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Abstract Wedevelop a stochastic optimization frame-
work to identify governing equations in multi-physics
systems. The proposed approach discovers partial dif-
ferential equations (PDEs) by combining user’s prior
knowledge of the underlying physics of a target sys-
tem and its observed data. The technique relies on
evolutionary processes to randomly generate PDEs
and stochastically optimize their structure and coef-
ficients to the data by exploring the infinite model
space. Furthermore, themethod captures the spatiotem-
poral dynamics of physical system by direct evalua-
tion of the candidate PDEs under physical constraints.
To achieve significant computational speedup, the pro-
posed stochastic optimization method relies on a series
of novel modifications. These consist of the incorpora-
tion of a multi-purpose loss function into the parallel
fitness test and bloat control techniques into the evolu-
tionary processes. As such, these innovations lead to a
significant improvement of the effectiveness and com-
putational efficiency in identifying PDEs from given
data. We demonstrate the applicability of methodol-
ogy in two illustrative examples: the nonlinearBurgers’
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equation and the linear/nonlinear advection-dispersion
equation. The exact PDEs are successfully identified,
evenwith significant data noise, and captures the under-
lying physics of the target system. Through series of
simulations, we assess the accuracy, robustness, and
limitations of the proposed approach. In particular, we
show the impact of key dimensionless groups (that
accounts for the competition between various physical
phenomena) in controlling the accuracy of the identifi-
cation process. This work shows that developed iden-
tification method is a promising effective and robust
gray box modeling tool for identifying PDEs.

Keywords System identification · Multi-physics ·
Stochastic optimization · Genetic programming ·
Governing equations · Mathematical-Physics

1 Introduction

System identificationmethods aim to represent a physi-
cal systemof concernwith amathematicalmodel on the
basis of its input/output data [5,17,28]. It plays a crucial
role in predicting the systems’ behavior and enhancing
user’s comprehension of underlying physics. Recent
advances of sensing technology and computing power
enable system identification methods to capture more
complex multi-physics systems [21]. By virtue of their
effectiveness and versatile applicability, state-of-the-
art identification approaches are actively being devel-
oped [16].
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Modeling approaches can be divided into three
broad categories: white, gray, and black box modeling
[21]. Firstly, the “white box” modeling utilizes under-
lying physics of systems to establish models. Despite
its high accuracy of prediction, this type of model-
ing has limitations in term of solely relying on the
user’s understanding of the underlying system. Next,
the “black box” modeling is purely driven by data. By
employing distinctive mathematical forms (e.g., neural
networks [4], Gaussian processes [13], andmore exam-
ples in [1]), this modeling approach is effectively able
to predict system responses without any prior assump-
tions about the underlying physics. A series of exam-
ples related to the discovery of physical relationships
from experimental data can be found in the litera-
ture, see [28]. However, since the black box model-
ing is purely data-driven, it is neither able to reveal
the physics behind systems nor provide reliable esti-
mates beyond the range of training data. Lastly, the
“gray box” modeling attempts to leverage both user’s
prior physical knowledge about systems and data to
build models. This mathematical modeling approach
provides a way to overcome the limitations of the white
and black box modeling; the prior knowledge of sys-
tems needed to develop models is minimized, and the
models embedded with system dynamics increase reli-
ability of extrapolation. Given these advantages, many
gray box approaches are being proposed. These consist
of state-space approaches [6,19], sparse approximation
[5,15,25,26], Gaussian processes [22], and neural net-
works [7,8,12,18,23,27,30]. One noticeable example
is SINDy [26] that utilizes the sparse approximation
to discover governing equations from observed data.
Although this method shows its capability in finding
many canonical models, it is limited to simple equa-
tion forms constructed by a linear combination of the
candidate terms.

Genetic programming (GP) is one of the available
gray box tools for modeling physical systems. Inspired
by Darwin’s theory of evolution, GP exercises evolu-
tionary processes (e.g., crossover andmutation) to opti-
mize programs in a stochasticmanner for a specific task
[14]. Programs ofGP are designed to perform a specific
task and to be decomposed into genetic information
[24]: a vector of parameters for function optimization,
an expression tree for symbolic regression, or a deci-
sion tree for decision making. In the GP process, a pop-
ulation of programs is randomly initialized as the first
generation, and their fitness is tested according to the

performance at a certain task. Stochastic evolutionary
processes are then applied to the programs in accor-
dance with their fitness in consecutive generations. As
a result, the programs become optimized to perform the
task, with simple and complex forms.

GP-based identification approaches have been con-
sidered effective in performing symbolic regressions,
ordinary differential equations (ODEs) and reduced-
order models for nonlinear systems in mechanics (see
[21] and references therein). In the context of applied
mechanics, a few works [2,3] have improved GP-
based identification methods by expanding the compo-
nent library for expression trees (e.g., derivative vari-
ables and discontinuous functions). These develop-
ments offer insight for system dynamics and are fairly
accurate in extrapolation. Despite this progress, cur-
rent GP applications are still limited due to two main
issues. Firstly, GP-based methods have a large amount
of hyperparameters that need to be tuned, which makes
the generalization of the methods for a set of identifi-
cation problems difficult. Secondly, an attempt to gen-
eralize the method for a variety of identification prob-
lems has a potential to delay convergence time consid-
erably. These shortcomings were addressed by [11] in
the context of mechanical and environmental systems
described by non-linear ODEs.

Given thatmanymulti-physics systems are governed
by partial differential equations (PDEs), there is need to
further expand GP-based approaches to address phys-
ical systems that vary in space and time. Our work
aims to fill this gap by developing a generalized GP-
based stochastic optimizationmethod to identify PDEs.
The novel features of the proposed framework are as
follows: (1) the incorporation of a multi-purpose loss
function and stochastic sampling in the parallel fit-
ness test and (2) the inclusion of bloat control tech-
niques within the evolutionary processes. As it will be
shown, these significant modifications prevent poten-
tial drawbacks of GP (i.e., issues of many hyperparam-
eters and slow convergence rate) and lead to compu-
tationally efficient and highly reproducible identifica-
tion results. We demonstrate the performance of the
methodology in two canonical PDEs: Burgers’ equa-
tion (nonlinear PDE) and the advection-dispersion (or
convection-diffusion) equation (linear/nonlinear PDE).
The accuracy and robustness of the identification pro-
cedure are investigated under different noise levels and
system characteristics. Since the method provides a
variety of candidate PDEs for a target system in the final
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result, the identified PDEs serve as possible descrip-
tions of complex system dynamics to improve user’s
understanding, while the best one is used as the system
model to predict (or extrapolate) future responses.

This paper is organized as follows. First, the general
problem statement is given in Sect. 2. Details pertain-
ing to the novel identification method are presented in
Sect. 3. This section will provide a road map for users
who wish to tailor this approach for their own applica-
tion. Illustrative examples are given in Sect. 4, and their
discussion is followed in Sect. 5. Lastly, the implica-
tions of this study and future research are described in
Sect. 6.

2 Problem statement

A multi-physics system is considered under limited
prior knowledge. A multi-dimensional quantity of
interest in the system is denoted by r(x, t) where x
and t correspond to the d-dimensional Cartesian space
and time. Such a quantity can be the speed of a wave in
shallow water, solute concentration in an environmen-
tal medium, the temperature distribution in a heteroge-
neous material, or atomic dispersion in a metallic glass
(see more examples in Fig. 1a). For the purpose of this
work, we consider a one-dimensional quantity, r(x, t),
in a one-dimensional spatial domain x . We represent
an external excitation by f (x, t) which will impact
the spatiotemporal dynamics of r(x, t) (see Fig. 1b).
We assume that the measurements are available at dis-
crete points of space and time domains, f (xi , t j ) and
r(xi , t j ), (i = 1, 2, . . . , nx and j = 1, 2, . . . , nt where
nx and nt are the numbers of data points for space and
time domains, respectively).

On the basis of themeasurements, the systemmodel,
namely M, can be established to describe the system
dynamics of r(xi , t j ) subject to f (xi , t j ), in the form of
a PDE (see Fig. 1b–d). Since the model response is an
approximation of the (mathematical) system response
under the same excitation f (xi , t j ), it is denoted by
r̂(xi , t j ) in the system model:

M
(
r̂ ,

∂ r̂

∂t
,
∂ r̂

∂x
,
∂2r̂

∂x2
, . . . ; f (xi , t j )

)
= 0. (1)

The main goal of this work is to identify the sys-
tem modelM, in the infinite function spaceM, which
minimizes the error norm (i.e., εres) of a suitable
model fidelity model, e.g., the normalized root-mean-
square error between the values of the system response

measurements and the corresponding model response,
namely r(xi , t j ) and r̂(xi , t j ):

min
M

{
εres

∣∣∣∣∣M
(
r̂ ,

∂ r̂

∂t
,

∂ r̂

∂x
,

∂2r̂

∂x2
, . . . ; f (xi , t j )

)
= 0

}

with M ∈ M (2)

where εres is defined as:

εres =
√√√√

∑
i
∑

j

[
r̂(xi , t j ) − r(xi , t j )

]2
∑

i
∑

j

[
r(xi , t j )

]2 . (3)

Thus, the normalized error is the ratio of the
Euclidean L2-norm of the deviation between the refer-
ence and estimated responses,

∥∥r̂(xi , t j ) − r(xi , t j )
∥∥
2,

divided by the norm of the ensemble of measurements,∥∥r(xi , t j )∥∥2.
In order to “discover” a PDE, as the system model

M, from a data set of f (xi , t j ) and r(xi , t j ) under lim-
ited prior knowledge of the system, a general frame-
work of system identification is established by utiliz-
ing stochastic optimization (e.g., GP). The proposed
methodology is implemented by modifying the GP
algorithm reported in [11]. Details follow in Sect. 3.

3 Methodology

3.1 Genetic programming for system identification

A general system identification approach utilizing GP
is developed to discover a PDE from a given data
set as a model for a multi-physics system. Details
of the GP method are found in [14]. Its code pack-
age, named Genetic Programming for System Identi-
fication (GPSI), is written in Python (version 3.7.4)
with the SymPy library (version 1.7.1) and is available
in Github (https://github.com/Jinwoousc/GPSI). In the
following,weprovide a series of steps alongwith a brief
synopsis of themethodology employed in GPSI, in line
with Fig. 2:

1. Determine a quantity of interest (i.e., r(x, t)) in a
target multi-physics system, and measure (or sam-
ple) both the excitation f (xi , t j ) (i = 1, 2, . . . , nx
and j = 1, 2, . . . , nt ) and the corresponding system
response r(xi , t j ).

2. According to the user’s prior knowledge of the phys-
ical system, select mathematical components, e.g.,
basis functions such as the Heaviside step function
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Fig. 1 Schematic
illustration of the general
modeling problem; a
multi-physics systems
encountered in various
science and engineering
domains; b modeling
approach representing
system dynamics with a
partial differential equation
(PDE); c external excitation
utilized as an initial
condition of a PDE; and d
evaluation of a quantity of
interest over time by
numerically solving the
PDE

and error function (see the mathematical expres-
sion library box in Fig. 2), which will postulate the
expression “library” to be used for candidate PDEs
Mk (k = 1, 2, . . . , nM where nM is the number of
the PDEs).

3. Prepare the GP simulation sets by selecting the loss
function components (i.e., themodel response error,
the equation residual error, or the model complex-
ity penalty) for the fitness test depending on the data
quality of f (xi , t j ) and r(xi , t j ) (refer to Sect. 3.2
for details) and by arranging the rest of the hyper-
parameters of GPSI simulation, mainly focusing on
the complex penalty coefficient.

4. Randomly generate initial PDEs by employing the
form of a binary expression tree (see the example of
a candidate PDE in Fig. 2).

5. Run the GPSI simulation that repeats the fitness
test and the evolutionary processes (see the corre-
sponding boxes in Fig. 2) to update the population
of PDEs in consecutive generations. Details related
to the evolutionary processes are described in Sect.
3.3.

6. Collect the PDEs from the last population with
which the stop criterion of the simulation is satis-
fied, and determine the systemmodelM among the
identified PDEs, by considering their εres (see Eq.
3),model simplicity, and interpretation revealing the
system dynamics.

7. Test other simulation sets with different settings
from Step 2 on the basis of the updated prior knowl-
edge of the target multi-physics system.

The proposed approach firstly arranges the mathe-
matical components for candidate PDEs and the other
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Fig. 2 Workflow chart for the genetic programming for system
identification (GPSI) approach proposed; in the mathematical
expression library box, H(·), |·| and erf(·) represent the Heavi-

side step function, absolute value and error function, respectively;
Details related to the evolutionary processes are exhibited in
Fig. 3
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hyperparameters by utilizing the user’s prior knowl-
edge of the target system (Steps 1–3). Next, stochas-
tic optimization in the infinite function space is per-
formed through GP for the randomly generated PDEs
tominimize εres (seeEq. 2) (Steps 4–5). Finally, the sys-
tem model M is selected among the optimized PDEs,
which gives users an acceptable estimate (or predic-
tion) of the system responses under different excita-
tions, and the understanding of the system dynamics
(Step 6–7). To implement this method, we develop our
own algorithm,GPSI, by enhancing theGP-based iden-
tification algorithm for ODE problems in the previous
study [11]. We refer to this study [11] for the detailed
description of each component in the algorithm and its
default parameters.

In this work, additional explanation for the method
is categorized and presented mainly for two specific
questions: How do we evaluate the plausibility of can-
didate PDEs for the system? How do we improve the
fidelity of the PDEs for the system?

3.2 Fitness test

A fitness test is carried out in parallel to evaluate
the suitability of each candidate PDE to a given data
set, at every generation. The stochastic optimization
utilized here (i.e., the evolutionary processes) is per-
formed on the basis of fitness assigned to the can-
didate PDEs. In this sense, adopting a proper eval-
uation function for the fitness test is a key ele-
ment of the proposed method. GPSI significantly
improves its effectiveness and robustness in identify-
ing a systemmodel and its computational efficiency by
employing the multi-objective loss function L, defined
by:

L = λ1εres + λ2εeq + λ3 p, (4)

where λw (w = 1, 2, and 3) is the weight of each term
bound to the range [0,1] (a binary number, 0 or 1, is
recommended for λ1 and λ2 to minimize work for tun-
ing parameters; the details follows in the rest of this
Section), εres is given in Eq. 3, and p is the number
of nodes in the binary expression tree to which a PDE
is converted. Here, εeq is the normalized root-mean-
square error of the equation residual when M is rear-
ranged with respect to ∂r̂

∂t and substituted with the sys-
tem measurements. It is defined as follows:

εeq =

√√√√√
∑

i
∑

j

{
∂r̂
∂t − ∂r

∂t

}2
∑

i
∑

j

{
∂r
∂t

}2 . (5)

The objective of GPSI is to identify the PDE that
has the minimumL, which results in providing the sys-
tem model. The loss function L (Eq. 4) consists of the
model response error (i.e., εres), the equation residual
error (i.e., εeq), and the complexity penalty of a PDE
(i.e., p) with their own weights (λ1, λ2, and λ3). In the
following, we provide details regarding the equation
for L. These details will assist users to select proper
components and weights in L.
• The model response error, εres (see Eq. 3), is
the root-mean-square error between the model
response r̂(xi , t j ) and the system response r(xi , t j ),
which is then normalized by the root-mean-square
of r(xi , t j ). Users can determine whether it is con-
sidered in L or not, by assigning 0 or 1 to λ1. Here,
the model response is computed by solving a can-
didate PDE Mk (k = 1, 2, . . . , nM ) with a suit-
able numerical method, such as the Runge–Kutta
fourth-order method, under the measured excita-
tion f (xi , t j ). In the integration process, initial and
boundary conditions need to be posed. They come
from physical constraints of a target system, or the
observed data, f (xi , t j ), is incorporated into initial
or boundary conditions. If a PDE does not reflect
the system dynamics, εres is being rapidly accu-
mulated from the initial state during the integra-
tion process. Thus, through this type of error, it is
more likely to identify a PDE revealing the sys-
tem dynamics than the case when only the equa-
tion residual error, εeq, is used in L. Regarding the
data quality needed, f (xi , t j ) andwell-posed initial
and boundary conditions are the only requirement
to generate r̂(xi , t j ) and then to compute εres. Thus,
even if the spatial or temporal resolution of r(xi , t j )
is limited, εres is able to be evaluated. For the data
size of r(xi , t j ), it is desirable for r(xi , t j ) to have
a relatively long time domain for the accumula-
tion of the response error during the integration
process.

• The equation residual error, εeq (see Eq. 5), is the
root-mean-square error between the time deriva-
tives of the model response ∂r̂

∂t and the system
response ∂r

∂t , which is then normalized by the root-
mean-square of ∂r

∂t . The time derivative values of
the model response are computed by rearranging
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a candidate PDE with respect to ∂r̂
∂t and substitut-

ing the system measurements in it, while those of
the system response are from the measurements
or differentiation. Users can select whether it is
included in L or not, by assigning 0 or 1 to λ2.
This type of error requires a higher data quality
to be computed than the model response error, εres,
because r(xi , t j ) and its all differential values, such

as ∂r
∂t ,

∂r
∂x , ∂2r

∂x2
, etc. need to be substituted into a

candidate PDE. Thus, εeq is considered in L (i.e.,
λ2 = 1) only if all the data (i.e., r(xi , t j ) and its
all differential values) are directly obtained from
the measurements, or the data quality of r(xi , t j ) is
appropriate to compute its differential terms with
regard to data noise and resolution. In such a case,
the associated computational cost is much cheaper
than the one when εres is considered in L.

• The model complexity penalty, p, is included in L
(see Eq. 4) to prevent an overfitting issue. Since a
candidate PDE is constructed from a binary expres-
sion tree, the number of nodes in the expression
tree is an effective indicator representing the model
complexity. Since there is a noticeable trade-off
between the model complexity and the errors (i.e.,
εres and εeq) as a function of λ3, it is the important
hyperparameter in GPSI which needs to be inves-
tigated with preliminary trials. Besides from the
model complexity and the errors, the reproducibil-
ity of GPSI reduces and its convergence time is
extended as λ3 decreases. Thus, it is recommended
that users try a high value (e.g., 1×10−1) first, and
then decrease its magnitude of the order to find a
proper value of λ3.

• In this work, the computational efficiency of L
has been significantly enhanced by incorporating
a random sampling method [20,29] for εres and
εeq (see Eqs. 3 and 5). For the fitness test at each
generation, a certain number of small batches in
the same size are randomly sampled from the sys-
tem measurements, r(xi , t j ), and used to calcu-
late the errors. The number and size of random
small batches are denoted by nb and ns , respec-
tively. One random small batch, namely bl(xi , tm)

(l = 1, 2, . . . , nb), has the same spatial data points
with r(xi , t j ) (i = 1, 2, . . . , nx ) but has a sub-
sequence (m = 1, 2, . . . , ns) of the original time
sequence ( j = 1, 2, . . . , nt ). This subsequence is
sampled by selecting a random starting moment

from the original time sequence, and extracting the
following subsequence with the size of ns . By uti-
lizing this random sampling method, the data use
for the fitness test at each generation is considerably
reduced (e.g., 10 or 20%), which directly leads to
a lower computational cost for L.
The computational efficiency of GPSI is further

improved by utilizing advantages of both error types
(i.e., εres and εeq) forL. The GPSI simulation is carried
out with three different phases of L in series. The first
two phases only use the model response and the model
complexity penalty (i.e., (λ1, λ2, λ3) = (1, 0, 0.01)) to
capture PDEs that are likely to reflect system dynamics
in the early generation. The complexity penalty coeffi-
cient is determined by preliminary trials with the range
of [0.1, 0.0001]. In the first phase, the GPSI simula-
tion runs with one random small batch having 10%
of the data, and stops when the change of the mini-
mum loss function value is less than 1 × 10−3 in 100
consecutive generations. Candidate PDEs are thereby
sorted out to have a similar response with the system
response within a short time domain at a very early
generation. In the second phase, by increasing the size
of the random small batch to 20% of the data and the
stop criterion to 200 consecutive generations, the can-
didate PDEs have more generations to evolve into the
models predicting the system responses in a longer time
domain. In the last phase, the equation residual error
is adopted (i.e., (λ1, λ2, λ3) = (0, 1, 0.01)) to expe-
dite the convergence. While the model response error
needs the maximum data size in one small batch for
the error accumulation during the integration process,
the equation residual error does not. Thus, ten random
small batches with 2% of the data each are used to
reduce data biases, which results in using 20% of the
data in total for L. The stop criterion of the last phase
is that the minimum loss function value decreases less
than 1 × 10−3 in 300 consecutive generations, or the
GPSI simulation stops regardless of the phases when
the number of generations reaches 1000.

3.3 Candidate PDEs and their evolution

GP is an algorithm that utilizes programs to perform
a specific task, converts them into genetic informa-
tion, and applies stochastic evolutionary processes to
enhance the programs in consecutive generations [14].
In GPSI, the programs are candidate PDEs. In order to
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efficiently address candidate PDEs, binary expression
trees are employed. Converting the mathematical com-
ponents into nodes and terminals of the binary expres-
sion trees, candidate PDEs can be converted back-and-
forth to the corresponding binary expression trees (see
together the example of a candidate PDE in Fig. 2 and
the conversion of a PDE into an expression tree in Fig.
3).

To initialize candidate PDEs through binary expres-
sion trees, several properties for binary expression trees
need to be arranged on the basis of the user’s prior
knowledge. Above all, it is most important to list math-
ematical components including operations (e.g., addi-
tion, subtraction, and multiplication), basis functions
(e.g., Heaviside step function, absolute value func-
tion, sign function, exponential function, logarithmic
function, error function, sine function and cosine func-
tion), variables (e.g., r̂ , ∂r̂

∂t ,
∂r̂
∂x , ∂2r̂

∂x2
), and numbers (i.e.,

real numbers randomly chosen between 0 and 1 which
will be optimized afterward). Expression trees are ran-
domly generated by assigning the arranged mathemat-
ical components into their nodes and terminals, as
depicted in the example of a candidate PDE in Fig.
2. This random generation is controlled by the selected
maximum tree level (i.e., the maximum number count-
ing from the initial node to the last terminal, e.g., 5),
the probabilistic weights for the component types (i.e.,
{operations, functions, variables, numbers} = {0.5, 0.1,
0.2, 0.2}), and the expression tree growingmethod (i.e.,
Ramped half-and-half method). Once these properties
are set up, a large ensemble of 100 candidate PDEs
(Mk where k = 1, 2, . . . , nM ; nM = 100) are gen-
erated in a stochastic manner for the first population.
All the hyperparameters relevant to the expression trees
were tested and determined in the previous study [11],
which allow testing a variety of expression trees while
maintaining a viable computational cost.

The randomly initialized candidate PDEs, Mk , are
then optimized with evolutionary processes to produce
the system model. Since the evolutionary processes
(i.e., crossover and mutation) involve single or mul-
tiple expression trees, they are applied to the popula-
tion of the candidate PDEs and yield a new population
for the next generation. By repeating the evolutionary
processes in consecutive generations until the stop cri-
teria (refer to Sect. 3.2) are satisfied, the system model
can be identified from the best suitable PDE in the last
population. Additionally, in order to prevent a memory
problem in the computational engine (computer) and

enhance computational efficiency, several techniques
for bloat control (i.e., simplifying expression trees, lim-
iting the number of tree nodes, and removing repetition
in the population) are incorporated at the end of the
evolutionary processes. By integrating the evolution-
ary processes and the bloat control techniques into one
evolution module, the framework for GPSI becomes
simplified with a higher computational efficiency.

Specific description of the evolutionary processes is
presented in Fig. 3. Firstly, loss function values (Eq. 4)
are assigned to the candidate PDEs,Mk , in the fitness
test beforehand. The evolution starts by the represen-
tation in which the PDEs having a top 10% of the loss
function values are kept intact for the next generation
(see the box of current generation in Fig. 3). The rest of
the PDEs for the next generation are produced by the
crossover or the mutation. For these evolutionary pro-
cesses, one PDE is firstly selected from the tournament
selection method which randomly selects two PDEs in
the current population and keeps the one having a better
loss function value [14]. This selected PDE, in the form
of the expression tree, goes through the crossover and
the mutation (see the arrow of evolutionary processes
in Fig. 3), based on their probabilities, i.e., 0.8 and 0.2,
respectively. The crossover randomly picks the node
of the expression tree converted from the selected PDE
and exchanges with another randomly picked node of
the expression tree from another selected PDE. The
mutation randomly picks the node of the expression
tree from the selected PDE and exchanges it with a
randomly generated expression tree.

At the end of the evolutionary processes, several
bloat control techniques are carriedout (see the arrowof
bloat control in Fig. 3). Firstly, the modified expression
tree is rearranged by performing mathematical opera-
tions and simplifying expressions.Next, two conditions
are checked. The first one is whether or not the num-
ber of nodes in the expression tree is over the maxi-
mum node number, e.g., 31. This maximum number
of nodes occurs in a fully grown expression tree with
the tree level 6. The second condition is whether the
PDE from the expression tree has the same structure of
the PDEs in the current population. When the expres-
sion tree satisfies any of these two conditions, the evo-
lutionary processes repeat from the selection step to
guarantee all the expression trees for PDEs are simpli-
fied, not too complicated, and unique (see the box of
next generation in Fig. 3).
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Fig. 3 Representative snapshot of the flowchart to implement the evolutionary processes of candidate PDEs utilizing their expression
trees
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In addition to the evolution of the structure of the
candidate PDEs, the optimization of their coefficients
are performed separately once in every 50 genera-
tions (see the last arrow in Fig. 3). A genetic algo-
rithm [9] is employed instead of gradient-based opti-
mization methods because the library of basis func-
tions for PDEs includes discontinuous functions such
as Heaviside step function. The genetic algorithm is
applied to each PDE separately. It utilizes the coeffi-
cient vector extracted from the PDE. Candidate coef-
ficient vectors are generated by multiplying random
real numbers from the uniform distribution with lower
and upper bounds 0.05 and 20 into each element of
the original vector, respectively, to thoroughly search
optimum coefficient values around the original coef-
ficient values. The range of the uniform distribution
was tested and determined in the previous study [11].
The population of the candidate coefficient vectors
then evolves in consecutive generations in similar fash-
ion as the evolution of the crossover and mutation in
GP. In consideration of the computational cost, the
coefficient optimization is applied to the PDEs hav-
ing a top 30% of the loss function values. The user-
selectable stop criteria for the coefficient optimization
are: the change of the minimum loss function value is
selected, e.g., as less than 1 × 10−3 in 30 consecutive
generations, or the number of generations reached is
300.

4 Illustrative examples

The proposed stochastic identification method, GPSI,
is now demonstrated in two applications. Two cases
employ canonical PDEs, i.e., the Burgers’ equation
and the advection-dispersion equation (ADE). Training
data for these cases are prepared by solving theoreti-
cal reference models and adding Gaussian noises (to
simulate unavoidable measurement noise pollution).
The results show that the identification performance
relies on noise levels and system characteristic num-
bers. The system characteristic numbers represent the
contribution of each term in the reference models. All
GPSI simulations were performed with the use of par-
allel processing on high-performance computing sys-
tems [10]. The processing unit has Intel Xeon 4116
dodeca-core whose CPU clock is 2.10 GHz, and 94 GB
RAM.

4.1 Burgers’ equation

Burgers’ equation is a nonlinearPDEwhich is expressed
in the following non-dimensional form:

∂u

∂t
= −u

∂u

∂x
+ 1

Re

∂2u

∂x2
, (6)

where u is the dimensionless fluid longitudinal veloc-
ity and Re is the Reynolds number, which describes
the system characteristics through the ratio of inertial
forces to viscous forceswithin thefluid.Here, x denotes
the dimensionless coordinate systemand t is the dimen-
sionless time.

In order to test different system characteristics, three
different regimes of Re (i.e., 20, 100, and 500) are used.
The excitation for the reference system model (see Eq.
6) is stated as the initial condition characterized by a
Gaussian pulse:

f (x, t) =
{
A exp

(
− 1

2
(x−μ)2

σ 2

)
, if t = 0;

0, if t > 0,
(7)

where μ is the central location of the Gaussian pulse,
σ is the standard deviation of the pulse from the central
location, and A is the coefficient to normalize the peak
of the pulse to 1. Regarding boundary conditions, as
described in Sect. 3.2, any type of boundary conditions
are possible to be adopted. The boundary conditions
can be set up from observed data or prior knowledge
about a target system. In this example, periodic bound-
ary conditions are employed to exclude any boundary
effects of the finite space domain and to present as a
general example.

For the training and validation data, the space and
time domains are defined with proper step sizes, i.e.,
x ∈ [0, 1] with �x = 1/128 and t ∈ [0, 1] with
�t = 1 × 10−4. The system response u(xi , t j ) (i =
1, 2, . . . , nx and j = 1, 2, . . . , nt ; nx = 128 and
nt = 1× 104) and its derivatives (i.e., ∂u

∂t ,
∂u
∂x , and

∂2u
∂x2

)
are computed by solving Eq. 6 under f (xi , t j ). The
values of μ and σ for f (xi , t j ) are suitably selected
to exhibit system characteristics within the space and
time domains: 0.2 and 0.05 for the training data, and
0.4 and 0.1 for the validation data, respectively. For the
data noise, a zero-mean Gaussian noise is embedded
only into the training data with different levels (i.e., ε =
1, 5, and 10%). Accordingly, nine identification cases
are prepared in total with theBurgers’ equation as func-
tions of Re and ε. For the hyperparameters of GPSI, the
default values mentioned in Sects. 3.2 and 3.3 are used.
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Under the consideration that GPSI performs a stochas-
tic optimization, each identification case has 10 trials
with different random seeds, and one PDE is selected
as the system model among the PDEs in all the trials in
the consideration of εres with the validation data (see
Eq. 2) and model complexity.

The identified PDEs and their εres with training and
validation data (namely training εres and validation εres,
respectively, hereafter) are presented in Table 1 for dif-
ferent Re and ε. In all the identification cases, the true
form of the Burgers’ equation is discovered with low
training and validation εres. As an example, one iden-
tification case with Re = 100 and ε = 5% is shown
in Fig. 4. The loss function values and their compo-
sition are exhibited over generations in Fig. 4a. The
values of the validation εres (Eq. 3) are plotted together
as the reference. On the bottom side of Fig. 4, model
response surfaces (Fig. 4b–e) and error surfaces (see
Fig. 4f–i) are displayed for the reference generations,
such as the first generation and each session end. Over
the generation, the validation εres decreases although
it has some fluctuations due to the stochastic sam-
pling. While the model response surface converges to
the reference model responses, the biased error surface
becomes reduced and homogeneous in both space and
time.

Table 1 reveals that the example case discovers the
true Burgers’ equation (compare Case 5 with the refer-
ence case in Table 1). The estimated Reynolds number,
R̂e, extracted from the model (i.e., 100) is the same as
the true ratio of inertial forces to viscous forces within
the fluid (i.e., 100). Since the identified PDE has the
same structure as the reference model with the accu-
rate coefficients, its responses are well-matched with
the training and validation data as exhibited in Fig. 5.
Its training and validation εres are 5.0 and 0.0%, respec-
tively.

In addition to predicting the behavior of the target
system (i.e., the validation test), the identified PDE
allows users to enhance understanding of the system
dynamics. The example model (see Case 5 in Table 1)
is further analyzed by superposing the contributions
of its terms (i.e., 1.000û ∂ û

∂x and 0.010 ∂2û
∂x2

) and their
respective responses in Fig. 6. On the left side (Fig.
6a), the values of each term in the identified model are
presented over the space domain when the validation
excitation (i.e., the black line; see Eq. 7) is given. Fig-
ure 6b shows the response simulated with each term in

the identified model separately under the same excita-
tion for the short period of time (i.e., 0 < t < 0.15),
which reveals the dynamics of each term respectively.
The advection term (i.e., 1.000û ∂ û

∂x ) has a major con-
tribution to the temporal change of û (see the blue and
red lines in Fig. 6a), and it moves the pulse forward
with the ratio of û, leading to the nonlinear advection
(see the blue line in Fig. 6b). The diffusion term (i.e.,
0.010 ∂2û

∂x2
) describes the smooth dispersion as shown in

the green lines in Fig. 6a, b. Its contribution is less than
the advection term, resulting in thefinalmodel response
(see the red line in Fig. 6b). As a result, the inspection
of the identified PDE reveals that the system dynamics
consists of nonlinear advection and linear dispersion.

Although all the identification cases discover the ref-
erence model within 10 trials, each trial in one iden-
tification case shows a different result in identifying
PDEs. In order to evaluate the reproducibility of GPSI,
the average performance of 10 trials is investigated for
each identification case by calculating the probability
of discovering the reference PDE (i.e., the Burgers’
equation), the average validation εres, and the average
convergence time. The average performance as func-
tions of Re and ε are summarized via the contours
depicted in Fig. 7. On the left side (Fig. 7a), the con-
tour exhibits the probability of identifying the refer-
ence PDE, namely the model probability. This contour
represents the diagram of the identified PDE, present-
ing its structure together. The model probability stays
similar as to ε and decreases as the higher Re is used.
When Re = 500, the chance to lose the dispersion
term in the identified PDEs becomes high, leading to
the models having linear advection or degradation. On
the right side (see Fig. 7b, c, respectively), the aver-
age validation εres and the average convergence time
are displayed. They are as well as affected more by Re
than by ε. As Re is higher, the validation εres and the
convergence time increase. Consequently, the perfor-
mance of GPSI is robust to the data noise (i.e., ε) and
shows a good reproducibility as long as the difference
of the contributions that the terms in the model make
is less than 500 times.

4.2 Advection–dispersion equation

The advection–dispersion equation (ADE),which shares
the samemathematical formas the convection-diffusion
equation, is used as the second example of multi-
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Table 1 GPSI-identified PDEs and their εres from the training and validation data depending on different Re and ε; û is the fluid
longitudinal velocity estimated from the identified model; all coefficients are rounded to three decimal places

Case Re ε (%) Identified PDE εres (%)
Training Validation

Ref. – – ∂u
∂t = −u ∂u

∂x + 1
Re

∂2u
∂x2

– –

1 20 1 ∂ û
∂t = −1.000û ∂ û

∂x + 0.050 ∂2 û
∂x2

1.0 0.0

2 20 5 ∂ û
∂t = −0.999û ∂ û

∂x + 0.050 ∂2 û
∂x2

5.0 0.2

3 20 10 ∂ û
∂t = −1.000û ∂ û

∂x + 0.049 ∂2 û
∂x2

10.0 0.3

4 100 1 ∂ û
∂t = −1.000û ∂ û

∂x + 0.010 ∂2 û
∂x2

1.0 0.0

5 100 5 ∂ û
∂t = −1.000û ∂ û

∂x + 0.010 ∂2 û
∂x2

5.0 0.0

6 100 10 ∂ û
∂t = −1.000û ∂ û

∂x + 0.010 ∂2 û
∂x2

10.0 0.1

7 500 1 ∂ û
∂t = −1.000û ∂ û

∂x + 0.002 ∂2 û
∂x2

1.0 0.0

8 500 5 ∂ û
∂t = −0.999û ∂ û

∂x + 0.002 ∂2 û
∂x2

5.1 0.2

9 500 10 ∂ û
∂t = −1.006û ∂ û

∂x + 0.002 ∂2 û
∂x2

10.4 1.4

physics system models. The ADE describes solute
transport with linear advection and dispersion terms.
In an one-dimensional space, the dimensionless form
of the ADE is written as:

∂c

∂t
= − ∂c

∂x
+ 1

Pe

∂2c

∂x2
, (8)

where c is the solute concentration at dimensionless
location x and time t and Pe is the Péclet number which
represents the ratio of the advection to the dispersion
time scales. Pe dictates whether the system dynamics
is advection-dominated or dispersion-dominated.

Three different values of Pe are selected (i.e., 20,
100, and 500). The initial and boundary conditions,
i.e., the excitation (see Eq. 7) and the periodic bound-
ary conditions, and the GPSI setting are the same as
those for the Burgers’ equation discussed above (refer
to Sect. 4.1). Given the similarity in the set-up, GPSI is
able to address a class of PDE problems without tailor-
ing many hyperparameters for each target system (that
demonstrating the robustness of the procedure under
discussion). The training and validation data are gener-
ated in a similar manner. Therefore, nine identification
cases, from 3 Pe values and 3 noise levels (i.e., ε = 1,
5, and 10%), are used in total.

The identifiedPDEs and their training and validation
εres are tabulated as functions of Pe and ε in Table 2.
The results of GPSI for the ADE are very similar to the
Burgers equation cases. In all the identification cases,
the PDE responses converge to the training data, and

their error surfaces are reduced and homogeneous over
generations in the same way as the Burgers equation
cases (refer to Fig. 4). At the end, the true form of
the ADE is discovered, regardless of Pe and ε with
sightly different coefficients, presenting low training
and validation εres. For instance, one identification case
with Pe = 100 and ε = 5% shows that the identified
model’s responses are in agreement with the training
and validation data (Fig. 8). Its training and validation
εres are 5.0 and 0.0%, respectively. The estimatedPéclet
number (i.e., 100) extracted from the model is identical
to the one in the reference system (i.e., 100).

Close inspection of the PDE, identified with Pe =
100 and ε = 5% (see Case 5 in Table 2), reveals
that there are both linear advection and dispersion in
the system dynamics. The contribution of each term is
compared by superposing all the terms (i.e., 1.000 ∂ ĉ

∂x

and 0.010 ∂2 ĉ
∂x2

) in Fig. 9. On the left side (see Fig. 9a),
given the validation excitation (i.e., the black line), the
contribution of the advection term (i.e., the blue line)
is larger than the one of the dispersion term (i.e., the
green line) to the temporal evolution of ĉ (i.e., the red
line). On the right side (see Fig. 9b), the short-term
(0 < t < 0.15) responses simulated from the advec-
tion and dispersion terms, respectively, are presented.
As a result, the final response of the identified PDE
(i.e., the red line) exhibits the advection-dominated
transport with relatively small dispersion, which cor-
responds with the system dynamics.
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Fig. 4 GPSI simulation for theBurgers’ equationwithRe = 100
and ε = 5%; a the loss function composition and the validation
εres as a function of the generation; b–e the PDE response sur-

faces at the initial generation (i.e., b) and each L phase end (i.e.,
c–e); and f–i the corresponding error surfaces; note that, for clar-
ity, the amplitude levels displayed in f–i are not the same

The performance of GPSI in discovering the gov-
erning physical equation is summarized through the
contour plots in Fig. 10. The probability of discover-
ing the reference PDE, the average validation εres, and
the average convergence time are displayed as to dif-
ferent Pe and ε in Fig. 10a–c, respectively. In most
of the cases, the model probability remains high, and
the average validation εres and the average convergence
time stay low. When both Pe and ε increase to 500 and
10%, respectively, themodel probability decreases, and
the average validation εres and the average convergence
time increase. Compared to the performance for the
Burgers’ equation, the overall performance is better in
all the cases (see Fig. 10 in comparison with Fig. 7).

In addition to the identification cases for the lin-
ear ADE, one extra case is examined to test the per-
formance of identification method. Here, we wish to
investigate if the approach is able to discover a nonlin-
ear ADE. Equation 8 is modified to have a nonlinear
dispersion coefficient (or a nonlinear diffusion coeffi-
cient):

∂c

∂t
= − ∂c

∂x
+ 1

Pe

∂

∂x

(
c
∂c

∂x

)

= − ∂c

∂x
+ 1

Pe

(
∂c

∂x

)2

+ 1

Pe
c
∂2c

∂x2
. (9)

The training data are generated using Eq. 9 with
Pe = 20 and ε = 1%. The use of the the hyperparam-
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Fig. 5 Identified PDE responses with the training (red dots) and
validation data (blue dots) from identification cases for the Burg-
ers’ equation; a and b correspond to Case 2 in Table 1 with the
data from Re = 20 and ε = 5%; c and d correspond to Case 5

in Table 1 with the data from Re = 100 and ε = 5%; e and f
correspond to Case 8 in Table 1 with the data from Re = 500
and ε = 5%. (Color figure online)

Fig. 6 Contribution of each term in the identified PDE (see Case
5 in Table 1) from one identification case for the Burgers’ equa-
tion using Re = 100 and ε = 5%; the advection and diffusion

terms are 1.000û ∂ û
∂x and 0.010 ∂2 û

∂x2
, respectively; a the values of

the components in themodel under the givenvalidation excitation
u0; b the responses from the components for a short time domain
(0 < t < 0.15); the incremental shades of the colors represent the
responses at different time moments (t = 0.03, 0.06, . . . , 0.15).
(Color figure online)
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∂û
∂t = −û∂û

∂x +
1
Re

∂2û
∂x2

∂û
∂t = −û
or

∂û
∂t = −∂û

∂x

Fig. 7 Average performance of GPSI in identifying the refer-
ence PDE (i.e., the Burgers’ equation) depending on Re and ε;
a the phase diagram of the identified PDEs on the probability of

discovering the reference model; b the average validation εres;
and c the average convergence time

eters is similar to those employed for the linear ADE
case (with minor modifications). The modifications are
needed in order to guarantee the numerical stability
of the complex equation form (i.e., �t = 1 × 10−5)
and to simplify the fitness test (i.e., (λ1, λ2, λ3) =
(0, 1, 0.0001) and 50% of the data use in one batch). In
Fig. 11, the training (red dots) and validation data (blue
dots) exhibit the nonlinear transport behavior in both
space and time, leading to bell-shaped curves to convex
ones. As a result of the identification, the exact form of
the nonlinear ADE is discovered with slightly differ-
ent coefficients (Eq. 10), presenting 2.6 and 4.0% for
the response errors with training and validation data,
respectively:

∂c

∂t
= − ∂c

∂x
+ 0.05

(
∂c

∂x

)2

+ 0.047c
∂2c

∂x2
. (10)

5 Discussion

5.1 GPSI for the class of PDE problems

The illustrative examples show thatGPSI is an effective
and robust stochastic method to discover PDEs from a
given data set. In the two examples (Sects. 4.1 and 4.2),
there are high chances that the identified PDEs are the
same as the reference models (i.e., 45 and 98% for the
Burgers’ equation and the ADE, respectively) within
the range of the noise levels (i.e., 1–10%) and char-
acteristic numbers (i.e., 20–500 of Re and Pe) consid-
ered. . Thus, the identified models remain highly accu-
rate in predicting system responses in the validation
test. Since all the results were obtained without adjust-
ing the hyperparameters of GPSI to each example, the
approach is hereby shown to be appropriate for the class
of PDE identification problems under discussion.
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Table 2 GPSI-identified PDEs and their εres from the training and validation data depending on different Pe and ε; ĉ is the solute
concentration estimated from the identified model; all coefficients are rounded to three decimal places

Case Pe ε (%) Identified PDE εres (%)
Training Validation

Ref. – – ∂c
∂t = − ∂c

∂x + 1
Pe

∂2c
∂x2

– –

1 20 1 ∂ ĉ
∂t = −1.000 ∂ ĉ

∂x + 0.050 ∂2 ĉ
∂x2

1.0 0.0

2 20 5 ∂ ĉ
∂t = −1.000 ∂ ĉ

∂x + 0.050 ∂2 ĉ
∂x2

5.0 0.2

3 20 10 ∂ ĉ
∂t = −1.000 ∂ ĉ

∂x + 0.049 ∂2 ĉ
∂x2

10.0 0.0

4 100 1 ∂ ĉ
∂t = −1.000 ∂ ĉ

∂x + 0.010 ∂2 ĉ
∂x2

1.0 0.0

5 100 5 ∂ ĉ
∂t = −1.000 ∂ ĉ

∂x + 0.010 ∂2 ĉ
∂x2

5.0 0.0

6 100 10 ∂ ĉ
∂t = −1.000 ∂ ĉ

∂x + 0.010 ∂2 ĉ
∂x2

10.0 0.0

7 500 1 ∂ ĉ
∂t = −1.000 ∂ ĉ

∂x + 0.002 ∂2 ĉ
∂x2

1.0 0.0

8 500 5 ∂ ĉ
∂t = −1.000 ∂ ĉ

∂x + 0.002 ∂2 ĉ
∂x2

5.1 0.1

9 500 10 ∂ ĉ
∂t = −1.001 ∂ ĉ

∂x + 0.002 ∂2 ĉ
∂x2

10.2 0.1

Fig. 8 Identified PDE responses with the training (red dots) and
validation data (blue dots) from identification cases for the ADE;
a and b correspond to Case 2 in Table 2 with the data from
Pe = 20 and ε = 5%; c and d correspond to Case 4 in Table 2

with the data from Pe = 100 and ε = 5%; e and f correspond
to Case 8 in Table 2 with the data from Pe = 500 and ε = 5%.
(Color figure online)
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Fig. 9 Contribution of each term in the identified PDE (see Case
5 in Table 2) from one identification case for the ADE using
Re = 100 and ε = 5%; the advection and dispersion terms are

1.000 ∂ ĉ
∂x and 0.010 ∂2 ĉ

∂x2
, respectively; a the values of the com-

ponents in the model under the given validation excitation c0;
b the responses from the components for a short time domain
(0 < t < 0.15); the incremental shades of the colors represent the
responses at different time moments (t = 0.03, 0.06, . . . , 0.15)

Fig. 10 Average performance of GPSI in identifying the refer-
ence PDE (i.e., the ADE) as to Pe and ε; a the phase diagram
of the identified PDEs on the probability of discovering the ref-

erence model; b the average validation εres; and c the average
convergence time

AlthoughGPSI is amodel-free identificationmethod,
and its hyperparameters do not require repetitive tuning
for each new identification problem, there is a room to
incorporate user’s prior knowledge about a target sys-
tem to adjust the tuning parameters. Since candidate
PDEs are constructed on the basis of expression trees, it

is important to select proper mathematical components
in the expression library as building blocks. This can be
achieved by relying on prior knowledge of simpler (yet
similar) physical systems. For instance, some compo-
nents such as Heaviside step and absolute functions can
be employed or removed in the library according to the
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Fig. 11 Identified PDE responses with the training (red dots)
and validation data (blue dots) from identification cases for the
nonlinear ADE; both initial states are at the center, x = 0.5, with
the peak level, c = 1, and they move to the right beyond the

periodic boundary conditions; a and b correspond to Eq. 10 with
the data obtained by setting Pe = 20 and ε = 1%. (Color figure
online)

prior domain expertise. Since the size of the expression
library determines the size of the candidate PDE space
needed to be explored, it is desirable that the expres-
sion library does not include too many components. As
the expression library is restricted to necessary compo-
nents, it is more likely to identify the system model
with a short convergence time. The complexity penalty
coefficient, λ3, determines howmuch complexity users
allow forPDEs.This is themost important hyperparam-
eter. When λ3 is too high, a limited number of PDEs
would be tested, generating poor validation results. As
λ3 decreases, the candidate PDE space inflates rapidly,
which is prone to overfitting and local minima issues.
Thus, it is recommended that users try a high value of
λ3 first, and later decrease it by examining the results as
the identification process is evolving. Otherwise, sev-
eral automatic techniques forλ3, e.g., a dynamicweight
over generation or in the evolutionary processes, can be
considered to further minimize work for tuning param-
eters.

5.2 Advantages and limitations

GPSI has many advantages in system identification.
Most of all, an identified systemPDE is likely to exhibit
a low validation error, even if validation data are “mod-
erately” out of the range of the training data. This is
because there is a high chance that an identified PDE

captures the current system dynamics. In the cases of
the Burgers’ equation and the ADEs, GPSI identified
the exact linear and nonlinear terms with their accurate
estimates for Re and Pe. The performance of GPSI is
robust as well. The likelihood of discovering the refer-
ence models (i.e., the Burgers’ equation and the ADE)
remains high up to 10% of the noise level in training
data. Therefore, GPSI is a powerful system identifica-
tion method to capture the optimum PDE to model the
observed data.

In efforts to capture the dynamics of multi-physics
systems, many identification approaches have been
developed and investigated. For instance,Gaussian pro-
cess approaches [13,22] andneural network approaches
[4,8,12,23,30] show that they successfully built their
models yielding low errors from training and test
data by capturing system dynamics. However, these
approaches have limitation in offering an easily inter-
pretable mathematical model without the prior knowl-
edge of model structure. In this respect, the inter-
pretability of an identified PDE through GPSI is a con-
siderable advantage,which enhances the understanding
of the system dynamics by providing its various plausi-
ble descriptions. This could be especially useful in the
identification cases where the data measured from an
unknown system are the only available resource, i.e.,
users have no reference models.

In terms of discovering an interpretable model, e.g.,
a PDE, that governs system dynamics, there is con-
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siderable progress being made in sparse approxima-
tion methods [25,26] and neural network methods
[7,18,27]. However, to capture the complex dynamics
of multi-physics systems, the strategy of GPSI offers
advantages compared to thesemethods. Firstly, by con-
structing candidate models on the basis of random
expression trees and mixing them with the stochas-
tic evolutionary processes, infinite combinations of
mathematical expressions are able to appear and be
tested. Next, the optimization process is fundamentally
discrete because the candidate models basically keep
being “newly” generated through the evolutionary pro-
cesses. This discrete process is likely to allow more
randomness in the training process and more prop-
erly addressing discontinuous basis functions, such as
Heaviside step function, than gradient-based optimiza-
tion methods. For these reasons, the strategy of GPSI
seems to be considered more suitable for optimization
in an infinite function space.

A distinctive advantage of GPSI is that it remains
applicable in identifying a PDE with limited data,
although it is fundamentally a data-driven identification
method. This advantage is especially significant when
measurements are limited. The excitation data and the
system description are used to pose initial and bound-
ary conditions. These conditions are the only require-
ment to compute model responses, some of which are
compared with limitedmeasurements. Thus, compared
to other data-driven methods, GPSI is an attractive
identification method when dealing with limited data.
Note that other approaches, such as the ones based
on sparse regression (see for example SINDy [26]),
have the capacity to discover governing equations from
observed data. However, noticeable benefits of GP-
based approaches such as the one proposed in this work
is on its capability to identify complex and irregular
equations forms (e.g., a nonlinear ADE; see Eqs. 9 and
10) and its persistent applicability under limited mea-
surements.

Another advantage of GPSI is that it provides mul-
tiple candidate PDE models as many as the number
of the population is set, e.g., one hundred of PDEs.
While Sect. 4 shows the reference models that are used
to generate training data and to confirm the identified
PDEs, a situation where there is “no reference model”
for data will be a very interesting case. Several iden-
tified PDEs could be selected for potential governing
equations. Interpreting thesePDEs andpresenting them
with their model probability will provide different per-

spectives on systemphysics. In addition,multiplePDEs
have potential to be used together for system response
probability or for model closure problem.

It is commonly known that GP-based methods have
two major drawbacks. Firstly, a large amount of hyper-
parameters need to be tuned for each problem. GPSI
resolves this issue by improving its reproducibility,
which persists in the changes of the hyperparameters.
This reproducibility is attributed to the efficient han-
dling of expression trees during the evolutionary pro-
cesses with bloat control techniques. Consequently,
GPSI is able to address the class of PDE identifica-
tion problems with the default hyperparameters estab-
lished in the previous study [11], and further refined in
this study. Secondly, the convergence time in a stan-
dard GP application can be excessively long to be
used. In order to overcome this issue, GPSI utilizes
the effective multi-purpose loss function, and employs
stochastic sampling. Additionally, parallel computing
is implemented to run GPSI simulation for the fitness
test. As a result, for the examples investigated in this
work, GPSI was performed with a relatively short con-
vergence time, even though the basis function library
expands to include many functions (i.e., Heaviside step
function, absolute value function, sign function, expo-
nential function, logarithmic function, error function,
sine function and cosine function).

6 Summary

This paper presents a novel system identification
approach (GPSI) that utilizes stochastic optimization,
in conjunction with available data sets, to discover the
optimum PDE candidates that match the data and to
reveal system physics embedded in the data. GPSI
aims to discover the system PDEs by utilizing little
prior knowledge about a target system and its measure-
ments (i.e., input/output data). Computational speedup
is achieved by incorporating a series of novel steps,
such as: (1) amulti-purpose loss function and stochastic
sampling into the parallel fitness test as well as (2) bloat
control techniques into the evolutionary processes. The
results reported in this work show that the algorithm is
computationally feasible and allows to identify both
linear and nonlinear PDEs.

We illustrate the accuracy and robustness of the
proposed approach in two canonical PDEs. The first
PDE is the nonlinear Burgers’ equation which is of
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relevance to the fluid dynamics community. The sec-
ond PDE analyzed is the advection–dispersion equa-
tion (also known as the convection-diffusion equation
in the heat transfer community) and it is widely used
in environmental and chemical engineering to analyze
the spatiotemporal dynamics of solute mass transport.
Illustrative examples demonstrate that GPSI success-
fully identified the nonlinear Burgers’ equation and lin-
ear/nonlinear advection–dispersion equations with sig-
nificant data noise (i.e., up to 10%). The results demon-
strate that new technique is effective and robust to dis-
cover PDEs from data without the need for the user to
select a parametric phenomenological model. Finally,
we show the physics of a given system controls the
accuracy of the discovery of the governing equation.
We illustrate how the accuracy of the identification
process varies according to key dimensionless groups
such as the Reynolds and Peclet numbers. The frame-
work provides a promising new approach for identi-
fying governing equations as well as physical laws in
parameterized spatiotemporal systems.
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