., MAE 
and R), causal inference provided additional metrics to evaluate and 
benchmark models in terms of internal causal structures. Causal re-
lationships may also help select process-based models with model causal 
structures similar to those in observations. In this analysis, we found that 
methane ML models can achieve comparable performance even though 
they have diverse causal relationships. We visualized variable impor-
tance within LSTM and causal-LSTM models and validated the modeled 
relationships against observed causal relationships identified by transfer 
entropy analysis (Fig. 4). The feature importance of causal-LSTM and 
LSTM were calculated according to attention weight statistics (Guo 
et al., 2019b; Li et al., 2020) and the feature importance derived from 
RFE (Guyon et al., 2002; Meyer et al., 2019) of 20 repeated experimental 
results, respectively, and were both normalized to 0~1. We found that 
LSTM mainly used dependencies from wind, atmospheric pressure, soil 
and air temperature, and total ecosystem respiration to estimate FCH4 , 
which were different from those inferred from observations and 
causal-LSTM (Fig. 4). The feature importance in the causal-LSTM model 
is much more consistent with observations, confirming the effectiveness 
of the causality constraints. 

The inferred causal relationships from biological and environmental 
variables on CH4 emissions vary across different wetland types and time 
windows. Our results show that soil temperature dominantly controls 
FCH4 in wet tundra, while biotic variables along with soil temperature co- 
dominate FCH4 in fens, bogs, and marshes. The different controls imply 
that different ecosystems need to be considered separately in machine 
learning model development (Turetsky et al., 2014). Also for each 
wetland ecosystem, the responses of FCH4 rely on processes with short 
time lags (e.g., CH4 transport, microbial activity) and long time lags (e.g., 
fine-root turnover). Integrating both short and long causal relationships 
may also improve model performance. 

Fig. 4. Comparison of feature importance in (a) LSTM, (b) causal-LSTM, and 
(c) observations. Colors show the corresponding normalized feature importance 
that is normalized between 0 and 1, with higher value indicating 
higher importance. 
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4.3. Implications of considering causal relationships in CH4 emission 
projections 

Our results, in line with previous studies, suggest that data-driven 
ML models may accurately reproduce observations with the wrong 
reasons (Pearl, 2019; Reichstein et al., 2019; Runge et al., 2019a). The 
different causal relationships built within predictive models are criti-
cally important for climate change projections, since the responses of 
CH4 emissions to climate change strongly depend on the strength of the 
underlying causal relationships. Thus we hypothesized that although 
both LSTM and causal-LSTM performed reasonably well under 
present-day conditions, their predictions under warming climate could 
differ due to their differences in internal functional relationships, or 
altered combinations of forcing mechanisms. To test this hypothesis, we 
conducted a theoretical soil warming experiment (+1 ◦C) at all sites 
through modeling. We acknowledged that more complex changes can 
occur in a real soil warming experiment (e.g., soil drying caused by 
warming) (Pries et al., 2017). However, this simple soil warming 
experiment isolates impacts from other environmental or biological 
variables and focuses only on the temperature effect. 

For each wetland type, we calculated the mean change in FCH4 due to 
soil warming across all site years. We defined response ratio to warming 
by percentage change of FCH4 under warmed and controlled conditions. 
Large differences between the LSTM and causal-LSTM existed in 
response to warming, especially for bogs (4.9% vs 21.8%) and fens 
(2.7% vs 10.1%) (Fig. 5). The differences in causal-LSTM predictions are 
significantly larger than those of LSTM for bog, fen, marsh and wet 
tundra sites (p < 0.05; Table S12). Overall, the LSTM model estimated 
lower methane emission in response to warming than causal-LSTM 
model, primarily due to the less important role of soil temperature in 
its internal model functions (Fig. 4a). Therefore, this work highlights the 
importance of considering causal relationships in modeling CH4 emis-
sions under a changing climate. We advocate the use of these types of 
causal relationship constraints for other ecosystem variables calculated 
through machine learning approaches (e.g., FLUXNET-MTE GPP (Jung 
et al., 2011)). In addition, causality constrained ML models could serve 
as surrogate modules for efficient parameterization and high accuracy 
prediction, especially for processes that lack theoretical understanding 
and mathematical model structures. 

5. Conclusions 

Based on in situ eddy covariance measurements of daily CH4 emis-
sions (FCH4 ) at 30 eddy covariance sites in bog, fen, marsh, and wet 
tundra wetlands, we found consistent causal regulations from soil tem-
perature on FCH4 using a transfer entropy approach. We also confirmed 
important causal relationships with ecosystem respiration (RECO) and 
gross primary production at bog, fen, and marsh wetlands. The transfer 
entropy approach explicitly excludes confounding variables and there-
fore reduces the possibility that the observed causal relationship be-
tween FCH4 and RECO or GPP was due to covariation with other 
environmental drivers, such as temperature (Chu et al., 2014; Knox 
et al., 2019). We then developed a predictive model that integrated the 
transfer entropy inferred causal relationships for FCH4 simulations. The 
causality constrained model outperformed other baseline ML models in 
terms of accuracy (relative MAE and R); more importantly, we demon-
strated that including underlying causal relationships in predicting FCH4 

under a 1◦C soil warming could differ by up to a factor of 4, compared 
with traditional ML models. Our results highlighted that those causal 
relationships can be used to benchmark, evaluate, and improve wetland 
methane emission models. Our proposed causality constrained model 
could benefit large-scale upscaling, data gap-filling, and surrogate 
modeling of wetland CH4 emissions within earth system land models. 
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