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Modeling complex dynamics and forecasting the future is a fundamental task in science,

such as turbulence modeling and weather forecasting. Physics-based models, which rely on

mathematical principles, can accurately predict dynamics but can be computationally intensive,

and the underlying physical principles may not be entirely understood. Deep Learning (DL)

provides efficient alternatives to simulating dynamics but it lacks physical consistency and

struggles with generalization. Thus, there is a growing need for integrating prior physics

knowledge with deep learning to take the best of both types of approaches to better solve

scientific problems. Thus, the study of physics-guided DL emerged and has made great progress.

In this thesis, we describe the physics-guide DL for dynamics forecasting and presented
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several approaches to improving the physical consistency, accuracy, and generalization of DL

models for dynamics forecasting. The approaches include (1) incorporating prior physical

knowledge into the design of model architecture and loss functions for improved physical

consistency and accuracy, (2) leveraging model-based meta-learning for improved generalization

across heterogeneous domains, (3) simplifying nonlinear dynamics with Koopman theory for

improved generalization over temporal distributional shifts, and (4) incorporating symmetries

into deep dynamics models for improved generalization across relevant symmetry groups and

consistency with conservation laws. In the end, we summarize the challenges in this field and

discuss the emerging opportunities for future research.
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Chapter 1

Introduction

1.1 Background

Modeling complex physical dynamics over a wide range of spatial and temporal scales

is a fundamental task in a wide range of fields including, for example, fluid dynamics [205],

cosmology [220], economics[43], and neuroscience [93]. Dynamical systems are mathematical

objects that are used to describe the evolution of phenomena over time and space occurring

in nature. Dynamical systems are commonly described with differential equations which are

equations related to one or more unknown functions and their derivatives.

Definition 1. Fix an integer k ≥ 1 and let U denote an open subset of Rn. Let u : U 7→ Rm and

we write u= (u1, ...,um), where x ∈U. Then an expression of the form

F (Dku(x),Dk−1u(x), ...,Du(x),u(x),x) = 0 (1.1)

is called a k-th-order system of partial differential equation (or ordinary differential equation

when n = 1), where F : Rmnk ×Rmnk−1 × ...×Rmn ×Rm ×U 7→ Rm.

F models the dynamics of a n-dimensional state x ∈ Rn and it can be either a linear or

non-linear operator. Since most dynamics evolve over time, one of the variables of u is usually

the time dimension. In general, one must specify appropriate boundary and initial conditions

of Equ.1.1 to ensure the existence of a solution. Learning dynamical systems is to search for
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a model F that can accurately describe the behavior of the physical process insofar as we are

interested.

Figure 1.1. The goal of physics-guided deep learning is to combine the strengths of both types
of methods while overcoming their limitations by integrating existing knowledge of physics or
physics-based modeling as inductive biases in the design of neural networks.

Physics as a discipline has a long tradition of using first principles to describe spatiotem-

poral dynamics. The laws of physics have greatly improved our understanding of the physical

world. Many physics laws are described by systems of highly nonlinear differential equations

that have direct implications for understanding and predicting physical dynamics. However, these

equations are usually too complicated to be solvable. The current paradigm of numerical methods

for solution approximation is purely physics-based: known physical laws encoded in systems

of coupled differential equations are solved over space and time via numerical differentiation

and integration schemes [85, 89, 133, 94, 151, 184]. However, these methods are tremendously

computationally intensive, requiring significant computational resources and expertise. An

alternative is to look for simplified models that are based on certain assumptions and can describe

the dynamics, such as Reynolds-averaged Navier-stokes equations for turbulent flows and Euler

equations for gas dynamics [30, 121, 210]. But it is highly nontrivial to obtain a simplified model

that can describe a phenomenon with satisfactory accuracy. More importantly, for many complex
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real-world phenomena, only partial knowledge of their dynamics is known. The equations may

not fully represent the true system states.

Deep Learning (DL) provides efficient alternatives to learn high-dimensional spatiotem-

poral dynamics from massive datasets. It achieves this by directly predicting the input-output

mapping and bypassing numerical integration. Recent works have shown that DL can generate

realistic predictions and significantly accelerate the simulation of physical dynamics relative to

numerical solvers, from turbulence modeling to weather prediction [224, 111, 105, 103, 109].

This opens up new opportunities at the intersection of DL and physical sciences, such as

molecular dynamics[196, 198], epidemiology[242], cardiology[132, 223] and material science

[134, 27].

Despite the tremendous progress, DL is purely data-driven by nature, which has many

limitations. DL models still adhere to the fundamental rules of statistical inference. The

nonlinear and chaotic nature of real-world dynamics poses significant challenges to existing DL

frameworks. Without explicit constraints, DL models are prone to make physically implausible

forecasts, violating the governing laws of physical systems. Additionally, DL models often

struggle with generalization: models trained on one dataset cannot adapt properly to unseen

scenarios with different distributions, known as distribution shift. For dynamics learning, the

distribution shift occurs not only because the dynamics are non-stationary and nonlinear, but also

due to the changes in system parameters, such as external forces and boundary conditions. In a

word, the current limitation of DL models for learning complex dynamics is their lack of ability

to understand the system solely from data and cope with the distributional shifts that naturally

occur across systems and time.

Neither DL alone nor purely physics-based approaches are sufficient for learning complex

dynamical systems in scientific domains. Therefore, there is a growing need for integrating

traditional physics-based approaches with DL models so that we can take the best from both

types of approaches, as shown in Figure 1.1. There is already a vast amount of work about

physics-guided DL [236, 52, 22, 117, 103, 176, 23], but the focus on deep learning for dynamical
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systems is still nascent. Physics-guided DL offers a set of tools to blend these physical concepts

such as differential equations and symmetry with deep neural networks. On one hand, these

DL models offer great computational benefits over traditional numerical solvers. On the other

hand, the physical constraints impose appropriate inductive biases on the DL models, leading to

accurate simulation, scientifically valid predictions, reduced sample complexity, and guaranteed

improvement in generalization to unknown environments.

Figure 1.2 provides an overview of this thesis. We will commence with an overview of

the significance of physics-guided DL, followed by the formulation of four key problems in this

field. Subsequently, we will present four of our contributions towards the prediction of dynamic

systems, and conclude by discussing potential avenues for future research.

Figure 1.2. The organization of this thesis.

1.2 Significance of Physics-Guided Deep Learning

This subsection provides an overview of the motivations and significance of physics-

guided DL for learning dynamical systems. By incorporating physical principles, governing

equations, mathematical modeling, and domain knowledge into DL models, the rapidly growing

field of physics-guided DL can potentially (1) accelerate data simulation (2) build physically
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scientifically valid models (3) improve the generalizability of DL models (4) discover governing

equations.

1.2.1 Accelerate Data Simulation.

Simulation is an important method of analyzing, optimizing, and designing real-world

processes, which are easily verified, communicated, and understood. It serves as the surrogate

modeling and digital twin and provides valuable insights into complex physical systems. Tra-

ditional physics-based simulations often rely on running numerical methods: known physical

laws encoded in systems of coupled differential equations are solved over space and time via nu-

merical differentiation and integration schemes [85, 133, 94, 151, 184]. Although the governing

equations of many physical systems are known, finding approximate solutions using numerical

algorithms and computers is still prohibitively expensive. Because the discretization step size is

usually confined to be very small due to stability constraints when the dynamics are complex.

Moreover, the performance of numerical methods can highly depend on the initial guesses of

unknown parameters [92].

Recently, DL has demonstrated great success in the automation, acceleration, and stream-

lining of highly compute-intensive workflows for science [176, 210, 111]. Deep dynamics

models can directly approximate high-dimensional spatiotemporal dynamics by directly fore-

casting the future states and bypassing numerical integration [226, 45, 186, 166, 186, 164, 129].

These models are trained to make forward predictions given the historic frames as input with

one or more steps of supervision and can roll out up to hundreds of steps during inference. DL

models are usually faster than classic numerical solvers by orders of magnitude since DL is

able to take much larger space or time steps than classical solvers [166]. Another common

approach is that deep neural networks can directly approximate the solution of complex coupled

differential equations via gradient-based optimization, which is the so-called physics-informed

neural networks (PINNs). This approach has shown success in approximating a variety of

PDEs [173, 171, 29, 75]. Additionally, deep generative models, such as diffusion models and
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score-based models, have been shown effective in accurate molecule graph generation [67, 84].

1.2.2 Build Scientifically Valid Models.

Despite the tremendous progress of DL for science, e.g., atmospheric science [176],

computational biology [2], material science [27], quantum chemistry [192], it remains a grand

challenge to incorporate physical principles in a systematic manner to the design, training, and

inference of such models. DL models are essentially statistical models that learn patterns from

the data they are trained on. Without explicit constraints, DL models, when trained solely on

data, are prone to make scientifically implausible predictions, violating the governing laws of

physical systems. In many scientific applications, it is important that the predictions made by

DL models are consistent with the known physical laws and constraints. For example, in fluid

dynamics, a model that predicts the velocity field of a fluid must satisfy the conservation of mass

and momentum. In materials science, a model that predicts the properties of a material must

obey the laws of thermodynamics and the principles of quantum mechanics.

Thus, to build trustworthy predictive models for science and engineering, we need to

leverage known physical principles to guide DL models to learn the correct underlying dynamics

instead of simply fitting the observed data. For instance, [101, 95, 244, 72, 40] improve the

physical and statistical consistency of DL models by explicitly regularising the loss function with

physical constraints. Hybrid DL models, e.g., [140, 7, 31] integrate differential equations in DL

for temporal dynamics forecasting and achieve promising performance. [131] and [57] studied

tensor invariant neural networks that can learn the Reynolds stress tensor while preserving

Galilean invariance. We will also discuss our deep surrogate model, TF-Net[224], that combines

the numerical RANS-LES coupling method with a custom-designed U-net in detail in Chapter 2.

The model uses the temporal and spatial filters in the RANS-LES coupling method to guide the

U-net in learning both large and small eddies. This approach improves the both accuracy and

physical consistency of the model, making it more effective at representing the complex flow

phenomena observed in many fluid dynamics applications.
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1.2.3 Improve the generalizability of DL models

DL models often struggle with generalization: models trained on one dataset cannot adapt

properly to unseen scenarios with distributional shifts that may naturally occur in dynamical

systems [114, 162, 139, 3, 225]. Because they learn to represent the statistical patterns in the

training data, rather than the underlying causal relationships. In addition, most current approaches

are still trained to model a specific system and multiple systems with close distributions, making

it challenging to meet the needs of the scientific domain with heterogeneous environments. Thus,

it is imperative to develop generalizable DL models that can learn and generalize well across

systems with various parameter domains.

Prior physical knowledge can be considered as an inductive bias that can place a prior

distribution on the model class and shrink the model parameter search space. With the guide

of inductive bias, DL models can better capture the underlying dynamics from the data that are

consistent with physical laws. Across different data domains and systems, the laws of physics

stay constant. Hence, integrating physical laws in DL enables the models to generalize outside of

the training domain and even to different systems. For instance, embedding symmetries into DL

models is one way to improve the generalization, which we will discuss in detail in subsection

5. For example, [226] designed deep equivariant dynamics models that respect the rotation,

scaling, and uniform motion symmetries in fluid dynamics. The models are both theoretically

and experimentally robust to distributional shifts by symmetry group transformations and enjoy

favorable sample complexity compared with data augmentation.

1.2.4 Discover Governing Equations

The discovery of governing equations is crucial as it enables us to comprehend the

underlying physical laws that regulate complex systems. By identifying the mathematical models

that describe the behavior of a system, we can optimize the performance of engineering systems,

improve the precision of weather forecasts, and understand the mechanisms behind biological
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processes, among other applications [50, 18, 52, 51]. However, discovering governing equations

is a challenging task for various reasons. Firstly, real-world systems are frequently complex

and involve many interdependent variables, making it difficult to identify the relevant variables

and their relationships. Secondly, many systems are nonlinear and involve interactions between

variables that are hard to model using linear equations. Thirdly, the available data may be noisy

or incomplete, making it challenging to extract meaningful patterns and relationships. Despite

these challenges, recent advances in deep learning have made it possible to automate the process

of governing equations discovery and identify complex, nonlinear models from data.

Discovering governing equations from data is often accomplished by defining a large

set of possible mathematical basis functions and learning the coefficients. [25, 26, 98, 18, 190]

proposed to find ordinary differential equations by creating a dictionary of possible basis functions

and discovering sparse, low-dimensional, and nonlinear models from data using the sparse

identification. More recent work, such as [122, 178], incorporated neural networks to further

augment the dictionary to model more complex dynamics. [28] contributed to this trend by

introducing an efficient first-order conditional gradient algorithm for solving the optimization

problem of finding the best sparse fit to observational data in a large library of potential nonlinear

models. Alternatively, [146, 185] presented a shallow neural network approach, EQL to identify

concise equations from data. They replaced the activation functions with predefined basis

functions, including identity and trigonometry functions, and used specially designed division

units to model division relationships in the potential governing equations.

1.3 Problem Formulation

In light of the motivation and significance of physics-guided deep learning we discuss in

the previous section, the primary research efforts in this field have been aimed at tackling the

following four fundamental problems.
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1.3.1 Solving Differential Equations

When F in Eq. 1.1 is known but Eq. 1.1 is too complicated to be solvable, researchers

tend to directly solve the differential Eq.ations by approximating solution of u(x) with a deep

neural network, and enforcing the governing equations as a soft constraint on the output of the

neural nets during training at the same time[172, 173, 115]. This approach can be formulated as

the following optimization problem,

minθ L (u)+λFLF (u) (1.2)

L (u) denotes the misfit of neural net predictions and the training data points. θ denotes the

neural net parameters. LF (u) is a constraint on the residual of the differential equation system

under consideration and λF is a regularization parameter that controls the emphasis on this

residual. The goal is then to train the neural nets to minimize the loss function in Eq. 1.2.

1.3.2 Learning Dynamics Residuals

When F in Eq. 1.1 is partially know, we can use neural nets to learn the errors or

residuals made by physics-based models [44, 249, 100]. The key is to learn the bias of physics-

based models and correct it with the help of deep learning. The final prediction of the state is

composed of the simulation from the physics-based models and the residual prediction from

neural nets as below,

û= ûF + ûNN. (1.3)

where ûF is the prediction obtained by numerically solving F , ûNNis the prediction from neural

networks and û is the final prediction made by hybrid physics-DL models.

This learning problem generally involves two training strategies: 1) joint training: op-

timizing the parameters in the differential equations and the neural networks at the same time

by minimizing the prediction errors of the system states. 2) two-stage training: we first fit
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differential equations on the training data and obtain the residuals, then directly optimize the

neural nets on predicting the residuals.

1.3.3 Dynamics Forecasting

When F in Eq. 1.1 is unknown or numerically solving Eq. 1.1 requires too much

computation, many works studied learning high-dimensional spatiotemporal dynamics by directly

predicting the input-output system state mapping and bypassing numerical discretization and

integration [45, 103, 196, 226]. If we assume the first dimension x1 of u in Eq. 1.1 is the

time dimension t, then the problem of dynamics forecasting can be defined as learning a map

f : Rn×k 7→Rn×q that maps a sequence of historic states to future states of the dynamical system,

f (u(t − k+1, ·), ...,u(t, ·)) = u(t +1, ·), ...,u(t +q, ·) (1.4)

where k is the input length and q is the output length. f is commonly approximated with purely

data-driven or physics-guided neural nets and the neural nets are optimized by minimizing the

prediction errors of the state L (u).

1.3.4 Search for Governing Equations

When F in Eq. 1.1 is unknown and it is necessary to determine the precise gov-

erning equations to solve practical problems, numerous efforts have been made to discover

the exact mathematical formulation of F . The most common approach is to select from

a wide range of possible candidate functions and choose the model that minimizes fitting

errors on observation data. More specifically, based on Definition 1, the goal of discover-

ing governing equations is to find an approximate function F̂ = Φ(u(x),x)θ ≈ F , where

Φ(u(x),x) = [φ1(u(x),x),φ2(u,x), . . . ,φp(u,x)] is a library of candidate functions, such as

polynomials and trigonometric functions, and θ ∈ Rp is a sparse vector indicating which candi-

date functions are active in the dynamics. This problem can be formulated as an optimization
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problem, where we aim to minimize the following cost function over a set of observed data

{yi}n
i=1 of u:

L (θ) =
n

∑
i=1

||Φ(yi,x)θ||2 (1.5)

1.4 Contributions of the Thesis

In this thesis, we focus on the task of dynamics forecasting defined in Section 1.3.3. We

will first discuss how to improve the physical consistency of DL models by incorporating prior

physical knowledge into the design of model architecture and loss functions. We believe the

fundamental difficulty of DL for learning dynamics as neural nets have trouble coping with

the distributional shifts due to the change of system parameters and data transformation across

either tasks or time. To address this challenge, we present a series of works that enable DL

models to generalize across diverse dynamics, temporal distributional shifts as well as symmetry

transformations.

In Chapter 2, we show how to incorporate prior physical knowledge into the design

of model architecture and loss functions by introducing Turbulent Flow Net. It unifies a

Computational Fluid Dynamics (CFD) technique, RANS-LES coupling, with a custom-designed

U-net to learn the multi-scale behavior of turbulence and enforces zero divergence on predicted

velocity fields by a divergence-free regularizer. It not only achieves state-of-art prediction

accuracy but also preserves desired physical quantities on the task of turbulent flow prediction.

In Chapter 3, we present a physics-guided model-based meta-learning method called

Dynamical Adaption Networks (DyAd) which can generalize across heterogeneous domains

by partitioning them into different tasks. DyAd has two parts: an encoder which infers the time-

invariant hidden features of the task with weak supervision from prior knowledge, and a forecaster

which learns the shared dynamics of the entire domain. The encoder adapts and controls the

forecaster during inference using adaptive instance normalization and adaptive padding. DyAd

outperforms state-of-the-art approaches to forecasting complex physical dynamics including
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turbulent flow, real-world sea surface temperature, and ocean currents.

In Chapter 4, we propose a novel deep sequence model based on the Koopman theory for

time series forecasting: Koopman Neural Forecaster (KNF). We focus on real-world time

series with temporal distributional shifts (i.e. underlying dynamics changing over time). KNF

leverages DNNs to learn the linear Koopman space and the coefficients of chosen measurement

functions. It also imposes appropriate inductive biases for improved robustness against distribu-

tional shifts, employing both a global operator to learn shared characteristics, and a local operator

to capture changing dynamics, as well as a specially-designed feedback loop to continuously

update the learnt operators over time for rapidly varying behaviors. We demonstrate that KNF

achieves the superior performance compared to the alternatives, on multiple time series datasets

that are shown to suffer from distribution shifts.

In Chapter 5, we propose to improve accuracy and generalization by incorporating sym-

metries into convolutional neural networks. Specifically, we employ a variety of methods each

tailored to enforce a different symmetry. Our models are both theoretically and experimentally

robust to distributional shifts by symmetry group transformations and enjoy favorable sample

complexity. Despite the fact that physical laws obey many symmetries, real-world dynamical

data rarely conforms to strict mathematical symmetry either due to noisy or incomplete data or

to symmetry-breaking features in the underlying dynamical system. Thus, we further explore

approximately equivariant networks which are biased towards preserving symmetry but are not

strictly constrained to do so. We demonstrate the advantage of both strictly and approximately

equivariant dynamics models on a variety of physical dynamics and derive the generalization

bounds for data augmentation and equivariant networks, characterizing their effect on learning in

a unified framework.

In Chapter 6, we summarize the challenges in this field and discuss the emerging oppor-

tunities for future research.
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Chapter 2

Physics-Guided Neural Solvers for Turbu-
lent Flow Predictions

2.1 Introduction

2.1.1 Turbulence Modeling

In this chapter, we investigate the problem of predicting the evolution of two-dimensional

spatiotemporal turbulent flow, governed by the high-dimensional non-linear Navier-Stokes

equations shown below. Let w(t) be the vector velocity field of the flow with two components

(u(t),v(t)), velocities along x and y directions,

∇ ·w = 0 Continuity Equation

∂w

∂ t
+(w ·∇)w =− 1

ρ0
∇p+ν∇

2w+ f Momentum Equation

∂T
∂ t

+(w ·∇)T = κ∇
2T Temperature Equation

where p and T are pressure and temperature respectively, κ is the coefficient of heat

conductivity, ρ0 is density at temperature at the beginning, α is the coefficient of thermal

expansion, ν is the kinematic viscosity, f the external force such as gravity.
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In contrast to modeling sea surface temperature or lake dynamics, turbulent flows are

characterized by chaotic motions and intermittency, which are difficult to predict. The temporal

evolution of the turbulent flow is exceedingly sensitive to initial conditions and there is no

analytical theory to characterize its dynamics. Furthermore, turbulent fluctuations occur over a

wide range of length and time scales with high correlations between these scales.

Computational Fluid Dynamics (CFD) allows simulating complex turbulent flows, how-

ever, the wide range of scales makes it very challenging to accurately resolve all the scales.

More precisely, fully resolving a complex turbulent flow numerically, known as direct numerical

simulations (DNS), requires a very fine discretization of space-time, which makes the computa-

tion prohibitive even with advanced high-performance computing. Hence most CFD methods,

like Reynolds-Averaged Navier-Stokes and Large Eddy Simulations ([151, 167, 152], resort to

resolving the large scales whilst modeling the small scales, using various averaging techniques

and/or low-pass filtering of the governing equations. However, the unresolved processes and

their interactions with the resolved scales are extremely challenging to model.

Deep learning (DL) is poised to accelerate and improve turbulent flow simulations

because well-trained DL models can generate realistic instantaneous flow fields without solving

the complex nonlinear coupled PDEs that govern the system [210, 172]. For instance, deep

dynamics models that directly forecast the future states and bypass numerical integration are

usually faster than classic numerical solvers by orders of magnitude since DL is able to take

much larger space or time steps than classical solvers [166, 186, 129]. These models are trained

to make forward predictions given the historic frames as input with multiple steps of supervision

and can roll out up to hundreds of steps during inference.

However, DL models are hard to train and are often used as "black boxes" as they lack

knowledge of the underlying physics and are very hard to interpret. While these DL models

may achieve low prediction errors they often lack scientific consistency and do not respect the

physics of the systems. Therefore, it is critical to infuse known physics laws and design efficient

turbulent flow prediction DL models that are not only accurate but also physically meaningful.
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2.1.2 Computational Fluid Dynamics

Computational techniques are at the core of present-day turbulence investigations. Di-

rect Numerical Simulations (DNS) are accurate but not computationally feasible for practical

applications. Great emphasis was placed on the alternative approaches including Large-Eddy

Simulation (LES) and Reynolds-averaged Navier–Stokes (RANS). See [151] for details.

Figure 2.1. Turbulent Flow Net: three identical encoders to learn the transformations of the
three components of different scales, and one shared decoder that learns the interactions among
these three components to generate the predicted 2D velocity field at the next instant.

Reynolds-averaged Navier–Stokes (RANS) decomposes the turbulent flow w into two

separable time scales: a time-averaged mean flow w̄ and a fluctuating quantity w′. The resulting

RANS equations contain a closure term, the Reynolds stresses, that require modeling, the classic

closure problem of turbulence modeling. While this approach is a good first approximation to

solving a turbulent flow, RANS does not account for broadband unsteadiness and intermittency,

characteristic of most turbulent flows. Further, closure models for the unresolved scales are often

inadequate, making RANS solutions to be less accurate. n here is the moving average window

size.

w(x, t) = w̄(x, t)+w′(x, t), w̄(x, t) =
1
n

∫ t

t−n
T (s)w(x,s)ds (2.1)

Large Eddy Simulation (LES) is an alternative approach based on low-pass filtering of

the Navier-Stokes equations that solves a part of the multi-scale turbulent flow corresponding to
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the most energetic scales. In LES, the large-scale component is a spatially filtered variable w̃,

which is usually expressed as a convolution product by the filter kernel S. The kernel S is often

taken to be a Gaussian kernel. Ωi is a subdomain of the solution and depends on the filter size

[183].

w(x, t) = w̃(x, t)+w′(x, t), w̃(x, t) =
∫

Ωi

S(x|ξ)w(ξ, t)dξ (2.2)

The key difference between RANS and LES is that RANS is based on time averaging, leading

to simpler steady equations, whereas LES is based on a spatial filtering process which is more

accurate but also computationally more expensive.

Hybrid RANS-LES Coupling combines both RANS and LES approaches in order to

take advantage of both methods [53, 30]. It decomposes the flow variables into three parts: mean

flow, resolved fluctuations and unresolved (subgrid) fluctuations. RANS-LES coupling applies

the spatial filtering operator S and the temporal average operator T sequentially. We can define

w̄ in discrete form with using w∗ as an intermediate term,

w∗(x,t)= S∗w = ∑
ξ

S(x|ξ)w(ξ, t) (2.3)

w̄(x,t)= T ∗w∗ =
1
n

t

∑
s=t−n

T (s)w∗(x,s) (2.4)

then w̃ can be defined as the difference between w∗ and w̄:

w̃ =w∗− w̄, w′ =w−w∗ (2.5)

Finally, we can have the three-level decomposition of the velocity field.

w = w̄+ w̃+w
′

(2.6)
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Figure 2.2. Three level spectral de-
composition of velocity w, E(k) is the
energy spectrum and k is wavenumber.

Figure 2.2 shows this three-level decomposition

in wavenumber space [53]. k is the wavenumber, the

spatial frequency in the Fourier domain. E(k) is the

energy spectrum describing how much kinetic energy is

contained in eddies with wavenumber k. Small k corre-

sponds to large eddies that contain most of the energy.

The slope of the spectrum is negative and indicates the

transfer of energy from large scales of motion to small

scales. This hybrid approach combines the computa-

tional efficiency of RANS with the resolving power of LES to provide a technique that is less

expensive and more tractable than pure LES.

2.1.3 Related Works

In recent years, DL has been widely applied to accelerate and improve the simulation

of turbulent flows. For example, [130, 57] studied tensor invariant neural networks to learn the

Reynolds stress tensor while preserving Galilean invariance, but Galilean invariance only applies

to flows without external forces. In our case, RBC flow has gravity as an external force. Most

recently, [107] studied unsupervised generative modeling of turbulent flows but the model is not

able to make real-time future predictions given the historic data. [153] proposed a purely data-

driven DL model for turbulence, compressed convolutional LSTM, but the model lacks physical

constraints and interpretability. [244] and [13] introduced statistical and physical constraints in

the loss function to regularize the predictions of the model. However, their studies only focused

on spatial modeling without temporal dynamics, besides regularization being ad-hoc and difficult

to tune the hyper-parameters.

Moreover, [186] designed a deep encoder-processor-decoder graphic architecture for

simulating fluid dynamics under Lagrangian description. The rich physical states are represented

by graphs of interacting particles, and complex interactions are approximated by learned message-
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passing among nodes. [166] utilized the same architecture to learn mesh-based simulation.

The authors directly construct graphs on the irregular meshes constructed in the numerical

simulation methods. In addition, they proposed an adaptive re-meshing algorithm that allows the

model to accurately predict dynamics at both large and small scales. [128] proposed a Neural

Operator approach that learns the mapping between function spaces, and is invariant to different

approximations and grids. More specifically, it used the message-passing graph network to learn

Green’s function from the data, and then the learned Green’s function can be used to compute

the final solution of PDEs. [129] further extended it to Fourier Neural Operator by replacing

the kernel integral operator with a convolution operator defined in Fourier space, which is much

more efficient than Neural Operator.

In parallel, the computer graphics community has also investigated using deep learning

to speed up numerical simulations for generating realistic animations of fluids such as water

and smoke. For example, [210] used an incompressible Euler’s equation with a customized

Convolutional Neural Network (CNN) to predict velocity updates within a finite difference

method solver. [36] propose double CNN networks to synthesize high-resolution flow simulation

based on reusable space-time regions. [245] and [211] developed deep learning models in the

context of fluid flow animation, where physical consistency is less critical. [203] proposed a

method for the data-driven inference of temporal evolutions of physical functions with deep

learning. However, fluid animation emphasizes on the realism of the simulation rather than

the physical consistency of the predictions or physics metrics and diagnostics of relevance to

scientists.

The physical system we investigate in this work is two-dimensional Rayleigh-Bénard

convection (RBC), a model for turbulent convection, with a horizontal layer of fluid heated from

below so that the lower surface is at a higher temperature than the upper surface. Turbulent

convection is a major feature of the dynamics of the oceans, and the atmosphere, as well as

engineering and industrial processes, which has motivated numerous experimental and theoretical

studies for many years. The RBC system serves as an idealized model for turbulent convection
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Figure 2.3. A snapshot of the Rayleigh-Bénard convection flow, the velocity fields along x
direction (top) and y direction (bottom) [35]. The spatial resolution is 1792 x 256 pixels.

that exhibits the full range of dynamics of turbulent convection for sufficiently large temperature

gradients. Figure 2.3 shows a snapshot in our RBC flow dataset.

We aim to infuse CFD principles into deep neural networks so that the physics-guided

model can correctly model the multi-scale behaviors of turbulence and preserve desired physical

properties. The global idea behind our method is to decompose the turbulent flow into compo-

nents of different scales with trainable modules for simulating each component. First, we provide

a brief introduction of the CFD techniques which are built on this basic idea.

2.2 Turbulent Flow Net

Inspired by techniques used in hybrid RANS-LES Coupling to separate scales of a multi-

scale system, we propose a hybrid DL framework, Turbulent Flow Net (TF-Net), based on

the multi-level spectral decomposition of the turbulent flow.

Specifically, we decompose the velocity field into three components of different scales

using two scale separation operators, the spatial filter S and the temporal filter T . In traditional

CFD, these filters are usually pre-defined, such as the Gaussian spatial filter. In Turbulent

Flow Net (TF-Net), both filters are trainable neural networks. The spatial filtering process

is instantiated as one layer convolutional neural network with a single 5×5 filter to each input

image. The temporal filter is also implemented as a convolutional layer with a single 1×1

filter applied to every T image. The motivation for this design is to explicitly guide the DL

model to learn the non-linear dynamics of both large and small eddies as relevant to the task of
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spatiotemporal prediction.

We design three identical encoders to encode the three scale components separately. We

use a shared decoder to learn the interactions among these three components and generate the

final prediction. Each encoder and the decoder can be viewed as a U-net without duplicate layers

and middle layers in the original architecture [159]. The encoder consists of four convolutional

layers with double the number of feature channels of the previous layer and stride 2 for down-

sampling. The decoder consists of one output layer and four deconvolutional layers with a

summation of the corresponding feature channels from the three encoders and the output of the

previous layer as input. Figure 2.1 shows the overall architecture of our hybrid model TF-net.

To generate multi-step forecasts, we perform one-step ahead prediction and roll out the

predictions autoregressively. Furthermore, we also consider a variant of TF-net by explicitly

adding a physical constraint to the loss function. Since the turbulent flow under investigation

has zero divergences (∇ ·w should be zero everywhere), we include ||∇ ·w||2 as a regularizer to

constrain the predictions, leading to a constrained TF-net, or Con TF-Net.

2.3 Experiments Setup

2.3.1 Dataset

The dataset for our experiments comes from two-dimensional turbulent flow simulated

using the Lattice Boltzmann Method [35]. We use only the velocity vector fields, where the

spatial resolution of each image (snapshots in time) is 1792 x 256. Each image has two channels,

one is the turbulent flow velocity along x direction and the other one is the velocity along y

direction. The physics parameters relevant to this numerical simulation are: Prandtl number

= 0.71, Rayleigh number = 2.5× 108 and the maximum Mach number = 0.1. We use 1500

images for our experiments. The task is to predict the spatiotemporal velocity fields up to 60

steps ahead given 10 initial frames.

We divided each 1792 by 256 image into 7 square sub-regions of size 256 x 256, then
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Figure 2.4. Root mean square
errors of different models’ pre-
dictions at varying forecasting
horizon

Figure 2.5. Mean absolute di-
vergence of different models’
predictions at varying forecast-
ing horizon

Figure 2.6. The Energy Spec-
trum of TF-net, U-net and
ResNet on the leftmost square
sub-region.

downsample them into 64 x 64 pixels sized images. We use a sliding window approach to

generate 9,870 samples of sequences of velocity fields: 6,000 training samples, 1,700 validation

samples and 2,170 test samples. The DL model is trained using back-propagation through

prediction errors accumulated over multiple steps. We use a validation set for hyper-parameters

tuning based on the average error of predictions up to six steps ahead. All results are averaged

over three runs with random initialization.

2.3.2 Baselines

We compare our model with a series of state-of-the-art baselines, including pure data-

driven video predictions models, ResNet [79], ConvLSTM [197], U-Net [159] and GAN, as well

as hybrid physics-informed DL, SST [45] and DHPM [170].

2.3.3 Evaluation Metrics

Even though Root Mean Square Error (RMSE) is a widely accepted metric for quantifying

the prediction performance, it only measures pixel differences. We need to check whether

the predictions are physically meaningful and preserve desired physical quantities, such as

Turbulence Kinetic Energy, Divergence and Energy Spectrum. Therefore, we include a set of

additional metrics for evaluation.

21



Figure 2.7. Ground truth (target) and predicted u velocities by TF-net and three best baselines
(U-Net, ResNet and GAN) at time T +10, T +20, T +30 to T +60 (suppose T is the time step
of the last input frame).

Root Mean Square Error: We calculate the RMSE of all predicted values from the

ground truth for each pixel.

Divergence: Since we investigate incompressible turbulent flows in this work, which

means the divergence, ∇ ·w, at each pixel should be zero, we use the average of absolute

divergence over all pixels at each prediction step as an additional evaluation metric.

Turbulence Kinetic Energy: In fluid dynamics, turbulence kinetic energy is the mean

kinetic energy per unit mass associated with eddies. Physically, the turbulence kinetic energy is
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characterized by measured root mean square velocity fluctuations,

((u′
)2 +(v′

)2)/2, (u′
)2 =

1
T

T

∑
t=0

(u(t)− ū)2 (2.7)

where t is the time step, u and v represent the velocity along x and y directions. We calculate the

turbulence kinetic energy for each predicted sample of 60 velocity fields.

Energy Spectrum: The energy spectrum of turbulence, E(k), is related to the mean

turbulence kinetic energy as

∫
∞

0
E(k)dk = ((u′

)2 +(v′
)2), (2.8)

where k is the wavenumber, the spatial frequency in the 2D Fourier domain. We calculate the

Energy Spectrum on the Fourier transformation of the Turbulence Kinetic Energy fields. The

large eddies have low wavenumbers and the small eddies correspond to high wavenumbers. The

spectrum indicates how much kinetic energy is contained in eddies with wavenumber k.

2.4 Results on the Rayleigh-Bénard Convection Dataset

2.4.1 Accuracy

Figure 2.4 shows the growth of RMSE with a prediction horizon up to 60 time steps

ahead. TF-net consistently outperforms all baselines, and constraining it with a divergence-free

regularizer can further improve the performance. We also found DHPM is able to overfit the

training set but performs poorly when tested outside of the training domain. Neither Dropout nor

regularization techniques can improve its performance. Also, the warping scheme of the [45]

relies on the simplified linear assumption, which was too limiting for our non-linear problem.

During Inference, we apply the trained TF-net to the entire input domain instead of

square sub-regions. Figure 2.7 shows the ground truth and the predicted u velocity fields from

all models from time step 0 to 60. We see that the predictions by our TF-net model are the
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Figure 2.8. Turbulence kinetic energy of all models’ predictions at the leftmost square field in
the original rectangular field

closest to the target based on the shape and the frequency of the motions. Baselines generate

smooth predictions and miss the details of the small-scale motion. U-net is the best-performing

data-driven video prediction baseline. [209] also found the U-net architecture is quite effective

in modeling dynamics flows. Nevertheless, there is still room for improvement in long-term

prediction for all the models.

2.4.2 Physical Consistency

Figure 2.9. Ablation study: From top to bottom
are the target, the predictions of TF-net, and the
outputs of each small U-net of TF-net while the
other two encoders are zeroed out at time T +40

Figure 2.5 shows the averages of ab-

solute divergence over all pixels at each pre-

diction step. TF-net has lower divergence

than other models even without additional

divergence-free constraints for varying predic-

tion steps. It is worth mentioning that there is

a subtle trade-off between RMSE and diver-

gence. Even though constraining the model

with the divergence-free regularizer can re-

duce the divergence of the model predictions,

too much constraint also has the side effect of

smoothing out the small eddies, which results

in a larger RMSE.

Figure 2.8 displays predicted TKEs of all models at the leftmost square field in the

original rectangular field. Figure 2.6 shows the energy spectrum of our model and two best
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baseline at the leftmost square sub-field. While the turbulence kinetic energy of TF-net, U-net

and ResNet appear to be similar in Figure 2.8, from the energy spectrum in Figure 2.6, we can

see that TF-net predictions are in fact much closer to the target. Extra divergence-free constraint

does not affect the energy spectrum of predictions. By Incorporating physics principles in DL,

TF-net is able to generate predictions that are physically consistent with the ground truth.

2.4.3 Ablation Study

We also perform an additional ablation study of TF-net to understand each component

of TF-net and investigate whether the TF-net has actually learned the flow with different scales.

During inference, we applied each small U-net in TF-net with the other two encoders removed

to the entire input domain. Figure 2.9 includes the predictions of TF-net, and the outputs of

each small U-net while the other two encoders are zeroed out at T +40. We observe that the

outputs of each small u-net are the flow with different scales, which demonstrates that TF-net

can learn multi-scale behaviors of turbulent flows.

2.5 Conclusion

We presented a novel hybrid DL model, TF-net, that unifies representation learning and

turbulence simulation techniques. TF-net exploits the multi-scale behavior of turbulent flows to

design trainable scale-separation operators to model different ranges of scales individually. We

provide exhaustive comparisons of TF-net and baselines and observe significant improvement

in both the prediction error and desired physical quantifies, including divergence, turbulence

kinetic energy, and energy spectrum. We argue that different evaluation metrics are necessary to

evaluate a DL model’s prediction performance for physical systems that include both accuracy

and physical consistency. A key contribution of this work is the combination of state-of-the-art

turbulent flow simulation paradigms with DL.

However, this work and many related works only focus on a specific system and train

on past data in order to predict the future. These models usually fail to generalize new systems

25



with different parameters and boundary conditions and a new model must be trained to predict a

system with different dynamics. Therefore, it is necessary to develop generalizable models for

turbulence that can learn and predict well over a large heterogeneous domain. We will present our

framework, Dynamical Adaption Networks, that enable deep dynamics models to generalize

across diverse dynamics in the next chapter.
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Chapter 3

Improving Generalization over Heteroge-
neous Domain with Meta-Learning

3.1 Introduction

3.1.1 Generalization Issues in Learning Dynamics

...

...

time

?

Figure 3.1. Meta-learning dynamic forecasting
on turbulent flow. The model needs to generalize
to a flow with a very different buoyant force.

Modeling dynamical systems with DL

has shown great success in a wide range of sys-

tems from climate science, Internet of Things

to infectious diseases [90, 211, 33, 129, 149,

88]. However, the main limitation of previ-

ous works is limited generalizability. Most

approaches only focus on a specific system

and train on past data in order to predict the

future. Thus, a new model must be trained to predict a system with different dynamics. Consider,

for example, learning fluid dynamics; shown in Fig. 3.1 are two fluid flows with different degrees

of turbulence. Although the flows are governed by the same equations, the difference in buoyant

forces would require two separate DL models to forecast. Therefore, it is imperative to develop

generalizable DL models for dynamical systems that can learn and predict well over a large

heterogeneous domain.
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Meta-learning [208, 11, 58], or learning to learn, improves generalization by learning

multiple tasks from the environment. Recent developments in meta-learning have been suc-

cessfully applied to few-shot classification [156, 206], active learning [250], and reinforcement

learning [74, 86]. However, meta-learning in the context of forecasting high-dimensional physi-

cal dynamics has not been studied before. The challenges with meta-learning dynamical systems

are unique in that (1) we need to efficiently infer the latent representation of the dynamical

system given observed time series data, (2) we need to account for changes in unknown initial

and boundary conditions, and (3) we need to model temporal dynamics across heterogeneous

domains.

Our approach is inspired by the fact that similar dynamical systems may share time-

invariant hidden features. Even the slightest change in these features may lead to vastly different

phenomena. For example, in climate science, fluids are governed by a set of differential equations

called the Navier-Stokes equations. Some features such as kinematic viscosity and external

forces (e.g. gravity), are time-invariant and determine the flow characteristics. By inferring this

latent representation, we can model diverse system behaviors from smoothly flowing water to

atmospheric turbulence.

Inspired by neural style transfer [102], we propose a model-based meta-learning method,

called DyAd, which can rapidly adapt to systems with varying dynamics. DyAd has two parts, an

encoder g and a forecaster f . The encoder maps different dynamical systems to time-invariant

hidden features representing constants of motion, boundary conditions, and external forces

which characterize the system. The forecaster f then takes the learned hidden features from

the encoder and the past system states to forecast the future system state. Controlled by the

time-invariant hidden features, the forecaster has the flexibility to adapt to a wide range of

systems with heterogeneous dynamics.

Unlike gradient-based meta-learning techniques such as MAML [58], DyAd automatically

adapts during inference using an encoder and does not require retraining. Similar to model-based

meta-learning methods such as MetaNets [156], we employ a two-part design with an adaptable
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learner which receives task-specific weights. However, for time-series forecasting, since input

and output come from the same domain, a support set of labeled data is unnecessary to define

the task. The encoder can infer the task directly from the query input.

3.1.2 Meta-learning in Dynamics Forecasting

Let x ∈ Rd be a d-dimensional state of a dynamical system governed by parameters ψ .

The problem of dynamics forecasting is that given a sequence of past states (x1, . . . ,xt), we want

to learn a map f such that: f : (x1, . . . ,xt) 7−→ (xt+1, . . .xt+k).

Here l is the length of the input series, and k is the forecasting horizon in the output.

Existing approaches for dynamics forecasting only predict future data for a specific system as a

single task. Here a task refers to forecasting for a specific system with a given set of parameters.

The resulting models often generalize poorly to different system dynamics. Thus a new model

must be trained to predict for each specific system.

To perform meta-learning, we identify each forecasting task by some parameters c ⊂ ψ ,

such as constants of motion, external forces, and boundary conditions. We learn multiple tasks

simultaneously and infer the task from data. Here we use c for a subset of system parameters ψ ,

because we usually do not have the full knowledge of the system dynamics. In the turbulent flow

example, the state xt is the velocity field at time t. Parameters c can represent Reynolds number,

mean vorticity, mean magnitude, or a vector of all three.

Let µ be the data distribution over X ×Y representing the function f : X → Y where

X = Rd×t and Y = Rd×k. Our main assumption is that the domain X can be partitioned into

separate tasks X = ∪c∈C Xc, where Xc is the domain for task c and C is the set of all tasks.

The data in the same task share the same set of parameters. Let µc be the conditional distribution

over Xc ×Y for task c.

During training, the model is presented with data drawn from a subset of tasks {(x,y) :

(x,y) ∼ µc,c ∼ C}. Our goal is to learn the function f : X → Y over the whole domain X

which can thus generalize across all tasks c ∈ C . To do so, we need to learn the map g : X → C
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Figure 3.2. Overview of DyAd applied to two inputs of fluid turbulence, one with small external
forces and one with larger external forces. The encoder infers the time-shift invariant characteris-
tic variable z which is used to adapt the forecaster network.

taking x ∈ Xc to c in order to infer the task with minimal supervision.

3.1.3 Related Work

Multi-task learning [216] focuses on learning shared representations from multiple related

tasks. Architecture-based MTL methods can be categorized into encoder-focused [135] and

decoder-focused [246]. There are also optimization-based MTL methods, such as task balancing

methods [104]. But MTL assumes tasks are known a priori instead of inferring the task from

data. On the other hand, the aim of meta-learning [208] is to leverage the shared representation

to fast adapt to unseen tasks. Based on how the meta-level knowledge is extracted and used,

meta-learning methods are classified into model-based [156, 1, 160, 195, 256], metric-based

[218, 201] and gradient-based [58, 181, 71, 247]. Most meta-learning approaches are not

designed for forecasting with a few exceptions. [237] proposed to train a domain classifier

with weak supervision to help domain adaptation but focused on low-dimensioal time series

classification problems. [160] designed a residual architecture for time series forecasting with a

meta-learning parallel. [1] proposed a modular meta-learning approach for continuous control.

But forecasting physical dynamics poses unique challenges to meta-learning as it requires

encoding physical knowledge into our model.
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Our approach is inspired by neural style transfer techniques. In style transfer, a generative

network is controlled by an external style vector through adaptive instance normalization between

convolutional layers. Our hidden representation bears affinity with the “style” vector in style

transfer techniques. Rather than aesthetic style in images, our hidden representation encodes time-

invariant features. Style transfer initially appear in non-photorealistic rendering [120]. Recently,

neural style transfer [97] has been applied to image synthesis [65, 136], videos generation

[177], and language translation [168]. For dynamical systems, [187] adapts texture synthesis to

transfer the style of turbulence for animation. [107] studies unsupervised generative modeling of

turbulent flows but for super-resolution reconstruction rather than forecasting.

3.2 Dynamic Adaptation Network

We propose a model-based meta-learning approach for dynamics forecasting. Given

multiple forecasting tasks, we propose to learn the function f in two stages. That is, by first

inferring the task c from the input x, and then adapting to a specialized forecaster fc : Xc → Y

for each task. An alternative is to use a single deep neural network to directly model f in one

step over the whole domain. But this requires the training set to have good and uniform coverage

of the different tasks. If the data distribution µ is highly heterogeneous or the training set is not

sampled i.i.d. from the whole domain, then a single model may struggle with generalization.

We hypothesize that by partitioning the domain into different tasks, the model would

learn to pick up task-specific features without requiring uniform coverage of the training data.

Furthermore, by separating task inference and forecasting into two stages, we allow the forecaster

to rapidly adapt to new tasks that never appeared in the training set.

As shown in Fig. 3.2, our model consists of two parts: an encoder g and a forecaster f .

We introduce zc as a time-invariant hidden feature for task c. We assume that c depends linearly

on the hidden feature for simplicity and easy interpretation. We design the encoder to infer the

hidden feature zc given the input x. We then use zc to adapt the forecaster f to the specific task,
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i.e., model y = fc(x) as y = f (x,zc). As the system dynamics are encoded in the input sequence

x, we can feed the same input sequence x to a forecaster and generate predictions ŷ = fc(x).

3.2.1 Encoder Network

The encoder maps the input x to the hidden features zc that are time-invariant. To

enforce this inductive bias, we encode time-invariance both in the architecture and in the training

objective.

Time-Invariant Encoder. The encoder is implemented using 4 Conv 3D layers, each

followed by BatchNorm, LeakyReLU, and max-pooling. Note that theoretically, max-pooling

is not perfectly shift invariant since 2x2x2 max-pooling is equivariant to shifts of size 2 and

only approximately invariant to shifts of size 1. But standard convolutional architectures often

include max-pooling layers to boost performance. We convolve both across spatial and temporal

dimensions. After that, we use a global mean-pooling layer and a fully connected layer to

estimate the hidden feature ẑc. The task parameter depends linearly on the hidden feature. We

use a fully connected layer to compute the parameter estimate ĉ.

Since convolutions are equivariant to shift (up to boundary frames) and mean pooling is

invariant to shift, the encoder is shift-invariant. In practice, shifting the time sequence one frame

forward will add one new frame at the beginning and drop one frame at the end. This creates

some change in output value of the encoder. Thus, practically, the encoder is only approximately

shift-invariant.

Encoder Training. The encoder network g is trained first. To combat the loss of shift

invariance from the change from the boundary frames, we train the encoder using a time-invariant

loss. Given two training samples (x(i),y(i)) and (x( j),y( j)) and their task parameters c, we have

loss

Lenc = ∑
c∼C

∥ĉ− c∥2 +α ∑
i, j,c

∥ẑ(i)c − ẑ( j)
c ∥2 +β ∑

i,c
∥∥ẑ(i)c ∥2 −m∥2 (3.1)

where ẑ(i) = g(x(i)) and ẑ( j) = g(x( j)) and ĉ(i) =Wẑ(i)c +b is an affine transformation of zc.
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The first term ∥ĉ− c∥2 uses weak supervision of the task parameters whenever they are

available. Such weak supervision helps guide the learning of hidden feature zc for each task.

While not all parameters of the dynamical system are known, we can compute approximate

values in the datum c(i) based on our domain knowledge. For example, instead of the Reynolds

number of the fluid flow, we can use the average vorticity as a surrogate for task parameters.

The second term ∥ẑ(i)c − ẑ( j)
c ∥2 is the time-shift invariance loss, which penalizes the

changes in latent variables between samples from different time steps. Since the time-shift

invariance of convolution is only approximate, this loss term drives the time-shift error even

lower. The third term |∥ẑ(i)c ∥−m|2 (m is a positive value) prevents the encoder from generating

small ẑ(i)c due to time-shift invariance loss. It also helps the encoder to learn more interesting z,

even in the absence of weak supervision.

Hidden Features. The encoder learns time-invariant hidden features. These hidden

features resemble the time-invariant dimensionless parameters [116] in physical modeling, such

as Reynolds number in fluid mechanics. The hidden features may also be viewed as partial

disentanglement of the system state. As suggested by [138, 158], our disentanglement method

is guided by inductive bias and training objectives. Unlike complete disentanglement, as in

e.g. [148], in which the latent representation is factored into time-invariant and time-varying

components, we focus only on time-shift-invariance. Nonetheless, the hidden features can control

the forecaster which is useful for generalization.

3.2.2 Forecaster Network.

The forecaster incorporates the hidden feature zc from the encoder and adapts to the

specific forecasting task fc = f (·,zc). In what follows, we use z for zc. We use two specialized

layers, adaptive instance normalization (AdaIN) and adaptive padding (AdaPad). AdaIN has

been used in neural style transfer [102, 87] to control generative networks. Here, AdaIN may

adapt for specific coefficients and external forces. We also introduce a new layer, AdaPad(x,z),

which is designed for encoding the boundary conditions of dynamical systems. The backbone of
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the forecaster network can be any sequence prediction model. We use a design that is similar to

ResNet for spatiotemporal sequences.

𝒙

FC

z

AdaPad

𝒚

Figure 3.3. Illustration of
the AdaPad operation.

AdaIN. We employ AdaIN to adapt the forecaster network.

Denote the channels of input x by xi and let µ(xi) and σ(xi) be

the mean and standard deviation of channel i. For each AdaIN

layer, a particular style is computed s = (µi,σi)i = Az+ b, where

the linear map A and bias b are learned weights. Adaptive instance

normalization is then defined as yi = σi
xi−µ(xi)

σ(xi)
+µi. In essence, the

channels are renormalized to the style s.

For dynamics forecasting, the hidden feature z encodes data

analogous to the coefficients of a differential equation and exter-

nal forces on the system. In numerical simulation of a differential

equation these coefficients enter as scalings of different terms in the equation and the external

forces are added to the combined force equation [94]. Thus in our context AdaIN, which scales

channels and adds a global vector, is well-suited to injecting this information.

AdaPad. To complement AdaIN, we introduce AdaPad, which encodes the boundary

conditions of each specific dynamical system. Generally when predicting dynamical systems,

error is introduced along the boundaries since it is unknown how the dynamics interact with

the boundary of the domain, and there may be unknown inflows or outflows. In our method,

the inferred hidden feature z may contain the boundary information. AdaPad uses the hidden

features to compute the boundary conditions via a linear layer. Then it applies the boundary

conditions as padding immediately outside the spatial domain in each layer, as shown in Fig. 3.3.

Forecaster Training The forecaster is trained separately after the encoder. The kernels of

the convolutions and the mappings of the AdaIN and AdaPad layers are all trained simultaneously

as the forecaster network is trained. Denoting the true state as y and the predicted state as ŷ, we

compute the loss per time step ∥ŷ− y∥2 for each example. We accumulate the loss over different

time steps and generate multi-step forecasts in an autoregressive fashion. In practice, we observe
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separate training achieves better performance than training end-to-end; see the experiments setup

section for details.

Figure 3.4. Target and predictions by Unet-c, Modular-wt and DyAd at time 1, 5, 10 for
turbulent flows with buoyancy factors 9 (left) and 21 (right) respectively. DyAd can easily generate
predictions for various flows while baselines have trouble understanding and disentangling
buoyancy factors.

Table 3.1. Prediction RMSE on the turbulent flow and sea surface temperature datasets. Pre-
diction RMSE and ESE (energy spectrum errors) on the future and domain test sets of ocean
currents dataset.

Model Turbulent Flows Sea Temperature Ocean Currents

future domain future domain future domain

ResNet 0.94±0.10 0.65±0.02 0.73±0.14 0.71±0.16 9.44±1.55 | 0.99±0.15 9.65±0.16 | 0.90±0.16
ResNet-c 0.88±0.03 0.64±0.01 0.70±0.08 0.71±0.06 9.71±0.01 | 0.81±0.03 9.15±0.01 | 0.73±0.03
U-Net 0.92±0.02 0.68±0.02 0.57±0.05 0.63±0.05 7.64±0.05 | 0.83±0.02 7.61±0.14 | 0.86±0.03
Unet-c 0.86±0.07 0.68±0.03 0.47±0.02 0.45±0.06 7.26±0.01 | 0.94±0.02 7.51±0.03 | 0.87±0.04
PredRNN 0.75±0.02 0.75±0.01 0.67±0.12 0.99±0.07 8.49±0.01 | 1.27±0.02 8.99±0.03 | 1.69±0.01

VarSepNet 0.67±0.05 0.63±0.06 0.63±0.14 0.49±0.09 9.36±0.02 | 0.63±0.04 7.10±0.01 | 0.58±0.02
Mod-attn 0.63±0.12 0.92±0.03 0.89±0.22 0.98±0.17 8.08±0.07 | 0.76±0.11 8.31±0.19 | 0.88±0.14
Mod-wt 0.58±0.03 0.60±0.07 0.65±0.08 0.64±0.09 10.1±0.12 | 1.19±0.72 8.11±0.19 | 0.82±0.19
MetaNet 0.76±0.13 0.76±0.08 0.84±0.16 0.82±0.09 10.9±0.52 | 1.15±0.18 11.2±0.16 | 1.08±0.21
MAML 0.63±0.01 0.68±0.02 0.90±0.17 0.67±0.04 10.1±0.21 | 0.85±0.06 10.9±0.79 | 0.99±0.14

DyAd+ResNet 0.42±0.01 0.51±0.02 0.42±0.03 0.44±0.04 7.28±0.09 | 0.58±0.02 7.04±0.04 | 0.54±0.03
DyAd+Unet 0.58±0.01 0.59±0.01 0.35±0.03 0.42±0.05 7.38±0.01 | 0.70±0.04 7.46±0.02 | 0.70±0.07

3.3 Experiments Setup

3.3.1 Datasets

We experiment on three datasets: synthetic turbulent flows, real-world sea temperature,

and ocean currents. These are difficult to forecast using numerical methods due to unknown
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external forces and complex dynamics not fully captured by simplified mathematical models.

Turbulent Flow with Varying Buoyancy: We generate a synthetic dataset of turbulent

flows with a numerical simulator, PhiFlow1. It contains 64×64 velocity fields of turbulent

flows in which we vary the buoyant force acting on the fluid from 1 to 25. Each buoyant force

corresponds to a forecasting task and there are 25 tasks in total. We use the mean vorticity of

each task as partial supervision c as we can directly calculate it from the data. Vorticity can

characterize formation and circular motion of turbulent flows.

Sea Surface Temperature: We evaluate on a real-world sea surface temperature data

generated by the NEMO ocean engine [143]2. We select an area from Pacific ocean range from

01/01/2018 to 12/31/2020. The corresponding latitude and longitude are (-150∼-120, -20∼-50).

This area is then divided into 25 64×64 subregions, each is a task since the mean temperature

varies a lot along longitude and latitude. For the encoder training, we use season as an additional

supervision signal besides the mean temperature of each subregion. In other words, the encoder

should be able to infer the mean temperature of the subregion as well as to classify four seasons

given the temperature series.

Ocean Currents: We also experiment with the velocity fields of ocean currents from the

same region and use the same task division as the sea surface temperature data set. Similar to the

turbulent flow data set, we use the mean vorticity as well as the location of each subregion as the

weak-supervision signal.

For all datasets, we use a sliding-window approach to generate samples of sequences.

We evaluate on two generalization scenarios. For test-future, we train and test on the same task

but different time steps. For test-domain, we train and test on different tasks with an 80-20

split. All models are trained to make next-step predictions given the history. We forecast in an

autoregressive manner to generate multi-step ahead predictions. All results are averaged over 3

runs with random initialization. Apart from the root mean square error (RMSE), we also report

1https://github.com/tum-pbs/PhiFlow
2The data are available at https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=

GLOBAL_ANALYSIS_FORECAST_PHY_001_024
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the energy spectrum error (ESE) for ocean current prediction, which quantifies the physical

consistency. ESE indicates whether the predictions preserve the correct statistical distribution

and obey the energy conservation law, which is a critical metric for physical consistency.

3.3.2 Baselines

We include several SoTA baselines from meta-learning and dynamics forecasting.

• ResNet [79]: A widely adopted video prediction model [226].

• U-net [159]: Originally developed for biomedical image segmentation, adapted for dy-

namics forecasting [45].

• ResNet/Unet-c: Above ResNet and Unet with an additional final layer that generates

task parameter c and trained with weak-supervision and forecasting loss altogether.

• PredRNN [230]: A state-of-art RNN-based spatiotemporal forecasting model.

• VarSepNet [49]: A convolutional dynamics forecasting model based on spatiotemporal

disentanglement.

• Mod-attn[1]: A modular meta-learning method which combines the outputs of modules

to generalize to new tasks using attention.

• Mod-wt: A modular meta-learning variant which uses attention weights to combine the

parameters of the convolutional kernels in different modules for new tasks.

• MetaNet [156]: A model-based meta-learning method which requires a few samples from

test tasks as a support set to adapt.

• MAML [58]: A optimization-based meta-learning approach. We replaced the original

classifier with a ResNet for regression.

Note that both ResNet-c and Unet-c have access to task parameters c. Modular-attn

has a convolutional encoder f that takes the same input x as each module M to generate attention

weights, ∑
m
l=1

exp[ f (x)(l)]
∑

m
k=1 exp[ f (x)(k)]Ml(x). Modular-wt also has the same encoder but to generate

weights for combining the convolution parameters of all modules. MetaNet requires samples
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from test tasks as a support set and MAML needs adaptation retraining on test tasks, while other

models do not need any information from the test domains. Thus, we use additional samples of

up to 20% of the test set from test tasks. MetaNet uses these as a support set. MAML is retrained

on these samples for 10 epoch for adaptation. To demonstrate the generalizability of DyAd, we

experimented with ResNet and U-net as our forecaster.

3.3.3 Evaluation Metrics

Apart from the root mean square error (RMSE), we also report the energy spectrum

error (ESE) for ocean current prediction, which quantifies the physical consistency. ESE

indicates whether the predictions preserve the correct statistical distribution and obey the energy

conservation law, which is a critical metric for physical consistency.

3.4 Results

3.4.1 Prediction Performance.

Figure 3.5. DyAd, ResNet, U-net, PredRNN veloc-
ity norm (

√
u2 + v2) predictions on an ocean current

sample in the future test set.

Figure 3.6. Outputs from DyAd while
we vary encoder input but keep the
forecaster input fixed. From left to
right, the encoder is fed with flow with
different buoyancy factor c = 5,15,25.
the forecaster network input has fixed
buoyancy c = 15.

Table 3.1 shows the RMSE of multi-step predictions on Turbulent Flows (20 steps), Sea

Surface Temperature (10 steps), and Ocean Currents (10 step) in two testing scenarios. We
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observe that DyAd makes the most accurate predictions in both scenarios across all datasets.

Comparing ResNet/Unet-c with DyAd, we observe a clear advantage of task inference with

separate training. VarSepNet achieves competitive performances on Ocean Currents (second

best) through spatiotemporal disentanglement but cannot adapt to future data. Table 3.1 also

reports ESEs on real-world Ocean Currents. DyAd not only has small RMSE but also obtains the

smallest ESE, suggesting it captures the statistical distribution of ocean currents well.

Figure 3.4 shows the target and predicted velocity norm fields (
√

u2 + v2) by Unet-c,

Modular-wt and DyAd at time step 1, 5, 10 for Turbulent Flows with buoyancy factors 9 and

21 respectively. We can see that DyAd can generate realistic flows with the corresponding

characteristics while the baselines have trouble understanding and disentangling the buoyancy

factor. Figure 3.5 shows DyAd, ResNet, U-net, PredRNN predictions on an ocean current sample

in the future test set, and we see the shape of predictions by DyAd is closest to the target. These

results demonstrate that DyAd not only forecasts well but also accurately captures the physical

characteristics of the system.

3.4.2 Controllable Forecast.

DyAd infers the hidden features from data, which allows direct control of the latent

space in the forecaster. We vary the encoder input while keeping the forecaster input fixed.

Figure 3.6 shows the forecasts from DyAd when the encoder is fed with flows having different

buoyancy factors c = 5,15,25. As expected, with higher buoyancy factors, the predictions from

the forecaster become more turbulent. This demonstrates that the encoder can successfully

disentangle the latent representation of difference tasks, and control the predictions of the

forecaster.

3.4.3 Ablation Study.

We performed several ablation studies of DyAd on the turbulence dataset to understand

the contribution of each model component.
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We first performed an ablation study of the model architecture, shown in Table 3.2. We

removed the encoder from DyAd while keeping the same forecaster network (No_enc). The

resulting model degrades but still outperforms ResNet. This demonstrates the effectiveness of

AdaIN and AdaPad for forecasting. We also tested DyAd with AdaIN only (No_AdaPad), and the

performance without AdaPad was slightly worse.

Table 3.2. Ablation study: prediction
RMSE of DyAd and its variations with
different components removed.

Model future domain

DyAd 0.42±0.01 0.51±0.02

No_enc 0.63±0.03 0.60±0.02

No_AdaPad 0.47±0.01 0.54±0.02

Wrong_enc 0.66±0.02 0.62±0.03

End2End 0.45±0.01 0.54±0.01

Another notable feature of our model is the abil-

ity to infer tasks with weakly supervised signals c. It is

important to have a c that is related to the task domain.

As an ablative study, we fed the encoder in DyAd with

a random c, leading to Wrong_enc. We can see that

having the totally wrong supervision may slightly hurt

the forecasting performance. We also trained the en-

coder and the forecaster in DyAd altogether (End2End)

but observed worse performance. This validates our

hypothesis about the significance of domain partitioning and separate training strategy.

3.5 Conclusion

We propose a model-based meta-learning method, DyAd, to forecast physical dynamics.

DyAd uses an encoder to infer the parameters of the task and a prediction network to adapt and

forecast giving the inferred task. Our model can also leverage any weak supervision signals

that can help distinguish different tasks, allowing the incorporation of additional domain knowl-

edge. On challenging turbulent flow prediction and real-world ocean temperature and currents

forecasting tasks, we observe the superior performance of our model across heterogeneous

dynamics.

Although this work focuses on distributional shifts across different domains, temporal

distribution shifts are also common in real-world time-series applications. Therefore, it is crucial
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to develop models that can handle distribution shifts over time caused by factors such as a highly

dynamic and non-stationary environment, unforeseeable abrupt changes, or constantly evolving

trends in the underlying data distribution. To address this, we introduce the Koopman Neural

Forecaster, inspired by Koopman theory, which achieves high accuracy in forecasting highly

nonstationary time series.
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Chapter 4

Koopman Neural Forecaster for Time
Series with Temporal Distribution Shifts

4.1 Introduction

4.1.1 Challenges in Highly Nonstationary Time Series Forecasting

Aside from the distributional shifts among different domains we discussed in the last

chapter, temporal distribution shifts frequently occur in real-world time-series applications, from

forecasting stock prices to detecting and monitoring sensory measures to predicting fashion

trend-based sales. Such distribution shifts over time may be due to the data being generated in a

highly-dynamic and non-stationary environment, abrupt changes that are difficult to predict, or

constantly evolving trends in the underlying data distribution [63].

Temporal distribution shifts pose a fundamental challenge for time-series forecasting

[119]. There are two scenarios of distribution shifts. When the distribution shifts only occur

between the training and test domains, meta-learning and transfer-learning approaches [96, 161]

have been developed. The other scenario is much more challenging: distribution shifts occur

continuously over time. This scenario is closely related to “concept drift” [141] and non-

stationary processes [41] but has received less attention from the deep learning community. In

this work, we focus on the second scenario.

To tackle temporal distribution shifts, various statistical estimation methods have been
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studied, including spectral density analysis [41], sample reweighting [12, 150] and Bayesian

state-space models [235]. However, these methods are limited to low-capacity auto-regressive

models and are typically designed for short-horizon forecasting. For large-scale complex time

series data, deep learning models [161, 239, 212, 258] now increasingly outperform traditional

statistical methods. Yet, most deep learning approaches are designed for stationary time-series

data (with i.i.d. assumption), such as electricity usage, sales and air quality, that have clear

seasonal and trend patterns. For distribution shifts, DNNs have been shown to be problematic in

forecasting data with varying distributions [114, 225].

DNNs are black-box models and often require a large number of samples to learn. For

time series with continuous distribution shifts, the number of samples from a given distribution

is small, thus DNNs would struggle to adapt to the changing distribution. Furthermore, the

non-linear dependencies in a DNN are difficult to interpret or manipulate. Directly modifying the

parameters based on the change in dynamics may lead to undesirable effects [219]. Therefore, if

we can reduce non-linearity and simplify dynamics modeling, then we would be able to model

time series in a much more interpretable and robust manner. Koopman theory [113] provides

convenient tools to simplify dynamics modeling. It states that any nonlinear dynamics can be

modeled by a linear Koopman operator acting on the space of measurement functions [24], thus

the dynamics can be manipulated by simply modifying the Koopman matrix.

In this paper, we propose a novel approach for accurate forecasting for time series with

distribution shifts based on Koopman theory: Koopman Neural Forecaster (KNF). Our model has

three main features: 1) we combine predefined measurement functions with learnable coefficients

to introduce appropriate inductive biases into the model. 2) our model employs both global

and local Koopman operators to approximate the forward dynamics: the global operator learns

the shared characteristics; the local operator captures the local changing dynamics. 3) we also

integrate a feedback loop to cope with distribution shifts and maintain the model’s long-term

forecasting accuracy. The feedback loop continuously updates the learned operators over time

based on the current prediction error.
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Leveraging Koopman theory brings multiple benefits to time series forecasting with

distribution shifts: 1) using predefined measurement functions (e.g., exponential, polynomial)

provides sufficient expressivity for the time series without requiring a large number of samples.

2) since the Koopman operator is linear, it is much easier to analyze and manipulate. For instance,

we can perform spectral analysis and examine its eigenfunctions, reaching a better understanding

of the frequency of oscillation. 3) Our feedback loop makes the Koopman operator adaptive to a

non-stationary environment. This is fundamentally different from previous works that learn a

single and fixed Koopman operator [76, 207, 8].

4.1.2 Koopman Theory

Time series data {xt}T
t=1 can be considered as observations of a dynamical system states –

consider the following discrete form: xt+1 =F (xt), where x ∈X ⊆Rd is the system state, and

F is the underlying governing equation. We focus on multi-step forecasting task of predicting

the future states given a sequence of past observations. Formally, we seek a function map f such

that:

f : (xt−q+1, . . . ,xt)−→ (xt+1, . . . ,xt+h), (4.1)

where q is the lookback window length and h is the forecasting window length.

Koopman theory [113] shows that any nonlinear dynamic system can be modeled by an

infinite-dimensional linear Koopman operator acting on the space of all possible measurement

functions. More specifically, there exists a linear infinite-dimensional operator K : G (X ) 7→

G (X ) that acts on a space of real-valued measurement functions G (X ) := {g : X 7→ R}. The

Koopman operator maps between function spaces and advances the observations of the state to

the next step:

K g(xt) = g(F (xt)) = g(xt+1). (4.2)
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4.1.3 Related Work

DNNs for time-series forecasting. DNNs are shown to increasingly outperform tradi-

tional statistical methods (such as exponential smoothing (ETS) [64] and ARIMA [6]) for time

series forecasting. For example, [212, 231] proposed to use DNNs to learn the local and global

representations of time series separately, showing high accuracy on sales and weather data. [239]

leverages inductive biases in different architectures and also specially designed contrastive loss

to learn disentangled seasonal and trend representations. [194] utilized a global TCN to avoid

normalization before training when there are wide variations in scale. But it focuses mainly on

better modeling the relationships between time series rather than advances in modeling over

time as ours. Transformer-based approaches are particularly effective in time series forecasting,

particularly on datasets including electricity and traffic [258, 243, 257], which are relatively

stationary and have clear seasonality and trend dynamics.

Robustness against temporal distribution shifts. Non-stationarity poses a great chal-

lenge for time series forecasting. To cope with varying distributions, one approach is to stationar-

ize the input data. [108] proposes a reversible instance normalization technique applied on data

to alleviate the temporal distribution shift problem. Similarly, [163] utilizes a DNN to adaptively

stationarize input time series. But these approaches did not improve the generalizability of DNNs.

[137] proposes a normalization-denormalization technique to stationarize time series, but only

for transformer-based models. [5] proposes test-time adaptation with a self-supervised objective

to better adapt against distribution shifts. Another line of work is to combine DNNs and statistical

approaches, for better accuracy on non-stationary time series data [144, 145]. [200] combines

ETS with a RNN, where the seasonality and smoothing coefficients, are fitted concurrently with

the RNN weights using the same gradient descent optimization. [160] proposes a deep residual

architecture for univariant time series data, in which each block used MLP to learn coefficients

of basis functions, such as polynomials and sine functions. Indeed, we show that our model

outperforms both [200] and [160] on the M4 financial time series dataset [144].
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Koopman theory. Koopman theory [113, 205] shows that a nonlinear dynamical system

can be represented as an infinite-dimensional linear Koopman operator acting on a space of

measurement functions. The spectral decomposition of the linear Koopman operator can provide

insights on the behaviors of nonlinear systems. Traditionally, dynamic mode decomposition

(DMD) [21] is commonly used for approximating the Koopman Operator. However, it is highly

nontrivial to find appropriate measurement functions as well as the Koopman operator. Many

works at the intersection of machine learning and Koopman theory employ DNNs to learn

measurement functions from data [76, 127, 155, 126, 207, 56]. [248] and [142] propose to use

fully connected DNNs to learn the transformation between the observations and measurement

functions that span a Koopman invariant subspace and the Koopman operator is approximated

by a linear layer. [8] also designed an autoencoder architecture based on Koopman theory to

forecast fluid dynamics. Different from these approaches, we allow the Koopman matrix to

evolve over time for each time series to adapt to the changing distribution.

4.2 Koopman Neural Forecaster

We propose Koopman Neural Forecasting (KNF), a deep sequence model based on

Koopman theory to forecast highly non-stationary time series, as shown in Fig. 4.1. It instantiates

an encoder-decoder architecture for each time series segment. The encoder takes in observations

from multiple time steps as the underlying dynamics may contain higher-order time derivatives.

Our model has three main features: 1) we use predefined measurement functions with learned

coefficients to map time series to the functional space. 2) the model employs both a global

Koopman operator to learn the shared characteristics and a local Koopman operator to capture

the local changing dynamics. 3) we also integrate a feedback loop to update the learned operators

over time-based on forecasting error, maintaining the model’s long-term forecasting performance.

Leveraging Predefined Measurement Functions We define a set of measurement

functions G := [g1, · · · ,gn] that spans the Koopman space, where each gi : R 7→ R. For example,
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Figure 4.1. Architecture of the proposed KNF model. It encodes every multiple steps of
observations into a measurement vector and utilizes a global operator and an adaptive local
operator to model the evolution of measurements. An additional adjustment operator is also
learned on the forecasting window, .

g1(x) = sin(x). These functions are canonical nonlinear functions and are often used to model

complex dynamical systems, such as Duffing oscillator and fluid dynamics [24, 118]. They also

provide a sample-efficient approach to represent highly nonlinear behavior that may be difficult

to learn for DNNs.

We use an encoder to generate the coefficients of the measurement functions Ψ(Xt),

such as the frequencies of sine functions. Let n be the number of measurement functions for

each feature, d be the number of features in a time series and k be the number of steps encoded

by the encoder Ψ : Rd×k 7→ Rn×d×k every time. The lookback window length q is a multiple of

k and we denote xtk:(t+1)k as Xt ∈ Rd×k for simplicity.

As shown in the Eq.4.3 below, we first obtain a latent matrix Vt = [v
(1)
t ,v

(2)
t , · · · ,v(n)

t ] ∈

Rn×d . Every vector vi ∈ Rd is a different linear transformation of the observations, where the
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weights are learnt by the encoder Ψ:

Vt [i, j] = ∑
l

Ψ(Xt)[i, j, l]Xt [ j, l]; 1 ≤ i ≤ n, 1 ≤ j ≤ d, 1 ≤ l ≤ k. (4.3)

Our measurement functions are defined in the latent space rather than the observational

space. We apply a set of predefined measurement functions G to the latent matrix Vt :

G (Vt) = [g1(v
(1)
t ),g2(v

(2)
t ), ...,gn(v

(n)
t )] ∈ Rn×d (4.4)

In our implementation, we flatten G (Vt) into a vector and then finite Koopman operator

should be a nd × nd matrix. Finally, we use a decoder Φ : Rn×d 7→ Rk×d to reconstruct the

observations from the measurements:

X̂t = Φ(G (Vt)). (4.5)

Here, the encoder Ψ and the decoder Φ can be any DNN architecture, for which we

use multi-layer perceptron (MLP). The set of measurement functions G contains polynomials,

exponential functions, trigonometric functions as well as interaction functions. These predefined

measurement functions are useful in imposing inductive biases into the model and help capture the

non-linear behaviors of time series. The encoder model needs to approximate only the parameters

of these functions without the need to directly learn non-stationary characteristics. Ablation

studies demonstrate that using predefined measurement functions significantly outperforms the

model with learned measurement functions in the previous works.

Global and Local Koopman Operators Dynamic mode decomposition (DMD) [213] is

traditionally used to find the Koopman operator that best propagates the measurements. But for

time series with a temporal distribution shift, we need to compute spectral decomposition and

learn a Koopman matrix for every sample (i.e. slice of a trajectory), which is computationally

expensive. So we utilize DNNs to learn Koopman operators.
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In classic Koopman theory, the measurement vector G (Vt) is infinite-dimensional, which

is impossible to learn. We assume that encoder is learning a finite approximation and G (Vt)

forms a finite Koopman-invariant subspace. Thus, the Koopman operator K that we need to

find is the finite matrix that best advances the measurements forward in time.

While the Koopman matrix should vary across samples and time in our case, it should

also capture the global behaviors. Thus, we propose to use both a global operator K g and a local

operator K l
t to model the propagation of dynamics in the Koopman space, defined as below:

K G (Vt) = (K g +K l
t )G (Vt) = G (Vt+1), t ≥ 0. (4.6)

The global operator K g is an nd ×nd trainable matrix that is shared across all time series. We

use the global operator to learn the shared behavior such as trend. The local Koopman operator

K l
t , on the other hand, is based on the measurement functions on the lookback window for each

sample, shown in Fig. 4.1. The local operator should capture the local dynamics specific to each

sample. Since we generate the forecasts in an autoregressive way, the local operator depends

on time t and varies across autoregressive steps, adapting to the distribution changes along with

prediction. We use a Transformer architecture with a single head as the encoder, to capture the

relationships between measurements at different steps. We use the attention weight matrix in the

last layer as the local Koopman operator.

Feedback Loop Suppose an abrupt distributional shift occurs in the middle of the look-

back window, the model would still try to fit two distributions before and after the shift but a

single propagation matrix is never good enough to model multiple distributions. This will result

in the inaccurate operator used for the forecasting window. To address it, we add an additional

feedback closed-loop, in which we employ an MLP module Γ to learn the adjustment operator

K c
t based on the prediction errors in the lookback window. It is directly added to other operators

when making predictions on the forecasting window, as shown in Fig. 4.1. More specifically, we

apply global and local operators recursively to the measurements at the first step in the lookback
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window to obtain predictions:

X̂t−q/k+i = Φ((K g +K l
t )

iG (Vt−q/k)), 0 < i ≤ q/k. (4.7)

Then, the feedback module Γ uses the difference between the predictions on the lookback window

and the observed data to generate additional adjustment operator K c
t , which is a diagonal matrix:

K c
t = Γ(X̂t−q/k:t −Xt−q/k:t) = Γ(x̂t−q:t −xt−q:t) (4.8)

If the predictions deviate significantly from the ground truth within the lookback window, the

operator K c
t would learn the temporal change in the underlying dynamics and correspondingly

adjust the other two operators. Thus, for forecasting, the sum of all three operators is used:

X̂t+i = Φ((K g +K l
t +K c

t )iG (Vt)), i > 0. (4.9)

In a word, the feedback module is designed to detect the distributional shifts in the lookback

window and adapt the global+local operator to the latest distribution in the lookback window.

Loss Functions KNF is trained in an end-to-end fashion, using superposition of three loss

terms L = Lrec +Lback +Lforw. Denote l as a distance metric for which we use the L2 loss. The

first term is the reconstruction loss, to ensure the decoder Φ can reconstruct the time series from

the measurements:

Lrec = l(Xt ,Φ(G (Ψ(Xt)Xt))), t ≥ 0. (4.10)

The second term is the prediction loss on the lookback window to ensure the sum of global and

local operators is the best-fit propagation matrix on the lookback window.

Lback = l(Xt−q/k+i,Φ((K g +K l
t )

iG (Ψ(Xt−q/k)Xt−q/k)), 0 < i ≤ q/k. (4.11)
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The third term is for prediction accuracy in the forecasting window to guide the feedback loop to

learn the correct adjustment placed on the Koopman operator.

Lforw = l(Xt+i,Φ((K g +K l
t +K c

t )iG (Vt)), i > 0. (4.12)

4.3 Experiments Setup

4.3.1 Datasets

We benchmark our method on three time series datasets: M4 [144], Crypto [5] and

Basketball Player Trajectories [125]. These time series are particularly chosen as they are

difficult to forecast due to high nonstationarity and abrupt temporal changes, as analyzed in Sec.

4.2.

M4. It contains 10000 highly nonstationary univariate time series with different fre-

quencies from hourly to yearly and different categories from financials to demographics. The

forecasting horizon varies across different frequencies. We directly compare KNF with the M4

competition winner [200], the second place [154] and the ensemble N-Beats-I+G [160] that has

achieved the competitive prediction performance on M4.

Crypto.1 This multivariate dataset contains 8 features on historical trades, such as open

and close prices, for 14 cryptocurrencies. The original challenge is to predict 3-step ahead

15-minute relative future returns. Since we focus on long-term forecasting, we train all models

to make 15-step predictions of 15-minute relative future returns. We use the original training set

from the competition and do an 80%-10%-10% training-validation-test split.

Player Trajectory.2 This dataset contains basketball player movement trajectories from

NBA games in 2016. We randomly sample 300 player trajectories for training and validation and

50 trajectories for testing. All models are trained to yield 30-step ahead predictions.

As a way of motivating for the improvement scenarios of our method, we show that the

1https://www.kaggle.com/competitions/g-research-crypto-forecasting/data
2https://github.com/linouk23/NBA-Player-Movements
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three datasets we focus on are much more difficult to predict than commonly-used datasets like

Electricity [78] with the following three metrics: (1) Forecastability [70]: it is one minus the

entropy of Fourier decomposition of the time series; (2) Lyapunov exponents (LEs) [48, 193]: a

measure of how sensitive a dynamical system is to initial conditions.(3) Trend: the slope of the

linear regression fitted on the time series scaled by its own magnitude; and (4) Seasonality: we

use ACF test [238] to test if there is clear seasonality. We report the mean forecastability, mean

trend and the percentage of the slices that have seasonality in Table 4.1, averaged over slices

with length 20. We can see that seasonality is dominant for Electricity dataset, which also has

significantly higher forecastability compared to the datasets we experiment with. Moreover, we

show that KNF achieves the state-of-the-art prediction performance on those datasets that have

high Lyapunov exponents, low forecastability, no clear trends and seasonality, including Crypto,

Player Trajectories, M4-monthly, M4-weekly and M4-daily.

Table 4.1. The forecastability, Lyapunov exponents, trend and seasonality of the datasets that we
used for our experiments, compared with a commonly-used Electricity benchmark. The boldface
datasets are what we use for experiments in this paper.

Electricity Crypto Player
Traj.

M4-
monthly

M4-
weekly

M4-
daily

M4-
hourly

M4-
yearly

M4-
quarterly

Forecastability 0.77 0.35 0.49 0.44 0.43 0.44 0.46 0.58 0.47
LEs 0.005 0.026 0.052 0.011 0.013 0.020 0.003 0.004 0.003

Trend 0.00 0.02 0.01 0.48 0.13 0.05 0.02 4.32 1.06
Seasonality 100% 0.00% 0.00% 66.34% 0.00% 0.00% 99.76% 0.00% 84.51%

For all datasets, we use a sliding window approach to generate training samples. On

Crypto and Player Trajectory datasets, we perform a grid search of hyperparameters, including

learning rate, input length, hidden dimension, number of predictions made in each autoregressive

step, etc. for all models. The default set of measurement functions used in KNF includes

polynomials up to the order of four, one exponential function and trigonometric functions with

the same number of input steps for each feature, as well as pairwise product interaction functions

between features if the time series data is multivariate.
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4.3.2 Baselines

For M4, we compare with the winner solution [200], the second best [154] and N-beats

[160]. On the Crypto and Player Trajectory datasets, we compare KNF with four different types

of models.

• Vector ARIMA (VARIMA) [204]: It is an extension of the classic ARIMA model for multivari-

ate time series.

• Multi-layer Perceptron (MLP) that maps the historic observations to the future and rolls out

autoregressively to yield long-term predictions. It is a commonly-used DL model for time

series forecasting [5, 225, 55].

• Random Forest (RF) applied autoregressively same as MLP. It is a traditional ML model that

have achieved competitive performance on many time series benchmarks [69, 147, 99, 91].

• Long Expressive Memory (LEM) [180] : An SOTA recurrent model to learn long-term

sequential dependencies.

• FedFormer (FedFormer) [258] is a state-of-the-art transformer-based model, which has

outperformed other transformer-based models, such as Informer [257] and Autoformer [243],

on many datasets, including electricity, traffic, weather, etc.

• Variational Beam Search (VBS) [125] is a Bayesian online learning model proposed to

detect and adapt to temporal distributional shifts. Since VBS is not designed for time series

forecasting, we modify it by feeding its own prediction of next step back to the input (instead

of the ground truth) to yield multi-step predictions.

We find that the following two training strategies can improve the prediction accuracy of

models by varying degrees. The first one is the reversible instance normalization ReVIN [108],

which normalizes the input sequence and de-normalizes the predictions at every autoregressive

step for every instance. We use ReVIN for MLP and KNF since it can improve their prediction
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Table 4.2. sMAPE for KNF and baselines on M4 datasets. The numbers in parentheses are the
number of prediction steps. KNF achieves state-of-the-art prediction performance at Weekly,
Daily, and Monthly frequencies.

sMAPE Monthly(18) Weekly(13) Daily(14)

Montero 12.639 7.625 3.097
Smyl 12.126 7.817 3.170

Nbeats-I+G 12.024 - -
KNF 11.930 7.254 2.990

accuracy. An ablation study of ReVIN on KNF can be found in Table 4.3. The second one is,

temporal bundling TB [17] that asks autoregressive models to generate multiple-step predictions

instead of just one on every call, to reduce the number of model calls and therefore error

propagation speed. We observe this strategy can improve the prediction accuracy of both MLP

and RF.

4.3.3 Evaluation Metrics

We report the mean and standard deviation averaged across five runs. We follow the

literature and use RMSE for the evaluation on Player Trajectories and the weighted RMSE on

Crypto, where the weight corresponds to the importance of each cryptocurrency same as in the

competition. Since VBS is deterministic once its inverse temperature parameter is fixed, we do

not report its standard deviation. On M4, we evaluate models with the sMAPE metric [144]1

used in the original competition. Ensembling is used by most models in the M4-competition

and N-Beats [160], so we ensemble five KNF with best hyperparameters but trained with random

seeds. Since the evaluation in the M4 competition is only based on a single submission, we also

report the sMAPE of a single ensembled prediction without standard deviation.

1sMAPE is the mean absolute error scaled by the magnitude of the predictions and target.
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4.4 Results

4.4.1 Prediction Performance

Results on M4 Table 4.2 reports the prediction sMAPE of KNF and three baselines,

including the M4 winner [200], the second place [154] and the ensembled N-beats-I+G [160],

on six datasets with different frequency in M4. [160] does not report the breakdown sMAPE

of N-beats on weekly, daily and hourly, so we did not include them in the table. The number

behind each frequency in the table is the number of prediction steps required in the competition.

We can see that KNF achieves state-of-the-art accuracy on Weekly, Daily and Monthly data that

have longer forecasting horizons, and no clear trends and seasonality. This highlights the value

proposition of KNF for accurate long-term forecasting accuracy especially for time series with

nonstationary characteristics and low forecastability.

Table 4.3. Ablation study of KNF on M4-weekly data. It shows the importance of every
component in the model architecture.

M4-Weekly sMAPE

KNF-base-G 14.175
KNF-base-I 9.122

+RevIN 8.435
+RevIN+K g 7.500

+RevIN+K g+feedback 7.254

Results on Crypto and Player Trajectories Table 4.4 shows the Prediction RMSE

on Crypto and Player Trajectories datasets. KNF consistently achieves the best performance

on both, across different forecasting horizons. Fig. 4.2 exemplifies the predictions of KNF

and best-performing baselines. We observe that KNF can capture both overall trends and small

fluctuations in a superior way, yielding much higher accuracy. Fig. 4.2 right visualizes the

predictions on a trajectory with changing direction. KNF correctly predicts the change of moving

direction while FedFormer fails.

Regarding baselines, RevIN and TB greatly improve MLP, and MLP+RevIN+TB is the best
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Figure 4.2. Left: Example forecasts on Crypto dataset. Right: Example forecasts on NBA player
trajectory dataset. We observe that KNF can be superior in capturing complex non-stationary
patterns.

performing one on Crypto, and FedFormer performs better on Player Trajectory, that are less

chaotic and irregular. Though VBS was shown to perform well on the online change point

detection task, it does not appear to be as successful for time series forecasting based on its

performance on these two datasets.

4.4.2 Ablation Study

We performed an ablation study of KNF on the M4-Weekly data to understand the

contribution of each component in our model. Table 4.3 shows the sMAPE of ensembled

predictions from five funs of each variant. We denote KNF-base as the basic backbone of our

model that only has an encoder-decoder architecture and a local Koopman operator. KNF-base-G

uses purely data-driven measurements, which is similar to the Koopman autoencoders proposed

in [248, 8]. This can be considered a baseline for our model. KNF-base-I uses predefined

measurement functions, which significantly outperforms KNF-base-G. This demonstrates the

Table 4.4. Prediction RMSE on Cryptos and Player Trajectories datasets.

Model Crypto (Weighted RMSE 10−3) Basketball Player Trajectory (RMSE)
(1∼5) (6∼10) (11∼15) Total (1∼10) (11∼20) (21∼30) Total

VARIMA 6.09±0.00 8.83±0.00 10.74±0.00 8.76±0.00 0.22±0.00 0.90±0.00 1.98±0.00 1.26±0.00
MLP 6.68±1.53 7.95±0.33 8.64±0.55 7.85±0.35 0.73±0.20 1.64±0.31 2.77±0.42 1.91±0.32

MLP+RevIN+TB 5.03±0.08 7.16±0.13 8.41±0.06 7.01±0.08 0.37±0.02 1.16±0.03 2.25±0.04 1.48±0.25
RF+TB 6.62±1.30 7.99±0.2s4 8.51±1.19 7.84±0.04 0.86±0.01 2.10±0.01 3.48±0.02 2.40±0.01

FedFormer 5.61±0.05 7.50±0.03 8.89±0.03 7.46±0.04 0.43±0.02 0.92±0.03 1.97±0.04 1.29±0.03
LEM 5.27±0.02 7.23±0.06 8.23±0.05 7.02±0.04 0.33±0.01 1.08±0.04 2.18±0.02 1.42±0.02
VBS 15.23 14.46 26.49 19.52 0.90 2.84 9.24 5.60
KNF 5.24±0.01 7.03±0.01 7.63±0.01 6.91±0.01 0.26±0.01 0.84±0.01 1.81±0.01 1.16±0.01
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Figure 4.3. Predictions on M4-weekly data from original KNF and with its version without the
feedback loop. We observe that the feedback loop can help provide robustness against temporal
distributional shifts and maintain long-term prediction accuracy.

benefits of leveraging hard-coded functions. Moreover, adding any of ReVIN, the global

Koopman operator and the feedback loop also brings great improvement based on the results

shown in Table 4.3.

To further demonstrate the effectiveness of the feedback loop, we visualize the predictions

on M4-weekly data from KNF and KNF with the feedback module removed after training in Figure

4.3. We can observe that the predictions from the model with the feedback loop removed start to

deviate from the ground truth after a few steps. That means the feedback loop can cope with the

temporal distributional shifts and thus improve the long-horizon forecasting accuracy.

4.4.3 Interpretability Analysis

Figure 4.4. Reconstructions from KNF on the
lookback window with only one of eigenfunc-
tions of K g +K l

t on a M4 time series.

KNF can offer unique interpretability

capabilities via spectral analysis of the Koop-

man operators. We perform eigendecompo-

sition on K g +K l
t for KNF trained on M4-

weekly data to investigate what individual

eigenfunctions have learned. Fig. 4.4 shows

the predictions in the lookback window with

different eigenfunctions. From the top to the
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bottom, the plot shows the target, the recon-

struction from KNF with only the first eigenfunction in the lookback window and the reconstruc-

tion only using the second eigenfunction. We observe that some eigenfunctions capture the trend

while some other functions focus on seasonality.

4.5 Conclusion

This chapter presents the Koopman Neural Forecaster (KNF), a novel model based on the

Koopman theory that accurately forecasts non-stationary time series with temporal distribution

shifts. KNF uses predefined measurement functions to capture the nonlinear and nonstationary

characteristics that are challenging for neural nets to learn. The model employs a global operator

to learn shared characteristics and a local operator to capture changing dynamics. Furthermore,

we employ a feedback loop to continuously update the learned operators over time for rapidly

varying behaviors. Our experiments show that KNF achieves state-of-the-art performance on a

wide range of time series datasets known to suffer from distribution shifts, such as M4, Cryptos,

and NBA player trajectory datasets, and provides interpretable results.

In addition to guiding DL models to understand domain or temporal distributional shifts

due to changing dynamics, it is also crucial to incorporate the symmetries in the governing laws

of dynamics into the design of DL models to make them generalize automatically to symmetry

transformations. More importantly, DL models that respect symmetries obey conservation laws,

thus generating physically meaningful predictions. In the next chapter, we discuss how to design

equivariant neural nets for different symmetries and empirically and theoretically demonstrate

the advantages of these nets in learning dynamics.

58



Chapter 5

Equivariant Deep Dynamics Models

5.1 Introduction

5.1.1 Symmetry and Equivariance

Exploiting symmetry in dynamical systems is a powerful way to improve the general-

ization of DL. The model learns to be equivariant or invariant to group transformations and

hence is more robust to distribution shift. Symmetry has long been implicitly used in DL to

design networks with known invariances and equivariances. Convolutional neural networks

enabled breakthroughs in computer vision by leveraging translation equivariance [252, 123, 253].

Similarly, recurrent neural networks [179, 81], graph neural networks [189, 110], and capsule

networks [182, 80] all impose symmetries.

Figure 5.1. Illustration of equivari-
ance: f (x) = 2x w.r.t T = rot(π/4)

While the equivariant DL models have achieved

remarkable success in image and text data [37, 232, 38,

34, 124, 112, 9, 241, 61, 234, 47, 66, 202], the study

of equivariant nets in learning dynamical systems has

become increasingly popular recently [130, 226, 199,

84, 217, 198]. Since the symmetries can be integrated

into neural nets through not only loss functions but also

the design of neural net layers and there has been a large

volume of works about equivariant and invariant DL
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models for physical dynamics, we discuss this topic separately in this section.

In physics, there is a deep connection between symmetries and physics. Noether’s

law gives a correspondence between conserved quantities and groups of symmetries. For

instance, translation symmetry corresponds to the conservation of energy and rotation symmetry

corresponds to the conservation of angular momentum. By building a neural network that

inherently respects a given symmetry, we thus make conservation of the associated quantity

more likely and consequently the model’s prediction more physically accurate. Furthermore,

by designing a model that is inherently equivariant to transformations of its inputs, we can

guarantee that our model generalizes automatically across these transformations, making it

robust to distributional shifts.

A group of symmetries or simply group consists of a set G together with an associative

composition map ◦ : G×G → G. The composition map has an identity 1 ∈ G and composition

with any element of G is required to be invertible. A group G has an action on a set S if there is

an action map · : G×S → S which is compatible with the composition law. We say further that

ρ : G 7→ GL(V ) is a G-representation if the set V is a vector space and each group element g ∈ G

is represented by a linear map (matrix) ρ(g) that acts on V . Formally, a function f : X → Y may

be described as respecting the symmetry coming from a group G using the notion of equivariance.

Definition 2. Assume a group representation ρin of G acts on X and ρout acts on Y . We say a

function f is G-equivariant if

f (ρin(g)(x)) = ρout(g) f (x) (5.1)

for all x ∈ X and g ∈ G. The function f is G-invariant if f (ρin(g)(x)) = f (x) for all x ∈ X and

g ∈ G. This is a special case of equivariance for the case ρout(g) = 1. See Figure 5.1 for an

illustration of a rotation equivariant function.
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5.1.2 Symmetries of Differential Equations

By classifying the symmetries of a system of differential equations, the task of finding

solutions is made far simpler, since the space of solutions will exhibit those same symmetries.

Let G be a group equipped with an action on 2-dimensional space X = R2 and 3-dimensional

spacetime X̂ = R3. Let V = Rd be a G-representation. Denote the set of all V -fields on X̂

as F̂V = {w : X̂ → V : w smooth}. Define FV similarly to be V -fields on X . Then G has an

induced action on F̂V by (gw)(x, t) = g(w(g−1x,g−1t)) and on FV analogously.

Consider a system of differential operators D acting on F̂V . Denote the set of solutions

Sol(D)⊆ F̂V . We say G is a symmetry group of D if G preserves Sol(D). That is, if ϕ is a

solution of D , then for all g ∈ G, g(ϕ) is also. In order to forecast the evolution of a system D ,

we model the forward prediction function f . Let w ∈ Sol(D). The input to f is a collection of

k snapshots at times t − k, . . . , t −1 denoted wt−i ∈ Fd . The prediction function f : F k
d → Fd

is defined f (wt−k, . . . ,wt−1) =wt . It predicts the solution at a time t based on the solution in

the past. Let G be a symmetry group of D . Then for g ∈ G, g(w) is also a solution of D . Thus

f (gwt−k, . . . ,gwt−1) = gwt . Consequently, f is G-equivariant.

We mainly focus on the symmetries in fluid systems governed by Navier-Stokes equations

that are invariant under the following five different transformations. Individually each of these

types of transformations generates a group of symmetries in the system.

• Space translation: T sp
c w(x, t) =w(x−c, t), c ∈ R2,

• Time translation: T time
τ w(x, t) =w(x, t − τ), τ ∈ R,

• Galilean: T um
c w(x, t) =w(x−ct, t)+c, c ∈ R2,

• Rotation/Reflection: T rot
R w(x, t) = Rw(R−1x, t), R ∈ O(2),

• Scaling: T sc
λ
w(x, t) = λw(λx,λ 2t), λ ∈ R>0.
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5.1.3 Equivariant CNNs

We primarily employ convolutional-based models for our dynamics forecasting problem,

with a specific emphasis on the following two types of equivariant CNNs.

G-Equivariant Group Convolution [38] A G-equivariant group convolution takes as

input a cin-dimensional feature map f : G → Rcin and convolves it with kernel Ψ : G → Rcout×cin

over a group G,

[ f ⋆G Ψ](g) = ∑
h∈G

f (h)Ψ(g−1h). (5.2)

Here we assume G finite, however, G may also be taken to be compact if the sum is replaced

with an integral. Group convolution achieves equivariance by weight sharing since the kernel

weight Ψ at (g,h) depends only on g−1h and thus pairs with equal g−1h share weights. Notice

that both f and the filter Ψ are functions on the plane Zm in the first layer. But they are functions

on discrete group G for all layers after.

G-Steerable Convolution [39] Let f be the input feature map f : R2 → Rcin with group

H ⊂ O(2) acting on the base space R2 by matrix multiplication and on the channel space Rcin

by ρin. Also fix an H-action ρout on Rcout . Let Φ : R2 → Rcout×cin be a kernel, then by [233], the

standard 2D convolution f ⋆R2 Φ is H-equivariant and R2-translation equivariant when

Φ(hx) = ρout(h)Φ(x)ρin(h−1) ∀h ∈ H. (5.3)

This linear constraint induces dependence in the weights which is called weight tying. Solving

for a basis of solutions to (5.3) gives an equivariant kernel basis {Φl}L
l=1 which can be combined

using trainable coefficients Φ = ∑
L
l=1 wlΦl to learn any kernel solving (5.3).

5.1.4 Related Work

Equivariant Convolutional Neural Networks Apart from incorporating symmetries

into regular convolution we have discussed in the previous sections, there has been a surge of
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interest in designing equivariant continuous convolution models. This is due to the fact that

continuous convolution allows for convolutional operations to be performed on a continuous

input domain. For instance, [192] proposed SchNet, which is a continuous convolution framework

that generalizes the CNN approach to continuous convolutions to model particles at arbitrary

positions. Continuous convolution kernels are generated by dense neural networks that operate

on the interatomic distances, which ensures rotational and translation invariance of the energy.

In a traffic forecasting application, [221] proposed a novel model, Equivariant Continuous

COnvolution (ECCO) that uses rotationally equivariant continuous convolutions to embed the

symmetries of the system for improved trajectory prediction. The rotational equivariance is

achieved by a weight-sharing scheme within kernels in polar coordinates. ECCO achieves

superior performance to baselines on two real-world trajectory prediction datasets, Argoverse

and TrajNet++.

Equivariant Graph Neural Networks In addition to the equivariant convolution, nu-

merous equivariant graph neural nets have also been developed, particularly for modeling atomic

systems and molecular dynamics. This is due to the pervasive presence of symmetry in molec-

ular physics, as evidenced by roto-translation equivariance in molecular conformations and

coordinates. [188] designed E(n)-equivariant graph neural network for predicting molecular

properties. It updates edge features with the Euclidean distance between nodes and updates the

coordinates of particles with the weighted sum of relative differences of all neighbors. [196]

proposed to use a score-based generative model for generating molecular conformation. The

authors used equivariant graph neural networks to estimate the score function, which is the

gradient fields of the log density of atomic coordinates because it is roto-translation equivariant.

[4] designed Cormorant, a rotationally covariant neural network architecture for learning the

behavior and properties of complex many-body physical systems. Cormorant achieves promising

results in learning molecular potential energy surfaces on the MD-17 dataset and learning the

geometric, energetic, electronic, and thermodynamic properties of molecules on the GDB-9

dataset. [214] further designed a series SE(3)-equivariant operations and building blocks for DL
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architectures operating on geometric point cloud data, which was used to construct PhiSNet, a

novel architecture capable of accurately predicting wavefunctions and electronic densities. [16]

proposed a lie point symmetry data augmentation method for training graph neural PDE solvers

and this method enables these neural solvers to preserve multiple symmetries.

Symmetry Discovery There has been also an emerging area that is symmetry discovery,

the key idea of which is to find the weight-sharing patterns in neural networks that have been

trained on data with symmetries. For instance, [255] factorized the weight matrix in a fully

connected layer into a symmetry (i.e. weight-sharing) matrix and a vector of filter parameters.

The two parts are learned separately in the inner and outer loop training with the Model-Agnostic

Meta-Learning algorithm (MAML) [59], which is an optimization-based meta-learning method

so that the symmetry matrix can learn the weight-sharing pattern from the data. Furthermore,

[46] proposed Lie Algebra Convolutional Network (L-conv), a novel architecture that can learn

the Lie algebra basis and automatically discover symmetries from data. It can be considered as

an infinitesimal version of group convolution.

5.2 Incorporating Symmetry into Deep Dynamics Models
for Improved Generalization

5.2.1 Deep Equivariant Dynamics Models

We prescribe equivariance by training within function classes containing only equivariant

functions. Our models can thus be theoretically guaranteed to be equivariant up to discretization

error. We incorporate equivariance into two state-of-the-art architectures for dynamics prediction,

ResNet and U-net [224]. Below, we describe how we modify the convolution operation in these

models for different symmetries G to form four EquG-ResNet and four EquG-Unet models.

The key to building equivariant networks is that the composition of equivariant functions

is equivariant. Hence, if the maps between layers of a neural network are equivariant, then the

whole network will be equivariant. Note that both the linear maps and activation functions must
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be equivariant. An important consequence of this principle is that the hidden layers must also

carry a G-action. Thus, the hidden layers are not collections of scalar channels but vector-valued

G-representations.

Rotational Equivariance To incorporate rotational symmetry, we model f using SO(2)-

equivariant convolutions and activations within the E(2)-CNN framework of [232]. In practice,

we use the cyclic group G = Cn instead of G = SO(2) as for large enough n the difference

is practically indistinguishable due to space discretization. We use powers of the regular

representation ρ = R[Cn]
m for hidden layers. The representation R[Cn] has basis given by

elements of Cn and Cn-action by permutation matrices. It has good descriptivity since it contains

all irreducible representations of Cn, and it is compatible with any activation function applied

channel-wise.

Uniform Motion Equivariance Uniform motion is part of Galilean invariance and

is relevant to all non-relativistic physics modeling. For a vector field X : R2 → R2 and vector

c ∈ R2, uniform motion transformation is adding a constant vector field to the vector field X(v),

T um
c (X)(v) = X(v)+c,c ∈ R2.

We make CNNs equivariant to uniform motion by conjugating the model with shifted

input distribution. For each sliding local block in each convolutional layer, we shift the mean

of input tensor to zero and shift the output back after convolution and activation function per

sample. In other words, if the input is Pb×din×s×s and the output is Qb×dout = σ(P ·K) for one

sliding local block, where b is batch size, d is number of channels, s is the kernel size, and K is

the kernel, then

µi = Mean jkl
(
P i jkl

)
; P i jkl 7→ P i jkl −µi; Qi j 7→ Qi j +µi. (5.4)

This will allow the convolution layer to be equivariant with respect to uniform motion. If the

input is a vector field, we apply this operation to each element.

Proposition 1. A residual block f (x)+x is uniform motion equivariant if the residual connection
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f is uniform motion invariant.

Proof. We denote the uniform motion transformation by c by T um
c (w) = w+ c. Let f be

an invariant residual connection which is a composition of convolution layers and activation

functions. Then we compute

f (T um
c (w))+T um

c (w) = f (w)+w+c

= ( f (w)+w)+c

= T um
c ( f (w)+w).

as desired.

By the proposition 1 above, within ResNet, residual mappings should be invariant, not

equivariant, to uniform motion. That is, the skip connection f (i,i+2) = I is equivariant and the

residual function f (i,i+1) should be invariant. Hence, for the first layer in each residual block, we

omit adding the mean back to the output Qi j. In the case of Unet, when upscaling, we pad with

the mean to preserve the overall mean.

Scale Equivariance Scale equivariance in dynamics is unique as the physical law dictates

the scaling of magnitude, space and time simultaneously. This is very different from scaling

in images regarding resolutions [240]. For example, the Navier-Stokes equations are preserved

under a specific scaling ratio of time, space, and velocity given by the transformation

Tλ : w(x, t) 7→ λw(λx,λ 2t), (5.5)

where λ ∈ R>0. We implement two different approaches for scale equivariance, depending on

whether we tie the physical scale with the resolution of the data.

If the physical scale of the data is fixed, then scaling corresponds to a change in resolution

and time step size. To achieve this, we replace the convolution layers with group correlation

66



layers over the group G = (R>0, ·)⋉ (R2,+) of scaling and translations. In convolution, we

translate a kernel K across an input w as such v(p) = ∑q∈Z2 w(p+q)K(q). The G-correlation

upgrades this operation by both translating and scaling the kernel relative to the input,

v(p,s,µ) = ∑
λ∈R>0,t∈R,q∈Z2

λw(λp+q,λ 2t,λ µ)K(q,s, t,λ ), (5.6)

where s and t denote the indices of output and input channels respectively. We add an

axis to the tensors corresponding the scale factor µ . Note that we treat the channel as a time

dimension both with respective to our input and scaling action. As a consequence, as the number

of channels increases in the lower layers of Unet and ResNet, the temporal resolution increases,

which is analogous to temporal refinement in numerical methods [106, 133]. For the input w̃ of

first layer where w̃ has no levels originally, w(p,s,λ ) = λw̃(λ p,λ 2s).

Our model builds on the methods of [240], but with important adaptations for the physical

domain. Our implementation of group correlation Eqn. 5.6 directly incorporates the physical

scaling law (5.5) of the system Eqn. 2.1.1. This affects time, space, and magnitude. (For heat, we

drop the magnitude scaling.) The physical scaling law dictates our model should be equivariant

to both up and down scaling and by any λ ∈ R>0. Practically, the sum is truncated to 7 different

1/3 ≤ λ ≤ 3 and discrete data is continuously indexed using interpolation. Note (5.5) demands

we scale anisotropically, i.e. differently across time and space.

Magnitude Equivariance We fix the resolution and scale the magnitude of the input by

varying the discretization step size. An input w ∈ F k
R2 with step size ∆x(w) and ∆t(w) can be

scaled w′ = T sc
λ
(w) = λw by scaling the magnitude of vector alone, provided the discretization

constants are now assumed to be ∆x(w
′) = 1/λ∆x(w) and ∆t(w

′) = 1/λ 2∆t(w). We refer to

this as magnitude equvariance hereafter.

To obtain magnitude equivariance, we divide the input tensor by the MinMax scaler (the

maximum of the tensor minus the minimum) and scale the output back after convolution and

activation per sliding block. We found that the standard deviation and mean L2 norm may work
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Table 5.1. The RMSE and ESE of the ResNet(Unet) and Equ-ResNets(Unets) predictions
on the original and transformed test sets of Rayleigh-Bénard Convection. Augm is ResNet(Unet)
trained on additional samples applied with random transformations from the relevant symmetry
group.

Root Mean Square Error(103) Energy Spectrum Errors

Orig UM Mag Rot Scale Orig UM Mag Rot Scale

ResNet 0.67±0.24 2.94±0.84 4.30±1.27 3.46±0.39 1.96±0.16 0.46±0.19 0.56±0.29 0.26±0.14 1.59±0.42 4.32±2.33

Augm 1.10±0.20 1.54±0.12 0.92±0.09 1.01±0.11 1.37±0.02 1.14±0.32 1.92±0.21 1.55±0.14

EquUM 0.71±0.26 0.71±0.26 0.33±0.11 0.33±0.11
EquMag 0.69±0.24 0.67±0.14 0.34±0.09 0.19±0.02
EquRot 0.65±0.26 0.76±0.02 0.31±0.06 1.23±0.04
EquScal 0.70±0.02 0.85±0.09 0.44±0.22 0.68±0.26

U-net 0.64±0.24 2.27±0.82 3.59±1.04 2.78±0.83 1.65±0.17 0.50±0.04 0.34±0.10 0.55±0.05 0.91±0.27 4.25±0.57

Augm 0.75±0.28 1.33±0.33 0.86±0.04 1.11±0.07 0.96±0.23 0.44±0.21 1.24±0.04 1.47±0.11

EquUM 0.68±0.26 0.71±0.24 0.23±0.06 0.14±0.05
EquMag 0.67±0.11 0.68±0.14 0.42±0.04 0.34±0.06
EquRot 0.68±0.25 0.74±0.01 0.11±0.02 1.16±0.05
EquScal 0.69±0.13 0.90±0.25 0.45±0.32 0.89±0.29

as well but are not as stable as the MinMax scaler. Specifically,

σ i = MinMax jkl
(
P i jkl

)
; P i jkl 7→ P i jkl/σ i; Qi j 7→ Qi j ·σ i. (5.7)

5.2.2 Experiments on Simulated Rayleigh-Bénard Convection Dynamics

Data Description. Rayleigh-Bénard Convection occurs in a horizontal layer of fluid

heated from below and is a major feature of the El Niño dynamics. The dataset comes from two-

dimensional turbulent flow simulated using the Lattice Boltzmann Method [35] with Rayleigh

number 2.5× 108. We divide each 1792 × 256 image into 7 square subregions of size 256

× 256, then downsample to 64 × 64 pixels. To test the models’ generalization ability, we

generate additional four test sets : 1) UM: added random vectors drawn from U(−1,1); 2) Mag:

multiplied by random values sampled from U(0,2); 3) Rot: randomly rotated by the multiples

of π/2; 4) Scale: scaled by λ sampled from U(1/5,2). Due to lack of a fixed reference frame,

real-world data would be transformed relative to training data. We use transformed data to mimic

this scenario.
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Figure 5.2. The ground truth and the predicted velocity norm fields ∥w∥2 at time step 1, 5 and
10 by the ResNet and four Equ-ResNets on the four transformed test samples. The first column
is the target, the second is ResNet predictions, and the third is predictions by Equ-ResNets.

Table 5.2. Model Equivariance Errors

EET (103) UM Mag Rot Scale

ResNets 2.01 1.88 5.90 1.66
EquResNet 0.0 0.0 1.19 0.58

Unets 1.07 0.20 1.55 1.81
EquUnet 0.0 0.0 0.79 0.48

Prediction Performance. Table 5.1 shows

the prediction RMSE and ESE on the original and

four transformed test sets by the non-equivariant

ResNet(Unet) and four Equ-ResNets(Unets). Augm

is ResNet(Unet) trained on the augmented training set

with additional samples with random transformations applied from the relevant symmetry group.

The augmented training set contains additional transformed samples and is three times the size

of the original training set. Each column contains the prediction errors by the non-equivariant

and equivariant models on each test set. On the original test set, all models have similar RMSE,

yet the equivariant models have lower ESE. This demonstrates that incorporating symmetries

preserves the representation powers of CNNs and even improves models’ physical consistency.

Table 5.3. Performance com-
parison on the transformed
train and test sets.

RMSE ESE

ResNet 1.03±0.05 0.96±0.10

EquUM 0.69±0.01 0.35±0.13

ResNet 1.50±0.02 0.55±0.11

EquMag 0.75±0.04 0.39±0.02

ResNet 1.18±0.05 1.21±0.04
EquRot 0.77±0.01 0.68±0.01

ResNet 0.92±0.01 1.34±0.07
EquScal 0.74±0.03 1.02±0.02

On the transformed test sets, we can see that

ResNet(Unet) fails, while Equ-ResNets(Unets) performs

even much better than Augm-ResNets(Unets). This demon-

strates the value of equivariant models over data augmentation for

improving generalization. Figure 5.2 shows the ground truth and

the predicted velocity fields at time step 1, 5 and 10 by the ResNet

and four Equ-ResNets on the four transformed test samples.

Generalization. In order to evaluate models’ generaliza-
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tion ability with respect to the extent of distributional shift, we created additional test sets with

different scale factors from 1
5 to 1. Figure 5.3 shows ResNet and EquScal-ResNet prediction

RMSEs (left) and ESEs (right) on the test sets upscaled by different factors. We observed that

EquScal-ResNet is very robust across various scaling factors while ResNet does not generalize.

We also compare ResNet and Equ-ResNet when both train and test sets have random

transformations from the relevant symmetry group applied to each sample. This mimics real-

world data in which each sample has unknown reference frame. As shown in Table 5.3 shows

Equ-ResNet outperforms ResNet on average by 34% RMSE and 40% ESE.

Figure 5.3. Left: Prediction RMSE and ESE over five runs of ResNet and EquScal-ResNet on
the Rayleigh-Bénard Convection test set upscaled by different factors. Right: The ground truth
and predicted ocean currents ∥w∥2 by ResNet and four Equ-ResNets on the test set of future
time.

5.2.3 Experiments on Real World Ocean Dynamics

Data Description. We use the reanalysis ocean current velocity data generated by

the NEMO ocean engine [143].1 We selected an area from each of the Atlantic, Indian and

North Pacific Oceans from 01/01/2016 to 08/18/2017 and extracted 64×64 sub-regions for

our experiments. The corresponding latitude and longitude ranges for the selected regions are

(-44∼-23, 25∼46), (55∼76, -39∼-18) and (-174∼-153, 5∼26) respectively. We not only test all

models on the future data but also on a different domain (-180∼-159, -40∼-59) in South Pacific

Ocean from 01/01/2016 to 12/15/2016.
1The data are available at https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=

GLOBAL_ANALYSIS_FORECAST_PHY_001_024
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Table 5.4. Prediction RMSE and ESE compar-
ison on the two ocean currents test sets.

RMSE ESE

Testtime Testdomain Testtime Testdomain

ResNet 0.71±0.07 0.72±0.04 0.83±0.06 0.75±0.11

AugmUM 0.70±0.01 0.70±0.07 1.06±0.06 1.06±0.04

AugmMag 0.76±0.02 0.71±0.01 1.08±0.08 1.05±0.8

AugmRot 0.73±0.01 0.69±0.01 0.94±0.01 0.86±0.01

AugmScal 0.97±0.06 0.92±0.04 0.85±0.03 0.95±0.11

EquUM 0.68±0.06 0.68±0.16 0.75±0.06 0.73±0.08

EquMag 0.66±0.14 0.68±0.11 0.84±0.04 0.85±0.14

EquRot 0.69±0.01 0.70±0.08 0.43±0.15 0.28±0.20

EquScal 0.63±0.02 0.68±0.21 0.44±0.05 0.42±0.12

U-net 0.70±0.13 0.73±0.10 0.77±0.12 0.73±0.07

AugmUM 0.68±0.02 0.68±0.01 0.85±0.04 0.83±0.04

AugmMag 0.69±0.02 0.67±0.10 0.78±0.03 0.86±0.02

AugmRot 0.79±0.01 0.70±0.01 0.79±0.01 0.78±0.02

AugmScal 0.71±0.01 0.77±0.02 0.84±0.01 0.77±0.02

EquUM 0.66±0.10 0.67±0.03 0.73±0.03 0.82±0.13

EquMag 0.63±0.08 0.66±0.09 0.74±0.05 0.79±0.04

EquRot 0.68±0.05 0.69±0.02 0.42±0.02 0.47±0.07

EquScal 0.65±0.09 0.69±0.05 0.45±0.13 0.43±0.05

Prediction Performance. Table 5.4

shows the RMSE and ESE of ResNets(Unets),

and equivariant Equ-ResNets(Unets) on the

test sets with different time range and spatial

domain from the training set. All the equiv-

ariant models outperform the non-equivariant

baseline on RMSE, and EquScal-ResNet

achieves the lowest RMSE. For ESE, only the

EquMag-ResNet(Unet) is worse than the base-

line. Also, it is remarkable that the EquRot mod-

els have significantly lower ESE than others,

suggesting that they correctly learn the statisti-

cal distribution of ocean currents.

Comparison with Data Augmentation. We also compare Equ-ResNets(Unets)

ResNets(Unets) that are trained with data-augmentation (Augm) in Table 5.4. In all cases,

equivariant models outperforms the baselines trained with data augmentation. We find that data

augmentation sometimes improves slightly on RMSE but not as much as the equivariant models.

And, in fact, ESE is uniformly worse for models trained with data augmentation than even the

baselines. In contrast, the equivariant models have much better ESE than the baselines with or

without augmentation. We believe data augmentation presents a trade-off in learning. Though

the model may be less sensitive to the various transformations we consider, we need to train

bigger models longer on many more samples. The models may not have enough capacity to

learn the symmetry from the augmented data and the dynamics of the fluids at the same time. By

comparison, equivariant architectures do not have this issue.

Figure 5.3 shows the ground truth and the predicted ocean currents at time step 1,5,10 by

different models. We can see that equivariant models’ predictions are more accurate and contain

more details than the baselines. Thus, incorporating symmetry into deep learning models can

71



improve the prediction accuracy of ocean currents.

5.3 Approximately Equivariant Networks for Imperfectly
Symmetric Dynamics

5.3.1 Approximate Symmetry

Existing equivariant networks assume perfect symmetry in the data. The network is

approximating a function that is strictly invariant or equivariant under a given group action.

However, many real-world dynamics may not satisfy the strict equivariance. Since many of the

underlying dynamics will contain symmetry, the resulting system may still be approximately

equivariant. For example, while the heat equation itself is fully rotationally symmetric, in

practice, imperfections in the thickness of the metal or compositional of the metal may lead to

imperfect symmetry, as shown in Figure 5.4.

Figure 5.4. Simulated diffusion of heat in a metal plate with (top) uniform diffusion coefficient
resulting in perfect symmetry and (bottom) slightly varying diffusion coefficient resulting in
approximate symmetry.

In turbulence modeling, even though the governing equations of turbulence satisfy many

different symmetries such as scale-invariance [83], varying external forces, certain boundary

conditions as well as the presence of missing values would break these symmetries to varying

degrees. This significantly hinders the potential applications of equivariant networks.

Figure 5.5 left shows that when symmetry is a good inductive bias, prediction performance

increases as equivariance or invariance is imposed in the model. But real-world data is very rarely

perfectly symmetric, and so relaxing the strict constraint in equivariant networks to balance
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Figure 5.5. Left: Relaxing the strict constraint in equivariant networks to balance inductive bias
and expressivity can further improve predictive performance. Right: An ideal model should be
approximately equivariant and automatically learn the correct amount of symmetry in the data.

inductive bias and expressivity can further improve predictive performance. The right figure

suggests that highly flexible models have trouble achieving zero equivariance error without the

guide of appropriate symmetry biases when the data is symmetric. Perfectly equivariant models

maintain zero equivariance error, which is overly restricted when data is not perfectly symmetric.

An ideal model for real world dynamics should be approximately equivariant and automatically

learn the correct amount of symmetry in the data.

Relaxing the rigid assumption in equivariant networks to balance inductive bias and

expressivity in deep learning has been the pursuit of a few recent works. For example, [54]

showed that spatial invariance may be overly restrictive, and relaxing the spatial weight sharing in

the standard convolution can improve image classification accuracy. [42] enforce convolutional

inductive bias in self-attention layer at initialization to improve vision Transformers. Residual

Pathway Priors [60] convert hard architectural constraints into soft priors by placing a higher

likelihood on the “residual”. The residual explains the difference between the structure in the data

and the inductive bias encoded by an equivariant model. [222] proposed Lift Expansion which

factorizes the data into equivariant and non-equivariant components and models them jointly.

Despite progress, a formal definition of approximate symmetry does not exist. While existing

research focuses on translation symmetry, the rich groups of symmetry in high-dimensional
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dynamics learning problems are unexplored.

In this section, we first define approximate symmetry. It gives rise to a new class of

approximately equivariant networks that avoid stringent symmetry constraints while maintaining

favourable inductive biases for learning. Specifically, we generalizes the weight relaxation

scheme originally proposed by [54]. We study three symmetries that are common in dynamics:

rotation SO(2), scaling R>0, and Euclidean E(2). For group convolution, we relax the weight-

sharing scheme by expressing the kernel as a weighted combination of multiple filter banks.

For steerable CNNs, we introduce dependencies on the input to the kernel basis. We apply

our approximate symmetry networks to the challenging problem of forecasting fluid flow and

observe significant improvements for both synthetic and real-world datasets.

Below, we give the formal definition of approximate symmetry:

Definition 1 (Approximate Equivariance). Let f : X → Y be a function and G be a group.

Assume that G acts on X and Y via representations ρX and ρY . We say f is ε-approximately

G-equivariant if for any g ∈ G,

∥ f (ρX(g)(x))−ρY (g) f (x)∥ ≤ ε.

Note that strictly equivariant functions are ε = 0 approximately equivariant.

5.3.2 Relaxed Equivariant CNNs

Symmetry in equivariant networks is enforced by strict constraints on the weights.

Here we propose relaxing weight-sharing and weight-tying to model approximate symmetries.

[54] showed that relaxing the spatial weight sharing in the standard convolution neural nets

can improve image classification accuracy. Whereas 2D convolutions are shift equivariant,

this relaxed 2D convolution is only approximately equivariant. Our method generalizes this

approach to other symmetry groups including rotation SO(2), scaling R>0, and Euclidean E(2).

Specifically, we relax the strict weight-sharing and -tying constraints in both group convolution

and steerable CNNs.
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Relaxing Weight Sharing in Group Convolution The G-equivariance of group con-

volution results from the shared kernel Ψ(g−1h). To relax this and consequently relax the

G-equivariance, we replace the single kernel Ψ with a set of kernels {Ψl}L
l=1. We define the

new kernel Ψ as a linear combination of Ψl with coefficients that vary with h and thus introduce

symmetry-breaking dependence on the specific pair (g,h),

Ψ(g,h) =
L

∑
l=1

wl(h)Ψl(g−1h). (5.8)

We define relaxed group convolution by multiplication with Ψ as such

f ⋆̃GΨ](g) = ∑
h∈G

f (h)Ψ(g,h) = ∑
h∈G

L

∑
l=1

f (h)wl(h)Ψl(g−1h). (5.9)

By varying the number of kernels L, we can control the degree of relaxation of equivariance. The

weights wi(h) ∈ R and the kernels Ψl(g−1h) ∈ Rcout×cin can be learnt from data. Relaxed group

convolution reduces to group convolution and is fully equivariant if and only if g−1
1 h1 = g−1

2 h2

implies Ψ(g1,h1) = Ψ(g2,h2). In particular, this occurs if wl(h1) = wl(h2) for all h1,h2 ∈ G and

for all l.

In dynamics learning, we consider inputs which are velocity vectors. To apply group

convolution over the discrete rotation group Cn, we first lift these to feature maps f : Cn → R as

described in Table 1 in [221]. Given v = (a,b) ∈R2, for i ∈Cn we define f (i) = cacos(2πi/n)+

cbsin(2πi/n) where c ∈ R is a trainable weight. This amounts to mapping the irreducible

ρ1 representation of Cn to the regular representation. This process can also be extended to

lifting velocity fields to features f : C4 ⋉ (Z2,+)→ R over the group of discrete rotations and

translations. As an additional advantage, the feature maps f are compatible with element-wise

non-linearity.

Relaxed G-Steerable 2D Convolution Although relaxed group convolution has the

advantage that we do not need to precompute an equivariant kernel basis, it is limited to discrete
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(or compact) groups and is not efficient when the group order is large. Thus, we also propose

relaxed steerable convolutions.

We first write out explicitly the formula for G-steerable 2D convolution described by (5.3)

in order to clarify the distinction with the relaxed convolution. Let {Φl}L
l=1 be an equivariant

kernel basis of L non-trainable kernels that satisfy (5.3) for given input and output representations

ρin and ρout. Denote K = {−k, . . . ,k}. Let the input signal be fin : Z2 → Rcin and predetermined

equivariant kernels Φl : K2 →Rcout×cin and trainable weights w∈Rcout×cin×L. Then (non-relaxed)

steerable convolution defines output fout = fin ⋆R2 Φ : Z2 → Rcout

fout(x) = ∑
y∈Z2

L

∑
l=1

(wl ⊙Φl(y)) fin(x+y) (5.10)

for x ∈ Z2 a position in the input. Here ⊙ denotes element-wise product in Rcout×cin . The index y

refers to spatial locations in the kernel.

We relax (5.10) and break symmetry by introducing dependence on y into the weights w.

Since w is freely trainable, this breaks the strict positional dependence imposed by (5.3). Since

the same weights w are shared across all kernel basis elements Φl , this is not as relaxed as 2-D

convolution with no constraints. Formally, let w : K2 → Rcout×cin×L be the weights, we define

relaxed steerable convolution fin⋆̂HΦ by

fout(x) = ∑
y∈Z2

L

∑
l=1

(wl(y)⊙Φl(y)) fin(x+y). (5.11)

When G is a rotation group and k > 0, we can define wl(y) = wl(θ), where θ =

arctan2(y). Since the weight depends only on the angle of vector y, we use fewer parame-

ters. To avoid the model learning being over-relaxed, we initialize wl(y) equally for every

y and penalize the value differences in wl(y) during training, which we describe in Section

5.3.2. Moreover, we can also relax the translation equivariance at the same time by allowing
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w : Z2 ×K2 → Rcout×cin×L to vary across input spatial dimensions as well

fout(x) = ∑
y∈Z2

L

∑
l=1

(wl(x,y)⊙Φl(y)) fin(x+y). (5.12)

However, the above equation has too large a trainable weight space to be practical. Thus, we use

a low-rank factorization of w,

wl(x,y) =
R

∑
r=1

ar(x)br,l(y)

where ar : Z2 → R and br,l : K2 → : Rcout×cin . Note this equation effectively combines relaxed

translation group convolution with our method for relaxed rotation or scale steerable kernels.

Soft Equivariance Regularization To encourage equivariance and avoid the model

becoming over-relaxed, we add regularization terms to the loss function on the symmetry-

independent weights w during training. In the case of relaxed group convolution, we add the

following regularizer to constrain w in (5.8),

Lgconv = α

L

∑
i=1

∑
g,h∈G

∥wi(h)−wi(g)∥.

For the relaxed steerable convolution, we impose the following loss term to prevent the w : K2 →

Rcout×cin×L in (5.11) from varying too much across the kernel spatial domains,

Lsconv = α

(∥∥∥∥∂w(m,n)
∂m

∥∥∥∥+∥∥∥∥∂w(m,n)
∂n

∥∥∥∥) .

5.3.3 Experiments on Synthetic Smoke Plumes

Baselines We compare it with several state-of-the-art (SoTA) methods from those with

no symmetry bias to perfect symmetry, and SoTA approximately symmetric models.
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Figure 5.6. Target (ground truth) and model predictions comparison at time step 1, 5, 10, 20 for
smoke simulation with approximate translation (left) and rotation (right) symmetries.

• MLP: multi-layer perceptrons, a non-equivariant baseline with a weaker inductive bias than

convolution neural nets.

• ConvNet: standard convolutional neural nets that have the full translation symmetry.

• Equiv: fully equivariant convolutional models. It is same as ConvNet for translation

symmetry. We use E2CNN [232] for rotation and SESN [202] for scaling symmetry.

• Rpp [60]: Residual Pathway Priors, a SOTA approximate equivariance model that sums

up the outputs from an equivariant and non-equivariant layer in each block while posing

constraints on the non-equivariant layer in loss function. We use the combination of MLP

and ConvNet for translation, ConvNet and E2CNN for rotation, and ConvNet and SESN for

scaling.

• Combo: models that start with non-equivariant layers followed by equivariant layers. The

early layers of the model map observations with approximate symmetries to a space with

explicit symmetry actions.

• CLCNN: locally connected neural networks with equivariance constraints imposed in the

loss function.
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• Lift [222]: Lift Expansion for modeling partial symmetry. The model uses a non-

equivariant encoder that is tiled across the equivariant dimensions of the feature map as

additional channels in equivariant neural nets. This method can also model approximate

symmetry when both the non-equivariant encoder and the main equivariant backbone are

fed with the same input.

EMLP [62] is also a SoTA equivariant model, but it cannot handle large data like images as

stated in the paper, so we do not include it as a baseline.

Experiments Setup All models are trained to make a forward prediction of raw velocity

fields given historical data. For all datasets, we use a sliding window approach to generate

samples of sequences. We perform a grid hyperparameters search, including learning rate, batch

size, hidden dimension, number of layers, and number of steps of prediction errors for training.

We also tune the number of filter banks for group convolution-based models and the coefficient

of weight constraints for relaxed weight-sharing models. The input length is fixed as 10. In the

meanwhile, we make sure the total number of trainable parameters for every model is fewer than

107 for a fair comparison.

We test all models under two scenarios. For test-future, we train and test on the same

tasks but different time steps. For test-domain, we train and test on different simulations/regions

with an 80%-20% split. All models are trained to make the next step prediction given the previous

steps as input. The first scenario evaluates the models’ ability to extrapolate into the future for

the same task. The second scenario estimates the capability of the models to generalize across

different simulations/regions. We forecast in an autoregressive manner to generate multi-step

predictions during inference and evaluate them based on 20-step prediction RMSEs. All results

are averaged over 3 runs with random initialization.

Data Description: The synthetic 64×64 2-D smoke datasets are generated by PhiFlow

[82] and contain smoke simulations with different initial conditions and external forces. We

explore three symmetry groups: 1) Translation: 35 smoke simulations with different inflow
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Table 5.5. Prediction RMSE on three synthetic smoke plume datasets with approximate sym-
metries. Future means testing data lies in the future time of the training data. Domain means
training and test data are from different spatial domains.

Model MLP Conv Equiv Rpp Combo CLCNN Lift RGroup RSteer

Translation Future 1.56±0.08 —– 0.94±0.02 0.92±0.01 1.02±0.02 0.92±0.01 0.87±0.03 0.71±0.01 —–
Domain 1.79±0.13 —– 0.68±0.05 0.93±0.01 0.98±0.01 0.89±0.01 0.70±0.00 0.62±0.02 —–

Rotation Future 1.38±0.06 1.21±0.01 1.05±0.06 0.96±0.10 1.07±0.00 0.96±0.05 0.82±0.08 0.82±0.01 0.80±0.00
Domain 1.34±0.03 1.10±0.05 0.76±0.02 0.83±0.01 0.82±0.02 0.84±0.10 0.68±0.09 0.73±0.02 0.67±0.01

Scaling Future 2.40±0.02 0.83±0.01 0.75±0.03 0.81±0.09 0.78±0.04 1.03±0.01 0.85±0.01 0.76±0.04 0.70±0.01
Domain 1.81±0.18 0.95±0.02 0.87±0.02 0.86±0.05 0.85±0.01 0.83±0.05 0.77±0.02 0.86±0.12 0.73±0.01

positions. We also horizontally split the entire domain into two separate sub-domains that have

different buoyant forces. Although the inflow positions are translation equivariant, the closed

boundary and the two different buoyant forces would break the equivariance. 2) Rotation: 40

simulations with different inflow positions and buoyant forces. Both inflow location and the

direction of buoyant forces have perfect rotation symmetry with respect to C4 group, but the

buoyancy factor varies with the inflow positions to break the rotation symmetry. 3) Scaling: It

contains 40 simulations generated with different spatial step ∆x and temporal step ∆t. And the

buoyant force varies across the simulations to break the scaling symmetry.

Prediction Performance: Table 5.5 shows prediction RMSEs on three synthetic smoke

plume datasets with different approximate symmetries by our proposed models and baselines.

Since CNNs are already translation equivariant, so we do not have relaxed steerable model for

translation. We can see, on the approximate translation dataset, our relaxed group convolution

(RGroup) significantly outperforms baselines on both test sets. And for rotation and scaling,

the proposed relaxed steerable convolution (RSteer) always achieves the lowest RMSEs and

RGroup can outperform most baselines.

Figure 5.6 shows the target and predictions of our proposed models and the best baselines

at time step 1, 5, 10, 20 for smoke simulation with approximate translation (left) and rotation

(right) symmetries. From the shape and frequency of the flows, predictions from our approxi-

mately equivariant models are much closer to the target than the baselines. Moreover, we can see

that E2CNN predicts the smoke flowing in the wrong direction at time step 20, which could be a
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consequence of over-constraining from equivariance.

5.3.4 Learning Different Levels of Equivariance

We use PhiFlow [82] to create 10 small smoke plume datasets with different levels of

rotational equivariance. In each dataset, both inflow location and the direction of buoyant forces

have perfect rotation symmetry with respect to C4 group. By varying the amount of difference in

buoyant force between simulations with different inflow positions, we can control the amount of

equivariance error in the data. The data equivariance error of each dataset is the mean absolute

error between the simulations after all being rotated back to the same inflow position.

Figure 5.7. Model equivariance errors vs. data equivariance errors on synthetic smoke plume
with different levels of rotational equivariance. We see that our RSteer model can always learn
the correct level of equivariance in different datasets while non-equivariant ConvNet and fully
equivariant E2CNN cannot.

We trained two-layer ConvNet, E2CNN and our relaxed rotation equivariant steerable

convolution RSteerR on these 10 datasets. We calculate the equivariance error of each well-

trained model based on Definition 1, where G =C4 and the norm is L1 norm. From Figure 5.7,

we see that E2CNN always has zero equivariance error due to the overly restrictive symmetry

constraint even if the data does not have perfect symmetry. And our RSteerR can always

correctly learn different levels of equivariance in the data while ConvNet cannot. Since the

prediction errors are not zeros, the equivariance errors in the model and data are not the same.
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Table 5.6. Prediction RMSEs on experimental jet flow data for different models. Proposed
RSteer and RSteer are designed for the corresponding assumed symmetry group.

Model Conv Lift RGroup E2CNN Lift RSteer SESN Rpp RSteer

Translation Rotation Scaling

Future 0.22±0.06 0.17±0.02 0.15±0.00 0.21±0.02 0.18±0.02 0.17±0.01 0.15±0.00 0.16±0.06 0.14±0.01

Domain 0.23±0.06 0.18±0.02 0.16±0.01 0.27±0.03 0.21±0.04 0.16±0.01 0.16±0.01 0.16±0.07 0.15±0.00

This experiment demonstrates that our proposed methods based on relaxed weight sharing can

learn the correct amount of inductive biases from data while avoiding the stringent symmetry

constraints.

Figure 5.8. Visualization of axial measurement locations. White boxes show fields of view
acquired on streamwise planes at the jet centerline for multistream flows. There are three vertical
stations at each axial location/white box, as illustrated by the pink lines. Figure taken from [19].

5.3.5 Experiments on Experimental Jet Flow Data

Data Description. We use the real experimental data of 2D turbulent velocity in multi-

stream jets from NASA that is measured using the time-resolved particle image velocimetry [19].

Figure 5.8 visualizes the measurement system of the jet flow. White boxes show fields of view

acquired on the streamwise plane at the jet centerline for multistream flows. There are three

vertical stations at each axial location/white box, as illustrated by the pink lines. In other words,

the dataset was acquired by 24 different stations at different locations. Since the data collected

at the different locations are not acquired concurrently, we do not have the complete velocity

fields of entire jet flows at each time step. Thus, we trained and tested models on 24 62×23

sub-regions of jet flows.
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Figure 5.9. Target jet flow velocity
norm fields and the prediction errors
(MAE) of different models over 10
time steps.

Prediction Performance. We compare three

equivariant models, three best-performing approxi-

mately equivariant baselines in the previous experiment

as well as our proposed relaxed steerable convolution

and relaxed group convolution. Table 5.6 shows pre-

diction RMSEs on the jet flow dataset and we group

the results by each symmetry in the table. For each

symmetry, our models based on relaxed weight sharing

achieve lower errors than not only the fully equivariant

model but also approximately equivariant baselines. We

also experimented with combining relaxed translation

group convolution with relaxed rotation and scale steer-

able convolution, which correspond to RSteerTR and

RSteerTS respectively in the table. We observe that RSteerTR outperforms both RGroup with

relaxed group convolution and RSteer with relaxed steerable convolution. This implies relaxing

more than one equivariance constraint can potentially lead to even better performance. Figure

5.9 visualizes the target and mean absolute errors between model jet flow predictions and the

ground truth (target), and we can see that our relaxed steerable CNNs achieve the lowest errors.

5.4 Data Augmentation vs. Equivariant Networks: A The-
ory of Generalization on Dynamics Forecasting

In this work, we present a theory of generalization for dynamics forecasting, where the

data are non-stationary and non-mixing time series. We theoretically analyze and compare the

generalization strength of data augmentation versus equivariant networks. We show that when the

underlying dynamics is symmetric, equivariant networks achieve a tighter generalization bound

than data augmentation. Furthermore, when the symmetries in the data are only approximate,
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the generalization bound for approximately equivariant networks [228] is further improved.

5.4.1 Statistical Learning Theory for Time Series.

We consider forecasting deterministic dynamics where the learner receives N observed

time series {X (1), ...,X (N)} with length T of a dynamical system [227, 225]. Each time series

X (i) is a sample from a dynamical system where the system parameters are drawn i.i.d. from a

given distribution. Even though the system parameters are independently sampled, each time

series can be highly non-stationary and exhibit complex dependencies.

Denote Z(i)
t = (X (i)

t−k−1:t−1,X
(i)
t ) ∈ X k ×X as a training sample (a subsequence of time

series i at time t). X (i)
t−k−1:t−1 and X (i)

t are the input and output of a forecasting model. For a loss

function L : X ×X → [0,∞) and a hypothesis set F of functions that map from X k to X ,

we want to minimize its empirical risk:

Rn(θ) =
1
N

N

∑
i=1

T

∑
t=1

qtL ( fθ (X
(i)
t−k−1:t−1),X

(i)
t )

where θ represent the parameters in f . We use L(θ ,Z(i)
t ) to denote L ( fθ (X

(i)
t−k−1:t−1),X

(i)
t ) for

simplicity.

Note that q1, ..,qT are real numbers, which in the standard statistical learning scenarios

are chosen to be all equal to 1
T . We follow the time series forecasting setting in [119]. For

non-stationary dynamics, different Zt may follow different distributions, and thus distinct weights

could be assigned to the errors made on different sample points, depending on their relevance to

forecasting the future ZT+1. The learning objective is to find a θ that achieves a small test error,

EL(θ ,ZT+1).

To derive the generalization bound, [15] and [174] generalizes the classic Rademacher

Complexity [68] to time series learning, as defined below,

Definition 2 (Sequential Rademacher Complexity, [15, 174]). Given a function class G ⊂ RZ ,
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we define the sequential Rademacher complexity of class G as:

Rsq
T (G ) = EzEσ[supg∈G

T

∑
t=1

σtqtg(zt(σ))]

where z is a real-valued complete binary tree that is a sequence (z1, ...,zT ) of T mappings

zt : {±1}t−1 → R for t ∈ [1, ...,T ], and σ is a sequence of Rademacher random variables, which

is also a path in the tree σ = (σ1, ...,σT−1) ∈ {±1}T−1.

In our forecasting setting, the sequential Rademacher complexity of a loss class can be

defined more specifically as:

Rsq
T (L◦Θ) = Eσ

[
supθ∈Θ

1
N

N

∑
i=1

T

∑
t=1

σtqtL(θ ,Z
(i)
t ))

]

5.4.2 Equivariance and Invariance.

Based on Def 2 and Def 1, we further define equivariance error, which quantifies the

amount of symmetry the function f contains.

Definition 3 (Equivariance Error). Let f : X → Y be a function and G be a group. Assume that

G acts on X and Y via representation ρin and ρout. Then the equivariance error of f is

∥ f∥EE = sup
x,g

∥ f (ρin(g)(x))−ρout(g) f (x)∥.

For strictly equivariant functions, we have ε = 0. But for real-world dynamics, the

symmetry is often approximately equivariant, defined below: Several recent work have designed

approximately equivariant networks [228, 215, 60] to learn the approximate functions. In this

work, we assume the equivariance errors of trained approximately equivariant models is less or

equal to the true data equivariance errors.

Data Aug. Introduces Symmetry. Consider a finite group G that acts on the observed

time series, we assume that for any g ∈ G, there is a certain amount of symmetry in the
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distribution, that is Z(i)
t ≈d gZ(i)

t ,Z(i)
t ∼ P. We assume the group transformations are norm-

preserving, i.e. ∥g∥= 1 ∀g ∈ G, such as rotation and translation.

Definition 4 (Data Augmentation). Given a finite group G, we assume the augmented samples

are the original samples applied with transformations uniformly sampled from the group. In

other words, for every sample Z(i)
t in the original training set, we add samples {gZ(i)

t ,g ∈ G}.

Then the augmented training set is the |G| times bigger than the original training set.

We derive generalization bounds for data augmentation and equivariant networks. We

show that the strictly equivariant networks can outperform data augmentation. When the

underlying dynamics are approximately symmetric, approximately equivariant estimator can

outperform both data augmentation estimator and strictly equivariant networks.

5.4.3 Population and Empirical Risk Minimizers

We first define the population and the empirical risk minimizers for data augmentation,

perfectly equivariant models and approximately equivariant models based on the dynamic

forecasting setting defined in the previous section.

• Population minimizer: θ ∗ = argminθ∈ΘE[L(θ ,Z)]

• Empirical minimizer:

θ̂n = argminθ∈Θ

1
N

N

∑
i=1

T

∑
t=1

qtL(θ ,Z
(i)
t )

• Empirical minimizer for data augmentation:

θ̂G = argminθ∈Θ

1
N

N

∑
i=1

T

∑
t=1

qtEG[L(θ ,gZ(i)
t )]

= argminθ

1
N

N

∑
i=1

T

∑
t=1

qt L̄(θ ,Z
(i)
t )
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where L̄ is the orbit-averaging loss because of data augmentation based on the definition in

[32].

• Empirical minimizer for perfectly equivariant models:

θ̂E = argminθ∈ΘE

1
N

N

∑
i=1

T

∑
t=1

qtL(θ ,Z
(i)
t ),

ΘE = {θ : fθ (ρin(g)(x)) = ρout(g) fθ (x),∀g ∈ G}

• Empirical minimizer for approximately equivariant nets:

θ̂AE = argminθ

1
N

N

∑
i=1

T

∑
t=1

qtL(θ ,Z
(i)
t ),

ΘAE = {θ : supg∈G∥ fθ (ρin(g)(x)) = ρout(g) fθ (x)∥2 ≤ ε}

where Θ is the parameter space without symmetry inductive biases imposed, ΘE is the parameter

space of all equivariant functions, and ΘAE is the parameter space of all approximately equivariant

functions.

5.4.4 Generalization Bound for Dynamics Forecasting

[119] presented a data-dependent learning bound for the general scenario of nonstationary

non-mixing stochastic processes. Yet, our focus is forecasting deterministic dynamics. Since the

dynamics are nonstationary, we define a discrepancy measure to characterize the distributional

shift between the training and test sets:

Definition 5 (Discrepancy Measure). We use discT (q) to denote the discrepancy between the

target distribution and the distribution of the training samples.

discT (q) = supθ∈Θ

∣∣∣∣∣E
[

T

∑
t=1

qtL(θ ,Zt)

]
−EL(θ ,ZT+1)

∣∣∣∣∣
We prove that the upper bound of the generalization error on dynamics forecasting is
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controlled by the sequential Rademacher complexity and the discrepancy measure of the temporal

distributional shift.

Theorem 2. For any δ > 0, with probability at least 1−δ , the following inequality holds for all

θ̂ ∈ Θ and all α = ∥q∥2/2 > 0:

EL (θ̂ ,ZT+1)−EL (θ ∗,ZT+1)≤2discT (q)+6M
√

4π logTRsq
T (L◦Θ)+

√
2log(2/σ)

N

+∥q∥2(M

√
8log

1
δ
+1)

Note that our result is consistent with the conclusion in [119] for stochastic dynamics.

Full proof can be found in Appendix .1 Theorem 7.

5.4.5 Effect of Symmetry

We derive generalization bounds for forecasting nonstationary dynamics with data aug-

mentation, perfectly equivariant networks, and approximately equivariant networks based on

Theorem 2. Following [32], we use the Wasserstein distance to measure the closeness of the

original distribution to the distribution under group transformations.

We generalize Theorem 3.4 in [32] from the i.i.d case to non-stationary dynamics fore-

casting:

Corollary 3 (Data Augmentation). Let L(θ , ·) be uniformly Lipschitz w.r.t. θ with Lipschitz

constant ∥L∥Lip. For any δ > 0, with probability at least 1−δ , the following inequality holds:

EL (θ̂G,ZT+1)−EL (θ ∗,ZT+1)

≤ 2discT (q)+6M
√

4π logTRsq
T (L̄◦Θ)+σ

+maxt,i ∥L∥Lip ·EG[W (ZT+1,gZT+1)+qtW (Z(i)
t ,gZ(i)

t )]

where σ =

√
2log(2/σ)

N +∥q∥2(M
√

8log 1
δ
+1).
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We can see that the performance gain of data augmentation is governed by a bias term

maxt,i ∥L∥Lip ·EG[W (ZT+1,gZT+1)+qtW (Z(i)
t ,gZ(i)

t )], which vanishes under exact symmetry

and the sequential Rademacher complexity reduction because of the group orbit averaging over

the loss function.

The difference in sequential Rademacher complexity between the data augmentation

estimator and regular estimator can further be bounded as

Rsq
T (L̄◦Θ)−Rsq

T (L◦Θ)≤ ∆+maxt,i ∥L∥Lip ·EG[qtW (Z(i)
t ,gZ(i)

t )] (5.13)

where ∆ = Eσ[supθ∈Θ ∑
T
t=1 σtqtEGL(θ ,gZt)]−EσEG[supθ∈Θ ∑

T
t=1 σtqtL(θ ,gZt)]≤ 0.

Here ∆ corresponds to the "variance reduction term" defined in [32]. When ∆ is small,

data augmentation has a strong effect on improving generalizability.

To compare the generalization bounds of data augmentation and equivariant networks,

we first need to prove the following lemma.

Lemma 4. Rsq
T (L◦ΘE)≤ Rsq

T (L̄◦Θ)

Next, we derive the generalization bound for strictly equivariant networks.

Corollary 5 (Equivariant Networks). Let L(θ , ·) be uniformly Lipschitz w.r.t. θ with Lipschitz

constant ∥L∥Lip. For any δ > 0, with probability at least 1−δ , the following inequality holds:

EL (θ̂E ,ZT+1)−EL (θ ∗,ZT+1)

≤ 2discT (q)+6M
√

4π logTRsq
T (L◦ΘE)+σ

+∥L∥Lip ·EGW (ZT+1,gZT+1)

where σ =

√
2log(2/σ)

N +∥q∥2(M
√

8log 1
δ
+1).

From Lemma 4, we have Rsq
T (L◦ΘE)≤ Rsq

T (L̄◦Θ). Hence, Corollary 5 indicates that

equivariant networks have a tighter generalization bound than data augmentation. In particular,
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the generalization bound of data augmentation in Corollary 3 has an additional bias term

maxt,i ∥L∥Lip ·EG[qtW (Z(i)
t ,gZ(i)

t )]. This term vanishes when the data are perfectly symmetric.

However, in real-world scenarios, the data are very rarely perfect symmetric. We further

analyze the generalization behavior of a class of approximate equivariant models:

Corollary 6 (Approximate Equivariance). Let L(θ , ·) be uniformly Lipschitz w.r.t. θ with a

Lipschitz constant ∥L∥Lip. We assume ∥θ̂AE∥EE ≤ ∥θ ∗∥EE and 1
N ∑

N
i=1 ∑

T
t=1 qtL(θ ∗,Z(i)

t ) ≤ ξ .

For any δ > 0, with probability at least 1−δ , the following inequality holds:

EL (θ̂AE ,ZT+1)−EL (θ ∗,ZT+1)

≤ 2discT (q)+6M
√

4πlogTRsq
T (L◦ΘAE)+σ

+∥L∥Lip ·EGW (ZT+1,gZT+1)−∥q∥1∥θ̂AE∥EE +2ξ

where σ =

√
2log(2/σ)

N +∥q∥2(M
√

8log 1
δ
+1).

To put it simply, when the data do not have perfect symmetries, approximately equivariant

models may have better prediction performance than data augmentations and perfectly equivariant

models because of the term −∥q∥1∥θ̂AE∥EE in the bound. The empirical error of the population

minimizer ξ can be small enough to be ignored.

If approximately equivariant estimators can learn the correct amount of symmetry in

the data, which means that ∥θ̂AE∥EE is big and close to the true equivariance error in the data

∥θ ∗∥EE , then they tend to have better generalizability. On the contrary, the estimators trained on a

uniformly augmented training set and perfectly equivariant estimators maintain zero equivariance

error even when data are not perfectly symmetric, which is overly restricted.

Full proofs for corollary 3, 5, 6 and lemma 4 are in Appendix .1.

5.5 Conclusion

We develop novel deep learning methods to improve the generalization of deep sequence

models for learning physical dynamics. We incorporate various symmetries by designing equiv-
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ariant neural networks and demonstrate their superior performance on 2D time series prediction

both theoretically and experimentally. Our designs obtain improved physical consistency for

predictions. In the case of transformed test data, our models generalize significantly better than

their non-equivariant counterparts. Importantly, all of our equivariant models can be combined

and can be extended to 3D cases.

In addition, we propose a new class of approximately equivariant networks that avoid

stringent symmetry constraints to better fit real-world scenarios. Our methods balance inductive

biases and model flexibility by relaxing the weight-sharing and weight-tying schemes in group

convolution and steerable convolution. Based on the experiments on smoke plume simulations

and real-world jet flow data, we observe that our proposed approximate equivariant networks can

outperform many state-of-the-art baselines with no symmetry bias or with overly strict symmetry

constraints. Future work includes applying our relaxed weight-sharing design to graph neural

networks and theoretical analysis for approximately equivariant networks, including universal

approximation and generalization.

Theoretically, we also take the first steps in the theoretical understanding of data augmen-

tation and equivariant networks on the task of non-stationary dynamics forecasting. We derive

the generalization bounds and show that strictly equivariant networks have a tighter upper bound

than data augmentation and that approximately equivariant estimators can outperform both data

augmentation and perfectly equivariant networks on modeling imperfectly symmetric dynamics.

A limitation of this work is that our theoretical comparison is only for upper bounds, which

can be arbitrarily loose in practice. Future work includes improving the generalizing bounds

with Pac-Bayesian analysis and deriving lower bounds for these approaches characterizing the

hardness of learning for different model classes.
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Chapter 6

Discussion and Future Directions

In this thesis, we described a physics-guide DL framework for dynamics forecasting and

presented several approaches to improving the physical consistency, accuracy, and generalization

of DL models for dynamics forecasting. The approaches include incorporating prior physical

knowledge into the design of model architecture and loss functions for improved physical consis-

tency and accuracy, leveraging model-based meta-learning for improved generalization across

heterogeneous domains, simplifying nonlinear dynamics with Koopman theory for improved

generalization over temporal distributional shifts, and incorporating symmetries into deep dy-

namics models for improved generalization across relevant symmetry groups and consistency

with conservation laws. Nonetheless, there are still many challenges in this field and emerging

opportunities for future research.

Improving Generalization. Generalization is a central problem in machine learning.

One current limitation of deep learning models for learning complex dynamics is their inability

to understand the system solely from data and handle distributional shifts that naturally occur.

Most deep learning models for dynamics modeling are trained to model a specific system and

still struggle with generalization. For example, in turbulence modeling, deep learning models

trained with fixed boundaries and initial conditions often fail to generalize to fluid flows with

different characteristics. To overcome this limitation, one approach is to build physics-guided

deep learning models, where the physics part plays a dominant role while the neural networks
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focus on learning the unknown process [169]. Another promising direction is meta-learning.

For instance, we proposed a model-based meta-learning method called DyAd in chapter 3 that

can generalize across heterogeneous domains of fluid dynamics. However, this model can only

generalize well on the dynamics with interpolated physical parameters and cannot extrapolate

beyond the range of the physical parameters in the training set. Another idea is to transform data

into a canonical distribution that neural networks can learn from and then restore the original

data after predictions are made [108]. Since neural networks struggle with multiple distributions,

this approach aims to find a single distribution that can represent the dynamics effectively. A

trustworthy and reliable model for learning physical dynamics should be able to extrapolate to

systems with various parameters, external forces, or boundary conditions while maintaining high

accuracy. Therefore, further research into generalizable physics-guided deep learning is crucial.

Improving Robustness of Long-term Forecasting. Long-term forecasting of physical

dynamics is a challenging task as it is prone to error accumulation and instability to perturbations

in the input, which significantly affect the accuracy of neural networks over a long forecasting

horizon. To address these issues, several training techniques have been proposed in recent years.

One such technique involves adding noise to the input, which makes the models less sensitive

to perturbations [17]. It also suggests when making predictions in an autoregressive manner,

the neural nets should be trained to make multiple steps of predictions in each autoregressive

call instead of just one step. Additionally, [254] proposed a time-based Lyapunov regularizer to

the loss function of deep forecasters to avoid training error propagation and improve the trained

long-term prediction. Moreover, [166, 10] utilized online normalization that is normalizing the

current training sample using a running mean and standard deviation, which also increases the

time horizon that the model can predict. These models are trained on a large amount of simulation

data. However, for real-world problems, obtaining real-world data such as experimental data of

jet flow can be expensive, which presents a significant challenge for improving the robustness of

predictions on limited training data. In such cases, developing robust prediction models that can

generalize well on limited training data is of great importance.
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Learning Dynamics in Non-Euclidean Spaces. Spatiotemporal phenomena, from global

ocean currents to the spread of infectious diseases, are examples of dynamics in non-Euclidean

spaces, which means they cannot be easily represented using traditional Euclidean geometry.

To address this issue, the field of geometric deep learning [20] has emerged. Geometric deep

learning aims to generalize neural network models to non-Euclidean domains such as graphs

and manifolds. However, most of the existing work in this field has been limited to static graph

data. Thus, learning dynamics in non-Euclidean Ssaces is a promising direction, and geometric

concepts, such as rent notions of distance, curvature, and parallel transport, must be taken into

account when designing models. For example, when modeling the ocean dynamics on the earth,

which is a sphere, we need to encode the gauge equivariance [37] in the design of neural nets

since there is no canonical coordinate system on a sphere.

Theoretical Analysis. The majority of literature on learning dynamics with DL focuses

on the methodological and practical aspects. Research into the theoretical analysis of generaliza-

tion is lacking. Current statistical learning theory is based on the typical assumption that training

and test data are identically and independently distributed (i.i.d.) samples from some unknown

distribution [251, 157]. However, this assumption does not hold for most dynamical systems,

where observations at different times and locations may be highly correlated. [119] provided

the discrepancy-based generalization guarantees for time series forecasting. On the basis of

this, [229] took the first step to derive generalization bounds for equivariant models and data

augmentation in the dynamics forecasting setting. The derived upper bounds are expressed in

terms of measures of distributional shifts and group transformations, as well as the Rademacher

complexity. But these bounds are sometimes not very informative since many of the inequalities

used can be loose. However, to better understand the performance of DL on learning dynamics,

we need to derive generalization bounds expressed in terms of the characteristics of the dynamics,

such as the order and Lyapunov exponents. Deriving lower generalization bounds are also

necessary since they reveal the best performance scenarios. Theoretical studies can also inspire

research into model design and algorithm development for learning dynamics.
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Causal Inference in Dynamical Systems. A fundamental pursuit in science is to identify

causal relationships. In the context of dynamical systems, we may ask which variables directly

or indirectly influence other variables through intermediates. While traditional approaches to

the discovery of causation involve conducting controlled real experiments [165, 14], data-driven

approaches have been proposed to identify causal relations from observational data in the past few

decades [77, 73]. However, most data-driven approaches do not directly address the challenge

of learning causality with big data. Many questions remain open, such as using causality to

improve deep learning models, disentangling complex and multiple treatments, and designing the

environment to control the given dynamics. Additionally, we are also interested in understanding

the system’s response under interventions. For example, when using deep learning to model

climate dynamics, we need to make accurate predictions under different climate policies, such

as carbon pricing policies and the development of clean energy, to enable better decisions by

governments for controlling climate change.

Search for Physical Laws. Another promising direction is to seek physics laws with

the help of DL. The search for fundamental laws of practical problems is the main theme

of science. Once the governing equations of dynamical systems are found, they allow for

accurate mathematical modeling, increased interpretability, and robust forecasting. However,

current methods are limited to selecting from a large dictionary of possible mathematical terms

[175, 191, 25, 122, 178]. The extremely large search space, limited high-quality experimental

data, and overfitting issues have been critical concerns. Another line of work is to discover

symmetry from the observed data instead of the entire dynamics with the help of DL [46, 59].

But these works can only work well on synthetic data and discover known symmetries. Still,

research on data-driven methods based on DL for discovering physics laws is quite preliminary.

Efficient Computation. Given the rapid growth in high-performance computation, we

need to improve automation and accelerate streamlining of highly compute-intensive workflows

for science. We should focus on how to efficiently train, test, and deploy complex physics-guided

DL models on large datasets and high-performance computing systems, such that these models

95



can be quickly utilized to solve real-world scientific problems. To really revolutionize the field,

these DL tools need to become more scalable and transferable and converge into a complete

pipeline for the simulation and analysis of dynamical systems. A simple example is that we can

integrate machine learning tools into the existing numerical simulation platforms so that we do

not need to move data between systems every time and we can easily use either or both types of

methods for analyzing data.

In conclusion, given the availability of abundant data and rapid growth in computation,

we envision that the integration of physics and DL will play an increasingly essential role in

advancing scientific discovery and addressing important dynamics modeling problems.
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Appendix

.1 Full proof for theorems in Section 5.4

Theorem 7. For any δ > 0, with probability at least 1−δ , the following inequality holds for all

θ̂ ∈ Θ and all α = ∥q∥2/2 > 0:

EL (θ̂ ,ZT+1)−EL (θ ∗,ZT+1)≤2discT (q)+6M
√

4π logTRsq
T (L◦Θ)+

√
2log(2/σ)

N

+∥q∥2(M

√
8log

1
δ
+1)

Proof.

EL(θ̂ ,ZT+1)−EL(θ ∗,ZT+1) = I + II + III + IV

I = EL(θ̂ ,ZT+1)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ̂ ,Z
(i)
t )

II =
1
N

N

∑
i=1

T

∑
t=1

qtL(θ̂ ,Z
(i)
t )− 1

N

N

∑
i=1

T

∑
t=1

qtL(θ ∗,Z(i)
t )≤ 0(the model does not underfit the data)

III =
1
N

N

∑
i=1

T

∑
t=1

qtL(θ ∗,Z(i)
t )−E

T

∑
t=1

qtL(θ ∗,Zt)≤
√

2log(2/σ)

N
(time series are i.i.d sampled).

IV = E
T

∑
t=1

qtL(θ ∗,Zt)−EL(θ ∗,ZT+1)≤ supθ∈Θ|E
T

∑
t=1

qtL(θ ,Zt)−EL(θ ,ZT+1)|= discT (q)
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Now we only need to bound the first term I = EL(θ̂ ,ZT+1)− 1
N ∑

N
i=1 ∑

T
t=1 qtL(θ̂ ,Z

(i)
t )

P(I −discT (q)> ε)

= P(EL(θ̂ ,ZT+1)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ̂ ,Z
(i)
t )− supθ∈Θ|EL(θ ,ZT+1)−E

T

∑
t=1

qtL(θ ,Zt)|> ε)

≤ P(supθ∈Θ|EL(θ ,ZT+1)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ ,Z
(i)
t )|− supθ∈Θ|EL(θ ,ZT+1)−E

T

∑
t=1

qtL(θ ,Zt)|> ε)

≤ P(supθ∈Θ|EL(θ ,ZT+1)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ ,Z
(i)
t )+E

T

∑
t=1

qtL(θ ,Zt)−EL(θ ,ZT+1)|> ε)

≤ P(supθ∈Θ|EL(θ ,ZT+1)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ ,Z
(i)
t )+E

T

∑
t=1

qtL(θ ,Zt)−EL(θ ,ZT+1)|> ε)

= P(supθ∈Θ|E
T

∑
t=1

qtL(θ ,Zt)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ ,Z
(i)
t )|> ε)

= P(exp(λ supθ∈Θ|E
T

∑
t=1

qtL(θ ,Zt)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ ,Z
(i)
t ))|))> exp(λε))

≤ exp(−λε)E[exp(λ supθ∈Θ(E
T

∑
t=1

qtL(θ ,Zt)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ ,Z
(i)
t )))](Markov’s inequality)
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E[exp(λ supθ∈Θ(E
T

∑
t=1

qtL(θ ,Zt)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ ,Z
(i)
t )))]

= E[exp(λ supθ∈Θ(
1
N

N

∑
i=1

T

∑
t=1

qt(EL(θ ,Zt)−L(θ ,Z(i)
t )))]

= E[exp(λ supθ∈Θ(
1
N

N

∑
i=1

T

∑
t=1

qt(E[L(θ ,Zt)|Z0]−L(θ ,Z(i)
t )))]

≤ E[EZ0∼X k×X exp(λ supθ∈Θ[(
1
N

N

∑
i=1

T

∑
t=1

qt(L(θ ,Zt)−L(θ ,Z(i)
t ))|Z0])]

= E[exp(λ supθ∈Θ[(
1
N

N

∑
i=1

T

∑
t=1

qt(L(θ ,Z′
t)−L(θ ,Z(i)

t )))]

= E[exp(λ supθ∈Θ[(
T

∑
t=1

qt(L(θ ,Z′
t)−L(θ ,Z∗

t )))]

= EEσ[exp(λ supθ∈Θ[(
T

∑
t=1

σtqt(L(θ ,Z′
t)−L(θ ,Z∗

t )))]

= Ez∗,z′Eσ[exp(λ supθ∈Θ[(
T

∑
t=1

σtqt( f (z∗
t (σ))− f (z′

t(σ))))] replace L(θ , ·) with f for simplicity.

≤ Ez∗Eσ[exp(2λ sup f∈F

T

∑
t=1

σtqt f (z∗
t (σ)))]

Given z∗, let C be the minimal α-cover of F on z∗,

sup f∈F

T

∑
t=1

σtqt f (z∗
t (σ)))≤ maxc∈C

T

∑
t=1

σtqtct(σ)+α
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Thus,

Eσ[exp(2λ sup f∈F

T

∑
t=1

σtqt f (z∗
t (σ)))]

≤ exp(2λα)Eσ[exp(2λ maxc∈C

T

∑
t=1

σtqtct(σ))]

≤ exp(2λα)maxc∈CEσ[exp(2λ

T

∑
t=1

σtqtct(σ))]

= exp(2λα)maxc∈CEσ[exp(2λ

T−1

∑
t=1

σtqtct(σ)) EσT [exp(2λ σT qTcT (σ))|σ1:T−1]]

≤ exp(2λα)maxc∈CEσ[exp(2λ

T−1

∑
t=1

σtqtct(σ)) exp(2λ
2q2

T M2)]

≤ exp(2λα)exp(2λ
2∥q∥2

2M2) (Iterate the last inequality over t)

Then we have

P(I −discT (q)> ε)≤ Ez[N1(α,Θ,z)]exp(2λα −λε +2λ
2∥q∥2

2M2)

Optimize λ

P(I −discT (q)> ε)≤ Ez[N1(α,Θ,z)]exp(
(ε −2α)2

8∥q∥2
2M2 )

Finally, Ez[N1(α,Θ,z)] can be further bounded by the sequential Rademacher complexity based

on the Theorem 2 in [119].

Here are the full proofs for corollary 3, 5, 6 and lemma 4.

Corollary 8. Let L(θ , ·) be Lipschitz uniformly over θ , with a Lipschitz constant ∥L∥Lip. Assume

1
N ∑

N
i=1 ∑

T
t=1 qtL(θ ∗,Z(i)

t ) ≤ ξ . For any δ > 0, with probability at least 1− δ , the following

inequality holds for all α = ∥q∥2/2 > 0:
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EL(θ̂G,ZT+1)−EL(θ ∗,ZT+1)≤ 2discT (q)+6M
√

4πlogTRsq
T (L◦ΘG)+∆

+maxt,i ∥L∥Lip ·EG[W (ZT+1,gZT+1)+qtW (Z(i)
t ,gZ(i)

t )]

(1)

EL(θ̂E ,ZT+1)−EL(θ ∗,ZT+1)≤ 2discT (q)+6M
√

4πlogTRsq
T (L◦ΘE)+∆

+maxt,i ∥L∥Lip ·EGW (Z(i)
t ,gZ(i)

t )

(2)

EL(θ̂AE ,ZT+1)−EL(θ ∗,ZT+1)≤ 2discT (q)+6M
√

4πlogTRsq
T (L◦ΘAE)+∆

+∥L∥Lip ·EGW (ZT+1,gZT+1)−∥q∥1∥θ̂AE∥EE +2ξ

(3)

where ∆ =

√
2log(2/σ)

N +∥q∥2(M
√

8log 1
δ
+1).

Proof. When θ̂ = θ̂G, we only need to derive a bound for I in the previous proof.

I = EL(θ̂ ,ZT+1)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ̂ ,Z
(i)
t ) = A+B+C

A = EL(θ̂ ,ZT+1)−EEGL(θ̂ ,gZT+1)≤ EG|EL(θ̂G,ZT+1)−EL(θ̂G,gZT+1)| ≤ ∥L∥Lip ·EGW (ZT+1,gZT+1)

B = EEGL(θ̂ ,gZT+1)−
1
N

N

∑
i=1

T

∑
t=1

qtEGL(θ̂ ,gZ(i)
t )≤ discT (q)+6M

√
4πlogTRsq

T (L◦ΘG)+∆

C =
1
N

N

∑
i=1

T

∑
t=1

qtEGL(θ̂ ,gZ(i)
t )− 1

N

N

∑
i=1

T

∑
t=1

qtL(θ̂ ,Z
(i)
t )≤ 1

N

N

∑
i=1

T

∑
t=1

qt [EGL(θ̂G,gZ(i)
t )−L(θ̂G,Z

(i)
t )]

≤ maxt,i ∥L∥Lip ·EGW (Z(i)
t ,gZ(i)

t )

(4)

When θ̂ = θ̂AE :

EL(θ̂AE ,ZT+1)−EL(θ ∗,ZT+1) = I + II + III + IV +V +V I
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I = EL(θ̂AE ,ZT+1)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ̂AE ,Z
(i)
t )≤ discT (q)+6M

√
4πlogTRsq

T (L◦ΘAE)+∆

II =
1
N

N

∑
i=1

T

∑
t=1

qtL(θ̂AE ,Z
(i)
t )− 1

N

N

∑
i=1

T

∑
t=1

qtL(θ ∗,Z(i)
t )≤ 0 (The model does not underfit the data)

IV =
1
N

N

∑
i=1

T

∑
t=1

qtEGL(θ ∗,gZ(i)
t )−

T

∑
t=1

qtEEGL(θ ∗,gZt)≤
√

2log(2/σ)

N

V =
T

∑
t=1

qtEEGL(θ ∗,gZ(i)
t )−EEGL(θ ∗,gZT+1) =

T

∑
t=1

qtEL̄(θ ∗,gZ(i)
t )−EL̄(θ ∗,gZT+1)

≤ supθ∈Θ

∣∣∣∣∣E
[

T

∑
t=1

qt L̄(θ ,Zt)

]
−EL̄(θ ,ZT+1)

∣∣∣∣∣≤ discT (q)

V I = EEGL(θ ∗,gZT+1)−EL(θ ∗,ZT+1)≤ ∥L∥Lip ·EGW (ZT+1,gZT+1)

III =
1
N

N

∑
i=1

T

∑
t=1

qtL(θ ∗,Z(i)
t )− 1

N

N

∑
i=1

T

∑
t=1

qtEGL(θ ∗,gZ(i)
t ) (let x(i)t = X (i)

t−k−1:t−1 and y(i)t = X (i)
t )

=
1
N

N

∑
i=1

T

∑
t=1

qtEG[∥y(i)t − fθ∗(x(i)t )∥−∥gy(i)t − fθ∗(gx(i)t )∥]

=
1
N

N

∑
i=1

T

∑
t=1

qtEG[∥y(i)t − fθ∗(x(i)t )∥−∥gy(i)t −g fθ∗(x(i)t )+g fθ∗(x(i)t )− fθ∗(gx(i)t )∥]

≤ 1
N

N

∑
i=1

T

∑
t=1

qtEG[−∥g fθ∗(x(i)t )− fθ∗(gx(i)t )∥+∥y(i)t − fθ∗(x(i)t )∥+∥gy(i)t −g fθ∗(x(i)t )∥]

≤−∥q∥1∥θ̂AE∥EE +2ξ

(5)

When θ̂ = θ̂E :

EL(θ̂E ,ZT+1)−EL(θ ∗,ZT+1) = I + II + III + IV +V +V I
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I = EL(θ̂E ,ZT+1)−
1
N

N

∑
i=1

T

∑
t=1

qtL(θ̂E ,Z
(i)
t )≤ discT (q)+6M

√
4πlogTRsq

T (L◦ΘE)+∆

II =
1
N

N

∑
i=1

T

∑
t=1

qtL(θ̂E ,Z
(i)
t )− 1

N

N

∑
i=1

T

∑
t=1

qtL(θ ∗,Z(i)
t )≤ 0 (The model does not underfit the data)

III =
1
N

N

∑
i=1

T

∑
t=1

qtL(θ ∗,Z(i)
t )− 1

N

N

∑
i=1

T

∑
t=1

qtEGL(θ ∗,gZ(i)
t ) = 0

IV =
1
N

N

∑
i=1

T

∑
t=1

qtEGL(θ ∗,gZ(i)
t )−

T

∑
t=1

qtEEGL(θ ∗,gZt)≤
√

2log(2/σ)

N

V =
T

∑
t=1

qtEEGL(θ ∗,gZ(i)
t )−EEGL(θ ∗,gZT+1) =

T

∑
t=1

qtEL̄(θ ∗,gZ(i)
t )−EL̄(θ ∗,gZT+1)

≤ supθ∈Θ

∣∣∣∣∣E
[

T

∑
t=1

qt L̄(θ ,Zt)

]
−EL̄(θ ,ZT+1)

∣∣∣∣∣≤ discT (q)

V I = EEGL(θ ∗,gZT+1)−EL(θ ∗,ZT+1)≤ ∥L∥Lip ·EGW (ZT+1,gZT+1)

(6)

Combining the bounds for the six terms gives the desired result.

Moreover,

Rsq
T (L◦ΘE)−Rsq

T (L̄◦Θ)

≤ Eσ[supθE∈ΘE

1
N

N

∑
i=1

T

∑
t=1

σtqtL(θE ,Zt)]−Eσ[supθ∈Θ

1
N

N

∑
i=1

T

∑
t=1

σtqtEGL(θ ,gZt)]

≤ Eσ[supθE∈ΘE

1
N

N

∑
i=1

T

∑
t=1

σtqtEGL(θE ,gZt)]−Eσ[supθ∈Θ

1
N

N

∑
i=1

T

∑
t=1

σtqtEGL(θ ,gZt)]

= EσEG[supθE∈ΘE

1
N

N

∑
i=1

T

∑
t=1

σtqtL(θE ,gZt)− supθ∈Θ

1
N

N

∑
i=1

T

∑
t=1

σtqtL(θ ,gZt)]

≤ EσEG[supθE∈ΘE

1
N

N

∑
i=1

T

∑
t=1

σtqtL(θE ,gZt)− supθ∈ΘE

1
N

N

∑
i=1

T

∑
t=1

σtqtL(θ ,gZt)]

= 0

(7)
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