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Abstract 

The effect of labels on nonlinguistic representations is the focus 
of substantial debate in the developmental literature. A recent 
empirical study (Twomey & Westermann, 2016) suggested that 
labels are incorporated into object representations, such that 
infants respond differently to objects for which they know a 
label relative to unlabeled objects. However, these empirical 
data cannot differentiate between two recent theories of 
integrated label-object representations, one of which assumes 
labels are features of object representations, and one which 
assumes labels are represented separately, but become closely 
associated with learning. We address this issue using a 
neurocomputational (auto-encoder) model to instantiate both 
theoretical approaches. Simulation data support an account in 
which labels are features of objects, with the same 
representational status as the objects’ visual and haptic 
characteristics.  

 
Keywords: connectionist model, label status, word 
learning 

 
The nature of the relationship between labels and 
nonlinguistic representations has been the focus of recent 
debate. On one account, label representations are 
qualitatively different to object representations (Waxman & 
Markow, 1995). This labels as invitations to form 
categories (henceforth label as invitations) approach views 
labels as conceptual markers acting as abstract, top-down 
indicators of category membership, and assumes that labels 
are represented separately from their referents. In contrast, 
the labels as features view assumes that label 
representations are integrated into object representations 
(Gliozzi, Mayor, Hu & Plunkett, 2009; Sloutsky & Fisher, 
2004). On this account, labels have no special status; rather, 
they contribute to object representations in the same way as 
other features such as shape and color. More recently, 
Westermann & Mareschal (2014) suggested a compound 
representations account in which labels are encoded in the 
same representational space as objects, and drive learning 
over time, but are not integrated within visual object 
representations. Rather, they become closely associated with 
object representations over learning. Importantly, although 

this view is superficially similar to the labels as invitations 
approach, it involves substantially different mechanisms. In 
the former, labels are qualitatively different from other 
features, and act in a top-down way to guide categorization 
by directing infants’ attention to category-relevant exemplar 
features. In contrast, the compound representations view 
assumes that labels have the same status as other features 
with respect to how they are perceived. Specifically, they 
are not abstract guides to categories: like visual features, 
labels are low-level perceptual features. However, they are 
represented separately from visual features, and thus have 
equivalent representational status. In this sense, they are 
diagnostic – rather than deterministic – of categorization. 
This common status with other features allows labels to be 
embedded in object representations, rather than associated 
via an abstract link. However, despite substantial empirical 
work (e.g., Gelman & Coley, 1990; Gliga, Volein, & Csibra, 
2010; Sloutsky & Fisher, 2004, 2012; Westermann & 
Mareschal, 2014) and a handful of computational 
investigations (Gliozzi et al., 2009; Mirolli & Parisi, 2005; 
Westermann & Mareschal, 2014), there is no current 
consensus as to the status of labels in object representations, 
and the debate goes on. 

Nonetheless, the existence of a broader relationship 
between language and representation is not in dispute: 
multiple studies have demonstrated that language encodes 
perceptual distinctions (Boroditsky, 2001) and can influence 
representations on-line (Lupyan, 2016). While the effect of 
language on representation has been established in adults, 
however, when and how in development this relationship 
emerges is less clear. Studies demonstrate that labels can 
guide infants’ online category formation in infants (Althaus 
& Westermann, 2016; Plunkett, Hu, & Cohen, 2008), and 
that learned, but unlabeled, category representations affect 
their in-the-moment behavior in the lab (Bornstein & Mash, 
2010), but until recently the link between learned labels and 
representations had not been directly tested. Twomey & 
Westermann (2016; henceforth T&W) sought to trace the 
roots of this relationship to the earliest stages of language 
development, in 10-month-old infants. Infants were trained 
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by their parents over the course of a week with two objects 
via 3-minute play sessions. Critically, infants were taught a 
label for one of the objects, but not for the other. After the 
training phase, infants participated in a looking time task in 
which they were shown images of each object in silence. On 
the hypothesis that (previously learned) labels would affect 
infants’ object representations, the authors predicted that 
infants should exhibit different looking times to the labeled 
and unlabeled objects. Their predictions were upheld: 
infants maintained interest for longer in the previously 
labeled than the unlabeled object. Infants of this age have 
been repeatedly shown to engage preferentially with novel 
stimuli when familiarized for sufficient time (for a review, 
see Houston-Price & Makai, 2004). Thus, infants’ longer 
looking to the labeled object across familiarization was 
interpreted as a novelty response to the previously labeled 
object. The authors concluded that labels shape object 
representations from the very beginnings of language 
acquisition.  

These data shed light on the status of labels debate. 
Specifically, they support both the labels as features and the 
compound representations theories: if a label is an integral 
part of an object’s representation, there will be a mismatch 
between that representation and the object in the real world 
when the label is missing. In contrast, the labels as 
invitations account predicts that removing the label should 
have no effect on infants’ responses to objects when those 
objects are presented in silence, because labels are not 
integrated into object representations. Thus, the behavioral 
data do not support the labels as invitations view. However, 
these empirical data cannot differentiate between the labels 
as features and compound representations views. 
Computational models, on the other hand, allow researchers 
to explicitly test the mechanisms specified by these theories 
against empirical data. Thus, in the current study we 
explored which of the labels as features and compound 
representations explains T&W’s results by implementing 
both accounts in neural network models. 

Model Architecture  
We used a simple three-layer auto-encoder model to 

implement both the labels as features and the compound 
representations accounts. Auto-encoders are feed-forward 
connectionist neural networks consisting of an input layer, a 
smaller hidden layer and an output layer. These models have 
successfully captured data from infant categorization tasks 
(Cottrell & Fleming, 1990; Mareschal & French, 2000; 
Twomey & Westermann, 2015; Westermann & Mareschal, 
2012, 2014). These models reproduce input patterns on their 
output layer by comparing input and output activation after 
presentation of training stimuli, then using this error metric 
to adjust the weights between units using back-propagation 
of error (Rumelhart, Hinton, & Williams, 1986). The sum of 
the square of these error values (SSE) is typically used as a 
proxy for looking time (Mareschal & French, 2000; 
Westermann & Mareschal, 2012, 2014), and we use this 
index in the current simulations. The network consisted of 

19 input units, 15 hidden units, and 19 output units. Hidden 
units used a sigmoidal activation function while output units 
used a linear activation function, and weights were 
initialized randomly between -0.25 and 0.25.  We used a 
learning rate of 0.1, a momentum of 0.1, and a Fahlman 
offset of 0.1. 
 

 
Figure 1. Network architecture 

 

Labels as features Model (LaF) 
Figure 1, including the dashed Label input, depicts the LaF 
model. To represent the label as a feature equivalent to all 
other features, we included it both at the input and the 
output level. Thus, the label had the same status as all other 
features in the model’s representation. 

Compound Representation Model (CR) 
Figure 1, excluding the dashed label input, depicts the CR 
model. We based this model on the Westermann and 
Mareschal (2012) auto-encoder-type dual-memory model in 
which labels are encoded as separate outputs. Thus, when an 
object is presented as an input the label is retrieved as part 
of that representation, but the label does not act as an object 
feature at a perceptual level. Note that in this model, we 
used only 18 of the input units, making it a partial auto-
encoder. 

Stimuli  
Simuli reflected the visual, haptic and label characteristics 
of T&W’s 3D object stimuli.  
 
Visual input. In T&W’s empirical study stimuli were two 
small toys, one painted blue and one painted red. One toy 
was a castanet, and the other was two wooden balls joined 
with string. Thus, the stimuli were visually dissimilar, but 
both consisted of two wooden components connected with 
string/elastic. To reflect the partial overlap in visual 
appearance of these objects, we encoded the visual 
component of our stimuli as pseudorandom patterns of 
activation over 10 units. We kept the total number of active 
units constant for each object, but allowed distribution to 
vary; however, two out of the ten units overlapped to 
represent commonalities between stimuli (see Figure 2).  
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Figure 2. Visual stimuli presented to the network. Blue 

boxes represent overlapping features. 
 
Haptic input. As well as visual experience, infants in T&W 
received haptic input when handling or mouthing the 
stimuli. We reasoned that the degree of overlap in this input 
would vary between infants. Because both objects were 
wooden and experienced simultaneously, infants would 
have experienced some minimum overlap in haptic 
experience of the objects. On the other hand, because the 
objects had different affordances, this overlap would never 
have been exact. Thus, we encoded haptic input over 8 
units, with overlap varying randomly between 2 and 6 units 
between simulations. Haptic stimuli were presented to the 
model simultaneously with the visual stimuli and encoded in 
an identical fashion. 
 
Label input. Label input consisted of a single unit, 
activated for the labeled object only. 

Procedure 
In line with T&W’s experiment, our procedure consisted of 
two phases. First, to simulate the 3D object play sessions, 
we trained the model with both objects, one with a label and 
one without a label. Then, we tested the model in a 
familiarization task in which the label was absent, as in 
T&W. Specifically, we ran each architecture in a test 
condition in which the label unit was inactive for both 
stimuli.  

Play sessions 
To reflect the likely differences in playing time across 
children, and playing time with individual objects for each 
child, the total number of iterations for which the model 
received each stimulus during background training was 
selected randomly from a normal distribution of mean 500 
and standard deviation 200, for each stimulus. Duration of 
presentation of both stimuli was randomised based on the 
same distribution. Presentation began with random selection 
of one of the stimuli. Then, each stimulus was presented 30 
times and for a total number of presentations as determined 
before. 

Familiarization Training.  
Before familiarization training, we added noise to hidden-
to-output weights (from a uniform distribution ranging from 
0.001 to 1) to simulate the likely memory decay from 
infants’ final play session, which had taken place the 

previous day. Then, we removed the label from the inputs 
and outputs for the LaF condition, and from the outputs only 
for the CR condition. 

Familiarization then proceeded as follows: in line with 
T&W, stimuli were interleaved (with learning) for 100 
iterations, or until the sum squared error (SSE) between the 
input and output fell below a threshold of 0.01. The 
threshold reflects infants’ looks away from the screen as the 
trial proceeds (Westermann & Mareschal, 2012, 2014). 
Each stimulus was presented for eight trials; the 
familiarization phase therefore consisted of 16 trials in total. 
The initial stimulus was counterbalanced across simulations. 

Infants’ looking time on a given trial was indexed as 
number of presentations, either until error fell below 
threshold or until the maximum number of presentations 
was reached. 

Results 
Results from the CR and LaF models are depicted in Figures 
3 and 4.  

We submitted looking time (SSE) to a 2 (model; CR, LaF) 
x 2 (condition; label vs. no-label) x (trial; 1 - 8) mixed 
ANOVA. Overall, the CR and LaF models’ looking time 
differed (F(1, 67168) = 1166.73, p <. 0001, ηp

2 = .017), and 
decreased rapidly across trials (F(7, 67168) = 28697.85, p < 
.0001, ηp

2 = .751). There was also a small but robust 
difference in looking times to the labeled versus the non-
labeled object, F(1, 67168) = 55.07, p < .0001, ηp

2 = .001). 
All two- and three-way interactions also contributed to the 
model (all Fs > 2.82, all ps < .004). To understand these 
interactions we conducted individual ANOVAs for each 
simulation. The CR model’s looking time decreased rapidly 
across trial (F(7, 33584 = 15307.88, p < .0001, ηp

2 = .761), 
and there was a much smaller effect of condition (F(1, 
33584) = 4.18, p = .041, ηp

2 < .001). However, unlike in 
T&W, there was no trial-by-condition interaction. Thus, 
although the CR model did show an effect of previously-
learned labels on in-task looking times, it did not capture the 
nuanced pattern of results in the empirical study. 

The LaF model’s looking times also decreased across trial 
(F(7, 33584) = 13940.44, p < .0001, ηp

2 = .74), and this 
model showed a somewhat stronger effect of condition (F(1, 
33584) = 64.55, p < .0001, ηp

2 = .002). Critically, the effect 
of trial interacted with the effect of condition (7,33584) = 
8.67, p < .001, ηp

2 = .002). As depicted in Figure 4, post-hoc 
pairwise comparisons (Bonferroni-corrected) demonstrated 
that looking times initially decreased more rapidly in the no-
label condition (all ps < .0001) but that this difference 
disappeared by the end of familiarization. Thus, while both 
models replicate T&W’s overall finding that labels affect 
object representations, only the LaF model reflects the exact 
pattern of results reported by T&W: when all else is held 
equal, teaching the LaF model a label for one object but not 
another leads to a more rapid decrease in looking time to the 
unlabeled object in a subsequent, silent familiarization 
phase.  
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Discussion 
In the current study we tested two possibilities for the 
relationship between labels and object representations using 
a neurocomputational model to capture recent empirical data 
(Twomey & Westermann, 2016). The target data showed 
that learned labels affect 10-month-old infants’ looking 
times in a silent familiarization phase, suggesting that 
knowing a label for an object directly affects its 
representation, even when that object is presented in silence. 
As noted by T&W, both the compound representations and 
labels as features accounts predict some effect of labels on 
object representations, however the empirical data could not 
shed light on which of these two accounts best explained the 
pattern of results they observed. To untangle these two 
possibilities, we implemented both accounts in simple auto-
encoder models (cf., Mareschal & French, 2000; Twomey & 
Westermann, 2015). In the compound representations model 
we instantiated labels on the output layer. This model 
learned to associate labels with inputs over time such that 
the presence of visual/haptic input for an object would 
consistently activate the label, but nonetheless, label 
representations were separate from visual and haptic object 
representations (Westermann & Mareschal, 2014). In the 
labes as features model, labels were represented on the input 
as well as on the output layer with the same status as the 
visual and haptic components of object representations 
(Gliozzi et al., 2009; Sloutsky & Fisher, 2004). Only the 
labels as features model captured the more rapid decrease in 
looking to the no-label stimulus exhibited by the infants in 
T&W’s empirical study.  

This work offers converging evidence that labels may 
have a low-level, featural status in infants’ representations. 
In line with recent computational work (Gliozzi et al., 2009; 
Westermann & Mareschal, 2014) we chose to explore such 
low-level accounts to establish whether a simple associative 
model could account for the nuances of T&W’s data. We 
did so for two reasons. First, the labels as invitations 

account assumes that in their communicative context, labels 
prompt infants to attend to the similarities between category 
exemplars (Ferguson & Waxman, 2016; Fulkerson & 
Waxman, 2007; Waxman & Markow, 1995). It is not clear 
how this view relates to T&W’s data: although it predicts 
that representations of category exemplars will be more 
similar to one another in the presence of labels, it does not 
state whether this effect will be evident for a single object in 
the absence of a label or other communicative information, 
as in the familiarization task presented to infants in T&W’s 
study (e.g., Ferguson & Waxman, 2016; Futó, Téglás, 
Csibra, & Gergely, 2010). In contrast, our labels as features 
model offers a parsimonious account of T&W’s results, in 
which looking time differences emerge from a low-level 
novelty effect. Specifically, as argued by T&W, over 
background training the label is learned as part of the object 
representation. Thus, when the object appears without the 
label there is a mismatch between representation and 
external input. This mismatch leads to an increase in 
network error, our proxy for looking time, capturing the 
empirical data without a need for high-level communicative 
cues.  

The current simulations also relate closely to the dual 
memory model presented by Westermann & Mareschal 
(2014). Our labels as features architecture suggests that if 
infants were to be taught a label for a category of objects – 
rather than a single object as described here – the absence of 
a label during familiarization should nonetheless provoke a 
similar novelty response. Interestingly, however, 
Westermann and Mareschal (2014) make the opposite 
prediction: familiarization time to new exemplars of a 
previously-learned category should be faster when those 
exemplars have previously been labeled. A key difference 
between the current model and that of Westermann & 
Mareschal is the latter’s separation of memory into long- 
and short-term components. This allows the presence of a 
label during background training to actively restructure 
category representations, pulling exemplars closer to the 

Figure 3. Results from the labels as features model. *p < 
.001 

 

Figure 4. Results from the  
compound representations model. 
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prototypical category member. From this perspective, new 
category members should be perceived as more similar to 
learned representations when that category has a label, 
irrespective of the presence of the label in-the-moment. In 
contrast, labels in the present model are simply shared 
features, the absence of which gives rise to a mismatch. It is 
of course possible that both predictions are correct, but 
come into play at different developmental stages. For 
example, early in language development infants could 
initially form simple, featural associations between labels 
and objects, as in the current model. Over time, however, 
label representations could become more deeply entrenched, 
leading to the “magnet”-type effect on representations 
predicted by Westermann  & Mareschal (cf. Deng & 
Sloustky, 2015; Kuhl, 1991). An empirical test of this 
possibility is important for a detailed understanding of 
labels’ status in object representations. 

It is important to note that other computational work has 
explored the effect of labeling and representation in this age 
group. Gliozzi et al. (2009) used a self-organizing map  
(SOM; Kohonen, 1998) architecture to capture empirical 
data from a categorization task with 10-month-old infants. 
In this network, labes are represented as units in SOMs in 
the same way as visual features. This model could capture 
T&W’s results for similar reasons to the success of our 
labels as features model, although this remains an empirical 
question. However, the two networks make very different 
assumptions about learning mechanisms, highlighting an 
important issue for both infancy research and computational 
work. Gliozzi and colleagues’ model learns in an 
unsupervised way, strengthening associations between units 
in its SOMs using “fire together, wire together” Hebbian 
learning. In contrast, our model learns by comparing what it 
“sees” to what it “knows” and updating its representations 
in proportion to any discrepancy. Thus, the current results 
are compatible with an error-based learning account to 
development, in which infants learn by tracking mismatches 
between representation and environment (Heyes, 2015). 
Whether unsupervised learning, error based learning, or 
some combination of both drives early development is a 
profound theoretical issue outside the scope of the current 
paper; for now we highlight the importance of bearing in 
mind the link between the technical assumptions of a 
computational model and the implications for 
(developmental) theory. Taken together with T&W, 
however, the current work demonstrates how language can 
shape representation and even change behavior from the 
bottom up. 
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