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Abstract

Coccidioides immitis and C. posadasii, the causative agents of coccidioidomycosis, are dimorphic fungal pathogens, which
grow as hyphae in the saprobic phase in the environment and as spherules in the parasitic phase in the mammalian host. In
this study, we use comparative transcriptomics to identify gene expression differences between the saprobic and parasitic
growth phases. We prepared Illumina mRNA sequencing libraries for saprobic-phase hyphae and parasitic-phase spherules
in vitro for C. immitis isolate RS and C. posadasii isolate C735 in biological triplicate. Of 9,910 total predicted genes in
Coccidioides, we observed 1,298 genes up-regulated in the saprobic phase of both C. immitis and C. posadasii and 1,880
genes up-regulated in the parasitic phase of both species. Comparing the saprobic and parasitic growth phases, we
observed considerable differential expression of cell surface-associated genes, particularly chitin-related genes. We also
observed differential expression of several virulence factors previously identified in Coccidioides and other dimorphic fungal
pathogens. These included alpha (1,3) glucan synthase, SOWgp, and several genes in the urease pathway. Furthermore, we
observed differential expression in many genes predicted to be under positive selection in two recent Coccidioides
comparative genomics studies. These results highlight a number of genes that may be crucial to dimorphic phase-switching
and virulence in Coccidioides. These observations will impact priorities for future genetics-based studies in Coccidioides and
provide context for studies in other fungal pathogens.
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Introduction

The methods for transcriptional profiling have changed

dramatically in recent years from microarray-based techniques

to full transcriptome sequencing using next-generation sequencing

(NGS) technologies. NGS offers many advantages over traditional

microarrays, but the underlying principle of comparative tran-

scriptomics remains the same: analysis of changes in gene

expression between conditions can identify genes critical to

cellular responses to environmental cues, morphological change

and growth. In particular, transcriptional profiling has been used

in many fungal pathogens to identify genes critical to growth in a

host environment [1,2,3,4].

Coccidioides spp. are dimorphic fungal pathogens that cause the

mammalian disease coccidioidomycosis, also known as San

Joaquin Valley Fever – a potentially fatal infection that can occur

in healthy human adults [5]. Formerly considered a single species,

we now know that there are two species of Coccidioides: C. immitis

and C. posadasii [6]. C. immitis is distributed throughout central and

southern California and has at least two populations; C. posadasii is

distributed throughout Arizona, Texas, Mexico and parts of South

America and harbors at least three populations [6,7]. There are no

discernable phenotypic differences in pathogenicity between the

two species, although differences in salt tolerance and thermal

tolerance have been observed [6,8,9].

Coccidioides spp. grow as mycelia in arid soil in association with

dead mammals. Asexual reproduction occurs by production of

arthroconidia, which are the infectious agents of disease that can

cause pulmonary infection when inhaled by mammals. Unlike the

other mammalian dimorphic fungal pathogens, which grow as

yeast in the host, Coccidioides has a morphologically complex

parasitic cycle [10,11] (figure 1). Arthroconidia enlarge in vivo to

form spherule initials that undergo isotropic growth to form

mature spherules, within which nuclei divide and are packaged

into hundreds of endospores that fill the maternal spherules. When

a spherule ruptures due to continued isotropic growth, endospores

are released and continue the cycle in the lungs or may enter the

bloodstream and disseminate to almost any tissue and cause life-

threatening secondary infections. This unique parasitic cycle

distinguishes Coccidioides from other medically-important dimor-

phic fungal pathogens not only in growth morphology, but also in

innate immune response because, unlike yeast cells, mature

spherules are too large (60-.100 mm in diameter) for mammalian

immune cell phagocytosis [12]. Only one other dimorphic fungal

pathogen, Cryptococcus neoformans, forms ‘‘giant cells’’ (up to 30 mm

in diameter) that are too large to be phagocytosed by the host cells

[13].

At least 150,000 people are infected with Coccidioides spp.

annually in the United States; 40% of whom develop mild to

severe pulmonary symptoms [12]. This number is likely an
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underestimate, judging from studies that estimate that 10–50% of

people in endemic regions have been exposed to Coccidioides [14],

including the southwestern U.S., which is home to over 30 million

people. In an estimated 1–6% of clinically diagnosed cases of

coccidioidomycosis, the initial pulmonary infection can dissemi-

nate to other soft tissues, including the brain, and cause secondary

infections [12]. Disseminated disease is potentially fatal, even in

healthy adults, although it is more common in children, the elderly

and immune compromised patients. In children, the mortality rate

of hospitalized patients is 1.5% [15]. Recent increases in

symptomatic coccidioidomycosis cases have been reported in

southern California (over 3-fold increase from 2000 to 2006) and

Arizona (over 2-fold increase from 2001 to 2007) [9]. These local

epidemics are likely correlated with drought associated with

climate change in the Southwest, outbreaks associated with strong

winds and other soil disturbances, and shifting population (ie:

influx of immunologically naı̈ve people from non-endemic areas)

[9,16]. Due to the potentially severe pathogenicity of Coccidioides

spp., its ease of dissemination via air-borne spores, and the absence

of a vaccine, C. immitis and C. posadasii are considered by the U.S.

Department of Health and Human Services to be Select Agents

with the potential for bioterrorism [17].

A previous study compared transcription levels in the saprobic

and parasitic phases by microarray analysis of just 1,000 genes in

two isolates of C. posadasii [18]. That study found that genes related

to stress response and lipid metabolism were significantly up-

regulated in the parasitic phase. Since that study, 20 full genomes

have become available for Coccidioides spp.: 10 C. immitis and 10 C.

posadasii [8,19]. Of these sequenced isolates, C. immitis isolate RS is

a finished genome with six contigs, each representing a whole

chromosome. Together, the six chromosomes total 28.9 Mb and

contain 9,910 genes. In this study, we use NGS to assess gene

expression of all annotated genes in the saprobic and parasitic

growth phases with the aim of identifying genes that are

differentially expressed between the Coccidioides growth phases in

both C. immitis and C. posadasii.

Amongst all of the genes differentially expressed between the

saprobic and parasitic phases, we detected expression changes

between the growth phases in stress response, cell wall remodeling,

polar growth and transcription factors. We also specifically

Figure 1. Coccidioides growth cycle and study overview. Coccidioides growth cycle in culture (A), total RNA was collected at 96 hours from
hyphae and spherules, which were grown at 30uC and 39uC, respectively. Lifecycle in culture illustration adapted from Delgado et al, 2003 [11].
Samples were collected in biological triplicate and the results from C. immitis isolate RS and C. posadasii isolate C735 were compared (B).
doi:10.1371/journal.pone.0041034.g001
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investigated gene expression of previously identified vaccine

candidates [8], genes in introgressed regions [8], genes showing

evidence of positive selection [19], known virulence factors, and

other genes of interest from previous studies in Coccidioides and

other dimorphic fungal pathogens. We also found genes with no

predicted function that show strong differential expression

between the Coccidioides growth phases. Based on Pfam domain

predictions and sequence homology to proteins in other species,

nearly 50% of the genes in Coccidioides have no predicted function

or recognized functional domains. A priori, any of these

approximately 4,500 genes could be important to pathogenicity.

By identifying genes potentially important in dimorphic-switching

and parasitic growth, transcriptional profiling of the saprobic and

parasitic phases will prioritize future reverse genetics-based studies

of proteins with no known function.

Results

Experimental Design
To compare gene expression in the saprobic and parasitic

growth phases between the sibling Coccidioides species, C. immitis

and C. posadasii, we focused our analyses on actively-growing

hyphae (saprobic phase) and pre-endosporulation spherules

(parasitic phase) cultured for 96 hours in vitro in their respective

growth conditions as described in the methods. We chose C. immitis

isolate RS and C. posadasii isolate C735 from a pool of 20 recently

sequenced Coccidioides spp. isolates [8] because they represent the

best assembled genomes for C. immitis and C. posadasii respectively.

We chose the 96 hour time-point because at this stage in culture,

saprobic-phase hyphae are in the exponential phase of filamenta-

tion and the parasitic phase is in near-synchrony – spherules are

segmented and in the early stage of endospore differentiation

(figure 1a). To find genes that were significantly differentially

expressed between the two growth phases, we first assessed gene

expression within species and then compared gene sets between

species (figure 1b).

Library Summary
Three RNAseq libraries were prepared and sequenced for each

of the two species and two growth phases. From these 12 RNAseq

libraries, the mean number of total 36 base pair Illumina reads was

12.1610664.16106. Across all libraries, a mean of 85.4% of reads

mapped to the genome. Reads that did not map include adapter-

dimers and reads with base-calling errors. Of the mapped reads, a

mean of 11.3% in parasitic-phase libraries and 2.5% in saprobic-

phase libraries (p = 0.001) mapped to multiple locations in the

genome and were therefore not assigned or considered in gene

expression statistical analyses; a mean of 80% of these unassigned

reads mapped to predicted repetitive elements. Of the mapped

reads that were assigned, reads mapping to predicted genes

accounted for a mean of 81.9% in saprobic-phase libraries and

92.1% in parasitic-phase libraries (p,0.0001) (figure 2). Although

the library preparation protocol includes an mRNA pull-down,

not all of the rRNA was removed from the samples because

assigned reads mapping to ribosomal RNA sequence accounted

for a mean of 11.8% in saprobic-phase libraries and 1.3% in

parasitic-phase libraries (p,0.0001). The high level of mRNA

reads in saprobic-phase samples accounts for the disparity in the

percentage of reads mapping to predicted genes between the

parasitic and saprobic-phase libraries. Finally, assigned reads

mapping to intergenic regions that included UTRs and non-

predicted genes accounted for a mean of 6.3% in saprobic-phase

and 6.4% in parasitic-phase libraries.

As expected, we observed far greater expression differences

between conditions than between biological replicates within

conditions. To assess reproducibility across biological replicates,

median-difference plots were used to compare the libraries within

and between biological replicates (Figure 3). These plots show that

gene expression levels among biological replicates for the same

condition are much more similar to each other than biological

replicates between conditions, indicating that our results are

reproducible and that there is a strong difference in gene

expression between the saprobic and parasitic growth phases.

Genes Showing Higher Expression Levels in the Saprobic
Phase (Hyphal Growth)

In C. immitis isolate RS, 2,303 genes showed a significantly

higher level of expression (up-regulated) in the saprobic phase

compared to the parasitic phase. In C. posadasii isolate C735, 2,177

genes showed a significantly higher level of expression (up-

regulated) in the saprobic phase compared to the parasitic phase.

Comparing these two gene sets, 1,298 genes were significantly up-

regulated in the saprobic phase in both species (figure 4a, Table

S1). The 15 genes most strongly up-regulated in the saprobic

phase in both Coccidioides spp. are shown in table 1. Of these, 8 are

predicted to be secreted proteins.

In a functional enrichment test, 24 Gene Ontology (GO) terms

were significantly enriched in the 1,298 genes up-regulated in the

saprobic phase in both C. immitis and C. posadasii (Table S3). These

included: 8 terms associated with mitosis/cytokinesis; 4 associated

with nuclear export; 3 associated with budding; 3 associated with

cytoskeleton; and the unique terms calmodulin binding, conjuga-

tion with cellular fusion, ergosterol biosynthesis, establishment of

cell polarity, isoprenoid biosynthesis, and peroxisomal membrane.

Genes Showing Higher Expression Levels in the Parasitic
Phase (Spherule Growth)

In C. immitis isolate RS, 3,394 genes showed a significantly

higher level of expression (up-regulated) in the parasitic phase

compared to the saprobic phase. In C. posadasii isolate C735, 2,865

genes showed a significantly higher level of expression (up-

regulated) in the parasitic phase compared to the saprobic phase.

Comparing these gene sets, 1,880 genes were up-regulated in the

parasitic phase in both species (figure 4b, Table S2). The 15 genes

most strongly up-regulated in the parasitic phase in Coccidioides spp.

are shown in table 2. Of these, two are predicted secreted proteins

and two other genes are also involved in cell wall structure,

sphingosine hydroxylase (CIMG_01209) and polysaccharide

deacetylase (CIMG_02628). Of the top 15 genes up-regulated in

the parasitic phase, 10 are hypothetical proteins with no inferred

function.

In a functional enrichment test, 3 GO terms were significantly

enriched in the 1,880 genes up-regulated in the parasitic phase in

both C. immitis and C. posadasii (Table S3). These were: response to

light, lipid particle, and oxidoreductase activity.

Specific Genes of Interest
In addition to searching for genes that might be important to

the parasitic phase based on a significant change in their

expression between the two growth phases, we used our data to

assess gene expression for genes identified in functional and

bioinformatics studies from Coccidioides and other fungal dimorphic

pathogens (tables 3–4). These include genes important to

parasitism, virulence, the regulation of dimorphism, protective

immune response (vaccine candidates), cell-surface tagged pro-

Comparative Transcriptomics in Coccidioides Spp
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teins, and genes previously found to be differentially expressed in

Coccidioides posadasii by microarray [18].

Regulation of dimorphism has been well-studied in the

mammalian dimorphic pathogen Histoplasma capsulatum; the master

regulators Drk1, Ryp1, Ryp2 and Ryp3 are all up-regulated in the

parasitic yeast phase and are critical for yeast-phase growth

[20,21]. The Ryp1 homolog in Candida albicans (Wor1) is a white-

opaque transition master regulator [22]. None of the homologs of

these Histoplasma dimorphism regulators (Ryp1, Ryp2, Ryp3 and

Drk1) are up-regulated in the parasitic spherule phase in

Coccidioides spp (table 3). Curiously, the Coccidioides Ryp3 homolog

is up-regulated in hyphae (table 3) and may therefore play a role in

hyphal phase growth in Coccidioides. Another gene, ODC

(CIMG_08778), which was previously implicated as a spherule

phase regulator in Coccidioides [23] shows differential expression

only in C. posadasii in this study (table 3). One gene potentially

involved in Paracoccidioides dimorphism regulation, 4-hydroxyl-

phenyl pyruvate dioxygenase (4-HPPD, CIMG_01466) [24,25], is

up-regulated in the spherule phase of both C. immitis and C.

posadasii (table 3).

Several virulence factors previously identified in Coccidioides and

other dimorphic fungal pathogens [25] are up-regulated in the

parasitic phase: AGS1 (CIMG_13256), SOWgp (CIMG_00181),

and UGH (CIMG_02178). Loss of AGS1 in Histoplasma and other

fungal pathogens has been shown to decrease virulence

[26,27,28,29,30]. SOWgp is a known Coccidioides virulence factor

[10,31]. UGH has been shown to be critical to Coccidioides

virulence (Hua Zhang, personal communication). Other virulence

factors did not show the expected expression patterns and may

indicate isolate and species differences in gene expression that

affect virulence. Mep1 was previously shown in C. posadasii to

degrade SOWgp on endospore walls and helps prevent immune

detection of small endospores [32]. MEP1 (CIMG_08674) is up-

regulated in the parasitic phase in C. posadasii but shows the

opposite expression in C. immitis (up-regulated in the saprobic

phase). Other genes that are differentially regulated either in C.

immitis or in C. posadasii (but not both) include urease, urease

accessory protein, 1,3-beta-glucanosyltransferase, and arginase.

Homologs of several well-studied genes involved in cellular

processes are differentially regulated in Coccidioides, including

GAC1, GLC7 and SEC1 (Table 3). GAC1 is up-regulated in the

parasitic phase; its gene product is a regulator of Glc7, the catalytic

subunit of protein phosphatase type 1; surprisingly, unlike GAC1,

GLC7 is up-regulated in the saprobic phase. Sec1 is involved in

vesicle trafficking and secretion (SNARE regulation) [33,34] and is

up-regulated in the parasitic phase.

Chitin is a critical component of the fungal cell wall and several

predicted chitin-associated genes are differentially regulated in the

saprobic and parasitic phases of Coccidioides. Of 21 total chitin-

related genes predicted in Coccidioides immitis isolate RS, 8 were

significantly differentially expressed in both C. immitis and C.

posadasii. Of these, 5 were up-regulated in the saprobic phase; these

were chitin synthase 2 (3.7-fold, CIMG_08655), class III chitin

synthase (4.1-fold, CIMG_05647), a chitin synthase activator (1.9-

fold, CIMG_08769), chitinase 1 (28-fold, CIMG_02795), and

chitinase 3 (41-fold, CIMG_02860). Of the 8 chitin-related genes

differentially regulated in both C. immitis and C. posadasii, 3 were

up-regulated in the parasitic phase; these were chitinase 2 (4.5-

fold, CIMG_00348), a chitin synthase activator (2-fold,

CIMG_10086), and chitinase 7 (3-fold, CIMG_03822). These

results are consistent with the considerable cell wall restructuring

that must occur during dimorphic phase-switching.

A recent phylo-genomics study of Coccidioides spp. and other

sequenced species in the Eurotiomycetes identified 50 genes that

show evidence of positive selection between C. immitis and C.

posadasii. Of these, 11 genes were up-regulated in the parasitic

Figure 2. Library mapping summary. Per-lane read proportions for all libraries. H: hyphae (saprobic phase), S: spherule (parasitic phase).
doi:10.1371/journal.pone.0041034.g002
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phase in both C. immitis and C. posadasii (Table S2) and 13 were up-

regulated in the saprobic phase in both species (Table S1). An

additional five genes that show evidence of positive selection were

significantly differentially in both species, but showed opposing

gene expression patterns in C. immitis and C. posadasii; these were:

trimethyllysine dioxygenase (CIMG_03536), two hypothetical

proteins (CIMG_04115 and CIMG_05894), a RhoGEF domain-

containing protein (CIMG_07534), and a fungal Zn binuclear

Figure 3. Median-difference boxplots. Median-difference boxplots showing the interquartile range (box with median line) of individual counts
from the median count for all genes. Plot ‘‘whiskers’’ extend 1.5 times the interquartile range; outlier points are not shown. Ci: C. immitis, Cp: C.
posadasii, H: hyphae (saprobic phase), S: spherule (parasitic phase).
doi:10.1371/journal.pone.0041034.g003
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cluster domain-containing protein (CIMG_10021). The remaining

21 genes with evidence of positive selection showed no significant

differences in transcription between the saprobic and parasitic

phases. This study also identified 92 genes that appear to be

individual gene gains in Coccidioides spp. Of these, 22 genes were

up-regulated in the parasitic phase in both C. immitis and C.

posadasii (Table S2) and 8 were up-regulated in the saprobic phase

in both species (Table S1).

In a recent Coccidioides population genomics study, one of the

most interesting findings was evidence of introgression between C.

immitis and C. posadasii [8]. Of 70 such regions of introgression, one

region with a highly conserved boundary was of particular interest.

There are two genes found at the conserved boundary of this

introgressed region; one showed extremely low levels of expression

in all conditions (MEP4, CIMG_00508), while the other was

strongly up-regulated in the parasitic phase in both C. immitis and

C. posadasii (CIMG_00509, table 2). The population genomics

study also identified 20 genes as potential vaccine candidates [8].

Of these, all showed detectable expression in both the parasitic

and saprobic phases; 2 were significantly up-regulated in the

saprobic phase and 1 was significantly up-regulated in the parasitic

phase (Table 4).

We also investigated expression of genes previously found to be

significantly different between C. posadasii saprobic phase and two

stages of parasitic phase development (36 and 136 hours) in a

microarray study of 1000 genes [18]. These two periods of

incubation of the parasitic phase corresponded with the differen-

tiation of pre-segmented and endospoulating spherules, respec-

tively. In that study, 27 genes were up-regulated in the saprobic

phase (compared to both parasitic phase time-points); in this study,

14 of those genes are significantly up-regulated in the saprobic

phase, while 1 is significantly up-regulated in the parasitic phase

(Tables S1, S2). The previous study also found 65 genes that were

up-regulated in both parasitic phase time-points (compared to the

saprobic); in this study, 21 of those genes are significantly up-

Figure 4. Differentially expressed genes in C. immitis and C. posadasii. Venn diagrams showing the number of genes commonly differentially
regulated in the saprobic vs. parasitic growth phases of C. immitis and C. posadasii.
doi:10.1371/journal.pone.0041034.g004

Table 1. Top 15 genes with significantly higher expression (up-regulated) in the saprobic phase.

Fold difference* Annotation Gene ID

185 Conserved protein (insect antifreeze protein repeat domain, predicted secreted) CIMG_00925

166 Acetyltransferase CIMG_07556

106 Acetamidase CIMG_02374

101 Conserved hypothetical protein (predicted secreted) CIMG_03870

94 Fungal hydrophobin (predicted secreted) CIMG_06615

75 Conserved protein (PAN domain, predicted secreted) CIMG_09824

53 Conserved protein (zinc-finger domain) CIMG_00099

53 Conserved hypothetical protein CIMG_06344

43 Putative serine proteinase CIMG_09304

41 Cell wall synthesis protein (beta-glucosidase domain, SUN family, predicted secreted) CIMG_05254

34 Hypothetical protein (predicted secreted) CIMG_07839

31 Hypothetical protein CIMG_13374

31 Helix-loop-helix transcription factor CIMG_02390

29 Conserved hypothetical protein (pyridine nucleotide-disulphide oxidoreductase domain, predicted secreted) CIMG_07557

24 Prp4 (CRoW domain-containing protein, predicted secreted) CIMG_07303

*Fold difference is the mean saprobic/parasitic-phase expression level in C. immitis and C. posadasii.
doi:10.1371/journal.pone.0041034.t001

Comparative Transcriptomics in Coccidioides Spp
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regulated in the parasitic phase, while 8 are significantly up-

regulated in the saprobic phase (Tables S1, S2).

Discussion

With 33% of the total number of annotated genes in Coccidioides

spp. differentially expressed between the saprobic and parasitic

growth phases in this study, we have focused on genes of particular

biological interest. These included genes related to the cell wall,

cellular processes, vesicle trafficking, regulation of dimorphism,

virulence, protective immune response (vaccine candidates), and

genes of unknown function. We were also keenly interested in how

these results compare to previous studies in Coccidioides spp. and

other dimorphic fungal pathogens.

Cell Wall-associated Proteins
Given the major differences in growth and cell morphology

between the saprobic (polar growth as hyphae) and parasitic

Table 2. Top 15 genes with significantly higher expression (up-regulated) in the parasitic phase.

Fold difference* Annotation Gene ID

125 Conserved hypothetical protein (DUF 536) CIMG_09539

68 Heat shock protein 30 (Hsp20/alpha-crystallin domain) CIMG_01749

31 Conserved hypothetical protein CIMG_12822

30 Conserved hypothetical protein (YCII-related domain) CIMG_07089

29 Conserved hypothetical protein CIMG_13084

28 Hypothetical protein CIMG_11522

28 Hypothetical protein CIMG_05235

26 Polysaccharide deacetylase (Arp2/3 complex subunit Arc16) CIMG_02628

24 Conserved hypothetical protein (predicted secreted) CIMG_00509

23 Hypothetical protein CIMG_11203

19 Spherule outer-wall glycoprotein (SOWgp, predicted secreted) CIMG_04613

18 Conserved hypothetical protein CIMG_10488

18 Hypothetical protein CIMG_10670

17 Sphingosine hydroxylase CIMG_01209

17 Conserved hypothetical protein CIMG_04740

*Fold difference is the mean parasitic/saprobic-phase expression level in C. immitis and C. posadasii.
doi:10.1371/journal.pone.0041034.t002

Table 3. Genes of interest from previous studies.

Category Gene name
Group of study
(reference(s))

Coccidioides
Gene ID

C. immitis
exp. ratio*

C. posadasii
exp. ratio*

Dimorphism
regulation

4-hydroxyl-phenyl pyruvate dioxygenase
(4-HPPD)

Paracoccidioides [24,25] CIMG_01466 3.52** 4.90**

DRK1 Multiple [21,62] CIMG_04512 0.87 0.59**

Ornithine decarboxylase (ODC) Coccidioides [23] CIMG_08778 0.84 1.92**

RYP1 (WOR1, TOS9) Multiple [21,22] CIMG_02671 0.91 1.20**

RYP2 Histoplasma [20] CIMG_01530 0.61 0.63

RYP3 Histoplasma [20] CIMG_09962 0.38** 0.32**

Virulence Factors Alpha (1,3) glucan synthase (AGS1) Multiple [26,27,28,29] CIMG_13256 1.93** 1.59**

1,3-beta-glucanosyltransferase Coccidioides [25] CIMG_00181 1.06 3.64**

Metalloprotease 1 (MEP1) Coccidioides [32] CIMG_08674 0.34** 2.04**

Urease Coccidioides [37] CIMG_04935 1.60 2.38**

Urease accessory protein Coccidioides CIMG_05165 1.46** 0.76

Ureidoglycolate hydrolase (UGH) Coccidioides CIMG_02178 1.89** 3.48**

Cellular processes GAC1 Saccharomyces CIMG_05377 6.62** 18.18**

GLC7 Saccharomyces CIMG_04906 0.63** 0.55**

SEC1 Saccharomyces [33,34] CIMG_00724 1.94** 1.72**

*Expression ratio: parasitic/saprobic expression. Ratios .1.0 indicate higher expression (up-regulation) in the parasitic phase and ratios ,1.0 indicate higher expression
(up-regulation) in the saprobic phase.
**p-value ,0.05.
doi:10.1371/journal.pone.0041034.t003
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(isotropic growth as spherules) phases of Coccidioides spp., we

expected to observe considerable differences in expression of genes

that encode cell wall-associated and secreted proteins. Of the 15

genes most strongly up-regulated in the saprobic phase of both C.

immitis and C. posadasii, 8 were predicted to be secreted proteins

and may therefore be particularly important in the hyphal cell wall

or cell surface. Additionally, the Gene Ontology (GO) term

ergosterol biosynthesis was significantly over-represented in a

functional enrichment test for all genes up-regulated in the

saprobic phase; ergosterol is a major component of fungal cell

membranes.

Cell wall-associated and secreted proteins were also common in

the genes up-regulated in the parasitic phase of both C. immtis and

C. posadasii. Of the 15 genes most strongly up-regulated in the

parasitic phase, four were predicted secreted or cell-wall associ-

ated. Of these, CIMG_00509 is of particular interest even though

it is a short peptide (99 amino acids in length) with no predicted

function. It is interesting because this gene is unique to Coccidioides

[19] and it lies just inside the conserved boundary of a region

introgressed from C. posadasii to C. immitis [8]. Such regions are

thought to spread through recipient populations by introgression

following hybridization because genes within the region are

positively selected [8]. CIMG_00509 was overlooked in a

population genomics study [8] because it lies next to the gene

encoding metalloprotease 4 (MEP4, CIMG_00508). However,

MEP4 has a very low level of expression in both hyphae and

spherule samples (,25 total read counts in all libraries) whereas

CIMG 00509 is up-regulated 24-fold in spherules. Based on these

results, we argue that selection may be acting on CIMG_00509

and not MEP4, as previously thought.

In addition to CIMG_00509, three other genes of the top 15

most strongly up-regulated in the parasitic phase were predicted to

be secreted or associated with the cell-wall and two others are

associated with cell-wall structure. These include SOWgp, an

immuno-reactive cell-surface antigen, which has been previously

studied in Coccidioides. As confirmed in this study, spherule-specific

expression of SOWgp in parasitic phase growth has been previously

shown [10]. SOWgp mutant strains show reduced virulence in mice

[10]. SOWgp has a highly variable repetitive region that may be

involved in immune evasion [35].

In addition to other cell wall genes strongly differentially

expressed, we were specifically interested in expression of chitin-

associated genes, because chitin is a major component of the

fungal cell wall and was previously proposed as an anti-fungal drug

target [36]. We observed 8 chitin-associated genes differentially

expressed in Coccidioides – some up-regulated in the saprobic and

some in the parasitic phase. These results suggest that there is

considerable restructuring of chitin between growth phases. Given

the redundancy of chitin-related genes, single gene deletions may

not yield distinctive phenotypes. To prioritize the order of

deletion, it may be useful to begin with those that are differentially

regulated.

Virulence Factors
We were particularly interested in secreted virulence factors

previously identified in Coccidioides and other mammalian dimor-

phic pathogens. One of the best-studied virulence factors in

Coccidioides is urease, which is released by parasitic-phase spherules

in the host. Urease hydrolyzes both pathogen and host-derived

Table 4. mRNA expression levels of previously identified vaccine candidates [8].

Category Gene ID Annotation
C. immitis
expression*

C. posadasii
expression*

Differential
regulation**

Proline-rich proteins CIMG_09696 Prp1 35,414 55,176 No

CIMG_09560 Prp2 149 129 No

CIMG_02492 Prp3 124 666 No

CIMG_07303 Prp4 62 46 Up H (3.9-fold)

CIMG_05560 Prp5 170 108 No

CIMG_07843 Prp6 384 485 No

CIMG_09029 Prp7 39 61 No

CIMG_02073 Prp8 241 223 Up S (2.2-fold)

Low polymorph.,
High T-cell epitope

CIMG_00642 Conserved hypothetical protein (putative COPI-
associated protein)

941 651 No

CIMG_02599 Conserved hypothetical protein (DUF2015) 2,822 3,078 No

CIMG_03437 Conserved hypothetical protein 883 - No

CIMG_04746 Conserved hypothetical protein 902 664 No

CIMG_04894 Conserved hypothetical protein 814 1,168 No

CIMG_07187 Iron/copper transporter Atx1 724 776 No

CIMG_07738 Conserved hypothetical protein 384 325 Up H (15-fold)

CIMG_08533 Golgi membrane protein YIPF5 800 548 No

CIMG_09101 Unfolded protein response protein Orm1 103 74 No

CIMG_10953 Conserved hypothetical protein 1,929 1,327 No

CIMG_11035 Conserved hypothetical protein 814 1,378 No

CIMG_12464 Integral membrane protein 746 306 No

*Parasitic phase expression levels are normalized by library size and gene length.
**Differential regulation: Up H: up-regulated in hyphae (saprobic phase), Up S: up-regulated in spherules (parasitic phase).
doi:10.1371/journal.pone.0041034.t004
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urea, which yields ammonia, resulting in a significant increase in

pH [37]. Urease activity also elicits a strong inflammatory host

response, which combined with localized alkalinity, causes local

tissue damage and exacerbates the course of disease [37]. We

found that several genes associated with the urease pathway were

up-regulated in the parasitic phase in this study: urease and two

arginases were up-regulated in C. posadasii, urease accessory

protein was up-regulated in C. immitis, and ureidoglycolate

hydrolase (UGH) was up-regulated in both species. Studies

assessing the roles of urease and UGH in Coccidioides pathogenicity

are in progress. Another virulence factor previously studied in

Coccidioides, Mep1, was up-regulated in spherules in C. posadasii but

showed the opposite expression in C. immitis (up-regulated in

hyphae). Mep1, a metalloprotease, degrades SOWgp on endo-

spores to prevent phagocytosis and was previously shown to be

highly expressed at 132 hr but not at 96 hr in C. posadasii [32].

Mep1 expression likely fluctuates during the parasitic growth cycle

and seems that regulation of this gene is different in C. immitis and

C. posadasii, accounting for the opposing results observed.

We were also interested in virulence factors that have been

studied in other dimorphic fungal pathogens. Many virulence

factors are species-specific and not found in Coccidioides, such as the

Paracoccidioides glycoproteins gp43 and gp70 [25]. The only

homolog of a known virulence factor from another species that

was up-regulated in the parasitic phase in both C. immitis and C.

posadasii was AGS1; Ags1 synthesizes the cell-wall polysaccharide a-

(1,3)-glucan and has been shown to contribute to virulence in the

dimorphic fungal pathogens Histoplasma, Blastomyces, Paracoccidioides

and the non-dimorphic pathogen Aspergillus

[25,26,27,28,29,30,38]. These results suggest that virulence factors

in Coccidioides and the other dimorphic fungal pathogens have

evolved separately. It is worth noting that one of the virulence

factors mentioned above, Mep1, is among the protease gene

families with extreme gene family expansion in Coccidioides species,

but not in Histoplasma [19], underscoring the apparent indepen-

dent evolution of pathogenicity in these two dimorphic fungal

pathogens.

Vaccine Candidates
To help prioritize further research on candidate vaccine targets,

we have examined expression of genes that encode proteins that

may stimulate host cellular immunity against coccidioidomycosis.

These putative vaccine candidates fall into 2 categories: a family of

proline-rich proteins (Prp) (8 genes) and proteins likely to be

immunoreactive judging from their high T-cell epitope density and

low polymorphism (12 genes) [8]. All vaccine candidates showed

detectable expression in the parasitic phase. Prp1 (also known as

Ag2/PRA) and Prp2 have already been tested as single vaccine

candidates, as well as in a combined vaccine [39]. The Prp1/Prp2

combination vaccine offered better protection than the single-

protein vaccines, but was still unable to provide sterile immunity in

mice [39]. The PRP1 gene showed extremely high expression

levels in both the saprobic and parasitic phases in both C. immitis

and C. posadasii. Of the other 7 Prp genes, only PRP8 was up-

regulated in spherules in both species, although the relative

expression was below the mean for all genes. Of the 12 genes with

high epitope density and low polymorphism, four (CIMG_02599,

CIMG_04894, CIMG_10953 and CIMG_11035) had very high

relative expression in the parasitic phase of both species and

should be prioritized for vaccine studies. Given the results of the

Prp1/Prp2 vaccine study, a combination vaccine targeting

multiple high-expression genes may be more successful than single

gene target vaccines.

Cellular Processes and Metabolism
Differential expression of genes related to cellular processes and

metabolism may be important in dimorphic phase-switching and

growth. Functional enrichment analysis of the differentially

regulated gene sets highlights major growth differences between

the saprobic and parasitic phases. Functional (GO-term) enrich-

ment for all genes up-regulated in the saprobic phase in both C.

immitis and C. posadasii showed that this gene set is, as expected,

enriched for cellular functions associated with fungal hyphal

growth – notably the functional terms budding, cytoskeleton,

establishment of cell polarity, calmodulin binding and peroxisomal

membrane. The peroxisomal membrane in filamentous fungi

includes woronin bodies, which help to control leaks after hyphal

damage by blocking septal pores [40]. The major gene required

for woronin body formation is HEX1 [40,41]; the homolog of this

gene (CIMG_06738) was up-regulated in hyphae (Table S2). It is

highly unlikely that woronin bodies would be associated with non-

hyphal fungal growth, such as parasitic-phase spherules. In

addition to the ‘classic’ hyphal growth functional terms enriched,

8 terms associated with mitosis/cytokinesis were enriched in the

saprobic phase up-regulated genes. The upregulation of many cell-

cycle related genes in the saprobic phase is consistent with active

nuclear and cell division in hyphae at 96 hours and its near

absence in parasitic-phase spherules as early as 72 hours after their

induction [42].

Curiously, the catalytic subunit of protein phosphatase type 1

(GLC7, CIMG_04906) was up-regulated in the saprobic phase of

both species, while its regulatory subunit (GAC1, CIMG_05377)

was up-regulated in the parasitic phase. Gac1 has been previously

linked to ion homeostasis and glycogen accumulation [43] and its

activity in parasitic-phase spherules may therefore be related to

these functions in the host environment. The opposing regulation

of GLC7 and GAC1 indicates that protein phosphatase type 1 may

be critical to growth in both the saprobic and parasitic phases but

may serve different functions.

Vesicle Trafficking
Secondary metabolites secreted by vesicle trafficking pathways

have previously been shown to be critical to virulence in other

fungal pathogens, such as Aspergillus spp. [44]. The velvet complex,

a global regulator of secondary metabolite production, includes

the genes VEA (CIMG_06878, not differentially expressed), VELB

(CIMG_09962, up-regulated in the saprobic phase in C. immitis

and C. posadasii) and LAEA (CIMG_03247, up-regulated in the

saprobic phase in C. posadasii). These results suggest that the velvet

secondary metabolite pathway may not be important in Coccidioides

virulence. VelB has been shown to be critical to spore

development in A. nidulans [45], and may play a similar role in

spore production by Coccidioides saprobic-phase hyphae. Interest-

ingly, the homolog of vesicle-trafficking gene SEC1 in Coccidioides

(CIMG_00724) was up-regulated in the parasitic phase of C.

immitis and C. posadasii. Vesicle trafficking via Sec1 may be critical

to spherule growth – whether vesicles are involved in virulence,

cellular growth processes or both.

Regulation of Dimorphism
Regulation of dimorphism has been studied in numerous

mammalian fungal pathogens. The best-studied dimorphism

regulators are the Ryp genes in Histoplasma capsulatum. Ryp1,

Ryp2 and Ryp3 are transcriptional regulators with pivotal roles in

pathogenic yeast-phase growth and dimorphic phase-switching in

H. capsulatum [20]; all three genes are up-regulated during yeast-

phase growth. In this study, the Coccidioides RYP1 homolog

(CIMG_02671) was up-regulated in the parasitic phase in C.
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posadasii, but not differentially regulated in C. immitis; the RYP2

homolog (CIMG_01530) was not differentially expressed in either

species; and the RYP3 homolog was up-regulated in the saprobic

phase of both C. immitis and C. posadasii. These results suggest that

regulation of the parasitic phase in Coccidioides is different from that

of Histoplasma. However, further sampling of additional parasitic-

phase growth time-points, particularly early time-points during the

spore-to-spherule transition, is necessary before concluding that

the above genes are not involved in parasitic-phase growth.

Although the H. capsulatum dimorphism master regulators did

not show similar results here, a homolog of a gene thought to be

involved in Paracoccidioides dimorphism was up-regulated in the

parasitic phase. The protein 4-HPPD is involved in aromatic

amino acid catabolism and is up-regulated during the mycelium-

to-yeast transition in Paracoccidioides [24,25]. Chemical inhibition of

4-HPPD prevents Paracoccidioides transition to parasitic yeast phase

[24]. The homolog of 4-HPPD in Coccidioides (CIMG_01466) was

up-regulated in the parasitic phase of both C. immitis and C.

posadasii and may therefore play a similar role in Coccidioides

parasitic-phase growth. Interestingly, the Coccidioides 4-HPPD

protein has been previously shown to elicit a specific T-cell

immune response [46,47].

Genes under Positive Selection
Based on a genome-wide comparison of synonymous and non-

synonymous nucleic acid substitutions between C. immitis isolate

RS and C. posdasii isolate C735, 50 genes showed evidence of

positive selection [19]. Of these, 13 genes were up-regulated in the

saprobic phase of both Coccidioides species. Positive selection in

these genes could be related to adaptation to the different

environments, both physical parameters and differences in the

local small mammal hosts. The saprobic phase up-regulated genes

under positive selection included a chitin synthase activator and

the transcription factor HacA, which is related to unfolded protein

response [48]. Another saprobic-phase up-regulated gene under

positive selection, a predicted O-methyltransferase, is unique to

Coccidioides [19] and may be important to saprobic-phase gene

regulation. We also observed 11 genes up-regulated in the parasitic

phase that appear to be under positive selection, again likely

related to adaptation to the physical and biological environment –

including potential differences in immune response to infection

between local small mammal hosts. Furthermore, we observed 5

genes that showed opposing expression patterns in C. immitis and

C. posadasii; positive selection in these genes may indicate

reciprocal adaptation by functional divergence following specia-

tion.

Genes of Unknown Function
Genes of unknown function may be important in Coccidioides

virulence and dimorphic growth. With few exceptions, gene

functions in Coccidioides have been inferred from functional domain

predictions and homology to genes studied in other organisms. Of

all Coccidioides genes, 40% have at least one associated functional

GO term, compared to 47% of the saprobic-phase up-regulated

genes and just 29% of the parasitic-phase up-regulated genes. The

GO terms used in this study were derived from homology with

Saccharomyces cerevisiae, S. pombe and Neurospora spp. As the spherule

morphology is unique to Coccidioides, it is logical that genes

previously investigated in Neurospora (hyphal growth) and Saccha-

romyces (yeast growth) are not highly relevant to parasitic-phase

growth. These results imply that control of the parasitic spherule

growth form relies on a different set of genes than those that are

important for hyphal or yeast phase growth in other fungi, as

opposed to unique biological functions of the same gene set.

Comparison with Previous Transcriptional Profiling
In a previous study, Johannesson et al. profiled gene expression

between two isolates of C. posadasii using a microarray with 70mers

for 1000 of the 9,910 Coccidioides genes [18]. There was relatively

little overlap between the results of that study and those reported

here (44% of saprobic-phase up-regulated genes in common, 20%

of parasitic-phase up-regulated genes). Several critical factors likely

account for the disparate results observed between this study and

the previous one. There were obvious methodology differences –

1,000 gene microarray vs. whole transcriptome sequencing and

two isolates of one species instead of one representative isolate for

two species. There also were significant biological differences in

experimental design between the studies as well. The previous

study collected mRNA at two parasitic phase timepoints: late

isotropic growth (36 hours post-inoculum) and endospore release

(132 hours). Here, we collected mRNA from parasitic-phase

spherules undergoing segmentation (96 hours). Given the signif-

icant morphological changes during spherule maturation and

endospore release, we predict that there are many changes in gene

expression within the parasitic cycle that would account for the

disparate results of this study and the previous one. Interestingly,

both studies observed approximately 50% overlap in differential

gene expression between the two isolates/species used, whether

they were from the same species (Johannesson et al., 2006) or

different species (this study). This amount of overlap indicates that

there is considerable variation in gene expression between isolates

and species. Although understanding the basis of differences in

expression would be interesting, in terms of the prevention and

treatment of disease, our chief concern is with identifying the core

set of genes responsible for dimorphic growth and virulence during

the parasitic phase in both species.

Materials and Methods

Isolates and Media
C. posadasii isolate C735 and C. immitis isolate RS, were grown as

the saprobic (hyphae) and parasitic (spherule) phases. Arthroco-

nidia were isolated from mycelia grown on GYE agar plates (1%

glucose, 0.5% yeast extract, 1.5% agar) at 30̊C for 4 to 6 weeks

and used to inoculate cultures. To induce the spherule growth

morphology, parasitic phase cultures were grown in modified

Converse liquid medium [49] containing 15.96 mM ammonium

acetate, 3.7 mM KH2PO4, 3.0 mM K2HPO4, 1.6 mM MgSO4,

0.0125 mM ZnSO4, 0.24 mM NaCl, 0.0204 mM CaCl2,

0.143 mM NaHCO3, 0.5 g of Tamol SN/liter, 4.0 g of glucose/

liter, and 0.05 g of N-Z amine/liter, as previously described [50].

Parasitic phase cultures were purged with 10% CO2 immediately

after inoculation, and then again 48 hours later. The cultures were

incubated at 39uC in a 140-rpm shaking incubator. Parasitic phase

spherules in near-synchronized, pre-endosporulation stage of

development were harvested at 96 hours post-inoculation. To

induce the hyphal morphology, saprobic phase cultures were

grown in liquid GYE media and the cultures were incubated at

30̊C in a shaking incubator as above. Saprobic phase hyphae were

harvested by vacuum filtration 96 hours post-inoculation and

frozen in liquid N2.

Isolation of Total RNA
RNA was released from frozen saprobic phase hyphae by

grinding with a mortar and pestle. To release RNA from parasitic

phase spherules, the samples were mechanically disrupted using a

bead mill (Mini-Beadbeater, Biospec Products, Bartlesville, OK).

Total RNA was isolated from both the hyphal and spherule phases

using a Qiagen RNeasy Plant Mini Kit (Qiagen; Valencia CA,
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USA). Three biological replicates of hyphal and spherule RNA

were prepared.

RNAseq Library Preparation and Illumina Sequencing
mRNA was isolated from the total RNA using Dynabeads

Oligo(dT)25 (Invitrogen) on a magnetic separation stand (Promega,

Madison WI). The isolated mRNA was then chemically

fragmented using a fragmentation buffer (Ambion, Austin TX)

and reversed transcribed to cDNA using ArrayScript reverse

transcriptase (Ambion, Autstin TX). The cDNA ends were

repaired using End-It DNA end-repair (Epicentre, Madison WI).

We prepared adapters for Illumina single-end sequencing [51],

which were ligated onto the cDNA fragments. The fragments were

amplified using a previously-described emulsion PCR protocol

[51]. Finally, 200 base-pair fragments were selected from a 2%

agarose gel and purified with a Min-Elute gel extraction kit

(Qiagen, Valencia CA). Library quality was assessed by Bioana-

lyzer assay. Thirty-six base-pair single-end reads were sequenced

at the Vincent J. Coates Genomics Sequencing Facility at U.C.

Berkeley on an Illumina Genome Analyzer II (Illumina, Inc., San

Diego CA). Sequences are available at the NCBI short read

archive (http://trace.ncbi.nlm.nih.gov/Traces/sra/; accession

number SRA054882).

Genomes
C. immitis isolate RS genome sequence and annotation version 3

from the Broad Institute [8] and C. posadasii isolate C735 genome

sequence version 1 from TIGR/J. Craig Venter Institute [19]

were used for all analyses. To ensure that the gene models used

were equivalent and accurate homolog predictions were used, a

genome alignment of the two species was constructed using

Mercator/MAVID [52,53,54] and C. posadasii gene models were

inferred from the C. immitis annotation. Gene Ontology (GO)

terms [55] were derived from homology with S. cerevisiae, S. pombe

and Neurospora spp. The program RepeatMasker [56] was used to

predict repetitive elements. The program SignalP [57] was used to

predict signal peptides for putative secreted proteins.

Data Analysis
Thirty-six base-pair Illumina reads were mapped to the C.

immitis RS and C. posadasii C735 genomes respectively using

Tophat/Bowtie [58]. Reads mapped to the genome were assigned

to genes using Python scripts (http://python.org). Median-

difference boxplots were generated in R (http://www.r-project.

org). Statistically significant differences between levels of gene

expression in the saprobic and parasitic phases were assessed using

DESeq [59]. Significance of functional enrichment of GO terms in

differentially expressed gene sets was assessed using the hypergeo-

metric distribution [60]. All resulting p-values were adjusted for

multiple hypothesis testing using the Benjamini-Hochberg method

[61].
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