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Prenatal Exposure to Per- and Polyfluoroalkyl Substances, 
Maternal Thyroid Dysfunction, and Child Autism Spectrum 
Disorder
Hyeong-Moo Shin1, Jiwon Oh2, Rebecca J. Schmidt2,3, Elizabeth N. Pearce4

1Department of Environmental Science, Baylor University, Waco, TX; 2Department of Public Health Sciences, University of 
California, Davis, CA; 3UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA; 
4Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, 
MA, USA 

Autism spectrum disorder (ASD), with its high economic and societal costs, is a growing public health concern whose prevalence 
has risen steadily over the last two decades. Although actual increased incidence versus improved diagnosis remains controversial, 
the increased prevalence of ASD suggests non-inherited factors as likely contributors. There is increasing epidemiologic evidence 
that abnormal maternal thyroid function during pregnancy is associated with increased risk of child ASD and other neurodevelop-
mental disorders. Prenatal exposure to endocrine-disrupting chemicals such as per- and polyfluoroalkyl substances (PFAS) is known 
to disrupt thyroid function and can affect early brain development; thus, thyroid dysfunction is hypothesized to mediate this relation-
ship. The concept of a potential pathway from prenatal PFAS exposure through thyroid dysfunction to ASD etiology is not new; 
however, the extant literature on this topic is scant. The aim of this review is to evaluate and summarize reports with regard to poten-
tial mechanisms in this pathway. 
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INTRODUCTION

Autism spectrum disorder (ASD) is a complex neurodevelop-
mental condition characterized by limited interests, repetitive 
behaviors, and impaired social interaction and communication 
[1]. ASD is a growing public health concern in part due to its 
high economic and societal costs, especially in developed coun-
tries [2]. Annual costs (direct medical, direct non-medical, and 
productivity combined) of ASD in 2025 are projected to reach 

nearly one-half trillion dollars in the United States [3]. The 
prevalence of ASD has risen steadily in the last two decades [4]; 
in the United States in 2018, one of every 44 children (3 to 8 
years old) was estimated to have ASD [5]. Although actual in-
creased incidence versus improved diagnosis remains contro-
versial [6-8], the rapid rise in ASD prevalence suggests that en-
vironmental factors may contribute to ASD etiology [9,10]. In 
the last decade, environmental research linking modifiable fac-
tors to ASD has proliferated, with replication or meta-analysis 
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covering pesticides [11,12], air pollution [13,14], maternal fever 
during pregnancy [15,16], periconceptional nutrition [17-19], 
maternal diabetes or obesity [20,21], preeclampsia [22], and in-
terpregnancy interval [23-25].

Thyroid hormones (THs) are essential for brain development 
and influence brain function throughout life [26,27]. Animal 
studies have shown that THs regulate crucial processes of brain 
development in mammals, including proliferation, migration, 
and differentiation of neuronal cells [28-30]. There is epidemio-
logic evidence that abnormal maternal thyroid function during 
pregnancy is associated with increased risk of child ASD and 
other neurodevelopmental disorders [31]. In addition, the preva-
lence of thyroid peroxidase antibody (TPO-Ab), a marker for 
thyroid autoimmunity, was reported to be higher in families 
with autism probands than in comparison subjects [32]. 

Simultaneous with a growing understanding of the impor-
tance of maternal thyroid homeostasis for fetal brain develop-
ment, chemical production volumes have increased 300-fold 
since the 1970s [33], leading to widespread human exposure to 
compounds known as endocrine-disrupting chemicals (EDCs) 
[34-36]. EDCs are defined as exogenous chemicals that inter-
fere with hormone actions, resulting in increased risk of adverse 
health effects [37]. A wide range of EDCs disrupt thyroid ho-
meostasis in laboratory animal studies [38]. Hundreds of syn-
thetic chemicals interfere with the production, transport, and 
metabolism of THs [39]. Studies have shown that a broad range 
of EDCs can bind to TH receptors, may produce complex ef-
fects on TH signaling [40-42], and either alone or in combina-
tion, act at many levels in the thyroid system [43].

Among a large number of EDCs, this review focuses on per- 
and polyfluoroalkyl substances (PFAS), a class of synthetic 
chemicals widely used in consumer (e.g., cookware, dental 
floss) and industrial (e.g., lining of gas pipes, surfactant) appli-
cations [44]. Recently PFAS have received significant public at-
tention due to increasing evidence of their widespread environ-
mental contamination and adverse health effects. As PFAS-con-
taining products are widely used in daily life, many common 
PFAS compounds have been detected in the blood of most of 
the United States general population [45]. PFAS have also been 
detected in cord blood [46,47] and in amniotic fluid [48,49]. 
Importantly, both animal studies [50-52] and epidemiologic 
studies [53-55] have shown that prenatal exposure to PFAS dis-
rupts thyroid function and immune systems, which can alter 
early brain development (Fig. 1). Moreover, there is epidemio-
logic evidence that PFAS exposure is associated with child neu-
rodevelopmental disorders such as attention-deficit/hyperactivi-
ty disorder [56,57], indicating that PFAS may adversely affect 
child brain development. 

The aim of this review is to assess evidence for a potential 
pathway from prenatal PFAS exposure through abnormal thyroid 
function to ASD etiology. Hypothesizing that maternal thyroid 
dysfunction mediates a relationship between prenatal PFAS ex-
posure and child ASD, we have focused on potential mecha-
nisms related to thyroid dysfunction. This review also discusses 
antibody-mediated immune dysregulation that may cause thyroid 
dysfunction [58,59]. Building on the current report, subsequent 
research may help set the stage in support of prenatal thyroid 
treatment and strategies to prevent or reduce PFAS exposure.

Fig. 1. Per- and polyfluoroalkyl substances (PFAS) are known to disrupt immune systems and the hypothalamus-pituitary-thyroid axis, ei-
ther alone or in combination. Thyroid peroxidase antibody (TPO-Ab) and thyroglobulin antibody (Tg-Ab), which are common in autoim-
mune thyroid disorders, may cause thyroid dysfunction. Primary and secondary pathways discussed in this review are represented in blue 
and magenta, respectively. TSH, thyroid stimulating hormone; T3, triiodothyronine; T4, thyroxine.
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THYROID FUNCTION

Thyroid function is assessed with thyroid stimulating hormone 
(TSH) and free thyroxine (FT4). When TSH is high and FT4 is 
low or within a normal range, hypothyroidism is diagnosed. Ac-
cording to the American Thyroid Association guidelines, the 
population-based trimester-specific normal reference range for 
serum TSH should be used when assessing thyroid function 
during pregnancy [60]. However, reference ranges which are 
assay-, laboratory-, cohort-, and population-specific are pre-
ferred when available. Some studies have defined maternal ab-
normal thyroid function based on hospital diagnosis codes for 
hyperthyroidism or hypothyroidism or on prescriptions for THs 
or anti-thyroid drugs [61,62].

POTENTIAL MECHANISMS

Abnormal thyroid function and ASD 
Epidemiologic studies have suggested that maternal gestational 

hypothyroidism, hyperthyroidism, and hypothyroxinemia were 
associated with increased risk of ASD in children (Table 1) [61-
66]. In addition, low FT4 levels in cord blood were associated 
with increased ASD risk [67,68]. Overt maternal hypothyroid-
ism is associated with impaired offspring cognition, which re-
flects that placental transfer of maternal THs to the fetus is es-
sential for the regulation of fetal brain development [69,70]. Se-
vere iodine deficiency (in which inadequate substrate for TH 
synthesis causes both maternal and fetal TH levels to be low) 
may cause cretinism, a syndrome of profoundly impaired 
growth and neurodevelopment. Maternal thyroid dysfunction 
during pregnancy is also known to be associated with adverse 
maternal and fetal outcomes such as preterm delivery, pre-
eclampsia, and low birth weight [71-73], which are known risk 
factors for ASD [22,74-77]. 

Antibody-mediated immune dysregulation, ASD, and 
thyroid dysfunction 
There is substantial evidence that autoimmunity and immune 

Table 1. Associations between Prenatal Maternal Thyroid Function or Thyroid Antibodies and Autistic Outcomes in Children

Study Population 
(countries)

Sample size, 
n

ASD diagnosis 
method

Thyroid or 
antibody 

measurement

Key thyroid dysfunctions 
or antibody positivitya Estimate (95% CI)b

Roman et al. (2013) [64] Population-based cohort  
(The Netherlands)

4,309 PDP-CBCL SRS TSH
FT4
TPO-Ab

Severe hypothyroxinemia OR, 3.89 (1.83–8.20)

Andersen et al. (2014) [61] Population-based cohort  
(Denmark)

857,014 ICD-10 Not measuredc Hyperthyroidism
Hypothyroidism

HR, 1.34 (1.14–1.59)

Andersen et al. (2018) [66] Population-based cohort  
(Denmark)

7,624 ICD-10 TSH
FT4

Hypothyroidism
Overt hyperthyroidism

HR, 1.75 (1.12–2.73)
HR, 2.18 (1.08–4.39)

Getahun et al. (2018) [63] Retrospective cohort (USA) 397,201 DSM-IV TSH
FT4

Hypothyroidism HR, 1.31 (1.13–1.53)

Levie et al. (2018) [65] Population-based cohort 
(Spain, the Netherlands,  
the United Kingdom)

9,036 CAST
PDP-CBCL
SCDC

TSH
FT4
TPO-Ab

FT4 <5th percentile
FT4 >95th percentile
FT4 <2.5th percentile
FT4 >97.5th percentile

OR, 1.5 (1.0–2.3)
OR, 1.2 (0.7–2.1)
OR, 1.3 (0.7–2.5)
OR, 1.9 (1.0–3.4)

Rotem et al. (2020) [62] Population-based cohort  
(Israel)

437,222 ICD-9 TSH
FT4

Hypothyroidism
Hyperthyroidism
Other thyroid conditions

OR, 1.28 (1.11–1.49)
OR, 1.39 (0.88–2.18)
OR, 1.22 (1.05–1.42)

Brown et al. (2015) [32] Nested case-control study  
(Finland)

960 ICD-10 TPO-Ab TPO-Ab+ OR, 1.78 (1.16–2.75)

ASD, autism spectrum disorder; CI, confidence interval; PDP-CBCL, the Pervasive Developmental Problems Subscale of the Child Behavior Checklist 
for Toddlers; SRS, social responsiveness scale; TSH, thyroid stimulating hormone; FT4, free thyroxine; TPO-Ab, thyroid peroxidase antibody; OR, odds 
ratio; ICD-9 or 10, the ninth or tenth revision of the International Classification of Diseases; HR, hazard ratio; DSM-IV, Diagnostic and Statistical Manu-
al of Mental Disorders, Fourth Edition; CAST, Childhood Autism Spectrum Test; SCDC, Social Communication Disorder Checklist; TPO-Ab+, positive 
to TPO-Ab.
aEach study defined thyroid dysfunction using various levels of TSH and/or FT4; bAdjusted for various confounders and covariates in each study; cHy-
perthyroidism and hypothyroidism were defined by the various combinations of first hospital diagnosis of hyperthyroidism or hypothyroidism, number 
of anti-thyroid medications, and number of prescriptions of thyroid hormones. 
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system dysfunction likely play a role in the development of 
ASD [78]. A body of epidemiologic evidence has shown that 
autoimmune disorders are significantly more frequent in fami-
lies of autism probands than in those of comparison subjects 
[79-81]. More mothers of children with ASD had ASD-specific 
autoantibodies to proteins in the developing brain, compared 
with mothers of typically developing children [82-87]. In addi-
tion, a higher prevalence of maternal ASD-specific autoantibod-
ies during pregnancy is associated with increased risk of child 
ASD and other neurodevelopmental disorders [88-90]. 

In a case-control Finnish study, maternal TPO-Ab positivity 
during pregnancy was associated with increased risk of child 
ASD (odds ratio, 1.78; 95% confidence interval, 1.16 to 2.75) 
(Table 1) [32], implying that there is a potential role of thyroid 
autoimmunity in ASD etiology, although in that analysis mater-
nal FT4 and TSH levels were not independently associated with 
ASD. It has been demonstrated that women with TPO-Ab posi-
tivity have a blunting of the typical thyroidal response to human 
chorionic gonadotropin in early gestation [91,92], resulting in 
lower serum FT4 levels and higher serum TSH levels. Thus, 
thyroid autoimmunity (high TPO-Ab and/or thyroglobulin anti-
body [Tg-Ab]) may be a secondary intermediate outcome (1) 
between PFAS exposure and ASD or (2) between PFAS expo-
sure and thyroid dysfunction (Fig. 1).

Prenatal PFAS exposure and ASD
To our knowledge, seven epidemiologic studies to date have ex-
amined associations between maternal PFAS exposure and child 
ASD [49,93-98]. Although results differed, three studies showed 
that higher prenatal exposure to perfluorohexane sulfonate, per-
fluorononanoate, perfluorooctanoate (PFOA), or perfluorooc-
tane sulfonate was associated with increased risk of child ASD 
(Table 2) [96-98]. Potential reasons for inconsistent results 
among these studies include differences in timing of exposure 
measures in pregnancy, characteristics of study populations, 
methods of identification or confirmation of ASD cases, and ge-
netic factors. In addition, because PFAS were moderately corre-
lated with each other and one PFAS may confound another, 
consideration of a single compound in the model may explain, 
at least in part, the inconsistent findings. The number of ASD 
cases is relatively small in three prospective birth cohorts [49, 
93,97], potentially resulting in inadequate power to detect asso-
ciations. 

Prenatal PFAS exposure, thyroid dysfunction, and immune 
dysregulation
Many epidemiologic studies have shown that higher prenatal 
PFAS concentrations in maternal blood are associated with al-
tered TH levels in maternal blood or cord blood (Table 3) [99-

Table 2. Associations between Prenatal Maternal PFAS Exposure and Autistic Outcomes in Children

Study Population (country) Sample 
size, na

ASD diagnosis 
method Blood sample type PFAS with 

notable findings Estimate (95% CI)b

Braun et al. (2014) [93] Prospective birth cohort (USA) 175 SRS Prenatal maternal serum PFOS β, –2.0 (–4.4 to 0.4)

Liew et al. (2015) [94] Nested case-control study  
(Denmark)

770 ICD-10 Prenatal maternal plasma PFOA
PFOS

RR, 0.98 (0.82–1.16)
RR, 0.87 (0.74–1.02)

Lyall et al. (2018) [95] Nested case-control study 
(USA)

986 DSM-IV Prenatal maternal serum PFOA
PFOS

OR, 0.92 (0.74–1.15)
OR, 0.92 (0.73–1.17)

Long et al. (2019) [49] Retrospective cohort  
(Denmark)

210 ICD-8
ICD-10

Amniotic fluid PFOS OR, 0.41 (0.17–0.97)

Shin et al. (2020) [96] Case-control study (USA) 453 ADI-R
ADOS-G

Postnatal maternal serumc PFHxS
PFOS

OR, 1.46 (0.98–2.18)
OR, 1.03 (0.99–1.08)

Oh et al. (2021) [97] Prospective birth cohort (USA) 173 ADOS Prenatal maternal serum PFOA
PFNA

RR, 1.31 (1.04–1.65)
RR, 1.79 (1.13–2.85)

Skogheim et al. (2021) 
[98]

Prospective birth cohort  
(Norway)

1,380 ICD-10 Prenatal maternal plasma PFOA OR, 1.71 (1.20–2.45)

PFAS, per- and polyfluoroalkyl substances; ASD, autism spectrum disorder; CI, confidence interval; SRS, social responsiveness scale; PFOS, perfluo-
rooctane sulfonate; ICD-8 or 10, the eighth or tenth revision of the International Classification of Diseases; PFOA, perfluorooctanoate; RR, relative risk; 
DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition; OR, odds ratio; ADI-R, Autism Diagnostic Interview-Revised; ADOS-
G, Autism Diagnostic Observation Schedules-Generic; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate.
aNumber of mother-child pairs in which the child has SRS or a final diagnosis of ASD; bAdjusted for various confounders and covariates in each study; 
cReconstructed maternal PFAS serum concentrations at the time of pregnancy using a simple pharmacokinetic model and maternal blood samples col-
lected when the child was 2 to 5 years old in a case-control study.
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110]. Although study results are not entirely consistent, increas-
es or decreases in THs indicate that prenatal PFAS exposure 
may disrupt maternal or neonatal thyroid homeostasis. In addi-
tion, three studies have reported that higher exposure to a mix-
ture of PFAS was associated with increased or decreased THs 
[107,109,110], implying that PFAS can disrupt thyroid either 
alone or in combination. Some PFAS levels were significantly 
higher in infants with congenital hypothyroidism compared 
with healthy infants [111]. Two studies reported the relationship 
between prenatal PFAS exposure and thyroid autoimmunity; 
PFOA was inversely associated with TPO-Ab [106], whereas 

perfluorododecanoic acid was positively associated with TPO-
Ab [110].

Studies have shown that PFAS exposure alone was not asso-
ciated with TH levels among those with normal TPO-Ab but 
was associated with increases and decreases in THs among 
those with high TPO-Ab levels or low iodine concentrations. In 
a prospective birth cohort study, higher prenatal PFAS levels 
were associated with increased TSH levels only among preg-
nant women with high TPO-Ab (≥9 IU/mL) [112]. Another 
prospective birth cohort showed that higher prenatal PFOA lev-
els were associated with lower prevalence of TPO-Ab in mater-

Table 3. Associations between PFAS Exposure and Thyroid Dysfunction in Pregnant Women or Neonates

Study Population (country) Sample size, 
na Blood sample type Thyroid or antibody 

measurement Relationships between PFAS and thyroidb

Kim et al. (2011) [99] Prospective birth cohort 
(South Korea)

44 mothers
43 infants

Prenatal maternal plasma
Cord serum

TT3, TT4, TSH No relationshipc

de Cock et al. (2014) 
[100]

Prospective birth cohort 
(The Netherlands)

83 Cord plasma TT4 PFOA (↑) → TT4 (↑)

Wang et al. (2014) 
[101]

Prospective birth cohort 
(Taiwan)

285 mothers
116 neonates

Prenatal maternal plasma
Cord serum

TT3, TT4
FT4, TSH

PFNA (↑), PFUnDA (↑), PFDoA (↑) → 
FT4 (↓), TT4 (↓)

Berg et al. (2015) 
[102]

Prospective birth cohort 
(Norway)

515 Prenatal maternal serum TT3, TT4
FT4, TSH

PFOS (↑) → TSH (↑)

Shah-Kulkarni et al. 
(2016) [103]

Retrospective birth cohort 
(South Korea)

279 Cord serum TT3, TT4, TSH PFPeA (↑) → TT4 (↑)

Berg et al. (2017) 
[104]

Prospective birth cohort 
(Norway)

391 Prenatal maternal serum TT3, TT4
FT4, TSH, TPO-Ab

PFOS (↑) → TSH (↑)

Preston et al. (2018) 
[105]

Prospective birth cohort 
(USA)

732 mothers
480 neonates

Prenatal maternal serum
Cord serum

TT4, FT4I
T3U, TSH

PFOA (↑), PFHxS (↑), MeFOSAA (↑) → 
FT4I (↓)

Itoh et al. (2019) 
[106]

Prospective birth cohort 
(Japan)

701 Prenatal maternal serum
Cord serum

FT3, FT4, TSH, 
TPO-Ab, Tg-Ab

PFOS (↑) → TSH (↑)
PFOA (↑) → TPO-Ab (↓)

Lebeaux et al. (2020) 
[108]

Prospective birth cohort 
(USA)

468 Prenatal maternal serum
Cord serum

FT3, TT3, TT4
FT4, TSH

PFOA (↑), PFOS (↑), PFHxS (↑)
→ FT4 (↓)
TPO-Ab (↑) → FT4 (↓)

Preston et al. (2020) 
[107]

Prospective birth cohort 
(USA)

726 mothers
465 neonates

Prenatal maternal plasma
Cord serum

TT4, FT4I
T3U, TSH

PFAS mixture (↑) → FT4I (↓)

Liang et al. (2020) 
[109]

Prospective birth cohort 
(China)

300 Cord plasma FT3, TT4
FT4, TSH

PFAS mixture (↑) → FT3 (↑)

Guo et al. (2021) 
[110]

Prospective birth cohort 
(China)

490 Cord serum FT3, TT3, TT4
FT4, TSH, TPO-Ab, 
Tg-Ab

PFHpA (↑), PFNA (↑) → TSH (↓)
PFOA (↑), PFOS (↑), PFNA (↑), PFUnDA 

(↑) → TT4 (↑)
PFOS (↑), PFUnDA (↑), PFDoA (↑) → 

FT4 (↑)
PFDoA (↑) → TT3 (↑), TPO-Ab (↑)
PFAS mixture (↑) → TT4 (↑), FT4 (↑)

PFAS, per- and polyfluoroalkyl substances; TT3, total triiodothyronine; TT4, total thyroxine; TSH, thyroid stimulating hormone; PFOA, perfluorooc-
tanoate; FT4, free thyroxine; PFNA, perfluorononanoate; PFUnDA, perfluoroundecanoic acid; PFDoA, perfluorododecanoic acid; PFOS, perfluorooc-
tane sulfonate; PFPeA, perfluoro-n-pentanoic acid; TPO-Ab, thyroid peroxidase antibody; FT4I, free thyroxine index; PFHxS, perfluorohexane sulfo-
nate; MeFOSAA, 2-(N-methyl-perfluorooctane sulfonamido) acetate; FT3, free triiodothyronine; Tg-Ab, thyroglobulin antibody; T3U, triiodothyronine 
resin uptake; PFHpA, perfluoroheptanoic acid.
aNumber of mother-child pairs, unless otherwise noted; bAdjusted for various confounders and covariates in each study; cResults were not statistically 
significant even after adjusting for major covariates.
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nal blood and that PFAS-induced thyroid disruption and suscep-
tibility may vary by the presence of two maternal TPO-Ab and 
Tg-Ab [106]. In a subset of United States adults, PFAS expo-
sure was more likely to be associated with thyroid disruption in 
individuals with both TPO-Ab positivity and a urinary iodine 
concentration (UIC) <100 µg/L than in individuals with TPO-
Ab positivity or low UIC alone, or TPO-Ab negative individu-
als with UIC ≥100 µg/L [113]. 

CONCLUSIONS

To date, no studies have examined a potential pathway from 
prenatal PFAS exposure through thyroid dysfunction and/or 
thyroid autoimmunity to ASD etiology within a well-character-
ized ASD population. Iodine deficiency is associated with in-
creased risk of hypothyroidism [114] and known to cause brain 
damage [65,115]. However, most studies included in Tables 1, 3 
have failed to measure important biomarkers that might affect 
maternal thyroid function, such as iodine status or thyroid anti-
bodies. Thus, this review highlights that more rigorous studies 
are needed to yield robust and generalizable information about 
this potential pathway. Moreover, the evidence on mechanisms 
of this pathway summarized in this review suggests that thyroid 
dysfunction could mediate a relationship between prenatal 
PFAS exposure and child ASD, and this potential mediation ef-
fect could help explain significant findings from only three of 
the seven studies on an association between PFAS exposure and 
child ASD [96-98]. Therefore, future studies need to carefully 
disentangle the relationships among all potential mechanisms 
through mediation analysis [116-118] to help explain the under-
lying mechanism of any relationship between PFAS exposure 
and child ASD. 
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