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ABSTRACT OF THE DISSERTATION
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Fully-actuated multi-rotor aerial platforms are receiving increasing research interests for

the capability of six degree-of-freedom (DOF) motions such as hovering at non-horizontal

attitude angles. Existing fully-actuated aerial vehicles have demonstrated such capability for

a limited range of angles and limited thrust efficiencies. This thesis presents an over-actuated

aerial platform that achieves maneuvering at arbitrary attitudes with uniformly high thrust

efficiency over its achievable configuration space. A novel vectoring thrust force actuator by

mounting a regular quad copter on a passive mechanical gimbal mechanism is proposed. The

UAV platform achieves full six DOF motion with redundancies from four of these vectoring

thrust actuators. We present the hierarchical controller that generates the high level virtual

wrench command allocated to each gimbal actuator and the low-level actuator control to

track the commanded wrench. And we demonstrate the UAV platform’s 6 DOF maneuvers

by both simulations and real-world experiments on a prototype we built.

Aerodynamic effects largely affect the performance of aerial vehicles, especially on over-

actuated vehicles that could be subject to different airflow configurations. For those aero-

dynamic effects that are difficult to model but could appear repeatedly, iterative learning

control (ILC) has great potential to improve the system performance. This thesis presents

the applications of both model-based and data-driven ILC algorithms on the over-actuated

ii



aerial platform and shows great improvements against the aerodynamics effects. A formula-

tion is demonstrated to convert the closed-loop dynamics of the over-actuated aerial platform

to linear model with six independent control channels. Model-based and data-driven ILC

are applied on one or more control channels, and by simulations and real-world experiments,

the ILC algorithms are shown to have great improvement and fast convergence rate against

a variety of aerodynamic effects.
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CHAPTER 1

Introduction

1.1 Conventional Multirotor UAVs and Their Limitations

Recent development of multirotor unmanned aerial vehicles (UAVs) has largely stimulated

related researches and applications with the new promising aerial platform. UAVs have

been implemented on various application scenarios, such as monitoring crops [BAB+15],

monitoring soil erosion condition [dOMPR12], searching and rescuing [GMG+08], detecting

air quality index [YZB+17], traking forest fire [CKBM06]. However, conventional multirotors

have all propellers fixed in the same direction and are under-actuated, which results in the

coupled position and attitude control and limits the maneuver capabilities of UAV. On the

other hand, there are increasing numbers of applications in research or industry that require

a UAV to enact six independent forces and torques, such as physical interactions with the

environment and inspections in different orientations [RLO18].

1.2 Introduction to Fully-Actuated UAVs

The emergence of the needs of generating six independent forces and torques in the air trig-

gers the development of fully-actuated UAVs, which generally have higher actively controlled

degrees of freedom (DOF) and can hover in the air with different attitudes. Fully-actuated

UAVs come with various configurations and demonstrate different advantages.

The recent research on fully-actuated UAVs can be sorted in three main categories. For

the first type, regular multirotors with at least six propellers are modified by fixing each

propeller to a non-parallel direction to provide a wrench of six DOF [RRBF15, RMP+17,

1



PLA+18, RCS19a]. This strategy comes with simple mechanical design, but the maximum

inclination angle of the platform is limited because a large amount of thrust force is needed to

balance the body weight. Furthermore, cancellation of thrust vectors internally are inherent

to the design, which limits the energy efficiency and battery life.

The second type of UAVs adds actuated mechanisms to create additional DOFs. In one

class of design, a regular quadcopter is connected to the main frame via two perpendicular

rotational actuators to create exact six-DOF motion for the main frame [LLK+20,NPC19].

The maximum inclination angle is still limited by the driving mechanism. In another

class of design, individual propeller axes are articulated with respect to the main frame

in one [RBG14, KVE+18, BTKS18] or two rotational angles [GT18, SA13] to create redun-

dant actuation configurations for six-DOF motions. Similar to the aforementioned designs,

the articulating actuator-mechanism for each propeller reduces payload with added weight.

Such UAVs can have high thrust efficiency if it has two angle adjustment like a gimbal, but

suffer from low thrust efficiency if it only has one angle adjustment like a hinge. Furthermore,

in the control system design, the actuator torques must be included as internal torques in

complex multibody dynamics or as disturbances.

The third type of fully-actuated UAVs connects regular multirotor units to the main frame

via passive joints and create the thrust vectors by steering the multirotor thrusts. This class

has the advantage that multirotors are used for generating thrust as well as controlling the

thrust angles. Therefore, the reduction of payload is minimal without the added active joint

actuators. Cables [FMKK11,SST+20] or spherical universal joints [NPPL18] have been used

as the passive joints, where the angular range is still constrained by mechanical interfer-

ence. Passive hinges of unlimited continuous rotations have been used [Rua20, PRY+21] in

a unique UAV, which connect the main frame to each of four quadcopters that control both

the thrusts and hinge angles. However, the real-world hardware attitudes were limited by the

maximum thrust magnitude andlow thrust efficiencies at non-horizontal poses. Continuous

and unconstrained vectoring thrust actuator with conventional quadcopter and passive gim-

bals is proposed [YSG+21], and the platform achieved any arbitrary attitude with uniformly

2



high thrust efficiency.

1.3 Controller Design of Fully-Actuated UAVs

Controller design of fully-actuated UAVs introduces additional challenges because fully-

actuated UAVs generally have more actively controlled components than conventional UAVs,

and may involve multibody dynamics which is more difficult to model.

Despite the mechanical complexity of fully-actuated UAVs, a majority of work consider the

UAV as a rigid body and can generate any 6 DOF wrench [IGGL20]. The controller comes

in a hierarchical or cascaded format, where the high-level calculates the whole-body wrench

with feedback controllers, and the following part allocate the control input to each actuator

based on the configuration of the UAV. For the type of fully-actuated UAV with propellers

fixed to non-parallel directions, the UAV body can still be seen as a rigid body similar to

conventional UAVs, and the controller design can come with more different configurations

in addition to the basic structure [DSJ19,RCS19b]. [DSJ19] developed a different controller

by formulating a constrained optimization problem to exploit the input redundancy. For

UAV with conventional quadcopters with passive joints, optimization-based framework was

proposed to exploit the over-actuation of the platform [Su21, SYG+21], and compensation

control loop was proposed to use the input redundancy to improve the tracking performance

[SRY+21].

1.4 Main Contributions

The main contributions of this thesis can be summarized below.

First, an over-actuated UAV platform with four novel vectoring thrust actuators is pro-

posed. The actuator is realized by a quadcopter inside a gimbal with two passive rotational

joints, which can freely rotate without constraint. Steering of the passive gimbal is achieved

by the torque generated by the quadcopter. The actuator has three major advantages over
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those of other systems: a) capable of generating thrust in any direction, with unlimited

range of angulation; b) no internal torque exists between rotational joints that might im-

pact system performance; c) system prototyping is mechanically simple because the regular

quadcopter integrates thrust generation and steering. No wiring from the central frame is

required because each quadcopter uses self-contained power, sensing, and communication.

Second, a prototype of the UAV platform is constructed and evaluated. Through sim-

ulation and experiment, the platform is shown to be capable of tracking 6-DOF position

and attitude trajectories, and can achieve any arbitrary attitude such as flying in a stable

vertical or upside-down orientation. Also, the platform exhibits high thrust efficiency in dif-

ferent body attitudes. To the best of the authors’ knowledge, this is the first over-actuated

UAV platform that achieves any arbitrary attitude in real-world experiment while maintains

uniformly high thrust efficiency.

Third, the proposed UAV platform is demonstrated to have six independent control chan-

nels. The formulation of the closed-loop dynamics enables add-on feedforward and/or feed-

back controllers to be implemented on any of the control channels.

Fourth, both model-based and data-driven iterative learning control algorithms are im-

plemented on the UAV platform to improve the performance of the system under various

aerodynamic effects in real-world experiments. The data-driven iterative learning control

shows the potential of constructing an accurate model of the aerodynamic effects from the

experimental data, without prior knowledge of the model.

The thesis is orgainized as follows. Chapter 2 introduces the mechanical design of the over-

actuated UAV platform. Chapter 3 analyzes the dynamics and hierarchical controller of the

platform. Chapter 4 conducts several analysis on the mechanical and control properties of the

platform. Chapter 5 shows the simulation and experiment results. Chapter 6 demonstrates

the model-based iterative learning control applications. Chapter 7 demonstrates the data-

driven iterative learning control applications on the platform. And Chapter 8 gives the

conclusions.
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CHAPTER 2

Design of the Over-actuated UAV Platform

2.1 Mechanical Design Considerations

The essential configuration of a fully-actuated UAV is that the platform must be able

to exert thrust vectors in all x, y and z directions; and can generate torques in roll, pitch

and yaw directions by differentiating the magnitude of thrusts. For UAV platform that can

achieve any arbitrary attitude in the air, the thrust generation capability must be identical in

all directions. Therefore, the idea in this thesis is to use multiple modular thrust generation

units on the UAV platform, and each unit can generate thrust in any arbitrary direction.

The requirements of such thrust generation module are summarized below.

1. The module can generate thrust in any arbitrary direction, and the maximum thrust

is identical in different directions;

2. The module integrates all the thrust generation and manipulation functionalities, and

the total number of the modules on the UAV platform can be changed easily;

3. The module is light-weighted.

A conventional quad-rotor multicopter is chosen as the thrust generation module because

it satisfies all the requirements. The quadcopter can generate torque by increasing the

thrusts of some propellers and decreasing the thrusts of other propellers. By differentiating

the thrusts of different propeller pairs, the quadcopter can generate torques in all roll, pitch

and yaw directions and therefore rotate its body in any direction. With proper design of

connection mechanisms with the central frame such as rotational joints, the quadcopter can
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reach and generate thrust in any arbitrary orientation. Our lab had previously proposed

a thrust generation module using quadcopters and passive hinges in [PRY+21], where the

quadcopter can rotate continuously in a 2D plane. The design idea of using light-weighted

3D-printed rotational joints is inherited and expanded to allow for continuous and unlimited

rotation in 3D space, which will be introduced in this chapter.

2.2 Design of 2-DOF Gimbal Actuator

Figure 2.1: The “gimbal actuator”. (a) Photograph of a gimbal actuator. Joint angles αi

and βi rotate perpendicular to each other and intersect at the origin of the geometric center
of the quadcopter. (b) Schematic showing the details of the 2-DOF gimbal mechanism.

Figure 2.2: The minimum diameter of the ring considering the assembly process.

The first problem to address is the configuration of the connection joints between the
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quadcopter and the central frame. We decided to use two perpendicular rotational joints

because this is the minimum requirement to enable the thrust vector to point at any arbitrary

direction. The thrust vector, denoted as F , has 3 DOF if the quadcopter can reach any

orientation in the air, such that F ∈ R3. Meanwhile, the direction of the thrust vector,

denoted as F̂ , has 2 DOF which is the result of an additional constraint ∥F̂ ∥ = 1. Therefore,

Two perpendicular rotational joints with continuous and unlimited angle will be the effective

and efficient choice of connection design.

The thrust generation module consisting of a conventional quadcopter and 3D-printed

joints are referred to as a ”gimbal actuator” in this thesis. The configuration of the gimbal

actuator is shown in Fig. 2.1. The gimbal actuator consists of two passive revolute joints,

αi and βi, perpendicular to each other and intersect at the origin of the geometric center of

the quadcopter. αi is realized by attaching two sleeves on the shaft which is extended from

the central frame. The two brackets wrap the shaft and the gimbal actuator can rotate on

the sleeves. The two sleeves are separated to counteract the torque created by the gimbal

actuator. βi is realized by the ring around the quadcopter body. The gimbal mechanism can

be seen as a serial link-joint mechanism consisting of 3 links and 2 joints. The first link is

the central frame shaft and the sleeves attached on it. The second link is the two brackets.

And the third link is the quadcopter and the link attached on it.

The components of the gimbal actuator are all fabricated by 3D printing to reduce manu-

facturing complexity and reduce the weight. Fused deposition modeling method [KDDCSH+18]

is used, and we use PLA plastic as the material. Fast iteration process have been conducted

to determine the optimal size and thickness of the components to balance the strength and

the weight. The size of the ring is determined by the shape of the quadcopter frame con-

sidering the assembly process. As shown in Fig. 2.2, the quadcopter frame is a cross-shaped

piece consisting of electronic units and a battery which cannot be separated in the middle.

Therefore, the ring must be assembled from the side. The minimum diameter of the ring is

the same as the distance between one tip of the frame and the edge on the other side of the

tip. To reduce the friction of the joints, the layer of the 3D-printed parts are designed to be
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perpendicular to the rotational axes. In addition, lubricant is applied on the joints.

2.3 Configuration of the Over-actuated UAV Platform

Figure 2.3: Design of the over-actuated UAV platform consisting of 4 gimbal actuators.

From the analysis and validation given by [NPPL18], a minimum of 3 thrust generation

modules are needed in order to achieve the full 6-DOF actuation in the air. To make the

platform more symmetric and for the ease of the dynamics and control analyses in the

following chapters, we use 4 gimbal actuators on our UAV platform. As shown in Fig. 2.3,

the central frame of the platform consists of two carbon fiber tubes that are perpendicular

and of the same length. The central 3D-printed piece rigidly connects the two tubes. At each

end of the carbon fiber tubes attaches a gimbal actuator. The UAV platform is over-actuated

and has a total of 12 DOF.
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Table 2.1: Physical Parameters of the UAV Platform

Parameter Value

Mass of the central frame 0.012kg

Mass of the quadcopter 0.027kg

Mass of the gimbal frame 0.009kg

Total mass of the UAV platform 0.156kg

Inertia of the central frame diag([3e−5 3e−5 6e−5])kg ·m2

Inertia of the quadcopter diag([1.2e−5 1.2e−5 2.2e−5])kg ·m2

Distance between UAV center and quadcopter 0.18m

Distance between adjacent propellers on quadcopter 0.032m

Air-resistance torque coefficient kτ 0.00597, τ = kτfi
Maximum thrust of motor 0.147N

The overall dimension of the platform is a 48cm × 48cm × 6cm box. Commercial quad-

copter Crazyflie 2.1 from Bitcraze [GSW+17] is used on the gimbal actuator, and BETAFPV

7x16mm DC motors are used on the quadcopter. The parameters of the platform is sum-

marized in Table 2.1. The mass of the components are measured, while the inertia of the

components are estimated from the CAD models. Although the selected quadcopter doesn’t

have higher thrust-to-weight ratio than other over-actuated platforms such as [BBP+19], it

is enough to demonstrate all capabilities of our UAV platform. In fact, using the regular

quadcopter and 3D printed gimbal frame provides an advantage that different quadcopters

can be easily replaced based on the task requirements.
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CHAPTER 3

System Dynamics and Controller Design

3.1 System Dynamics

Figure 3.1: Schematics of the proposed over-actuated platform.

The symbols and parameters being used in this thesis are summarized in Table 3.1. The

world coordinate frame is denoted as FW , where axes are defined under East-North-Up

(ENU) convention. The platform frame FB is attached to the geometric center of the over-

actuated UAV platform, and is fixed with the central frame. The layout of the platform is

shown in Fig. 3.1. To assist derivation of the controller equations, additional platform frames

FBi are defined by rotating FB along +z axis for π(i− 1)/2 rad and placed at the geometric

center of each gimbal as shown in Fig. 3.2, and is also fixed with the central frame. Gimbal

actuator frames Fi are attached to the geometric center of the ith quadcopter.
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Table 3.1: List of Symbols

Symbol Description

i The order of each gimbal actuator. i ∈ {1, . . . , 4}

FW World frame {O;x,y, z} under East-North-Up (ENU) convention.

FB Body frame attached the center of the UAV platform.

FBi Body frame attached to gimbal location of the UAV platform

Fi Body frame attached to the center of the ith quadcopter.

m0, mi, m Mass of the central frame, the ith quadcopter, and the whole platform.

J0, Ji, J R3×3 inertia of the central frame, ith gimbal actuator, and the whole platform

di Distance vector from the origin of FB to FBi

fi Thrust magnitude for the ith gimbal actuator

αi The first rotational joint angle for the ith gimbal actuator

βi The second rotational joint angle for the ith gimbal actuator

p, θ Position and orientation in R3 of the platform.

v Linear velocity in R3 of the central frame

ω Angular velocity in R3 of the central frame

X [·] Physical term expressed in FX other than FW .

X
YR Rotation matrix in SO(3) from FX to FY .

s[·], c[·] Simplified notation of sin[·] and cos[·] respectively.

I(n) Identity matrix of dimension n

3.1.1 Dynamics of the Gimbal Actuator

Each gimbal actuator can generate a thrust along its +zi axis and enact a torque about

each of its three principal axes by differentiating the rotational speed of its propellers. The

inertia of the 3D-printed gimbal frame is neglected and the Newton–Euler dynamics for ith
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Figure 3.2: The symbols related to the gimbal actuator. (a) FBi is at the geometric center
of each gimbal and fixed with the central frame; Fi is attached to the geometric center of
the ith quadcopter. (b) 3-DOF torque generated by the quadcopter on gimbal.

gimbal actuator can be written as

mi
iv̇i =

W

iR
Tmigẑ − B

iR
T BN i + fiẑ (3.1)

Ji
iω̇i + iωi × Ji

iωi = τi −
B

iR
T BT i + δi ×

W

iR
Tmigẑ (3.2)

where mi and Ji are mass and inertia of the gimbal actuator. iv̇i and iωi are the linear

and angular velocities in Fi. fi represents the magnitude of thrust generated by the gimbal

actuator, ẑ = [0 0 1]T. τi is the torque generated by the gimbal actuator. BNi and BTi are

the force and torque on the central frame exerted by the gimbal actuator. δi is the position

vector from the geometric center to the center of mass (COM) of the gimbal actuator.

Because of the “ring” design shown in Section 2.2, the COM of the gimbal actuator is

located coincident with both αi and βi. Therefore, the torque due to the imbalance of

gravity δi ×
W
iR

Tmigẑ is set to zero in the following derivation.

iω̇i and iωi can be expressed by αi and βi following standard kinematic equations in
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[Cra09]:

iω̇i =


cβiα̈i − sβiα̇iβ̇i

β̈i

sβiα̈i + cβiα̇iβ̇i

 , iωi =


cβiα̇i

β̇i

sβiα̇i

 (3.3)

where s[·], c[·] are simplified expressions of sin[·] and cos[·].

The rotational dynamics Eq. (3.2) can be written as

Mi

[
α̈i β̈i

]T
+ Ci = τi −

B

iR
T BT i

Mi =


Jixcβi 0

0 Jiy

Jizsβi 0

 ,Ci =


(Jiz − Jix − Jiy)sβiα̇iβ̇i

(Jix − Jiz)sβicβiα̇
2
i

Jizcβiα̇iβ̇i


(3.4)

where Jix, Jiy and Jiz are diagonal elements of Ji, s[·], c[·] are simplified expressions of sin[·]

and cos[·]. Off-diagonal elements of Ji are neglected due to the symmetry of the gimbal

actuator.

3.1.2 Dynamics of the UAV Platform

The central frame is subject to gravity as well as forces and torques transmitted by the

gimbal frames from each gimbal actuator. The dynamics of the central frame expressed in

FB can be written as

m0
Bv̇ = W

BR
Tm0gẑ +

4∑
i=1

BNi (3.5)

J0
Bω̇ + Bω × J0

Bω =
4∑

i=1

(di × BNi + BTi) + Bτg (3.6)

where m0 and J0 are mass and inertia of the central frame. v and ω are linear and angular

velocity of platform. Bτg is the gravity torque due to the displacement of its COM from the
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geometric center [GT18]. di is the distance vector from the center of FB to each FBi, and

d1 =


d

0

0

 ,d2 =


0

d

0

 ,d3 =


−d

0

0

 ,d4 =


0

−d

0

 . (3.7)

An assumption is made in this thesis that the desired velocity of the platform is slow.

The second-order term involving the square of the small angular velocity Bω × J0
Bω can

be neglected for the ease of the derivation, and the dynamics can be derived in a compact

format as follows.

From Eq. (3.1), we have

BN i = − B
iRmi

iv̇i + B
iR

W
iR

Tmigẑ + B
iRfiẑ

= −mi
Bv̇i + W

BR
Tmigẑ + B

iRfiẑ
(3.8)

where Bv̇i is velocity of the gimbal actuator in FB.

From [Cra09], under the low-velocity assumption, we have

Bv̇i = Bv̇ + Bω̇ × di (3.9)

First we apply Eqs. (3.8) and (3.9) to Eq. (3.5) and the translational dynamics of the

whole platform can be expressed as

m Bv̇ = W
BR

Tmgẑ +
4∑

i=1

B
iRfiẑ (3.10)

where m = m0 +
∑4

n=1mi. Because of the symmetry of the platform,
∑4

i=1mi
Bω̇ × di = 0

and is already neglected.

Next we apply Eqs. (3.8) and (3.9) to Eq. (3.6) and the rotational dynamics can be
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expressed as

J0
Bω̇ =

4∑
i=1

(di × (−mi
Bω̇ × di + B

iRfiẑ) + BTi) + Bτg (3.11)

Similarly, because of the symmetry of di,

4∑
i=1

di × (−mi
Bv̇ + W

BR
Tmigẑ) = 0 (3.12)

Meanwhile, applying Eq. (3.7) we have

4∑
i=1

di × (mi
Bω̇ × di) = d2


m2 + m4 0 0

0 m1 + m3 0

0 0
∑4

n=1 mi

 Bω̇ (3.13)

And Eq. (3.11) can be expressed as

J Bω̇ =
4∑

i=1

(di × B
iRfiẑ + BTi) + Bτg (3.14)

where

J = J0 + d2


m2 + m4 0 0

0 m1 + m3 0

0 0
∑4

n=1mi

 (3.15)

Because the main purpose of the gimbal is to change the direction of thrust, direct torque

transmission between gimbal actuator and central frame is unnecessary. In the controller

design Section 3.2, BT i is set to be zero when calculating the desired thrust and torque

commands.

Dynamics of the whole platform Eqs. (3.10) and (3.14) has the same format as a rigid body

under slow motion with equivalent mass m and inertia J , subject to gravity and force by

gimbal actuators. In most over-actuated UAV platforms whose joints are actuated by servo

motors [KVE+18,RBG14, GT18], only by neglecting the internal torque between joints can
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a platform be treated as a rigid body. For our platform, thanks to the passive joint design,

the dynamics is naturally closer to a rigid-body model, which makes model-based controller

design on our platform more reasonable.

The second source of disturbance is that the propellers on a fully-actuated UAV is sub-

ject to air-resistance torque. At horizontal hovering mode the air-resistance torques are

cancelled by propeller pairs that have opposite rotational directions, but when the vehicle

body is inclined, the propellers are pointing at different directions, where the air-resistance

torques cannot be compensated by themselves. Proper modeling of the magnitude of the

air-resistance torque is necessary to derive a compensation algorithm; otherwise, the air-

resistance torque is treated as disturbance that will affect the performance of the vehicle.

On the proposed over-actuated platform with gimbal actuators, the air-resistance torques

are always cancelled by different propellers within each single quadcopter.

3.2 Hierarchical Controller Design

Compared with conventional under-actuated multi-rotor copters, the proposed UAV plat-

form is over-actuated and has control authorities in all 6 DOF in the air. Therefore, a

hierarchical controller capable of tracking an arbitrary trajectory in position and attitude is

developed for the platform, as shown in . In Section 3.1, the platform can be treated as a

rigid body and is actuated by the thrust provided by each of the four gimbal actuators. A

high-level controller based on the rigid body dynamics is developed, where the control inputs

are the virtual 6-DOF wrench (force and torque) for the whole body. The virtual wrench is

then allocated to the gimbal actuators by a wrench mapper, such that the vector sum of all

gimbal actuators are equivalent to the high-level virtual wrench at all times. From desired

thrust vector, the desired magnitude of thrust and two joint angles can be calculated for

each gimbal actuator, and is tracked by an onboard low-level controller.

Although the hierarchical control scheme that determines a virtual wrench and allocates to

each unit is also used by various over-actuated UAV platforms [KVE+18,GT18], the detailed
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configurations of the high-level controller and the low-level controller are specially designed

to guarantee the best performance of the proposed over-actuated UAV platform. Also, the

stability of the UAV platform is only determined by the high-level controller, if it has slower

closed-loop dynamics than low-level controller [ABN80]. Therefore, the closed-loop behavior

of the system is also carefully modeled by the controller design that will be introduced in

this chapter.

Figure 3.3: Hierarchical control diagram of the over-actuated aerial platform. The high-level
LQI controller gives input u as the virtual wrench that regulates the position and attitude
of the whole platform. The virtual wrench is then allocated as the desired magnitude of
thrust fi and joint angles αi, βi that are tracked by individual gimbal actuator with onboard
low-level controller.

3.2.1 High-Level Control of Platform

A model-based linear-quadratic-integral (LQI) control scheme [YW72] is chosen as the

high-level controller of the platform out of two reasons. First, the accurate dynamics model

of the system is available without making an assumption of neglecting the internal torque

at the joints, so the linear-quadratic approach gives an optimal control sequence based on

the designed performance index. Second, to account for the modeling error and ensure the

tracking performance over a period of time, integral action is necessary.

We first define an equivalent body wrench jointly generated by four gimbal actuators as
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Bu in FB, and as u in FW :

Bu =

 ∑4
n=1

B
iRfiẑ∑4

n=1(di × B
iRfiẑ)

 , u =

W
BR 0

0 W
BR

 Bu (3.16)

Then the platform dynamics Eqs. (3.10) and (3.14) in FW is written as

mv̇

Jω̇

 = u +

 mgẑ

W
BR

Bτg

 (3.17)

Combining with ṗ = v and θ̇ = ω, where p is position and θ is attitude expressed as Euler

angles, the continuous-time platform dynamics can be written in state-space equation as

ẋ = Ax + Bu + G (3.18)

where

A =


0 0 I3 0

0 0 0 I3

0 0 0 0

0 0 0 0

 , B =


0 0

0 0

1
m
I3 0

0 J−1

 , x =


p

θ

v

ω

 , G =


0

0

gẑ

J−1 W
BR

Bτg


On the other hand, the tracking error in 6-DOF position and attitude defines the per-

formance of the controller, thus the system states must be combined with the reference

trajectory to evaluate the performance and calculate the optimal inputs. The states of the

tracking error are defined as

xe =


ep

eθ

ev

eω

 =


p− pd

1
2
[WBR

T W
BRd − W

BR
T
d

W
BR]∨

v − vd

ω − ωd

 (3.19)
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where the subscript d indicates desired values. The operator [·]∨ is the isomorphism from

Lie algebra so(3) to R3 [CSM11]. The reason to use the Lie algebra isomorphism is to make

the error states contain the non-linearity of attitude, such that Eq. (3.18) is in linear form.

The LQI control scheme includes integration of position and attitude error as an internal

model to improve trajectory tracking performance. The states of the internal model are

defined as

ẋm =

ep

eθ

 = Cmxe (3.20)

where

Cm =

I3 0 0 0

0 I3 0 0


The closed-loop platform dynamics is augmented with the internal model and the aug-

mented model are used to design the LQI controller gains. The augmented system is written

as

ẋaug = Aaugxaug + Baugũ (3.21) ẋe

ẋm

 =

 A 0

Cm 0

xe

xm

 +

B
0

uaug (3.22)

where uaug = u + B†G, and B† = (BTB)−1BT is the Moore–Penrose inverse of B.

The cost function of the augmented system is

J(x̃, ũ) =

∫ ∞

0

(x̃TQx̃ + ũTRũ)dt (3.23)

where Q,R are positive definite matrices that are designed to balance the system bandwidth

and the control efforts.

The optimal solution to Eq. (3.23) is obtained by solving the algebraic Riccati equation

ATP + PA− PMP + Q = 0 (3.24)
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where P is a self-adjoint matrix to be solved, and M = BR−1BT. Then the optimal input

that minimizes the cost is

uaug = −Kxaug = −R−1BTPxaug (3.25)

And the actual input u in FW is

u = −Kxaug −B†G (3.26)

Because the proposed over-actuated platform can enact 6 independent forces and torques,

there is no need to restrict the behavior of the intersections of different control channels.

Therefore, the matrices Q,R are designed to be diagonal. Solving Eqs. (3.23) and (3.24),

the format of the optimal gain matrix can be obtained as K = [K1 K2 K3], where K1, K2, K3

are diagonal matrices in R6×6.

3.2.2 Control Allocation

The body wrench Bu is then allocated to be the desired thrusts and joint angles of the

gimbal actuators. Because the gimbal actuators have full directional authority, the thrust

vectors are first obtained from Bu and then used to determine the joint angles, as shown in

Fig. 3.4.

Figure 3.4: Mapping from the virtual wrench to thrust vector of each gimbal actuator.

We define Fi = [Fix Fiy Fiz]
T as the desired thrust vector of gimbal actuator i expressed
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in FBi, and F = [F1 F2 F3 F4]T. With this definition we can rewrite Eq. (3.16) as

Bu = WF (3.27)

where

W =

 B
B1R ... B

B4R

(d1)
∧ B

B1R ... (d4)
∧ B

B4R

 (3.28)

and [·]∧ is the isomorphic operator from R3 to so(3). With Eq. (3.7) we have

W =


1 0 0 0 −1 0 −1 0 0 0 1 0
0 1 0 1 0 0 0 −1 0 −1 0 0
0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 d 0 0 0 0 0 d
0 0 −d 0 0 0 0 0 d 0 0 0
0 d 0 0 d 0 0 d 0 0 d 0

 (3.29)

As shown in Eq. (3.29), W ∈ R6×12 is a constant matrix, and rank(W ) = 6. It is then

feasible to obtain a least-norm solution for F such that

F = W † Bu (3.30)

The least-norm solution guarantees a minimum control effort provided jointly by the four

thrust vectors. Also, the pseudo-inverse of W is constant as well, which can be calculated

offline to save the onboard computational power.

The direction cosine matrix from FBi to Fi can be obtained by subsequent rotation of αi

and βi:

Bi
iR =


cβi 0 sβi

sαisβi cαi −sαicβi

−cαisβi sαi cαicβi

 (3.31)
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And each thrust vector Fi can be written as

Fi = Bi
iRfiẑ = fi


sβi

−sαicβi

cαicβi

 (3.32)

Thus we have

fi = ∥Fi∥

αi = atan2(−Fiy, Fiz)

βi = asin(Fix/fi)

(3.33)

where atan2(·, ·) is the quadrant-corrected arc-tangent function with two inputs.

3.2.3 Low-Level Control of Gimbal Actuator

The onboard microprocessor on each gimbal actuator is responsible for tracking the desired

magnitude of thrust and joint angles in the low-level control loop. The desired thrust fi

directly feeds into gimbal actuator motor command, while the desired joint angles αi and βi

are controlled by the torque generated by the gimbal actuator. Because direct measurements

of the joint angles by encoders are unavailable on the passive gimbal, an estimation by the

onboard IMU is developed.

The attitude of the overall platform W
BR is sent to each gimbal actuator. The onboard

IMU provides attitude measurements of the gimbal actuator. The reference frame of the

IMU is calibrated at startup to be aligned with FW , so that the attitude of each gimbal

actuator W
iR is available. Thus we have the measured rotation matrix

Bi
iR = (WBR

B
BiR)T W

iR (3.34)
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From Eq. (3.31), an estimate of αi and βi can be obtained by

αie = atan2(Bi
iR32,

Bi
iR22)

βie = atan2(Bi
iR13,

Bi
iR11)

(3.35)

where Bi
iRxy indicates the matrix element of the xth row and yth column from Eq. (3.34).

In Eq. (3.4), BT i is always perpendicular to αi and βi because of the gimbal geometry.

Also, since Mi is in full column rank despite the value of βi, the 3-DOF τi can always

generate desired angular accelerations α̈i and β̈i while making BT i to be zero. Therefore,

3.4 can be written as

τi = Mi

[
α̈i β̈i

]T
+ Ci (3.36)

The joint angles are controlled by separate PID controllers based on the error dynamics

as

α̈i = kDαėα + kPαeα + kIα

∫
eαdt

β̈i = kDβ ėβ + kPβeβ + kIβ

∫
eβdt

(3.37)

where k[·]α and k[·]β are constant PID gains, eα = αie − αi and eβ = βie − βi.

Then the thrust of each propeller can be uniquely determined by the linear mapping:


fid

τix

τiy

τiz

 =


1 1 1 1

a −a −a a

−a −a a a

−cτ cτ −cτ cτ




t1

t2

t3

t4

 (3.38)

where t[·] is the desired thrust of each individual propeller, a is the distance from propeller

to quadcopter axis x or y, and cτ is the ratio of propeller air resistance torque and thrust.

The value of cτ is provided by the vendor of the regular quadcopter. The propeller thrusts

are then converted to PWM signals to drive the motors.
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CHAPTER 4

Mechanical System Analysis

4.1 Thrust-Generation Capacity of the Gimbal Actuator

The torque used to control the gimbal angles is jointly generated by four propellers, and

the maximum torques that actuate αi and βi are related to each other. To verify the thrust

generation capability and angulation capability using the conventional quadcopter, the rela-

tion of maximum α̈i and β̈i are calculated in this section. Commercial quadcopter Crazyflie

2.1 from Bitcraze [GSW+17] is used on the gimbal actuator, and BETAFPV 7x16mm DC

motors are used on the quadcopter. The parameters of the quadcopter are obtained from

the manufacturer and are summarized in Table 2.1. Given these parameters, the maximum

angular velocities can be calculated from Eqs. (3.36) and (3.38). The evaluation is given

under the condition that a gimbal actuator provides thrust equal to 1/4 of the platform

gravity (therefore each propeller provides 1/16 of total gravity). In the calculations, the

joint velocities are neglected because the desired trajectory of the platform is assumed to be

slow.

The result in Fig. 4.1 shows that when α̈i = 0, β̈i has a maximum value of 340 rad/s2.

Meanwhile, when β̈i = 0, the maximum value of α̈i depends on βi. The gimbal actuator

generates a smallest maximum α̈i of 64 rad/s2 when βi = π/2 (or −π/2 due to symmetry).

This is because αi is actuated by τiz when βi = π/2. In addition, τiz is generated by the

air-resistance torque which has a smaller torque-to-thrust ratio than τix or τiy. However, the

capability of the gimbal actuator when βi = π/2 is sufficient for the experimental evaluation.

For more aggressive maneuvering, more suitable quadcopters can be easily incorporated into

the system thanks to the advantages of the design.
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Figure 4.1: Relation of maximum α̈i and β̈i.

4.2 Handling of Singularity

Ideally the hierarchical controller proposed in Section 3.2 is effective to regulate the over-

actuated platform at any arbitrary attitude, because the system dynamics can be seen as a

rigid body and presents the same property at different attitude as analyzed in Section 3.1.

In Chapter 5, the simulation and experiment results will show that the controller is robust

against noises and unmodelled dynamics. However, when the platform is rotated around

its roll or pitch direction for around 90° , the whole platform will be unstable under this

control scheme. This is because the individual thrust actuators will be subject to singularity

caused by the use of hierarchical controller [BTKS18]. The cause of the singularity and the

singularity handling techniques are analyzed below.

4.2.1 Singularity Configuration of the Platform

As shown in Fig. 4.2, when the platform is at vertical flight configuration, the gimbal

actuators directly above and underneath the central frame are in kinematic singularity. The

singularity on gimbal actuators are caused by the use of the hierarchical controller, and is

revealed by solving for αi and βi from the desired thrust. Taking derivatives of the normalized
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Figure 4.2: One of the singularity poses when pitch = −90°. Gimbal actuator 1 and 3
directly above and underneath the central frame are in singularity at this configuration.

thrust F̂i in Eq. (3.32), the rate of change of joint angles α̇i and β̇i can be written as

˙̂F i = J(αi, βi)

α̇i

β̇i

 =


0 cβi

−cαicβi sαisβi

−sαicβi −cαisβi


α̇i

β̇i

 (4.1)

where J(αi, βi) is the Jacobian matrix [Cra09]. When βi = ±π
2
, J(αi, βi) will lose rank and

α̇i will be close to infinity; in result, the control will attempt to track infinitely large joint

speeds, which is not a viable input command for the system.

Note that the dramatic raise of α̇i with small perturbation does not only happens at 90°
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roll or pitch angle strictly. Instead, when the over-actuated platform rotates near that angle

range, the α̇i with small perturbation will continuously increase following a trend of the

inverse function as observed from Eq. (4.1).

Another view of the singularity condition of the gimbal actuator is demonstrated by the

manipulability ellipsoid, which describe the capability for a gimbal actuator to change its

orientation in an arbitrary direction, and can be written as

˙̂F
T

i
˙̂F i = 1 (4.2)

where the change of vector ˙̂F i is confined on a unit sphere. Combined with Eq. (4.1) it can

be written as α̇i

β̇i

T

J(αi, βi)
TJ(αi, βi)

α̇i

β̇i

 = 1 (4.3)

The manipulability ellipsoid is J(αi, βi)
TJ(αi, βi), which is used to describe the manip-

ulability of joint αi and βi. The closer the principle axes of the ellipsoid, the stronger

manipulability the system would have. From Eq. (4.1), the manipulability ellipsoid of the

rotor is

J(αi, βi)
TJ(αi, βi) =

cos2 βi 0

0 1

 (4.4)

When βi is closed to ±π
2
, the manipulability ellipsoid is flat which is ill-conditioned. The

matrix reduces its rank to 1, which means the rotor is losing one DOF in certain direction.

This kinematic singularity results in the failure of the control.

When βi is closed to ±π
2
, a small perturbation of ˙̂F i could results in very large angular

velocity α̇i. A sudden maneuver of the α joint with the inertia will create large unmodelled

angular momentum to the quadcopter, and the low-level controller will fail to track the

reference. This may explain the failure of the controller near the vertical flight condition.
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4.2.2 Singularity Prevention by Assigning Values of Joint Angles

The singularity can be handled by manually assigning the values of the joint angles. The

singularity occurs when a thrust direction is aligned with its αi axis, so there are at most

two gimbals in singularity given that the desired trajectory of the platform is slow. Fig. 4.2

illustrates an example: the top and bottom gimbal actuators are in singularity when the

system is hovering in a vertical configuration. In such configuration, α1 and α3 are the

only two joint angles that have dramatically large angular velocity. Given that the aerial

platform is over-actuated with 12 DOF in total, the values of the two angles can be manually

overwritten and the platform is still over-actuated.

In Eq. (3.32), we set αi = 0 for the two gimbal actuators in singularity. The equation

becomes

Fi =


sβi

0

cβi

 (4.5)

Then Fi has two unknowns, and Fiy = 0. Because Fi is determined by allocation from Bu

in Eq. (3.30) and W is a constant matrix, at most two columns in W (that correspond to

Fiy) are removed, and W maintains full rank. When the pitch angle of the platform is 90° ,

the allocation matrix becomes

W ′ =


1 0 0 −1 0 −1 0 0 1 0
0 0 1 0 0 0 0 −1 0 0
0 1 0 0 1 0 1 0 0 1
0 0 0 0 d 0 0 0 0 d
0 −d 0 0 0 0 d 0 0 0
0 0 0 d 0 0 0 0 d 0

 (4.6)

And the allocation in Eq. (3.27) becomes

Bu = W ′F ′ (4.7)

In a more general case, when we need to assign the αi angle in singularity with values other

28



than 0, the allocation matrix can still be modified depending on the value of the assigned

α1 and/or α3. Apply Eq. (3.32) to Eq. (3.27) with α1 and/or α3 extracted, the equation

becomes

Bu = Wdiag(1,−sα1, cα1, 1, 1, 1, 1,−sα3, cα3, 1, 1, 1)



f1sβ1

f1cβ1

f1cβ1

f2sβ2

−f2sα2cβ2

f2cα2cβ2

f3sβ3

f3cβ3

f3cβ3

f4sβ4

−f4sα4cβ4

f4cα4cβ4



(4.8)

Where the values of α1 and α3 are constant and are determined by the task requirements.

By combining the terms f1cβ1 and f3cβ3, the equation can be written as

Bu = W ′F ′ = W



1 0 0 0 0 0 0 0 0 0
0 −sα1 0 0 0 0 0 0 0 0
0 cα1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −sα3 0 0 0
0 0 0 0 0 0 cα3 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1





f1sβ1

2f1cβ1

f2sβ2

−f2sα2cβ2

f2cα2cβ2

f3sβ3

2f3cβ3

f4sβ4

−f4sα4cβ4

f4cα4cβ4


(4.9)

where W ′ is still a constant allocation matrix.

As shown in these equations where the allocation matrix remains full-rank after the mod-

ifications, the singularity-handling method does not affect the over-actuated configuration

of the platform. The maximum wrench of the platform is evaluated when hovering at 90°

pitch angle. At hovering, the gimbal actuators provide thrusts to balance the gravity. The

magnitude of the nominal thrust can be calculated based on the parameters provided in
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Figure 4.3: (a) Force envelope and (b) torque envelope of the platform. The red/blue regions
are the envelope with/without singularity handling (setting α1 and α3 to zero). Selected data
points indicated the edges of the regions.

Table 2.1. The extra thrust capabilities are used for trajectory tracking and disturbance re-

jection. The maximum force and torque envelopes (Fig. 4.3(a) and Fig. 4.3(b)) represent the

range of the extra wrench Bu. The maximum force is obtained by setting the torque to zero,

and vice versa. The blue region in Fig. 4.3 is the maximum force and torque envelope with-

out singularity handling, and the red region is the envelope with singularity handling. The

singularity-handling method reduces the maximum force in the y direction and the torque

in the x direction, but maintains the same wrench-generation capabilities in the other direc-

tions. Although the singularity-handling method reduces the robustness, the whole platform

is still controllable in all six DOF.

Another advantage of this singularity handling method is that the thrust efficiency is

maintained, because the least-norm result of the thrust vectors are obtained. As will be

demonstrated in Chapter 5, the thrust vectors of all gimbal actuators will still be pointing

upwards without canceling each other in lateral dirctions at vertical flights.

4.2.3 Singularity Handling by Avoiding the Singularity Zone

The other potential solution to the kinematic singularity of the gimbal actuator is realized

by keeping the desired thrust vector outside the singularity zone. In other words, avoiding
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Figure 4.4: A gimbal actuator in singularity zone. (a) The direction of thrust. (b) The red
zone defined on a sphere indicates the direction of thrust vector which will cause singularity.

βi to get close to ±90◦ as shown in Fig. 4.4, where the red zone on the unit sphere is defined

as the singularity zone. Other than manually setting the values of singular joint angles,

singularity avoidance can also be done by active avoidance for each rotor. To explore the

possibility of establishing a more general solution, a singularity avoidance solution based

on the nullspace of the allocation matrix and damped least-squares optimization for every

gimbal actuator is proposed in this section.

The idea of this singularity avoidance technique is based on exploiting the over-actuation

of the whole platform. From Eq. (3.27), It’s possible to get a variety of other solutions of F

without affecting the original u, because the allocation matrix has more columns than its

rows. For every other solution, it would be the least norm solution plus an additional vector

which is in the null space of W . From the perspective of each gimbal actuator, the thrust

vector has changed by an additional term. If one or more gimbal actuators are originally

in singularity configuration, the additional term drives the thrust vector away. Then the

singularity of the platform is avoided with the additional terms in F .

A naive solution is to add a constant vector to F which is calculated offline to be in

null(W ). However, to ensure a smooth transition, the additional term should be larger

when some gimbal actuator is more closed to singularity. What’s more, as W ∈ R6×12, the
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nullspace of W has a rank of 6. It’s difficult to determine a unique solution that could

be applied to all experimental scenarios. Therefore the singularity avoidance technique is

proposed below.

The aforementioned additional term, denoted as Fnull ∈ null(W ), can be exploited. The

new solution to F becomes Fn = Fleast−norm + Fnull, where Fleast−norm is the original least-

norm solution. In the literature [Lie77] it is given that

Fn = W †u + (I −W †W )ka∇H(F ) (4.10)

where (I −W †W ) is to project an arbitrary vector on the nullspace of W , ka is a constant

gain, and ∇H(F ) is the gradient of an objective function of F . In this case, the gradient is

designed to be

∇H(F ) = F0 −W †u (4.11)

where F0 is the expected thrust vector of each gimbal actuator. F0 is defined as a correction

to the a priori thrust vector Fleast−norm, or simply F . If the least-norm solution falls within

a user-defined range of vicinity of the singularity configuration, it will be pulled out of the

singularity region. The singularity region is defined as

√
F 2
iy+F 2

iz

F 2
ix

< ϵ, as shown in Figure

Fig. 4.4(b). Thus, F0 is the closest vector that is outside the singularity region.

The idea behind Eqs. (4.10) and (4.11) is that detection of singularity of a single gimbal

actuator will drive the change on all rotors, so that the joint effect of the change of all thrust

vectors falls in the null space of W . We look into a single gimbal actuator at first, and find

the objective thrust vector F0 for singularity avoidance on this gimbal actuator. Then the

gradient of this objective thrust vector, in other words how much the thrust vector needs to

change, drives the change of thrust vector of other rotors, such that the joint effect of the

changes falls in the nullspace of W . The gain ka is designed to guarantee a smooth transition

and avoid a sudden impact to the system.

The next step is to find a proper F0 for the gimbal actuator with singular Fleast−norm. An
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optimization problem is formulated to calculate F0 with minimized

α̇i

β̇i

.

From Eq. (4.1), a least-squares solution is obvious to get a feasible

α̇i

β̇i

. In order to

minimize joint velocity itself, a damped least-squares problem as proposed in [Wam86] is

formulated. The objective function is

minimize k2
b

∥∥∥∥∥∥
α̇i

β̇i

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥J
α̇i

β̇i

− ˙̂F least−norm

∥∥∥∥∥∥
2

(4.12)

where kb is a tunable gain. The solution to this problem is

α̇i

β̇i

 = (JTJ + k2
bI)−1JT ˙̂qleast−norm (4.13)

It is obvious that (JTJ + k2
bI) is a diagonal matrix in R2×2, and its inverse doesn’t consume

much computational power in implementation.

The rate of change of F0 is

˙̂F 0 = J

α̇i

β̇i

 = J(JTJ + k2
bI)−1JT ˙̂F least−norm (4.14)

And finally F0 at timestamp k is

F0(k) = F0(k − 1) + ||Fleast−norm|| · ˙̂F 0 · T (4.15)

where T is the sampling time.

This solution calculates the value of F0 which is closed to Fleast−norm enough and ensures

minimal rate of change of αi and βi with a tunable gain kb.

This singularity avoidance technique could ideally enables the over-actuated platform to
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hover at vertical flight. However, this solution requires each gimbal actuator to provide addi-

tional thrust that counteracts with each other and reduce the overall thrust efficiency. This

is a conflict with the design goal. In real-world implementation, the internal thrust cancella-

tion caused by this singularity avoidance method largely increases the power requirement to

the system. Therefore, this method is not used and the method that maintains high thrust

efficiency introduced in Section 4.2.2 will be demonstrated in experiment. The other work

that applies an optimization on the over-actuated aerial platform that exploits the nullspace

of the allocation while maintains high thrust efficiency is demonstrated in [SYG+21].
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CHAPTER 5

Simulation and Experiment Validation

5.1 Simulation Setup

A high fidelity computer simulation model is needed prior to experimental validation, in

order to verify the dynamics model of the system, the full-actuation nature of the UAV

platform, the hierarchical controller design and discover unexpected problems of the dynam-

ics and control. In this thesis, the simulation model is built in Simulink in Matlab. The

simulations included several physical and hardware properties that were not considered in

the model used for controller design in Section 3.2, which are listed below.

Figure 5.1: Complete multibody dynamics simulation using Simscape.

Simscape Multibody module in Simulink was used to model the complete dynamics of
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Figure 5.2: Visualization of the over-actuated aerial platform in Simscape.

the platform, as shown in Fig. 5.1. It contains the main frame and four gimbal actuators,

and each gimbal actuator has two revolute joints and the propellers on the quadcopter is

subject to external forces and torques calculated by the motor command calculation module.

Compared with the whole-body dynamics Section 3.1, the Simscape model also included the

mass and inertia of the gimbal frames and the quadcopters, connected by passive revolute

joint blocks, and therefore the gyroscopic effects caused by the gimbal rotation are included.

The saturation of motor speed for each of the 16 propeller was specified and the relationship

between the motor speed and the magnitude of thrust was from the product data sheet

from the manufacturer. The Simscape module also generate a virtual realization of the

over-actuated platform for observation (Fig. 5.2).

The complete hierarchical controller introduced in Section 3.2 is built in Simulink, as

shown in Fig. 5.3. Controller frequencies are set to be the same as in the experiment in

Section 5.2. The high-level controller, including the position and attitude controllers using

LQI, the control allocation and the inverse kinematics, is set to be 100 Hz and is highlighted

in green. The low-level controller which is run onboard in real-world implementation, is

set to be 500 Hz and is highlighted in red. The Simscape multibody dynamics are run in

continuous time, and the continuous-time blocks are shown in black. The Simscape dynamics

block is in yellow (multi-rate) because it receives the inputs of the desired propeller thrusts
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Figure 5.3: Hierarchical controller with multiple sampling rates and delays in Simulink.

and torques from the low-level controller in 500 Hz, and converts them to continuous-time

signal. A communication delay of 20 ms is inserted between the high-level control and low-

level control, as in the real-world implementation the ground station calculates the high-level

inputs and sends them to each onboard processor via wireless communication. Also, sensor

noises that are representative to real-world situations are also included.

On the other hand, some real-world physical properties that are difficult to model were

simplified or neglected in the simulation. In particular, the aerodynamics of each propeller

were simplified to exert direct thrust force and air resistance torque on the body. The air

flows generated by one quadcopter that might affect the other quadcopters or the main body

are ignored. Finally, friction on the passive gimbal joints was neglected.

5.2 Experiment Setup

Although the proposed over-actuated UAV platform is designed for applications involves

both outdoor and indoor environments, the experiments demonstrated in this thesis are

accomplished in an indoor environment because of the additional challenges of acquiring

position measurements in an outdoor environment.

An Optitrack Prime 13 motion-capture system was used to measure the position and
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Figure 5.4: Experiment setup of the over-actuated UAV platform in an indoor environment.

attitude of the platform in an indoor environment. The high-level controller was run on a

ground-based computer, which communicated with the motion capture system via Ethernet.

The main controller calculated the desired commands for each gimbal actuator. These desired

commands, along with the platform attitude from the motion-capture system, were sent to

each gimbal actuator, which communicated with the ground-based computer via a 2.4 GHz

Crazyradio PA [GSW+17]. The low-level controller was run onboard each quadcopter. The

low-level controller rate was set higher than that of the high-level controller. The hardware

setup is shown in Fig. 5.4.

The software architecture of the platform is shown in Fig. 5.5. The ground PC runs Python

programs in Linux environment. To balance the calculation load among the available CPUs,

the program is designed to have three processes using the multiprocess module in Python.

Data exchange channels are set among the three processes.

The main process is responsible for the data processing. It retrieves the 6 DOF measurment

data of the over-actuated platform from the Optitrack system, and initiates the process of

the measurment data, such as converting the attitude data between quaternion and rotation

matrix formats for the high-level controller. The trajectory can be pre-defined in the hard

drive, or can be controlled in real-time by user inputs using the keyboard. The main process

also gathers all the data in real time and saves log to the hard drive.
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Figure 5.5: Software architecture of the over-actuated UAV platform.

The control process on the ground PC runs the high-level controller, including the LQI

position and attitude controllers, the control allocation and the inverse kinematics that

calculates the desired joint angles and magnitude of thrust for each gimbal actuator. The

high-level controller reads the 6 DOF feedback and the reference trajectory from the main

process in real time.

The commands of the desired joint angles and magnitude of thrust are passed to the com-

munication process, which establishes wireless communication with each quadcopter using

the library provided by Crazyflie [GSW+17]. The commands are then sent to each quad-

copter. The communication process is initiated first, and the first group of data is sent when

the main process and the control process are ready. Initially the data being sent to each

quadcopter are all 0, including the thrust command, so the platform is in standby mode.

When the first group of input commands from the control process is available, the communi-
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cation process starts to sent the real-time commands in 100 Hz sampling rate. The attitude

of the main frame is also sent to each quadcopter in the same rate.

The onboard processor of the crazyflie runs C programs in 500 Hz sampling rate. The

onboard IMU with built-in sensor fusion algorithms calculates the rotation matrix of the

quadcopter body. The low-level controller uses the attitude information of both the main

frame of the platform and the quadcopter body to estimate the angles of the passive joints,

because direct measurement of the passive joint angles is not available on the hardware, as

introduced in Section 3.2.3. The estimated joint angles are used as feedback for the low-level

controller, and the desired body torque to track the joint angles are calculated. With the

desired thrust for the gimbal actuator and the desired body torque, the desired angular speed

of each propeller motor is calculated, and the PWM signals are sent to perform the control.

To ensure the stability of the hierarchical controller, the inner-loop controller must be

significantly faster than the outer-loop controller [ABN80]. The low-level controller was first

designed by closed-loop pole placement in consideration of the maximum actuator capacity

as introduced in Section 4.1. The gains are kPα =kPβ =7000, kDα =kDβ =300, kIα =kIβ =100.

And the step response of the gimbal joint angle is shown in Fig. 5.6.
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Figure 5.6: Step response of a gimbal joint angle with the low-level controller.

Then the high-level LQI controller was designed accordingly to ensure slower high-level
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Table 5.1: Step Response of Hierarchical Controllers

Rise time (sec) Overshoot (%) Settling time (sec)

Low-level 0.005 5 0.1
High-level (Position) 0.4 20 4.5
High-level (Attitude) 0.2 20 1.3

response. The weighting matrices are:

Q = diag(1, 1, 1, 1, 1, 1, 0.1, 0.1, 0.1, 0.01, 0.01, 0.01, 1, 1, 1, 0.1, 0.1, 0.1)

R = diag(5, 5, 5, 700, 700, 700)

The weights of position and attitude control are determined by the maximum linear and

angular accelerations of the platform. The step response performance calculated from closed-

loop transfer functions is shown in Table 5.1.

5.3 Results and Discussions

5.3.1 6-DOF Step Response

Prior to implementing the actual 6-DOF trajectory on the over-actuated platform, a step-

response test is conducted to test the closed-loop behavior of the system. The step signal

is given to each of the 6 DOF separately, while the commands of the other directions are 0.

Then the response in all 6 DOF are recorded. The magnitude of the step should not be too

large, or actuator will hit saturation; it should not be too small, or the step response will be

difficult to identify from the disturbances. Therefore, considering the signal-to-noise ratio of

the real-world platform, the magnitude of the step is chosen to be 0.1 m in position and 0.3

rad in attitude. For each direction, the step signal is given twice in the opposite directions

to observe any difference of the closed-loop behavior in the opposite directions.

The experiment results are shown in Fig. 5.7 and Fig. 5.8. The 6-DOF data is logged in

each test. It can be observed that the step response of the system in all 6 DOF agrees with
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the expected outcome in Table 5.1. The step in each direction doesn’t trigger the reaction in

any other direction. Notice that in Fig. 5.7, because the magnitude of the step in x, y and

z position is smaller, and position and attitude data are plotted in the same y-axis scale,

the perturbations in roll, pitch and yaw directions are visually larger than those in Fig. 5.8,

but the perturbations are essentially in the same level. Therefore, a preliminary conclusion

can be made that the presented over-actuated UAV platform can enact 6 independent forces

and torques in each direction in space, without interfering with the system performance in

other directions. This is an important observation of the system, which encourages the idea

of treating the system as containing 6 independent control channels and can be utilized to

simplify the process of controller design as described in details in Chapter 6 and Chapter 7.
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Figure 5.7: Experimental data of step response, with steps exerted in x, y and z directions.

The step test is also applied on the simulation model in Simulink. The magnitude of steps

in position and attitude remain the same, and the step response data is compared with the

experiment data in each of the 6 DOF. In addition, as discussed in Section 3.2, when the

low-level controller is significantly faster than the high-level, the closed-loop system behavior

is dominated by the high-level controller. In this work, the high-level controller is a model-

based LQI control, and the dynamics can be treated as a rigid body due to the passive joint
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Figure 5.8: Experimental data of step response, with steps exerted in roll, pitch and yaw
directions.

and the multibody dynamics is naturally simplified. Then the high-level dynamics model is

available and an emulated step response on the high-level dynamics model can be obtained.

The step response on the high-level model is also included in this comparison.

The results are shown in Fig. 5.9 and Fig. 5.10. It is obvious that the simulation result is

close to the experiment result in all 6 DOF, despite some perturbations in the experiment

data due to external disturbances that are common on an aerial vehicle. That means the

simulation model has included most of the real-world physical properties of the system, and

the modeling is accurate. On the other hand, the emulated step response data from the

high-level dynamics model is different from the simulation and experiment results. This

shows that the dynamics model we derived cannot reflect the complete physical properties

of the system, and the high-level dynamics is not enough to describe the system behavior.

Yet, the hierarchical controller, especially the high-level LQI controller that is built upon

the high-level dynamics model, successfully stabilized the whole platform. It shows that

the derived model can be a referral to describe a partial of the system properties, and the

presented over-actuated aerial platform as well as the hierarchical control scheme is robust
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to model uncertainty.
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Figure 5.9: Comparison of the step response in x, y and z directions.

5.3.2 Tracking of 6-DOF Trajectory

The first application scenario assigned to the presented over-actuated UAV platform is to

track a trajectory in which the 6-DOF position and attitude change with time independently.

The position and attitude trajectories are designed arbitrarily, and different trajectories can

be executed easily. In this section, we demonstrate one trajectory. The purpose of designing

the independent 6-DOF trajectory is to verify the capability of the over-actuated UAV

to enact 6 independent control inputs in every direction. The tracking results from the

simulation and the experiment are shown in Fig. 5.11.

Since the high-level controller is slower, the 6-DOF trajectory is designed to be changing

slowly to avoid triggering satuation. In both simulation and experiment, the over-actuated

UAV platform tracks the reference trajectory well, and the root-mean-square (RMS) errors

are shown in Table 5.2. The RMS errors in simulation and experiment are close to each
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Figure 5.10: Comparison of the step response in roll, pitch and yaw directions.

other except in the z direction. One explanation is that in the simulation the aerodynamic

effects of the thrusts are modeled in a much simpler way, i.e. directly exerting support force

upwards. In the real-world situation, thrusts generated by the propellers are obviously more

complicated, and may include additional disturbances that reduce the tracking accuracy in

z direction.

The magnitude of thrust of each gimbal actuator in both simulation and experiment

maintain constant and identical of 0.38 N, despite some spikes due to sensor noises in the

experiment. Note that from Table 2.1, the weight of the whole platform is 0.156 × 9.81 =

1.53 N, and the sum of the thrusts are 0.38×4 = 1.52 N. The thrust efficiency of the platform

executing this 6-DOF trajectory is as high as 99%. In other words, there is almost no internal

thrust cancellation when the platform is in different attitude. The thrust efficiency is near

that of a regular quadcopter.

The zoom-in view of the αi and βi angles in Fig. 5.11 shows the desired joint angle

commands are not as smooth as the high-level trajectory, because the gimbal actuators are
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Figure 5.11: 6-DOF trajectory tracking performance in (a) Simulation, and (b) Experiment.
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controlled to compensate for sensor noises and disturbances. From the tracking results of

the joint angle commands, it can be referred that the low-level controller tracks the desired

joint angles much faster than the high-level controller.

Table 5.2: RMS Error of Trajectory Tracking

Case x(mm) y(mm) z(mm) roll(rad) pitch(rad) yaw(rad)

6DOF(Sim) 3.1 4.8 0.4 0.015 0.015 0.013
6DOF(Exp) 4.9 3.8 3.2 0.009 0.013 0.017

360°(Sim) 13.6 4.2 3.1 0.003 0.026 0.010
360°(Exp) 5.6 10.7 54.0 0.033 0.055 0.011

5.3.3 Disturbance Rejection Performance

Figure 5.12: Artificial disturbance exerted by overwriting the thrust commands.

In this case, force and torque disturbances are exerted on the platform while hovering.

The disturbance is realized at the software level, where the desired thrust command of each

gimbal actuator calculated by the high-level controller is added with a designated value for

a period of time, as indicated in Fig. 5.12. The equivalent disturbance consists of a constant

force of [0 0 0.03]T N and torque of [0.05 − 0.04 0]T Nm from 1 to 1.3 second, and the

results of the platform reacting to this disturbance are shown in Fig. 5.13. Because the

disturbance is only exerted from 1 to 1.3 second and no disturbance after that, the system is

equivalent to having a step response starting at 1.3 second if we ignore the behavior prior to

1.3 second. The settling time of the platform is less than 1.5 second due to the closed-loop

dynamics designed by the hierarchical controller. Since the low-level controller is designed to
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be significantly faster than the high-level controller, the closed-loop dynamics is dominated

by the high-level LQI controller. This can be verified by observing the low-level behavior in

this disturbance rejection case. By observing the peaks of the reference joint angle commands

and the actual tracking of the joint angles, the settling time of low-level controller is around

0.1 second, which is much faster than the high-level controller and thus it guarantees the

stability of the whole system.
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Figure 5.13: Disturbance rejection performance.

5.3.4 Complete 360° Rotation

This application scenario is to demonstrate the capability of the presented over-actuated

UAV platform to reach any arbitrary attitude. The platform was commanded to rotate

around its pitch axis for 2π rad, while maintaining the initial states of the other 5 DOF.
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During the rotation, the platform intentionally remained at π/2 rad and π rad for a few sec-

onds each to demonstrate its capability to hover at these poses. As discussed in Section 4.2,

when the pitch angle approaches π/2 rad or 3π/2 rad, the top and bottom gimbal actuators

i = 1, 3 are in singularity configuration. In this experiment, the singularity handling solution

by manually overwrite the values of joint angles αi in singularity is implemented.

The simulation and experimental results for the 2π rad rotation case are shown in Fig. 5.14.

The results indicate that the platform remains stable throughout the rotation process and

tracks the desired angles accurately, while the performance was degraded around the two

singularity regions. On possible explanation is the quadcopter downwash effects [MMLK10]:

when the bottom gimbal quadcopter is directly below the top gimbal quadcopter, the airflow

generated by the top quadcopter reduces the effective thrust of the other one. The reduction

of effective thrust explains the drop of z position and the rise of desired thrusts when entering

the singularity regions. The z position gradually goes back to normal by the integral action

in the LQI controller. The stored information in the integrator then causes the rise of

the platform when it exits the singularity regions, and is regulated back to normal again.

Notice that this situation does not appear in the simulation, because the aerodynamic effects

between different quadcopters were not included.

Despite the possible downwash effects that affects the experiment results in z direction,

the tracking of the other 5 DOF is accurate, which is also shown by the RMS tracking error

in Table 5.2. The simulation and experiment results demonstrate that the over-actuated

platform with gimbal actuators can achieve continuous and unrestricted rotation in the air

and can reach any arbitrary attitude angle. The platform therefore shows great potential in

real-world applications where it needs to perform physical interactions with the surroundings

in different attitude. In addition, the thrusts of each gimbal actuator maintain at the same

level throughout the rotation process despite the downwash effects. The average thrust

efficiency is 0.99% in simulation and 0.98% in experiment.
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(a) 360° Rotation Process
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Figure 5.14: 360° rotation around pitch axis. (a) Rotation process of the platform in exper-
iment. Showing the results in (b) Simulation, and (c) Experiment.
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CHAPTER 6

Model-Based Iterative Learning Control on the

Over-Actuated UAV

6.1 Introduction

Controller design of UAVs have been extensively studied in the last decades with increased

popularity of aerial vehicles. A UAV is an unstable system in general, and feedback con-

trollers must actively engage throughout the flight. Precise trajectory tracking of UAVs is

important to guarantee the quality of aerial tasks such as monitoring and interaction with the

environment. Yet the trajectory tracking is challenging because UAVs are prone to distur-

bances introduced by wind and the aerodynamic effects of propellers [BMSP09]. In addition,

for over-actuated UAVs introduced in previous chapters, the airflow generated by different

propellers affects each other since the thrusts are not all parallel. The multi-body dynamics

also creates internal forces and torques that are nonlinear and will affect the performance of

the whole platform.

The effects of wind and the aerodynamic effects on aerial vehicles have widely been studied

in the literature. Estimation models of wind fields, aerodynamic disturbances by ground

or obstacles, and propeller aerodynamics are given in multiple works in [WW09, KNC13,

SCHO17, YDBJ+17, CBQ21] and the modeling of the aerodynamic effects mostly relies on

the quality of sensor measurements. Specifically, tests of the downwash effects when one

quadcopter flies under another and other aerodynamic effects introduced by a group of

quadcopters are conducted in [MMLK10]. Online estimation of and active rejection of the

aerodynamic effects are proposed in several works, such as [LAN11, YSPS15, BCSM16]. In
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[BCMC14], the authors use the geometry of the obstacles to estimate the disturbances, which

doesn’t require accurate pose and position measurements but largely rely on the modeling

of the predictor.

Several groups have proposed feedback controllers to improve the performance by utilizing

the various onboard sensors of the UAV. In [HZX14], the authors designed an L1 adaptive

controller to estimate the wind effects. In [WWW+18], the authors proposed backstepping

control with disturbance observer based on linear extended state observer to compensate

for fluid torque on a tilt-rotor quad-rotor underwater vehicle. In [AML20], the authors

designed a robust model reference adaptive controller on a tilt-rotor quadcopter to address

the unknown inertia of the vehicle. In these works the baseline feedback controllers were all

redesigned to meet the performance requirements.

Feedforward compensation is another method that can be implemented as a separate

control module without affecting the baseline feedback controllers. Traditional methods of

improving the control performance include formulating the model of the aerodynamic effects

[YSPA15] and multi-body dynamics [SHV+06], and actively compensating for the nonlinear

effects in real time. However, these methods require accurate model of the system, and

are sensitive to modeling error. For an over-actuated UAV, the controller must calculate the

system states containing complete multi-body dynamics in parallel with the baseline feedback

controller, which is challenging for UAVs with limited onboard computational power.

Iterative learning control (ILC), a feedforward controller that is used for repeated tasks,

has shown great performance in various applications. The main function of ILC is using the

tracking error information from the previous trial to update the reference or input commands

of the next trial, and keep updating as the task repeats. Prior to UAVs, ILC has succeeded

in various applications such as industrial robot arms, wafer stage motion systems, motors

and engine valves [BTA06]. ILC has also been applied to improve the tracking performance

of conventional UAVs [BK13,DQR+18,FLW20,ML21]. In [PO13], a PD-type ILC was used

to perform the take-off, translation and circular trajectories of a quadrotor UAV. In [PD09],

the authors used the dynamic inverse as the learning filter of the ILC and used it to perform
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aggressive motions of a quadrotor UAV. In [AZ20], the authors designed an optimization-

based ILC that minimized the H-infinity norm of the UAV system.

Among different feedforward ILC filter design approaches, the inversion-based approaches

give fast convergence rate and small steady-state error if an accurate model inverse can be

obtained [BTA06, TT15]. However, similar to feedforward control, the performance of the

ILC is sensitive to modeling error. Besides, if there is a nonminimum-phase zero in the model,

in other words a zero in the right-half pane on the s-plane, direct inversion will result in an

unstable filter. Therefore, several algorithms were proposed to obtain the system inverse

for feedforward controller and ILC [vZO18]. Approximate inverse techniques of single-input-

single-output (SISO) systems with nonminimum-phase zeros are proposed, including NPZ-

ignore [GTM94], zero-phase-error tracking controller (ZPETC) [Tom87, TT87, TT88], and

zero-magnitude-error tracking controller (ZMETC) [RPL09]. Optimization-based methods

are proposed, such as norm-optimal ILC based on Riccati equations in linear quadratic

control [GN01]. ILC based on H∞ [WZWT16] and the extension with preview [HL08] are

proposed. However, the inversion of multi-input-multi-output (MIMO) systems are too

complicated and are mostly ignored.

In this chapter, a model-based ILC design is proposed for fully-actuated UAVs to im-

prove the trajectory tracking performance for repeated tasks. Simplification process of the

over-actuated UAV model is demonstrated. Although fully-actuated UAVs are essentially

nonlinear MIMO systems, the independent control authority in each of the six DOF makes

the system equivalent to having 6 SISO channels, and each of the SISO channel can be

regulated by SISO ILC techniques mentioned above. This ILC filter is implemented on the

high-level controller of the over-actuated UAV with gimbal actuators in Section 3.2, where

the low-level dynamics are treated as disturbances. The ILC uses ZPETC method to ob-

tain the inverse from the closed-loop system of the rigid-body dynamics with the baseline

LQI controller. The ILC design is validated by both simulation and experiments, where the

UAV platform is subject to aerodynamic effects caused by the downwash of the propellers

and ground. It is demonstrated that with the accurate system model available, the model-
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based ILC approach can significantly improve the trajectory tracking performance without

redesigning the hierarchical feedback controller.

6.2 Backgrounds of ILC Algorithm

Figure 6.1: Block diagram of a generic ILC.

ILC is applied in situations where a system is asked to track a fixed trajectory in the same

environment for multiple times, as shown in Fig. 6.1. The tracking error in the previous

execution is used to update the input commands in the next execution and improve the

tracking performance. Consider a SISO linear time-invariant (LTI) system G. The system

has stable dynamics or is stabilized by a feedback controller C. The system is represented

in discrete-time and finite impulse response (FIR) format as G(z), and

G(z) =
k=N∑
k=−N

g(k)z−k (6.1)

where g(k) is the impulse response of G, and N is the sampling length.

The system dynamics when tracking a fixed trajectory can be expressed as

y(z) = G(z)u(z) + d(z) (6.2)

where u is the input signal, y is the output, and d is the disturbance. In ILC implementation,

d contains the external disturbance that repeats every iteration.
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A widely applied ILC update law [BTA06,Moo12] can be written as

uj+1(k) = Q(z)[uj(k) + L(z)(r(k + 1) − yj(k + 1))] (6.3)

where r is the desired trajectory of the task, j is the index of the task execution, and k is

the time index; L(z) is the learning filter in FIR representation, and Q(z) is called a Q-filter,

which is usually a low-pass filter to improve the robustness.

Because the ILC changes the input signal in every execution, the system G(z) must be

stable or pre-stabilized by feedback controllers. The ILC update process is conducted offline,

and the feedback information of the complete trajectory is available. Therefore, L(z) and

Q(z) can be non-causal and include information of the future time indices, which can further

improve the performance and is not available in real-time feedback control. Eq. (6.3) is

usually written in lifted format as

uj+1 = Q[uj + L(r − yj)] (6.4)

where r, u and y are the signals in Rn×1 of the whole execution. Q and L are Toeplitz

matrices constructed by shifting the FIR coefficients. Note that by using the lifted format,

the ILC can be easily applied on LTV systems where Q, L are not necessarily Toeplitz.

Writing the system dynamics Eq. (6.2) in lifted form and combining with the update law

Eq. (6.4), the iteration domain dynamics can be expressed as

uj+1 = Q(I −LG)uj + QL(r − d) (6.5)

We define the tracking error as ej = r − yj. If the system is asymptotically stable, the

55



convergence error e∞ = limy→∞ ej, and e∞ can be expressed as

e∞ = [I −G[I −Q(I −LG)]−1QL](r − d)e∞ − ej+1 = GQ(I −LG)G−1(e∞ − ej)

(6.6)

From [NG02], it is defined that the ILC system is asymptotically stable if and only if

max|λ(Q(I − LG))| < 1, where λ is the eigenvalue of a matrix. When (I − LG) = 0, the

system is not only asymptotically stable, but also converge to zero error at j = 1. In other

words, if the learning filter is the inverse of the system, L = G−1, the ILC algorithm reaches

steady state within one iteration and gives zero tracking error.

In this chapter, model-based approaches to obtain the learning filter as the system inverse

will be presented. In Chapter 7, data-driven approaches to obtain the learning filter will

be presented. The effectiveness of the ILC design in both chapters will be demonstrated by

simulation and real-world experiments.

6.3 Model-Based ILC Algorithm

6.3.1 Closed-Loop System Representation of UAV Platform

In Chapter 3, a hierarchical controller is implemented on the over-actuated UAV platform.

Since the low-level controller bandwidth is designed to be significantly faster than the high-

level controller, the closed-loop dynamics are dominated by the high-level controller. In this

section, the high-level dynamics will be the basis for designing the ILC controller, and the

low-level dynamics are treated as disturbances.

From Eqs. (3.18) and (3.26), the closed-loop dynamics of the platform can be written as

ẋ = Ax + −BKxaug (6.7)

As discussed in Section 3.2.1, the optimal gain matrix K = [K1 K2 K3], where K1, K2, K3
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are diagonal matrices in R6×6. Also, 1
m
I3 and J−1 as the submatrices in B are also diagonal.

Therefore, the closed-loop dynamics can be written as


ṗ

θ̇

v̇

ω̇

 =


0 0 I3 0

0 0 0 I3

0 0 0 0

0 0 0 0




p

θ

v

ω

−

 0 0 0

KB1 KB2 KB3





ep

eθ

ev

eω∫
ep∫
eθ


(6.8)

where KB1, KB2, KB3 are diagonal matrices in R6×6. It is clear that in each of the 6 DOF,

the closed-loop dynamics can be expressed in an equivalent PID control format as

ẅ = kpew + kdeẇ + ki

∫
ew (6.9)

where w represents any of x, y, z, roll, pitch or yaw. kp, kd, ki are the corresponding PID

gains.

Therefore, the high-level dynamics of the UAV platform can be simplified as containing

6 SISO control channels, and each of the 6 DOF are controlled independently. ILC design

approaches based on SISO plants can be used on this system.

6.3.2 Inversion-Based ILC Algorithm

The equivalent closed-loop dynamics in each 6 DOF in Eq. (6.9) can be treated as a

double-integrator open-loop plant and a PID controller, which can be expressed in transfer

function

P (s) =
1

s2
, C(s) = kp + kds +

ki
s

(6.10)

To implement the controller on the physical UAV platform hardware, the system is ex-

57



pressed in discrete-time with zero-order hold and a sampling rate of T = 0.01sec as

P (z) =
z − 1

z
· Z[

P (s)

s
] =

T 2

2

z + 1

(z − 1)2

C(z) = kp +
kd(z − 1)

Tz
+

kiT (z + 1)

z − 1

G(z) =
C(z)P (z)

1 + C(z)P (z)

(6.11)

Given the optimal state-feedback gain matrix used in the experiment sec, the equivalent

high-level PID gains and the discrete-time transfer function in each direction are shown in

Table 6.1. Note that nonminimum-phase zeros appear in each direction of the transfer func-

tion. The nonminimum-phase zeros can result from getting the discrete-time model out of

the continuous-time model, and from the use of the integral control with unit-step delay.

With the nonminimum-phase zeros, obtaining the system inverse by direct inversion of the

poles and zeros will result in an unstable filter. As introduced in Section 6.1, three popu-

lar techniques are available to obtain the stable inverse from a SISO system: NPZ-ignore,

ZPETC and ZMETC. NPZ-ignore approach simply ignores any nonminimum-phase zeros in

the transfer function, which is the least accurate because a part of the system dynamics is

totally ignored. From the tests given in [BPA12], with the presence of nonminimum-phase

zeros in the left-half plane (“1 + z−1” in this case), ZPETC gives better performance in the

high-frequency part of the system. Therefore, the ZPETC approach is used to obtain the

system inverse in this thesis.

The closed-loop system with stable and unstable zeros separated can be written as

G(z) =
y(k)

r(k)
=

z−dBs(z
−1)Bu(z−1)

A(z−1)
(6.12)

where A(z) are the poles of the original system, Bs(z) are the stable zeros, and Bu(z) are

the unstable zeros. The ZPETC inverse [Tom87] is given as

F (z) =
r(k)

yd(k + d)
=

A(z−1)Bu(z)

Bs(z−1)[Bu(1)]2
(6.13)
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Table 6.1: Equivalent PID Gains and Transfer Function in Each Direction

Dir. kp ki kd Transfer Function

x 4.5 2.0 2.7 Gx(z) =
0.013726z−1(1 + z−1)(1− 1.983z−1 + 0.9835z−2)

(1− 0.985z−1)(1− 0.01388z−1)(1− 1.987z−1 + 0.9876z−2)

y 4.5 2.0 2.7 Gy(z) =
0.013726z−1(1 + z−1)(1− 1.983z−1 + 0.9835z−2)

(1− 0.985z−1)(1− 0.01388z−1)(1− 1.987z−1 + 0.9876z−2)

z 5.0 2.5 3.0 Gz(z) =
0.015251z−1(1 + z−1)(1− 1.983z−1 + 0.9835z−2)

(1− 0.982z−1)(1− 0.01547z−1)(1− 1.987z−1 + 0.9875z−2)

roll 17.0 6.0 5.5 Groll(z) =
0.028353z−1(1 + z−1)(1− 0.9891z−1)(1− 0.9806z−1)

(1− 0.9906z−1)(1− 0.02912z−1)(1− 1.952z−1 + 0.9533z−2)

pitch 17.0 6.0 5.5 Gpitch(z) =
0.028353z−1(1 + z−1)(1− 0.9891z−1)(1− 0.9806z−1)

(1− 0.9906z−1)(1− 0.02912z−1)(1− 1.952z−1 + 0.9533z−2)

yaw 8 3 3 Gyaw(z) =
0.015402z−1(1 + z−1)(z2 − 1.974z + 0.9739)

(1− 0.99z−1)(1− 0.01546z−1)(1− 1.979z−1 + 0.9797z−2)

where Bu(z) is obtained by replacing z−1 in the polynomial with z. To implement this inverse

filter, the desired trajectory y(k) is shifted forward by d steps and feeds into the system to

make the filter causal, as shown in Fig. 6.2.

Figure 6.2: Block Diagram of the ZPETC Feedforward Filter

The overall transfer function from the desired output to the actual output is

y(k)

yd(k)
=

Bu(z−1)Bu(z)

[Bu(1)]2
(6.14)

In the frequency domain, the overall system has zero phase across all frequencies. In low

frequencies, the gain is close to 1. The transfer function of the UAV platform in x direction
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is shown below as an example. The ZPETC inverse of Gx(z) is

Fx(z) =
18.214(1 − 0.985z−1)(1 − 0.01388z−1)(1 − 1.987z−1 + 0.9876z−2)

z−1(1 − 1.983z−1 + 0.9835z−2)
(6.15)

And the FIR format of Fx(z) is shown in Fig. 6.3. Notice that the FIR is non-causal because

of the one-step phase shift in the transfer function.

Figure 6.3: FIR representation of the ZPETC inverse.

The Bode plot of the overall system is shown in Fig. 6.4. The ZPETC approach effectively

creates the system inverse with zero phase tracking result. The system has unity gain when

the frequency is lower than around 20 Hz. For the other 5 DOF of the UAV platform, due

to the presence of the nonminimum phase zero at z = −1, the overall tracking performance

of the inverse filter is similar.

In the next steps, the impulse response of F (z) is taken and is used to build the learning

filter in Eq. (6.4) in lifted format as a toeplitz matrix. Q is necessary, as the overall system

response has unity gain in low frequencies only. Q is usually designed as a low-pass filter,

and the cut-off frequency is closely related to the bandwidth of L to ensure stability of the

system. With the ZPETC inverse as the L filter, Q is chosen as a zero-phase low-pass filter

and can be written as

Q(z) = · · · + q−2z
2 + q−1z

1 + q0 + q1z
−1 + q2z

−2 + · · · (6.16)
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Figure 6.4: Overall frequency response of the ZPETC feedforward filter in x direction.

where

qi = 2ωcT sinc(2ωct) (6.17)

and ωc is the cut-off frequency of the filter. The purpose of the zero-phase low-pass filter

is to totally reject the learning of the error in high frequencies. When ωc = 5Hz, the

representation of the Q filter in time and frequency domain is shown in Fig. 6.5. The time

domain sequence is used to construct the Q in lifted form.

6.4 An Estimation of Downwash Effects in Simulation

It has been tested that One quadrotor can influence the dynamic behavior of neighboring

quadrotors because of the downwash from its rotors [MMLK10]. The experiment cases of our

over-actuated UAV platform in Section 5.3.4, where the platform rotates around the pitch

angle for 90° show the downwash effects that reduce the tracking performance. To verify the

effectiveness of the ILC algorithm on the platform, an estimation model of the downwash
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Figure 6.5: Frequency and time domain representation of Q filter when ωc = 5Hz.

effects is first created in the simulation.

As shown in the experiment, the downwash disturbance is most obvious on z direction

in FW . Therefore, the estimated downwash model is designed to exert a downward force

on z direction, and is exerted on the bottom quadcopter as the effect of reduced thrust.

The magnitude of the downwash force depends on the distance in the horizontal plane of

the top and bottom quadcopters, as shown in Fig. 6.6. The magnitude of the downwash

force is 0 when the horizontal distance is large. In other words, when the top and bottom

quadcopters are not overlapping, their thrusts do not interfere with each other. When the

distance is smaller than a threshold dzero, the force gradually increases to a maximum value

Fmax at dfull. The values of these corner cases are estimated from the experiment data,

where dzero = 0.133 m, dfull = 0.036 m, Fmax = 0.1 N.

The simulation result of the platform tracking the same complete 360° trajectory is shown

in Fig. 6.7. In the position plots, the z position in simulation shows the same drop and rise

near the vertical flight region. The thrust plot of the simulation shows the same amount of
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Figure 6.6: Simulation of the downwash effects in simulation. The downwash force is on
z direction, and the magnitude depends on the horizontal distance of the top and bottom
quadcopters.

increase near the vertical flight region. Therefore, the estimated downwash force model has

similar behavior as in the real-world experiment case, and this estimated downwash model

can be used to verify the effectiveness of the ILC algorithm in simulation.

6.5 Model-Based ILC on z Direction

6.5.1 Simulation Results

As demonstrated previously in Section 6.3, the closed-loop behavior of the over-actuated

UAV platform can be simplified as containing 6 SISO LTI channels in each DOF, and the

equivalent closed-loop transfer function of each channel is available. In the first application,

the model-based ILC with the learning filter as the zero-phase inverse of the transfer function

is implemented on z direction of the platform, in order to address the downwash effects at

vertical flights. The ILC changes the input of the desired z position every iteration, while

the hierarchical controller remains unchanged throughout the process. Given the frequency

response of the ZPETC filter and the shape of the downwash disturbance on the output, the

Q filter is designed as a zero-phase ideal low-pass filter with cut-off frequency ωc = 5Hz.

The reference trajectory of the platform pitch angle is shown in Fig. 6.8, where the platform
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Figure 6.7: 360° rotation around pitch axis with downwash effect. (a) Simulation, and (b)
Experiment.

rotates from from 0 to 180°, and remains at 90° for 3 seconds. At 90° the simulated downwash

force is at maximum magnitude. The desired z position is 0 throughout the trajectory.

The simulation result is shown in Fig. 6.9. The first iteration j = 0 is the dry run without

ILC and the input is equal to the reference. The model-based ILC changes the position

input u, and the over-actuated platform creates additional force when attempting to track

the input. The additional force, combined with the external downwash force, reduces the

error in z direction in the next iterations. Within the first few iterations, the error in

z direction is significantly reduced. However, the high-frequency signals on the input u

accumulates as more iterations are executed. The RMS error and the maximum absolute

error on z direction are shown in Fig. 6.10. Both the RMS and max error quickly reduce to

the lowest level within the first 3 iterations. Starting at the 7th iteration, the RMS and max
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Figure 6.8: Reference trajectory of pitch angle from 0 to 180°, and remains at 90° for 3
seconds.

error raise again and maintain at a higher error level.

Obviously the high-frequency part of the input signal u is excited by the measurement noise

and the error from the previous iterations, which may affect the system stability because the

learning filter is not close to the system inverse at high-frequencies. In this case the selection

of Q filter is essential to guarantee the robustness of the system.

Next, the cut-off frequency of the Q filter is reduced to 1 Hz, and the simulation is

conducted again. The result is shown in Fig. 6.11. Compared with the 5 Hz case, the error

furthur reduced after 14 iterations. The error is still varying because of the added sensor

noises and uncertainties in the simulation. The convergence is not as expected as to reduce to

minimum within one iteration because of the learning filter design. The results indicates that

the ZPETC inverse based on the high-level transfer function cannot represent the simulated

physical model, which is close to the real-world system as shown in Section 5.3. Despite

this, experiments have been done to show that the proposed ILC algorithm can reduce the

tracking error to some extent, and the experiment results are shown in the following sections.

6.5.2 Experiment Results

The closed-loop behavior of the over-actuated UAV platform can be simplified as contain-

ing 6 SISO LTI channels in each DOF, and the equivalent closed-loop transfer function of

each channel is available. Same as the simulation, the model-based ILC with the learning
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Figure 6.9: Simulation result of model-based ILC on z direction from j = 0 to 9.
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Figure 6.10: Simulation - RMS error and max absolute error of model-based ILC on z
direction, Q: 5 Hz.
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Figure 6.11: Simulation - RMS error and max absolute error of model-based ILC on z
direction, Q: 1 Hz.

filter as the zero-phase inverse of the transfer function is implemented on z direction of the

platform, in order to address the downwash effects at vertical flights. From the insights

shown in the simulation the Q filter should be in lower cut-off frequency to filter out the

high-frequency noises from the measurements in previous iterations. In experiment, the mea-

surement of the pose and position of the over-actuated aerial platform is subject to multiple

sources of noises, and thus the Q filter is designed as a zero-phase ideal low-pass filter with

cut-off frequency ωc = 1Hz. The reference trajectory of the platform pitch angle is shown in

Fig. 6.8, where the platform rotates from from 0 to 180°, and remains at 90° for 3 seconds.

The desired z position is 0 throughout the trajectory. In the experiment, the data is collected

during each iteration, and the ILC learning process is conducted offline to obtain the input

trajectory for the next iteration.

The simulation result is shown in Fig. 6.12. The first iteration j = 0 is the dry run

without ILC and the input is equal to the reference. The model-based ILC changes the
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Figure 6.12: Experiment result of model-based ILC on z direction from j = 0 to 5.
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position input u, and the over-actuated platform creates additional force when attempting

to track the input. The additional force, combined with the external downwash force, reduces

the error in z direction in the next iterations. The RMS error and the maximum absolute

error on z direction are shown in Fig. 6.13. Both the RMS error and max error in z direction

is significantly reduced within the first iteration, and the errors maintains at the same level

for the future iterations.

Since the setup in experiment is much more complicated than the experiment, only a

few iterations are repeated. But the experiment data is sufficient to show the proposed ILC

implemented on the z direction of the over-actuated platform is stable. The ILC learned from

the previous measurement data and can reduce the error to a lower level under the repeated

downwash effects. Moreover, with the learning filter designed as the ZPETC inverse of the

high-level transfer function on z direction of the dynamics, the error converges within the

first few iterations.

Therefore, a conclusion can be drawn that the linearization of the over-actuated platform

is successful, and the ILC is helpful to address the aerodynamic effects on the platform that

are normally difficult to model. Meanwhile, the existing issues of the presented model-based

ILC approach are two folds. First, the performance of the ILC is highly dependent on the

model accuracy. Second, the low-level dynamics of the over-actuated UAV platform is not

included in the high-level model, and the effects are nonlinear. It will be difficult to model

the low-level dynamics under the same model-based approach. Since the system inverse

is obtained by an estimation method, better approximation of the system inverse for the

learning filter remains a topic to discuss in the next chapters.
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Figure 6.13: Experiment - RMS error and max absolute error of model-based ILC on z
direction, Q: 1 Hz.
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CHAPTER 7

Data-Driven Iterative Learning Control on the

Over-Actuated UAV

7.1 Introduction

The performance of typical feedforward controllers, repetitive control and ILC heavily

depends on the quality of the modeling of the system inverse filter. The inversion-based

ILC approaches give fast convergence rate and small steady-state error if an accurate model

inverse can be obtained [BTA06,TT15]. The accuracy of the system inverse depends on the

accuracy of the system model. System identification is a popular data-driven approach by

estimating model parameters from output data with designated inputs to the real-word sys-

tem [ÅE71,FL13]. System identification methods can be applied to models with or without

partial knowledge of the system configurations, and can provide results with high accuracy.

On the other hand, the accuracy of the system inverse also depends on the phase con-

dition of the model. If a nonminimum-phase zero is present, direct inversion of the model

will result in an unstable filter. Even if an accurate model is obtained by system identifi-

cation methods, the inversion of the nonminimum-phase zeros still involves estimations to

keep the inverse filter stable. Given this limitation, data-based inversion approaches are

proposed, including the B-spline filtering with limited preview [DYO18], the modeling-free

inversion-based iterative feedforward control [KZ12], and the nonlinear iterative inversion-

based control [dRO19]. It is shown that these methods are sensitive to external disturbances

and measurement noises because the least-squares approach or point-wise division in the

frequency domain are involved.
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A data-driven approach to construct an FIR filter of the system inverse is proposed by

MacLab members [CRT19]. This method uses a baseline ILC to track an impulse signal with

limited bandwidth as the output. The converged input sequence is directly applied as an FIR

filter of the system inverse. This approach provides more robustness to output disturbances

and measurement noises because of the bandwidth limit of the impulse, but the accuracy

of the system inverse is limited by the selection of the baseline ILC filter. This approach is

improved by progressively updating the baseline ILC filter using the learned system inverse

as proposed in [CT21]. The process can be summarized as follows. First, an impulse signal

with its bandwidth limited by a zero-phase filter whose cut-off frequency is chosen based on

system bandwidth is selected as the reference. Next, a baseline ILC is constructed to learn

the reference impulse. After a few iterations, the input signal is used as an estimation of the

system inverse, and is used to update the learning filter in the baseline ILC. Then the process

repeats and the system output is getting close to the impulse reference with an accelerated

speed, and the converged input becomes an accurate estimation of the system inverse in FIR

format. It is demonstrated that the convergence rate of the learning process is significantly

increased, and the convergence error is further reduced by the progressive updating process.

The robustness to noises in high frequencies is also analyzed.

In this chapter, the data-based feedforward filter construction using ILC [CRT19] with

progressive updates [CT21] is demonstrated on the over-actuated UAV. This method is

implemented on the high-level controller of the over-actuated UAV with gimbal actuators in

Section 3.2, where the low-level dynamics are designed to converge faster than the high-level

dynamics and are treated as disturbances. The baseline ILC filter is constructed by data-

driven inverse time filtering of the system in each of the 6 DOF [WYZ14], and is progressively

updated by the previous learned inputs. The process is demonstrated by both simulation and

experiments, where the UAV platform is commanded to learn a bandwidth limited impulse

signal separately in each 6 DOF. The converged system inverse filters are used to design an

ILC to track trajectories under external disturbances as different aerodynamic effects. The

simulation and experiment results demonstrate that the data-driven ILC can significantly
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improve the tracking performance under of the UAV platform with fast convergence rates

under unknown external disturbances.

7.2 Data-Driven ILC Algorithm

7.2.1 ILC-Based Feedforward Filter Construction

It has been demonstrated in Section 6.2 that the performance of an ILC filter is largely

dependent on the quality of the learning filter L. When the learning filter is equivalent to

the inverse of the system, the ILC algorithm converges to zero tracking error within one

learning iteration. Therefore, to maximize the tracking accuracy and reduce the number of

repeated task executions, obtaining an accurate model of the physical inverse is essential in

real-world applications. The ILC-based method proposed in [CRT19] is used to construct

a feedforward filter of the UAV platform. This method is data-driven, without any prior

knowledge of the closed-loop dynamics in each direction of the platform.

The main idea of the ILC-based feedforward filter construction is that, suppose an ILC

filter as demonstrated in Fig. 6.1 is already established and converged on a system. The

system can track any reference signal within the bandwidth of the system, y∞(z) = r(z).

When the reference signal is an impulse δ(t), the converged output satisfies y∞(t) = δ(t),

and in the z-transform domain y∞(z) = 1. Then we have

G(z)u∞(z) = y∞(z) = 1 (7.1)

which implies

u∞(z) = G−1(z) (7.2)

The converged input sequence to the system is the FIR of the system inverse in this case,

F (z) = u∞(z). Ideally, the FIR of the system inverse can be directly applied as a feedforward

controller, or be used to construct the learning filter of an ILC.

However, in real-world applications, there are two issues related to this approach that
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needs to be solved. First, the ideal impulse signal δ(t) is noncausal, and the attempt to

directly track the impulse signal with an ILC is not applicable. Therefore, the reference

signal is processed by a phase shift, making the peak of the impulse appear at t > 0 in

time domain. After the ILC converges, the system inverse F (z) is constructed by a phase

shift of u∞(z) in the reverse direction. Second, the F (z) is the exact inverse of G(z) across

all frequencies. This will result in high gains at high frequencies, which will trigger control

saturation in real-world applications. To limit the high frequency gains, low-pass filter must

be applied to the reference signal.

A reference signal M(z) that is the impulse response of a zero-phase low-pass filter with

delay is used in the revised learning framework, as shown in Fig. 7.1. The reference signal

is

M(z) = z−Nq(
z−1 + 2 + z

4
)Nq (7.3)

where Nq is the order of the filter. The selection of the Nq value depends on the system

bandwidth. When Nq is small, the reference signal is closer to an impulse, and the system

inverse will be more accurate at high frequencies yet the risk of hitting control saturation

will be increased. On the other hand,, when Nq is large, the reference signal is smoother and

cannot trigger the high-frequency response of the system, but the control input convoluted

with the system inverse will be smoother as well.

Figure 7.1: Block diagram of the ILC-based feedforward filter construction.
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After the ILC converged, the system inverse can be obtained by

F (z) = zNquj+1(z) · T (7.4)

where T is the sampling rate of the system, and F (z) has the same bandwidth as the reference

signal M(z).

7.2.2 Initialization by Reverse Time Filtering

To initiate the learning of the inverse filter, a baseline ILC must be established. At this

stage it is assumed that the dynamics of the system is unknown. A common solution is

to use a PD-type ILC [AKM84]. PD-type ILC doesn’t require any prior knowledge of the

platform; instead, it relies on manually tuning the learning gains. The learning function fo

the PD-type ILC can be written as

uj+1(k) = uj(k) + Kpej(k + 1) + Kd[ej(k + 1) − ej(k)] (7.5)

However, because of the manual tuning of the learning gains, the performance cannot be

guaranteed. Finding an optimal gain without knowing the system dynamics is very time

consuming in experiment. To ensure the tracking performance and accelerate the learning

process, a different method that can quickly estimate the system dynamics is needed.

Adjoint-type ILC is proposed as a modeling-free ILC approach [SA94], where the output

error was used backward in time to create the system adjoint. The performance of the adjoint

operator is studied in [KSA02]. The time-reversal technique is first proposed in [KJ74], and it

is shown that the time-reversal technique can be used to realize the system adjoint [WYZ14],

which can be used as the zero-phase approximation of the system inverse and be used in

ILC design. The adjoint filter is obtained by using time reversal of the output signal, and is

explained below.
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The initial response of the system from an impulse is defined in lifted format as

y1 = Grδ (7.6)

where rδ is the FIR of the smooth impulse M(z). The real-world model of the system G is

unknown, but by feeding the input rδ, y1 is directly available as the output.

We define the time reversal operator as IR, where the diagonal elements from lower left to

upper right are 1, and the other elements are 0. The time reversal operator is written as

IR =


0 · · · 0 1

0 · · · 1 0
...

...
...

...

1 · · · 0 0

 (7.7)

The initial output is reversed in time and input to the system again. The second output

is

y2 = GIRy1 (7.8)

The adjoint filter is the time reversal of the second output

w = IRy2 (7.9)

Then the adjoint filter can be written as

w = IRGIRGrδ = G∗Grδ (7.10)

For a LTI system in lifted format as introduced in Section 6.2, G is a toeplitz matrix, and

it is obvious that G∗ = GT. Therefore, the filter G∗G is a system with positive magnitudes

and zero phase accross all frequencies. With sufficiently small gain α, the stability criterion

max|λ(I −G∗G)| < 1 for an ILC on the system G holds. Therefore, a learning filter can be
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determined by the process above as

L = αG∗ (7.11)

Since the system dynamics G is unknown, the gain α is manually tuned. Compared with

PD-type ILC, if α is sufficiently small and ILC stability is guaranteed, the value of α only

affects the convergence rate of ILC. Therefore, finding the value of α that provides both the

stability and the convergence rate can be done by setting the initial value to be relatively

large, and gradually decreasing the value until the ILC is stabilized.

7.2.3 Progressive Update of the ILC Filter

Figure 7.2: Block diagram of the ILC-based feedforward filter construction with progressive
update.

The baseline ILC filter is constructed to track the impulse reference signal, and the con-

verged system input can be used to approximate the system inverse. Meanwhile, the learning

filter in the ILC gives ideal performance if it is the system inverse. Therefore, a framework

of using the learned inverse filter to reconstruct the baseline ILC is proposed in [CT21], and

the convergence conditions and the effects of the update period was analyzed.

The updated filter can be directly obtained from Eq. (7.4), which can be written as

L(z) = F (z) = zNquj+1(z) (7.12)

Notice that, the progressive update of the learning filter can be done before the tracking of
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the reference converges, depending on the noise-to-signal ratio and the tracking error. The

convergence condition with various update periods is analyzed in [CT21].

7.3 Data-Driven ILC on z Direction

Same as the model-based ILC demonstrations,the data-driven ILC with the learning filter

obtained by using another ILC filter to learn the impulse signal of the over-actuated platform

is implemented on z direction in the first application, in order to address the downwash effects

at vertical flights. First, the over-actuated platform maintains hovering pose, and a baseline

ILC is implemented to learn the smooth impulse exerted on z direction iteratively. Next,

after the learning of the impulse converges, the FIR filter of the system inverse is constructed

from the converged input. The FIR filter of system inverse is then used to create a new ILC

that is used to address the application trajectories involving repeated disturbances. The

advantage of the data-driven learning process is similar to the system identification process:

for the given over-actuated UAV platform, the learning of the system inverse needs to be

done only once, and the learned filter can be directly applied to various application scenarios.

The reference signal as a smooth impulse M(q) is Eq. (7.3), and Nq = 200. The smooth

impulse is shown in Fig. 7.3 and the bode plot of the smooth impulse is shown in Fig. 7.4.

The bandwidth of the smooth impulse is around 5 Hz, which is close to the bandwidth of the

over-actuated system. If higher bandwidth is selected, the platform may be in saturation

and cannot learn the impulse well.

In this section, simulation results of the process will be shown first. Then the experiment

results will be shown.

7.3.1 Simulation Results

The data-driven initialization of the learning filter by reverse time filtering is shown in

Fig. 7.5. The zero-phase fashion of the FIR filter is obvious. Since the filter is obtained from

the output of the simulation model, the measurement noise is also included in the filter.
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Figure 7.3: Smooth impulse M(q) with Nq = 200.
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Figure 7.4: Bode plot of the smooth impulse M(q).

Therefore, Q filter is still needed in this case. However, with the data-driven approach, the

bandwidth of the learned filter can be compared with the smooth impulse, which also includes

a low-pass filter already. Then the function of the Q filter is to filter out the high-frequency

signals in the output data, and the cut-off frequency can be higher than the model-based

ILC approach to allow better learning outcome of the mid-frequency part of the system. In

this simulation, the Q filter is designed to be an ideal zero-phase low-pass filter with cut-off

frequency 10 Hz.

The RMS error and max error of using the baseline ILC to learn the smooth impulse

are shown in Fig. 7.6, and the tracking result of the final iteration j = 15 is shown in

Fig. 7.7. The progressive update of the baseline ILC is not enabled yet. It is shown that

with the baseline ILC, the tracking error converged, but the final tracking outcome is not

accurate enough. There are still phase lag and oscillations after the impulse signal, and the
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Figure 7.5: Simulation - FIR of the zero phase system adjoint in z direction by reverse time
filtering.

convergence rate will be very slow thereafter.

To accelerate the learning of the reference signal, the learning filter of the baseline ILC

is updated by the progressive update method. The update is conducted every 5 iterations.

And the resulting RMS error and max error are shown in Fig. 7.8. The tracking result of

the final iteration j = 15 is shown in Fig. 7.9. With the interleaving update of the baseline

ILC, the convergence rate is accelerated and the final tracking error is greatly reduced even

with the same number of iterations. The same result is expected and has been analyzed

in [CT21]. And the input of the last iteration is then used as the FIR of system inverse and

to address the downwash problem.

The simulation is then conducted using the FIR of system inverse obtained from the ILCFF

with progressive updates to addreass the downwash problem. The trajectory of rotating the

pitch angle of the over-actuated platform from 0 to 180 ° and remains at 90 ° for 3 seconds is

used (Fig. 6.8), and an ILC using the constructed FIR filter as its learning filter is used. The

simulation results of the RMS error and max error are shown in Fig. 7.10, and the tracking

outcome in the 10th iteration is shown in Fig. 7.11. Compared with the simulation result of

the model-based ILC, the data-driven approach reduced the converged RMS error from 0.02

to 0.005, maximum absolute error from 0.06 to 0.02, and the convergence rate is almost one

iteration only.
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Figure 7.6: Simulation - RMS error and max absolute error of using baseline ILC to learn
the smooth impulse on z direction, Q: 10 Hz.

7.3.2 Experiment Results

Real-world experiments are conducted after the effectiveness of ILCFF with progressive

updates are verified by simulations. In the experiment, the Q filter is also designed to be

an ideal zero-phase low-pass filter with cut-off frequency 10 Hz. To accelerate the learning

of the reference signal, the learning filter of the baseline ILC is updated by the progressive

update method. The update is conducted every 5 iterations.

The resulting RMS error and max error are shown in Fig. 7.12. The tracking result of the

final iteration j = 15 is shown in Fig. 7.13. With the interleaving update of the baseline ILC,

the convergence rate is accelerated. Right after each progressive update, the error starts to

decrease again, which agrees with those shown in the simulation results. The final tracking

error is converged to an RMS error of around 0.005 and a max error of around 0.01.

The experiment is then conducted using the FIR of system inverse obtained from the
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Figure 7.7: Simulation - Tracking result of using baseline ILC to learn the smooth impulse
on z direction at j = 15.

ILCFF with progressive updates to addreass the downwash problem. The constructed system

inverse in FIR format is shown in Fig. 7.14. The simulation results of the RMS error and

max error are shown in Fig. 7.10, and the tracking outcome in the 10th iteration is shown

in Fig. 7.11. Compared with the simulation result of the model-based ILC, the data-driven

approach reduced the converged RMS error from 0.015 to 0.005, maximum absolute error

from 0.05 to 0.01, and the convergence rate is almost one iteration only, which demonstrates

the learning filter is a good approximation of the system inverse to make the ILC converge

fast. Moreover, the Q filter used in the model-based ILC is 1 Hz, which largely limits the

performance of the ILC to improve the tracking of signals with higher frequencies. But using

the data-driven ILC, the requirement of using the Q filter is greatly released, and can largely

improve the performance of the ILC.

7.4 Data-Driven ILC on All 6 DOF

The data-driven ILC algorithm consisting of ILCFF and the progressive update is then

applied to all 6 DOF on the over-actuated UAV platform, because it has been demonstrated

in Section 5.3 that the system can be seen as containing 6 SISO channels, and the control on

each channel doesn’t interfere with each other. Applying data-driven ILC on all 6 DOF makes

the platform capable of addressing more types of aerodynamic effects and other repeatable

disturbances. In this section, simulation results will be omitted because the simulation and
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Figure 7.8: Simulation - RMS error and max absolute error of using baseline ILC to learn
the smooth impulse with progressive updates every 5 iterations on z direction, Q: 10 Hz.

experiment will show very similar outcome, thanks to the accuracy of the simulation model.

The first step is to use the ILCFF with progressive updates to learn the smooth impulse in

Fig. 7.3 on each 6 DOF separately. To avoid actuator saturation, the impulses are separated

by 10 seconds with the adjacent one, as shown in Fig. 7.17. Also on this reference, the

magnitude of the attitude references are larger than the magnitude of position references,

because of the different SNR on position and attitude measurements. Data is also recorded

and calculated for each DOF separately. Each DOF only uses the data within its 10-second

interval for the ILC, and the input changes within the corresponding interval as well.

The resulting RMS error and max error are shown in Fig. 7.18. The tracking result of

the final iteration j = 15 is shown in Fig. 7.19. A zoom-in view at the tracking result on x

direction is shown in Fig. 7.20. The RMS errors in all the 6 DOF converge to a significantly

lower level, and the 6 DOF inputs of the last iteration are then used as the FIR of system

inverse and to improve the performance tracking with multiple aerodynamic effects in the
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Figure 7.9: Simulation - Tracking result of using baseline ILC to learn the smooth impulse
with progressive updates every 5 iterations on z direction at j = 20.

following sections.

7.4.1 Tracking of Circular Trajectory

The presented over-actuated UAV platform shows potential in inspections and physical

interactions with aircraft components. The circular trajectory is designed to emulate the

process of inspecting a turbine engine. The circular trajectory as shown in Fig. 7.21, is a

circle in x − z plane with 0.4 m radius. The platform is required to move along the circle,

while rotate the body so that the main frame is always facing the center of the circle. During

this process, the platform will be subject to the downwash effects. The downwash effects

will affect the tracking performance more than on z direction, because the position is also

changing in this case.

The over-actuated UAV platform tracking of the circular trajectory in experiment without

any ILC compensation is shown in Fig. 7.22. A side view of the tracking result is shown in

Fig. 7.23. The position error is obvious on position z direction, and the 3 DOF attitude as

shown in the visualization.

ILC with the learning filter constructed by the data-driven approach is applied on this

trajectory. The Q filter is also selected to be an ideal low-pass filter with cut-off frequency

of 10 Hz. The resulting RMS error and max error are shown in Fig. 7.24. The converged

tracking result selected from j = 6 is shown in Fig. 7.25. The tracking error converges within
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Figure 7.10: Simulation - RMS error and max absolute error of using data-driven ILC on z
direction to address the downwash effects in 180 ° pitch rotation, Q: 10 Hz.

the first few iterations. The variations of the errors in later iterations are possibly caused by

the saturation of the actuators. As analyzed in Section 4.1, when the over-actuated platform

is in vertical flight, the gimbal actuators needs more amount of thrusts to regulate the α joint

angle. In such condition, if the platform is controlled to accelerate upwards, the nominal

magnitude of thrust is higher, and the low-level thrust of each propeller will be more likely

to reach its saturation. Fig. 7.25 also shows that the converged tracking has larger error is

at around 270 ° pitch angle from around 25 to 30 seconds. This can be solved by switching

to a more powerful gimbal actuator with quadcopter in the future works.

7.4.2 Regulation Under Wind Field Disturbance

The other application case to demonstrate the effectiveness of the data-driven ILC algo-

rithm is flying through a wind field. As shown in Fig. 7.26, the over-actuated UAV platform
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Figure 7.11: Simulation - Tracking result of using data-driven ILC on z direction to address
the downwash effects in 180 ° pitch rotation at j = 10.

is controlled to fly through a wind field. The wind field in the experiment is realized by an

air blower that generates wind forces in x and z directions. The platform is flying along y

direction and maintains horizontal hovering. The platform will pass through the wind field

twice, going back and forth. Without ILC, the tracking error is most significant in position

x and y directions, and roll, yaw directions. The platform flies along y direction and the

tracking error is supposed to be large; the error in the other directions is obviously caused

by the wind disturbance.

ILC with the learning filter constructed by the data-driven approach is applied on this

trajectory. The Q filter is also selected to be an ideal low-pass filter with cut-off frequency

of 10 Hz. The resulting RMS error and max error are shown in Fig. 7.28. The error drops

in position x direction and roll, yaw directions significantly. The converged tracking result

selected from j = 1 is shown in Fig. 7.29. With the platform maintains horizontal hovering

during the tracking process, the tracking error converges within only one iteration, demon-

strating that the learning filter is a good approximation of the system at horizontal hovering.

The variations of the errors in later iterations are possibly caused by the turbulent flow gen-

erated by the blower, which is not identical in different iterations, and the disturbances that

do not repeat will reduce the performance of an ILC.

The aforementioned applications of the data-driven ILC, including vertical flight under

downwash effects, circular trajectory tracking and flying over wind fields, can be used to

construct an accurate model of the aerodynamic effects under these trajectories. By using
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Figure 7.12: Experiment - RMS error and max absolute error of using baseline ILC to learn
the smooth impulse with progressive updates every 5 iterations on z direction, Q: 10 Hz.

the converged inputs from ILC, the feedforward force and torque command can be related

to the pose and position of the platform, and thus the magnitude of force and torque needed

to compensate the aerodynamic effects at every pose and position can be calculated. This

will be an invaluable future direction of the ILC application on the over-actuated platform.
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Figure 7.13: Experiment - Tracking result of using baseline ILC to learn the smooth impulse
with progressive updates every 5 iterations on z direction at j = 15.
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Figure 7.14: Experiment - FIR filter of system inverse constructed from ILCFF with pro-
gressive update process.
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Figure 7.15: Experiment - RMS error and max absolute error of using data-driven ILC on z
direction to address the downwash effects in 180 ° pitch rotation, Q: 10 Hz.
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Figure 7.16: Experiment - Tracking result of using data-driven ILC on z direction to address
the downwash effects in 180 ° pitch rotation at j = 5.
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Figure 7.17: Reference of smooth impulses on all 6 DOF, triggered at separate time intervals.
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Figure 7.18: Experiment - RMS error of using baseline ILC to learn the smooth impulse
with progressive updates every 5 iterations on all 6 DOF.

91



0 10 20 30 40 50 60
-0.05

0

0.05

0.1

p
o
s
 (

m
)

x

y

z

0 10 20 30 40 50 60

time (s)

-0.2

0

0.2

0.4

rp
y
 (

ra
d
)

roll

pitch

yaw

Figure 7.19: Experiment - Tracking result of using baseline ILC to learn the smooth impulse
with progressive updates every 5 iterations on all 6 DOF at j = 14.

0 1 2 3 4 5 6 7 8 9 10

time (s)

-0.05

0

0.05

0.1

x
 p

o
s
 (

m
)

ref

u
j

output

Figure 7.20: Experiment - a closer look at the tracking result of 6 DOF ILCFF on x direction
at j = 14.
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Figure 7.21: Circular trajectory.
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Figure 7.22: Experiment result of circular trajectory tracking without ILC.
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Figure 7.23: Tracking of the circular trajectory, side view.
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Figure 7.24: Experiment - Tracking result of using data-driven ILC on all 6 DOF to improve
the circular trajectory tracking performance.
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Figure 7.25: Experiment - Converged result of circular trajectory tracking using data-driven
ILC on all 6 DOF.

Figure 7.26: Over-actuated platform flying through a wind field.
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Figure 7.27: Experiment result of wind field trajectory tracking without ILC.
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Figure 7.28: Experiment - Tracking result of using data-driven ILC on all 6 DOF to improve
the wind field trajectory tracking performance.
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Figure 7.29: Experiment - Converged result of wind field trajectory tracking using data-
driven ILC on all 6 DOF.
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CHAPTER 8

Conclusions

This thesis have proposed a novel over-actuated aerial vehicle using quadcopters and pas-

sive gimbals as omni-directional vectoring thrust actuators. Both the thrust actuators and

the UAV platform have no rotational constraints and can reach any arbitrary orientation. Hi-

erarchical controller based on simple yet accurate dynamics model with singularity-handling

solutions are constructed. High-fidelity simulation model is built, and reliable software archi-

tecture is established. The ability to track independent 6-DOF trajectories and disturbance

rejection is also demonstrated. To the best of our knowledge, the presented platform is the

first UAV platform to experimentally achieve any arbitrary attitude with uniformly high

thrust efficiency.

This thesis have presented the applications of both model-based and data-driven ILC

algorithms on the over-actuated aerial platform and shows great improvements against the

aerodynamic effects. It has been demonstrated that the proposed UAV platform can have

six independent control channels. The formulation of the closed-loop dynamics has enabled

add-on feedforward and/or feedback controllers to be implemented on any of the control

channels. Simulations and real-world experiments have demonstrated the authenticity of the

SISO format of the closed loop system and the effectiveness of the ILC algorithms against

various aerodynamic effects.

Some future research directions are given related to the proposed over-actuated UAV

platform: The gimbal actuator can be used as a modular unit to build aerial platforms for

more sophisticated applications. Singularity issue introduced by the use of gimbal actuators

can be addressed in a more systematic manner. The aerodynamic effects involved on the
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platform by the interaction of the air flows by different propellers can be addressed and

compensated.

Future directions related to the ILC applications: The ILC and the converged tracking

results can be used to model the aerodynamic effects and/or design feedforward compensators

to improve the system performance without repeating the same trajectory over the ILC

framework. The data-driven ILC can also be used to identify the low-level dynamics of the

over-actuated platform which involves nonlinearity and friction.
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Wroński, and Piotr Kozierski. Crazyflie 2.0 quadrotor as a platform for
research and education in robotics and control engineering. In 2017 22nd In-
ternational Conference on Methods and Models in Automation and Robotics
(MMAR), pages 37–42. IEEE, 2017.

[GT18] Matthew J Gerber and Tsu-Chin Tsao. Twisting and tilting rotors for high-
efficiency, thrust-vectored quadrotors. Journal of Mechanisms and Robotics,
10(6):061013, 2018.

[GTM94] Eric Gross, Masayoshi Tomizuka, and William Messner. Cancellation of
discrete time unstable zeros by feedforward control. Journal of Dynamic
Systems, Measurement, and Control, 1994.

102



[HL08] Andrew Hazell and David JN Limebeer. An efficient algorithm for discrete-
time h∞ preview control. Automatica, 44(9):2441–2448, 2008.

[HZX14] Minh Quan Huynh, Weihua Zhao, and Lihua Xie. L1 adaptive control for
quadcopter: Design and implementation, ieee control automation robotics
& vision (icarcv). In 2014 13th International Conference, Singapore, 2014.

[IGGL20] Davide Invernizzi, Mattia Giurato, Paolo Gattazzo, and Marco Lovera. Com-
parison of control methods for trajectory tracking in fully actuated un-
manned aerial vehicles. IEEE Transactions on Control Systems Technology,
29(3):1147–1160, 2020.

[KDDCSH+18] Helge Klippstein, Alejandro Diaz De Cerio Sanchez, Hany Hassanin, Yahya
Zweiri, and Lakmal Seneviratne. Fused deposition modeling for un-
manned aerial vehicles (uavs): a review. Advanced Engineering Materials,
20(2):1700552, 2018.

[KJ74] J Kormylo and V Jain. Two-pass recursive digital filter with zero phase shift.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 22(5):384–
387, 1974.

[KNC13] Waqas Khan, Meyer Nahon, and Ryan Caverly. Propeller slipstream model
for small unmanned aerial vehicles. In AIAA modeling and simulation tech-
nologies (MST) conference, page 4907, 2013.

[KSA02] Koji Kinosita, Takuya Sogo, and Norihiko Adachi. Iterative learning con-
trol using adjoint systems and stable inversion. Asian Journal of Control,
4(1):60–67, 2002.

[KVE+18] Mina Kamel, Sebastian Verling, Omar Elkhatib, Christian Sprecher, Paula
Wulkop, Zachary Taylor, Roland Siegwart, and Igor Gilitschenski. The
voliro omniorientational hexacopter: An agile and maneuverable tiltable-
rotor aerial vehicle. IEEE Robotics & Automation Magazine, 25(4):34–44,
2018.

[KZ12] Kyong-Soo Kim and Qingze Zou. A modeling-free inversion-based iterative
feedforward control for precision output tracking of linear time-invariant sys-
tems. IEEE/ASME Transactions on Mechatronics, 18(6):1767–1777, 2012.

[LAN11] Jack W Langelaan, Nicholas Alley, and James Neidhoefer. Wind field esti-
mation for small unmanned aerial vehicles. Journal of Guidance, Control,
and Dynamics, 34(4):1016–1030, 2011.

[Lie77] Alain Liegeois. Automatic supervisory control of the configuration and be-
haviour of multibody mechanisms. IEEE Transactions on systems, man and
cybernetics, 7(12):868–871, 1977.

103



[LLK+20] Seung Jae Lee, Dongjae Lee, Junha Kim, Dabin Kim, Inkyu Jang, and
H Jin Kim. Fully-actuated autonomous flight of thruster-tilting multirotor.
IEEE/ASME Transactions on Mechatronics, 2020.

[ML21] Salvatore Meraglia and Marco Lovera. Smoother-based iterative learning
control for uav trajectory tracking. IEEE Control Systems Letters, 6:1501–
1506, 2021.

[MMLK10] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The
grasp multiple micro-uav testbed. IEEE Robotics & Automation Magazine,
17(3):56–65, 2010.

[Moo12] Kevin L Moore. Iterative learning control for deterministic systems. 2012.
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