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Abstract
Uncertainty is ubiquitous in science, but scientific knowledge is often represented to the 
public and in educational contexts as certain and immutable. This contrast can foster dis-
trust when scientific knowledge develops in a way that people perceive as a reversals, as 
we have observed during the ongoing COVID-19 pandemic. Drawing on research in statis-
tics, child development, and several studies in science education, we argue that a Bayesian 
approach can support science learners to make sense of uncertainty. We provide a brief 
primer on Bayes’ theorem and then describe three ways to make Bayesian reasoning practi-
cal in K-12 science education contexts. There are a) using principles informed by Bayes’ 
theorem that relate to the nature of knowing and knowledge, b) interacting with a web-
based application (or widget—Confidence Updater) that makes the calculations needed to 
apply Bayes’ theorem more practical, and c) adopting strategies for supporting even young 
learners to engage in Bayesian reasoning. We conclude with directions for future research 
and sum up how viewing science and scientific knowledge from a Bayesian perspective can 
build trust in science.

1  Introduction

Uncertainty is ubiquitous in science. Consider, for instance, uncertainty because instru-
ments cannot measure the thing they purport to measure with perfect precision or the 
uncertainty due to differences in observations made at different points in time (Fuller, 
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2009). Another form of uncertainty is its central role within explanatory theories—such as 
those associated with evolution and quantum physics—for which models take the form of prob-
abilistic statements about the world (Gigerenzer, 2000). Negotiating these and other forms of 
uncertainty through constructively arguing—and building toward consensus while uncertainty 
is present—is a crucial part of the scientific process (Gigerenzer, 2000). It is also a key part 
of science education (Duschl, 2008; Manz & Suárez, 2018; National Research Council 2012; 
Nussbaum, 2011; Szu & Osborne, 2012; Thagard, 2000). Concomitantly, some philosophers 
of science have suggested that science is a process that builds increasingly better models which 
allow us to make increasingly more accurate predictions (Carnap, 1935; Feyerabend et  al., 
1975; Giere, 2010; Kuhn, 1962; Lakatos, 1976; Nersessian, 2002; Reichenbach, 1977).

Past research indicates that scientists, historians, and philosophers are aware of the 
uncertainty and limitations associated with reasoning from scientific evidence under condi-
tions of uncertainty (e.g., Polanyi, 1962, 1966). Yet, scientific knowledge is often repre-
sented to the public as immutable (Carey & Smith, 1993; Duschl, 1990; Manz & Suárez, 
2018). Trust in science can erode when scientists individually or collectively change their 
views, such as during the first phase of the COVID-19 crisis, when scientists faced severe 
criticism from the public, the media, and politicians for changing their recommendations 
based upon new scientific data and findings (Kreps & Kriner, 2020; van der Bles et  al., 
2020). A similar tension between how certain scientific knowledge is perceived and how 
uncertain it is concerns vaccines for COVID-19—a tension that involves reconciling robust 
but still initial clinical trial data and new data from population-level vaccination efforts. 
This tension also involves regulatory organizations, politicians, and medical, pharmaceuti-
cal, and scientific experts making policy-level recommendations (and individual decisions) 
amid uncertainty (Kreps & Kriner, 2020; van der Bles et al., 2020).

In this paper, we argue that we can address these challenges concerning trust in scien-
tific knowledge by considering scientific knowledge not as correct or incorrect or true or 
false, but rather considering the degrees of belief that one might express considering prior 
information and new evidence. In other words, we argue for the use of a Bayesian perspec-
tive that emphasizes subjective probability (Batanero et al., 2016; Konold, 1991).

Notably, we argue that some of the challenges around trust in science can begin to be 
addressed by taking a Bayesian perspective on how people—and students—understand uncer-
tainty. Thus, this paper is not about how scientists and statisticians might use Bayesian meth-
ods; existing books and articles address this topic (Gelman et al., 1995; Kruschke, 2015; Kub-
sch et al., 2021; Levy, 2016). Instead, we argue that science learners can use Bayesian tools 
to make sense of uncertainty more flexibly. Despite attention from statisticians and education 
researchers (e.g., Dogucu & Hu, 2021), there has been little research in the grades K-12 (or 
pre-collegiate) science education community on Bayesian methods. There are several notable 
exceptions to this dearth of research: two papers that adopted a Bayesian approach to a par-
ticular science practice, argumentation (Nussbaum, 2011; Szu & Osborne, 2012), and work in 
physics education that is at the undergraduate level. We build on and aim to extend this prior 
research by considering how a Bayesian approach can help learners make sense of uncertainty 
and reason scientifically in K-12 classroom contexts—above and beyond their involvement 
in argumentation. Indeed, our focus is more on analyzing and interpreting data, and that of 
developing and using models, both core science practices (Lehrer & Schauble, 2015; National 
Research Council,  2012) that we argue can be bolstered by considering a Bayesian lens.

We argue for the usefulness of Bayesian perspectives for science education by drawing 
on research from the work of individuals from diverse disciplines: (a) psychologists using 
Bayesian models of cognition (Gopnik, 2012; Tenenbaum et  al., 2006), (b) statisticians 
and statistics educators advancing tools and practices for Bayesian methods (Albert, 2002; 
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Bolstad, 2002; Hoegh, 2020; Hu, 2020; Martignon & Erickson, 2014; Sedlmeier, 2007), 
and (c) science education scholars who have advanced a Bayesian perspective on argumen-
tation (Nussbaum, 2011; Sedlmeier, 2007) and scientific reasoning (Warren, 2018, 2020). 
In doing so, we claim that Bayesian reasoning can provide an intuitive way for people to 
think about data and evidence under uncertainty (Gopnik, 2012), including in classroom 
contexts (Leuders & Loibl, 2020; Nussbaum, 2011; Sedlmeier, 2007; Szu & Osborne, 
2012; Warren, 2020; Witmer, 2017).

As this introduction has suggested, central to the contributions of Bayesian methods is 
viewing uncertainty probabilistically, as probabilities can provide a language for express-
ing the degree of uncertainty in our knowledge in a wide range of domains (Gopnik, 2012). 
Following this introduction, we expand on how uncertainty has been expressed in vari-
ous domains through a review of prior research on uncertainty in science and science edu-
cation in Sect.  2 and provide a primer on Bayes’ theorem in Sect.  3. Then, we provide 
an overview of strategies to make Bayesian reasoning practical for K-12 science teachers 
and learners in Sect.  4, discussing the potential contributions of a Bayesian approach in 
K-12 science classrooms in Sect. 5 and considering the implications (and limitations) of a 
Bayesian approach in Sect. 6.

2 � Research on Uncertainty and Bayes’ Theorem in Science Education

2.1 � Uncertainty in Science

Probability and uncertainty are ubiquitous in scientific methodologies, scientific concepts, 
and how science is communicated (Gougis et  al., 2017). The practice of science often 
begins with measurement, which has a random component (Fuller, 2009) that arises from 
random variations in the measurement process. Measurement error limits the certainty that 
one can have in the measurements. Reducing that measurement error has been critical for 
many discoveries in science, such as the sorting out of the periodic table that has resulted 
in the representation as it is known today (Fontani et al., 2015). However, deciding on ade-
quate statistical procedures to determine measurement uncertainty is not always easy, and 
it regularly sparks debate. For example, consider a recent study on the relationship between 
SARS-CoV-2 viral load and patient age by Jones et al. (2020) that was heavily debated in 
the scientific community (Frick, 2020) because the authors discretized a continuous vari-
able, reducing statistical power.

Probability and uncertainty are not only integral to some science practices (such as 
analyzing and interpreting data; see National Research Council (2012)) but are also a part 
of explanatory models of and theories for scientific concepts. For example, in the context 
of Heisenberg’s uncertainty principle—more generally in quantum mechanics (Feynman, 
1951)—confidence is limited not only by measurement error but in principle—even in the 
perfect experimental setup, there is no deterministic outcome. Instead, one must calcu-
late the probability of each possible outcome using the Born rule.1 To this day, there is an 
ongoing argument about how to interpret the puzzling quantum mechanical phenomena 
such as quantum tunneling (Carroll, 2019).

1  See https://​www.​quant​amaga​zine.​org/​the-​born-​rule-​has-​been-​deriv​ed-​from-​simple-​physi​cal-​princ​iples-​
20190​213/ for a primer on this.
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Another example of how probability and uncertainty are central to scientific concepts 
and respective learning activities is evolution (Fiedler et al., 2019). Evolution is modeled 
as a probabilistic process as the emergence of new variations can only be described proba-
bilistically. Furthermore, the continued survival of these variations with the population is 
governed by natural selection or random drift, which also escape a deterministic descrip-
tion and are thus modeled probabilistically. Like quantum physics, how to interpret this 
probability has also sparked debate among researchers (Millstein, 2016).

Given that probability and uncertainty spark and sustain debate among scientists, it 
is perhaps unsurprising that misinterpretations happen when scientists in the natural and 
engineering sciences communicate about their findings with their peers or the public 
(Cumming, 2014; Gigerenzer et al., 2004; McShane & Gal, 2017). For example, error bars 
in the form of confidence intervals are routinely interpreted as distributions that assign a 
higher probability to the center of the interval (Kruschke & Liddell, 2018). Another exam-
ple concerns very low p-values, which are sometimes misinterpreted as effect sizes (Gel-
man & Carlin, 2017; Nuzzo, 2014), although p-values describe how incompatible a set of 
data is with a set of assumptions. Furthermore, p-values and null-hypothesis significance 
testing (NHST) have been criticized for fostering black or white thinking: either accept 
or reject the null hypothesis, leaving little room for uncertainty even when there is (Aczel 
et al., 2018; Cohen, 1994).

In short, misunderstandings of statements about probability and uncertainty are com-
mon across the range of modes in which scientists communicate about their work—and 
these can lead to misinterpretations that can diminish trust in science and the process 
through which scientific knowledge is constructed (Kreps & Kriner, 2020; van der Bles 
et al., 2020). We next discuss the role of uncertainty not in science but in science education 
contexts.

2.2 � Uncertainty in Science Education

Probability and chance events play an important role in the life sciences (Garfield, 2003; 
Garvin-Doxas & Klymkowsky, 2008), particularly in learning about evolutionary processes 
(Tibell & Harms, 2017), and scholars have explored how knowing about probability might 
impact knowledge about scientific ideas. Recently, Fiedler et  al. (2019) investigated the 
relationship between statistical reasoning and acceptance and knowledge about evolution in 
a large sample of post-secondary (University-level) students in the USA. They found that 
students’ statistical reasoning capabilities strongly predict both acceptance of evolution and 
knowledge about evolution. Research on teachers’ conceptions of evolution has suggested 
that exposure to curricular materials that emphasized the role of randomness in evolution 
bolstered teachers’ acceptance of evolution, but not their understanding of it (Nadelson & 
Sinatra, 2010). The authors conjectured that difficulties learners face when understanding 
probability and uncertainty may require extensive instruction.

In the physical sciences, students’ struggles with the probabilistic nature of quan-
tum physics (Bao & Redish, 2002) and nuclear decay (Santostasi et al., 2017) have been 
established by prior research. Still, the underlying reasons and mechanisms remain less 
researched than in evolution. Research into students’ misconceptions has started to address 
this gap (Aguilar et al., 2014; Marshman & Singh, 2015; Stefani & Tsaparlis, 2009), and 
the findings mirror the position of Batanero et  al. (1994). Specifically, the concepts of 
probability are taught abstractly and in a way that does not build upon the ideas that stu-
dents already hold, the experiences that students have, and the language that students use. 
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Thus, these studies affirm students’ struggles with probabilistic scientific concepts but hint 
at an underlying issue of more foundational challenges with reasoning about probability 
beyond science education contexts.

Adding to this challenging situation is that when scientists try to communicate their 
uncertainty, prior research has demonstrated that many people struggle to interpret the 
statistics (such as standard errors/margins of error, confidence intervals, and p-values that 
establish statistical significance) that are used to make inferences from scientific data (Gig-
erenzer et al., 2004; Sedlmeier, 2007; Tversky & Kahneman, 1974). Similarly, difficulties 
in understanding the technical language of probability can contribute to a struggle on the 
part of students when learning about concepts such as evolution or nuclear decay that are 
modeled in terms of probabilistic statements (e.g., Fiedler et al., 2017).

Bayesian perspectives have long been brought to bear on reasoning probabilistically. For 
example, the work of Tversky and Kahneman (1974) points to a range of biases that can be 
elicited by the language in which statements about probability and uncertainty are framed. 
A prominent example is the neglect of base rate information in medical testing. The likeli-
hood of having a medical condition based on a positive test result is often overestimated 
because information about the (base) rate of people affected by the condition is not con-
sidered (Kahneman, 2012). This base rate can be viewed as a form of prior knowledge 
about how probable it is that a person has a disease before considering the test result. The 
neglect of base rate information means that diagnostic tests that return positive results may 
not indicate that the individual truly has the disease the test is intended to detect. This 
neglect of base rate information also manifests itself in the prosecutor’s fallacy (Thompson 
& Schumann, 1987).

Responding to and building upon Kahneman and Tversky’s work that suggests that peo-
ple may not reason in a proper (or correct) Bayesian manner, Gigerenzer and colleagues 
provided essential insights into the underlying mechanisms for the occurrence of these 
biases. Their research suggests that the biases are at least partly the result of information 
about probability and uncertainty being provided in a way incompatible with the heuristics 
that people develop from their everyday experiences (Gigerenzer & Hoffrage, 1995; Jenny 
et al., 2018). Based on this premise, Jenny et al. (2018) demonstrated that students judge 
probability significantly better when language is adopted, aligning with the heuristics that 
most learners develop from their everyday experiences. In sum, it seems feasible to change 
representations of probability and uncertainty to better align with ideas and heuristics that 
learners hold to support, rather than hinder, learning.

Given that people struggle to understand probability, is the Bayesian account of rea-
soning under uncertainty a prescriptive rather than a descriptive account? We explore this 
question in the next section drawing on work from scholars studying children’s causal rea-
soning under conditions of uncertainty.

2.3 � Bayes’ Theorem and Research on How Children Learn to Reason Scientifically

In the past two decades, developmental scientists have used Bayes’ theorem to under-
stand how children make sense of and reason about the world (Bonawitz et  al., 2019; 
Gopnik, 2012; Tenenbaum et  al., 2006). The notion that children (and people) weigh 
evidence about the world in a Bayesian way also builds upon, refines, and in some cases 
refutes aspects of much earlier work that documented the surprisingly complex ways 
that children could reason about the world (Piaget & Inhelder, 1969). Unlike earlier 
work on the stages through which children develop (e.g., the work of Piaget and other 
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developmental stage theorists), recent work using Bayesian models considers the differ-
ences in the reasoning ability of children and adults to be a matter of degree, rather than 
one of a kind. From contemporary views of development, children hold initial ideas and 
understandings that they change (or update) in ways concordant with how Bayes’ theo-
rem represents the updating of an initial belief in light of data (Gopnik, 2012).

In addition to developmental research that uses Bayes’ theorem to understand how 
children make sense of data and information in light of their initial ideas and beliefs, 
there is other, similar psychological work that does not explicitly adopt a Bayesian per-
spective. Specifically, research that studies how learners’ prior understanding influences 
probability judgments of different patterns in the data center on the same tension around 
interpreting data in light of initial beliefs that a Bayesian perspective highlights (e.g., 
Klahr & Dunbar, 1988; Masnick et al., 2007; Schwartz et al., 2007). For example, the 
work of Klahr and Dunbar (1988) considers the scientific reasoning process in terms 
of the two “searches” people undertake, of their beliefs and hypotheses in their mind 
and data and evidence collected or analyzed as a part of some investigation. Scientific 
reasoning involves the coordination of these two “problem” spaces, but neither entirely 
outweighs the other, like the Bayesian process of updating initial beliefs in light of data. 
We know that people—even children—can and do update their ideas in light of data, 
though the extent to which they do depends on many factors, including how much peo-
ple could know about the topic, to begin with (Masnick et al., 2017).

In addition, prior research on learners’ perceptions of the plausibility of scientific 
explanations highlights the importance of the degrees of belief that learners hold about 
a particular scientific explanation (Lombardi et al., 2013, 2016). This work suggests the 
merit of a Bayesian perspective as a potential frame or theoretical account for (in these 
critical instances) analyzing patterns in data and conceptual change; it also has other 
benefits for teaching and learning.

Because of the advances made by research using a Bayesian perspective to under-
stand human development (Gopnik & Tenenbaum, 2007; Gopnik & Wellman, 2012), 
one might conjecture that these ideas have been applied to education. For instance, 
Gopnik (2012) wrote that the use of Bayesian methods to understand child development 
can serve as “a scientific foundation for a long tradition on ’inquiry-based science edu-
cation,” and that adopting a Bayesian perspective “could lead us to much more specific 
and scientifically supported proposals for education” (p. 1627). However, as science 
education scholars have bemoaned (Lehrer & Schauble, 2015), it has largely not been 
the case that “science itself could help turn young children’s natural curiosity and bril-
liance into better science teaching and learning” (Gopnik, 2012, p. 1627). Indeed, schol-
ars have lamented that it is often obsolete applications of Piaget’s ideas (e.g., Piaget & 
Inhelder, 1969) that represent the most significant contribution of developmental ideas 
to education (Lehrer & Schauble, 2007).

At the same time that opportunities to connect developmental science with science 
education exist, scholars have emphasized the importance of students’ prior knowledge 
and understandings for their ability to update their understanding of scientific ideas 
(e.g., Lehrer & Schauble, 2004; Masnick et al., 2007, 2017; Schwartz et al., 2007). This 
highlights a potentially powerful connection between Bayesian methods and the pri-
orities of science educators. Developmental and psychological research into Bayesian 
models of cognition supports and bolsters these educational efforts—especially science 
education efforts—to design instruction based on eliciting and understanding students’ 
ideas (Gotwals & Birmingham, 2016; Haverly et al., 2020; Windschitl et al. 2012).
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There is an opportunity to use Bayes’ theorem and Bayesian ideas to bring together 
and to formalize a collection of ideas that are relevant to science teaching and learning. 
However, a Bayesian perspective—with a few exceptions (e.g., Nussbaum, 2011; Szu & 
Osborne, 2012)—has been primarily absent from research in science education; we dis-
cuss this argumentation-focused research by science education researchers next. Moreover, 
a Bayesian perspective may also have a role in building trust in science by representing 
uncertainty in a principled yet flexible way—in this way, having a potential impact on peo-
ple’s scientific literacy. Before elaborating on the education—and science literacy-related 
roles for a Bayesian perspective, we introduce Bayes’ theorem from an accessible math-
ematical and statistical perspective (with connections to the axioms that follow from this 
perspective).

2.4 � Bayesian Approaches to Scientific Reasoning in K‑12 Educational Settings

As we noted in the Introduction, the work of Szu and Osborne (2012) and Nussbaum 
(2011) both applied Bayesian perspectives to the science practice of argumentation. Szu 
and Osborne write that Bayes’ is useful as both a standard mathematical tool and a con-
ceptual one; indeed, they write that considering the degrees of certainty in beliefs that indi-
vidual students hold—different from applications of Bayes’ theorem that follow more or 
less deterministically from “external, objectively probabilistic systems” (p. 61)—is “the 
key leap that characterizes the debate about the value of Bayesian inference as a model of 
scientific reasoning” (p. 61). In this way, Szu and Osborne argue that the most significant 
use of Bayes’ theorem in science classrooms is as a model of informal scientific reason-
ing, aligning with similar (informal) approaches to inference within the statistics educa-
tion research community (Batanero et al., 2016; Makar & Rubin, 2018). They offer some 
research-related backing for the use of Bayes’ theorem as well as some practical, instruc-
tional recommendations, some of which we detail later in this section.

Nussbaum’s (2011) work on Bayesian approaches to argumentation describes both an 
application of Bayesian methods in K-12 classroom contexts and ideas about how Bayes-
ian methods can serve as an analytic framework for students’ argumentation. Concerning 
the latter, Nussbaum describes how the social issue of raising taxes to provide resources 
to homeless individuals was a rich context for students to engage in forms of Bayesian 
reasoning. In this application, Nussbaum describes how the prior and likelihood could be 
obtained from empirical evidence and how the estimates that result from applying Bayes’ 
theorem led students to re-evaluate their initial arguments.

The work of Szu and Osborne (2012) and Nussbaum (2011) begin to apply Bayesian 
ideas to science education and other relevant classroom contexts, making Bayesian ideas 
more vivid in the process. However, neither speaks to how a Bayesian perspective could 
have a role in bolstering understanding or trust in science by learners and others. More 
generally, these two contributions are steps toward conceiving what a Bayesian perspective 
may offer science education, but there remains room to build further. For instance, despite 
their association with statistical methods that are growing in use in post-secondary contexts 
and industry (McGrayne, 2011), no science education scholarship has applied Bayesian 
methods to another science practice: analyzing and interpreting data. We argue that this 
presents an opportunity to advance a Bayesian perspective and Bayesian reasoning within 
science education.
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2.5 � A Bayesian Approach to Scientific Reasoning in an Undergraduate Context

To this point, we discussed past research on uncertainty in science and science education, 
research that explicitly takes uses Bayes’ theorem to understand children’s scientific reasoning 
and what approaches to argumentation look like from a Bayesian viewpoint. This section con-
siders a pedagogical approach that leverages Bayes’ theorem in an accessible manner. We note 
that this research may appear like the research we reviewed in Sect. 2.5—on research that uses 
Bayes’ theorem to understand children’s scientific reasoning. But, that research uses Bayes’ 
theorem as a theoretical framework through which researchers can conceptualize and model 
scientific reasoning. Instead, the research in this section hands the Bayesian approach over to 
learners, asking what benefits such an approach to science teaching and learning may hold.

Specifically, in two studies intended to make Bayesian reasoning more accessible to stu-
dents in college-level introductory physics classes, Warren (2018, 2012) implemented Bayes-
ian updating activities into an introductory university physics course. These are important for 
supporting Bayesian reasoning in K-12 classrooms as they held to the tenets of a Bayesian 
approach but were also deliberately modified so that even introductory students could both 
use and understand Bayes’ theorem in the context of understanding physics phenomenon. 
The activities Warren designed were added to in-class and homework tasks. They generally 
asked students to evaluate their answers or results using Bayesian reasoning. For example, 
students were asked to record their initial confidence in the hypothesis they would test, asked 
to estimate how the data they collected aligns with their initial hypothesis, and update their 
confidence accordingly using Bayes’ theorem. In a quasi-experimental setting, Warren (2020) 
found that these activities positively impact students’ epistemic beliefs, including beliefs 
regarding the nature of scientific knowledge and the presence and importance of uncertainties.

Warren (2018, 2020) frames the Bayesian reasoning as part of a hypothetico-deductive 
process (Popper, 1979, pp. 30, 360). In this process, a model is evaluated by deriving a test-
able hypothesis and testing it against yet unknown data. Depending on the ratio between 
the likelihood of observing the data if the hypothesis is true and the likelihood of observing 
the data if the hypothesis is false, confidence in the model decreases or increases relative 
to the initial confidence in the model. This is analogous to our example with the Eastern 
Hemlock trees. The only difference is that we are no longer concerned with using data to 
learn about an uncertain parameter value (the proportion of infected trees) but concerned 
with using data to learn about a hypothesis where we are uncertain whether it is true or 
false.

Using Warren’s (2018, 2020) qualitative approach requires the rewriting of Bayes’ theo-
rem (see Sect. 3 for the more common form) in the following way, where θ from the equa-
tion introduced in Sect. 4 takes the form of a hypothesis H, as represented in Fig. 2:

p(H|data), or our posterior, is the confidence we can have in the hypothesis H after 
updating our initial confidence, or our prior, p(H) based on consideration of the new evi-
dence, expressed in the updating factor R where:

Note that R is equivalent to the predictive updating factor in our earlier example. Thus, 
R > 1 represents confirmatory evidence, while R = 1 represents inconclusive evidence, 

p(data) =
p(H) × R

p(H) × R + 1 − p(H)

R =
p(H)

p(¬H)
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and R < 1 represents disconfirmatory evidence. Guidelines for choosing an adequate 
R exist (Kass & Raftery, 1995), e.g., 20 < R < 150 can be interpreted as the evidence 
strongly favoring H. p(H), the initial confidence in the hypothesis, ranges from 0 to 1, with 
p(H) = 0.5 representing maximum uncertainty, i.e., having no ideas about the validity of 
the hypothesis.

3 � A Primer on Bayes’ Theorem

Bayes’ theorem is a mathematical procedure to understand new evidence in light of prior 
information. In this way, updating what is already known is mathematical. Still, Bayes’ the-
orem also includes an epistemological component—a component related to what is known 
about the world. What counts as prior information should be construed very broadly—it 
encompasses subjective judgments of how likely an event is and knowledge of empirical 
data from other related events.

The usefulness of Bayes’ theorem lies in how it presents a flexible yet principled way 
to update what is known in light of the evidence. Bayes’ theorem is not a cure-all; it is, 
instead, a formalization of something scientists and people alike already do: interpret evi-
dence in light of what is already known. Moreover, it is epistemologically normative to the 
extent that it is the derivation of the laws of conditional probability.

As an example of the application of Bayes’ theorem, consider the following. The 
Hemlock Wooly Adelgid is an invasive insect that feeds on Eastern Hemlock trees, a tall-
growing pine tree found in the Eastern USA. Because infestations can kill Eastern Hem-
locks rapidly, in many affected areas, people take steps to protect Eastern Hemlocks that 
are affected by the Hemlock Wooly Adelgid; some systemic treatments can be effective 
(National Park Service, 2021).

A student (or a scientist) may be interested in the proportion of Eastern Hemlock trees 
within a specific area that exhibit signs of infection: diseased trees with visible white “cot-
ton ball” clumps at the base of the needles of affected trees. Let us consider that in the 
location we are examining, each Eastern Hemlock tree grows about the same distance apart 
from every other tree (such that we may reasonably suppose the distance between trees to 
not be a critical factor to consider in an investigation). Before beginning an analysis, we 
need to establish what prior information we have: the relative plausibility of the differ-
ent values for the proportion of affected Eastern Hemlock trees. Given what they learned 
in class and what they noticed walking into their school, the student’s best guess may be 
that about half of the Eastern Hemlock trees on their school playground are infected. They 
would not be surprised if the proportion of affected trees was between 30 and 70%, but—
based on what they learned and observed—they would be somewhat surprised to find 
either no affected trees or that all the trees were affected. We can capture this background 
knowledge in the dome-shaped distribution shown as the dashed line in Fig. 1. This is the 
prior distribution, a crucial part of Bayes’ theorem. For now, consider just the prior. We 
will discuss what happens with the data next.

Now suppose a student starts to collect data by observing trees on their school’s play-
ground. The first ten observations (with Y representing infected and N representing not 
infected) are {Y, Y, N, Y, N, Y, Y, N, Y, N}: six infected trees and four not infected trees. 
The question is how we can use this data to inform our knowledge about the propor-
tion of trees that are probably infected. Here, Bayes’ theorem comes in. It states that 
at any point in time, our knowledge about the world after observing new evidence, the 
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posterior, can be obtained by multiplying our prior information, the prior, with some-
thing called a predictive updating factor (Rouder & Morey, 2019; Wagenmakers et al., 
2016):

Posterior = Prior × Predictive updating factor.
The predictive updating factor is the part where we plug in the data. To do so, it is 

helpful to express Bayes’ theorem mathematically in the following form (different from 
the form used by Warren [2018, 2020] that we introduced earlier):

θ is some knowledge about the world that can take the form of a proposition, claim, 
hypothesis, or parameter value; ultimately, any account of the world about which we are 
uncertain (in our case, it is the proportion of probably infected trees). p(θ), the prior, 
represents our prior uncertainty about that knowledge (the dashed line in Fig. 1). The 
predictive updating factor consists of two components. First, p(data | θ) is the likeli-
hood, that is, the extent to which the observed data were expected under θ, i.e., our prior 
knowledge of the world. Second, p(data) is the extent to which the observed data were 
expected across all possible values of θ. If p(data | θ) > p(data), the predictive updating 
factor will be larger than 1, meaning that our knowledge about the world θ predicts the 
data better compared to the average across all possible values of θ. Consequently, when 
we multiply the predictive updating factor with our prior, the value of our posterior 
p(θ|data) increases, representing reduced uncertainty of our knowledge about θ. Con-
versely, if p(data | θ) < p(data) our understanding of the world does not help to explain 
the data, the predictive updating factor will be smaller than 1, and the uncertainty of our 
knowledge about θ will increase.

What happens when we take our data and plug it into this equation? As the string of 
observations—six infected trees and four not infected trees—is more likely given our 
prior knowledge of θ, i.e., that the proportion of infected trees is somewhere between 
30 and 70% and probably neither very low (below 10%) nor very high (above 90%), 

Fig. 1   Example of using Bayes’ 
theorem to update prior informa-
tion in light of new evidence. 
Note. A dome-shaped prior 
distribution captures the back-
ground knowledge concerning 
the proportion of affected trees. 
Observing ten trees (six affected 
and four not affected) drives a 
knowledge update that results in 
a bell-shaped posterior distribu-
tion. Figure based on the Learn 
Bayes’ module in JASP.
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then when we average across all possible values of θ, i.e., those that include very low 
and very high probabilities, p(data | θ) > p(data) and the predictive updating factor is 
larger than 1. The value of our posterior p(θ|data) increases. Specifically, this results 
in the posterior distribution shown as the solid line in Fig. 1. The posterior distribution 
is more peaked than the prior distribution, indicating that the data have sharpened our 
knowledge about θ. In addition, the posterior distribution is higher than the prior distri-
bution for values of θ between approximately 0.4 and 0.75 values of θ predicted the data 
relatively well and have therefore gained credibility. In contrast, values of θ lower than 
0.4 and higher than 0.75 predicted the data relatively poorly, which is why they have 
lost credibility compared to the prior.

Although we have demonstrated this updating process in a single step, it could also be 
executed sequentially, one tree at a time. For instance, the first observation we make is a Y, 
and in light of the prior, this makes the proportion of infected trees a bit higher. This slight 
change in knowledge is reflected in the difference between the distributions on the top two 
lines in Fig. 2; the line “0” represents the dome-shaped prior distribution, and the line “1” 
represents the posterior distribution after the first observations. Note that observing a Y has 
nudged the distribution a little to the right.

Crucially, the “nudged” posterior distribution after the first observation now takes the 
role of the prior distribution ready to be updated by our second observation. The second 
observation is again a Y, and line “2” shows that the resulting posterior distribution is 
nudged to the right once more. At every stage in the sequential updating process, the pos-
terior distribution based on the observations seen so far becomes the prior distribution for 
incorporating the information from the following observation. Specifically, the changing 
distributions in Fig. 2 show our knowledge about the world is subject to constant change by 
making observations and integrating incoming information with current knowledge using 
Bayes’ theorem. It should be emphasized that although the updating process is conceptually 

Fig. 2   Example of sequentially updating what is known using Bayes’ theorem. Note. A dome-shaped prior 
distribution (line 0) captures the background knowledge concerning the proportion of infected trees. Each 
new observation results in an update to a posterior distribution, which becomes the prior distribution for the 
analysis of the next observation. Figure based on the Learn Bayes’ module in JASP.
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different, the outcome is identical: the shape of the posterior distribution is unaffected by 
whether data arrive simultaneously or sequentially. We expand on this primer—specifically 
mathematical axioms that follow from Bayes’ theorem—in the Supplementary file.

4 � Strategies for Supporting Bayesian Reasoning in the Science 
Classroom

4.1 � Strategy #1: Using Principles to Support Bayesian Reasoning

If science instruction progresses qualitatively—our assumption for most K-12 science 
classrooms—the features of Bayesian reasoning can help bring a sense of coherence to the 
many ways in which uncertainty is manifest when students engage in scientific practices 
(e.g., National Research Council, 2012). Thus, we argue that Bayesian reasoning can pro-
vide this coherence as its distinctive feature by using the “concept of degree of belief to 
describe epistemic attitudes about uncertain propositions” (Sprenger & Hartmann, 2019, p. 
2). Such a perspective reflects an embrace of the epistemic stance that scientific knowledge 
is not immutable but open to revision. In other words, scientific knowledge always comes 
attached with a degree of belief that can be updated following Bayes’ theorem’s rules when 
new evidence becomes available. The result of that updating process depends on the uncer-
tainty of existing scientific knowledge, which is then expressed in the prior.

In this way, Bayes’ theorem applied to the scientific process, or Bayesian reasoning, 
emphasizes that science and scientific knowledge are always situated in context (Szu & 
Osborne, 2012) and society (Driver et  al., 1994). These ideas about Bayesian reasoning 
can be captured in the following three principles that can be used as conceptual “tools” for 
teachers and learners:

1.	 Be open to new evidence. Scientific knowledge always comes with some uncertainty, 
and priors that denote absolute certainty (or impossibility) prevent scientific progress. 
This principle expresses the Bayesian degree of belief epistemology, exemplifying that 
scientific knowledge is tentative and that scientists should not make absolute or cer-
tain claims. Lindley popularized this idea in statistics and coined it “Cromwell’s rule” 
(Lindley, 1985, p. 104).

2.	 Account for what is already known. Evaluate new evidence in light of prior information. 
This emphasizes how scientific knowledge is not constructed in isolation but built upon 
earlier information and evidence.

3.	 Consider alternative explanations. Consider the evidence in terms of compatibility with 
all possible outcomes; in other words, consider counterfactuals. This expresses what in 
Bayesian philosophy is referred to as the Simple Principle of Conditionalization (Adams, 
1965): When we weigh evidence, we must consider to what extent it supports the range 
of possible explanations for the data.

We think that emphasizing these principles can support students in connecting the fre-
quent but often isolated references to uncertainty and limits of scientific knowledge in the 
Framework for K-12 Science Education (National Research Council, 2012) and the Next 
Generation Science Standards (NGSS Lead States, 2012). The descriptions of the science 
practices in the Framework (National Research Council, 2012) particularly contain expres-
sions such as revising models, refining explanations, critiquing arguments, and considering 
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the limitations of the precision of the data. However, what is lacking in these statements 
is an explicit and coherent rationale for why revising, refining, considering limitations is 
a necessary part—and a feature—of science, rather than a limitation or constraint of sci-
ence. Familiarizing students with the principles as core components of Bayesian reason-
ing can foster ideas about scientific knowledge—epistemological ideas—from which the 
elements of the practices that pertain to uncertainty and the limits of scientific knowledge 
follow naturally. Moreover, this assumption is supported by the work of Warren (2018, 
2020) which demonstrates that integrating Bayes’ reasoning into university science courses 
positively shifts students’ epistemic attitudes regarding the nature of knowing and learning. 
This assumption is also supported by research at the upper elementary (ages 10–11) grade 
levels (Kazak, 2015; Kazak & Leavy, 2018). We return to these three principles to support 
Bayesian reasoning that follow from Bayes’ theorem in the next section.

4.2 � Strategy #2: Using the Confidence Updater Widget

To support students’ focus on the conceptual elements of updating their confidence in a 
hypothesis, we build on Warren’s (2018, 2020) work by creating a Confidence Updater 
widget (a freely accessible, Internet-based tool). The widget is shown in Fig.  3, and it is 
available to anyone who wishes to use it at https://​kubsch.​shiny​apps.​io/​Confi​dence_​Updat​er/.  
This widget allows students to choose values for the strength of the new evidence—R—
based on their interpretation of the evidence and p(H) based on their initial confidence. After 
performing the needed calculations, the widget returns a textual statement about updated 
confidence, p(H|E), in the hypothesis after considering the evidence and an optional numeric 
value for the confidence level.

Using the widget, one can obtain an estimate—based on Bayes’ theorem—for the con-
fidence one can have in a hypothesis based upon the degree of one’s belief in the initial 
hypothesis—one’s prior—p(H), as well as the predictive updating power of the new evi-
dence, R. One can see the example output in Fig. 4.

The three principles that follow from Bayes’ theorem (introduced in Sect.  4.1) are 
reflected implicitly and explicitly in the widget. The first principle that follows from Bayes’ 
theorem that we described, be open to new evidence, is emphasized as a natural conse-
quence of Bayes’ theorem and the options absolutely certain that it is correct and abso-
lutely certain that it is incorrect in the “How sure are you about your hypothesis?” section 
of the app. When students select from among these options, p(H) is set to 1 (certain that it 
is correct) or 0 (certain that it is incorrect), respectively. In such cases, neither the tentative 
(or changeable) nature of scientific knowledge nor the empirical basis of science is mani-
fest. However, both are key elements of science (Abd-El-Khalick et al., 1998).

Consequently, whatever updating factor R students choose, the updated confidence will 
always be the same as the initial hypothesis—the prior—p(H) and considering the new 
evidence becomes pointless. In other words, no amount of data may change one’s belief in 
such cases. From this perspective, a question could be not scientific, as empirical evidence 
has no bearing on the answer to the question. If students selected any of the options that are 
equivalent to p(H) = 1 and then they observe strong contrary evidence and wonder how this 
does not affect the updated confidence are observing the evidence, a teacher could refer to 
the first principle—be open to new evidence—and point out to students how this degree of 
belief can inhibit any changes in beliefs even when confronted with strong evidence.
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Fig. 3   The Confidence Updater 
widget for updating one’s 
confidence in a hypothesis fol-
lowing Bayes’ theorem. Note. 
p(H) corresponds to the second 
question (How sure are you about 
your hypothesis?); R corresponds 
to the second question (How 
compatible is the evidence with 
your hypothesis relative to an 
alternative hypothesis?).

Fig. 4   Example output from the Confidence Updater widget. Note. This output corresponds to the posterior 
distribution—the output from applying Bayes’ theorem.
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As Warren (2018) points out, “the fact that we can never reach a probability of zero 
is the quantitative expression of the maxim that we should never rule out any hypothesis 
with an absolute certainty” (p. 371). At the same time, even when the evidence is highly 
supportive of a hypothesis, the posterior probability will never equal precisely 1. In other 
words, there are no certainties where it comes to Bayesian epistemology. This reflects 
philosophical and historical accounts of science that emphasize its mutability over time 
(Kuhn, 1962), as expressed in principle 1.

The second principle, account for what is already known, appears in the wording of 
the prompt for selecting p(H) and becomes visible to students as it effectively moderates 
the power of the evidence. When prior beliefs and evidence align, the updated confidence 
is larger in comparison to either having no idea before or having prior beliefs that do not 
align. Students could notice this if they compare the updated confidence p(H|E) for students 
that had the same prior belief but evaluated the evidence differently or had different prior 
beliefs but evaluated the evidence in the same way. Again, as Warren (2018) says, “the fact 
that everyone starts with subjective prior probabilities and yet inevitably converges to a 
single asymptotic result illustrates the objective aspect of science” (p. 371), which can help 
build trust in science.

Finally, the last principle, consider alternative explanations, is reflected in how the 
prompt for R is worded. Furthermore, when students use the widget, they should be 
encouraged to argue for their choice of R and explain why they choose a specific option. In 
such an argument, students following the prompt should consider how their evidence sup-
ports their hypothesis and its compatibility with alternative hypotheses. That students must 
select the value for R, the predictive updating factor, is notable. Students must figure out 
the extent to which any single laboratory activity contributes to what we collectively know 
about a scientific phenomenon: As Warren (2018) writes, it leads to a more realistic view 
of what laboratory activities can accomplish (i.e., few single introductory physics experi-
ments are likely to overturn established knowledge about the physical world, but they can 
lead to us updating our understanding)—as well as one that emphasizes scientific sense-
making to a greater extent.

How does using the confidence updater change a typical science class activity? Here, 
we sketch how using the confidence updater can provide rich opportunities to discuss and 
reflect on epistemic attitudes. A standard activity at the middle grades’ levels is to under-
stand the relations between amperage, I, resistance, RE,2 and voltage V, i.e., Ohm’s law, 
V = RE * I. To explore the relations reflected in Ohm’s law, students can measure the amper-
age in a circuit at different voltages, keeping the resistance fixed or constant. At the begin-
ning of the activity, students can be asked to generate other hypotheses for the relationship 
between amperage and voltage. In our experience, students often propose a proportional 
(or linear), inverse, or quadratic relationship for this relationship—when resistance is held 
constant. Based upon their initial ideas—that the relationship is proportional, inverse, or 
quadratic, they may test their hypotheses using the widget. Specifically, following the sec-
ond principle, students can now specify their prior confidence in their group’s hypothesis. 
Again, students may choose different priors based on their individual experiences. They 
may record several current measurements for different voltages and then graph the data. 
Figure 5 shows an example graph.

2  We use RE for electric resistance—instead of the traditional R to avoid confusion with the updating factor 
R.
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When students are asked to evaluate the evidence and set a value for R, they are primed 
to consider to what extent the evidence is consistent with their hypothesis relative to an 
alternative hypothesis, reflecting the third principle. Looking at the graph, one could see 
evidence for a proportional relationship as well as a higher-order positive relationship (blue 
and red dashed line in Fig. 5). Thus, the evidence is barely compatible with an inverse rela-
tionship between I and U but its supports both hypotheses that suggest a positive relation-
ship between the variables. Thus, depending on what hypothesis students choose to inves-
tigate, they should select “data favors an alternative hypothesis” for R if their hypothesis is 
an inverse relationship and select “data somewhat favors my hypothesis” if their hypothesis 
is proportional or quadratic relationship. The updated confidence for every student will 
depend on their initial confidence—the prior (p(H))—in their hypothesis and the evalu-
ation of the data, which will be different across groups. If students compare their results 
within groups, they should see how their initial confidence influences the effect of the evi-
dence. However, if they repeat the activity, they should see how consensus is approached 
over a few iterations unless anyone chooses p(H) = 0 or p(H) = 1, which points, again, to 
the importance of the first principle (introduced in Sect. 4.1).

4.3 � Strategy #3: Supporting Bayesian Reasoning Among (Even) Younger Learners

We think that as accessible as the Confidence Updater widget may be for some students, 
t is worth briefly considering whether—and if so, how—younger children may engage in 
a Bayesian activity like that described above. Kazak (2015) and Kazak and Leavy (2018) 
demonstrate how Bayesian activities can be designed for younger students. For a study 
with fifth grade (10–11-year-old) students, Kazak (2015) created a game in which students 
drew one coin/token from each of two bags. If the colors of the two tokens matched, then 

Fig. 5   An example graph to illus-
trate how the Confidence Updater 
widget can be used. Note. The 
red lines represent data points 
from observations students could 
make. The blue line represents 
a student’s possible explanation 
for how the current (I) relates to 
voltage V proportionally (or lin-
early). The yellow line represents 
a student’s possible explanation 
for a higher-order (quadratic) 
relationship.
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students won. The question students were tasked to answer was, “Is the game fair or not?”. 
They played four different rounds of the game (using four different sets of bags).

Before playing the game, through a worksheet, students (a) articulated whether the 
game was fair and (b) their confidence in their beliefs about the game’s fairness. Three of 
the four games were designed to make determining their fairness challenging. For play-
ing the games—and using a statistical software tool for learners, TinkerPlots (Konold & 
Miller, 2005)—students updated their beliefs about the game’s fairness. Their confidence 
shifted in conjunction with their analysis of data: both generally improved as students col-
lected more data and simulated the collection of data through TinkerPlots.

Students first expressed their initial beliefs about the game’s fairness before playing 
it, updating these beliefs over time. As Kazak (2015) explained, “since these beliefs can 
change based on new evidence, it is important to assess the personal degree of confidence 
in the initial hypothesis or prediction and look at how it changes throughout gathering new 
relevant information” (p. 704). This work shows that students can express their subjec-
tive probability beliefs (Batanero et al., 2016; Konold, 1991) and—critically—update them 
over time. An instructional implication of this research is that educators can elicit students’ 
ideas about what they think about a phenomenon before conducting an investigation (and 
collecting data). This is an instructional practice already familiar to science educators and 
science teacher educators (Windschitl et al., 2018; Windschitl et al. 2012).

In addition to eliciting students’ ideas, educators can also prompt students to consider 
how confident they are in their beliefs or ideas. Reflecting upon and “updating” these 
beliefs can be supported throughout investigations (and data analyses) by prompting stu-
dents to consider both their beliefs and confidence throughout an activity, which can help 
students to begin to understand the three principles that characterize Bayesian reasoning.

5 � Discussion

We have covered a lot of ground to this point, starting with prior research on uncertainty 
and Bayesian perspectives on science teaching and learning through a primer on Bayes’ 
theorem and three practical ways to introduce Bayesian reasoning to K-12 students. As 
we argued in the Introduction, the position for which we are advocating builds on and is 
intended to extend past research that makes a case for a Bayesian approach to argumen-
tation (Nussbaum, 2011; Szu & Osborne, 2012) and prior work that brought a primarily 
qualitative, Bayesian approach to students’ analysis of data at the K-12 level (Warren, 
2018, 2020). We extended this past work by considering Bayesian ideas’ impact beyond a 
single practice—argumentation—and adapting the work of Warren to be more accessible 
to and usable by K-12 science teachers and learners.

We acknowledge that the ideas discussed around the use of a Bayesian perspective in 
science classrooms may appear to be not directly relevant to science classrooms—at least 
classrooms at the grades K-12 grade levels. Moreover, Bayesian ideas may be too complex 
to teach students in these grades. We acknowledge these potential criticisms and point to 
how ideas that could be considered Bayesian are commonly deployed in most if not all sci-
ence education contexts. For instance, many science educators consider it essential to under-
stand students’ initial ideas before planning instruction (Haverly et  al., 2020; Windschitl 
et al., 2012, 2018). There are also other examples of Bayesian ideas “hiding in plain sight” 
in science education. Conceptual change research makes similar points about the impor-
tance of recognizing what learners or individuals already believe before taking steps to 
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persuade them to change their views or to explain new ideas to them (Lombardi et al., 2013, 
2016; Nadelson et al., 2010; Sinatra et Al., 2014). Bayesian methods provide educators with 
a formal mechanism for working the initial ideas with which learners approach investiga-
tions and analyses of data into the claims learners can make—as a few studies have begun to 
demonstrate (Kazak, 2015; Kazak & Leavy, 2018; Warren et al., 2018, 2020).

Moreover, cognitive science research has demonstrated that learners’ initial ideas or 
familiarity with a topic or phenomenon impact their reasoning about it (Klahr & Dunbar, 
1988; Masnick et  al., 2007, 2017; Schwartz et  al., 2007). Lastly, science educators have 
long sought to emphasize the tentative nature of scientific knowledge—even scientific the-
ories (Abd-El-Khalick et al., 1998). But many of the approaches taken to analyzing data in 
science result in answers that can be seen by learners as correct or incorrect. A Bayesian 
perspective emphasizes this tentative nature of science and provides learners with a coher-
ent approach for considering data and evidence when reasoning.

Considering how scientific knowledge can be presented to learners as immutable 
(Carey & Smith, 1993; Duschl, 1990; Manz & Suárez, 2018), it may be unsurprising 
that learners—and people—are dismayed when scientific knowledge that was once con-
sidered to be the consensus changes. When learners do not have a way to think about 
uncertainty, they may adopt an approach that considers scientific knowledge to be cor-
rect or incorrect—or for scientific sources to provide true or false evidence. From a 
Bayesian perspective, uncertainty about scientific knowledge can be viewed in terms of 
the degrees of belief that a person holds toward a belief, claim, or research—any prior 
information—in light of new evidence. We conjecture in this paper that such a paper 
can bolster individuals’ trust in science by providing a principled, flexible way to reason 
about uncertainty.

Indeed, a key potential benefit of Bayes’ may be that it provides a framework for helping 
students transition from their conceptual understanding of scientific ideas to understanding 
data (even when the pattern or signal in the data leaves us uncertain). In this way, we argue 
for the use of a Bayesian perspective that could influence research about (and teaching to 
support) learners’ epistemic considerations and how learners’ ideas change over time—fac-
tors that may have a bearing on how they understand science outside of school, or later as 
adults (Sinatra et al., 2014).

6 � Directions for Future Research

There are several avenues through which this can be approached in future research. We 
describe three specific directions for future research next. First, research on the role of 
Bayes’ in education has been chiefly carried out in the context of undergraduate statis-
tics education, in which there have been reviews (Dogucu & Hu, 2021), recommenda-
tions, and calls to action (Dogucu & Hu, 2021; Gould et al., 2018; Hoegh, 2020), exam-
ples, design options (Albert, 2002; Bolstad, 2002; Gelman, 2008; Hu, 2020; Witmer, 
2017) and debate (Johnson et  al., 2020) over how to advance the place of Bayesian 
methods in undergraduate statistics and data science degree programs. Why has there 
been this attention? The accessibility of Bayesian methods in undergraduate classes is 
the result of advances in the necessary (for many uses) computer power (Gould et al., 
2018) as well as the availability of tools that facilitate Bayesian analysis, especially 
for newcomers (Albert & Hu, 2020). As evidenced by the recent special issue of the 
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Journal of Statistics Education, the pedagogy of Bayesian statistics is an active area of 
research in statistics education at the undergraduate level.

Second, we think learning progressions that center the practice of analyzing and inter-
preting data (and others, like developing and using models) informed by a Bayesian per-
spective could be helpful to create. As we have noted, analyzing and interpreting data is 
a core scientific practice. In line with this goal, the National Research Council’s (2012) 
Framework for K-12 Science Education emphasizes that “students evaluate the strength of 
a conclusion that can be inferred from any data set” and “recognize when data conflict with 
expectations and consider what revisions in the initial model are needed” (NRC, 2012, 
pp. 61–63). However, when people—across educational backgrounds—refuse to take the 
COVID vaccines because they judge them as unsafe (Sinatra & Hofer, 2021), it becomes 
painstakingly clear that science education often does not enable learners to analyze and 
interpret data in practical and meaningful ways. In line with researchers emphasizing the 
epistemic aspects of science teaching and learning (Krist et al., 2019; Berland et al., 2016; 
Duschl, 2008), we argue that a core reason for this lies in how contemporary science educa-
tion engages students in analyzing and interpreting data does not support students enough 
in developing usable forms of the epistemology underlying this practice. In short, there is 
a disconnect in the how and why of engaging in analyzing and interpreting data, one that 
scholars have pointed to in the context of learners’ engagement in other science practices 
(Berland et al. 2016). We propose that building a learning progression for analyzing and 
interpreting data from a Bayesian perspective can provide a systematic connection between 
the how and why of analyzing and interpreting data.

Third, we think there are opportunities to research how a Bayesian perspective can sup-
port understanding and deploying what Berland et  al. (2016) describe as epistemologies 
in practice. By doing so, students can learn. Specifically, a Bayesian perspective can sup-
port learners to understand key concepts about the nature of science—such as the tentative 
(or uncertain) nature of scientific knowledge (Abd-El-Khalick et al., 1998)—through their 
engagement in science practices. In this way, students may understand the nature of sci-
ence and scientific knowledge through engaging in science practices that are more situated 
than if students learned about the nature of science (Berland et al., 2016). We also note 
that considering a Bayesian approach to students’ development of epistemological ideas 
invites (we think) constructive conversations about what is meant by the notion of cross-
cutting concepts (National Research Council, 2012): A Bayesian approach could be associ-
ated not only with a practice (analyzing data, developing models, and others) but also as a 
type of cross-cutting concept (National Research Council, 2012) that can, in the context of 
learning about particular scientific ideas, unite the practice of argumentation with analyz-
ing and interpreting data with the notions certainty and uncertainty. In this way, we think 
that Bayesian perspectives could inform ongoing conversations (e.g., Fick, 2018) bout the 
nature and contents of the cross-cutting concepts that inform science education standards.

7 � Conclusion

Even when science has made and continues to make significant advances, the history 
of science suggests that uncertainty will not be removed given scientific progress (Fara, 
2010). Looking ahead, effectively navigating, counsel, and acting amid uncertainty may be 
as important as it has been at other uncertain points in history. Like the surprising utility 
of a Bayesian perspective in domains like education (e.g., developmental science), might 
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an unexpected feature of a Bayesian perspective be that embracing uncertainty—equipped 
with the tools that Bayesian methods provide—makes individuals and societies more con-
fident? In short, can we build trust in science by embracing uncertainty? We think these 
questions are likely to yield positive results for science educators and those advocating for 
a better-informed public.
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