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Representational Smoothing to Improve Medical Image Decision Making
Eeshan Hasan, (eeshan.hasan@vanderbilt.edu)

Jennifer S. Trueblood (jennifer.s.trueblood@vanderbilt.edu)
Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA

Abstract

We demonstrate how medical-image classification decisions
can be denoised by aggregating decisions on similar images.
In our algorithm, the final decision on a target image is can-
cerous if a percentage t of the k most similar images are can-
cerous, else it is not cancerous. Similarity between images
is calculated as the distance between representations from an
artificial neural network. We vary k and t for novice and ex-
pert participants using data from Trueblood et al. (2018) and
Trueblood et al. (2021). We show that increasing k improves
performance for novices, with their performance approaching
that of experts. We also show that the algorithm is biased to-
wards identifying cancerous cells, which is reflected in the rep-
resentational space. The percentage t allows greater control
over sensitivity and specificity and can be used to debias de-
cisions. This algorithm is less effective for experts, partially
explained by them giving similar responses on similar images.

Keywords: Medical Image Decision Making; Computa-
tional Modeling; Neural Networks; Representation; Con-
cepts and Categories

Introduction
The identification and treatment of several diseases is contin-
gent on the interpretations of medical images (e.g., images of
blood cells in the diagnosis of leukemia) by doctors and other
medical professionals. Despite advanced training, diagnostic
mistakes occur. Some of these errors occur at random. In
such cases, one might be able to use correct decisions made
on similar images (e.g., blood cells with similar morphologi-
cal characteristics) to overturn the original decision and fix it.
Such a process would effectively “de-noise” decisions, lead-
ing to improvements in accuracy.

Artificial neural network representations trained on tasks
such as categorization are similar to the ones measured in
the visual cortex of the primate brain (Yamins & DiCarlo,
2016). They can also be used to determine the similar-
ity between two images and as inputs to cognitive models
(Sanders & Nosofsky, 2020; Peterson, Abbott, & Griffiths,
2018; Holmes, O’Daniels, & Trueblood, 2020). In exemplar
cognitive models of categorization, one determines the label
of a target based on the similarity between a target and other
similar objects. Models based on such representations have
been developed to model categorization beyond hand crafted
lab stimuli to more naturalistic stimuli (Sanders & Nosofsky,
2020; Singh, Peterson, Battleday, & Griffiths, 2020). We con-
sider the possibility of creating a ‘hybrid’ approach to catego-
rization, where we boost the accuracy of an agent by instanti-

ating such a process computationally after an agent has made
their decisions.

In this paper, we build on our Similarity Based Aggregation
(SBA) algorithm (Hasan, Eichbaum, Seegmiller, Stratton, &
Trueblood, 2021b) based on the idea of aggregating decisions
over similar images. In (Hasan et al., 2021b), for a given tar-
get image, we consider ‘k’ decisions made on the most simi-
lar images (including the decision made on the target image).
We then consider the ‘final aggregated response’ on the target
image to be the modal response in that set of images. This
process is conducted separately for every individual. The
algorithm is a de-noising procedure that smooths decisions
in the representational space for that individual. Previously,
we used data from (Hasan, Eichbaum, Seegmiller, Stratton,
& Trueblood, 2021a) to show that aggregating over a small
number of similar decisions can be used to improve perfor-
mance in novices but not experts. We also showed that while
small improvements were possible using general representa-
tions, using a representation that was obtained by training on
cancer cell classification with task relevant information was
especially effective in improving accuracy.

In this paper, we examine the consequences of varying the
number of neighbors (k) used to generate the aggregated re-
sponse. On the one hand, using a large k allows us to pool
responses from more neighbors making the smoothing less
noisy and possibly more accurate. On the other hand, using
a large k amounts to using less similar neighbors and thereby
potentially including neighbors that belong to another class.

In medical image classification, one might treat false
alarms and misses differently. For example, while screen-
ing for cancer, a false alarm can be dealt with by conducting
more tests (although this comes at additional cost). However,
a missed diagnosis will stop further tests and might allow
the cancer to metastasize, making future treatment tougher.
In previous work, it was not clear whether the improvement
in performance due to SBA was due to an improvement in
specificity or sensitivity or both. This is pertinent to SBA
since medical images may not be evenly distributed in the
representational space. For example, cancerous white blood
cells (called blast cells) might be closer to each other in
the representational space while non-cancerous white blood
cells (called non-blast cells) are composed of different kinds
of cells and could be further apart in the representational
space. Further, in humans, the trade-off between sensitiv-
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ity and specificity is affected by various factors such as the
baseline prevalence of cancer in the dataset (Trueblood et al.,
2021).

In this paper, we examine a modified version of SBA to in-
clude a threshold parameter to manage the tradeoff between
sensitivity and specificity. According to this parameter, in-
stead of using the modal response, we decide that a cell is
cancerous if a certain fraction (t) of its nearest neighbors are
also cancerous. Hence, by setting a low threshold, one might
make the algorithm more sensitive while reducing the speci-
ficity.

In this paper, we use data from Trueblood et al. (2018)
and Trueblood et al. (2021) which contained classification
decisions (cancer or not) made by novices (i.e., undergradu-
ate students) and experts (i.e., medical professionals) on sets
of white blood cell images (examples in Figure 1). We use
novice participants in addition to medical experts for two im-
portant reasons. First, novices provide a baseline for compar-
ing experts. Second, there is recent interest in using novices
to assist with medical image diagnosis. Particularly relevant
for this paper is the possibility of crowd-sourcing large num-
bers of untrained individuals to perform simple diagnostic
tasks (Ørting et al., 2020; Press, 2021), which can later be
used to train data hungry artificial intelligence algorithms.
Third, we previously observed that our algorithm improved
performance for novices but not experts, suggesting different
decision making mechanisms for the two populations (Hasan
et al., 2021b).

Methods
Datasets
All the experiments involved making binary decisions about
Wright-Stained White Blood Cells. These cells were classi-
fied into ’blast’ and ’non-blast’ categories based on the mu-
tual independent agreement of three hematopathologists at
Vanderbilt University Medical Center. Example cell images
can be seen in Panel (a) of Figure 1. More details of the
image curation and experimental procedure can be found in
Trueblood et al. (2018) and Trueblood et al. (2021).

Exp. 1 and Exp. 2 were from (Trueblood et al., 2018).
Participants were trained to classify white blood cells using
two tasks before the main trials. In the first task, they were
exposed to blast and non-blast images along with their labels.
In the second task, they had to pick the blast cell among three
images. In the main task, participants made decisions under
three conditions - speed, accuracy and bias. In this paper, we
only analyze results from the speed and accuracy conditions.
In the speed condition, they were asked to make decisions
’as fast as they can’ and ‘as accurately as they can’ in the
accuracy condition. The participants completed practice tri-
als before the main task to familiarize themselves with the
conditions and interface. Undergraduate students from Van-
derbilt University participated as novice participants in Exp.
1. Pathologists with a range of experience from first year
pathology residents to senior faculty pathologists from Van-

derbilt University Medical Center participated as experts in
Exp. 2. The procedure was identical for both the novice (Exp
1) and expert (Exp 2) participants.

Exp 3 and Exp 4 were from (Trueblood et al., 2021). The
training phases for these experiments were similar to the ones
described above with minor differences. In the main blocks
of these experiments the prevalence rate of blast (i.e., cancer)
cells was varied in different conditions. Exp. 3a and Exp.
3b used undergraduate students at Vanderbilt University as
novice participants. Exp. 3a had three conditions with 50%,
25%, and 75% blast prevalence. These conditions were var-
ied within subject for Exp. 3a. Exp 3b had three conditions
with blast prevalence 50%, 10%, and 90%. All participants
did the condition with 50% but the 10% blast prevalence and
90% blast prevalence was varied between subjects. This was
done to gain enough responses on blast cells in the 10% con-
dition and non blast responses in the 90% blast prevalence
condition. Exp 4 used expert participants with 50% and 90%
blast prevalence. More details of the datasets can be found in
(Trueblood et al., 2018) and (Trueblood et al., 2021).

In both (Trueblood et al., 2018) and (Trueblood et al.,
2021), novice participants were trained on classifying white
blood cells prior to starting the main task. On average,
novices were above chance performance in categorizing the
cell images. Full details on the training procedure can be
found in the original papers.

Representation
In this paper, following Hasan et al. (2021b), we use a rep-
resentation from (Holmes et al., 2020). This representation
was obtained by using a pre-trained GoogLeNet (Szegedy et
al., 2015) on ImageNet to classify cancer cells using trans-
fer learning. This representation had 1024 abstract dimen-
sions that contained information relevant to classifying cancer
cells. We visualised this representation in Figure 1 by using t-
SNE, a dimensionality reduction technique. As is clear from
the figure, this representation neatly separates blast and non-
blast cells. Most of the neighbors for all of the cells belong
to the same class. The accuracy of the network was 98% on
the training dataset and 94% on the validation dataset. This
shows that the network generalized to out of training sample
images without overfitting the data too much. (Holmes et al.,
2020).

Similarity Based Aggregation Algorithm (SBA)
As mentioned above, in our algorithm, for a given participant,
for a given target image, we consider the responses made on
the k most similar images (including the response made on the
target image). Similarity between two images is determined
as the inverse of the distance between their representations. If
the percentage of cancer decisions on this set is greater than
a threshold t, the algorithm selects ‘cancer’ as the ‘final’ re-
sponse on that image for that participant.

In our analyses, we vary the number of neighbors (k) that
are used in SBA. For k = 3, one might be able to overturn the
original decision on the image if both the decisions made on
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Figure 1: [(a) Top] Schematic of the Holmes et. al. (2020) representation. The representation was obtained by using transfer
learning on a GoogLeNet trained on ImageNet to classify blast cells. The activations in the penultimate layer were used as our
representation. [(b) Bottom Left] The decisions made by a typical individual in the experiment. The crosses (circles) are cells
where the true class was blast (non-blast). Red (Blue) markers indicate that the decision made by the individual was cancerous
(non-cancerous). The green arrows show where the algorithm is expected to work since the decisions on the neighbors were
correct. The top yellow arrow is where the decisions made on the neighbors are also incorrect. The bottom yellow arrow shows
an example of where the decisions made on the neighbors are correct but the images belong to another class. [(c) Bottom Right]
This Figure shows the relationship between the number of neighbors k and the average percentage of the k closest neighbors
belonging to the same class as a target image. We observe that as more images are considered, the probability that they belong
to the same class as the target decreases. We also observe that the decrease is more stark for non-blast cells than for blast cells.

the two most similar images were different from the one made
on that image. However, with k = 15, it is easier to overturn
the original decision as it only requires that 8 out of the 14
decisions made on the most similar images to be different
from the original one. Examples of when the algorithm might
be successful or not can be found in Figure 1.

Signal Detection Theory
Signal Detection Theory (SDT) is used to study the catego-
rization ability of individuals along with their bias towards
making false alarms and misses (Stanislaw & Todorov, 1999).
It calculates two parameters - discriminability and criterion.
Discriminability is a measure of performance or the ability to
distinguish between blast and non-blast cells. Criterion mea-
sures how a participant manages the trade-off between false
alarms and misses. If a participant is biased towards false
alarms (saying ‘blast’), their criterion is negative. A bias to-

wards misses (saying ‘non-blast’) is indicated by a positive
criterion. In our experiment, to avoid a perfect hit rate of 1
or perfect false alarm of 0, we used Laplace smoothing of 1,
where we added 4 responses to every participant (one blast
and one non-blast response to a blast cell and one blast and
non-blast response to a non-blast).

Results
Representation
We report the results of the basic analysis of the representa-
tion in Panel (c) of Figure 1. The rate at which an image and
its closest neighbor belonged to the same class was 94.3%.
Hence, in some cases, the closest neighbor was not of the
same class. This number falls to 92.3% when considering the
7 closest neighbors. This further drops to 91.7% and 87.7%
when considering the 15 and 51 closest neighbors respec-
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tively. Therefore, as expected, as we look at more neighbors,
the rate at which they belong to the same class as our target
image, declines.

Interestingly, as shown in panel (c) of Figure 1, this decline
is different for blast and non-blast cells, where the probabil-
ity of the neighbors belonging to the same class is greater
for blast cells. Initially, at k = 3, this gap is significant
(blast:98.2% non-blast:94.9%, t(298) = 2.27, p = 0.023).
For larger k, such as 51, this gap widens and becomes highly
significant (blast:91.4% non-blast:84.8%, t(298) = 3.32, p=
0.0001). Hence, the algorithm might not work as effectively
for non-blast cells as blast cells.

Varying the Number of Neighbors k
As mentioned above, using a large number of images for the
smoothing process results in pooling responses from more
images, making the smoothing less noisy. However, using a
large number of responses also decreases the probability that
the cell belongs to the same class and increases the chance of
the original decision being overturned.

We present the results of SBA for different k values in Ta-
ble 1 and Panel (a) of Figure 2. We observe that initially in-
creasing the number of responses improves performance for
all of the novice experiments for all conditions. However,
this improvement flattens out and then declines. For expert
participants, on the other hand, the improvement is slight and
non-significant with Bonferroni corrected p-values. The re-
sults are similar for Exp. 3 and 4, as shown in Table 2.

Since the procedures for novices and experts were identi-
cal in Exp. 1 and Exp. 2, we used this dataset to compare
the performance of the two sets of participants. As shown in
the Table 1, initially, experts perform better than novices and
have a significantly higher accuracy in both speed and accu-
racy conditions (Speed: t(52) = 4.54; p < 0.0001; Accuracy:
t(52) = 5.12; p < 0.0001). We then used the best performing
k-value (k = 51) to compare the performance of the novices
after we apply the algorithm with the performance based on
the responses made by the experts. We observe that there is no
significant difference between the performance of the novices
after the model and the experts (Speed: t(52) = −0.30;
p = 0.765; Accuracy: t(52) = −1.34; p = 0.187). This dif-
ference is non-significant even after we apply the algorithm
to the experts (at k = 51) (Speed: t(52) = −0.61; p = 0.545
Accuracy: t(52) = −1.53; p = 0.133). Hence, it seems that
after the application of the algorithm, the performance of the
novices is similar to that of the experts.

Since we were interested in understanding if the algorithm
improved performance for blast and non-blast cells differ-
ently, we conducted an SDT analysis of our data. For these
analyses, we calculated the discriminability and criterion of
individual participants before and after the application of al-
gorithm. Figure 2 plots the mean difference in discriminabil-
ity and criterion before and after application of the algorithm.
As shown in Panel (a) of Figure 2, we observe that the al-
gorithm significantly lowers the criterion. This indicates that
our algorithm is biased towards identifying blast cells. As

for the discriminability, we also observe a significant increase
in the discriminability followed by a decline, which mirrors
the accuracy results (except for at k=101, where the discrim-
inability is high). In fact, even for experts, the improvement
in discriminability is significant for k=3,7,15,31, and 51 (al-
though smaller than novices).

Varying the Threshold t

For the following analyses, we set k = 15 and varied the
threshold to see whether it could be used to manage the trade-
off between false alarms and misses. Since accuracy does
not measure the tradeoff between false alarms and misses, we
used SDT to evaluate our results. We were also interested in
seeing how the algorithm would respond to biased datasets as
in (Trueblood et al., 2021). Hence, we report our results by
varying the threshold and applying it to Exp. 3 and 4.

We show our results in Panels (b), (c) and (d) in Figure 2.
For Exp. 3a and 3b, we observe that across all conditions,
when the threshold is small (less than 50%), the criterion is
lower after SBA is applied (indicated by the negative differ-
ence). This means that SBA increases the rate at which im-
ages are classified as blast cells. This is because it needs a
smaller number of neighbors to have been labelled cancer-
ous before it decides that a given cell is cancerous. Similarly,
when the threshold is high, the criterion is higher. It is also
important to note that, for novices, except for in cases of ex-
treme values of t, the discriminability is improved by using
the algorithm (difference is positive). For experts, the im-
provement in discriminability is much smaller.

Similarity Consistency Rate (SCR)

We wanted to understand why SBA was more effective for
novices than for experts. Since experts were more experi-
enced with these images, it was possible that they made sim-
ilar decisions on similar cells. In this case, one would not be
able to overturn incorrect decisions, since the experts would
have also incorrectly judged similar images to be of the same
class. We calculate the Similarity Consistency Rate (SCR)
as the rate at which the same response was made on a given
image and its most similar neighbor.

If an individual has a really high similarity consistency
rate, then the algorithm may not be very effective since the
responses on an image and its most similar images will of-
ten be the same. Hence, SBA will not be able to change
many of the responses. We compare this rate for novices
and experts using a independent measures t-test. The SCR
was lower for novices in Exp.1 than for experts in Exp. 2 in
both the conditions (Accuracy: Exp. 1 - M = 71.1%, Exp.
2 - M = 80.8% t(52) = 4.2; p < 0.0001) (Speed - Exp. 1 :
M = 64.0%, Exp. 2 : M = 75.8%; t(52) = 4.7; p < 0.0001).
Similarly the SCR was significantly lower for novices in Exp
3a. (M = 65.5%) and Exp. 3b (63.3%) than experts in Exp
4 (82.2%) at 50% prevalence (t(56) = 7.8; p < 0.0001 and
t(74) = 8.3; p < 0.0001) and Exp. 3b (70.1%) and Exp 4.
(82.0%) at 90% prevalence (t(45) = 4.6; p < 0.0001). These
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Figure 2: The results of the SDT analysis. The top row shows the difference in discriminability before and after applying
the algorithm. For discriminability, a difference greater than 0 suggests an improvement. For criterion, a criterion less than
0 shows an increased tendency to choose blast cells (leading to an increase in hits and false alarms). Column (a) shows the
results of varying the number of neighbors (k) in Exp. 1 (novice participants) and 2 (expert participants). The golden (blue)
line is from Exp. 1 (2). The dashed line represents the speed condition while the solid line represents the accuracy condition.
We observe that for Exp. 1 (novice), there is a much larger improvement in discriminability than for Exp. 2 (experts). We also
observe that increasing the number of neighbors slightly shifts the criterion lower. Columns (b),(c) and (d) show the effect of
varying the threshold (t) (i.e., the percentage of blast cells for a blast decision) in Exp. 3a, 3b (novice participants) and 4 (expert
participants) respectively. Each of the lines represent one condition in each of the experiments.

results show that experts are more likely than novices to give
similar responses on similar cell images.

Table 1: This table contains the accuracy results when SBA
is applied to Exp 1 and Exp 2 from Trueblood et al. (2018).
The data contained responses from novice and expert partici-
pants in speed and accuracy conditions. The bold values show
a significant improvement compared to average accuracy at
the Bonferroni corrected p-value of p<0.05/7=0.0071. The
algorithm successfully improved the performance for novice
participants across the task conditions. It did not improve the
accuracy for the expert participants significantly (p>0.0071).

Exp. 1 Exp. 2
Condition Accuracy Speed Accuracy Speed
Avg. Acc. 73.8% 71.9% 85.7% 83.6%

3 75.8% 74.0% 86.6% 84.6%
7 78.8% 76.4% 86.9% 84.8%

15 80.1% 78.8% 87.9% 85.4%
31 80.7% 80.8% 86.7% 85.1%
51 81.3% 82.5% 86.9% 84.9%

101 76.6% 80.3% 84.2% 83.9%
151 63.8% 64.4% 78.6% 79.3%

Discussion

In this paper, we leveraged the similarity between images to
improve medical image decision making. We considered the
similarity based aggregation (SBA) algorithm that pools re-
sponses made by an individual on similar stimuli (in our case,
cell images) in order to improve performance. We show that
the SBA algorithm can be used to boost accuracy across dif-
ferent task conditions for novice participants performing a
medical image classification task. For experts, the algorithm
works only in limited settings with it failing to improve accu-
racy or even hurting performance in some conditions.

In our approach, we use representations obtained from neu-
ral networks to determine the similarity between two cells.
The distance between two stimuli has been shown to corre-
late with human judgments of similarity in a wide range of
tasks, metrics, and representations (Richie & Bhatia, 2021;
Peterson et al., 2018). In our previous work, we compared the
results obtained from a GoogLeNet trained only on ImageNet
to the representation obtained by using the same GoogLeNet
trained on cancer cell classification through transfer learning
(Holmes et al., 2020). We demonstrated that without transfer
learning, the improvement by SBA was limited because all of
the neighbors did not belong to the same class. The transfer
learning approach learned a representation such that images
of the same class were close to each other in the representa-
tional space. In other metric learning approaches, representa-
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Table 2: This table contains the accuracy results when SBA is applied to Exp 3 and Exp 4 from Trueblood et al. (2021)
where the blast prevalence was varied. The data contained responses from novice and expert participants. The bold values
show a significant improvement compared to average accuracy at p<0.05/7=0.007. The algorithm successfully improved the
performance for novice participants across the task conditions. There was no improvement for experts.

Experiment 3a (Novice Part.) Experiment 3b (Novice Part.) Experiment 4 (Expert Part.)
Condition 50% Prev. 25% Prev. 75% Prev. 50% Prev. 10% Prev. 90% Prev. 50% Prev. 90% Prev.
Avg. Acc. 68.3% 70.0% 71.1% 67.7% 74.1% 79.4% 90.3% 91.8%

3 70.8% 72.1% 74.0% 70.6% 76.6% 82.0% 91.1% 92.6%
7 73.4% 74.9% 78.0% 73.3% 78.6% 83.7% 91.5% 93.3%

15 75.2% 77.1% 79.8% 75.6% 80.4% 87.0% 91.9% 94.2%
31 76.6% 78.2% 81.2% 76.8% 82.3% 87.6% 91.6% 93.2%
51 77.1% 78.7% 81.6% 77.8% 82.9% 88.1% 91.9% 91.8%

101 78.6% 80.2% 79.6% 76.8% 82.9% 88.5% 92.5% 90.4%
151 78.7% 79.6% 77.9% 74.7% 83.2% 88.0% 89.2% 90.0%

tions where neighbors belong the same class can be obtained
(Zhuang, Cai, Wang, Zhang, & Zheng, 2020). For SBA to be
effective, it is sufficient for the images from the same class to
neighbor each other in the representational space. However,
in future work, one might try to obtain a representation that
corresponds more closely to mental representations (Peterson
et al., 2018; Richie & Bhatia, 2021; Nosofsky, Sanders, &
McDaniel, 2018; Sanders & Nosofsky, 2020).

We notice that increasing the number of neighbors can dra-
matically improve performance for novice participants. How-
ever, there is a limit to this process, where using a very large
number of neighbors might hurt performance. This improve-
ment is significant for novices but not for experts. After the
application of the algorithm, the performance of the novices
from Exp. 1 is similar to that of the experts in Exp. 2. This
shows the power of the SBA in practical applications, where
novices can be used to label images to train medical artificial
intelligence systems (Ørting et al., 2020; Press, 2021), which
in turn can be used to improve artificial neural network rep-
resentations, which can then be used to boost the accuracy of
the novices.

It is interesting to note that blast cells have a higher proba-
bility of having neighbors that belong to the same class than
non-blast cells. This likely occurs because non-blast cells
are composed of several different cell types as compared to
blast cells (Al-Dulaimi, Banks, Chandran, Tomeo-Reyes, &
Nguyen Thanh, 2018; Nissim, Dudaie, Barnea, & Shaked,
2021). As a result, the algorithm is biased towards respond-
ing blast than non-blast. This indicates that the geometrical
properties or the way categories are distributed in the repre-
sentational space might influence its efficacy on a dataset. Fu-
ture work could investigate this for classification tasks with a
greater number of classes, which are distributed in more non-
homogenous ways in the representational space. In this case,
the structure of the representational space may play a larger
role in the kind of errors that SBA can resolve, and the ways
in which it might bias the results.

We used SDT to evaluate the effect of changing the thresh-
old parameter (i.e., percentage of blast cells needed to make

a blast decision). We observe that it allows us to tradeoff be-
tween blast and non-blast cells while maintaining a similar
and improved discriminability. Hence, we show that smooth-
ing the responses in an uneven way can control the tradeoff
between sensitivity and specificity. In situations with unequal
prevalence rates, such as the one in (Trueblood et al., 2021),
where changing the prevalence of blast cells causes partici-
pants to give biased responses, the algorithm can be used to
de-bias responses depending on the requirement. For exam-
ple, if the algorithm was being used to screen for cancer, one
might desire more sensitivity and use a lower threshold. How-
ever, if it was used for confirmatory testing, it could be made
more specific by using a higher threshold.

We observed the similarity consistency score was higher
for experts than for novices. This suggests that experts are
more likely to give similar responses on similar cells. This
suggests that the mistakes made by experts are less random
and are more biased. This is consistent with other analy-
sis made on the same data-set in Trueblood et al. (2018).
Therefore, aggregating responses may not be as beneficial
for experts. Hence, the efficacy of the algorithm depends on
the decision making mechanisms of the underlying popula-
tion. This indicates that it is important to study the efficacy
of various algorithms on the population for which it is in-
tended. However, the higher SCR might also be due to their
higher accuracy. Future simulations could vary the similar-
ity consistency score while maintaining the same accuracy to
test whether similarity consistency score can predict improve-
ment.

In addition to applications related to developing image sets
for training medical AI, the approach discussed in this paper
might also have applications to medical education and train-
ing. For example, one might use the representational space to
design training procedures for medical students and labora-
tory professionals where example images are sampled intel-
ligently from the representational space. Further, SBA could
be used to develop de-biasing procedures where one identifies
a certain area of the representational space that an observer
consistently gets wrong.
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