UC Irvine UC Irvine Previously Published Works

Title

Optical phonon anomaly in CeBe13 and Ce1-xLaxBe13

Permalink

https://escholarship.org/uc/item/4p9700n6

Journal

Journal of Magnetism and Magnetic Materials, 47(FEB)

ISSN 0304-8853

Authors

Blumenröder, S Zirngiebl, E Güntherodt, G <u>et al.</u>

Publication Date 1985-02-01

1909

DOI

10.1016/0304-8853(85)90428-7

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

OPTICAL PHONON ANOMALY IN CeBe₁₃ AND Ce_{1-x}La_xBe₁₃

S. BLUMENRÖDER, E. ZIRNGIEBL, G. GÜNTHERODT

II. Physikalisches Institut *, Universität Köln, 5000 Cologne 41, Fed. Rep. Germany

A. JAYARAMAN, B. BATLOGG

AT&T Bell Laboratories, Murray Hill, NJ 07974, USA

A. MEYER

L.M.S.E.S., Institut de Physique, Université L. Pasteur, 67084 Strasbourg, France

and Z. FISK

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

The two ($q \approx 0$) breathing (Γ_1^+) modes of CeBe₁₃ show a softening with respect to the stable valence compounds. This softening increases upon Ce dilution in Ce_{1-x}La_xBe₁₃. The latter shows for 0 < x < 1.0 a softening in all other symmetry modes which parallels the variation of the Debye temperature.

Intermediate Valence (IV) compounds are expected to exhibit phonon anomalies when the charge fluctuation rate $h/\tau_c = \Gamma_c$ is of the order of particular phonon frequencies. The phonon modes involved should have preferentially local (Γ_1^+) breathing symmetry. In the IV compounds $CeSn_3$ and $CePd_3$ with valences of v = 3.02and v = 3.23 from L_{III} spectroscopy [1], respectively, no significant phonon anomalies have been observed [2,3]. The reason may be that the calculated monopolar charge relaxation rate Γ_c of Ce [4], which increases strongly with decreasing valence towards Ce³⁺, is much higher than the highest optical phonon frequencies. On the other hand, the optical phonon modes of the light Be atoms in CeBe₁₃, which has a valence of 3.04 at 300 K [1], should be at much higher frequencies and possibly comparable with Γ_c . At the same time an investigation of the electron-phonon coupling in the conjectured IV compound YbBe₁₃ [5] is of particular interest.

Here we report the first observation of the Ramanactive phonon modes in the intermetallics RBe₁₃ (R = La, Ce, Gd, Tb, Yb, Lu) and Ce_{1-x}La_xBe₁₃ (x = 0.0, 0.1, 0.23, 0.55, 0.8, 1.0). They crystallize in the cubic NaZn₁₃ structure (space group O_h^6), exhibiting 10 ($q \approx 0$)

0304-8853/85/\$03.30 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

Fig. 1. Raman spectra of $LaBe_{13}$, $Ce_{0.77}La_{0.23}Be_{13}$ at room temperature; the behavior of the stable valence reference compounds is indicated for three modes by the dashed lines.

^{*} Work in part supported by Deutsche Forschungsgemeinschaft, SFB 125.

Raman-active modes: $2\Gamma_1^+ + 4\Gamma_3^+ + 4\Gamma_5^+$. In fig. 1 we show the Raman spectra of LaBe13, CeBe13 and Ce_{0.77}La_{0.23}Be₁₃ at 300 K. We observe seven modes, except in $LaBe_{13}$ where the two modes near 500 cm⁻¹ are degenerate. The spectra of the other samples, together with the polarization analysis for the mode symmetries will be given elsewhere [6]. The symmetry assignment of the seven modes is given at the bottom of fig. 1. The assignment of the two Γ_1^+ breathing modes is corroborated by plotting the mode frequencies as a function of lattice parameter as shown in fig. 2 for the RBe₁₃ series. The stable valent reference compounds LaBe₁₃, GdBe₁₃, TbBe₁₃ and LuBe₁₃ show a linear variation with lattice constant as indicated in fig. 2 by the solid lines. No anomaly is observed for YbBe₁₃. On the other hand, the two Γ_1^+ modes of CeBe₁₃ show a softening of about 2% with respect to the reference line. All other symmetry modes of CeBe₁₃ do not show any anomaly. An even stronger softening of the two Γ_1^+ modes is found upon Ce dilution in $Ce_{1-x}La_xBe_{13}$ as seen for x = 0.23 in fig. 1 and for all measured compositions $0.1 \le x \le 0.8$ in fig. 2. However, contrary to CeBe₁₃ this mode softening in $\operatorname{Ce}_{1-x}\operatorname{La}_x\operatorname{Be}_{13}$ for $0.1 \le x \le 0.8$ is also observed for all other symmetry modes with respect to the average behavior of the reference materials. This is indicated for, e.g., the Γ_3^+ mode of $Ce_{0.77}La_{0.23}Be_{13}$ near 340 cm⁻¹ in fig. 1 with respect to the dashed reference line. The phonon softening in $Ce_{1-x}La_xBe_{13}$ for $0.1 \le x \le 0.8$, independent of the mode symmetry is also reflected by the behavior of the Debye temperature θ_D [7] which is displayed at the bottom of fig. 2. No temperature dependent phonon anomaly has been observed for the optical phonons of CeBe₁₃, contrary to the anomalous softening of the bulk modulus upon cooling down below 350 K [8].

The two Γ_1^+ modes are attributed to the long-wavelength breathing modes of either the 12 Be_{II}-atom icosahedra around central Be₁ atoms or of the 24 Be_{II}atom polyhedra around central R atoms. Since both Γ_1^+ modes of CeBe₁₃ show a softening this implies that the Be₁-Be₁₁ breathing motion is also felt by the Ce ions. By calibrating the theoretical ratio [4] of charge to spin relaxation rates by the experimental spin relaxation rate $\Gamma_s/2 = 20$ meV of CeBe₁₃ [9] the charge relaxation rate exceeds the highest phonon frequencies by about a factor of ten. This manifests itself in the small softening (2%) of the two Γ_1^+ modes of CeBe₁₃ (see fig. 2). The dilution of Ce in Ce_{1-x}La_xBe₁₃ leads to a reduction of all relaxation rates, indicated by the decreasing susceptibility maximum [7]. Similarly, a reduction of the

Fig. 2. Frequencies of the two Γ_1^+ Raman-active modes and the Debye temperature θ_D as a function of the lattice parameter for various RBe₁₃ and Ce_{1-x}La_xBe₁₃ compounds.

fluctuation temperature $T_{\rm f}$ from ≈ 150 K (0.0 < x < 0.7) to ≈ 50 K ($x \ge 0.8$) has been deduced from thermal expansion measurements [10]. Consequently the charge relaxation rate will be lowered, coming closer to the optical phonon frequencies. This is reflected in the further softening of the Γ_1^+ modes with increasing x. The concurrent softening of all other $q \approx 0$ symmetry modes stems from their long-wavelength phase-coherent averaging over primarily local (Γ_1^+) breathing-type charge fluctuations. This effect is obviously more pronounced for short-wavelength zone boundary phonons, which contribute most to $\theta_{\rm D}$ (see fig. 2) due to their high density of states.

In conclusion, CeBe₁₃ shows a small softening of the two $\Gamma_1^+(q \approx 0)$ optical phonon breathing modes due to the considerably higher charge fluctuation rate. A lowering of this rate upon Ce dilution in Ce_{1-x}La_xBe₁₃ results in a softening of all $(q \approx 0)$ optical phonon modes irrespective of their symmetries. A much larger softening is expected near the zone boundary and is reflected by that of θ_D with increasing x. The absence of any optical phonon anomaly of YbBe₁₃ is consistent with the previous conclusions about its stable 3 + valence state [11].

References

- D. Wohlleben and J. Röhler, J. Appl. Phys. 55 (1984) 1904.
- [2] L. Pintschovius, E. Holland-Moritz, D. Wohlleben, S. Stähr and J. Liebertz, Solid State Commun. 34 (1980) 953.
 C. Stassis, C.-K. Loong, J. Zarestky, O.D. McMasters and R.M. Nicklow, Solid State Commun. 36 (1980) 677.
 L. Pintschovius, E. Holland-Moritz, D. Wohlleben, S. Stähr, J. Liebertz, W. Assmus, C. Stassis, C.-K. Loong, S. Zarestky and R.M. Nicklow, Solid State Commun. 47 (1983) 663.
- [3] A. Severing, E. Holland-Moritz, D. Wohlleben and W. Assmus, Verh. DPG (VI) 19 (1984) 228.
- [4] E. Müller-Hartmann, in: Solid State Sciences, vol. 29, ed. T. Moriya (Springer, Heidelberg, 1981) p. 178.
- [5] G. v. Eynatten, C.F. Wang, L.S. Fritz and S.S. Hanna, Z. Phys. B51 (1983) 37.
- [6] E. Zirngiebl, S. Blumenröder, G. Güntherodt, A. Jayaraman, B. Batlogg, A. Meyer and Z. Fisk, to be published.
- [7] M.J. Besnus, J.P. Kappler and A. Meyer, Solid State Commun. 48 (1983) 835.
- [8] D. Lenz, H. Schmidt, S. Ewert, W. Boksch, R. Pott and D. Wohlleben, this conference and Solid State Commun. 52 (1984) 759.
- [9] E. Holland-Moritz, D. Wohlleben and M. Loewenhaupt, Phys. Rev. B25 (1982) 7482.
- [10] W. Kaspers, Diploma Thesis, Universität Köln (1983).
- [11] G. Heinrich, J.P. Kappler and A. Meyer, Phys. Lett. A74 (1979) 121.